初三中考数学 方案设计题
中考数学专题复习——方案设计问题(经典题型)
中考数学专题复习——方案设计问题(经典题型)【专题点拨】方案设计型问题是通过设置一个实际问题情景,给出若干信息,提出解决问题的要求,要求学生运用学过的技能和方法,进行设计和操作,寻求恰当的解决方案,有时也给出几个不同的解决方案,要求判断哪个方案较优。
它包括测量方案设计、作图方案设计和经济类方案设计等。
【典例赏析】【例题1】(2017黑龙江佳木斯)为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展.2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元.(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式.(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?(3)在(2)的前提下,该企业决定投资不超过获得最大利润的在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?【考点】FH:一次函数的应用;CE:一元一次不等式组的应用.【分析】(1)根据总利润=三种蔬菜的利润之和,计算即可;(2)由题意,列出不等式组即可解决问题;(3)由题意,列出二元一次不等式,求出整数解即可;【解答】解:(1)由题意y=x+1.5×2x+2=﹣2x+200.(2)由题意﹣2x+200≥180,解得x≤10,∵x≥8,∴8≤x≤10.∵x为整数,∴x=8,9,10.∴有3种种植方案,方案一:种植西红柿8公顷、马铃薯76公顷、青椒16公顷.方案二:种植西红柿9公顷、马铃薯73公顷、青椒18公顷.方案三:种植西红柿10公顷、马铃薯70公顷、青椒20公顷.(3)∵y=﹣2x+200,﹣2<0,∴x=8时,利润最大,最大利润为184万元.设投资A种类型的大棚a个,B种类型的大棚b个,由题意5a+8b≤×184,∴5a+8b≤23,∴a=1,b=1或2,a=2,b=1,a=3,b=1,∴可以投资A种类型的大棚1个,B种类型的大棚1个,或投资A种类型的大棚1个,B种类型的大棚2个,或投资A种类型的大棚2个,B种类型的大棚1个,或投资A种类型的大棚3个,B种类型的大棚1个.【例题2】(2017内蒙古赤峰)为了尽快实施“脱贫致富奔小康”宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.(1)若两种树苗购买的棵数一样多,求梨树苗的单价;(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,根据两种树苗购买的棵树一样多列出方程求出其解即可;(2)设购买梨树苗种树苗a棵,苹果树苗则购买棵,根据购买两种树苗的总费用不超过6000元建立不等式求出其解即可.【解答】解:(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,依题意得: =,解得x=5.经检验x=5是原方程的解,且符合题意.答:梨树苗的单价是5元;(2)设购买梨树苗种树苗a棵,苹果树苗则购买棵,依题意得:(5+2)+5a≤6000,解得a≥850.答:梨树苗至少购买850棵.【例题3】(2017毕节)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.【考点】B7:分式方程的应用;95:二元一次方程的应用.【分析】(1)首先设这种笔单价为x元,则本子单价为(x﹣4)元,根据题意可得等量关系:30元买这种本子的数量=50元买这种笔的数量,由等量关系可得方程=,再解方程可得答案;(2)设恰好用完100元,可购买这种笔m支和购买本子n本,根据题意可得这种笔的单价×这种笔的支数m+本子的单价×本子的本数n=1000,再求出整数解即可.【解答】解:(1)设这种笔单价为x元,则本子单价为(x﹣4)元,由题意得:=,解得:x=10,经检验:x=10是原分式方程的解,则x﹣4=6.答:这种笔单价为10元,则本子单价为6元;(2)设恰好用完100元,可购买这种笔m支和购买本子n本,由题意得:10m+6n=100,整理得:m=10﹣n,∵m、n都是正整数,∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;∴有三种方案:①购买这种笔7支,购买本子5本;②购买这种笔4支,购买本子10本;③购买这种笔1支,购买本子15本.【能力检测】1.(2017黑龙江鹤岗)某企业决定投资不超过20万元建造A、B两种类型的温室大棚.经测算,投资A种类型的大棚6万元/个、B种类型的大棚7万元/个,那么建造方案有()A.2种B.3种C.4种D.5种【考点】95:二元一次方程的应用.【分析】直接根据题意假设出未知数,进而得出不等式进而分析得出答案.【解答】解:设建造A种类型的温室大棚x个,建造B种类型的温室大棚y个,根据题意可得:6x+7y≤20,当x=1,y=2符合题意;当x=2,y=1符合题意;当x=3,y=0符合题意;故建造方案有3种.故选:B.2.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【分析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.【解答】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y 万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【点评】本题考查了一元一次不等式组的应用,二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.3.(2017黑龙江鹤岗)由于雾霾天气频发,市场上防护口罩出现热销.某药店准备购进一批口罩,已知1个A型口罩和3个B型口罩共需26元;3个A型口罩和2个B型口罩共需29元.(1)求一个A型口罩和一个B型口罩的售价各是多少元?(2)药店准备购进这两种型号的口罩共50个,其中A型口罩数量不少于35个,且不多于B型口罩的3倍,有哪几种购买方案,哪种方案最省钱?【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)设一个A型口罩的售价是a元,一个B型口罩的售价是b元,根据:“1个A型口罩和3个B型口罩共需26元;3个A型口罩和2个B型口罩共需29元”列方程组求解即可;(2)设A型口罩x个,根据“A型口罩数量不少于35个,且不多于B型口罩的3倍”确定x的取值范围,然后得到有关总费用和A型口罩之间的关系得到函数解析式,确定函数的最值即可.【解答】解:(1)设一个A型口罩的售价是a元,一个B型口罩的售价是b元,依题意有:,解得:.答:一个A型口罩的售价是5元,一个B型口罩的售价是7元.(2)设A型口罩x个,依题意有:,解得35≤x≤37.5,∵x为整数,∴x=35,36,37.方案如下:B型B型方案口罩口罩一35 15二36 14三37 13设购买口罩需要y元,则y=5x+7(50﹣x)=﹣2x+350,k=﹣2<0,∴y随x增大而减小,∴x=37时,y的值最小.答:有3种购买方案,其中方案三最省钱.4.(2017•温州)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.【考点】C9:一元一次不等式的应用;HE:二次函数的应用;LB:矩形的性质.【分析】(1)根据题意可得300S+(48﹣S)200≤12000,解不等式即可;(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,由此即可解决问题;②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,由PQ∥AD,可得甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,由0<s<12,可得0<<12,解不等式即可;【解答】解:(1)由题意300S+(48﹣S)200≤12000,解得S≤24.∴S的最大值为24.(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,∴AB=6﹣2a=4,CB=8﹣2a=6.②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,∵PQ∥AD,∴甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,∵0<s<12,∴0<<12,∴0<x<50,∴丙瓷砖单价3x的范围为0<3x<150元/m2.【点评】本题考查不等式的应用、矩形的性质等知识,解题的关键是理解题意,学会构建方程或不等式解决实际问题,属于中考常考题型.5. (2017宁夏)某商店分两次购进 A、B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)购进所需费用(元)A B第一次30 40 3800第二次40 30 3200(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.【分析】(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据两次进货情况表,可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000﹣m)件,根据总利润=单件利润×购进数量,即可得出w与m之间的函数关系式,由A种商品的数量不少于B种商品数量的4倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再根据一次函数的性质即可解决最值问题.【解答】解:(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据题意得:,解得:.答:A种商品每件的进价为20元,B种商品每件的进价为80元.(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000﹣m)件,根据题意得:w=(30﹣20)(1000﹣m)+(100﹣80)m=10m+10000.∵A种商品的数量不少于B种商品数量的4倍,∴1000﹣m≥4m,解得:m≤200.∵在w=10m+10000中,k=10>0,∴w的值随m的增大而增大,∴当m=200时,w取最大值,最大值为10×200+10000=12000,∴当购进A种商品800件、B种商品200件时,销售利润最大,最大利润为12000元.【点评】本题考查了一次函数的应用、二元一次方程组的应用以及解一元一次不等式,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据数量关系,找出w与m之间的函数关系式.。
中考数学专题复习《设计方案》测试卷-附带答案
中考数学专题复习《设计方案》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一选择题1.(2023九上·菏泽月考)在数学活动课上老师让同学们判断一个由四根木条组成的四边形是否为矩形下面是一个学习小组拟定的方案其中正确的方案是()A.测量四边形的三个角是否为直角B.测量四边形的两组对边是否相等C.测量四边形的对角线是否互相平分D.测量四边形的其中一组邻边是否相等2.(2023九上·安徽期中)某班计划在劳动实践基地内种植蔬菜班长买回来10米长的围栏准备围成两边靠墙(两墙垂直且足够长)的菜园为了让菜园面积尽可能大同学们提出了围成矩形等腰直角三角形(两直角边靠墙)扇形这三种方案如图所示.最佳方案是()A.方案1B.方案2C.方案1或方案2D.方案33.(2022·自贡)九年级2班计划在劳动实践基地内种植蔬菜班长买回来8米长的围栏准备围成一边靠墙(墙足够长)的菜园为了让菜园面积尽可能大同学们提出了围成矩形等腰三角形(底边靠墙)半圆形这三种方案最佳方案是()A.方案1B.方案2C.方案3D.方案1或方案24.(2023·衡水模拟)要得知某一池塘两端A B的距离发现其无法直接测量两同学提供了如下间接测量方案.方案Ⅰ:如图1 先过点B作BF⊥AB再在BF上取C D两点使BC=CD接着过点D作BD的垂线DE交AC的延长线于点E 则测量DE的长即可方案Ⅱ:如图2 过点B作BD⊥AB再由点D观测用测角仪在AB的延长线上取一点C 使∠BDC=∠BDA则测量BC的长即可.对于方案ⅠⅡ说法正确的是()A.只有方案Ⅰ可行B.只有方案Ⅱ可行C.方案Ⅰ和Ⅱ都可行D.方案Ⅰ和Ⅱ都不可行5.(2023·北京市模拟)某产品的盈利额(即产品的销售价格与固定成本之差)记为y 购买人数记为x 其函数图象如图1所示.由于日前该产品盈利未达到预期相关人员提出了两种调整方案图2 图3中的实线分别为调整后y与x的函数图象.给出下列四种说法其中正确说法的序号是()①图2对应的方案是:保持销售价格不变并降低成本②图2对应的方案是:提高销售价格并提高成本③图3对应的方案是:提高销售价格并降低成本④图3对应的方案是:提高销售价格并保持成本不变A.①③B.②③C.①④D.②④二填空题6.(2022·瓯海模拟)小芳和小林为了研究图中“跑到画板外面去的两直线a b所成的角(锐角)”问题设计出如下两个方案:小林的方案小芳的方案测αβ的度数.测∠1 ∠ACB的度数.已知小林测得∠β=115°小芳作了AB=BC 并测得∠1=80°则直线a b所成的角为.7.(2023九上·港南期中)生物工作者为了估计一片山林中雀鸟的数量设计了如下方案:先捕捉50只雀鸟给它们做上标记后放回山林一段时间后再从山林中随机捕捉80只其中有标记的雀鸟有2只请你帮助工作人员估计这片山林中雀鸟的数量为只.8.(2021·东城模拟)数学课上李老师提出如下问题:已知:如图AB是⊙O的直径射线AC交⊙O于C.求作:弧BC的中点D.同学们分享了如下四种方案:①如图1 连接BC作BC的垂直平分线交⊙O于点D.②如图2 过点O作AC的平行线交⊙O于点D.③如图3 作∠BAC的平分线交⊙O于点D.④如图4 在射线AC上截取AE使AE=AB连接BE交⊙O于点D.上述四种方案中正确的方案的序号是.9.(2022·房山模拟)为确定传染病的感染者医学上可采用“二分检测方案”.假设待检测的总人数是2m(m为正整数).将这2m个人的样本混合在一起做第1轮检测(检测1次)如果检测结果是阴性可确定这些人都未感染 如果检测结果是阳性 可确实其中感染者 则将这些人平均分成两组 每组2m−1个人的样本混合在一起做第2轮检测 每组检测1次.依此类推:每轮检测后 排除结果为阴性的组 而将每个结果为阳性的组再平均分成两组 做下轮检测 直至确定所有的感染者. 例如 当待检测的总人数为8 且标记为“x ”的人是唯一感染者时 “二分检测方案”可用如图所示.从图中可以看出 需要经过4轮共n 次检测后 才能确定标记为“x ”的人是唯一感染者.(1)n 的值为(2)若待检测的总人数为8 采用“二分检测方案” 经过4轮共9次检测后确定了所有的感染者 写出感染者人数的所有可能值三 实践探究题10.(2024·镇海区月考)根据以下素材 探索完成任务.如何确定木板分配方案?素材1我校开展爱心义卖活动 小艺和同学们打算推销自己的手工制品.他们以每块15元的价格买了100张长方形木板 每块木板长和宽分别为80cm 40cm.素材2现将部分木板按图1虚线裁剪 剪去四个边长相同的小正方形(阴影).把剩余五个矩形拼制成无盖长方体收纳盒 使其底面长与宽之比为3:1.其余木板按图2虚线裁剪出两块木板(阴影是余料) 给部分盒子配上盖子.素材3义卖时的售价如标签所示:问题解决任计算盒子高度求出长方体收纳盒的高度.务1 任务2 确定分配方案1若制成的有盖收纳盒个数大于无盖收纳盒 但不到无盖收纳盒个数的2倍 木板该如何分配?请给出分配方案.任务3确定分配方案2为了提高利润 小艺打算把图2裁剪下来的余料(阴影部分)利用起来 一张矩形余料可以制成一把小木剑 并以5元/个的价格销售.请确定木板分配方案 使销售后获得最大利润.11.(2023九上·鹿城月考)某校准备在校园里利用围墙(墙可用最大长度为25.2m )和48m 长的篱笆墙围成Ⅰ Ⅱ两块矩形开心农场.某数学兴趣小组设计了三种方案(除围墙外 实线部分为篱笆墙 且不浪费篱笆墙) 请根据设计方案回答下列问题:(1)方案一:如图① 全部利用围墙的长度 但要在Ⅰ区中留一个宽度AE =2m 的矩形水池 且需保证总种植面积为185.52m 2 试确定CG 的长(2)方案二:如图② 使围成的两块矩形总种植面积最大 请问BC 应设计为多长?此时最大面积为多少?(3)方案三:如图③ 在图中所示三处位置各留1m 宽的门 且使围成的两块矩形总种植面积最大 请问BC 应设计为多长?此时最大面积为多少?12.【综合与实践】有言道:“杆秤一头称起人间生计 一头称起天地良心”.某兴趣小组将利用物理学中杠杆原理制作简易杆秤.小组先设计方案 然后动手制作 再结合实际进行调试 请完成下列方案设计中的任务. 【知识背景】如图 称重物时 移动秤砣可使杆秤平衡 根据杠杆原理推导得:(m 0+m)⋅l =M ⋅(a +y).其中秤盘质量m 0克 重物质量m 克 秤砣质量M 克 秤纽与秤盘的水平距离为l 厘米 科纽与零刻线的水平距离为a 厘米 秤砣与零刻线的水平距离为y 厘米. 【方案设计】目标:设计简易杆秤.设定m0=10,M=50最大可称重物质量为1000克零刻线与末刻线的距离定为50厘米.(1)当秤盘不放重物秤砣在零刻线时杆秤平衡请列出关于l a的方程(2)当秤盘放入质量为1000克的重物秤砣从零刻度线移至末刻线时杠杆平衡请列出关于l a的方程(3)根据(1)和(2)所列方程求出l和a的值(4)根据(1)-(3)求y关于m的函数解析式(5)从零刻线开始每隔100克在科杆上找到对应刻线请写出相邻刻线间的距离. 13.(2023九上·长清期中)某校项目式学习小组开展项目活动过程如下:项目主题:测量旗杆高度问题驱动:能利用哪些科学原理来测量旗杆的高度?组内探究:由于旗杆较高需要借助一些工具来测量比如自制的直角三角形硬纸板标杆镜子甚至还可以利用无人机…确定方法后先画出测量示意图然后实地进行测量并得到具体数据从而计算旗杆的高度.成果展示:下面是同学们进行交流展示时的部分测量方案:方案一方案二…测量标杆皮尺自制直角三角板硬纸板皮尺…工具测量示意图说明:线段AB 表示学校旗杆 小明的眼睛到地面的距离CD =1.7m 测点F 与B D 在同一水平直线上 D F B 之间的距离都可以直接测得 且A B C D E F 都在同一竖直平面内 点A C E 三点在同一直线上.说明:线段AB 表示旗杆 小明的身高CD =1.7m 测点D 与B 在同一水平直线上 D B 之间的距离可以直接测得 且A B CD E F G 都在同一竖直平面内 点A C E 三点在同一直线上 点C F G 三点在同一直线上.测量数据B D 之间的距离 16.8m B D 之间的距离 16.8m … D F 之间的距离 1.35mEF 的长度0.50m…EF 的长度2.60mCE 的长度0.75m… … …根据上述方案及数据 请你选择一个方案 求出学校旗杆AB 的高度.(结果精确到0.1m )14.(2024九上·杭州月考)根据以下素材 探索完成任务.如何设计喷泉喷头的升降方案?素材1如图 有一个可垂直升降的喷泉 喷出的水柱呈抛物线.记水柱上某一点到喷头的水平距离为x 米 到湖面的垂直高度为y 米.当喷头位于起始位置时 测量得x 与y 的四组数据如下: x (米) 0 2 3 4 y (米)121.751素材2公园想设立新的游玩项目 通过升降喷头 使游船能从水柱下方通过 如图 为避免游船被喷泉淋到 要求游船从水柱下方中间通过时 顶棚上任意一点到水柱的竖直距离均不小于0.4米.已知游船顶棚宽度为2.8米 顶棚到湖面的高度为2米.问题解决 任务确定喷泉形状 结合素材1 求y 关于x 的表达式.1任务2探究喷头升降方案为使游船按素材2要求顺利通过求喷头距离湖面高度的最小值.15.(2023九上·温州期末)根据素材解决问题.设计货船通过圆形拱桥的方案素材1图1中有一座圆拱石桥图2是其圆形桥拱的示意图测得水面宽AB=16m 拱顶离水面的距离CD=4m.素材2如图3 一艘货船露出水面部分的横截面为矩形EFGH 测得EF=3m EH=10m.因水深足够货船可以根据需要运载货物.据调查船身下降的高度y(米)与货船增加的载重量x (吨)满足函数关系式y=1100x.问题解决任务1确定桥拱半径求圆形桥拱的半径.任务2拟定设计方案根据图3状态货船能否通过圆形桥拱?若能 最多还能卸载多少吨货物?若不能 至少要增加多少吨货物才能通过?16.(2024九下·宁波月考)根据以下素材 探索完成任务.如何确定拍照打卡板素材一 设计师小聪为某商场设计拍照打卡板(如图1) 图2为其平面设计图.该打卡板是轴对称图形 由长方形DEFG 和等腰三角形ABC 组成 且点B F G C 四点共线.其中 点A 到BC 的距离为1.2米 FG =0.8米 DG =1.5米.素材二因考虑牢固耐用 小聪打算选用甲 乙两种材料分别制作长方形DEFG 与等腰三角形ABC (两种图形无缝隙拼接) 且甲材料的单价为85元/平方米 乙材料的单价为100元/平方米.问题解决任务一推理最大高度小聪说:“如果我设计的方案中CB长与C D 两点间的距离相等 那么最高点B 到地面的距离就是线段DG 长” 他的说法对吗?请判断并说明理由.任务二 探究等腰三角形ABC 面积 假设CG 长度为x 米 等腰三角形ABC 的面积为S 求S 关于x 的函数表达式.任务三确定拍照打卡板 小聪发现他设计的方案中 制作拍照打卡板的总费用不超过180元 请你确定CG 长度的最大值.17.(2024九上·杭州月考)根据以下素材 探索完成任务如何设计拱桥上救生圈的悬挂方案?素材1图1是一座抛物线形拱桥 以抛物线两个水平最低点连线为x 轴 抛物线离地面的最高点的铅垂线为y 轴建立平面直角坐标系 如图2所示. 某时测得水面宽20m 拱顶离水面最大距离为10m 抛物线拱形最高点与x 轴的距离为5m .据调查 该河段水位在此基础上再涨1m 达到最高.素材2为方便救助溺水者 拟在图1的桥拱上方栏杆处悬挂救生圈 如图3 救生圈悬挂点为了方便悬挂 救生圈悬挂点距离抛物线拱面上方1m 且相邻两救生圈悬挂点的水平间距为4m .为美观 放置后救生圈关于y 轴成轴对称分布.(悬挂救生圈的柱子大小忽略不计)任务1确定桥拱形状 根据图2 求抛物线的函数表达式.任务2拟定设计方案求符合悬挂条件的救生圈个数 并求出最右侧一个救生圈悬挂点的坐标.任务3探究救生绳长度 当水位达到最高时 上游个落水者顺流而下到达抛物线拱形桥面的瞬间 若要确保救助者把拱桥上任何一处悬挂点的救生圈抛出都能抛到落水者身边 求救生绳至少需要多长.(救生圈大小忽略不计 结果保留整数)问题解决(1)任务1 确定桥拱形状 根据图2 求抛物线的函数表达式. (2)任务2 拟定设计方案求符合悬挂条件的救生圈个数 并求出最右侧一个救生圈悬挂点的坐标. (3)任务3 探究救生绳长度当水位达到最高时 上游个落水者顺流而下到达抛物线拱形桥面的瞬间 若要确保救助者把拱桥上任何一处悬挂点的救生圈抛出都能抛到落水者身边 求救生绳至少需要多长.(救生圈大小忽略不计 结果保留整数)18.(2023九上·浙江期中)根据以下素材 探索完成任务.绿化带灌溉车的操作方案素材1辆绿化带灌溉车正在作业 水从喷水口喷出 水流的上下两边缘可以抽象为两条抛物线的一部分:喷水口离开地面高1.6米 上边缘抛物线最高点离喷水口的水平距离为3米 高出|喷水口0.9米 下边缘水流形状与上边缘相同 且喷水口是最高点。
人教版中考复习数学练习专题五:方案设计专题(含答案)
专题五方案设计专题【考纲与命题规律】考纲要求方案设计问题是运用学过的技能和方法,进行设计和操作,然后通过分析计算,证明等,确定出最佳方案的数学问题,一般涉及生产的方方面面,如:测量,购物,生产配料,汽车调配,图形拼接,所用到的数学知识有方程、不等式、函数解直角三角形,概率和统计等知识.命题规律方案设计问题应用性比较强,解题时要注重综合应用转化思想,数形结合的思想,方程函数思想及分类讨论等各种数学思想.【课堂精讲】例1.手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)分析:(1)正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,连接HE、EF、FG、GH、HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(2)正方形ABCD中,E、F分别是AB、BC的中点,O是AC、BD的交点,连接OE、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(3)正方形ABCD中,F、H分别是BC、DA的中点,O是AC、BD的交点,连接HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(4)正方形ABCD中,E、F分别是AB、BC的中点,O是AC的中点,I是AO的中点,连接OE、OB、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.解答:根据分析,可得。
(1)第一种情况下,分割后得到的最小等腰直角三角形是△AEH、△BEF、△CFG、△DHG,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(2)第二种情况下,分割后得到的最小等腰直角三角形是△AEO、△BEO、△BFO、△CFO,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(3)第三种情况下,分割后得到的最小等腰直角三角形是△AHO、△DHO、△BFO、△CFO,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(4)第四种情况下,分割后得到的最小等腰直角三角形是△AEI、△OEI,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2÷2=2×2÷2÷2=1(cm2).例2.甲乙两家商场平时以同样的价格出售相同的商品。
中考数学专题复习方案设计试题【含解析】
方案设计专题方案设计问题通常以社会生产和生活为背景,要求通过运用所学知识设计出最科学、最合理的方案. 综合考查了学生的阅读理解能力、分析推理能力、数据处理能力、文字概括能力、书面表达能力.一、设计搭配方案搭配方案问题一般与交通动输,安排车辆,工程施工等问题相联系,解此类问题时,需要将实际问题转化为方程(组),不等式(组)的问题,通过寻找题目中的相等(或不等)关系求解,确定出符合条件方案.例1 (2015•齐齐哈尔)母亲节前夕,某淘宝店主从厂家购进A ,B 两种礼盒,已知A ,B 两种礼盒的单价比为2∶3,单价和为200元.(1)求A ,B 两种礼盒的单价分别是多少元?(2)该店主购进这两种礼盒恰好用去9600元,且购进A 种礼盒最多36个,B 种礼盒的数量不超过A 种礼盒数量的2倍,共有几种进货方案?分析:(1)根据“A ,B 两种礼盒的单价比为2∶3,单价和为200元”,列方程求解即可;(2)可利用方程和不等式结合解决这一问题:根据“两种礼盒恰好用去9600元”列出方程,再利用“A 种礼盒最多36个”和“B 种礼盒的数量不超过A 种礼盒数量的2倍”这两个不等关系求出进货方案.解:(1)设A 种礼盒单价为2x 元,B 种礼盒单价为3x 元,依据题意,得2x+3x=200,解得x=40.则2x=80,3x=120.答:A 种礼盒单价为80元,B 种礼盒单价为120元.(2)设购进A 种礼盒a 个,B 种礼盒b 个,依据题意,得.9600120b 80a =+,整理得24032=+b a ,即8032+-=a b , 又因为⎩⎨⎧≤≤a b a 236可得⎪⎩⎪⎨⎧≤+-≤a a a 2803236,解得3630≤≤a . 因为a ,b 的值均为整数,所以a 的值为30,33,36.综上可知,共有三种方案.评注:此题主要考查了一元一次方程的应用以及一次函数的应用和一元一次不等式的应用,根据题意结合得出正确等量关系是解题关键.跟踪训练:1.(2015•齐齐哈尔)为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有 ( )A.1种B.2种C.3种D.4种2.某公交公司有A ,B加社会实践活动,设租用A 型客车x 辆,根据要求回答下列问题:(1)用含x 的式子填写下表:(2(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案.二、设计最佳方案最佳方案就是利用数学知识,设计出最科学、最合理的方案,一般以社会热点问题为背景,题目中往往会出现成本最低、效率最高、利润最大、运费最少、最合算等标志性词语.解决此类问题一般需借助不等式(组),方程(组),函数等知识构建适当的数学模型,将实际问题转化为数学问题,对所有可能的方案进行分析,找出符合要求的最优方案.例2 (2015•恩施州)某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生产A 、B 两种产品共50件,生产A 、B 两种产品与所需原料情况如下表所示:(1两种产品有(2)若生产一件A 产品可获利80元,生产一件B 产品可获利120元,怎样安排生产可获得最大利润?分析:(1)设工厂可安排生产x 件A 产品,则生产(50﹣x )件B 产品,根据所需A 种原料不能多于360千克,B 种原料不能多于290千克,列出不等式求解;(2)可根据一次函数的性质,确定最大利润及方案.解:(1)设工厂可安排生产x 件A 产品,则生产(50﹣x )件B 产品,由题意,得 ()360x -5049x ≤+()29050103≤-+x x ,解得30≤x≤32.又所以有三种生产方案:方案一:A30件,B20件;方案二:A31件,B19件;方案三:A32件,B18件.(2)设生产两种产品的利润为w ,则有()x -5012080x w +=,整理,得600040+-=x w .根据一次函数的性质可知,当x 取最小值30时,w 有最大值,此时480060003040=+⨯-=w ,所以当生产A 产品30件,B 产品20件时,所获利润最大为4800元.评注:本题是利用一元一次不等式组和一次函数设计最佳方案的问题,这类题通常需要利用不等式(组)得到未知数据取值范围,然后根据范围内符合题意的解设计出不同的方案. 跟踪训练:3.(2015•辽阳)某宾馆准备购进一批换气扇,从电器商场了解到:一台A 型换气扇和三台B 型换气扇共需275元;三台A 型换气扇和二台B 型换气扇共需300元.(1)求一台A 型换气扇和一台B 型换气扇的售价各是多少元;(2)若该宾馆准备同时购进这两种型号的换气扇共40台,并且A 型换气扇的数量不多于B 型换气扇数量的3倍,请设计出最省钱的购买方案,并说明理由.333三、设计图形的方案图形的分割,拼接问题是设计图案最常见的类型,这类问题具有一定的开放性,要求从多角度、多层次进行探索,以展示思维的灵活性,发散性.例3 (2015•南京)如图,在边长为4的正方形ABCD 中,请画出以A 为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角形(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3).分析:本题可分腰长为3和底长为3等情况分别尝试构造.解:满足条件的所有等腰三角形如下图所示.评注:本题有多种情况,在解答本题时,可通过分多种情况分别尝试的方法,力求做到不重复不遗漏.跟踪训练:4.(2015•枣庄)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有( )A.2种B.3种C.4种D.5种5.(2015•广安)手工课上,老师要求同学们将边长为4cm 的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的裁剪线,并直接写出每种不同分割后得到的最小等腰直角三角形面积.(注:不同的分法,面积可以相等).四、设计测量方案这类问题主要包括物体高度和地面宽度的测量,通常是要求先设计测量方案,然后再计算,常用到全等、相似、解直角三角形等知识,需注意的是所设计的方案要切实可行.例4如图,小山上有一棵树.现有测角仪和皮尺两种测量工具,请你设计一种测量第一种 第二种 第三种 第四种A B D αβC C 1D 1H 方案,在山脚水平地面上测出小树顶端A 到水平地面的距离AB . 要求:(1)画出测量示意图;(2)写出测量步骤(测量数据用字母表示);(3)根据(2)中的数据计算AB .分析:本题是一道测量底部不可到达物体高度问题,可通过构造双直角三角形完成. 解:(1)画出的示意图如图所示;(2)测量步骤:①在地面上取一点C 安装测角仪,测得树顶A 的仰角为α;②沿CB 前进到D ,用皮尺量出CD 之间的距离CD=a 米;③在D 处安装测角仪,测得树顶A 的仰角为β;③用皮尺测出测角仪的高度为h .(3)计算:如图,设AH=x 米,在Rt △AC 1H 中,H C AH tan 1=α,即C 1H=αtan x , 同理可得D 1H=βtan x , 因为C 1D 1=C 1H-D 1H ,即αtan x -βtan x =a ,解得αββαtan tan tan tan -⋅⋅=a x . 所以树的高度AB=AH+BH= h a +-⋅⋅αββαtan tan tan tan 评注:本题考查了数学知识的实际应用,关键是如何将实际问题与数学问题联系起来.本题方法多样,只要符合要求,能够操作即可.跟踪训练:6.如图,河边有一条笔直的公路l ,公路两侧是平坦的草地.在数学活动课上,老师要求测量河对岸B 点到公路的距离,请你设计一个测量方案.要求:(1)列出你测量所使用的测量工具;(2)画出测量的示意图,写出测量的步骤;(3)用字母表示测得的数据,求出B 点到公路的距离.公路l参考答案:1.B2.解:(1)30(5﹣x ) 280(5﹣x )(2)根据题意,得400x+280(5﹣x )≤1900,解得x≤4,所以x 的最大值为4.(3)根据题意列不等式得45x+30(5﹣x )≥195,解得x ≥3,由(2)可知,x≤4,所以x 可能取值为3、4.即租车方案共有两种,方案一:A 车3辆,B 车2辆;方案二:A 车4辆,B 车1辆.3.解:(1)设一台A 型换气扇x 元,一台B 型换气扇的售价为y 元,根据题意,得,解得,答:一台A 型换气扇50元,一台B 型换气扇的售价为75元.(2)设购进A 型换气扇z 台,总费用为w 元,则有z ≤3(40﹣z ),解得z ≤30, 因为z 为换气扇的台数,所以z ≤30且z 为正整数.所以w =50z +75(40﹣z )=﹣25z +3000,根据一次函数性质可知,w 随着z 的增大而减小,所以当z =30时,w 最大=25×30+3000=2250,此时40﹣z =40﹣30=10,答:最省钱的方案是购进30台A 型换气扇,10台B 型换气扇.4.C5.分割后的图形如下:上面四种情况下最小的等腰直角三角形的面积依次是是2cm 2 、2cm 2、2 cm 2、、1cm 2.6.解:(1)测角器、卷尺;(2)测量示意图如图;测量步骤:①在公路上取两点C ,D ,使∠BCD ,∠BDC 为锐角;②用测角器测出∠BCD =∠α,∠BDC=∠β;③用卷尺测得CD 的长,记为m 米;④计算求值.(3)解:设B 到CD 的距离为x 米,作BA ⊥CD 于点A ,在△CAB 中,tan x CA α=,在△DAB 中,tan x AD β=, tan tan x x CA AD αβ∴==,,CA AD m +=,tan tan x x m αβ∴+=,tan tan tan tan x m αβαβ∴=+··.。
历年初三数学中考选粹―方案设计题及答案
2 分)
根据勾股定理得: AD 1002 502 50 3 ……………( 3 分)
1 ∴ S△ABC= 100 50 3 2500 3 4330…………………( 4 分)
2
( 2)如图:当扇形与 BC边相切时,三角形铁皮的利用率最高 ..…( 6 分)
交 BC于 F,则 EF为剪切线 . 如图示 5- 2.
A
E
F P( E)
A P(D )
A
E
F P( E)
A
E
P( E)
F
B
C( A ) B
D C( A ) B
图示 2-1
图示 2- 2
C( A ) 图示 3
A( C)P( F)
A
P( D)
B
D
C(A )
图示 4- 2
E G
B D
FC
图示 5- 1
A(C)P( F)
b 种板材不超过 6
块,请求出其余的铺设方案有几种.
a种 b种 c种
图案 1
图案 2
解:⑴
① 1.96 m2
------------------------------- ( 3 分)
②设每边有 b 种板材 x 块, 依题意得: --------------------------- ( 4 分)
1、 2、 3 有一定规律的图案:中间部分
由 a 种板材铺成正方形,四周由 b种和 c种 板材镶边.
①请直接写出图案 2 的面积;
②若某一图案的面积为 11.56m2 ,求该图案每边有 b 种板材多少块?
⑵在第⑴题②所求图案的基础上,根据实际需要中间由
数学中考专题系列-方案设计专项练习
方案设计型专项练习一. 方程、函数型设计题1. 某体育彩票经销商计划用45000元从体彩中心购进彩票20扎,每扎1000张。
已知体彩中心有A ,B ,C 三张不同价格的彩票,进价分别是:A 彩票每张1.5元,B 彩票每张2元,C 彩票每张2.5元。
(1)若经销商同时购进两种不同型号的彩票20扎,请你设计进票方案。
(2)若销售A 种彩票1张获手续费0.2元,B 种彩票1张获手续费0.3元,C 种彩票1张获手续费0.5元。
在购进两种彩票的方案中,为使销售完时获得手续费最多,应选择哪种进票方案? (3)若经销商准备同时购进三种彩票20扎,请你设计进票方案。
1.(1)设购进A 种彩票x 张,B 种彩票y 张,C 种彩票z 张,根据题意有如下三种方案: ①x y x y +=⨯+=⎧⎨⎩10002015245000.;②x z x z +=⨯+=⎧⎨⎩100020152545000..;③y z y z +=⨯+=⎧⎨⎩10002022545000.解①得x y =-=⎧⎨⎩100030000(舍去)解②得x z ==⎧⎨⎩500015000解③得y z ==⎧⎨⎩1000010000有两种进票方案:A 种彩票5扎,C 种彩票15扎,或B 种彩票与C 种彩票各10扎。
(2)设购进A 种彩票5扎,C 种彩票15扎。
销售完后获手续费为:02500005150008500..⨯+⨯=(元) 设购进B 种彩票与C 种彩票各10扎销售完后获手续费为:031000005100008000..⨯+⨯=(元) 所以获得手续费最多的方案为:购A 种彩票5扎,C 种彩票15扎。
(3)设购进A 种彩票x 扎,B 种彩票y 扎,C 种彩票z 扎。
可列方程组x y z x y z ++=⨯+⨯+⨯=⎧⎨⎩201510002100025100045000.. 即z x y x =+=-+⎧⎨⎩10210∴≤<15x又因x 为整数,故共有4种进票方案:A 种1扎,B 种8扎,C 种11扎;A 种2扎,B 种6扎,C 种12扎;A 种3扎,B 种4扎,C 种13扎;A 种4扎,B 种2扎,C 种14扎。
中考数学专题之方案设计问题含练习答案
中考数学专题之方案设计问题含练习答案方案设计型题是通过设置一个实际问题情景,给出若干信息,提出解决问题的要求,要求学生运用学过的技能和方法,进行设计和操作,寻求恰当的解决方案.有时也给出几个不同的解决方案,要求判断哪个方案较优.它包括测量方案设计、作图方案设计和经济类方案设计等.题型之一 利用方程、不等式进行方案设计例1 (2014·益阳)某电器超市销售每台进价分别为200元、170元的A 、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本) (1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5 400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1 400元的目标,若能,请给出相应的采购方案;若不能,请说明理由.【思路点拨】(1)根据“3台A 型+5台B 型”的销售收入=1 800以及“4台A 型+10台B 型”的销售收入=3 100,列方程组得各自售价;(2)设购进A 型a 台,则B 型(30-a )台,利用金额不超过5 400建立不等式求解; (3)根据(2)中30台得利润为为1 400,建立方程,求解.【解答】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元.依题意,得35 1 800,410 3 100x y x y +=+=⎧⎨⎩.解得250,210.x y ==⎧⎨⎩答:A 、B 两种型号电风扇的销售单价分别为250元、210元.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30-a )台.依题意,得 200a +170(30-a )≤5 400,解得a ≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5 400元.(3)依题意有:(250-200)a+(210-170)(30-a)=1 400,解得a=20,此时,a>10.即在(2)的条件下超市不能实现利润1 400元的目标.方法归纳:列方程(组)或不等式组设计方案问题的关键是找到题目中的等量关系或者不等关系,然后根据结果设计方案.1.(2013·自贡)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?2.已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.3.(2014·衡阳)某班组织班团活动,班委会准备用15元钱全部用来购买笔记本和中性笔两种奖品.已知笔记本2元/本,中性笔1元/支,且每种奖品至少买一件.(1)若设购买笔记本x本,中性笔y支,写出y与x之间的关系式;(2)有多少种购买方案?请列举所有可能的结果;(3)从上述方案中任选一种方案购买,求买到的中性笔与笔记本数量相等的概率.题型之二利用函数进行方案设计例2 (2013·桂林)在“美丽广西,清洁乡村”活动中,李家村村长提出两种购买垃圾桶方案:方案1:买分类垃圾桶,需要费用3 000元,以后每月的垃圾处理费用250元;方案2:买不分类垃圾桶,需要费用1 000元,以后每月的垃圾处理费用500元;设方案1的购买费和每月垃圾处理费共为y1元,设方案2的购买费和每月垃圾处理费共为y2元,交费时间为x 个月.(1)直接写出y1、y2与x的函数关系式;(2)在同一坐标系内,画出函数y1、y2的图象;(3)在垃圾桶使用寿命相同的情况下,哪种方案省钱?【思路点拨】(1)根据题意可直接写出y与x的函数关系式;(2)分别过两点画图象;(3)根据图象得到方案.【解答】(1)y1=250x+3 000,y2=500x+1 000.(2)如图:(3)由(2)得当x>8时,方案1省钱;当x=8时,两种方案一样;当x<8时,方案2省钱.方法归纳:运用一次函数判断何种方式更合算,通常用分类讨论的方法列出方程和不等式,求自变量取值范围,但如果题目中有画好的函数图象,也可以直接观察图象解决.1.我市某医药公司把一批药品运往外地,现有两种运输方式可供选择:方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;方式二:使用快递公司的火车运输,装卸收费820元,另外每公里再加收2元.(1)请分别写出邮车、火车运输的总费用y1,y2(元)与运输路程x(公里)之间的函数关系;(2)你认为选用哪种运输方式较好,为什么?2.(2014·凉山)我州某校计划购买甲、乙两种树苗共1 000株用以绿化校园.甲种树苗每株25元,乙种树苗每株30元,通过调查了解,甲、乙两种树苗的成活率分别是90%和95%.(1)若购买这两种树苗共用去28 000元,则甲、乙两种树苗各购买多少株?(2)要使这批树苗的成活率不低于92%,则甲种树苗最多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.3.某教育行政部门计划今年暑假组织部分教师到外地进行学习,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆供选择,其收费标准均为每人每天120元,并且各自推出不同的优惠方案:甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费.如果你是这个部门的负责人,你应选哪家宾馆更实惠些?4.(2014·丽水)为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.题型之三图形问题中的方案设计例3 (2014·济宁)在数学活动课上,王老师发给每位同学一张半径为6个单位长度的圆形纸板,要求同学们:(1)从带刻度的三角板、量角器和圆规三种作图工具中任意选取作图工具,把圆形纸板分成面积相等的四部分;(2)设计的整个图案是某种对称图形.王老师给出了方案一,请你用所学的知识再设计两种方案,并完成下面的设计报告.【思路点拨】方案二:由题意得分割成的一部分面积为9π,故在圆心O处以3个单位长度为半径作圆,然后将圆环三等分即可;方案三:作出圆的直径AB,分别画两个半径为3个单位长度的小圆即可.【解答】方法归纳:图形方案设计问题通常先给出一个图形(可能是规则的也可能是不规则的),然后让你用直线或弧线将图形分成形状或面积相等的几部分.解决这类问题可借助对称的性质、角度的大小、面积公式等进行分割.1.某市要在一块平行四边形ABCD 的空地上建造一个四边形花园,要求花园所占面积是□ABCD 面积的一半,并且四边形花园的四个顶点作为出入口,要求四点顶点分别在□ABCD 的四条边上,请你设计两种方案:方案(1):如图1所示,两个出入口E ,F 已确定,请在图1上画出符合要求的四边形花园,并简要说明画法;方案(2):如图2所示,一个出入口M 已确定,请在图2上画出符合要求的梯形花园,并简要说明画法.2.(2014·拱墅模拟)请用直尺和圆规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上,面积相同的图形视为同一种.(保留作图痕迹).题型之四测量问题中的方案设计例4 如图,EF是一条笔直的河岸,A村与B村相距4千米,A,B两村到河岸EF的距离分别是5千米,3千米,现要在河岸EF上选一地址C建一个自来水厂,并铺设水管把水引至A,B两村.问:如图1,图2,图3所示的三条铺设水管的路径(图中实线部分)哪条最短?并说明理由. 【思路点拨】图1,图2中铺设水管路径长都可以一眼看出,在图3中由对称性可得:BC=B′C,AB′=BC+AC,以AB′为斜边构造一个直角三角形(要求直角边平行EF或垂直EF),若再能求出A,B两村的垂直距离,问题就不难解决了.【解答】图1:4+5=9(千米);图2:3+4=7(千米);图3:BC=B′C,过B′作B′M∥EF,过A作AN∥BB′交B′M于D,则构成Rt△ADB′.B′D,∴AB.∵7<9,∴图2的路径最短.方法归纳:这是一道判断方案题,题中给出了三种不同方案,由同学们根据所学图形与空间的知识按题中要求选择方案.1.某高速铁路即将动工,工程需要测量长江某一段的宽度.如图1,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得∠ACB=68°.(1)求所测之处江的宽度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.48);(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图2中画出图形.2.恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷(A)和世界级自然保护区星斗山(B)位于笔直的沪渝高速公路x同侧,AB=50 km,A、B到直线x的距离分别为10 km和40 km,要在沪渝高速公路旁修建一服务区P,向A、B两景区运送游客.小明设计了两种方案,图1是方案一的示意图(AP与直线x垂直,垂足为P),P到A、B 的距离之和s1=P A+PB,图2是方案二的示意图(点A关于直线x的对称点是A′,连接BA′交直线x于点P),P到A、B的距离之和s2=P A+P B.(1)求s1、s2,并比较它们的大小;(2)请你说明s2=P A+PB的值为最小;(3)恩施到张家界高速公路y与沪渝高速公路垂直,建立如图3所示的直角坐标系,B到直线y的距离为30 km,请你在x旁和y旁各修建一服务区P、Q,使P、A、B、Q组成的四边形的周长最小.并求出这个最小值.参考答案题型之一 利用方程、不等式进行方案设计1.(1)设该校大寝室每间住x 人,小寝室每间住y 人,则5550740,5055730x y x y +=⎧⎨+=⎩.解得8,6.x y =⎧⎨=⎩ 答:该校大寝室每间住8人,小寝室每间住6人. (2)设应安排小寝室z 间,则有 6z +8(80-z )≥630,解得z ≤5. ∵z 为自然数,∴z =0,1,2,3,4,5. 答:共有6种安排住宿方案.2.(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨、y 吨,根据题意,得210,211.x y x y +=⎧⎨+=⎩解得3,4x y =⎧⎨=⎩. 答:1辆A 型车和1辆B 型车都装满货物一次可分别运货3吨、4吨. (2)根据题意可得3a +4b =31.因为租车数a ,b 都是自然数,使a ,b 都为整数的情况共有a =1,b =7或a =5,b =4或a =9,b =1三种情况. 故租车方案分别为: ①A 型车1辆,B 型车7辆; ②A 型车5辆,B 型车4辆; ③A 型车9辆,B 型车1辆.(3)方案①花费为100×1+120×7=940(元); 方案②花费为100×5+120×4=980(元); 方案③花费为100×9+120×1=1 020(元).故方案①最省钱,即租用A 型车1辆,B 型车7辆. 3.(1)y =15-2x ;(2)设笔记本和中性笔两种奖品各a ,b 件, 则a ≥1,b ≥1,2a +b =15.当a =1时,b =13;当a =2时,b =11;当a =3时,b =9;当a =4时,b =7;当a =5时,b =5;当a =6时,b =3;当a =7时,b =1.故有7种购买方案;(3)买到的笔记本和中性笔数量相等的购买方案有1种,共有7种购买方案.∵1÷7=17,∴买到的笔记本和中性笔数量相等的概率为17. 题型之二 利用函数进行方案设计1.(1)由题意得,y 1=4x +400,y 2=2x +820.(2)当y 1=y 2时,4x +400=2x +820.解得x =210.∴当运输路程小于210 km 时,y 1<y 2,选择邮车运输较好;当运输路程等于210 km 时,y 1=y 2,选择两种方式一样;当运输路程大于210 km 时,y 1>y 2,选择火车运输较好.2.(1)设购甲种树苗x 株,乙种树苗y 株,则1 000,253028 000x y x y +=⎧⎨+=⎩.解得400,600x y =⎧⎨=⎩.答:购甲种树苗400株,乙种树苗600株.(2)设购买甲种树苗z 株,则乙种树苗(1 000-z )株,列不等式:90%z +95%(1 000-z )≥92%×1 000,解得z ≤600.答:甲种树苗至多购买600株.(3)设购买树苗的总费用为w 元,则w =25z +30(1 000-z )=-5z +30 000.∵-5<0,∴w 随z 的增大而减小.∵0<z ≤600,∴当z =600时,w 最小值为30 000-5×600=27 000(元).答:当购甲种树苗600株,乙种树苗400株时,总费用最低,最低费用是27 000元.3.设有x (x >0)名教师到外地进行学习,甲宾馆费用为y 甲,乙宾馆费用为y 乙,当x >45时,由题意,得y 甲=120×35+(x -35)×120×90%=108x +420;y 乙=120×45+(x -45)×120×80%=96x +1 080.分三种情况:①当y 甲>y 乙时,108x +420>96x +1 080.解得x >55;②当y 甲=y 乙时,108x +420=96x +1 080.解得x =55;③当y 甲<y 乙时,108x +420<96x +1 080.解得45<x <55.当x≤45时,又分两种情况:①当0<x≤35时,y甲=y乙=120x;②当35<x≤45时,y甲=108x+420,y乙=120x.此时y甲<y乙.综上所述当人数大于55人时选乙宾馆,当人数大于0小于等于35人或等于55人时甲乙宾馆均可,当人数大于35人小于55人时选甲宾馆.4.(1)根据题意,得90 m =753m,解得m=18.经检验,m=18是所列方程的解,且符合题意.答:m的值为18.(2)由(1)可知,A型号的污水处理设备每台18万元,B型号的污水处理设备每台15万元. 设购买A型号的污水处理设备x台,则18x+15(10-x)≤165,解得x≤5.又∵0<x<10,且x为整数,∴x可取0,1,2,3,4,5,即共有6种购买方案.设某种方案每月能处理的污水量为w吨,则w=220x+180(10-x)=40x+1 800.∵w随x的增大而增大,∴当x=5时,w有最大值,其最大值为2 000.即购买A型号、B型号的污水处理设备分别为5台、5台时,月处理的污水量最多,为2 000吨.题型之三图形问题中的方案设计1.方案(1):画法1(如图甲):①过F作FH∥AB交AD于点H.②在DC上任取一点G,连接EF,FG,GH,HE,则四边形EFGH就是所要画的四边形.画法2(如图乙):①过F作FH∥AB交AD于点H.②过E作EG∥AD交DC于点G,连接EF、FG、GH、HE,则四边形EFGH就是所要画的四边形.画法3(如图丙):①在AD上取一点H,使DH=CF.②在CD上任取一点G,连接EF,FG,GH,HE,则四边形EFGH就是所要画的四边形.方案(2):画法(如图2):①过M点作MP∥AB交AD于点P.②在CD上取一点N,连接MN.③过点P作PQ∥MN交AB于点Q,连接QM,PN.则四边形QMNP就是所要画的四边形.2.所作菱形如图1,图2所示.说明:作法相同的图形视为同一种.例如:类似图3,4的图形视为与图2是同一种.题型之四测量问题中的方案设计1.(1)在Rt△BAC中,∠ACB=68°,AC=100米,∴AB=AC·tan68°≈100×2.48=248(米).答:所测之处江的宽度约为248米.(2)可以利用三角形全等、三角形相似、解直角三角形的知识来解决问题的,只要正确即可. 如:方案2,如图2,测量员从A点开始沿岸边向正东方向前进到E处,再从E点开始向点E的正南方向上插上标杆F,并在线段AE的中点C处插上标杆C,当标杆B,C,F在同一直线上时,直接测出EF的长也就是江的宽度.2.(1)图1中过B作BC⊥x于C,过A作AD⊥BC于D,则BC=40.又∵AP=10,∴BD=BC-CD=40-10=30.由勾股定理可得AD=40.在Rt△PBC中,BPs1km.图2中,过B作BC⊥AA′,垂足为C,AA′与直线x交于点N,则A′C=NC+NA′=NC+AN=50,又AC=CN-AN=40-10=30,AB=50,则在Rt△BCA中,BC=40,∴BA由轴对称知:P A=P A′,∴s2=P A+PB=P A′+PB=BA km.∴s1>s2.(2)如图2,在公路上任找一点M,连接MA,MB,MA′,由轴对称知MA=MA′,∴MB+MA=MB+MA′>A′B,∴s2=BA′=P A+P A为最小.(3)如图3过A作关于x轴的对称点A′,过B作关于y轴的对称点B′,连接A′B′,交x轴于点P,交y轴于点Q,则P,Q即为所求.过A′、B′分别作x轴、y轴的平行线交于点G,B′G=40+10=50,A′G=30+30+40=100,A′B∴AB+AP+BQ+QP=AB+A′P+PQ+B′Q,∴所求四边形的周长为(km.。
中考数学方案设计专题训练.doc
M E N C A 中考数学方案设计专题训练1、请将四个全等的直角梯形(如图)拼成一个平行四边形,并画出两种不同的拼法示意图(拼出的两个图形只要不全等就认为是不同的拼法)2、(甘肃)现需测量一井盖(圆形)的直径,但只有一把角尺(尺的两边.互相垂直,一边有刻度,且两边长度都长于井盖半径).请配合图形、文字说 明测量方案,写出测量的步骤(要求写出两种测量方案).3、如图6,A 、B 两点被池塘隔开,为测量AB 两点的距离,在AB 外选一点C ,连结AC 和BC ,并分别找出AC 和BC 的中点M 、N ,如果测得MN =20m ,那么AB =2×20m =40m 。
(1) 测AB 距离也可由图7所示用三角形相似知识来解决,请根据题意填空:延长AC 到D ,使CD =12AC ,延长BC 到E ,使CE =________,则由相似三角形得,AB=_______. (2) 测AB 距离还可由三角形全等的知识来设计测量方案,求出AB 的长,请用上面类似的方法,在图8中画出图形,并叙述你的测量方案。
4、(本题满分6分)在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下的方案(如图1所示):(1) 在测点A 处安置测倾器,测得旗杆顶部M 的仰角∠MCE =α ;(2) 量出测点A 到旗杆底部N 的水平距离AN =m;(3) 量出测倾器的高度AC =h 。
根据上述测量数据,即可求出旗杆的高度MN 。
如果测量工具不变,请仿照上述过程,设计一个测量某小山高度(如图2)的方案:1) 在图2中,画出你测量小山高度MN 的示意图(标上适当的字母)2)写出你的设计方案。
图6 C A B N M C A B D E 图7 C A B 图85、(陕西)在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.⑴请根据下列图形,填写表中空格:⑵如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?⑶从正三角形、正四边形、正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.6、(烟台)(1)四年一度的国际数学家大会于2002年8月20日在北京召开.大会会标如图甲.它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5.求中间小正方形的面积.(2)现有一张长为6.5cm、宽为2cm的纸片,如图,请你将它分割成6块,再拼合成一个正方形.(要求:先在图乙中画出分割线,再画出拼成的正方形并标明相应数据)7、两人邀去某风景区游玩, 每天某一时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度, 也不知道汽车开过来的顺序. 两人采用了不同的乘车方案:甲无论如何总是上开来的第一辆车. 而乙则是先观察后上车, 当第一辆车开来时, 他不上车, 而是子痫观察车的舒适状况, 如果第二辆车的舒适程度比第一辆好, 他就上第二辆车; 如果第二辆车不比第一辆好, 他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等, 请尝试着解决下面的问题:(1) 三辆车按出现的先后顺序工有哪几种不同的可能?(2) 你认为甲、乙采用的方案, 哪一种方案使自己..乘上等车的可能性大? 为什么?8、(生产方案的设计)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品,共50件。
中考数学专题————方案设计问题
每台甲型收割机的租金每台甲型收割机的租金 每台乙型收割机的租金每台乙型收割机的租金 A 地区地区 1800元 1600元 B 地区地区 1600元 1200元 A x
甲 乙
价格(万元/台)台)
7 5 每台日产量(个)每台日产量(个)
100 60 问题:问题: 脐 橙 品 种
A B C 每辆汽车运载量
(吨)(吨) 6 5 4 每吨脐橙获得(百
元)元)
12
16
10
类别电视机洗衣机进价(元/台)1800 1500 售价(元/台)2000 1600
甲种货车乙种货车方案一2辆6辆方案二3辆5辆方案三4辆4辆
A种水果
(亩)18 19 20
B种水果(亩)32 31 30
利润(万元)11.8 11.9 12
是
60 20 4 批发单价(元)批发单价(元) 5 批发量(kg )
① ②
6 2 40 日最高销量(kg ) 80 零售价(元)零售价(元) 4 8 (6,80) (7,40)
函数关系式;在下图的坐标系中画出该函数图象;指出金额在什
么范围内,以同样的资金可以批发到较多数量的该种水果.
经调查,某经销商销售该种水果的日最高销量与零售价 320
40
=
(40
40
-金额(元)(元) 批发量(kg 300 200 100 20 40 60。
中考数学复习《方案设计问题》综合练习-人教版初中九年级全册数学试题
《方案设计问题》1、(2016•某某)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.2、(2016•某某)为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:运费(元/台)港口甲库乙库A港14 20B港10 8(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值X围;(2)求出最低费用,并说明费用最低时的调配方案.3、(2016•湘西州)某商店购进甲乙两种商品,甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同.(1)求甲、乙每个商品的进货单价;(2)若甲、乙两种商品共进货100件,要求两种商品的进货总价不高于9000元,同时甲商品按进价提高10%后的价格销售,乙商品按进价提高25%后的价格销售,两种商品全部售完后的销售总额不低于10480元,问有哪几种进货方案?(3)在条件(2)下,并且不再考虑其他因素,若甲乙两种商品全部售完,哪种方案利润最大?最大利润是多少?4、(2016•某某)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?5、(2016•某某)荔枝是某某的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.6、(2016•某某)倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?7、(2016•龙东)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A钟品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A 品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?8、(2016•某某)(列方程(组)及不等式解应用题)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.9、(2016•某某)公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元(1)设租用甲种货车x辆(x为非负整数),试填写表格.表一:租用甲种货车的数量/辆 3 7 x租用的甲种货车最多运送机器的数量/台135 ________ ________租用的乙种货车最多运送机器的数量/台150 ________ ________表二:租用甲种货车的数量/辆3 7 x租用甲种货车的费用/元________ 2800 ________租用乙种货车的费用/元________ 280 ________(2)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.10、(2016•某某)为了提高身体素质,有些人选择到专业的健身中心锻炼身体,某健身中心的消费方式如下:普通消费:35元/次;白金卡消费:购卡280元/X,凭卡免费消费10次再送2次;钻石卡消费:购卡560元/X,凭卡每次消费不再收费.以上消费卡使用年限均为一年,每位顾客只能购买一X卡,且只限本人使用.(1)李叔叔每年去该健身中心健身6次,他应选择哪种消费方式更合算?(2)设一年内去该健身中心健身x次(x为正整数),所需总费用为y元,请分别写出选择普通消费和白金卡消费的y与x的函数关系式;(3)王阿姨每年去该健身中心健身至少18次,请通过计算帮助王阿姨选择最合算的消费方式.11、(2016•黔西南州)我州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元,相关资料表明:甲、乙两种鱼苗的成活率为80%,90%(1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条?(2)若要使这批鱼苗的总成活率不低于85%,则乙种鱼苗至少购买多少条?(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?12、(2016•某某)小丽购买学习用品的收据如表,因污损导致部分数据无法识别,根据下表,解决下列问题:(1)小丽买了自动铅笔、记号笔各几支?(2)若小丽再次购买软皮笔记本和自动铅笔两种文具,共花费15元,则有哪几种不同的购买方案?商品名单价(元)数量(个)金额(元)签字笔 3 2 6自动铅笔●●记号笔 4 ●●软皮笔记本● 2 9圆规 1 ●合计8 2813、(2015•潜江)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学策划了A,B两种上网学习的月收费方式:收费方式月使用费/元包时上网时间/h超时费/(元/min)A 7 25B m n设每月上网学习时间为x小时,方案A,B的收费金额分别为y A, y B.(1)如图是y B与x之间函数关系的图象,请根据图象填空:m=________ n=________(2)写出与x之间的函数关系式.(3)选择哪种方式上网学习合算,为什么?14、(2015•某某)在学习概率的课堂上,老师提出问题:只有一X电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2、3、4、5四X牌背面向上,小明先抽一X,小刚从剩下的三X牌中抽一X,若两X牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三X牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)15、(2015•某某)新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数关系式;(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.16、(2015•鄂尔多斯)某足球协会举办了一次足球联赛,其记分规定及奖励方案如下表:胜一场平一场负一场积分 3 1 0奖金(元/人) 1300 500 0当比赛进行到第11轮结束(每队均须比赛11场)时,A队共积17分,每赛一场,每名参赛队员均得出场费300元.设A队其中一名参赛队员所得的奖金与出场费的和为w(元).(1)试说明w是否能等于11400元.(2)通过计算,判断A队胜、平、负各几场,并说明w可能的最大值.17、(2016•某某)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买50元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克________元;(2)求y1、y2与x的函数表达式;(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的X围.18、(2016•某某)课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为时,透光面积最大值约为2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.19、(2016•宿迁)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值X围.答案【答案】1.(1)解:设直拍球拍每副x元,横拍球每副y元,由题意得,,解得,,答:直拍球拍每副220元,横拍球每副260元(2)解:设购买直拍球拍m副,则购买横拍球(40﹣m)副,由题意得,m≤3(40﹣m),解得,m≤30,设买40副球拍所需的费用为w,则w=(220+20)m+(260+20)(40﹣m)=﹣40m+11200,∵﹣40<0,∴w随m的增大而减小,∴当m=30时,w取最大值,最大值为﹣40×30+11200=10000(元).答:购买直拍球拍30副,则购买横拍球10副时,费用最少2.【答案】(1)解:设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(80﹣x)吨,从乙仓库运往A港口的有(100﹣x)吨,运往B港口的有50﹣(80﹣x)=(x﹣30)吨,所以y=14x+20(100﹣x)+10(80﹣x)+8(x﹣30)=﹣8x+2560,x的取值X围是30≤x≤80(2)解:由(1)得y=﹣8x+2560y随x增大而减少,所以当x=80时总运费最小,当x=80时,y=﹣8×80+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口3.【答案】(1)解:设甲每个商品的进货单价是x元,每个乙商品的进货单价是y元.根据题意得:,解得:,答:甲商品的单价是每件100元,乙每件80元(2)解:设甲进货x件,乙进货(100﹣x)件.根据题意得:,解得:48≤x≤50.又∵x是正整数,则x的正整数值是48或49或50,则有3种进货方案(3)解:销售的利润w=100×10%x+80(100﹣x)×25%,即w=2000﹣10x,则当x取得最小值48时,w取得最大值,是2000﹣10×48=1520(元).此时,乙进的件数是100﹣48=52(件).答:当甲进48件,乙进52件时,最大的利润是1520元4.【答案】(1)解:由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3.(2)解:①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<;令y甲=y乙,即22x=16x+3,解得:x= ;令y甲>y乙,即22x>16x+3,解得:<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:0<x<4.综上可知:当<x<4时,选乙快递公司省钱;当x=4或x= 时,选甲、乙两家快递公司快递费一样多;当0<x<或x>4时,选甲快递公司省钱.5.【答案】(1)解:设桂味的售价为每千克x元,糯米糍的售价为每千克y元;根据题意得:,解得:;答:桂味的售价为每千克15元,糯米糍的售价为每千克20元.(2)解:设购买桂味t千克,总费用为W元,则购买糯米糍(12﹣t)千克,根据题意得:12﹣t≥2t,∴t≤4,∵W=15t+20(12﹣t)=﹣5t+240,k=﹣5<0,∴W随t的增大而减小,∴当t=4时,W的最小值=220(元),此时12﹣4=8;答:购买桂味4千克,糯米糍8千克时,所需总费用最低.6、【答案】(1)解:设购买A种型号健身器材x套,B型器材健身器材y套,根据题意,得:,解得:,答:购买A种型号健身器材20套,B型器材健身器材30套(2)解:设购买A型号健身器材m套,根据题意,得:310m+460(50﹣m)≤18000,解得:m≥33 ,∵m为整数,∴m的最小值为34,答:A种型号健身器材至少要购买34套7.【答案】(1)解:设A种品牌足球的单价为x元,B种品牌足球的单价为y元,依题意得:,解得:.答:购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元.(2)解:设第二次购买A种足球m个,则购买B中足球(50﹣m)个,依题意得:,解得:25≤m≤27.故这次学校购买足球有三种方案:方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球27个,B种足球23个.(3)解:∵第二次购买足球时,A种足球单价为50+4=54(元),B种足球单价为80×0.9=72(元),∴当购买方案中B种足球最多时,费用最高,即方案一花钱最多.∴25×54+25×72=3150(元).答:学校在第二次购买活动中最多需要3150元资金.8.【答案】(1)解:设甲种商品每件的进价为x元,乙种商品每件的进价为y元,依题意得:,解得:,答:甲种商品每件的进价为30元,乙种商品每件的进价为70元.(2)解:设该商场购进甲种商品m件,则购进乙种商品(100﹣m)件,由已知得:m≥4(100﹣m),解得:m≥80.设卖完A、B两种商品商场的利润为w,则w=(40﹣30)m+(90﹣70)(100﹣m)=﹣10m+2000,∴当m=80时,w取最大值,最大利润为1200元.故该商场获利最大的进货方案为甲商品购进80件、乙商品购进20件,最大利润为1200元.9.【答案】(1)315;45x;30;﹣30x+240;1200;400x;1400;﹣280x+2240(2)解:能完成此项运送任务的最节省费用的租车方案是甲车6辆,乙车2辆,理由:当租用甲种货车x辆时,设两种货车的总费用为y元,则两种货车的总费用为:y=400x+(﹣280x+2240)=120x+2240,又∵45x+(﹣30x+240)≥330,解得x≥6,∵120>0,∴在函数y=120x+2240中,y随x的增大而增大,∴当x=6时,y取得最小值,即能完成此项运送任务的最节省费用的租车方案是甲种货车6辆,乙种货车2辆.10【答案】(1)解:35×6=210(元),210<280<560,∴李叔叔选择普通消费方式更合算(2)解:根据题意得:y普通=35x.当x≤12时,y白金卡=280;当x>12时,y白金卡=280+35(x﹣12)=35x﹣140.∴y白金卡=(3)解:当x=18时,y普通=35×18=630;y白金卡=35×18﹣140=490;令y白金卡=560,即35x﹣140=560,解得:x=20.当18≤x≤19时,选择白金卡消费最合算;当x=20时,选择白金卡消费和钻石卡消费费用相同;当x≥21时,选择钻石卡消费最合算11【答案】(1)解:设购买甲种鱼苗x条,乙种鱼苗y条,根据题意得:,解得:,答:购买甲种鱼苗350条,乙种鱼苗250条(2)解:设购买乙种鱼苗m条,则购买甲种鱼苗(600﹣m)条,根据题意得:90%m+80%(600﹣m)≥85%×600,解得:m≥300,答:购买乙种鱼苗至少300条(3)解:设购买鱼苗的总费用为w元,则w=20m+16(600﹣m)=4m+9600,∵4>0,∴w随m的增大而增大,又∵m≥300,∴当m=300时,w取最小值,w最小值=4×300+9600=10800(元).答:当购买甲种鱼苗300条,乙种鱼苗300条时,总费用最低,最低费用为10800元12【答案】(1)解:设小丽购买自动铅笔x支,记号笔y支,根据题意可得:,解得:,答:小丽购买自动铅笔1支,记号笔2支(2)解:设小丽购买软皮笔记本m本,自动铅笔n支,根据题意可得:m+1.5n=15,∵m,n为正整数,∴ 或或,答:共3种方案:1本软皮笔记本与7支记号笔;2本软皮笔记本与4支记号笔;3本软皮笔记本与1支记号笔13【答案】(1)10;50(2)解:y A与x之间的函数关系式为:当x≤25时,y A=7,当x>25时,y A=7+(x﹣25)×60×0.01,∴y A=0.6x﹣8,∴y A=;(3)解:∵y B与x之间函数关系为:当x≤50时,y B=10,当x>50时,y B=10+(x﹣50)×60×0.01=0.6x﹣20,当0<x≤25时,y A=7,y B=50,∴y A<y B,∴选择A方式上网学习合算,当25<x≤50时.y A=y B,即0.6x﹣8=10,解得;x=30,∴当25<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当30<x≤50,y A>y B,选择B方式上网学习合算,当x>50时,∵y A=0.6x﹣8,y B=0.6x﹣20,y A>y B,∴选择B方式上网学习合算,综上所述:当0<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当x>30时,y A>y B,选择B方式上网学习合算.14【答案】(1)解:甲同学的方案不公平.理由如下:列表法,小明2 3 4 5小刚2 (2,3)(2,4)(2,5)3 (3,2)(3,4)(3,5)4 (4,2)(4,3)(4,5)5 (5,2)(5,3)(5,4)所有可能出现的结果共有12种,其中抽出的牌面上的数字之和为奇数的有:8种,故小明获胜的概率为:,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平;(2)解:不公平.理由如下:小明2 3 4小刚2 (2,3)(2,4)3 (3,2)(3,4)4 (4,2)(4,3)所有可能出现的结果共有6种,其中抽出的牌面上的数字之和为奇数的有:4种,故小明获胜的概率为:,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平.15【答案】(1)解:当1≤x≤8时,每平方米的售价应为:y=4000﹣(8﹣x)×30=30x+3760(元/平方米)当9≤x≤23时,每平方米的售价应为:y=4000+(x﹣8)×50=50x+3600(元/平方米).∴y=(2)解:第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),按照方案一所交房款为:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),按照方案二所交房款为:W2=4400×120×(1﹣10%)=475200(元),当W1>W2时,即485760﹣a>475200,解得:0<a<10560,当W1<W2时,即485760﹣a<475200,解得:a>10560,∴当0<a<10560时,方案二合算;当a>10560时,方案一合算.16【答案】(1)解:设A队胜x场,平y场由题意得:,解得:.因为x+y=2+11=13,即胜2场,平11场与总共比赛11场不符,故w不能等于11400元.(2)解:由3x+y=17,得y=17﹣3x所以只能有下三种情况:①当x=3时,y=8,即胜3场,平8场,负0场;②当x=4时,y=5,即胜4场,平5场,负2场;③当x=5时,y=2,即胜5场,平2场,负4场.又w=1300x+500y+3300将y=17﹣3x代入得:w=﹣200x+11800因为k=-200<0,所以y随x的增大而减小.所以,当x=3时,w最大=﹣200×3+11800=11200(元)17【答案】(1)30(2)解:由题意y1=18x+50,y2=(3)解:函数y1的图象如图所示,由解得,所以点F坐标(,125),由解得,所以点E坐标(,650).由图象可知甲采摘园所需总费用较少时<x<.18【答案】(1)解:由已知可得:AD= = ,则S=1× = m2,(2)解:设AB=xm,则AD=3﹣m,∵ ,∴ ,设窗户面积为S,由已知得:,当x= m时,且x= m在的X围内,,∴与课本中的例题比较,现在窗户透光面积的最大值变大.19【答案】(1)解:y= .(2)解:由(1)可知当0<x≤30或m<x<100,函数值y都是随着x是增加而增加,当30<x≤m时,y=﹣x2+150x=﹣(x﹣75)2+5625,∵a=﹣1<0,∴x≤75时,y随着x增加而增加,∴为了让收取的总费用随着团队中人数的增加而增加,∴30<m≤75。
中考数学方案设计专题
中考方案设计专题八、方案设计一(10)1.(原创)丹江中学在商场购买甲、乙两种足球,用2000元购买甲种足球的数量等于用1400元购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.请解答下列问题:(1)求购买一个甲种足球、一个乙种足球各需要多少钱?(2)为响应习总书记“足球进校园”的号召,学校决定购买50个足球,此次购买甲、乙两种足球总费用超过3000元,且甲种足球最少买19个,求学校共有几种购买方案?(3)在(2)的条件下,学校又同时购买了甲、乙两种足球共6个,学校把全部足球平均分给7个足球队.每队分得两种足球数量分别相等,且每队甲种足球超过3个.直接写出这6个足球的购买方案.解:(1)设购买一个甲种足球需要x 元,一个乙种足球需要(x +20)元.则20214002000+×=x x . 解得x =50 , x +20=70,经检验x =50是原分式方程的解.答:购买一个甲种足球需要50元,一个乙种足球需要70元.(2)设学校购买甲种足球m 个,则购买乙种足球(50-m )个.50m+70(50-m)>3000解得 m <25, ∴19≤m <25.∴m 的整数值为19、20、21、22、23、24.∴学校共有6种购买方案.(3)购买甲种足球4个,乙种足球2个;购买甲种足球5个,乙种足球1个.2.(原创)某商场销售A ,B 两种商品,售出1件A 种商品比售出1件B 种商品所得利润多100元,售出A 种商品获利30000元的件数是售出B 种商品利20000元的件数的43. (1)求每件A 种商品和每件B 种商品售出后所得利润分别为多少元; (2)由于需求量大,A 、B 两种商品很快售完,商场决定再一次购进A 、B 两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,且A 种商品至多购进8件,求商场有哪几种购进方案;(3)在(2)的条件下,若每件A 种商品售价500元,每件B 种商品售价220元,用(2)中获得的最大利润全部用于再购进A,B两种商品,直接写出再次进货售出后所获得的利润.解:(1)设每件A种商品售出后所得利润为x元,则每件B种商品售出后所得利润为(x-100)元.由题意,得3000032000041x x=-,解得x=200 , x-100=100,经检验x=200是原分式方程的解.答:每件A种商品售出后所得利润为200元,每件B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:6≤a≤8,∴a的整数值为6、7、8,∴34-a=28,27,26.∴商场有三种购进方案:方案一:购进A种商品6件,B种商品28件;方案二:购进A种商品7件,B种商品27件;方案三:购进A种商品8件,B种商品26件.(3)300元.3.(原创)“一带一路”的战略构想为国内许多企业的发展带来了新的机遇.某公司生产A,B两种机械设备,每台B种设备的成本是A种设备的1.5倍.公司若投入16万元生产A种设备,36万元生产B 种设备,则可生产两种设备共10台.请解答下列问题:(1)A,B两种设备每台的成本分别是多少万元;(2)若A,B两种设备每台的售价分别是6万元、10万元,公司决定生产两种设备共60台,计划销售后获利不低于126万元,且A种设备至少生产53台.求该公司有几种生产方案;(3)在(2)的条件下,销售前公司决定从这批设备中拿出一部分,赠送给“一带一路”沿线的甲国,剩余设备全部售出,公司仍获利44万元.赠送的设备采用水路运输和航空运输两种方式,共运输4次,水路运输每次运4台A种设备,航空运输每次运2台B种最备(运输过程中产生的费用由甲国承担).直接写出水路运输的次数.(3)水路运输2次.4.(原创题)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?(3)在(2)的条件下,若甲种玩具每件售价40元,乙种玩具每件售价55元,商场为扩大销量,推出“买一赠一”活动,顾客从这两种玩具中任购一件,就可以从两种玩具任选一件作为赠品,这批玩具全部售出后,共获利280元.直接写出(2)问中商场的进货方案.解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,x=15,经检验x=15是原方程的解.∴40﹣x=25.∴甲,乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,解得20≤y<24.因为y是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.(3)购进甲种玩具23件,则购进乙种玩具25件.5.(原创题)朱彤同学准备购买笔和本子送给农村希望小学的同学.在某文具店了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和这种本子的单价;(2)朱彤同学打算用自己的100元压岁钱在该文具店购买这种笔和这种本子,计划100元钱刚好用完,并且笔和本子都要买,请列出所有购买的方案.(3)在(2)条件下,文具店店主了解到朱彤同学购买笔和本子要送给农村希望小学的同学,于是就又赠送给朱彤同学笔和本子共7件,这样朱彤同学购买的笔相当于打8折,购买的本子相当于打6.25折,直接写出(2)问中的购买方案.(3)购买4支笔,10个本子.6.(原创题)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2015年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)求城区实际绿化总面积新增y 万平方米与绿化时间x 年之间的函数解析式(不需要写出自变量的取值范围);(3)为加大创城力度,市政府决定从2017年起加快绿化速度,要求不超过2年完成,平均每年绿化面积增加不超过74万平方米,那么实际平均每年绿化面积要增加多少万平方米?(结果以“万平方米”为单位,且为整数)解:(1)设原计划每年绿化面积为x 万平方米,则实际每年绿化面积为1.6x 万平方米,根据题意,得﹣=4解得:x=33.75,经检验x=33.75是原分式方程的解,则1.6x=1.6×33.75=54(万平方米).答:实际每年绿化面积为54万平方米;(2)y=54x(3)设平均每年绿化面积增加a 万平方米,根据题意得54×2+2(54+a )≥360 解得:72≤a ≤74.∴a 的整数值为72、73、74.∴每年平均增加72、73、74万平方米.7.(改编题)某校为了更好地开展球类运动,体育组决定购进一批足球、篮球,若用2400元购进篮球的数量比购进足球的数量少10个,并且足球的单价是篮球单价的43.请解答下列问题: (1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元购进两种球共50个,求出有哪几种购买方案?(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在这次购买方案中,哪种方案商家获利最多?解:(1)设篮球的单价为x 元,则足球的单价为x 43元.根据题意,得 102400432400+=x x , 解得,x=80, 经检验x=80是原分式方程的解,答:篮球和足球的单价分别为80元和60元.(2)设再次购买足球 m 个,则篮球(50-m )个.根据题意,得 ()()⎩⎨⎧≤-+≥-+.,32405080603200508060m m m m 解得,4038≤≤m ,且m 为正整数.∴m 可以取38,39或40.∴ 有三种方案:方案一:购买足球40个,篮球10个;方案二:购买足球39个,篮球11个;方案三:购买足球38个,篮球12个.(3)设购买足球m 个,篮球(50-m )个时,总利润为W 元.W=(60-50)m + (80-65)(50-m )= -5m +750.∵-5<0 ,∴W 随m 的增大而减小,当m =38时W 最大.∴购买足球38个,篮球12个时,商家获利最多.8.(改编题)夏季来临,商场准备购进甲、乙两种空调.已知甲种空调每台进价比乙种空调多500元,用80000元购进甲种空调的数量与用60000元购进乙种空调的数量相同.请解答下列问题:(1)求甲、乙两种空调每台的进价;(2)若甲种空调每台售价2500元,乙种空调每台售价1800元,商场欲同时购进两种 空调20台,且全部售出,请写出所获利润y (元)与甲种空调x (台)之间的函数关系式;(3)在(2)的条件下,若商场计划用不超过36000元购进空调,且甲种空调至少购进10台,并将所获得的最大利润全部用于为某敬老院购买1100元/台的A 型按摩器和700元/台的B 型按摩器.直接写出购买按摩器的方案.解:(1)设甲种空调每台进价x 元,则乙种空调每台进价(x -500)元.500-6000080000x x =, 解得x =2000经检验x =2000是原方程的解.∴x -500=1500.∴甲种空调每台进价2000元,乙种空调每台进价1500元.(2)y =200x +6000.(3)方案一:购买7台A 型按摩器,1台B 型按摩器;方案二:购买12台B 型按摩器.9.10.(原创)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元。
中考数学方案设计专项训练
读书破万卷下笔如有神中考数学方案设计专项训练AB两种型号的沼、为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造、1气池共20个,以解决该村所有农户的燃料问题•两种型号沼气池的占地面积、使用农户数及造价见下表:占地面积使用农户数造价型号2(单位:m/个)(单位:户/个)(单位:万元/个)A 15 18 2B 20 30 3492365m户.已知:可供建造沼气池的占地面积不超过(1)满足条件的方案共2,该村农户共有有几种?写岀解答过程.⑵通过计算判断,哪种建造方案最省钱.2、20XX年我国云南盈江发生地震,某地民政局迅速地组织了30吨饮用水和13吨粮食的救灾物资,准备租用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装饮用水5吨和粮食1吨,乙型货车每辆可装饮用水3吨和粮食2吨.已知可租用的甲种型号货车不超过4辆。
(1)若一共租用了9辆货车,且救灾物资一次性地运往灾区,共有哪几种运货方案?(2)若甲、乙两种货车的租车费用每辆分别为4000元、3500元,在(1)的方案中,哪种方案费用最低?最低是多少?(3)若甲、乙两种货车的租车费用不变,在保证救灾物资一次性运往灾区的情况下,还有没有费用更低的方案?若有,请直接写岀该方案和最低费用,若没有,说明理由。
(租车数量不限)、抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较3. 读书破万卷下笔如有神___________ ______________________强抗震功能的A、B两仓库。
已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨, B库的容量为110吨。
从甲、乙两库到A、B两库的路程和运费如下表(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)20 15 12 12 A 库25 20 10 8 B 库xx y (吨)的函数关系B两库的总运费库粮食(元)与吨,请写岀将粮食运往A、(1)若甲库运往A式(2)当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?4、20XX年4月28日,以“天人长安,创意自然............ 城市与自然和谐共生”为主题的世界园艺博览会在西安隆重开园,这次园艺会的门票分为个人票和团体票两大类,其中个人票设置有三种:某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中B种票得张数是A种票张数的3倍还多8张,设购买A种票张数为x,C种票张数为y(1 )、写岀y与x之间的函数关系式(2)、设购票总费用为W元,求岀W (元)与x (张)之间的函数关系式(3)、若每种票至少购买1张,其中购买A种票不少于20张,则有几种购票方案?并求岀购票总费用最少时,购买A,B,C三种票的张数。
中考数学方案设计试题分类汇编
中考数学方案设计试题分类汇编一、图案设计1、(2007四川乐山)认真观察图(10.1)的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征.特征1:_________________________________________________; 特征2:_________________________________________________.(2)请在图(10.2)中设计出你心中最美丽的图案,使它也具备你所写出的上述特征解:(1)特征1:都是轴对称图形;特征2:都是中心对称图形;特征3:这些图形的面积都等于4个单位面积;等 ····························· 6分 (2)满足条件的图形有很多,只要画正确一个,都可以得满分. ······· 9分2、(2007福建福州)为创建绿色校园,学校决定对一块正方形的空地进行种植花草,现向学生征集设计图案.图案要求只能用圆弧在正方形内加以设计,使正方形和所画的图弧构成的图案,既是轴对称图形又是中心对称图形.种植花草部分用阴影表示.请你在图③、图④、图⑤中画出三种不同的的设计图案.提示:在两个图案中,只有半径变化而圆心不变的图案属于同一种,例如:图①、图②只能算一种.解:以下为不同情形下的部分正确画法,答案不唯一.(满分8分)3、(2007哈尔滨)现将三张形状、大小完全相同的平行四边形透明纸片,分别放在方格纸中,方格纸中的每个小正方形的边长均为1,并且平行四边形纸片的每个顶点与小正方形的顶点重合(如图1、图2、图(10.1) 图(10.2) ① ② ③ ④ ⑤图3).分别在图1、图2、图3中,经过平行四边形纸片的任意一个顶点画一条裁剪线,沿此裁剪线将平行四边形纸片裁成两部分,并把这两部分重新拼成符合下列要求的几何图形.要求:(1)在左边的平行四边形纸片中画一条裁剪线,然后在右边相对应的方格纸中,按实际大小画出所拼成的符合要求的几何图形;(2)裁成的两部分在拼成几何图形时要互不重叠且不留空隙;(3)所画出的几何图形的各顶点必须与小正方形的顶点重合.解:二、代数式中的方案设计4、(2007辽宁大连)某班级为准备元旦联欢会,欲购买价格分别为2元、4元和10元的三种奖品,每种奖品至少购买一件,共买16件,恰好用50元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.[2013·齐齐哈尔] 假期到了,17 名女教师去外地培训,
住宿时 2 人间和 3 人间可供租住,每个房间都要住满,她们有
几种租住方案
(C )
A.5 种 B.4 种 C.3 种 D.2 种
第35讲┃ 方案设计题
[解析] 设住 3 人间的有 x 间,住 2 人间的有 y 间, 则 3x+2y=17, 因为 2y 是偶数,17 是奇数, 所以 3x 只能是奇数,即 x 必须是奇数, 当 x=1 时,y=7; 当 x=3 时,y=4; 当 x=5 时,y=1, 综合以上得知,共有 3 种租住方案,分别是: ①1 间住 3 人,7 间住 2 人; ②3 间住 3 人,4 间住 2 人; ③5 间住 3 人,1 间住 2 人. 故选 C.
(3)连接 OA,OB,OC.
3 个单位长度为半径作⊙O1,⊙O2.
则小圆 O 与三等份圆环把⊙O 的面积四等分 则⊙O1,⊙O2 和⊙O 中剩余的两部
分把⊙O 的面积四等分
指出对称性
轴对称图形
既是轴对称图形又是中心对称图形
第35讲┃ 方案设计题
探究二 测量方案Biblioteka 计例 2 一天,某校数学课外活动小组的同学们,带着皮尺 去测量某河道因挖沙形成的“圆锥形坑”的深度,来评估这 些深坑对河道的影响.如图 35-1 是同学们选择(确保测量过 程中无安全隐患)的测量对象,测量方案如下:
解:(1)由函数图象知 y 是 x 的一次函数, 设 y=kx+b(k≠0), ∵点(130,50),(150,30)在 y=kx+b 的图象上,
∴5300= =113500kk+ +bb, ,解得kb= =-1801,.
∴y 与 x 之间的函数解析式为 y=-x+180. (2)由题知 W=(x-100)y=(x-100)(-x+180)=-x2+ 280x-18000=-(x-140)2+1600. ∴每天的利润 W 与销售单价 x 之间的函数解析式为 W=-(x-140)2+1600(或 W=-x2+280x-18000). ∴将售价定为 140 元/件,可以保证每天获得的利润最大, 最大利润是 1600 元.
(3)由于 W=-(x-140)2+1600,二次函数图象开口向 下,有最大值,故当 x=140 时,有最大利润 1600 元.
第35讲┃ 方案设计题
【解题方法点析】 这类经济方案设计题一般都是利用一次函数、二次函数
或不等式解决问题.对于决策性问题,要注意利用分类讨论 法选择最佳方案.,
第35讲┃ 方案设计题
①先测量出沙坑坑沿圆周的周长约为 34.54 米; ②甲同学直立于沙坑坑沿圆周所在平面上,经过适当调 整自己所处的位置,当他位于点 B 时,恰好他的视线经过沙 坑坑沿圆周上的一点 A 看到坑底 S(甲同学的视线起点 C 与点 A,S 三点共线).经测量:AB=1.2 米,BC=1.6 米.
第35讲┃ 方案设计题
根据以上测量数据,求“圆锥形坑”的深度(圆锥的 高).(π取 3.14,结果精确到 0.1 米)
图 35-1 第35讲┃ 方案设计题
【例题分层探究】 (1)测量圆周的周长有什么目的? (2)甲同学的视线起点 C 与点 A,S 三点共线,这样做的
目的是什么?如何求“圆锥形坑”的深度?
(1)根据圆周的周长,可求圆的半径,为求“圆锥形坑” 的深度作准备.
(1)设学生人数为 x(人),付款总金额为 y(元),分别建立两种 优惠方案中 y 与 x 之间的函数解析式;
(2)请计算并确定出最节省费用的购票方案.
第35讲┃ 方案设计题
解:(1)设两种优惠方案的付款总金额分别为 y1,y2. 按方案 1 可得:y1=20×4+5×(x-4)=5x+60(x≥4); 按方案 2 可得:y2=(20×4+5x)×90%=4.5x+72(x≥4). (2)因为 y1-y2=0.5x-12(x≥4), ①当 y1-y2=0 时,得 0.5x-12=0,解得 x=24, 所以当购买 24 张学生票时,两种优惠方案一样省钱; ②当 y1-y2<0 时,得 0.5x-12<0,解得 4≤x<24, 所以当购买的学生票不少于 4 张且少于 24 张时,优惠方 案 1 更省钱; ③当 y1-y2>0 时,得 0.5x-12>0,解得 x>24, 所以当购买的学生票多于 24 张时,优惠方案 2 更省钱.
(2)请在图 35-5②中设计出一个具备上述特征的图案,
要求所画图案不能与图①中所给出的图案相同.
第35讲┃ 方案设计题
解:(1)中心 4 (2)如图所示(答案不唯一,只要符合题意即可).
第35讲┃ 方案设计题
5.[2014·绵阳] 绵州大剧院举行专场音乐会,成人票每张 20 元,学生票每张 5 元.暑假期间,为了丰富广大师生的业余 文化生活,剧院制定了两种优惠方案.方案 1:购买一张成人票 赠送一张学生票;方案 2:按总价的 90%付款.某校有 4 名老 师与若干名(不少于 4 人)学生听音乐会.
第35讲┃ 方案设计题
探究三 最优方案设计 例 3 [2013·南充] 某商场购进一种每件价格为 100 元的新
商品,经商场试销发现:销售单价 x(元/件)与每天销售量 y(件) 之间满足如图 35-2 所示的关系.
(1)求出 y 与 x 之间的函数解析式; (2)写出每天的利润 W 与销售单价 x 之间的函数解析式, 若你是商场负责人,会将售价定为多少,来保证每天获得的利 润最大,最大利润是多少?
图 35-4 第35讲┃ 方案设计题
[解析] 分直径在直角边 AC,BC 上和在斜边 AB 上三 种情况分别求出半圆的半径,然后作出图形即可.
解:根据勾股定理,得斜边 AB= 42+42=4 2. (1)如图①②,直径在直角边 BC 或 AC 上时, ∵半圆的弧与△ABC 的其他两边相切, ∴4r=44-r2,解得 r=4 2-4. (2)如图③,直径在斜边 AB 上时, ∵半圆的弧与△ABC 的其他两边相切, ∴4-4 r=4r,解得 r=2.
第35讲┃ 方案设计题
名称 方案 选用的 工具
四等分圆的面积 方案一
带刻度的三角板
方案二 方案三
画出示 意图
作⊙O 的两条互相垂
简述设 直的直径 AB,CD,将
计方案 ⊙O 的面积分成相等
的四部分
指出对 既是轴对称图形又是
称性
中心对称图形
第35讲┃ 方案设计题
【例题分层探究】 (1)半径为 3 cm 与半径为 6 cm 的圆的面积有什么数量关 系? (2)在同一个环形中,1°的圆心角所对的环形的面积与 整个环形面积有什么数量关系?
第35讲┃ 方案设计题
解: 方案 选用
的工具
方案二 带刻度的三角板、量角器、圆规
方案三 带刻度的三角板、圆规
画出 示意图
简述设 计方案
(1)作⊙O 的一条直径 AB;
(1)以点 O 为圆心,3 个单位长度为半径作圆;
(2)分别以 OA,OB 的中点为圆心,
(2)在大⊙O 上依次取三等分点 A,B,C;
解:取圆锥底面圆的圆心 O,连接 OS,OA, 则∠O=∠ABC=90°,OS∥BC, ∴∠ACB=∠ASO,∴△SOA∽△CBA, ∴BOCS=OBAA,∴OS=OAB·ABC. ∵OA=342.π54≈5.5,BC=1.6,AB=1.2, ∴OS=5.51×.21.6≈7.3(米). 答:“圆锥形坑”的深度约为 7.3 米.
第35讲┃ 方案设计题
┃考向互动探究┃ 探究一 图形方案设计
例 1 [2014·济宁] 在数学活动课上,王老师发给每位同学 一张半径为 6 个单位长度的圆形纸板,要求同学们:(1)从带 刻度的三角板、量角器和圆规三种作图工具中任意选取作图工 具,把圆形纸板分成面积相等的四部分;(2)设计的整个图案 是某种对称图形.王老师给出了方案一,请你用所学的知识再 设计两种方案,并完成下面的设计报告.
图 35-2 第35讲┃ 方案设计题
【例题分层探究】 (1)根据函数图象,此函数是什么函数?利用什么方法求 y 与 x 之间的函数解析式? (2)如何表示每件新商品的利润?每天的利润 W 与销售 单价 x 之间的函数解析式如何表示? (3)根据(2)中的函数解析式,如何确定售价,且保证利润 最大?
第35讲┃ 方案设计题
6.[2014·台州] 某公司经营杨梅业务,以 3 万元/吨的 价格向农户收购杨梅后,分拣成 A,B 两类,A 类杨梅包 装后直接销售,B 类杨梅深加工再销售.A 类杨梅的包装 成本为 1 万元/吨,根据市场调查,它的平均销售价格 y(单 位:万元/吨)与销售数量 x(x≥2)(单位:吨)之间的函数关 系如图 35-6,B 类杨梅深加工总费用 s(单位:万元)与加 工数量 t(单位:吨)之间的函数解析式是 s=12+3t,平均 销售价格为 9 万元/吨.
第35讲┃ 方案设计题
(1)从函数图象可看出,此函数是一次函数,且点(130, 50)和(150,30)都在函数图象上,故利用待定系数法可求一 次函数解析式.
(2)每件新商品的进货价为 100 元,售价为 x 元,故每件 新商品的利润为(x-100)元,故每天的利润 W=(x-100)y= (x-100)(-x+180).
第35讲 方案设计题
方案设计题可分为两类:(1)根据几何知识(图形的性质、 图形变换等)设计符合要求的几何图案,此类题目注重考查阅 读、观察、分析、判断、推理和研究问题、解决问题的能力, 以及把解题过程转化成研究的过程、探索和发现规律的过程 的能力;(2)根据代数知识(方程或方程组、不等式、函数等) 确定解决问题的方案以达到最优化.
第35讲┃ 方案设计题
3. [2013·广安] 雅安芦山发生 7.0 级地震后,某校师生 准备了一些等腰直角三角形纸片,从每张纸片中剪出一个半 圆制作玩具,寄给灾区的小朋友.如图 35-4 是腰长为 4 的 等腰直角三角形 ABC,要求剪出的半圆的直径在△ABC 的 边上,且半圆的弧与△ABC 的其他两边相切,请作出所有不 同方案的示意图,并求出相应半圆的半径(结果保留根号).