2010年中考数学方案设计型专题复习题

合集下载

2010年中考数学试题分类汇编_二次函数(含详细解答)人教新课标版

2010年中考数学试题分类汇编_二次函数(含详细解答)人教新课标版

2010年部分省市中考数学试题分类汇编 二次函数21、(2010年浙江省东阳县)如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式. (2)足球第一次落地点C 距守门员多少米?(取734≈)(3)运动员乙要抢到第二个落点D ,他应再向前跑多少米?(取562≈) 【关键词】二次函数的应用 【答案】(1)y=-4)6(1212+-x (2)y=0, x=6+43︽13 (3)设y=2)(1212+-m x m=13+26︽ y=0, x=18±26︽23 ∴ 再向前跑10米1、(2010年宁波市)如图,已知二次函数c bx x y ++-=221的图象经过A (2,0)、B (0,-6)两点。

(1)求这个二次函数的解析式(2)设该二次函数的对称轴与x 轴交于点C , 连结BA 、BC ,求△ABC 的面积。

【关键词】二次函数【答案】解:(1)把A (2,0)、B (0,-6)代入c bx x y ++-=221 得:⎩⎨⎧-==++-6022c c b解得⎩⎨⎧-==64c b∴这个二次函数的解析式为64212-+-=x x y (2)∵该抛物线对称轴为直线4)21(24=-⨯-=x∴点C 的坐标为(4,0)第20题2∴224=-=-=OA OC AC ∴6622121=⨯⨯=⨯⨯=∆OB AC S ABC10.(2010年安徽省芜湖市)二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y = ax与正比例函数y=(b +c )x 在同一坐标系中的大致图象可能是() A . B . C . D .【关键词】二次函数、一次函数、反比例函数图像的性质 【答案】B20.(2010年安徽省芜湖市)(本小题满分8分)用长度为20m 的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m .当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积. 解:【关键词】二次函数的应用【解】根据题意可得:等腰直角三角形的直角边为x 2cm ,矩形的一边长为x 2cm .其相邻边长为x x)22(102)224(20+-=+-.........2分 该金属框围成的面积[]x x x x S 2221)22(102∙⨯++-∙==x x 20)223(2++-(25100-<<x )【此处未注明x 的取值范围不扣分】............4分 当2203022310-=+=x 时, 金属框围成的面积最大,此时矩形的一边是220602-=x (m ),相邻边长为10210)223(10)22(10-=-⨯+-(m) ...............7分用心 爱心 专心3∴)22-(3100=最大S (2m )...........................8分 答:(略)8(2010年浙江省金华). 已知抛物线c bx ax y ++=2的开口向下,顶点坐标为(2,-3) ,那么该抛物线有( )A. 最小值 -3B. 最大值-3C. 最小值2D. 最大值2【关键词】二次函数、最大值问题 【答案】B15. (2010年浙江省金华)若二次函数k x x y ++-=22的部分图象如图所示,则关于x 的一元二次方程022=++-k x x 的一个解31=x ,另一个解=2x ;【关键词】二次函数、对称轴、交点坐标 【答案】-120(2010年浙江省金华).(本题8分)已知二次函数y =ax 2+bx -3的图象经过点A (2,-3),B (-1,0). (1)求二次函数的解析式;(2)填空:要使该二次函数的图象与x 轴只有一个交点,应把图象沿y 轴向上平移 ▲ 个单位.【关键词】二次函数、二元一次方程组、根的判别式【答案】(1)由已知,有⎩⎨⎧=---=-+033324b a b a ,即⎩⎨⎧=-=+3024b a b a ,解得⎩⎨⎧-==21b a∴所求的二次函数的解析式为322--=x x y . (2) 410.(2010年浙江台州市)如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D(第15题图)4的横坐标最大值为(▲)A .-3B .1C .5D .8【关键词】对称轴与二次函数与X 轴交点关系 【答案】D24.(2010江西)如图,已知经过原点的抛物线m (m >0)个单位,所得抛物线与x 轴交与C 、D (1)求点A 的坐标,并判断△PCA (2)在x m 的式子表示);若不存在,请说明理由;(3)△CDP 的面积为S ,求S 关于m 的关系式。

2010中考数学试题及答案

2010中考数学试题及答案

2010中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. πB. 0.33333(无限循环)C. √2D. 1/32. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 83. 函数y = 2x + 3的斜率是:A. 2B. 3C. -2D. -34. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 8D. -85. 下列哪个选项不是同类项?A. 3x^2 和 5x^2B. 2y 和 3yC. 4a 和 -aD. 7b 和 3c6. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π7. 一个长方体的长、宽、高分别是2、3和4,它的体积是:A. 24B. 36C. 48D. 648. 如果一个数列的前三项是1,3,6,那么这个数列是:A. 等差数列B. 等比数列C. 既不是等差也不是等比数列D. 无法确定9. 一个二次方程x^2 - 5x + 6 = 0的根是:A. x = 2, 3B. x = -2, -3C. x = 1, 6D. x = -1, -610. 下列哪个表达式是正确的?A. (a + b)^2 = a^2 + b^2B. (a - b)(a + b) = a^2 - b^2C. a^3 - b^3 = (a - b)(a^2 + ab + b^2)D. a^4 + b^4 = (a + b)^2(a^2 - ab + b^2)二、填空题(每题2分,共20分)11. 一个数的相反数是-5,这个数是______。

12. 如果一个角是30°,那么它的余角是______。

13. 一个正三角形的内角是______。

14. 一个数的绝对值是5,这个数可以是______。

15. 一个数的立方根是2,这个数是______。

16. 一个数的平方是36,这个数是______。

2010年中考数学真题分类汇编(150套)专题十六 一次函数的应用

2010年中考数学真题分类汇编(150套)专题十六 一次函数的应用

一、选择题1.(2010某某某某)右图是某条公共汽车线路收支差额y 与乘客量x 的图像(收支差额=车票收入-支出费用)由于目前本条线路亏损,公司有关人员提出两条建议:建议(1)是不改变车票价格,减少支出费用;建议(2)是不改变支出费用,提高车票价格。

下面给出四个图像(如图所示)则A .①反映了建议(2),③反映了建议(1)B .①反映了建议(1),③反映了建议(2)C .②反映了建议(1),④反映了建议(2)D .④反映了建议(1),②反映了建议(2) 【答案】B2.(2010某某省中中考) 甲、乙两个准备在一段长为1200米的笔直公路上进行跑步,甲、乙跑步的速度分别为4s m /和6s m /,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离)(m y 与时间)(s t 的函数图象是……………………………………………………………………………( )【答案】C3.(10某某某某)如图2,火车匀速通过隧道(隧道长大于火车长)时,火车进入隧道的A1 1xyO A1 1xy O y1 1xO AA 1 1xyO ①②③④时间x 与火车在隧道内的长度y 之间的关系用图象描述大致是A. B . C . D .【答案】A4.(2010某某)如图(十七),在同一直在线,甲自A 点开始追赶等速度前进的乙, 且图(十八)长示两人距离与所经时间的线型关系。

若乙的速率为每秒 公尺,则经过40秒,甲自A 点移动多少公尺?(A) 60(D) 69 。

【答案】C5.(2010某某某某)一辆汽车和一辆摩托车分别从A ,B 两地去同一城市,它们离A 地的路程随时间变化的图象如图所示.则下列结论错误..的是( )A .摩托车比汽车晚到1 hB . A ,B 两地的路程为20 km第7题图甲 乙A9公尺图(十七)(秒)图(十八) 36 9甲與 乙 距 離( )0 火车隧道oyxoy xoy xoy x2图C .摩托车的速度为45 km/hD .汽车的速度为60 km/h 【答案】C6.(2010 某某)小华的爷爷每天坚持体育锻炼.某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家.下面能反映当天小华的爷爷离家的距离y 与时间x 的函数关系的大致图象是( )【答案】C7.(2010 某某某某)某公司准备与汽车租凭公司签订租车合同,以每月用车路程x km 计算,甲汽车租凭公司每月收取的租赁费为y 1元,乙汽车租凭公司每月收取的租赁费为y 2元,若y 1、y 2与x 之间的函数关系如图所示,其中x =0对应的函数值为月固定租赁费,则下列判断错误..的是( )A时,两家汽车租赁公司租赁费用相同 B 时,租赁乙汽车租赁公车比较合算 CD 【答案】D8.(2010鄂尔多斯)某移动通讯公司提供了A 、B 两种方案的通讯费用y(元)与通话时间x(分)之间的关系,如图所示,则以下说法错误..的是 A .若通话时间少于120分,则A 方案比B 方案便宜20元 B .若通话时间超过200分,则B 方案比A 方案便宜第8题A .B .C .D .C .若通讯费用为了60元,则方案比A 方案的通话时间多D .若两种方案通讯费用相差10元,则通话时间是145分或185分【答案】D9.(2010天门、潜江、仙桃)l 甲、l 乙分别表示甲、乙两人前往目的地所走的路程S (km)随时间t :①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km 后遇到甲;④乙出发6分钟后追上甲.其中正确的有( )【答案】C二、填空题1.(2010年某某)一辆汽车在行驶过程中,路程 y (千米)与时间 x (小时)之间的函数关系如图3所示 当时 0≤x ≤1,y 关于x 的函数解析式为 y = 60 x ,那么当 1≤x ≤2时,y 关于x 的函数解析式为_____________.【答案】y=100x -40三、解答题1.(10某某某某)我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,某某地面温O 12160图3度为20℃,设高出地面x 千米处的温度为y ℃. (1)写出y 与x 之间的函数关系式;(2)已知某某碧云峰高出地面约500米,求这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过某某上空,若机舱内仪表显示飞机外面的温度为-34℃,求飞机离地面的高度为多少千米?【答案】⑴x y 620-= (0>x ) ……………………………4分 ⑵500米=5.0千米 …………………………5分1750620=⋅⨯-=y (℃) ……………………………7分⑶x 62034-=-……………………………8分9=x ……………………………10分答:略.2.(2010某某某某)(8分)甲车从A 地出发以60km/h 的速度沿公路匀速行驶,0.5小时后,乙车也从A 地出发,以80km/h 的速度沿该公路与甲车同向匀速行驶,求乙车出发后几小时追上甲车。

2010年部分省市中考数学试题分类汇编(共28专题)11.二次函数

2010年部分省市中考数学试题分类汇编(共28专题)11.二次函数

新世纪教育网精选资料版权所有@新世纪教育网(2010 台州市 ) 7.梯形 ABCD 中, AD ∥ BC,AB=CD=AD =2,∠ B=60°,则下底BC 的长是(▲ )A.3B.4C. 2 3D.2+23答案: B(2010 年无锡) 17.如图,梯形ABCD 中, AD ∥BC , EF 是梯形的中位线,对角线AC 交EF 于 G,若 BC=10cm , EF=8cm ,则 GF 的长等于▲cm.答案 3A DFEGB C(第 17 题)(2010 年兰州) 17. 如图,直角梯形 ABCD中, AD∥ BC, AB⊥ BC, AD = 2 ,将腰 CD以 D 为中心逆时针旋转90°至 DE,连结 AE、CE,△ ADE的面积为 3,则 BC的长为.答案5(2010 宁波市) 16.如图,在等腰梯形 ABCD 中,AD∥ BC,AB=AD =CD.若∠ ABC =60°,BC= 12,则梯形 ABCD 的周长为 ________30_____ .A DB C第16题10. ( 2010 年金华)如图,在等腰梯形ABCD 中,AB∥CD,对角线 AC⊥BC ,∠B=60o,BCD C=2cm,则梯形 ABCD 的面积为(▲) AA .3 3 cm2B. 6 cm2A B(第 10题图) C.6 3 cm2D. 12 cm215.( 2010 年长沙)等腰梯形的上底是4cm,下底是10 cm ,一个底角是60 ,则等腰梯形的腰长是cm.答案: 6(2010 年眉山) 18.如,已知梯形 ABCD 中, AD∥ BC,∠ B=30°,∠ C=60°,AD=4 , AB= 3 3,下底BC 的__________.A D答案: 1030°60°(2010 陕西省)16、如图,在梯形ABCD 中,B C DC∥AB ,∠ A+ ∠B=90°若 AB=10 ,AD=4,DC=5 ,则梯形 ABCD 的面积为181.( 2010 黄)如,在等腰梯形ABCD 中, AC ⊥ BD ,AC =26cm,等腰梯形ABCD 的面 _____cm .181.( 2010 昆明)已知:如,在梯形ABCD 中, AD ∥BC,∠DCB = 90 °, E 是 AD 的中点,点 P 是 BC 上的点(不与点 B重合), EP 与 BD 订交于点 O.(1)当 P 点在 BC 上运,求:△ BOP∽△ DOE;(2)( 1)中的相像比k,若 AD ︰ BC = 2 ︰ 3. 研究:当形ABPE是什么四形?①当k = 1,是是;③当 k = 3,是k以下三种状况,四;②当 k = 2,.并明 k = 2的....A E D OBP C解:( 1)明:∵ AD ∥ BC∴∠ OBP = ∠ODE⋯⋯⋯⋯⋯1分在△ BOP 和△ DOE 中∠OBP = ∠ ODE∠ BOP = ∠ DOE⋯⋯⋯⋯⋯⋯⋯2分∴△ BOP∽△ DOE (有两个角相等的两三角形相像 )⋯⋯⋯⋯⋯3分( 2)①平行四形⋯⋯⋯⋯⋯⋯⋯4分②直角梯形⋯⋯⋯⋯⋯⋯⋯5分③ 等腰梯形分明:∵ k = 2 ,BPDE⋯⋯⋯⋯⋯⋯⋯6 2∴BP=2DE=AD又∵AD︰BC=2︰ 3BC= 3 AD 2PC=BC - BP=31 AD -AD= AD=ED 22ED ∥ PC , ∴四形 PCDE是平行四形∵∠ DCB = 90°∴四形 PCDE 是矩形⋯⋯⋯⋯⋯⋯⋯7分∴ ∠ EPB = 90°⋯⋯⋯⋯⋯⋯⋯8分又∵在直角梯形ABCD中AD ∥ BC,AB 与DC 不平行∴ AE∥ BP,AB 与 EP不平行四形 ABPE 是直角梯形⋯⋯⋯⋯⋯⋯⋯⋯⋯9分(本其余法参照此准分)(2010 河北省) 25.(本小题满分 12 分)如图 16,在直角梯形 ABCD 中, AD ∥BC , B 90 , AD = 6, BC = 8, AB 33 ,点 M 是 BC 的中点.点 P 从点 M 出发沿 MB 以每秒 1 个单位长的速度向点 B 匀速运动,到 达点 B 后马上以原速度沿 BM 返回;点 Q 从点 M 出发以每秒 1 个单位长的速度在射线 MC上匀速运动.在点 P , Q 的运动过程中,以PQ 为边作等边三角形 EPQ ,使它与梯形 ABCD 在射线 BC 的同侧.点 P , Q 同时出发,当点 P 返回到点 M 时停止运动,点 Q 也随之停止.设点 P ,Q 运动的时间是t 秒 (t > 0).( 1)设 PQ 的长为 y ,在点 P 从点 M 向点 B 运动的过程中,写出y 与 t 之间的函数关系式(不用写 t 的取值范围) .( 2)当 BP = 1 时,求△ EPQ 与梯形 ABCD 重叠部分的面积.( 3)跟着时间 t 的变化,线段 AD 会有一部分被△ EPQ 覆盖,被覆盖线段的长度在某个时辰会达到最大值,请回答:该最大值可否连续一个时段?若能,直接..写出 t的取值范围;若不可以,请说明原因.ADEBP M QC图 16A D解:( 1) y = 2t ;( 2)当 BP = 1 时,有两种情况:BM C(备用图)①如图 6,若点 P 从点 M 向点 B 运动,有 MB =1BC=4,MP = MQ =3,2A∴PQ = 6.连结 EM ,ED∵△ EPQ 是等边三角形, ∴ EM ⊥ PQ .∴ EM 3 3 . ∵AB= 3 3,∴点 E 在 AD 上.B PM Q C图 6∴△ EPQ 与梯形 ABCD 重叠部分就是△ EPQ ,其面积为93.②若点 P 从点 B 向点 M 运动,由题意得t 5 .PQ=BM+MQ BP = 8,PC = 7.设 PE 与 AD 交于点 F ,QE 与 AD 或 AD 的E 延伸线交于点G ,过点 P 作 PH ⊥AD 于点 H ,则AHFG DHP = 3 3 , AH = 1.在 Rt△HPF 中,∠ HPF = 30°,∴HF = 3,PF = 6.∴ FG = FE = 2.又∵ FD = 2,∴点 G 与点 D 重合,如图 7.此时△ EPQ 与梯形 ABCD的重叠部分就是梯形FPCG ,其面积为273 .2( 3)能. 4≤ t≤ 5.(2010 ·浙江温州)10.用若干根同样的火柴棒首尾按序相接围成一个梯形( 供给的火柴棒所有用完 ) ,以下根数的火柴棒不可以围成梯形的是(B).A.5 B.6C.7D.81.(2010,安徽芜湖)在等腰梯形ABCD 中, AD ∥ BC, 对角线 AC ⊥BD 于点 O,AE ⊥ BC,DF⊥BC, 垂足分别为E,F,AD=4,BC=8, 则 AE+EF= ()A.9B.10C.11D.20【答案】 B(2010 ·浙江湖州) 20.(本小题8 分)如图,已知在梯形ABCD 中, DC ∥AB ,AD= BC,BD 均分∠ ABC,∠ A= 60°.(1)求∠ ABD 的度数;D C (2)若 AD=2,求对角线 BD 的长.A B第20题。

2010年中考数学真题分类汇编(150套)专题十九·二次函数的应用.doc

2010年中考数学真题分类汇编(150套)专题十九·二次函数的应用.doc

1.(2010 甘肃)向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的关系为y=ax 2+bx+c (a ≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )A .第8秒B .第10秒C .第12秒D .第15秒【答案】B3.(2010 重庆江津)如图,等腰Rt △ABC (∠ACB =90º)的直角边与正方形DEFG 的边长均为2,且AC 与DE 在同一直线上,开始时点C 与点D 重合,让△ABC 沿这条直线向右平移,直到点A 与点E 重合为止.设CD 的长为x ,△ABC 与正方形DEFG 重合部分(图中阴影部分)的面积为y ,则y 与x 之间的函数关系的图象大致是( )【答案】A1.(2010甘肃兰州) 如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.【答案】21中2.(2010 四川成都)如图,在ABC ∆中,90B ∠=o,12mm AB =,24mm BC =,动点P 从点A 开始沿边AB 向B 以2mm/s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向C 以4mm/s 的速度移动(不与点C 重合).如果P 、Q 分别从A 、B 同时出发,那么经过_____________秒,四边形APQC 的面积最小.【答案】3 中3.(2010 内蒙古包头)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm 2.【答案】252或12.5中2.(2010安徽省中中考)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售。

2010年中考数学试题及答案

2010年中考数学试题及答案

2010年中考数 学 试 卷*考试时间120分钟 试卷满分150分一、选择题(本大题共7小题,每小题4分,共28分)每题所给的四个选项中只有一项是符合题目要求的,请将所选项的代号字母填在答卷的相应位置处. 1) A. BC.-D2.反比例函数23m y x--=的图象位于( )A .第一、三象限B .第二、四象限C .第二、三象限D .第一、二象限3.从2、3、4、5这四个数中,任取两个数()p q p q ≠和,构成函数2y px y x q =-=+和,并使这两个函数图象的交点在直线2x =的右侧,则这样的有序数对()p q ,共有( ) A .12对 B .6对 C .5对 D .3对4.把多项式2288x x -+分解因式,结果正确的是( ) A .()224x -B .()224x -C .()222x -D .()222x +5.某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( ) A .9cm B .12cm C .15cm D .12cm 或15cm6.一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式0kx b +>的解集是A .2x >-;B .0x >;C .2x <-;D .0x <7.若0a >且2x a =,3y a =,则x ya -的值为( )A .1-B .1C .23D .32二、填空题(本大题共6小题,每小题4分,共24分)把答案直接填在答卷的相应位置处.xb +8.将点(12),向左平移1个单位,再向下平移2个单位后得到对应点的坐标是 .9.幼儿园把新购进的一批玩具分给小朋友.若每人3件,那么还剩余59件;若每人5件,那么最后一个小朋友分到玩具,但不足4件,这批玩具共有 件.10.李师傅随机抽查了本单位今年四月份里6天的日用水量(单位:吨)结果如下:7,8,8,7,6,6,根据这些数据,估计四月份本单位用水总量为 吨.11.我们知道利用相似三角形可以计算不能直接测量的物体的高度,阳阳的身高是1.6m ,他在阳光下的影长是 1.2m ,在同一时刻测得某棵树的影长为 3.6m ,则这棵树的高度约为 m . 12.如图所示的半圆中,AD 是直径,且3AD =,2AC =,则sin B 的值是 .13.某个圆锥的侧面展开图形是一个半径为6cm ,圆心角为︒120的扇形,则这个圆锥的底面半径为______________cm .三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分)解答时应在答卷的相应位置处写出文字说明、证明过程或演算过程. Ⅰ.(本题满分12分,第14题6分,第15题6分)14.计算:230116(2)(πtan60)3-⎛⎫--÷-+-- ⎪⎝⎭.15.先化简,再求值:221111121x x x x x +-÷+--+,其中1x =. Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分)C BD A16.如图,线段AB 与⊙O 相切于点C ,连结OA ,OB ,OB 交⊙O 于点D ,已知6OA OB ==,AB =(1)求⊙O 的半径; (2)求图中阴影部分的面积.17.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超..过.132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1 200元/台、1 600元/台、2 000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?18.甲、乙两名运动员进行长跑训练,两人距终点的路程y (米)与跑步时间x (分)之间C OABD的函数图象如图所示,根据图象所提供的信息解答问题:(1) 他们在进行 米的长跑训练,在0<x <15的时段内,速度较快的人是 ;(2) 求甲距终点的路程y (米)和跑步时间 x (分)之间的函数关系式; (3) 当x =15时,两人相距多少米?在15<x <20的时段内,求两人速度之差.Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分)19.把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5)洗匀后正面朝下放在桌面上.(1)如果从中随机抽取一张牌,那么牌面数字是4的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字.当2张牌面数字相同时,小王赢;当2张牌面数字不相同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.20.如图,河流两岸a b ,互相平行,C D ,是河岸a 上间隔50m 的两个电线杆.某人在河分)岸b 上的A 处测得30DAB ∠= ,然后沿河岸走了100m 到达B 处,测得60CBF ∠=,求河流的宽度CF 的值(结果精确到个位).21.三个生产日光灯管的厂家在广告中宣称,他们生产的日光灯管在正常情况下,灯管的使用寿命为12个月.工商部门为了检查他们宣传的真实性,从三个厂家各抽取11只日光灯管进行检测,灯管的使用寿命(单位:月)如下:试问:(1)这三个厂家的广告,分别利用了统计中的哪一个特征数(平均数、中位数、众数)进行宣传?(2)如果三种产品的售价一样,作为顾客的你选购哪个厂家的产品?请说明理由.Ⅳ(本题满分8分)BED CFab A22.如图, 已知等边三角形ABC 中,点D ,E ,F 分别为边AB ,AC ,BC 的中点,M 为直线BC 上一动点,△DMN 为等边三角形(点M 的位置改变时, △DMN 也随之整体移动) . (1)如图①,当点M 在点B 左侧时,请你判断EN 与MF 有怎样的数量关系?点F 是否在直线NE 上?都请直接....写出结论,不必证明或说明理由; (2)如图②,当点M 在BC 上时,其它条件不变,(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;(3)若点M 在点C 右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.Ⅴ(本题满分14分)图① 图② 图③A·BCD EF··N MFEDCB ANMF EDCBA·23.如图,在平面直角坐标系中,以点(11)C ,为圆心,2为半径作圆,交x 轴于A B ,两点,开口向下的抛物线经过点A B ,,且其顶点P 在C 上.(1)求ACB 的大小;(2)写出A B ,两点的坐标; (3)试确定此抛物线的解析式;(4)在该抛物线上是否存在一点D ,使线段OP 与CD 互相平分?若存在,求出点D 的坐标;若不存在,请说明理由.2010年中考数学试题参考答案及评分标准二、填空题(本大题共6小题,每小题4分,共24分) 8.(00),;9.152;10.210;11.4.8;12.23;13.4 三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分) Ⅰ.(本题满分12分,第14题6分,第15题6分) 14.解:原式=9-16÷(-8)+1-23×23……………………2分 =9+2+1-3.……………………………………4分 =9 ………………………………6分15.解:原式211(1)1(1)(1)1x x x x x -=-++-+······································································ 2分 2211(1)(1)1(1)(1)x x x x x x -+--=-=+++ ······························································· 4分 22(1)x =+ ········································································································ 5分当1x =时,原式23== ··································································· 6分 Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分)16.(1)连结OC ,则 OC AB ⊥. …………………………………………………1分∵OA OB =,∴1122AC BC AB ===⨯ ………………………………………2分在Rt AOC △中,3OC ===.∴ ⊙O 的半径为3. …………………………………………………………3分 (2)∵ OC =12OB , ∴ ∠B =30o , ∠COD =60o . ……………………………………5分 ∴扇形OCD 的面积为OCD S 扇形=260π3360⨯⨯=32π. …………………………………5分阴影部分的面积为:Rt Δ=OBC OCD S S S -阴影扇形=12OC CB ⋅-3π2-3π2.…………………………7分 17.解:(1)设购买乙种电冰箱x 台,则购买甲种电冰箱2x 台,丙种电冰箱(803)x -台,根据题意,列不等式: ································································ 1分120021600(803)2000132000x x x ⨯++-⨯≤. ···························································· 3分解这个不等式,得14x ≥. ·································································································· 4分 ∴至少购进乙种电冰箱14台. ····························································································· 5分 (2)根据题意,得2803x x -≤. ····················································································· 6分 解这个不等式,得16x ≤. ·································································································· 7分 由(1)知14x ≥. 1416x ∴≤≤. 又x 为正整数, 141516x ∴=,,. ···················································································································· 8分 所以,有三种购买方案:方案一:甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台; 方案二:甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台; 方案三:甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台. ··················· 10分 18.解:(1)5000…………………………………2分甲 ………………………………4分(2)设所求直线的解析式为:y =kx +b (0≤x ≤20), ………5分由图象可知:b =5000,当x =20时,y =0, ∴0=20k +5000,解得k = -250. …7分即y = -250x +5000 (0≤x ≤20) ……………7分(3)当x =15时,y = -250x +5000= -250×15+5000=5000-3750=1250. ………8分 两人相距:(5000 -1250)-(5000-2000)=750(米)………………9分 两人速度之差:750÷(20-15)=150(米/分)……………11分Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分) 19解:(1)P (抽到牌面数字是4)13=; ········································································ 2分(2)游戏规则对双方不公平. ················································································· 5分 理由如下:由上述树状图或表格知:所有可能出现的结果共有9种. P (抽到牌面数字相同)=3193=, P (抽到牌面数字不相同)=6293=.∵1233<,∴此游戏不公平,小李赢的可能性大. ············································ 12分 (说明:答题时只需用树状图或列表法进行分析即可)20.解:过点C 作CE AD ∥,交AB 于E CD AE ∥,CE AD ∥ ····································································································· 2分∴四边形AECD 是平行四边形 ······························································································ 4分 50AE CD ∴==m ,50EB AB AE =-=m ,30CEB DAB ∠=∠= ···························· 6分又60CBF ∠=,故30ECB ∠=,50CB EB ∴==m ···················································· 8分∴在Rt CFB △中,sin 50sin 6043CF CB CBF =∠=≈m ········································ 11分 答:河流的宽度CF 的值为43m . ······················································································ 12分21.答:(1)甲厂的广告利用了统计中的平均数. ····························································· 2分乙厂的广告利用了统计中的众数. ············································································ 4分 丙厂的广告利用了统计中的中位数. ············································································ 7分分…………………………8分11F B C (2) 选用甲厂的产品. 因为它的平均数较真实地反映灯管的使用寿命 ······················· 10分 或选用丙厂的产品.因为丙厂有一半以上的灯管使用寿命超过12个月 ··························· 10分Ⅳ.(本题满分8分)22.(1)判断:EN 与MF 相等 (或EN=MF ),点F 在直线NE 上, ········ 2分(2)成立. ······························ 3分 证明:法一:连结DE ,DF .∵△ABC 是等边三角形, ∴AB =AC =BC .又∵D ,E ,F 是三边的中点,∴DE ,DF ,EF 为三角形的中位线.∴DE =DF =EF ,∠FDE =60°.又∠MDF +∠FDN =60°, ∠NDE +∠FDN =60°,∴∠MDF =∠NDE .在△DMF 和△DNE 中,DF =DE ,DM =DN , ∠MDF =∠NDE ,∴△DMF ≌△DNE . 8∴MF =NE . ·························· 6分法二:延长EN ,则EN 过点F .∵△ABC 是等边三角形, ∴AB =AC =BC .又∵D ,E ,F 是三边的中点, ∴EF =DF =BF .∵∠BDM +∠MDF =60°, ∠FDN +∠MDF =60°,∴∠BDM =∠FDN .又∵DM =DN , ∠ABM =∠DFN =60°,∴△DBM ≌△DFN .∴BM =FN .∵BF =EF , ∴MF =EN . ·························· 6分(3)画出图形(连出线段NE ), 6MF 与EN 相等的结论仍然成立(或MF =NE 成立). ·············· 8分Ⅴ.(本题满分14分)23.解:(1)作CHN C A B F M D E NC A B F MD E12 1CH = ,半径2CB = ·························································· 1分60BCH ∠= ,120ACB ∴∠= ········································· 3分(2)1CH = ,半径2CB =HB ∴=(1A ,················································ 5分(1B ··············································································· 6分 (3)由圆与抛物线的对称性可知抛物线的顶点P 的坐标为(13), ······································· 7分 设抛物线解析式2(1)3y a x =-+ ·························································································· 8分把点(1B 代入上式,解得1a =- ·············································································· 9分 222y x x ∴=-++ ·············································································································· 10分 (4)假设存在点D 使线段OP 与CD 互相平分,则四边形OCPD 是平行四边形 ·········· 11分 PC OD ∴∥且PC OD =.PC y ∥轴,∴点D 在y 轴上. ····················································································· 12分又2PC = ,2OD ∴=,即(02)D ,. 又(02)D ,满足222y x x =-++, ∴点D 在抛物线上 ··············································································································· 13分 所以存在(02)D ,使线段OP 与CD 互相平分. ·································································· 14分。

2010年中考数学复习综合测试卷(1)

2010年中考数学复习综合测试卷(1)

2010年中考数学复习综合测试卷(1)一、填空题(本大题有5小题,每小题4分,共20分)1、当21-=x 时,代数式()()2212232++++x x 的值为_________2、如图,在Rt △ABC 中,∠C =Rt ∠,CD ⊥AB 于D ,若AD=2cm ,CD =32cm ,则BC=_________ cm 。

3、如果二次函数的图像与x 轴交点的横坐标分别为x 1=–1和x 2=3,且图像通过点(0,–2),那么这个二次函数的解析式为_________4、要使方程()()04132=-+++m x m x 有一个正数根和一个负数根,那么m 的取值范围是_________5、如图,⊙O 1与⊙O 2相交于A ,B 两点,如果531=A O ,54cos ,5212=∠=O AO A O ,那么=∠2sin BAO _________ 二、解答题(本大题有4小题,共40分)1、(8分)如图,D 是AC 上的一点,AD= 2DC ,△ABC 有中线AM 与BD 相交于E ,(1)求BE :ED 的值;(2)求AE :EM 的值。

2、(10分)如图,在△ABC 的外接圆上,D 是弧BC 的中点,AD 交BC 于E ,F 在AE 上,CE =CF ,(1)求证:△ABE ∽△ACF ;(2)已知BC =14cm ,AF =3EF ,求BE 的长。

3、(10分)已知二次函数()42122-+-+=a x a x y 。

(1)求证:无论实数a 为何值,函数的图像与x 轴都有两个交点;(2)设函数图像与x 轴交点的横坐标分别为x 1,x 2,32||21=x x ,若a <2,求a 的值。

4、(i2分)如图,正方形ABCD 中,E ,F 分别在AD ,AC 上,CA CF DA DE 2= (1)求证:△BEF 是等腰直角三角形;(2)设AF =x ,四边形ABEF 的面积为S ,2:1:=∆∆BFE ABE S S ,求S 与x 的函数关系式;(3)已知正方形的边长为2,,求AF 的长。

2010年中考数学试题分类大全52_方案设计与决策型问题

2010年中考数学试题分类大全52_方案设计与决策型问题

综合方案题作业设计班级姓名一、选择题1.(2010黑龙江绥化)现有球迷150人欲同时租用A、B、C三种型号客车去观看世界杯足球赛,其中A、B、C三种型号客车载客量分别为50人、30人、10人,要求每辆车必须满载,其中A型客车最多租两辆,则球迷们一次性到达赛场的租车方案有()A.3种B.4种C.5种D.6种二、填空题1.(2010安徽蚌埠)给你两张白纸一把剪刀。

你的任务是:用剪刀剪出下面给定的两个图案,你可以将纸片任意折叠,但只能沿直线剪一刀,要得到下面两个图案,在不实际折叠的情况下,想象一下,该如何折叠?用虚线画出折痕,用实线画出剪的这一刀(分别在旁边的白纸上画出来)三、解答题1.(2010江苏盐城)(本题满分10分)整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:(1)降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%、对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?2.(2010辽宁丹东市)某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.3.(2010山东济宁)某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.4.(2010四川眉山)某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?5.(2010浙江嵊州市)为支持玉树搞震救灾,某市A、B、C三地现分别有赈灾物资100吨、100吨、80吨,需全部运往玉树重灾地区D、E两县,根据灾区情况,这批赈灾物资运往D 县的数量比运往E县的数量的2倍少20吨。

数学中考专题系列-方案设计专项练习

数学中考专题系列-方案设计专项练习

方案设计型专项练习一. 方程、函数型设计题1. 某体育彩票经销商计划用45000元从体彩中心购进彩票20扎,每扎1000张。

已知体彩中心有A ,B ,C 三张不同价格的彩票,进价分别是:A 彩票每张1.5元,B 彩票每张2元,C 彩票每张2.5元。

(1)若经销商同时购进两种不同型号的彩票20扎,请你设计进票方案。

(2)若销售A 种彩票1张获手续费0.2元,B 种彩票1张获手续费0.3元,C 种彩票1张获手续费0.5元。

在购进两种彩票的方案中,为使销售完时获得手续费最多,应选择哪种进票方案? (3)若经销商准备同时购进三种彩票20扎,请你设计进票方案。

1.(1)设购进A 种彩票x 张,B 种彩票y 张,C 种彩票z 张,根据题意有如下三种方案: ①x y x y +=⨯+=⎧⎨⎩10002015245000.;②x z x z +=⨯+=⎧⎨⎩100020152545000..;③y z y z +=⨯+=⎧⎨⎩10002022545000.解①得x y =-=⎧⎨⎩100030000(舍去)解②得x z ==⎧⎨⎩500015000解③得y z ==⎧⎨⎩1000010000有两种进票方案:A 种彩票5扎,C 种彩票15扎,或B 种彩票与C 种彩票各10扎。

(2)设购进A 种彩票5扎,C 种彩票15扎。

销售完后获手续费为:02500005150008500..⨯+⨯=(元) 设购进B 种彩票与C 种彩票各10扎销售完后获手续费为:031000005100008000..⨯+⨯=(元) 所以获得手续费最多的方案为:购A 种彩票5扎,C 种彩票15扎。

(3)设购进A 种彩票x 扎,B 种彩票y 扎,C 种彩票z 扎。

可列方程组x y z x y z ++=⨯+⨯+⨯=⎧⎨⎩201510002100025100045000.. 即z x y x =+=-+⎧⎨⎩10210∴≤<15x又因x 为整数,故共有4种进票方案:A 种1扎,B 种8扎,C 种11扎;A 种2扎,B 种6扎,C 种12扎;A 种3扎,B 种4扎,C 种13扎;A 种4扎,B 种2扎,C 种14扎。

初中数学中考第二轮专题复习-方案设计型试题(含答案

初中数学中考第二轮专题复习-方案设计型试题(含答案

方案设计型试题例1、(常州)七(2)班共有50名学生,老师安排每人制作一件A 型或B 型的陶艺品,学校现有甲种制作材料36kg ,乙种制作材料29kg ,制作A 、B 两种型号的陶(1)设制作型陶艺品件,求的取值范围;(2)请你根据学校现有材料,分别写出七(2)班制作A 型和B 型陶艺品的件数. 分析:本题的背景是与人们的生活息息相关的现实问题,本题的条件较多,要分清楚每个量之间的关系,还有,弄清楚这些陶艺品并不能将料全部用完后,本题目就较容易解决了。

解:(1)由题意得:⎩⎨⎧⋯⋯⋯⋯≤+-⋯⋯⋯≤+-②x x ①x x 27)50(3.0364.0)50(9.0 由①得,x ≥18,由②得,x ≤20,所以x 的取值得范围是18≤x ≤20(x 为正整数) (2)制作A 型和B 型陶艺品的件数为:①制作A 型陶艺品32件,制作B 型陶艺品18件; ②制作A 型陶艺品31件,制作B 型陶艺品19件; ③制作A 型陶艺品30件,制作B 型陶艺品20件; 说明:1.本题考察的是不等式组的应用及解不等式。

练习一1、(黑龙江)某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于万元,但不超过万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?注:利润=售价-成本2.(哈尔滨)双蓉服装店老板到厂家选购A、B两种型号的服装,若购进A种型号服装9件,B种型号服装10件,需要1810元;若购进A种型号服装12件,B种型号服装8件,需要1880元。

(1)求A、B两种型号的服装每件分别为多少元?(2)若销售1件A型服装可获利18元,销售1件B型服装可获利30元,根据市场需求,服装店老板决定,购进A型服装的数量要比购进B型服装数量的2倍还多4件,且A 型服装最多可购进28件,这样服装全部售出后,可使总的获利不少于699元,问有几种进货方案?如何进货?3.(河南)某公司为了扩大经营,决定购进6台机器用于生产某种活塞。

2010年中考数学试题分类大全52_方案设计与决策型问题

2010年中考数学试题分类大全52_方案设计与决策型问题

综合方案题作业设计班级姓名一、选择题1.(2010黑龙江绥化)现有球迷150人欲同时租用A、B、C三种型号客车去观看世界杯足球赛,其中A、B、C三种型号客车载客量分别为50人、30人、10人,要求每辆车必须满载,其中A型客车最多租两辆,则球迷们一次性到达赛场的租车方案有()A.3种B.4种C.5种D.6种二、填空题1.(2010安徽蚌埠)给你两张白纸一把剪刀。

你的任务是:用剪刀剪出下面给定的两个图案,你可以将纸片任意折叠,但只能沿直线剪一刀,要得到下面两个图案,在不实际折叠的情况下,想象一下,该如何折叠?用虚线画出折痕,用实线画出剪的这一刀(分别在旁边的白纸上画出来)三、解答题1.(2010江苏盐城)(本题满分10分)整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:(1)降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%、对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?2.(2010辽宁丹东市)某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.3.(2010山东济宁)某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.4.(2010四川眉山)某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?5.(2010浙江嵊州市)为支持玉树搞震救灾,某市A、B、C三地现分别有赈灾物资100吨、100吨、80吨,需全部运往玉树重灾地区D、E两县,根据灾区情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨。

中考数学专题复习教学案--方案设计型(附答案).doc

中考数学专题复习教学案--方案设计型(附答案).doc

方案设计型㈠应用方程(组)不等式(组)解决方案设计型例1.(2009·益阳)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.解析:此类试题一般涉及二元一次方程组、不等式组在实际问题中的应用.,以两人的用的总钱数为等量关系,可以列出方程组.第二问注意“不少”的含义可以根据总钱数和钢笔与笔记本的数量关系列出不等式组.解:(1)设每支钢笔x 元,每本笔记本y 元,依题意得:⎩⎨⎧=+=+3152183y x y x 解得:⎩⎨⎧==53y x 所以,每支钢笔3元,每本笔记本5元(2)设买a 支钢笔,则买笔记本(48-a )本依题意得:⎩⎨⎧≥-≤-+aa a a 48200)48(53,解得:2420≤≤a ,所以,一共有5种方案即购买钢笔、笔记本的数量分别为:20,28; 21,27; 22,26; 23,25; 24,24. 点评:解决问题的基本思想是从实际问题中构建数学模型,寻找题目中的等量关系,(或不等关系)列出相应的方程(或不等式组).同步检测:1 (2009·安顺)在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.2.(2009·益阳)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.练习参考答案:1. 解:(1)设成人人数为x 人,则学生人数为(12-x)人. 则35x + 235(12 –x )= 350 解得:x = 8 故:学生人数为12 – 8 = 4 人, 成人人数为8人.(2)如果买团体票,按16人计算,共需费用:35×0.6×16 = 336元336﹤350 所以,购团体票更省钱.所以,有成人8人,学生4人;购团体票更省钱.2. 解:(1)设每支钢笔x 元,每本笔记本y 元,依题意得:⎩⎨⎧=+=+3152183y x y x 解得:⎩⎨⎧==53y x 所以,每支钢笔3元,每本笔记本5元(2)设买a 支钢笔,则买笔记本(48-a )本依题意得:⎩⎨⎧≥-≤-+aa a a 48200)48(53,解得:2420≤≤a ,所以,一共有5种方案即购买钢笔、笔记本的数量分别为:20,28; 21,27; 22,26; 23,25; 24,24.二、应用函数设计方案问题:例2.(2009·安徽)(1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w (元)与批发量m (kg )之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg 以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.解析:此类试题结合函数图像所提供的信息,对信息加工应用,可以求出函数解析式,分析题意,根据:销售利润y =日最高销售量x ×每千克的利润(每千克的利润=零售价-批发价),由此整理可得到y 关于x 的二次函数,解:(1)图①表示批发量不少于20kg 且不多于60kg 的该种水果,可按5元/kg 批发;图②表示批发量高于60kg 的该种水果,可按4元/kg 批发.(2)由题意得: 2060 6054m m w m m ⎧=⎨⎩≤≤())>(,函数图象略. 由图可知资金金额满足240<w ≤300时,以同样的资金可批发到较多数量的该种水果.(3)设日最高销售量为x kg (x >60)则由图②日零售价p 满足:32040x p =-,于是32040x p -=销售利润23201(4)(80)1604040x y x x -=-=--+,当x =80时,160y =最大值,此时p =6 即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元点评:注重数形结合,领会通过图形所传递的信息,以及二次函数顶点的意义的理解与应用.同步检测:3:(2009·四川省南充市)某电信公司给顾客提供了两种手机上网计费方式:方式A 以每分钟0.1元的价格按上网时间计费;方式B 除收月基费20元外,再以每分钟0.06元的价格按上网时间计费.假设顾客甲一个月手机上网的时间共有x 分钟,上网费用为y 元.(1)分别写出顾客甲按A 、B 两种方式计费的上网费y 元与上网时间x 分钟之间的函数关系式,并在图7的坐标系中作出这两个函数的图象;(2)如何选择计费方式能使甲上网费更合算?练习参考答案:练习3。

中考数学复习《方案设计问题》综合练习-人教版初中九年级全册数学试题

中考数学复习《方案设计问题》综合练习-人教版初中九年级全册数学试题

《方案设计问题》1、(2016•某某)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.2、(2016•某某)为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:运费(元/台)港口甲库乙库A港14 20B港10 8(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值X围;(2)求出最低费用,并说明费用最低时的调配方案.3、(2016•湘西州)某商店购进甲乙两种商品,甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同.(1)求甲、乙每个商品的进货单价;(2)若甲、乙两种商品共进货100件,要求两种商品的进货总价不高于9000元,同时甲商品按进价提高10%后的价格销售,乙商品按进价提高25%后的价格销售,两种商品全部售完后的销售总额不低于10480元,问有哪几种进货方案?(3)在条件(2)下,并且不再考虑其他因素,若甲乙两种商品全部售完,哪种方案利润最大?最大利润是多少?4、(2016•某某)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?5、(2016•某某)荔枝是某某的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.6、(2016•某某)倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?7、(2016•龙东)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A钟品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A 品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?8、(2016•某某)(列方程(组)及不等式解应用题)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.9、(2016•某某)公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元(1)设租用甲种货车x辆(x为非负整数),试填写表格.表一:租用甲种货车的数量/辆 3 7 x租用的甲种货车最多运送机器的数量/台135 ________ ________租用的乙种货车最多运送机器的数量/台150 ________ ________表二:租用甲种货车的数量/辆3 7 x租用甲种货车的费用/元________ 2800 ________租用乙种货车的费用/元________ 280 ________(2)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.10、(2016•某某)为了提高身体素质,有些人选择到专业的健身中心锻炼身体,某健身中心的消费方式如下:普通消费:35元/次;白金卡消费:购卡280元/X,凭卡免费消费10次再送2次;钻石卡消费:购卡560元/X,凭卡每次消费不再收费.以上消费卡使用年限均为一年,每位顾客只能购买一X卡,且只限本人使用.(1)李叔叔每年去该健身中心健身6次,他应选择哪种消费方式更合算?(2)设一年内去该健身中心健身x次(x为正整数),所需总费用为y元,请分别写出选择普通消费和白金卡消费的y与x的函数关系式;(3)王阿姨每年去该健身中心健身至少18次,请通过计算帮助王阿姨选择最合算的消费方式.11、(2016•黔西南州)我州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元,相关资料表明:甲、乙两种鱼苗的成活率为80%,90%(1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条?(2)若要使这批鱼苗的总成活率不低于85%,则乙种鱼苗至少购买多少条?(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?12、(2016•某某)小丽购买学习用品的收据如表,因污损导致部分数据无法识别,根据下表,解决下列问题:(1)小丽买了自动铅笔、记号笔各几支?(2)若小丽再次购买软皮笔记本和自动铅笔两种文具,共花费15元,则有哪几种不同的购买方案?商品名单价(元)数量(个)金额(元)签字笔 3 2 6自动铅笔●●记号笔 4 ●●软皮笔记本● 2 9圆规 1 ●合计8 2813、(2015•潜江)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学策划了A,B两种上网学习的月收费方式:收费方式月使用费/元包时上网时间/h超时费/(元/min)A 7 25B m n设每月上网学习时间为x小时,方案A,B的收费金额分别为y A, y B.(1)如图是y B与x之间函数关系的图象,请根据图象填空:m=________ n=________(2)写出与x之间的函数关系式.(3)选择哪种方式上网学习合算,为什么?14、(2015•某某)在学习概率的课堂上,老师提出问题:只有一X电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2、3、4、5四X牌背面向上,小明先抽一X,小刚从剩下的三X牌中抽一X,若两X牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三X牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)15、(2015•某某)新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数关系式;(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.16、(2015•鄂尔多斯)某足球协会举办了一次足球联赛,其记分规定及奖励方案如下表:胜一场平一场负一场积分 3 1 0奖金(元/人) 1300 500 0当比赛进行到第11轮结束(每队均须比赛11场)时,A队共积17分,每赛一场,每名参赛队员均得出场费300元.设A队其中一名参赛队员所得的奖金与出场费的和为w(元).(1)试说明w是否能等于11400元.(2)通过计算,判断A队胜、平、负各几场,并说明w可能的最大值.17、(2016•某某)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买50元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克________元;(2)求y1、y2与x的函数表达式;(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的X围.18、(2016•某某)课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为时,透光面积最大值约为2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.19、(2016•宿迁)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值X围.答案【答案】1.(1)解:设直拍球拍每副x元,横拍球每副y元,由题意得,,解得,,答:直拍球拍每副220元,横拍球每副260元(2)解:设购买直拍球拍m副,则购买横拍球(40﹣m)副,由题意得,m≤3(40﹣m),解得,m≤30,设买40副球拍所需的费用为w,则w=(220+20)m+(260+20)(40﹣m)=﹣40m+11200,∵﹣40<0,∴w随m的增大而减小,∴当m=30时,w取最大值,最大值为﹣40×30+11200=10000(元).答:购买直拍球拍30副,则购买横拍球10副时,费用最少2.【答案】(1)解:设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(80﹣x)吨,从乙仓库运往A港口的有(100﹣x)吨,运往B港口的有50﹣(80﹣x)=(x﹣30)吨,所以y=14x+20(100﹣x)+10(80﹣x)+8(x﹣30)=﹣8x+2560,x的取值X围是30≤x≤80(2)解:由(1)得y=﹣8x+2560y随x增大而减少,所以当x=80时总运费最小,当x=80时,y=﹣8×80+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口3.【答案】(1)解:设甲每个商品的进货单价是x元,每个乙商品的进货单价是y元.根据题意得:,解得:,答:甲商品的单价是每件100元,乙每件80元(2)解:设甲进货x件,乙进货(100﹣x)件.根据题意得:,解得:48≤x≤50.又∵x是正整数,则x的正整数值是48或49或50,则有3种进货方案(3)解:销售的利润w=100×10%x+80(100﹣x)×25%,即w=2000﹣10x,则当x取得最小值48时,w取得最大值,是2000﹣10×48=1520(元).此时,乙进的件数是100﹣48=52(件).答:当甲进48件,乙进52件时,最大的利润是1520元4.【答案】(1)解:由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3.(2)解:①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<;令y甲=y乙,即22x=16x+3,解得:x= ;令y甲>y乙,即22x>16x+3,解得:<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:0<x<4.综上可知:当<x<4时,选乙快递公司省钱;当x=4或x= 时,选甲、乙两家快递公司快递费一样多;当0<x<或x>4时,选甲快递公司省钱.5.【答案】(1)解:设桂味的售价为每千克x元,糯米糍的售价为每千克y元;根据题意得:,解得:;答:桂味的售价为每千克15元,糯米糍的售价为每千克20元.(2)解:设购买桂味t千克,总费用为W元,则购买糯米糍(12﹣t)千克,根据题意得:12﹣t≥2t,∴t≤4,∵W=15t+20(12﹣t)=﹣5t+240,k=﹣5<0,∴W随t的增大而减小,∴当t=4时,W的最小值=220(元),此时12﹣4=8;答:购买桂味4千克,糯米糍8千克时,所需总费用最低.6、【答案】(1)解:设购买A种型号健身器材x套,B型器材健身器材y套,根据题意,得:,解得:,答:购买A种型号健身器材20套,B型器材健身器材30套(2)解:设购买A型号健身器材m套,根据题意,得:310m+460(50﹣m)≤18000,解得:m≥33 ,∵m为整数,∴m的最小值为34,答:A种型号健身器材至少要购买34套7.【答案】(1)解:设A种品牌足球的单价为x元,B种品牌足球的单价为y元,依题意得:,解得:.答:购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元.(2)解:设第二次购买A种足球m个,则购买B中足球(50﹣m)个,依题意得:,解得:25≤m≤27.故这次学校购买足球有三种方案:方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球27个,B种足球23个.(3)解:∵第二次购买足球时,A种足球单价为50+4=54(元),B种足球单价为80×0.9=72(元),∴当购买方案中B种足球最多时,费用最高,即方案一花钱最多.∴25×54+25×72=3150(元).答:学校在第二次购买活动中最多需要3150元资金.8.【答案】(1)解:设甲种商品每件的进价为x元,乙种商品每件的进价为y元,依题意得:,解得:,答:甲种商品每件的进价为30元,乙种商品每件的进价为70元.(2)解:设该商场购进甲种商品m件,则购进乙种商品(100﹣m)件,由已知得:m≥4(100﹣m),解得:m≥80.设卖完A、B两种商品商场的利润为w,则w=(40﹣30)m+(90﹣70)(100﹣m)=﹣10m+2000,∴当m=80时,w取最大值,最大利润为1200元.故该商场获利最大的进货方案为甲商品购进80件、乙商品购进20件,最大利润为1200元.9.【答案】(1)315;45x;30;﹣30x+240;1200;400x;1400;﹣280x+2240(2)解:能完成此项运送任务的最节省费用的租车方案是甲车6辆,乙车2辆,理由:当租用甲种货车x辆时,设两种货车的总费用为y元,则两种货车的总费用为:y=400x+(﹣280x+2240)=120x+2240,又∵45x+(﹣30x+240)≥330,解得x≥6,∵120>0,∴在函数y=120x+2240中,y随x的增大而增大,∴当x=6时,y取得最小值,即能完成此项运送任务的最节省费用的租车方案是甲种货车6辆,乙种货车2辆.10【答案】(1)解:35×6=210(元),210<280<560,∴李叔叔选择普通消费方式更合算(2)解:根据题意得:y普通=35x.当x≤12时,y白金卡=280;当x>12时,y白金卡=280+35(x﹣12)=35x﹣140.∴y白金卡=(3)解:当x=18时,y普通=35×18=630;y白金卡=35×18﹣140=490;令y白金卡=560,即35x﹣140=560,解得:x=20.当18≤x≤19时,选择白金卡消费最合算;当x=20时,选择白金卡消费和钻石卡消费费用相同;当x≥21时,选择钻石卡消费最合算11【答案】(1)解:设购买甲种鱼苗x条,乙种鱼苗y条,根据题意得:,解得:,答:购买甲种鱼苗350条,乙种鱼苗250条(2)解:设购买乙种鱼苗m条,则购买甲种鱼苗(600﹣m)条,根据题意得:90%m+80%(600﹣m)≥85%×600,解得:m≥300,答:购买乙种鱼苗至少300条(3)解:设购买鱼苗的总费用为w元,则w=20m+16(600﹣m)=4m+9600,∵4>0,∴w随m的增大而增大,又∵m≥300,∴当m=300时,w取最小值,w最小值=4×300+9600=10800(元).答:当购买甲种鱼苗300条,乙种鱼苗300条时,总费用最低,最低费用为10800元12【答案】(1)解:设小丽购买自动铅笔x支,记号笔y支,根据题意可得:,解得:,答:小丽购买自动铅笔1支,记号笔2支(2)解:设小丽购买软皮笔记本m本,自动铅笔n支,根据题意可得:m+1.5n=15,∵m,n为正整数,∴ 或或,答:共3种方案:1本软皮笔记本与7支记号笔;2本软皮笔记本与4支记号笔;3本软皮笔记本与1支记号笔13【答案】(1)10;50(2)解:y A与x之间的函数关系式为:当x≤25时,y A=7,当x>25时,y A=7+(x﹣25)×60×0.01,∴y A=0.6x﹣8,∴y A=;(3)解:∵y B与x之间函数关系为:当x≤50时,y B=10,当x>50时,y B=10+(x﹣50)×60×0.01=0.6x﹣20,当0<x≤25时,y A=7,y B=50,∴y A<y B,∴选择A方式上网学习合算,当25<x≤50时.y A=y B,即0.6x﹣8=10,解得;x=30,∴当25<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当30<x≤50,y A>y B,选择B方式上网学习合算,当x>50时,∵y A=0.6x﹣8,y B=0.6x﹣20,y A>y B,∴选择B方式上网学习合算,综上所述:当0<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当x>30时,y A>y B,选择B方式上网学习合算.14【答案】(1)解:甲同学的方案不公平.理由如下:列表法,小明2 3 4 5小刚2 (2,3)(2,4)(2,5)3 (3,2)(3,4)(3,5)4 (4,2)(4,3)(4,5)5 (5,2)(5,3)(5,4)所有可能出现的结果共有12种,其中抽出的牌面上的数字之和为奇数的有:8种,故小明获胜的概率为:,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平;(2)解:不公平.理由如下:小明2 3 4小刚2 (2,3)(2,4)3 (3,2)(3,4)4 (4,2)(4,3)所有可能出现的结果共有6种,其中抽出的牌面上的数字之和为奇数的有:4种,故小明获胜的概率为:,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平.15【答案】(1)解:当1≤x≤8时,每平方米的售价应为:y=4000﹣(8﹣x)×30=30x+3760(元/平方米)当9≤x≤23时,每平方米的售价应为:y=4000+(x﹣8)×50=50x+3600(元/平方米).∴y=(2)解:第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),按照方案一所交房款为:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),按照方案二所交房款为:W2=4400×120×(1﹣10%)=475200(元),当W1>W2时,即485760﹣a>475200,解得:0<a<10560,当W1<W2时,即485760﹣a<475200,解得:a>10560,∴当0<a<10560时,方案二合算;当a>10560时,方案一合算.16【答案】(1)解:设A队胜x场,平y场由题意得:,解得:.因为x+y=2+11=13,即胜2场,平11场与总共比赛11场不符,故w不能等于11400元.(2)解:由3x+y=17,得y=17﹣3x所以只能有下三种情况:①当x=3时,y=8,即胜3场,平8场,负0场;②当x=4时,y=5,即胜4场,平5场,负2场;③当x=5时,y=2,即胜5场,平2场,负4场.又w=1300x+500y+3300将y=17﹣3x代入得:w=﹣200x+11800因为k=-200<0,所以y随x的增大而减小.所以,当x=3时,w最大=﹣200×3+11800=11200(元)17【答案】(1)30(2)解:由题意y1=18x+50,y2=(3)解:函数y1的图象如图所示,由解得,所以点F坐标(,125),由解得,所以点E坐标(,650).由图象可知甲采摘园所需总费用较少时<x<.18【答案】(1)解:由已知可得:AD= = ,则S=1× = m2,(2)解:设AB=xm,则AD=3﹣m,∵ ,∴ ,设窗户面积为S,由已知得:,当x= m时,且x= m在的X围内,,∴与课本中的例题比较,现在窗户透光面积的最大值变大.19【答案】(1)解:y= .(2)解:由(1)可知当0<x≤30或m<x<100,函数值y都是随着x是增加而增加,当30<x≤m时,y=﹣x2+150x=﹣(x﹣75)2+5625,∵a=﹣1<0,∴x≤75时,y随着x增加而增加,∴为了让收取的总费用随着团队中人数的增加而增加,∴30<m≤75。

中考数学专题训练:方案设计型(含答案)

中考数学专题训练:方案设计型(含答案)

中考数学专题训练:方案设计型附参考答案考点:一次方程、方程组、分式方程、不等式组、一次函数、二次函数、1.某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2 700元,求购进甲、乙两种商品各多少件? (2)若该商店准备用不超过3 100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少(利润=售价-进价)?解:(1)设购进甲种商品x 件,购进乙种商品y 件, 根据题意,得⎩⎪⎨⎪⎧ x +y =100,15x +35y =2 700,解得:⎩⎪⎨⎪⎧x =40,y =60. 答:商店购进甲种商品40件,购进乙种商品60件. (2)设商店购进甲种商品a 件,则购进乙种商品(100-a )件, 根据题意列,得⎩⎪⎨⎪⎧15a +35(100-a )≤3 100,5a +10(100-a )≥890,解得20≤a ≤22. ∵总利润W =5a +10(100-a )=-5a +1 000,W 是关于x 的一次函数,W 随x 的增大而减小, ∴当x =20时,W 有最大值,此时W =900,且100-20=80,答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.2.今年,号称“千湖之省”的湖北正遭受大旱,为提高学生环保意识,节约用水,某校数学教师编造了一道应用题:为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:(1)(2)记该用户六月份的用水量为x 吨,缴纳水费y 元,试列出y 关于x 的函数式;(3)若该用户六月份的用水量为40吨,缴纳水费y 元的取值范围为70≤y ≤90,试求m 的取值范围. 解:(1)应缴纳水费:10×1.5+(18-10)×2=31(元). (2)当0≤x ≤10时,y =1.5x ;当10<x ≤m 时,y =10×1.5+2(x -10)=2x -5; 当x >m 时,y =15+2(m -10)+3(x -m )=3x -m -5.∴y =⎩⎪⎨⎪⎧1.5x (0≤x ≤10),2x -5 (10<x ≤m ),3x -m -5 (x >m ).(3)当40≤m ≤50时,y =2×40-5=75(元),满足. 当20≤m <40时,y =3×40-m -5=115-m , 则70≤115-m ≤90,∴25≤m ≤45,即25≤m ≤40.综上得,25≤m ≤50.3.潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A ,B 两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:(1)求A ,B 两类蔬菜每亩的平均收入各是多少元;(2)某种植户准备租20亩地用来种植A ,B 两类蔬菜,为了使总收入不低于63 000元,且种植A 类蔬菜的面积多于种植B 类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有的租地方案.解:(1)设A ,B 两类蔬菜每亩平均收入分别是x 元,y 元.由题意,得⎩⎪⎨⎪⎧ 3x +y =12 500,2x +3y =16 500.解得⎩⎪⎨⎪⎧x =3 000,y =3 500.答:A ,B 两类蔬菜每亩平均收入分别是3 000元,3 500元.(2)设用来种植A 类蔬菜的面积为a 亩,则用来种植B 类蔬菜的面积为(20-a )亩.由题意,得⎩⎪⎨⎪⎧3 000a +3 500(20-a )≥63 000,a >20-a .解得10<a ≤14.∵a 取整数,为:11,12,13,14. ∴租地方案为:4.某学校计划将校园内形状为锐角△ABC 的空地(如图)进行改造,将它分割成△AHG 、△BHE 、△CGF 和矩形EFGH 四部分,且矩形EFGH 作为停车场,经测量BC=120m ,高AD=80m ,(1)若学校计划在△AHG 上种草,在△BHE 、△CGF 上都种花,如何设计矩形的长、宽,使得种草的面积与种花的面积相等?(2)若种草的投资是每平方米6元,种花的投资是每平方米10元,停车场铺地砖投资是每平方米4元,又如何设计矩形的长、宽,使得△ABC 空地改造投资最小?最小为多少? 解、(1)设FG=x 米,则AK=(80-x)米由△AHG ∽△ABCBC=120,AD=80可得:8080120x HG -=∴ x HG 23120-= BE+FC=120-)(x 23120-=x 23 ∴xx x x ·232180·23120 · 21⨯=--)()(解得x=40 ∴当FG 的长为40米时,种草的面积和种花的面积相等。

2010届数学中考复习专题解析及测试-专题4《统计与概率》[1]范文

2010届数学中考复习专题解析及测试-专题4《统计与概率》[1]范文

概率(2)一、考点分析内容要求1、数据的收集、整理、描述与分析等统计的意义Ⅰ2、总体、个体、样本,全面调查及抽样抽查,频数、频率等概念Ⅰ3、利用扇形图、条形图、直方图及折线图进行数据整理Ⅱ4、理解概率的意义,会用列举法及频率求概率Ⅱ5、能利用统计与概率知识解决实际生活中的有关问题Ⅱ二、命题预测概率是新课程标准下新增的一部分内容,从中考试题来看,概率在试题中占有一定的比例,一般在10—15分左右,因此概率已成为近两年及今后中考命题的亮点和热点.在中考命题时,关于概率的考题,多设置为现实生活中的情境问题,要求学生能分清现实生活中的随机事件,并能利用画树状图及列表的方法计算一些简单事件发生的概率.因此学生在复习时要多接触现实生活,多作实验,留心身边的每一件事,把实际问题与理论知识结合到一块来考虑问题.预测2011年将进一步考查在具体情况中求简单事件发生的概率以及运用概率的知识对一些现象作出合理的解释.一选择1、以下说法合理的是()A、小明在10次抛图钉的试验中发现3次钉尖朝上,由此他说钉尖朝上的概率是30%B、抛掷一枚普通的正六面体骰子,出现6的概率是1/6的意思是每6次就有1次掷得6C、某彩票的中奖机会是2%,那么如果买100张彩票一定会有2张中奖.D、在一次课堂进行的试验中,甲、乙两组同学估计硬币落地后,正面朝上的概率分别为0.48和0.51.2、如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:同时抛出两个正面,乙得1分;抛出其他结果,甲得1分. 谁先累积到10分,谁就获胜.你认为(填“甲”或“乙”)获胜的可能性更大.例8用6个球(除颜色外没有区别)设计满足以下条件的游戏:摸到白球的概率为12,摸到红球的概率为13,摸到黄球的概率为16,则应设个白球,个红球,个黄球.【考点要求】本题考查概率实验中小球数目的确定.【思路点拔】因为一共有6个球,需满足条件:摸到白球的概率为12,摸到红球的概率为13,摸到黄球的概率为16,则白球有6×12=3个,红球有6×13=2个,黄球有6×16=1个.【答案】填3,2,1.【错解剖析】部分学生容易忽视总共是6个球,而只考虑三种颜色球之比为3:2:1. 例9在中考体育达标跳绳项目测试中,1分钟跳160次为达标,小华记录了她预测时1分钟跳的次数分别为145,156,143,163,166,则他在该次预测中达标的概率是【考点要求】本题主要考查计算简单事件发生的概率.【思路点拔】这个事件的所有可能出现的结果有5种,其中达标的结果有2种,所以他达标的概率是25. 【答案】25【方法点拔】由预测的达标概率来估计中考达标原概率. 例10我市部分学生参加了2005年全国初中数学竞赛决赛,并取得优异成绩. 已知竞赛成绩分数都是整数,试题满分为140分,参赛学生的成绩分数分布情况如下: 分数段 0-19 20-39 40-59 60-79 80-99 100-119 120-140人 数0 37 68 95 56 32 12 请根据以上信息解答下列问题:(1) 全市共有多少人参加本次数学竞赛决赛?最低分和最高分在什么分数范围? (2) 经竞赛组委会评定,竞赛成绩在60分以上 (含60分)的考生均可获得不同等级的奖励,求我市参加本次竞赛决赛考生的获奖比例;(3) 决赛成绩分数的中位数落在哪个分数段内? (4) 上表还提供了其他信息,例如:“没获奖的人数为105人”等等. 请你再写出两条此表提供的信息.【考点要求】本题考查利用统计知识对所给数据进行分析,并解决相关问题. 【思路点拔】(1)全市共有300名学生参加本次竞赛决赛,最低分在20-39之间,最高分在120-140之间(2) 本次决赛共有195人获奖,获奖率为65% . (3) 决赛成绩的中位数落在60—79分数段内.(4) 如“120分以上有12人;60至79分数段的人数最多;……”等. 【答案】(1)最低分在20-39之间,最高分在120-140之间; (2)获奖率为65%; (3)60至79分;(4)120分以上有12人;60至79分数段的人数最多.【方法点拔】从问题出发,对表格中的数据进行分析,找出对解题有用的信息.例11市体校准备挑选一名跳高运动员参加全市中学生运动会,对跳高运动队的甲、乙两名运动员进行了8次选拔比赛.他们的成绩(单位:m )如下:甲:1.70 1.65 1.68 1.69 1.72 1.73 1.68 1.67 乙:1.60 1.73 1.72 1.61 1.62 1.71 1.70 1.75 (1)甲、乙两名运动员的跳高平均成绩分别是多少? (2)哪位运动员的成绩更为稳定?(3)若预测,跳过1.65m 就很可能获得冠军,该校为了获得冠军,可能选哪位运动员参赛?若预测跳过1.70m 才能得冠军呢?【考点要求】本题考查平均数、方差等知识,并能利用方差判断成绩的稳定性,从而帮助作出决策的实际应用问题.【思路点拔】(1) 1.69 1.68x x ==乙甲(2)20.0006s =甲 20.0035s =乙 22s s <乙甲故甲稳定(3)可能选甲参加,因为甲8次成绩都跳过1.65m 而乙有3次低于1.65m ; 也可能选乙参加,因为甲仅3次超过1.70m .(答案不唯一,言之有据即可) 【答案】(1) 1.69 1.68x x ==乙甲;(2)甲稳定;(3)答案不唯一,言之有据即可【方法点拔】回答第(3)问时,并无固定答案,从不同角度可做出不同回答.例12如图所示,A 、B 两个旅游点从2002年至2006年“五、一”的旅游人数变化情况分别用实线和虚线表示.根据图中所示解答以下问题:(1)B 旅游点的旅游人数相对上一年,增长最快的是哪一年?(2)求A 、B 两个旅游点从2002到2006年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;(3)A 旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A 旅游点的最佳接待人数为4万人,为控制游客数量,A 旅游点决定提高门票价格.已知门票价格x (元)与游客人数y (万人)满足函数关系5100xy =-.若要使A 旅游点的游客人数不超过4万人,则门票价格至少应提高多少?【考点要求】本题考查从折线图中获取信息,并结合信息加以评价,解决相关问题. (1)B 旅游点的旅游人数相对上一年增长最快的是2005年. (2)A X =554321++++=3(万元),B X =534233++++=3(万元)2AS =51[(-2)2+(-1)2+02+12+22]=2,2B S =51[02+02+(-1)2+12+02]=52从2002至2006年,A 、B 两个旅游点平均每年的旅游人数均为3万人,但A 旅游点较B 旅游点的旅游人数波动大.(3)由题意,得 5-100x≤4 解得x ≥100 100-80=20 【答案】(1)2005年;(2)从2002至2006年,A 、B 两个旅游点平均每年的旅游人数均为3万人,但A 旅游2002 2003 2004 2005 2006 年6 54 3 2 1万人A B图4-4点较B 旅游点的旅游人数波动大;(3)至少要提高20元.【方法点拔】完成第(3)问时要先确定票价与游客人数的函数关系,然后根据题目要求列出不等式,求出相应的票价,再计算出票价提高多少.例13小红和小明在操场做游戏,他们先在地上画了半径分别2m和3m的同心圆(如图4-5),蒙上眼在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内不算,你来当裁判.(1)你认为游戏公平吗?为什么? (2)游戏结束后,小明边走边想,“反过来,能否用频率估计概率的方法,来估算非规则图形的面积呢?”.请你设计方案,解决这一问题.(要求画出图形,说明设计步骤、原理,写出公式)【考点要求】本题考查设计用频率估计概率的方法,来估算非规则图形的面积的方案,即用概率知识进行方案设计.【思路点拔】(1)不公平∵P(阴)=95949=ππ-π,即小红胜率为95,小明胜率为94∴游戏对双方不公平(2)能利用频率估计概率的实验方法估算非规则图形的面积.设计方案:① 设计一个可测量面积的规则图形将非规则图形围起来(如正方形,其面积为S ).如图4-6所示;② 往图形中掷点(如蒙上眼往图形中随意掷石子,掷在图外不作记录). ③ 当掷点数充分大(如1万次),记录并统计结果,设掷入正方形内m 次,其中n 次掷图形内.④ 设非规则图形的面积为S ',用频率估计概率,即频率P '(掷入非规则图形内)=≈m n概率P(掷入非规则图形内)=SS 1, 故≈m n mSn S S S ≈⇒11 【答案】(1)不公平;(2)能利用频率估计概率的实验方法估算非规则图形的面积.【方法点拔】本题第(2)问的解决是在第(1)问的逆向思维基础上进行,只有正确解决了第(1)问并能正逆理解才能有第(2)问的方案设计思路. ● 难点突破方法总结统计与概率问题中,中考考查以基础题主为,难题一般为实际运用,解题时应注意以下几点.1.提高运算技能,平均数、中位数、极差、方差、频率等数值都要定的数学运算得到,而运算的结果将会影响到统计的预测.2.提高阅读理解和识别图表的能力,统计问题的试题中,许多问题都是以社会热点为背景,形式灵活多样,综合性较强,强调课内知识和课外活动相结合,调查分析和收集整理相结合;3.注重在具体情境中体会概率的意义,理解概率对生活指导的现实作用;4.加强统计与概率之间的关系,同时要避免将概率内容的学习变成数字运算的练习;图4-5 图4-65.加强训练,能用规范的语言表述自己的观点.●拓展演练一、填空题1.口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别,随机从口袋中任取一只球,取到黄球的概率是__ __.2. 一个口袋中有4个白球,1个红球,7个黄球.搅匀后随机从袋中摸出1个是白球的概率是_________.3.2006年5月份,某市市区一周空气质量报告中某项污染指数的数据是:31、35、31、34、30、32、31,这组数据的中位数是__________.4.为了缓解旱情,我市发射增雨火箭,实施增雨作业. 在一场降雨中,某县测得10个面积相等区域的降雨量如下表:区域 1 2 3 4 5 6 7 8 9 10 降雨量(mm)10121313201514151414则该县这10个区域降雨量的众数为_______(mm);平均降雨量为___________(mm ).5.一个骰子,六个面上的数字分别为1、2、3、3、4、5,投掷一次,向上的面出现数字3的概率是_____.6.某校学生会在“暑假社会实践”活动中组织学生进行社会调查,并组织评委会对学生写出的调查报告进行了评比.学生会随机抽取了部分评比后的调查报告进行统计,绘制了统计图如下,请根据该图回答下列问题:(1)学生会共抽取了______份调查报告;(2)若等第A 为优秀,则优秀率为_____________ ;(3)学生会共收到调查报告1000 份,请估计该校有多少份调查报告的等第为E ?7.有100张已编号的卡片(从1号到100号)从中任取1张,计算卡片是奇数的概率是_______,卡片号是7的倍数的概率是________.8.掷一枚正六面体的骰子,掷出的点数不大于3的概率是_________.二、选择题9.在样本方差的计算式S 2=101(x 1-20)2+(x 2-20)2+…+(x 10-20)2]中,数字10与20分别表示样本的( )A .容量、方差B .平均数、容量C .容量、平均数D .标准差、平均数 10.宾馆客房的标价影响住宿百分率.下表是某一宾馆在近几年旅游周统计的平均数据:客房价(元) 160140120100 住宿百分率 63.8% 74.3% 84.1%95%在旅游周,要使宾馆客房收入最大,客房标价应选( ).A .160元B .140元C .120元D .100元 11.数学老师对小明在参加高考前的5次数学模拟考试进行统计分析,判断小明的数学成绩是否稳定,于是老师需要知道小明这5次数学成绩的( )A .平均数或中位数B .方差或极差C .众数或频率D .频数或众数 12.国家实行一系列“三农”优惠政策后,农民收入大幅度增加.某乡所辖村庄去年年人均收入(单位:元)情年人均收入 3500 3700 3800 3900 4500 村庄个数 0 1 3 3 1 第6题图况如右表,该乡去年年人均收入的中位数是( )A .3700元B .3800元C .3850元D .3900元13.在一所有1000名学生的学校中随机调查了100人,其中有85人上学之前吃早餐,在这所学校里随便问1人,上学之前吃过早餐的概率是( )A .0.85B .0.085C .0.1D .85014.一布袋中有红球8个,白球5个和黑球12个,它们除颜色外没有其他区别,随机地从袋中取出1球不是黑球的概率为( )A .825B .15C .1225D .132515.某商店举办有奖销售活动,购物满100元者发兑奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个,若某人购物满100元,那么他中一等奖的概率是( )A .1100B .11000C .110000D .1111000016.如图所示的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( )A .25B .310C .320D .1517.军军的文具盒中有两支蜡笔,一支红色的、一支绿色的;三支水彩笔,分别是黄色、黑色、红色,任意拿出一支蜡笔和一支水彩笔,正好都是红色的概率为( )A .56B .13C .15D .1618.甲、乙两位学生一起在玩抛掷两枚硬币的游戏,游戏规定:甲学生抛出两个正面得1分;乙学生抛出一正一反得1分.那么各抛掷100次后他们的得分情况大约应为( )A .甲→25分,乙→25分B .甲→25分,乙→50分C .甲→50分,乙→25分D .甲→50分,乙→50分 三、解答题19.某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示:年龄组 13岁 14岁 15岁 16岁 参赛人数5191214(1)求全体参赛选手年龄的众数、中位数;(2)小明说,他所在年龄组的参赛人数占全体参赛人数的28%. 你认为小明是哪个年龄组的选手?请说明理由.20.小谢家买了一辆小轿车,小谢连续记录了七天每天行驶的路程.第一天 第二天 第三天 第四天第五天 第六天 第七天 路程(千米)46393650549134请你用统计初步的知识,解答下列问题:(1)小谢家小轿车每月(每月按30天计算)要行A B驶多少千米?(2)若每行驶100千米需汽油8升,汽油每升3.45元.请你求出小谢家一年(一年按12个月计算)的汽油费是多少元?21.(连云港市2005)今年“五一黄金周”期间,花果山风景区共接待游客约22.5万人.为了了解该景区的服务水平,有关部门从这些游客中随机抽取450人进行调查,请他们对景区的服务质量进行评分,评分结果的统计数据如下表:档次第一档第二档第三档第四档第五档分值a(分)a≥9080≤a<9070≤a<8060≤a<70a<60人数73 147 122 86 22 根据表中提供的信息,回答下列问题:(1)所有评分数据的中位数应在第几档内?(2)若评分不低于70分为“满意”,试估计今年“五一黄金周”期间对花果山景区服务“满意”的游客人数.22.在青岛市政府举办的“迎奥运登山活动”中,参加崂山景区登山活动的市民约有12000人,为统计参加活动人员的年龄情况,我们从中随机抽取了100人的年龄作为样本,进行数据处理,制成扇形统计图和条形统计图(部分)如下:(1)根据图①提供的信息补全图②;(2)参加崂山景区登山活动的 12000 余名市民中,哪个年龄段的人数最多?(3)根据统计图提供的信息,谈谈自己的感想.(不超过30字)23.袋中装有编号为1、2、3的三个形状大小相同的小球,从袋中随意摸出1球.并且随意抛掷一个面上标有1,2,3,4,5,6各一数字的正方体均匀骰子.(1)如果摸出1号球和骰子朝上的数字为1则甲胜;如果摸出2号球和骰子朝上的数字为2,则乙胜.这个游戏对双方公平吗?(2)如果摸出的球编号为奇数和骰子朝上的数字为奇数则甲胜;如果摸出的球编号为偶数和木块朝上的数字为偶数,则乙胜.这个游戏对双方公平吗?说明理由.24.小明拿着一个罐子来找小华做游戏,罐子里有四个一样大小的玻璃球,两个黑色,两个白色.小明说:“使劲摇晃罐子,使罐子中的小球位置打乱,等小球落定后,如果是黑白相间地排列(如图所示),就算甲方赢,否则就算乙方赢.”他问小华要当甲方还是乙方,请你帮小华出主意,并说明理由.专题四《统计与概率》●习题答案一、填空题1.1114 (提示:实验中,我们关注的结果的次数是11,所有等可能出现的结果的次数是14,故取到黄球的概率1114)2.13 (提示:P (白球)=441417123==++) 3.31(提示:将这组数据按从小到大排列为30、31、31、31、32、34、35,则位于中间位置的一个数为31,即这组数据的中位数是31)4.14,14(提示:14出现次数最多,平均降雨量是把各区域降雨量相加再除以10)5.13(提示:P (向上数字为3)=2163=) 6.50,0.16,40(提示:共抽查8+20+15+5+2=50;优秀率为8÷50=0.16;等第为E 的报告有210004050⨯=) 7.12,750(提示:1到100中奇数有50个,P (卡片是奇数)=5011002=;7的倍数有100÷7≈14,所以P (卡片号是7的倍数)=14710050=) 8.12(提示:点数不大于3的数字有1、2、3,所以P (点数不大于3)=3162=)二、选择题9.C (提示:要熟悉样本方差计算公式的意义)10.B (提示:应综合考虑客房价与住宿百分率两方面因素,要使两者乘积最大) 11.B (提示:反映数据稳定性的量是数据的方差或极差)12.C (提示:表中共有8个数据,位于中间位置的两个的数分别为3800、3900,故本组数据的中位数为(3800+3900)÷2=3850)13.A (提示:100人中吃早餐的概率85÷100=0.85,可以代表1000名学生吃早餐的概率)14.D (提示:P (摸出的是黑球)=1212851225=++,所以P (摸出的不是黑球)=1-1225=1325) 15.C (提示:共有10000张奖券,其中一等奖10个,购物100元,可得一张奖券,故P (中一等奖)=11000016.B (提示:P (A 指奇数)=35,P (B 指奇数)=2142=,所以P (A 、B 同时指奇数)=35×12=310) 17.D (提示:P (两支红色水笔)111236=⨯=) 18.B (提示:抛掷两枚硬币的所有可能是正正、正反、反正、反反.所以P (甲抛出两个正面)=14,P (乙抛出一正一反)=12,各抛100次后,甲得分100×14=25(分),乙得分100×12=50(分))三、解答题 19.解:(1)众数是14岁,中位数是15岁; (2)(5+19+12+14)×28%=14(人) 所以小明是16岁年龄组的选手.20.解:(1)由图知这七天中平均每天行驶的路程为50(千米). ∴每月行驶的路程为30×50=l 500(千米). 答:小谢家小轿车每月要行驶1500千米. (2)小谢一家一年的汽油费用是4 968元.21.解:(1)所有评分数据的中位数应在第三档内.(2)根据题意,样本中不小于70的数据个数为73+147+122=342, 所以,22.5万游客中对花果山景区服务“满意”的游客人数约为1.175.22450342=⨯(万). 22.解:(1)略 (2)60-69岁(3)根据统计图提供的信息,谈谈自己的感想合理即可. 23.解:①公平 因为获胜概率相同都等于118; ②不公平;因为甲获胜概率为31,乙获胜概率为61. 24.解:小华当乙方.理由:设A 1表示第一个黑球,A 2表示第二个黑球,B 1表示第一个白球,B 2表示第二个白球.有24种可能结果(可以利用树状图或表格解释),黑白相间排列的有8种.因此,甲方赢的概率为824=13 ,乙方赢的概率为23,故小华当乙方.。

2010届中考数学方案设计题专题训练

2010届中考数学方案设计题专题训练

第5课时方案设计题方案设计型题是通过设置一个实际问题情景,给出若干信息,提出解决问题的要求,要求学生运用学过的技能和方法,进行设计和操作,寻求恰当的解决方案。

有时也给出几个不同的解决方案,要求判断哪个方案较优。

它包括测量方案设计、作图方案设计和经济类方案设计。

(一)测量方案设计题,一般限定条件、限定测量工具,让同学们设计一个可行的方案,对某一物体的长度进行测量并计算,要注意的是设计出来的方案要有可操作性。

(二)作图、拼图方案设计题,它摆脱了传统的简单作图,它把作图的技能考查放在一个实际生活的大背景下,考查学生的综合创新能力,它给同学们的创造性思维提供广阔的空间与平台。

此类题常以某些规则的图形,如等腰三角形、菱形、矩形、圆等,通过某些辅助线,将面积分割或分割后拼出符合某些条件的图形。

(三)经济类方案设计题,一般有较多种供选择的解决问题的方案,但在实施中要考虑到经济因素,此类问题类似于求最大值或最小值的问题,但解决的方法较多。

方案设计题贴近生活,具有较强的操作性和实践性,解决此类问题时要慎于思考,并能在实践中对所有可能的方案进行罗列与分析,得出符合要求的一种或几种方案。

类型之一设计图形型问题图形设计问题通常是先给出一个图形(这个图形可能是规则的,也有可能不规则),然后让你用直线、线段等把该图形分割成面积相同、形状相同的几部分或者分割成形状相同的图形。

解决这类问题的时候可以借助对称的性质、角度大小、面积公式等进行分割。

1.(•莆田市)某市要在一块平行四边形ABCD的空地上建造一个四边形花园,要求花园所占面积是ABCD 面积的一半,并且四边形花园的四个顶点作为出人口,要求分别在ABCD的四条边上,请你设计两种方案:方案(1):如图(1)所示,两个出入口E、F已确定,请在图(1)上画出符合要求的四边形花园,并简要说明画法;方案(2):如图(2)所示,一个出入口M已确定,请在图(2)上画出符合要求的梯形花园,并简要说明画法.2.(•荆门市)某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省?类型之二 经济类方案设计题在日常生产和生活中每时每刻都要用到决策,方案决策题已成为中考热点题型之一, 这些问题可以结合方程和不等式(组)来解决.关键是要抓住题中问题的实际意义,将其转化为数学问题.3.(·咸宁市)“5·12”四川汶川大地震的灾情牵动全国人民的心,某市A 、B 两个蔬菜基地得知四川C 、D 两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A 蔬菜基地有蔬菜200吨,B 蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C 、D 两个灾民安置点.从A 地运往C 、D 两处的费用分别为每吨20元和25元,从B 地运往C 、D 两处的费用分别为每吨15元和18元.设从B 地运往C 处的蔬菜为x 吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x 的值;(2)设A 、B 两个蔬菜基地的总运费为w 元,写出w 与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m >0),其余线路的运费不变,试讨论总运费最小的调运方案.类型之三 测量方案问题《新课程标准》要求同学们学会运用数学知识解决日常生活和其他学科中的问题.测量方案问题正是这样的问题,在解决这样的问题时要注意方案的可行性.4.(•河北省)在一平直河岸l 同侧有A 、B 两个村庄,A 、B 到l 的距离分别是3km 和2km ,AB=a km (1)a >.现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水.方案设计某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的示意图,设该方案中管道长度为1d ,且1(km)d PB BA =+(其中BP l ⊥于点P );图2是方案二的示意图,设该方案中管道长度为2d ,且2(km)d PA PB =+(其中点A '与点A 关于l 对称,A B '与l 交于点P ). 观察计算(1)在方案一中,1d = km (用含a 的式子表示);(2)在方案二中,组长小宇为了计算2d 的长,作了如图3所示的辅助线,请你按小宇同学的思路计算,2d = km (用含a 的式子表示).探索归纳(1)①当a=4时,比较大小:12_______d d (填“>”、“=”或“<”);②当a=6时,比较大小:12_______d d (填“>”、“=”或“<”);(2)请你参考边方框中的方法指导,就a (当1a >时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?第5课时 方案设计题 答案1.【答案】解:方案(1)画法1:(1)过F 作FH ∥AD 交AD 于点H ;(2)在DC 上任取一点G 连接EF 、FG 、GH 、HE ,则四边形EFGH 就是所要画的四边形;画法2:(1)过F 作FH ∥AB 交AD 于点H ;(2)过E 作EG ∥AD 交DC 于点G 连接EF 、FG 、GH 、HE ,则四边形EFGH 就是所要画的四边形画法3:(1)在AD 上取一点H ,使DH=CF ;(2)在CD 上任取一点G 连接EF 、FG 、GH 、HE ,则四边形EFGH 就是所要画的四边形方案(2)画法:(1)过M 点作MP ∥AB 交AD 于点P ,(2)在AB 上取一点Q ,连接PQ ,(3)过M 作MN ∥PQ 交DC 于点N ,连接QM 、PN 、MN 则四边形QMNP 就是所要画的四边形(本题答案不唯一,符合要求即可)2.【答案】解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点按顺(逆)时针方向旋转90°后得到的,故CE =CF =CG .∴△CEF 是等腰直角三角形.因此四边形EFGH 是正方形.(2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y ,那么y =21x 2×30+21×0.4×(0.4-x )×20+[0.16-21x 2-21×0.4×(0.4-x )×10] =10(x 2-0.2x +0.24) =10[(x -0.1)2+0.23] (0<x <0.4) .当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.3.【解析】根据题目中存在的等量关系,容易填写出未知的量,然后建立w 与x 之间的函数关系式.【答案】解:(1)填表依题意得:20(240)25(40)1518(300)x x x x -+-=+-. 解得:200x = .(2) w 与x 之间的函数关系为:29200w x =+.依题意得:240040003000x x x x -≥⎧⎪-≥⎪⎨≥⎪⎪-≥⎩,,,.,∴40≤x ≤240 在29200w x =+中,∵2>0,∴w 随x 的增大而增大, 故当x =40时,总运费最小, 此时调运方案为如下表.(3)由题意知(2)9200w m x =-+ ∴0<m <2时,(2)中调运方案总运费最小; m =2时,在40≤x ≤240的前提下调运,方案的总运费不变; 2<m <15时,x =240总运费最小, 其调运方案如下表4.【答案】观察计算(1)a+2;(2)224a +. 探索归纳(1)①<;②>;(2)2222212(2)(24)420d d a a a -=+-+=-. ①当4200a ->,即5a >时,22120d d ->,120d d ∴->.12d d ∴>; ②当4200a -=,即5a =时,22120d d -=,120d d ∴-=.12d d ∴=;③当4200a -<,即5a <时,22120d d -<,120d d ∴-<.12d d ∴<.综上可知:当5a >时,选方案二;a=时,选方案一或方案二;当5当15<<时,选方案一.a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方案设计型㈠应用方程(组)不等式(组)解决方案设计型例1.(2009·益阳)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.解析:此类试题一般涉及二元一次方程组、不等式组在实际问题中的应用.,以两人的用的总钱数为等量关系,可以列出方程组.第二问注意“不少”的含义可以根据总钱数和钢笔与笔记本的数量关系列出不等式组.解:(1)设每支钢笔x 元,每本笔记本y 元,依题意得:⎩⎨⎧=+=+3152183y x y x 解得:⎩⎨⎧==53y x 所以,每支钢笔3元,每本笔记本5元(2)设买a 支钢笔,则买笔记本(48-a )本依题意得:⎩⎨⎧≥-≤-+aa a a 48200)48(53,解得:2420≤≤a ,所以,一共有5种方案 即购买钢笔、笔记本的数量分别为:20,28; 21,27; 22,26; 23,25; 24,24. 点评:解决问题的基本思想是从实际问题中构建数学模型,寻找题目中的等量关系,(或不等关系)列出相应的方程(或不等式组).同步检测:1 (2009·安顺)在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.2.(2009·益阳)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.练习参考答案:1. 解:(1)设成人人数为x 人,则学生人数为(12-x)人. 则35x + 235(12 –x )= 350 解得:x = 8 故:学生人数为12 – 8 = 4 人, 成人人数为8人.(2)如果买团体票,按16人计算,共需费用:35×0.6×16 = 336元336﹤350 所以,购团体票更省钱.所以,有成人8人,学生4人;购团体票更省钱.2. 解:(1)设每支钢笔x 元,每本笔记本y 元,依题意得:⎩⎨⎧=+=+3152183y x y x 解得:⎩⎨⎧==53y x 所以,每支钢笔3元,每本笔记本5元(2)设买a 支钢笔,则买笔记本(48-a )本依题意得:⎩⎨⎧≥-≤-+a a a a 48200)48(53,解得:2420≤≤a ,所以,一共有5种方案 即购买钢笔、笔记本的数量分别为:20,28; 21,27; 22,26; 23,25; 24,24.二、应用函数设计方案问题:例2.(2009·安徽)(1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w (元)与批发量m (kg )之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg 以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.解析:此类试题结合函数图像所提供的信息,对信息加工应用,可以求出函数解析式,分析题意,根据:销售利润y =日最高销售量x ×每千克的利润(每千克的利润=零售价-批发价),由此整理可得到y 关于x 的二次函数,解:(1)图①表示批发量不少于20kg 且不多于60kg 的该种水果,可按5元/kg 批发;图②表示批发量高于60kg 的该种水果,可按4元/kg 批发.(2)由题意得: 2060 6054m m w m m ⎧=⎨⎩≤≤())>(,函数图象略. 由图可知资金金额满足240<w ≤300时,以同样的资金可批发到较多数量的该种水果.(3)设日最高销售量为x kg (x >60)则由图②日零售价p 满足:32040x p =-,于是32040x p -=销售利润23201(4)(80)1604040x y x x -=-=--+,当x =80时,160y =最大值,此时p =6 即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元 点评:注重数形结合,领会通过图形所传递的信息,以及二次函数顶点的意义的理解与应用.同步检测:3:(2009·四川省南充市)某电信公司给顾客提供了两种手机上网计费方式:方式A 以每分钟0.1元的价格按上网时间计费;方式B 除收月基费20元外,再以每分钟0.06元的价格按上网时间计费.假设顾客甲一个月手机上网的时间共有x 分钟,上网费用为y 元.(1)分别写出顾客甲按A 、B 两种方式计费的上网费y 元与上网时间x 分钟之间的函数关系式,并在图7的坐标系中作出这两个函数的图象;(2)如何选择计费方式能使甲上网费更合算?练习参考答案:练习3。

(1)方式A :0.1(0)y x x =≥, 方式B :0.0620(0)y x x =+≥,两个函数的图象如图所示.(2)解方程组0.10.0620y xy x=⎧⎨=+⎩得50050xy=⎧⎨=⎩所以两图象交于点P(500,50).由图象可知:当一个月内上网时间少于500分时,选择方式A省钱;当一个月内上网时间等于500分时,选择方式A、方式B一样;当一个月内上网时间多于500分时,选择方式B 省钱.三、设计图形剪拼方案例3.(2009·浙江省温州市)在所给的9×9方格中,每个小正方形的边长都是1.按要求画平行四边形,使它的四个顶点以及对角线交点都在方格的顶点上.(1)在图甲中画一个平行四边形,使它的周长是整数;(2)在图乙中画一个平行四边形,使它的周长不是整数.(注:图甲、图乙在答题纸上)解析:本题为图案设计题,在设计前一定要注意到要求,除了要满足所画平行四边形,使它的四个顶点以及对角线交点都在方格的顶点上外,还要满足平行四边形的周长是否为整数的要求.点评:本题考查的是设计图形题,在读清要求后,然后根据要求,进行方案的尝试设计,一般要经历一个不断修改的过程,使问题在修正中得以解决.同步检测:4。

(2009·河南)为创建绿色校园,学校决定对一块正方形的空地进行种植花草,现向学生征集设计图案.图案要求只能用圆弧在正方形内加以设计,使正方形和所画的图弧构成的图案,既是轴对称图形又是中心对称图形.种植花草部分用阴影表示.请你在图③、图④、图⑤中画出三种不同的的设计图案.提示:在两个图案中,只有半径变化而圆心不变的图案属于同一种,例如:图①、图②只能算一种练习参考答案:解:下面给出参考方案:四、 设计测量方案(解直角三角形应用)例4.(2009·济宁)坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖彻八角形十三层楼阁式建筑.数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪.皮尺.小镜子.(1)小华利用测角仪和皮尺测量塔高. 图1为小华测量塔高的示意图.她先在塔前的平地上选择一点A ,用测角仪测出看塔顶()M 的仰角35α=,在A 点和塔之间选择一点B ,测出看塔顶()M 的仰角45β=,然后用皮尺量出A .B 两点的距离为18.6m,自身的高度为1.6m .请你利用上述数据帮助小华计算出塔的高度(tan 350.7≈,结果保留整数).(2)如果你是活动小组的一员,正准备测量塔高,而此时塔影NP 的长为a m (如图2),你能否利用这一数据设计一个测量方案?如果能,请回答下列问题:①在你设计的测量方案中,选用的测量工具是: ;②要计算出塔的高,你还需要测量哪些数据? . 解析:本题以解直角三角形为依托,通过设计实际的测量活动,使学生能够灵活的应用所学知识,解决实际生活的问题,第二问是在解决了第一问的基础上让学生另行设计一种测量方案,但是要注意提供的工具和数据的选择使用.解:(1)设CD 的延长线交MN 于E 点,MN 长为xm ,则( 1.6)ME x m =-.∵045β=,∴ 1.6DE ME x ==-.∴ 1.618.617CE x x =-+=+. ∵0tan tan 35ME CE α==,∴ 1.60.717x x -=+,解得45x m =. ∴太子灵踪塔()MN 的高度为45m .(2) ①测角仪.皮尺; ② 站在P 点看塔顶的仰角.自身的高度. (注:答案不唯一) 点评:本类试题关键在于画出直角三角形,再分析角边关系,选择合适的三角函数求解,另外要注意设计的方案因为工具的选择不同而方法的多样性,还经常与相似三角形结合. 同步检测:A BC D 5。

(2009·四川省成都市)某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C 测得教学楼AB 的顶点A 的仰角为30°,然后向教学楼前进60米到达点D ,又测得点A 的仰角为45°.请你根据这些数据,求出这幢教学楼的高度.(计算过程和结果均不取近似值)练习参考答案:解:(1)设CD 的延长线交MN 于E 点,MN 长为xm ,则( 1.6)ME x m =-.∵045β=,∴ 1.6DE ME x ==-.∴ 1.618.617CE x x =-+=+. ∵0tan tan 35ME CE α==,∴ 1.60.717x x -=+,解得45x m =. ∴太子灵踪塔()MN 的高度为45m .(2) ①测角仪.皮尺; ② 站在P 点看塔顶的仰角.自身的高度. (注:答案不唯一) 练习6.如图,由已知可得∠ACB=30°,∠ADB=45°∴在Rt △ABD 中,BD=AB.又在Rt △ABC 中,tan30°=BC AB ,∴BC AB =33,即BC=3AB. ∵BC=CD +BD ,∴3AB=CD +AB ,即(3-1)AB=60.∴AB=1360-=30(3+1)(米)答:教学楼的高度为30(3+1)米.五、设计游戏方案(概率应用)例5.(2009·重庆)有一个可以自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示),另有一个不透明的口袋装有分别标有数0、1、3的三个小球(除数不同外,其余都相同).小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.解析:修改游戏规则,首先通过列表或树形图求出游戏中的双方的概率,看是否相等,若不相等通过修改规则使得概率对两方相等了,所以应现将两个人的获胜概率计算出来.解:列树形图如下:由树形图可见共有12种可能,并且每种可能出现的机会均等,而小亮和小红的获胜概率分别为,,由此可见游戏不公平,要使的游戏公平,概率应相等,我们可以修改为:若这两个数的积为奇数,小亮赢;若这两个数的积为偶奇数,小红赢.点评:本题以摸球和转盘游戏为背景,设计试题,游戏公平性方案设计,其关键是保证游戏双方获胜的概率相同.同步检测:(2009·广东省梅州市)“五·一”假期,梅河公司组织部分员工到A、B、C三地旅游,公司购买前往各地的车票种类、数量绘制成条形统计图,如图.根据统计图回答下列问题:(1)前往A地的车票有_____张,前往C地的车票占全部车票的________%;(2)若公司决定采用随机抽取的方式把车票分配给 100 名员工,在看不到车票的条件下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小王抽到去 B 地车票的概率为______;(3)若最后剩下一张车票时,员工小张、小李都想要,决定采用抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小张掷得着地一面的数字比小李掷得着地一面的数字大,车票给小张,否则给小李.”试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?练习参考答案:(1)30;20.(2)12.(3)可能出现的所有结果列表如下:或画树状图如下:共有16 种可能的结果,且每种的可能性相同,其中小张获得车票的结果有6种:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),∴P(小张获得车票)=616=38;则P(小李获得车票)1-38=58.∴这个规则对小张、小李双方不公平.随堂检测1.(2009·齐齐哈尔)一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A.4种B.3种C.2种D.1种2.(2009·襄樊)为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该县的A类学校不超过5所,则B类学校至少有多少所?(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?3.(2009·天津)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路填空,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填空,只需按照解答题的一般要求,进行解答即可.如图①,要设计一幅宽20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2∶3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?分析:由横、竖彩条的宽度比为2∶3,可设每个横彩条的宽为2x,则每个竖彩条的宽为3x.为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD.结合以上分析完成填空:如图②,用含x的代数式表示:AB=____________________________cm;AD=____________________________cm;矩形ABCD的面积为_____________cm2;列出方程并完成本题解答.4.(2009·烟台)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少? 5.(2009·达州)(6分)阳光明媚的一天,数学兴趣小组的同学去操场上测量旗杆的高度,他们带了以下测量工具:皮具、三角尺、标杆、小平面镜等.首先,小明说:“我们用皮尺和三角尺(含30︒角)来测量”.于是大家一起动手,测得小明与旗杆的距离AC 为15㎝,小明的眼睛与地面的距离为1.6㎝,如图9(甲)所示. 然后,小红和小强提出了自己的想法. 小红说:“我用皮尺和标杆能测出旗杆的高度.” 小强说:“我用皮尺和小平面镜也能测出旗杆的高度!” 根据以上情景,解答下列问题:(1)利用图9(甲),请你帮助小明求出旗杆AB 的高度(结果保留整数.参考数据:5.030sin =︒,87.030cos ≈︒,58.030tan ≈︒,73.130cot ≈︒);(2)你认为小红和小强提出的方案可行吗?如果可行,请选择一中..方案在图(乙)中画出测量示意图,并简述..测量步骤.6.(2009·漳州)小红与小刚姐弟俩做掷硬币游戏,他们两人同时各掷一枚壹元硬币.(1)若游戏规则为:当两枚硬币落地后都正面朝上时,小红赢,否则小刚赢.请用画树状图或列表的方法,求小刚赢的概率;(2)小红认为上面的游戏规则不公平,于是把规则改为:当两枚硬币正面都朝上时,小红得8分,否则小刚得4分.那么,修改后的游戏规则公平吗?请说明理由;若不公平,请你帮他们再修改游戏规则,使游戏规则公平(不必说明理由).随堂检测参考答案:1.C2.解:(1)设改造一所A类学校和一所B类学校所需的改造资金分别为a万元和b万元.依题意得:22302205a b a b +=⎧⎨+=⎩解之得6085a b =⎧⎨=⎩答:改造一所A 类学校和一所B 类学校所需的改造资金分别为60万元和85万元. (2)设该县有A 、B 两类学校分别为m 所和n 所.则60851575m n +=173151212m n =-+∵A 类学校不超过5所 ∴1731551215n -+≤ ∴15n ≥即:B 类学校至少有15所.(3)设今年改造A 类学校x 所,则改造B 类学校为()6x -所,依题意得:()()507064001015670x x x x +-⎧⎪⎨+-⎪⎩≤≥ 解之得14x ≤≤ ∵x 取整数 ∴1234x =,,, 即:共有4种方案.3.解(Ⅰ)220630424260600x x x x ---+,,; (Ⅱ)根据题意,得2124260*********x x ⎛⎫-+=-⨯⨯ ⎪⎝⎭.整理,得2665500x x -+=.解方程,得125106x x ==,(不合题意,舍去).则552332x x ==,. 答:每个横、竖彩条的宽度分别为53cm ,52cm . 4. 解:(1)根据题意,得(24002000)8450x y x ⎛⎫=--+⨯⎪⎝⎭, 即2224320025y x x =-++. (2)由题意,得22243200480025x x -++=.整理,得2300200000x x -+=.解这个方程,得12100200x x ==,. 要使百姓得到实惠,取200x =.所以,每台冰箱应降价200元. (3)对于2224320025y x x =-++, 当241502225x =-=⎛⎫⨯- ⎪⎝⎭时,150(24002000150)8425020500050y ⎛⎫=--+⨯=⨯= ⎪⎝⎭最大值.所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元. 5.(1)过点D 作DE ⊥AB 于点E , 在Rt △BDE 中,DE=AC=15m ,∠BDE=30° ∴BE=DE·tan30°≈15×058=870(m) ∴AB=BE+AE=870m+16m=103m ≈10m(2)小红和小强提出的方案都是可行的 小红的方案: 利用皮尺和标杆: (1)测量旗杆的影长AG (2)测量标杆EF 的长度(3)测量同一时刻标杆影长FH小强的方案:把小平面镜放在适当的位置(如图点P处),使得小强可以在镜中看到旗杆AB的顶端步骤:(1)测出AP的长度(2)测出NP的长度(3)测出小强眼睛离地面的高度MN6.解:由树形图可见共有4种可能,并且每种可能出现的机会均等,而小红与小刚的获胜概率分别为,由此可见游戏不公平,要使的游戏公平,概率应相等或者得分相同,我们可以修改为:两枚硬币落地后都正面朝上时,小红赢;若两枚硬币落地后都反面朝上时,小刚赢,(或者当两枚硬币正面都朝上时,小红得3分,否则小刚得1分)。

相关文档
最新文档