高考弹簧与弹簧模型(A)

合集下载

高中物理弹簧模型详解

高中物理弹簧模型详解

高中物理弹簧模型详解弹簧是我们在日常生活中经常接触到的一个物体,而在物理学中,弹簧也是一种非常重要的模型,能够帮助我们更好地理解力学性质。

本文将详细介绍高中物理中弹簧模型的相关知识,包括弹簧的基本概念、弹簧的力学性质以及弹簧在物理学中的应用。

一、弹簧的基本概念弹簧是一种具有自身形状恢复能力的物体,当外力作用在弹簧上时,会产生形变,当外力消失时,弹簧会恢复原来的形状。

弹簧通常是由金属或塑料等材料制成,形状多样,能够用于各种领域。

在物理学中,我们通常将弹簧视为一个理想模型,即认为弹簧具有以下特点:弹性系数恒定、无质量等。

弹簧的弹性系数(弹簧常数)用k表示,是衡量弹簧的硬度和形变能力的重要参数。

二、弹簧的力学性质1. 弹簧的伸长和弹性力当外力作用在弹簧上时,弹簧会发生形变,使长度发生变化,此时称为弹簧的伸长。

根据胡克定律,弹簧伸长的长度与作用力成正比,即F=kx,其中F为外力,k为弹簧的弹性系数,x为伸长的长度。

弹簧的弹性力也叫胡克力,是指弹簧对外力做出的响应,方向与伸长的方向相反。

当外力消失时,弹簧会产生一个恢复力,使形状恢复原状。

2. 弹簧振动在物理学中,弹簧振动是一种重要的现象,可以用简谐振动的原理进行描述。

当弹簧受到外力作用时,会产生振动,频率与质量和弹簧的弹性系数相关。

弹簧振动的频率用f表示,与弹簧的弹性系数k和振动体的质量m有关,可以用以下公式表示:f=1/(2π) * √(k/m)。

三、弹簧在物理学中的应用1. 弹簧振子弹簧振子是物理学中常见的实验器材,由一根弹簧和一个质点组成。

通过对弹簧振子的研究,可以了解振动的基本特性,包括振幅、频率、周期等。

2. 弹簧力学弹簧力学在实际生活中有着广泛的应用,例如弹簧秤、弹簧减震器等。

通过对弹簧力学的研究,可以更好地设计和制造各种弹簧产品,满足不同领域的需求。

3. 彩虹弹簧彩虹弹簧是一种特殊形状的弹簧玩具,通过不同颜色的环形弹簧组成。

彩虹弹簧不仅具有较强的伸缩性能,还有着独特的视觉效果,深受孩子们的喜爱。

高中物理二轮专题——弹簧模型(解析版)

高中物理二轮专题——弹簧模型(解析版)

高中物理第二轮专题——弹簧模型高考分析:轻弹簧就就是一种理想化得物理模型,以轻质弹簧为载体,设置复杂得物理情景,考查力得概念,物体得平衡,牛顿定律得应用及能得转化与守恒,就就是高考命题得重点,此类命题几乎每年高考卷面均有所见、由于弹簧弹力就就是变力,学生往往对弹力大小与方向得变化过程缺乏清晰得认识,不能建立与之相关得物理模型并进行分类,导致解题思路不清、效率低下、错误率较高、在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统得运动状态具有很强得综合性与隐蔽性,加之弹簧在伸缩过程中涉及力与加速度、功与能等多个物理概念与规律,所以弹簧类问题也就成为高考中得重、难、热点、我们应引起足够重视、弹簧类命题突破要点:1、弹簧得弹力就就是一种由形变而决定大小与方向得力、当题目中出现弹簧时,要注意弹力得大小与方向时刻要与当时得形变相对应、在题目中一般应从弹簧得形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化得几何关系,分析形变所对应得弹力大小、方向,以此来分析计算物体运动状态得可能变化、2、因弹簧(尤其就就是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变、因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧得弹力不突变、3、在求弹簧得弹力做功时,因该变力为线性变化,可以先求平均力,再用功得定义进行计算,也可据动能定理与功能关系:能量转化与守恒定律求解、同时要注意弹力做功得特点:W=-(kx22-kx12),弹力得功等于弹性势能增量得负值或弹力得功等于弹性势能得减少、弹性势k能得公式Ep=kx2,高考不作定量要求,该公式通常不能直接用来求弹簧得弹性势能,只可作定性讨论、因此,在求弹力得功或弹性势能得改变时,一般以能量得转化与守恒得角度来求解、一、“轻弹簧”类问题在中学阶段,凡涉及得弹簧都不考虑其质量,称之为“轻弹簧”,就就是一种常见得理想化物理模型、由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧得加速度会无限大、故簧轻弹簧中各部分间得张力处处相等,均等于弹簧两端得受力、弹一端受力为,另一端受力一定也为。

高考物理弹簧模型知识点

高考物理弹簧模型知识点

2019高考物理弹簧模型知识点2019高考物理弹簧模型知识点弹簧模型是以轻质弹簧为载体,与具体实际问题相结合,考查运动学、动力学、能量守恒、动量守恒、振动问题、功能关系、物体的平衡等相关问题。

有关弹簧的知识,是高考考查的重点,同时也是高考的难点,几乎每年的高考都会考查该内容,所以备考时要引起足够的重视.轻弹簧是一种理想化的物理模型,分析问题时不需要考虑弹簧本身的质量和重力.处理弹簧模型时,需要掌握以下知识点:1.弹簧弹力的计算弹簧弹力的大小可以由胡克定律来计算,即弹簧发生形变时,在弹性限度内,弹力的大小与弹簧伸长(或缩短)的长度成正比,数学表达式为,其中是一个比例系数,叫弹簧的劲度系数.弹簧的弹力不是一个恒定的力,而是一个变力,其大小随着弹簧形变量的变化而变化,同时还与弹簧的劲度系数有关。

2.弹簧弹力的特点(1)弹簧弹力的大小与弹簧的形变量有关,当弹簧的劲度系数保持不变时,弹簧的形变量,弹簧的形变量发生变化,弹簧的弹力相应地发生变化;形变量不变,弹力也力也就保持不变,由于弹簧的形变不能发生突变,故弹簧的弹力也不能瞬间发生变化,这与绳子的受力情况不同.(2)当轻弹簧受到外力的作用时,无论弹簧是处于平衡状态还是处于加速运动状态,弹簧各个部分所受的力的大小是相同的.(3)弹簧弹力的方向与弹簧的形变有关,在拉伸和压缩两种情况下,弹力的方向相反.在分析弹簧弹力的方向时,一定要全面考虑,如果题目没有说明是哪种形变,那么就需要考虑两种情况.(4)根据胡克定律可知,弹力的大小与形变量成正比,方向与形变的方向相反,可以将胡克定律的表达式写成F=kx,即弹簧弹力是一个线性回复力,故在弹力的作用下,物体会做简谐运动.3.弹性势能与弹力的功弹簧能够存储弹性势能,其大小为Ep=kx2/2,在高中阶段不需要掌握该公式,但要知道形变量越大,弹性势能就越大,在形变量相同的情况下,弹性势能是相等的;一般情况下,通常利用能量守恒定律来求弹簧的弹性势能,由于弹簧弹力是一个变力,弹力的功就是变力的功,可以用平均力来求功,也可以通过功能关系和能量守恒定律来求解.4.常见的弹簧类问题(l)弹簧的平衡与非平衡问题;(2)弹簧的瞬时性问题;(3)弹簧的碰撞问题;(4)弹簧的简谐运动问题;(5)弹簧的功能关系问题;(6)弹簧的临界问题;(7)弹簧的极值问题;(8)弹簧的动量守恒和能量守恒问题;(9)弹簧的综合性问题.5.处理弹簧模型的策略(l)判断弹簧与连接体的位置,分析物体的受力情况;(2)判断弹簧原长的位置,现长的位置,以确定弹簧是哪种形变以及形变量的大小;(3)分析弹簧弹力的变化情况,弹箦弹力不能发生突变,以此来分析计算物体的运动状态;(4)根据相应的物理规律列方程求解,例如,物体处于平衡时,运用平衡条件和胡克定律求解.模型1 考查弹簧的瞬时性问题弹簧弹力的大小与弹簧形变有关,而弹簧的形变在瞬间是不能突变的,即弹簧形变的改变需要一定的时间,所以弹簧弹力在瞬间不能够突变,这与绳模型是有区别的,不要混淆两者的区别,否则就会出错.模型2 考查弹簧中的碰撞问题弹簧中的碰撞问题是一类综合性很强的题目,一般综合了动量守恒、机械能守恒、功能关系和能量转化等.如果弹簧作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能,能量相互转化.在运动过程中,动能与势能相互转化。

弹簧模型中的力与能---2024年高考物理二轮热点模型及参考答案

弹簧模型中的力与能---2024年高考物理二轮热点模型及参考答案

弹簧模型中的力与能目录【模型一】静力学中的弹簧模型【模型二】动力学中的弹簧模型【模型三】与动量、能量有关的弹簧模型【模型一】静力学中的弹簧模型静力学中的弹簧模型一般指与弹簧相连的物体在弹簧弹力和其他力的共同作用下处于平衡状态的问题,涉及的知识主要有胡克定律、物体的平衡条件等,难度中等偏下。

1(2024·全国·高三专题练习)如图所示,倾角为θ的斜面固定在水平地面上,两个质量均为m 的物块a 、b 用劲度系数为k 的轻质弹簧连接,两物块均恰好能静止在斜面上。

已知物块a 与斜面间的动摩擦因数是物块b 与斜面间的动摩擦因数的两倍,可认为最大静摩擦力等于滑动摩擦力,重力加速度大小为g ,弹簧始终在弹性限度内。

则弹簧的长度与原长相比()A.可能伸长了mg sin θ3k B.可能伸长了2mg sin θ3k C.可能缩短了mg sin θ3k D.可能缩短了2mg sin θ3k 2(2023上·黑龙江哈尔滨·高三校联考期末)如图所示,倾角为θ且表面光滑的斜面固定在水平地面上,轻绳跨过光滑定滑轮,一端连接物体c ,另一端连接物体b ,b 与物体a 用轻弹簧连接,c 与地面接触且a 、b 、c 均静止。

已知a 、b 的质量均为m ,重力加速度大小为g 。

则()A.c 的质量一定等于2m sin θB.剪断竖直绳瞬间,b 的加速度大小为g sin θC.剪断竖直绳之后,a、b将保持相对静止并沿斜面下滑D.剪断弹簧瞬间,绳上的张力大小为mg sinθ3如图所示,一质量为m的木块与劲度系数为k的轻质弹簧相连,弹簧的另一端固定在斜面顶端。

木块放在斜面上能处于静止状态。

已知斜面倾角θ=37°,木块与斜面间的动摩擦因数μ=0.5。

弹簧在弹性限度内,最大静摩擦力等于滑动摩擦力,重力加速度为g,sin37°=0.6,cos37°=0.8。

则()A.弹簧可能处于压缩状态B.弹簧的最大形变量为3mg 5kC.木块受到的摩擦力可能为零D.木块受到的摩擦力方向一定沿斜面向上【规律方法】(1)弹簧的最大形变量对应弹簧弹力的最大值。

专题04 弹簧模型(解析版)

专题04 弹簧模型(解析版)

2023年高三物理二轮常见模型与方法强化专训专练专题04 弹簧模型一、高考真题1.(2022年江苏卷)如图所示,轻质弹簧一端固定,另一端与物块A 连接在一起,处于压缩状态,A 由静止释放后沿斜面向上运动到最大位移时,立即将物块B 轻放在A 右侧,A 、B 由静止开始一起沿斜面向下运动,下滑过程中A 、B 始终不分离,当A 回到初始位置时速度为零,A 、B 与斜面间的动摩擦因数相同、弹簧未超过弹性限度,则( )A .当上滑到最大位移的一半时,A 的加速度方向沿斜面向下B .A 上滑时、弹簧的弹力方向不发生变化C .下滑时,B 对A 的压力先减小后增大D .整个过程中A 、B 克服摩擦力所做的总功大于B 的重力势能减小量【答案】B【详解】B .由于A 、B 在下滑过程中不分离,设在最高点的弹力为F ,方向沿斜面向下为正方向,斜面倾角为θ,AB 之间的弹力为F AB ,摩擦因素为μ,刚下滑时根据牛顿第二定律对AB 有()()()A B A B A B sin cos F m m g m m g m m a θμθ++−+=+对B 有B B AB B sin cos m g m g F m a θμθ−−=联立可得AB A B BF F m m m =−+由于A 对B 的弹力F AB 方向沿斜面向上,故可知在最高点F 的方向沿斜面向上;由于在最开始弹簧弹力也是沿斜面向上的,弹簧一直处于压缩状态,所以A 上滑时、弹簧的弹力方向一直沿斜面向上,不发生变化,故B 正确;A .设弹簧原长在O 点,A 刚开始运动时距离O 点为x 1,A 运动到最高点时距离O 点为x 2;下滑过程AB 不分离,则弹簧一直处于压缩状态,上滑过程根据能量守恒定律可得()()22121211sin 22kx kx mg f x x θ=++− 化简得()122sin mg f k x x θ+=+当位移为最大位移的一半时有()121in =s +2F f x x k x mg θ−⎛⎫−− ⎪⎝⎭合带入k 值可知F 合=0,即此时加速度为0,故A 错误;C .根据B 的分析可知AB A B BF F m m m =−+再结合B 选项的结论可知下滑过程中F 向上且逐渐变大,则下滑过程F AB 逐渐变大,根据牛顿第三定律可知B 对A 的压力逐渐变大,故C 错误;D .整个过程中弹力做的功为0,A 重力做的功为0,当A 回到初始位置时速度为零,根据功能关系可知整个过程中A 、B 克服摩擦力所做的总功等于B 的重力势能减小量,故D 错误。

高中物理关于弹簧的8种模型

高中物理关于弹簧的8种模型

高中物理关于弹簧的8种模型
以下是关于弹簧的8种模型
1. 弹性线性模型(Hooke定律模型):弹簧的拉伸或压缩与弹力成正比。

2. 欧拉-伯努利悬链模型:将一条悬挂在两端支持点上的弹簧视为一个由无数小段组成的悬链,使该整体发生弹性形变。

3. 线圈弹簧模型:将弹簧看作一系列具有弹性的杆件相互连接而成的线圈。

4. 非线性弹簧模型(实验模型):弹簧长度非常短,增加弹簧的弹性,以进一步研究其弹性质量。

5. 结构弹簧模型:弹簧长度较长,由此建立的结构弹簧可以帮助研究建筑物和桥梁的耐力。

6. 重力弹簧模型:弹簧被用来模拟重力的作用。

7. 超弹性弹簧模型:这种弹簧的弹性大于普通弹簧,它被广泛应用于高精度测量、机器人学和其他高科技领域。

8. 线性簧模型:弹簧的材质、线径等是固定的,根据弹簧的特性建立模型,计算其应力、应变等力学参数。

高中物理关于弹簧的8种模型

高中物理关于弹簧的8种模型

高中物理关于弹簧的8种模型:
1.简单弹簧模型:最基本的模型,将弹簧看作一个线性弹性体,满足胡克定律,即弹
簧力与变形量成正比。

2.质点弹簧模型:在简单弹簧模型的基础上,考虑到弹簧两端连接的物体的质量,将
其视为质点,分析弹簧振动、调和运动等问题。

3.弹簧振子模型:将弹簧与一定质量的物体(如小球)组合起来,形成一个简谐振动
系统,研究其振动频率、周期等特性。

4.弹簧串联模型:多个弹簧按照串联方式连接,研究整个系统的弹性特性和变形量的
分布情况。

5.弹簧并联模型:多个弹簧按照并联方式连接,研究整个系统的弹性特性和总的弹簧
常数。

6.弹簧平衡模型:将弹簧与其他物体相连接,使其处于平衡状态,通过分析受力平衡
条件,求解物体的位移和力的大小。

7.弹簧阻尼模型:考虑弹簧振动过程中存在的阻尼现象,引入阻尼系数,分析阻尼对
振动特性的影响。

8.非线性弹簧模型:考虑到弹簧在较大变形下不再满足胡克定律,采用非线性弹簧模
型进行分析,如非线性胡克定律、比例限制等。

高三物理一轮复习资料【弹簧模型】

高三物理一轮复习资料【弹簧模型】

高三物理一轮复习资料【弹簧模型】1.弹簧模型的问题特点弹簧模型是高考中常见的物理模型之一,该模型涉及共点力的平衡、牛顿运动定律、动能定理、机械能守恒定律以及能量守恒定律等知识.运动过程中,从力的角度看,弹簧上的弹力是变力,从能量的角度看,弹簧是储能元件.因此,借助弹簧模型,可以很好地考查考生的分析综合能力.在高考试题中,弹簧(主要是轻质弹簧)模型主要涉及四个方面的问题:静力学中的弹簧问题、动力学中的弹簧问题、与能量转化和与动量有关的弹簧问题.2.弹簧模型的解题策略(1)力学特征:轻质弹簧不计质量,并且因软质弹簧的形变发生改变需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹簧的弹力不突变.(2)过程分析:弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,首先要注意弹力的大小和方向与形变相对应,从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来综合分析物体的运动状态.(3)功能关系:在求弹簧的弹力做功时,因该变力随形变量而线性变化,可以先求平均力,再用功的定义进行计算,也可根据动能定理和功能关系求解.同时要注意弹力做功等于弹性势能增量的负值,因此在求弹力的功或弹性势能的改变时,一般从能量的转化与守恒的角度来求解.(4)临界分析:弹簧一端有关联物、另一端固定时,当弹簧伸长到最长或压缩到最短时,物体速度有极值,弹簧的弹性势能最大,此时也是物体速度方向发生改变的时刻;若关联物与接触面间光滑,当弹簧恢复原长时,物体速度最大,弹性势能为零;若关联物与接触面间粗糙,物体速度最大时弹力与摩擦力平衡,此时弹簧并没有恢复原长,弹性势能也不为零.3.弹簧模型的主要问题(1)与弹簧关联物体受力变化前后的加速度问题.(2)与弹簧关联两个相互接触的物体分离的临界问题.(3)与弹簧关联物体的碰撞问题.(4)与热力学、振动、电磁学综合的弹簧问题.视角1:弹簧模型中的平衡问题1.如图所示,质量为m 1的物体A 压在放于地面上的竖直轻弹簧L 1(劲度系数为k 1)上,上端与轻弹簧L 2(劲度系数为k 2)相连,轻弹簧L 2上端与质量为m 2的物体B 相连,物体B 通过轻绳跨过光滑的定滑轮与轻质小桶P 相连,A 、B 均静止.现缓慢地向小桶P 内加入细沙,当弹簧L 1恰好恢复原长时(小桶一直未落地),求:(1)小桶P 内所加入细沙的质量;(2)小桶在此过程中下降的距离.解析:(1)当L 1恢复原长时,对A 、B 整体分析,绳子的拉力为F =(m 1+m 2)g ,即小桶中细沙的质量为m 1+m 2.(2)开始时,对A 、B 整体受力分析得k 1x 1=(m 1+m 2)g ,式中x 1为弹簧L 1的压缩量,则x 1=(m 1+m 2)g k 1 对B 受力分析得k 2x 2=m 2g ,式中x 2为弹簧L 2的压缩量,则x 2=m 2g k 2当L 1恢复原长时,对A 受力分析得k 2x 2′=m 1g ,式中x 2′为弹簧L 2的伸长量,则x 2′=m 1g k 2在整个过程中,小桶下降的距离h =x 1+x 2+x 2′=(m 1+m 2)g ⎝⎛⎭⎫1k 1+1k 2. 答案:(1)m 1+m 2 (2)(m 1+m 2)g ⎝⎛⎭⎫1k 1+1k 2视角2:弹簧模型中的瞬时问题2.细绳拴一个质量为m 的小球,小球将左端固定在墙上的轻弹簧压缩了距离x (小球与弹簧不连接),小球静止时弹簧在水平位置,细绳与竖直方向的夹角为53°,小球距地面的高度为h ,如图所示.下列说法中正确的是( )A .细绳烧断后,小球做平抛运动B .细绳烧断后,小球落地的速度等于2ghC .剪断弹簧瞬间,细绳的拉力为53mg D .细绳烧断瞬间,小球的加速度大小为53g 解析:D 将细绳烧断后,小球受到重力和弹簧弹力的共同作用,合力方向斜向右下方,并不是只有重力的作用,所以小球不是做平抛运动,故A 错误;小球只做自由落体运动时,根据v 2=2gh 得落地速度是v =2gh ,而现在除重力外还有弹簧的弹力对小球做功,所以小球落地时的速度一定大于2gh ,故B 错误;小球静止时,对小球进行受力分析如图所示,由平衡条件得,细绳的拉力大小T =mg cos 53°=53mg ,弹簧弹力的大小F =mg tan 53°=43mg ,剪断弹簧瞬间,细绳的拉力发生突变,不再为T =53mg ,故C 错误;细绳烧断瞬间,弹簧的弹力不变,则小球所受的合力与细绳烧断前细绳中的拉力大小相等、方向相反,此时F 合=T ,可知此瞬间小球的加速度大小a =F 合m =53g ,故D 正确.3.A 、B 两球质量相同,静止在倾角为30°的斜面上.两球之间拴接有轻弹簧.A 球与挡板接触,B 球通过细线与斜面顶端相连,细线绷紧,系统处于静止状态.则撤去挡板瞬间( )A .弹簧弹力一定变大B .细线拉力一定变大C .A 球一定处于失重状态D .B 球一定处于平衡状态解析:D 开始时,弹簧可能处于压缩状态,则撤去挡板瞬间,小球A 向下运动,弹簧伸长,弹力变小,则绳的拉力增大,选项A 错误;若开始时弹簧处于伸长状态,且挡板的弹力为零,则撤去挡板瞬间,A 球仍静止,不是处于失重状态,选项B 、C 错误;B 球被细线拉住,一定处于平衡状态,选项D 正确.视角3:弹簧模型中的动力学和能量问题4.如图所示,有一倾角为θ=37°的粗糙硬杆,其上套一底端固定且劲度系数为k =10 N/m 的轻弹簧,弹簧自然伸长时上端在Q 点,弹簧与杆间摩擦忽略不计.一个质量为m =5 kg 的小球套在此硬杆上,从P 点由静止开始滑下,经过t =2 s 后,P 与弹簧自由端Q 相碰,PQ 间的距离L =4 m ,弹簧的弹性势能与其形变量x 的关系为E p =12kx 2.已知sin 37°=0.6,cos 37°=0.8,重力加速度g 取10 m/s 2.求: (1)小球与硬杆之间的动摩擦因数μ;(2)小球向下运动过程中速度最大时弹簧的弹性势能.解析:小球做匀加速直线运动,根据运动学公式和牛顿第二定律即可求出动摩擦因数;当小球加速度为零时,速度最大,根据平衡条件求出压缩量,再根据E p =12kx 2求出速度最大时弹簧的弹性势能.(1)小球由静止做匀加速直线运动,则有:L =12at 2, 解得:a =2 m/s 2.根据牛顿第二定律得:mg sin 37°-μmg cos 37°=ma解得:μ=0.5.(2)当小球加速度为零时,速度最大即有:mg sin 37°=μmg cos 37°+kx解得:x =1 m所以弹性势能为:E p =12kx 2=12×10×12 J =5 J. 答案:(1)0.5 (2)5 J5.(多选)如图甲所示,倾角为θ=30°的光滑斜面固定在水平面上,自然伸长的轻质弹簧一端固定在斜面底端的挡板上.一质量为m 的小球,从离弹簧上端一定距离的位置由静止释放,接触弹簧后继续向下运动.小球运动的v -t 图象如图乙所示,其中OA 段为直线段,AB 段是与OA 相切于A 点的平滑曲线,BC 是平滑曲线,不考虑空气阻力,重力加速度为g .关于小球的运动过程,下列说法正确的是( )A .小球在tB 时刻所受弹簧的弹力等于12mg B .小球在t C 时刻的加速度大于12g C .小球从t C 时刻所在的位置由静止释放后,能回到出发点D .小球从t A 时刻到t C 时刻的过程中,重力势能的减少量等于弹簧弹性势能的增加量 解析:ABC 小球在t B 时刻速度达到最大,此时弹簧的弹力等于重力沿斜面的分力,即此时F 弹=mg sin 30°=12mg ,故A 正确;由题意可知,t A 时刻小球刚好与弹簧接触且弹簧无形变,此时小球的加速度a A =12g ,由图乙可知,A 点图线斜率的绝对值小于C 点图线斜率的绝对值,分析可知小球在t C 时刻的加速度大于12g ,故B 正确;整个过程中,弹簧和小球组成的系统机械能守恒,故小球从C 点释放能到达原来的释放点,故C 正确;小球从t A 时刻到t C 时刻的过程中,由系统机械能守恒知小球重力势能的减少量与动能的减少量之和等于弹簧弹性势能的增加量,故D 错误.视角4:弹簧模型中的动量问题6.如图所示,轻弹簧的一端固定在竖直墙上,质量为2m 的光滑弧形槽静止放在光滑水平面上.弧形槽底端与水平面相切,一个质量为m 的物块从槽高h 处开始自由下滑,下列说法错误的是( )A .在下滑过程中,物块和弧形槽组成的系统机械能守恒B .在下滑过程中,物块和槽的水平方向动量守恒C .物块压缩弹簧的过程中,弹簧的最大弹性势能E p =23mgh D .物块被弹簧反弹后,离开弹簧时的速度大小为 2gh 3解析:D 物块下滑过程,只有重力做功,系统机械能守恒,故A 正确;物块下滑过程,滑块与弧形槽组成的系统水平方向所受合外力为零,系统水平方向动量守恒,故B 正确;设物块到达水平面时速度大小为v 1,槽的速度大小为v 2,且可判断物块速度方向向右,槽的速度方向向左,以向右为正方向,在物块下滑过程中,槽和物块组成的系统水平方向动量守恒,由动量守恒定律得:m v 1-2m v 2=0,由机械能守恒定律得:mgh =12m v 21+12·2m v 22,由以上两式解得:v 1=2 gh 3,v 2= gh 3,物块与弹簧相互作用过程系统机械能守恒,物块离开弹簧时速度大小与物块接触弹簧前的速度大小相等,v =v 1=2gh 3,故D 错误;物块与弹簧相互作用过程系统机械能守恒,物块速度为零时,弹簧的弹性势能最大,由机械能守恒定律可知,最大弹性势能E p =12m v 21=2mgh 3,故C 正确. 7.(多选)如图所示,连接有轻弹簧的物块a 静止于光滑水平面上,物块b 以一定初速度向左运动.下列关于a 、b 两物块的动量p 随时间t 的变化关系图象,合理的是( )解析:BCD b与弹簧接触后,弹力慢慢增大,故两物块的加速度一定先增大后减小,故A不正确;b与弹簧接触后,压缩弹簧,b做减速运动,a做加速运动,且在运动过程中系统的动量守恒,如果b的质量较小,可能出现b反弹的现象,故B正确;由B中分析可知,两物块满足动量守恒定律,并且如果a、b两物块的质量相等,则可以出现C中的运动过程,故C正确;由B中分析可知,两物块满足动量守恒定律,如果a的质量很小,可能出现D中的运动过程,故D正确.。

高考中弹簧类模型分析

高考中弹簧类模型分析
求并不是很 高, 但是弹簧类模型能涉及 力和加速度 、
功 和 能 、冲量 和 动 量 甚 至 简 谐 运 动 等 多 个 物 理 概 念 和规 律 。学 生 往 往 对 弹力 大 小 和 方 向 的变 化 过 程 缺
弹 簧 的弹 力 是 一 个 变 力 ,而 且 弹 性 势 能 仅 与 弹
的改 变 需 要 一 定 时 间 , 因 此这 种情 况下 , 弹 力 的大 小 不 会 突 然 改 变 , 即弹 簧 弹 力 大 小 的改 变 需 要 一 定 的
簧; £ 这段 时 间内 , 小球 先加 速后减 速 , 小球 的动
能 先 增 加 后 减 少 。C 选项 正 确 。
( 作者单位 : 山 东 省利 津二 中 )
考 点 聚 焦

■ 薛 保 生
翻开历 年全 国各省市 高考物理试卷 ,弹簧类模 时 间。 ( 这一点与绳不 同 , 高 中物理研究 中, 是不考虑 绳 的形变 的 ,因此绳两端所受弹力 的改变可 以是 瞬
时 的。)
四、 弹簧弹力做功与动量 、 能量 的综 合 问题
型出现频率之高让人震惊 。虽然大纲对胡克定律要
析 问 题 时要 注 意 弹 力 的 大小 与方 向 时刻 要 与 当 时 的 ( A) t t 时刻小球动能最大.
( B) t 2 时刻小 球动能最 大.
( C) t 2  ̄ t 这段时 间内, 小球 的 动 能先 增 加 后 减 少 . ( D) t 2  ̄ t 这段时 间内, 小 球 增 加 的 动 能 等 于 弹 簧 减 少 的 弹性 势 能 .
由弹 簧 自身 的 特 点 所 决 定 ,必 须 考 虑 到 弹 簧 既 可 以
簧正上方某一高度处 由静止释放 ,小球 落到弹簧上 压缩弹簧到最低点 , 然后又被弹起离开弹簧 , 上升到

高考物理弹簧类问题的几种模型及其处理方法归纳

高考物理弹簧类问题的几种模型及其处理方法归纳

弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。

其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。

还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。

根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。

一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。

当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。

2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。

3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。

同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值。

弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。

二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。

现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。

在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。

分析:上提m1之前,两物块处于静止的平衡状态,所以有:,,其中,、分别是弹簧k1、k2的压缩量。

2023年高考物理总复习核心素养微专题(二)模型建构—— 弹簧模型

2023年高考物理总复习核心素养微专题(二)模型建构—— 弹簧模型

模型建构——弹簧模型弹簧问题综合性大,但弹簧问题往往是由几个基本的模型组合而成,掌握弹簧问题的基本模型,对于解决复杂的弹簧问题有很重要的意义。

处理复杂的弹簧模型,要应用基本的弹簧模型,应用力的观点、能的观点以及动量的观点解决问题。

类型图示规律分析瞬时性初始时,A 、B 紧挨在一起但A 、B 之间无压力。

剪断细绳的瞬间,弹簧的弹力不能突变,AB 系统受到的合外力等于B 的重力,用整体法求AB 的加速度,隔离法求A 、B 间的相互作用力对称性斜面光滑,物块B 紧靠挡板,物块A 被外力控制恰使弹簧处于原长状态。

撤去外力后,A 物块的运动具有对称性分离性撤去外力F ,AB 向上运动的过程中,A 、B 相互作用力为0的位置为A 、B 分离的位置不变性弹性势能与物体质量无关,相等的伸长量和缩短量弹性势能相等弹性势能不变模型光滑斜面上物块A 被平行斜面的轻质弹簧拉住静止于O 点,如图所示,现将A 沿斜面拉到B 点无初速度释放,物块在BC 范围内做简谐运动,则下列说法错误的是( )A.在运动过程中,物块A 和弹簧组成的系统机械能守恒B.从B 到C 的过程中,合外力对物块A 的冲量为零C.物块A 从B 点到O 点过程中,动能的增量等于弹性势能的减小量D.B 点时物块A 的机械能最小【解析】选C。

在运动过程中,物块A和弹簧组成的系统机械能守恒,故A正确;从B到C的过程中,根据冲量定理可知Ft=mv C-mv B,由于B、C两点的速度为零,故合外力对物块A的冲量为零,故B正确;从B点到O点的过程中,对物块A根据动能定理可知-mgh-W弹=12m v O2-0,故动能的增量等于弹性势能的减小量减去克服重力做的功,故C错误;物块A和弹簧系统机械能守恒;B 点时弹簧的弹性势能最大,故物块A的机械能最小,故D正确。

弹性势能对称模型(2022·湖北选择考)如图所示,质量分别为m和2m的小物块Р和Q,用轻质弹簧连接后放在水平地面上,Р通过一根水平轻绳连接到墙上。

2022年高考物理二轮复习:弹簧模型问题归纳总结

2022年高考物理二轮复习:弹簧模型问题归纳总结

高考二轮复习弹簧模型问题归纳总结高考动向弹簧问题能够较好的培养学生的分析解决问题的能力和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、能量守恒问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。

弹簧弹力的特点:弹簧弹力的大小可根据胡克定律计算(在弹性限度内),即F=kx,其中x是弹簧的形变量(与原长相比的伸长量或缩短量,不是弹簧的实际长度)。

高中研究的弹簧都是轻弹簧(不计弹簧自身的质量,也不会有动能和加速度)。

不论弹簧处于何种运动状态(静止、匀速或变速),轻弹簧两端所受的弹力一定等大反向。

弹簧的弹力属于接触力,弹簧两端必须都与其它物体接触才可能有弹力。

如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即变为零。

在弹簧两端都保持与其它物体接触的条件下,弹簧弹力的大小F=kx与形变量x成正比。

由于形变量的改变需要一定时间,因此这种情况下,弹力的大小不会突然改变,即弹簧弹力大小的改变需要一定的时间。

(这一点与绳不同,高中物理研究中,是不考虑绳的形变的,因此绳两端所受弹力的改变可以是瞬时的。

)一、与物体平衡相关的弹簧例.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 -m2g/k2=m l g/k2.参考答案:C此题若求m l移动的距离又当如何求解?二、与分离问题相关的弹簧两个相互接触的物体被弹簧弹出,这两个物体在什么位置恰好分开?这属于临界问题。

高考物理二轮复习课件微专题模型建构——弹簧模型PPT

高考物理二轮复习课件微专题模型建构——弹簧模型PPT

高 考物理 二轮复 习课件 微专题 模型建 构—— 弹簧模 型PPT【 PPT实 用课件 】 高 考物理 二轮复 习课件 微专题 模型建 构—— 弹簧模 型PPT【 PPT实 用课件 】
高 考物理 二轮复 习课件 微专题 模型建 构—— 弹簧模 型PPT【 PPT实 用课件 】
真题演变·辨知规律
mB 2
2
【解析】选C。 当A、B两球静止时,弹簧弹力F=(mA+mB)gsinθ,当绳被剪断的瞬
间,弹簧弹力F不变,对B球分析,则F-mBgsinθ=mBaB,可解得aB= m A g ,当绳被剪
mB 2
断后,球A受的合力为重力沿斜面向下的分力,F合=mAgsinθ=mAaA,所以aA= g ,综
(3)小环刚到达D点的临界条件为mg(h1+R)=Ep
解得h1=1.6 m
改变h,小环做平抛运动,分析可得小环水平方向位移应有最大值
根据机械能守恒定律得:Ep-mg(h2+R)12=m
v
2 D
小环平抛运动时间为t′= 2 ( h 2 R )
g
得:x′=vD′t′=2 [ 1 .8(h2R )] (h2R )
高 考物理 二轮复 习课件 微专题 模型建 构—— 弹簧模 型PPT【 PPT实 用课件 】
高 考物理 二轮复 习课件 微专题 模型建 构—— 弹簧模 型PPT【 PPT实 用课件 】
情境命题3 功能问题 【典例3】某高中兴趣学习小组成员,在学习完必修1与必修2后设计出如图所示 的实验。OA为一水平弹射器,弹射口为A。ABCD为一光滑曲杆,其中AB水平,BC为 竖直杆(长度可调节),CD为四分之一圆环轨道(各连接处均圆滑连接),其圆心为 O′,半径为R=0.2 m。D的正下方E开始向右水平放置一块橡皮泥板EF,长度足够 长。现让弹射器弹射出一质量m=0.1 kg的小环,小环从弹射口A射出后沿光滑曲 杆运动到D处飞出,不计小环在各个连接处的能量损失和空气阻力。已知弹射器 每次弹射出的小环具有相同的初速度。某次实验中小组成员调节BC高度h=0.8 m。 弹出的小环从D处飞出,现测得小环从D处飞出时速度vD=4 m/s,求:

高考物理建模之弹簧模型

高考物理建模之弹簧模型

高考物理建模之弹簧模型弹簧模型是高中物理里非常重要的建模,是高考物理必考的模型。

相比轻绳模型、轻杆模型,弹簧模型考查题型更加多样化,涉及的内容更加广全。

可以说,弹簧模型是历年高考物理的一个热点难点。

弹簧模型特点轻质弹簧质量可忽略,弹簧可以可压可伸,弹簧可产生拉力也可产生支持力。

在弹性限度内,弹力的大小与弹簧的压缩量或伸长量成正比。

弹簧模型规律1、同一根弹簧的弹力处处相等;2、弹力方向一定沿着弹簧轴线,并且与弹簧形变方向相反;3、弹力有指定公式:F=kx,其中x表示弹簧的压缩量或伸长量,非弹簧长度;4、弹簧弹力"瞬时"不会突变;5、弹簧处于原长时没有弹性势能,弹簧发生形变后具有弹性势能。

弹性势能有指定公式:F=kx2/2,该公式高中物理里没有涉及到,但仍然可以作为选择题判断的依据;6、弹性势能与弹力做功关系:弹力做正功,弹性势能减少;弹力做负功,弹性势能增加;7、弹力做功特点:与物体运动的路径无关,只与物体的始末位置有关(这和重力做功、电场力做功有共性);处理方法根据物体所处状态选择相对应的定则、定理或定律,具体表现:涉及平衡问题用平衡条件F合=0分析,涉及加速减速用牛顿运动定律,涉及圆周运动用向心力知识,涉及能量转化往往用动能定律、机械能守恒定律或能量转化定律等知识。

弹簧模型常见题型一、弹簧涉及的平衡问题梳理清楚研究对象,然后受力分析。

有时受力物体可能是一个结点,有时是弹簧的某一点,这就要根据题目来做判断。

然后利用F合=0列式求解。

经典例题1、如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以l1、l2、l3、l4依次表示四个弹簧的伸长量,则有()A. l4>l3>l2>l1 B. l4=l3=l2=l1 C. l1>l3>l4>l2 D. l1>l3=l4>l2解析:B本题设计巧妙之处在于研究对象的选择,这个研究对象并不是木块,也不是整个弹簧,而是以弹簧最右端的"一点"进行受力研究。

高中物理弹簧模型详解

高中物理弹簧模型详解

高中物理弹簧模型详解弹簧模型是物理中常用的简化实验模型,可以应用于弹性力学、动力学、波浪等多种领域。

在高中物理课程中,弹簧模型常常用来分析物体在不同条件下的弹性变形及恢复力等问题。

下面详细介绍一下高中物理中弹簧模型的相关内容。

I. 弹簧模型的基本概念弹簧模型是用弹簧代替物体之间的接触面,以研究物体之间的弹性变形和弹性力的模型。

它可以用来模拟各种物体的弹性特性,具有简化实验和便于分析的优势。

在弹簧模型中,物体可以被看作是由若干个质点组成的系统。

质点与质点之间通过一根弹簧连接,弹簧的特性可以用弹性系数k来描述。

当弹簧被压缩或拉长时,会产生恢复力(弹力),大小与弹簧形变的大小成正比,与弹簧形变的方向成反比。

II. 弹簧模型的应用1. 弹性变形当外力作用于物体上后,物体发生形变,但形变量又不足以改变物体的结构,这种形变称为弹性变形。

在弹簧模型中,外力就是作用于质点上的力,当外力大小不超过弹簧的弹性限度时,质点会发生弹性变形,而当外力大小超过弹性限度时,弹簧会进入塑性变形区,质点将发生塑性变形。

2. 弹性力弹性力是被压缩或拉长的弹簧恢复到原状时产生的力。

根据胡克定律,弹簧恢复力的大小与弹簧形变的大小成正比,与形变的方向成反比。

因此,在弹簧模型中,弹性力也可以用弹簧的弹性系数k来计算。

3. 振动弹簧模型还可以用来研究物体的振动。

例如,可以用一根手摇弹簧将质点与质点之间的耦合作用建立起来,通过摇动弹簧可以激发质点的振动。

这种振动可以用弹簧的弹性系数和质点的质量等参数来描述。

III. 弹簧模型的计算方法在使用弹簧模型时,需要根据具体情况建立起质点与质点之间的耦合关系。

通常,假设所有质点间连接的弹簧都相等,弹性系数为k,每个质点的质量均为m,这样就可以通过牛顿第二定律推导出弹簧模型的运动方程:F = mam(d^2)x/dt^2 = -kx其中,F表示合力,a表示加速度,x表示形变,t表示时间。

这个动力学方程描述了弹簧模型中物体的运动规律,可以用来计算物体的位移、速度和加速度等参数。

高考物理模型专题弹簧模型学案---教师版

高考物理模型专题弹簧模型学案---教师版

高考物理模型专题弹簧模型学案授课类型C (弹簧弹力、弹簧伸长量的问题) C (分析物体的运动过程) C (弹簧的弹性势能的定量计算)教学内容一、模型界定本模型是由弹簧连接的物体系统中关于平衡的问题、动力学过程分析的问题、功能关系的问题,但不包括瞬时性的问题。

由弹性绳、橡皮条连接的物体系统也归属于本模型的范畴.二、模型破解1.由胡克定律结合平衡条件或牛顿运动定律定量解决涉及弹簧弹力、弹簧伸长量的问题。

(i )轻质弹簧中的各处张力相等,弹簧的弹力可认为是其任一端与所连接物体之间的相互作用力。

(ii )弹簧可被拉伸,也可被压缩,即弹簧的弹力可以是拉力也可以是推力(当然弹性绳、橡皮条只能产生拉力)。

(iii )弹簧称只能被拉伸,对弹簧秤的两端施加(沿轴线方向)大小不同的拉力时,其示数等于称钩一端与物体之间的拉力大小。

(iv )有时应用x k f ∆=∆比应用kx f =更便于解题。

(v )定性比较同一弹簧的形变量大小时也可从弹性势能大小作出分析。

例1.如图1所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上。

②中弹簧的左端受大小也为F 的拉力作用。

③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动。

④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。

若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有A. l l21> B. l l43> C. l l13> D. l l24=【答案】D例2.如图所示,A、B两物体的重力分别是G A=3 N,G B=4 N,A用细绳悬挂在天花板上,B放在水平地面上,连接A、B 间的轻弹簧的弹力F =2 N,则绳中张力T及B对地面的压力N的可能值分别是A.7 N和2 NB.5 N和2 NC.1 N和6 ND.2 N和5 N【答案】BC【解析】当弹簧是处于被拉伸的状态时,分析A物体的受力由平衡条件可知绳中张力T=G A+F=5N,分析B物体的受力由平衡条件地面对B的支持力N=G B-F=2N。

弹簧模型(解析版)-高中物理动量守恒的十种模型

弹簧模型(解析版)-高中物理动量守恒的十种模型

动量守恒的十种模型模型一弹簧模型模型解读【典例分析】1(2024高考辽吉黑卷)如图,高度h=0.8m的水平桌面上放置两个相同物块A、B,质量m A=m B=0.1kg。

A、B间夹一压缩量Δx=0.1m的轻弹簧,弹簧与A、B不栓接。

同时由静止释放A、B,弹簧恢复原长时A恰好从桌面左端沿水平方向飞出,水平射程x A=0.4m;B脱离弹簧后沿桌面滑行一段距离x B=0.25m后停止。

A、B均视为质点,取重力加速度g=10m/s2。

求:(1)脱离弹簧时A、B的速度大小v A和v B;(2)物块与桌面间动摩擦因数μ;(3)整个过程中,弹簧释放的弹性势能ΔE p。

【答案】(1)1m/s,1m/s;(2)0.2;(3)0.12J(1)对物块A,由平抛运动规律,h=12gt2,x A=v A t,联立解得:v A=1m/s弹簧将两物块弹开,由动量守恒定律,m A v A=m B v B,解得v B=v A=1m/s(2)对物块B,由动能定理,-μm B g x B=0-12m B v B2解得:μ=0.2(3)由能量守恒定律,整个过程中,弹簧释放的弹性势能△E p=μm B g×12△x+μm A g×12△x+12m A v A2+12m B v B2=0.12J【针对性训练】1(2024年3月江西赣州质检)如图甲所示,光滑水平地面上有A、B两物块,质量分别为2kg、6kg,B的左端拴接着一劲度系数为2003N/m的水平轻质弹簧,它们的中心在同一水平线上。

A以速度v0向静止的B方向运动,从A接触弹簧开始计时至A与弹簧脱离的过程中,弹簧长度l与时间t的关系如图乙所示,弹簧始终处在弹性限度范围内,已知弹簧的弹性势能E p=12kx2(x为弹簧的形变量),则()A.在0~2t0内B物块先加速后减速B.整个过程中,A、B物块构成的系统机械能守恒C.v0=2m/sD.物块A在t0时刻时速度最小【答案】C【解析】在0~2t0内,弹簧始终处于压缩状态,即B受到的弹力始终向右,所以B物块始终做加速运动,故A错误;整个过程中,A、B物块和弹簧三者构成的系统机械能守恒,故B错误;由图可知,在t0时刻,弹簧被压缩到最短,则此时A、B共速,此时弹簧的形变量为x=0.4m-0.1m=0.3m则根据A、B物块系统动量守恒有m1v0=(m1+m2)v根据A、B物块和弹簧三者构成的系统机械能守恒有1 2m1v20=12(m1+m2)v2+E pv0=2m/s故C正确;在0~2t0内,弹簧始终处于压缩状态,即A受到弹力始终向左,所以A物块始终做减速运动,则物块A在2t0时刻时速度最小,故D错误。

弹簧类问题的几种模型和处理方法

弹簧类问题的几种模型和处理方法

弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。

其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。

还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。

根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。

一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。

当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。

2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。

3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。

同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值。

弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。

二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。

现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。

在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。

分析:上提m1之前,两物块处于静止的平衡状态,所以有:,,其中,、分别是弹簧k1、k2的压缩量。

高中物理弹簧与弹簧模型必修一

高中物理弹簧与弹簧模型必修一

一、弹簧类问题求解策略:1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应(联系简谐运动知识).在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.二、巩固练习1.如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F 的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。

若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有 ( )A .l 2>l 1B .l 4>l 3C .l 1>l 3D .l 2=l 42.如图所示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.11k gm B.12k gm C.21k gmD.22k gmF① ② ③④3.物块A 1和A 2,B 1和B 2质量均为m ,A 1、A 2用钢性轻杆相连,B 1、B 2用轻质弹簧连接,两个装置都放在水平支托物上,处于平衡状态,如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹簧与弹簧模型(A)一、弹簧类问题求解策略:1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应(联系简谐运动知识).在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.二、巩固练习1.如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F 的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。

若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有 ( )A .l 2>l 1B .l 4>l 3C .l 1>l 3D .l 2=l 42.如图所示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( ) A.11k g m B.12k g m C.21k g m D.22k g m 3.物块A 1和A 2,B 1和B 2质量均为m ,A 1、A 2用钢性轻杆相连,B 1、B 2用轻质弹簧连接,两个装置都放在水平支托物上,处于平衡状态,如图所示。

今突然迅速地撤去支托物,让物块下落,在撤去支持物的瞬间,A 1、A 2受到的合力分别为1f 和2f ,B 1、B 2受到的合力分别为F 1和F 2,则( )A .1f =0,2f =2mg,F 1=0,F 2=2mgB .1f =mg ,2f =mg,F 1=0,F 2=2mgC .1f =0,2f =2mg,F 1=mg ,F 2=mgD .1f =mg ,2f =2mg,F 1=mg ,F 2=mg4.如图3,两轻质弹簧和质量均为m 的外壳组成甲、乙两个弹簧秤,将提环挂有质量为M 的重物的乙秤倒挂在甲的挂钩上,某人手提甲的提环,向下做加速度a =0.25g 的匀加速运动,则下列说法正确的是( )A .甲的示数为 1.25(M +m )gB .乙的示数为0.75(M +m )gC .乙的示数为1.25MgD .乙的示数为0.75Mg5.一质量为mkg 的物体挂在弹簧秤下,手持弹簧秤的上端加速上提,弹簧秤的读数为pN ,则上提的加速度是:( ) 图3 FF① ② ③ ④A.m pB.gC.g m p -D.g mp + 6.质量相同的木块M 、N 用轻弹簧连接并置于光滑的水平面上,开始弹簧处于自然长状态,现用水平恒力F 推木块M ,使木块M 、N 从静止开始运动,如图3—7所示,则弹簧第一次被压缩到最短过程中( )A .M 、N 速度相同时,加速度αM <αNB .M 、N 速度相同时,加速度αM =αNC .M 、N 加速度相同时,速度υM <υND .M 、N 加速度相同时,速度υM =υN7.质量分别为m A =2kg 和m B =3kg 的A 、B 两物块,用劲度系数为k 的轻弹簧相连后竖直放在水平面上。

今用大小为F =45N 的力把物块A 向下压而使之处于静止,突然撤去压力,则( )A .物块B 有可能离开水平面 B .物块B 不可能离开水平面C .只要k 足够小,物块B 就可能离开水平面D .只要k 足够大,物块B 就可能离开水平面8.一轻质弹簧,上端悬挂于天花板,下端系一质量为M 的平板,处在平衡状态.一质量为m的均匀环套在弹簧外,与平板的距离为h ,如图所示.让环自由下落,撞击平板.已知碰后环与板以相同的速度向下运动,使弹簧伸长.( )A.若碰撞时间极短,则碰撞过程中环与板的总动量守恒B.若碰撞时间极短,则碰撞过程中环与板的总机械能守恒C.环撞击板后,板的新的平衡位置与h 的大小无关D.在碰后板和环一起下落的过程中,它们减少的动能等于克服弹簧力所做的功9.如图2所示,一轻弹簧左端固定在长木板m 2的左端,右端与小木块m 1连接,且m 1、m 2及m 2与地面之间接触面光滑,开始时m 1和m 2均静止,现同时对m 1、m 2施加等大反向的水平恒力F 1和F 2,从两物体开始运动以后的整个过程中,对m 1、m 2和弹簧组成的系统(整个过程中弹簧形变不超过其弹性限度),正确的说法是 ( )A .由于F 1、F 2等大反向,故系统机械能守恒B .由于F 1、F 2分别对m 1、m 2做正功,故系统动能不断增加C .由于F 1、F 2分别对m 1、m 2做正功,故系统机械能不断增加D .当弹簧弹力大小与F 1、F 2大小相等时,m 1、m 2的动能最大10.如图所示,一轻弹簧一端系在墙上,自由伸长时,右端正好处在B 处,今将一质量为m 的小物体靠着弹簧,将弹簧压缩到A 处,然后释放,小物体能在水平面上运动到C 点静止,AC 距离为s ;如将小物体系在弹簧上,在A 由静止释放,则小物体将向右运动,或来回运动后最终停止,设小物体通过的总路程为L ,则下列选项可能的是 ( )A . L > sB .L = sC .L = 2sD .以上答案都有可能11.一升降机在箱底装有若干个弹簧,设在某次事故中,升降机吊索在空中断裂,忽略摩擦力,则升降机在从弹簧下端触地后直到最低点的一段运动过程中( )A.升降机的速度不断减小B.升降机的加速度不断变大C.先是弹力做的负功小于重力做的正功,然后是弹力做的负功大于重力做的正功D.到最低点时,升降机加速度的值一定大于重力加速度的值12.如图所示,质量为M 的平板小车静止在光滑的水平地面上,小车左端放一质量为m 的木块,车的右端固定一个轻质弹簧,现给木块一个水平向右的瞬时冲量I ,使木块m 沿车上表面向右滑行,在木块与弹簧相碰后又沿原路返回,并且恰好能到达小车的左端而相对小车静止,关于木块m 、平板小车M 的运动状态,动量和能量转化情况的下列说法中正确的是( )A .木块m 的运动速度最小时,系统的弹性势能最大B .木块m 所受的弹力和摩擦力始终对m 作负功C .平板小车M 的运动速度先增大后减少,最后与木块m 的运动速度相同;木块m 的运动速度先减少后增大,最后与平板小车M 的运动速度相同D .由于弹簧的弹力对木块m 和平板小车M 组成的系统是内力,故系统的动量和机械能均守恒13.如图所示,弹簧振子在BC 间做简谐运动,O 点为平衡位置,则: ( )A 、振子在经过O 点时速度最大,加速度也最大B 、振子在经过O 点时速度最大,加速度为零C 、振子有C 点向O 点运动的过程中,回复力逐渐减小,加速度逐渐增大D 、振子在由O 点向B 点运动的过程中,弹性势能逐渐增大,加速度逐渐减小14.如图所示,质量为m 的物体A 放置在质量为M 的物体B 上,B 与弹簧相连,它们一起在光滑水平面上作简谐振动,振动过程中A 、B 之间无相对运动,设:弹簧的劲度系数为k .当物体离开平衡位置的位移为x 时,A 、B 间摩擦力的大小等于:( )A.0B.kxC.kx M mD.kx mM m +15.将一个质量为m 的物体挂在一个劲度系数为k 的弹簧下面,如果不考虑弹簧质量和空气阻力,振动周期km T π2=。

为了研究周期和振子质量的关系,某研究性学习小组设计了如图所示的实验装置,将弹簧的一端固定在铁架台上,另一端挂一只小盘,铁架台的竖杆上固定一个可以上下移动的标志物,作为计时标志。

改变小盘中砝码的质量m ,测出全振动50次的时间并求出相(1)以横轴代表,纵轴代表,作出—图,并回答为什么不用作为纵轴而用作为纵轴?(2)根据图线求得弹簧的劲度系数k = .(3)对T 2—m 图作出必要的解释 。

16.如图14所示,A 、B 两滑环分别套在间距为1m 的光滑细杆上,A 和B 的质量之比为1∶3,用一自然长度为1m 的轻弹簧将两环相连,在 A 环上作用一沿杆方向的、大小为20N 的拉力F,当两环都沿杆以相同的加速度a 运动时,弹簧与杆夹角为53°。

(cos53°=0.6)求:(1)弹簧的劲度系数为多少?(2)若突然撤去拉力F ,在撤去拉力F 的瞬间,A 的加速度为a /,a/ 与a 之间比为多少?17.A 、B 两木块叠放在竖直轻弹簧上,如图9-6所示,已知木块A 、B 质量分别为0.42kg 和0.40 kg ,弹簧的劲度系数k =100 N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m/s 2的加速度竖直向上做匀加速运动(g =10 m/s 2).(1)使木块A 竖直做匀加速运动的过程中,力F 的最大值;(2)若木块由静止开始做匀加速运动,直到A 、B 分离的过程中,弹簧的弹性势能减少了0.248 J ,求这一过程F 对木块做的功. 图14图9-618.如图所示,在水平光滑桌面上放一质量为M 的玩具小车.在小车的平台(小车的一部分)上有一质量可忽略的弹簧,其一端固定在平台上,另一端用质量为m 的小球将弹簧压缩一定距离后用细线捆住.用手将小车固定在桌面上,然后烧断细线,小球就被弹出,落在车上A 点,OA =s .如果小车不固定而烧断细线,球将落在车上何处?设小车足够长,球不致落在车外.19.如图9-13所示,A 、B 、C 三物块质量均为m ,置于光滑水平台面上.B 、C 间夹有原已完全压紧不能再压缩的弹簧,两物块用细绳相连,使弹簧不能伸展.物块A 以初速度v 0沿B 、C 连线方向向B 运动,相碰后,A 与B 、C 粘合在一起,然后连接B 、C 的细绳因受扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离,脱离弹簧后C 的速度为v 0.(1)求弹簧所释放的势能ΔE .(2)若更换B 、C 间的弹簧,当物块A 以初速v 向B 运动,物块C 在脱离弹簧后的速度为2v 0,则弹簧所释放的势能ΔE ′是多少?(3)若情况(2)中的弹簧与情况(1)中的弹簧相同,为使物块C 在脱离弹簧后的速度仍为 2v 0,A 的初速度v 应为多大?20.质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时,弹簧的压缩量为x 0,如图所示.一物块从钢板正上方距离为3x 0的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连.它们到达最低点后又向上运动.已知物块质量也为m时,它们恰能回到O 点.若物块质量为2m ,仍从A 处自由落下,则物块与钢板回到O 点时,还具有向上的速度.求物块向上运动到达的最高点与O 点的距离.1A 2C 3D 4A 5C 6A 7B 8AC 9D 10B 11CD 12C 13B 14D15.(1)图线简单,程线性关系 (2)2.8N/m (3)图线不经过原点的原因:没有考虑砝码盘的质量和弹簧的质量。

相关文档
最新文档