初一数学培优之规律探索
新初一规律探索题参考答案
前言:七年级上册数学期中考试,主要考察书本前2章,想要考试取得好的成绩,首先应一般能力:①基本知识、基本技能;②计算能力;其次要想获得高分必须具备高分能力:①观察、猜想、推理、验证的能力;②数形结合思想的建立;③分类讨论思想的建立;④方程思想的建立;对于重点中学学生,尤为重要。
高分能力是今后学习领先的有力保障,需要大量练习、总结、体会,七年级涉及的仅仅是一部分。
一、规律探索类题型规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形等条件,要求学生通过:①读题②观察③分析④猜想⑤验证,来探索对象的规律。
它体现了“特殊到一般”、“数形结合”等数学思想方法,考察学生的分析、解决问题能力。
题型可涉及填空、选择或解答。
【题型分类】【1、数字问题】最好具备数列的有关知识(小学奥数有涉及),实际考察的是:经历探索事物间的数量关系,用字母表示数和代数式表示的过程,建立初步的符号感,发展抽象思维,进一步使学生体会到代数式是刻画现实世界的有效数学模型。
如:1、正整数规律1、2、3、4、5、、、、可以表示为n (其中n 为正整数)2、奇数规律1、3、5、7、9、、、、可以表示为21n -(其中n 为正整数)3、偶数规律2、4、6、8、10、、、、可以表示为2n (其中n 为正整数)4、正、负交替规律变化一组数,不看他们的绝对值,只看其性质,为正负交替(1)、-、+、-、+、-、+、-、+可以表示为(1)n -(2)、+、-、+、-、+、-、+、-可以表示为1(1)n +-5、平方数规律1、4、9、16、、、、可以表示为2n (其中n 为正整数),能看得出:上面的规律数+1、+2、-1、-26、等差数列常识按一定次序排列的一列数就叫数列。
例如:(1)1,2,3,4,5,6,…(2)1,2,4,8,16,32;A 、一个数列中从左至右的第n 个数,称为这个数列的第n 项。
7初一上数学培优第七讲 探索规律题的解题技巧
第七讲 探索规律题的解题技巧 (1)初中数学规律主要有数式规律、图形规律、自定义运算规律、剪纸问题和对称旋转规律等。
一、数式规律:指给定一些数字、代数式、等式、图形的个数等,然后猜想其中蕴含的规律。
一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。
解决此类问题注意以下两点:1.一般地,常用字母n 代表正整数,从1开始找出数字和序列数间的规律;2.在数据中,分清奇偶,熟记常用的规律。
①正整数规律:用数字表示1,2,3,……;用字母表示为n.练习:(1)-1,-2,-3,……, (2) 0,1,2,3,……, (3)3,4,5,6,……, (4)-1,2,-3,4,……, ②偶数规律:2,4,6,……;用字母表示为2n.③奇数规律:1,3,5,……;用字母表示为2n-1. 1.成倍数关系或成倍数有相同余数 ④3的倍数:3,6,9,……;用字母表示为3n. 均适用。
⑤4的倍数:4,8,12,……;用字母表示为4n. 2.要注意负号的表示方法。
练习:(1) 3,5,7,9,……, (2)4,7,10,13,……, (3) -1,4,9,14,……, (4)5,3,1,-1,……, (5) -1,3,-5,7,……, 总结:像以上间隔相等的数列可用倍数规律。
⑥平方规律:用数学表示1,4,9,16,……;用字母表示为n 2. ⑦立方规律:用数学表示1,8,27,64,……;用字母表示为n 3.练习:(1) 2,5,10,17,……, (2)0,3,8,15,……, (3)3,6,11,18,……, (4)0,7,26,63,……, 总结:诸如间隔为 的数列可用平方规律。
⑧ 其他规律:2的乘方——1,2,4,8,……,2n-1三角形数——1,3,6,10,……,前两项和等于第三项(斐波那契数列 )——1,1,2,3,5,8,…… 倍数减(加)前项:1,3,8,21,55,144,……(1)2n n等差数列求和:S = 等比数列求和:S =111--+a a n数字规律探究反映了由特殊到一般的数学方法,解决此类问题常用的方法是:观察法。
北师大七年级上培优第6讲:探索规律
找规律知识点:数字规律1、观察下面一组按规律排列的数:59-,1216,2125-,3236,...,则第七个数是 ;第n 个数是 。
2、给出一列数:1001,251,07.0,01.0,...,则第五个数是 ;第n 个数是 。
3、观察下面一组按规律排列的数:11,21-,22,21-,31,32-,33,32-,31,41-,42,43-,44,43-,42,41-,...,则54-是第 个数,则117是第 个数,第100个数是 。
4、观察下列各式:352535253333++=++,473747373333++=++,594959493333++=++,请猜想出一个一般性的结论 : 。
5、一串数:11,21,22,21,31,32,33,32,31,... (1)第800个数是多少? (2)175是第几个数? (3)前552个数的和是多少?(4)前n 个数的和能否等于106,如果能,试求出n 的值,如果不能,试说明理由。
知识点:图形规律1、将一列有理数1-,2,3-,4,5-,6,...如图所示有序排列。
根据图中的排列规律可知,“峰1”中峰顶的位置(C 的位置)是有理数4,那么,“峰6”中C 的位置是有理数 ,2008应排在A. B. C. D. E 中 的位置。
知识点:数列矩阵规律1、下面是一个按某种规律排列的数阵:根据规律,自然数2000应该排在从上向下数的第m行,是该行中的m 的值是()从左向右数的第n个数,那么nA. 第1行,第19列B. 第20行,第1列C. 第19行,第1列D. 第1行,第20列3、观察下图规律,第十二行第二十一列的数字是()。
4、下图的数阵是由全体奇数排成:(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在数阵图中任意作一类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由;(3)这九个数之和能等于1998吗?2005,1017呢?若能,请写出这九个数中最小的一个;若不能,请说出理由。
七年级找规律的方法与技巧
七年级找规律的方法与技巧嗨,七年级的小伙伴们!你们在数学学习中是不是经常碰到找规律的题目呀?可别被它们吓住了,今天我就来和你们分享一下找规律的方法与技巧,这就像是打开神秘宝藏的钥匙哦。
咱先来说说数字规律。
比如说,给你一串数字:1,3,5,7,9……你乍一看,可能觉得眼花缭乱。
不过呢,咱静下心来仔细瞧。
我就会想啊,这相邻的两个数字之间有啥关系呢?这时候我就像个小侦探一样。
嘿,发现了没?后面的数字比前面的数字总是大2呢。
这就好像是在爬楼梯,每一步都往上跨2个台阶。
那如果让你接着往后写数字,这还不容易吗?直接在前一个数字上加2就成啦。
再来看个稍微难一点的,像2,4,8,16,32……这又是什么规律呢?我先试着用后一个数字除以前一个数字,4÷2 = 2,8÷4 = 2,16÷8 = 2,32÷16 = 2。
哈哈,原来是后一个数字是前一个数字的2倍呢。
这就好比是一颗小种子,每次都以2倍的速度生长。
那下一个数字就是32×2 = 64喽。
图形规律也很有趣呢。
有一次我和同桌小明一起做图形规律的题。
题目是一些正方形,第一个正方形里有1个小圆圈,第二个正方形里有4个小圆圈,第三个正方形里有9个小圆圈。
小明挠着头说:“这啥规律呀,乱七八糟的。
”我就跟他说:“你看啊,第一个正方形边长是1,那小圆圈个数就是1×1 = 1;第二个正方形边长是2,小圆圈个数就是2×2 = 4;第三个正方形边长是3,小圆圈个数就是3×3 = 9。
”小明眼睛一亮,说:“哦,原来是这样啊,那下一个正方形边长是4,小圆圈个数就是4×4 = 16喽。
”这图形规律就像是搭积木,每一块积木的数量都和它所在的层数有关系呢。
还有那种数字和图形结合的规律题。
我和前桌小红讨论过一道题。
是一些三角形,三角形的边上有点,第一个三角形每条边上有1个点,第二个三角形每条边上有2个点,第三个三角形每条边上有3个点。
七年级探索规律知识点
七年级探索规律知识点在七年级数学课程中,探索规律是一项非常重要的知识点。
通过研究数据和图形,学生们可以发现和总结规律性的关系,并将其应用到解决各种数学问题的过程中。
本篇文章将简要介绍一些常见的探索规律知识点。
1. 数列和通项公式数列是由一串数按照一定次序排列而成的序列。
而数列的通项公式就是描述这个数列的模式和规律的公式。
在七年级课程中,学生们将会学习如何找到一些常见数列的通项公式,如斐波那契数列、等差数列和等比数列等。
同时,学生们将学习如何利用数列的通项公式来计算数列中的任意一项。
2. 图形规律图形规律涉及到由点、线和面组成的各种形状和图案。
在七年级课程中,学生们需要探究不同的图形之间的联系和规律。
例如,他们需要研究如何通过旋转、翻转和平移等操作来构建不同的图形,还需要了解几何图形的对称性和相似性等概念。
3. 平均数和中位数平均数和中位数是统计学中两个非常重要的概念。
平均数是指一组数据的所有数值之和除以数据个数,而中位数是指一组数据按大小排列后的中间数。
通过研究这些统计概念,学生们可以更有效地处理和分析数字数据。
4. 几何图形的面积和周长几何图形的面积和周长是七年级数学中的重要概念。
在课程中,学生们将会涉及到矩形、正方形、三角形和圆形等基本几何图形的面积和周长的计算。
同时,学生也会学习如何将这些计算应用到实际问题中。
5. 概率概率是指某个事件发生的可能性。
在七年级数学中,学生们将会学习如何计算简单的概率,例如掷硬币和抽卡片等。
除此之外,学生们也会学习到如何利用概率来评估不同效益的选择和决策。
总之,探索规律是七年级数学课程中的一个重要知识点。
通过研究这些常见的规律和模式,学生们可以更好地理解和应用数学知识。
同时,这些探索规律的知识也可以帮助学生们在解决实际问题时更有效地思考和分析。
初中数学找规律方法
初中数学找规律方法
有以下几种常见的方法可以帮助初中生找规律:
1. 列举法:将问题中的数据逐个列出来,观察数据之间的变化规律。
可以将数据写在表格中,帮助整理和比较。
2. 画图法:将问题中的数据用图形表示出来,可以是折线图、条形图等等。
观察图形的形状、趋势和关系,看是否能够找到规律。
3. 规律性观察法:观察问题中的数据,看是否有一些明显的数学规律。
例如,是否存在等差数列、等比数列等等。
可以通过计算差、比等来推断规律。
4. 逆向思维法:如果无法直接找到规律,可以尝试逆向思考,即从问题的答案出发,推断出问题中的规律。
通过反向推理,可以发现一些隐藏的规律。
5. 试错法:尝试不同的方法和假设,然后验证它们是否符合问题的要求。
如果结果不正确,再进行调整和尝试。
综合运用以上方法,可以帮助初中生更好地找到数学问题中的规律。
初一七年级数学重点题型突破之规律探索专题
7.如图,直线 AB,CD 交于 O 点,OE⊥AB,∠DOF=90°,OB 平分∠DOG,则下列结论:①图中,∠ DOE 的余角有四个;②∠AOF 的补角有 2 个;③CD 为∠EOG 的角平分线;∠COG=∠AOD-∠EOF 中 正确的是 A.①②④ B.①③④ C.①④ D.②③④
8.如图,OB 是 AOC 的平分线,射线 OD 在 BOC 的内部,OM,ON 分别是 AOD,COD 的平分线,下列 结论:①∠MOB=∠NOC;②∠AOB-∠BOD=∠2MOB;③∠NOB= =
别以 2 单位/秒和 1 单位/秒的速度在射线 AB 上沿 AB 方向运动,运动时间为 t 秒,M 为 BP 的中点,N 为 QM 的中点,以下结论: ①BC=2AC; ②AB=4NQ; ③当 PB=
1 BQ 时,t=12;④线段 MN 的长度为定值 2
) C.3 D.4
其中正确结论的个数是( A.1 B.2
图1
图2
图3
图4
…… ).
5.如图,填在各方格中的三个数之间均具有相同的规律,根据此规律,n 的值是(
1 2 3 4 3 15 6 5 35 8 m n
A.48 B.56 C.63 D.74 6.正整数按如图所示的规律排列,则第 10 行,第 11 行的数字是( A.98 B.106 C.110 D.118
与 4bx a 是同类型(x 为正整数);⑦关于 x、y 的多项式(m-3)xm y +x y-3x ym +4 是六次三项是, 则 m=2 或 3 A.2 个 B.3 个 C.4 个 D.5 个 4.下列说法中:①直线 a 与直线 b 相交于点 d;②连接两点间的线段叫做两点间的距离;③射线是直线的 一部分;④如果 MA+MB=AB,则 M 在线段 AB 上;⑤从 A 看 B 的方向是北偏西 29°,那么从 B 看 A 是 北偏西 29°.正确的有( ) A.5 个 B.4 个 C.3 个 D.2 个 5.如图,G 是线段 AB 延长线上一点,点 M、N 分别为 AB、AG 中点下列说法正确的有( ) ①图中共有 10 条射线,10 条线段;②若想在直线上找一点,是这个点到 A、M、N、B、G 五个点的距离
北师大七年级七年级数学----探索规律(1)
七年级数学----探索规律课题:第三章字母表示数探索规律(一)课型新授课重点、难点1、重点:探索实际问题中蕴涵的关系和规律。
2、难点:用字母、运算符号表示一般规律。
教材分析本节课是北师大版数学教材七年级上册第三章《字母表示数》的第6节——“探索规律”的第1课时。
从学习内容上说,本节内容是在学生学习了“用字母表示数”、“列代数式”、“去括号”、“合并同类项”等知识的基础上进行的,它既是对前面所学知识的综合应用,也是对这些知识的拓展与延伸,对学生体会数学建模具有重要的作用。
从学生学情来讲,由于基础教育课程改革的不断深入发展,教师教育理念得到了更新,现代教学手段不论是在城市中学还是在农村中学都进入了课堂,学生的学习方式得到了根本性的转变,主要表现在学生应用电脑水平有所提高,课堂上活跃大胆,具有较强的参与意识。
教学方法:讲解与练习相结合教学过程:一、想一想:下图是某月的月历,小组交流,有何发现?并回答下列问题(1)观察日历中的数字,找出相邻两数之间的关系。
如一行中的前后两个数,一列中的上下两个数,左下右上和左上右下两个数各有什么关系?(2)假若把日历中的某一天设定为a,你能用a表示相邻的日期吗?(3)日历图的套色方框中的九个数之和与该方框正中间的数有什么关系?(4)这个关系对其它这样的方框成立吗?你能用代数式表示这个关系吗?(5)这个关系对任何一个月的日历都成立吗?为什么?(6)你还能发现这样的方框中9个数之间的其它关系吗?请用代数式表示。
教学目的:教学中用屏幕显示日历图中的套色方框,让学生自主探究问题串,然后生生之间、师生之间相互交流,目的在于通过学生自主探究和合作交流的学习方式,让师生共同经历探索数量关系二、做一做 餐桌摆法一(1)1张餐桌可坐6人,2张餐桌可坐 多少人?3张餐桌呢?餐桌摆法二变式问题:在桌数相同时,哪一种摆法容纳的人数更多?小组交流教学目的:让学生自由探究、相互交流,既是为了巩固前面所学知识,也是为了开阔学生视野和思路,还为了提高学生的学习兴趣。
初一年级数学找规律方法初一年级数学找规律方法,初一年级数学找规律地一些窍门
初一数学找规律方法初一数学找规律方法,初一数学找规律的一些窍门导读:就爱阅读网友为大家分享的“初一数学找规律方法,初一数学找规律的一些窍门”资料,内容精辟独到,非常感谢网友的分享,希望这篇资料对您有所帮助。
初中数学考试中,经常出现数列的找规律题,今天小编就此类题的解题方法为大家介绍。
初一数学找规律方法一、基本方法看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2(n-2)=2n-1,总增幅为:[3+(2n-1)](n-1)÷2=(n+1)(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,.试按此规律写出的第100个数是 .解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,.序列号: 1,2,3, 4, 5,.容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2 (三)看例题:A: 2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26,同时减去2后得到新数列:0、3、8、15、24,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例: 4,16,36,64,?,144,196, ?(第一百个数)同除以4后可得新数列:1、4、9、16,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,2,5,10,17,26,0,6,16,30,48(1)第一组有什么规律?(2)第二、三组分别跟第一组有什么关系?(3)取每组的第7个数,求这三个数的和?2、观察下面两行数 2,4,8,16,32,64, (1)5,7,11,19,35,67 (2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4、3-1=81 5-3=82 7-5=83 用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差有关找规律的初中数学题1) 4,16,36,64,,144,196, (第一百个数)2) 2,6,18,,162,486,3) 白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4) 3-1=81 5-3=82 7-5=83用含有N的代数式表示规律写出两个连续技术的平方差为888的等式解答:1)2的平方,4的平方,6的平方,8的平方,(10的平方),12的平方,.(第一百个)(2*100)的平方=400002)2,2*3=6,2*3*3=18,(2*3*3*3=54),2*3*3*3*3=162,486,1 4583)18894)(N+2)-N=4N+4=888,再算出N223的平方-221的平方=888最全初中数学公式和规律最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点.特殊点的坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x 轴上y为0,x为0在y轴.象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反.平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行x轴,纵坐标相等横不同;直线平行于y轴,点的横坐标仍照旧.对称点的坐标:对称点坐标要记牢,相反数位置莫混淆,x轴对称y相反,y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号.自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行.函数图象的移动规律:若把一次函数解析式写成y=k(x+0)+b,二次函数的解析式写成y=a(x+h)2+k的形式,则可用下面的口诀左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了.一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远.二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见.若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.反比例函数的图象与性质的口诀:反比例函数有特点,双曲线相背离得远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减.图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边.巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是直角三角形的边的比值,可以把两个字用/隔开,再用下面的.一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切.正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边.三角函数的增减性:正增余减特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可.平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行.对角线,是个宝,互相平分跑不了,对角相等也有用,两组对角才能成.梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在△现;延长两腰交一点,△中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线.添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形两边中点,连接则成中位线;三角形中有中线,延长中线翻一番.圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连.同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦.圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系.正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.经过分点做切线,切线相交n个点.n个交点做顶点,外切正n边形便出现.正n 边形很美观,它有内接、外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便.正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单.函数学习口决:正比例函数是直线,图象一定过原点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键.以上关于“[读书技巧]初一数学找规律方法,初一数学找规律的一些窍门”的信息由网友上传分享,希望对您有所帮助,感谢您对就爱阅读网的支持!。
初中数学规律与探索教案
教案:初中数学规律与探索教学目标:1. 培养学生对数学规律的观察、分析和归纳能力。
2. 培养学生运用数学知识解决实际问题的能力。
3. 培养学生的逻辑思维能力和团队合作能力。
教学内容:1. 数列的规律2. 几何图形的规律3. 数学问题的探索教学过程:一、导入(5分钟)1. 教师通过引入一些日常生活中的数学现象,激发学生对数学规律的兴趣。
2. 学生分享他们对数学规律的认知和经验。
二、数列的规律(15分钟)1. 教师引导学生观察一些数列,如等差数列、等比数列等,并引导学生发现其中的规律。
2. 学生分组讨论,总结数列的规律,并分享他们的发现。
3. 教师通过一些例题,引导学生运用数列的规律解决问题。
三、几何图形的规律(15分钟)1. 教师引导学生观察一些几何图形,如正方形、矩形等,并引导学生发现其中的规律。
2. 学生分组讨论,总结几何图形的规律,并分享他们的发现。
3. 教师通过一些例题,引导学生运用几何图形的规律解决问题。
四、数学问题的探索(15分钟)1. 教师提出一个数学问题,如“如何在平面直角坐标系中表示两个函数的交点?”2. 学生分组讨论,探索解决问题的方法。
3. 学生分享他们的解题过程和答案,教师进行点评和指导。
五、总结与反思(5分钟)1. 教师引导学生总结本次课程的收获和体会。
2. 学生分享他们的学习心得和感悟。
教学评价:1. 学生对数列和几何图形的规律的理解和运用能力。
2. 学生在解决问题时的逻辑思维能力和团队合作能力。
3. 学生对数学学习的兴趣和积极性。
初一数学找规律解题方法及技巧
初一数学找规律解题方法及技巧一、概述初中数学作为学生学习的重要课程之一,对学生的逻辑思维能力和数学素养有着重要的提升作用。
在学习数学的过程中,找规律解题是一个重要的能力,也是数学学习的重点之一。
本文将围绕初一数学找规律解题的方法和技巧展开探讨,帮助学生更好地掌握这一技能。
二、初一数学找规律解题的意义1.培养逻辑思维通过找规律解题,可以培养学生的逻辑思维能力,提高他们的分析和问题解决能力。
2.激发学生学习兴趣找规律解题是一种富有趣味和挑战性的数学思维活动,可以激发学生学习数学的兴趣,增强他们的学习动力。
3.提高数学素养通过掌握找规律解题的方法和技巧,可以提高学生的数学素养,为他们的学习打下坚实的基础。
三、初一数学找规律解题的方法1.观察法观察法是最基本的找规律解题方法,通过观察题目中的数学关系和规律,找出规律并加以总结。
2.列举法通过列举一些具体的例子,找出其中的规律,从中归纳总结出通用的规律。
3.推理法通过对题目中的数学关系进行推理,找出其中的规律并进行证明。
四、初一数学找规律解题的技巧1.多练习找规律解题需要透过大量的练习,培养学生的敏锐观察力和分析能力。
学生应该多做相关的练习题,提高解题的能力。
2.注重分析在解题过程中,学生要善于分析题目中的数学关系和规律,从中找出一般性的规律。
3.善于归纳学生应该善于总结和归纳题目中的规律,形成固定的模式,并不断丰富和拓展。
4.多角度思考在解答问题时,学生要善于从不同的角度去思考问题,寻找不同的解题路径。
五、结语初一数学找规律解题是学习数学过程中的一个重要环节,它在培养学生的逻辑思维、激发学生学习兴趣和提高学生的数学素养方面发挥着重要作用。
学生要注意培养这一技能,提高自己的解题能力。
希望通过本文的讨论,能够帮助学生更好地掌握初一数学找规律解题的方法和技巧。
六、初一数学找规律解题的实例分析为了更好地理解初一数学找规律解题的方法和技巧,接下来我们通过几个具体的实例来进行分析和探讨。
初一数学培优专题---规律探究题的解题方法
七年级培优专题--规律探究题的解法指导一、数式规律探究1.一般地,常用字母n表示正整数,从1开始。
2.在数据中,分清奇偶,记住常用表达式。
正整数…n-1,n,n+1…奇数…2n-3,2n-1,2n+1,2n+3…偶数…2n-2,2n,2n+2…3.熟记常见的规律① 1、4、9、16......n2② 1、3、6、10……(1)2n n+③ 1、3、7、15……2n -1 ④ 1+2+3+4+…n=(1)2n n+⑤ 1+3+5+…+(2n-1)= n2 ⑥ 2+4+6+…+2n=n(n+1)⑦ 12+22+32….+n2=16n(n+1)(2n+1) ⑧ 13+23+33….+n3=14n2(n+1)2⑨2,4.8.16.32...... 2n4、初中阶段会考察的规律,大部分为等差数列等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,这个常数叫做等差数列的公差,公差常用字母d表示。
例如:1,3,5,7,9……2n-1。
通项公式为:a n=a1+(n-1)d。
首项a1=1,公差d=2。
前n项和公式为:S n=12[n×(a1+a n)]=n a1+12n(n-1)d。
注意:以上n均属于正整数。
数字规律探究反映了由特殊到一般的数学方法,解决此类问题常用的方法有以下两种:①.观察法:例1.观察下列等式:①1×12=1-12②2×23=2-23③3×34=3-34④4×45=4-45……猜想第几个等式为(用含n的式子表示)分析:将等式竖排:①1×12=1-12观察相应位置上变化的数字与序列号②2×23=2-23的对应关系(注意分清正整数的奇偶)③ 3×34=3-34易观察出结果为:④ 4×45=4-45例2.探索规律:31=3,32=9,33=27,34=81,35=243,36=729……,那么32009的个位数字是。
初中数学规律探索教案
初中数学规律探索教案一、教学目标:1. 让学生通过观察、实验、归纳等方法,发现并总结一些基本的数学规律。
2. 培养学生的逻辑思维能力、归纳总结能力和创新能力。
3. 让学生感受数学的趣味性和实用性,提高学生学习数学的兴趣。
二、教学内容:1. 探索数字变化的规律2. 探索图形的规律3. 探索数的规律三、教学过程:1. 导入:教师通过展示一些有趣的数字变化,引导学生发现其中的规律,激发学生的兴趣。
2. 探索数字变化的规律:教师提出问题,让学生观察数字的变化,并尝试找出其中的规律。
学生通过实验、讨论等方式,总结出一些基本的数字变化规律。
3. 探索图形的规律:教师展示一些有趣的图形,引导学生观察并找出其中的规律。
学生通过实验、讨论等方式,总结出一些基本的图形规律。
4. 探索数的规律:教师提出问题,让学生观察数的排列,并尝试找出其中的规律。
学生通过实验、讨论等方式,总结出一些基本的数列规律。
5. 总结:教师引导学生归纳总结本节课所发现的数学规律,并强调规律的重要性。
6. 练习:教师布置一些有关数学规律的练习题,让学生巩固所学知识。
四、教学策略:1. 采用问题驱动的教学方法,引导学生主动观察、实验、讨论,发现并总结数学规律。
2. 利用多媒体辅助教学,展示丰富的教学资源,提高学生的学习兴趣。
3. 注重个体差异,鼓励学生发表自己的观点,培养学生的创新能力。
4. 创设生动活泼的课堂氛围,让学生在轻松愉快中学习数学。
五、教学评价:1. 学生能正确表述所发现的数学规律。
2. 学生能运用所学的数学规律解决实际问题。
3. 学生对数学学习充满兴趣,积极参与课堂活动。
六、教学反思:本节课通过引导学生观察、实验、讨论等方式,发现并总结了一些基本的数学规律。
在教学过程中,要注意关注学生的个体差异,鼓励学生发表自己的观点,培养学生的创新能力。
同时,要注重练习的布置,让学生巩固所学知识。
总之,本节课旨在培养学生的逻辑思维能力、归纳总结能力和创新能力,提高学生学习数学的兴趣。
七年级探索规律培优讲义资料
规律探索问题讲义教师寄语:【知识精要】:1.知识结构和知识要点用字母表数,可以有很多优点,具有抽象性,同时可以揭示许多具有规律性的问题,这是算术知识不可比拟的。
在寻找规律的过程中,学生的经历了从特殊到一般以及归纳、猜想的思维过程,体现了数学思想的运用。
2.中考预测由于寻找规律并用字母表示这一规律体现了从特殊到一般和归纳、猜想的数学思想的运用,因此近几年的中考更多地体现了这种问题的考查,是近来的热门考点。
同学们应注意先从特殊的结果寻找规律,再用字母表示,最后加以验证。
【规律总结】:常见数列的一般公式(1)1,2,3,4,…, n(2) 1,4,9,16,…, n2(3)1,3,5,7,9,…, 2n-1.(4) 2,4,6,8,10,…, 2n.(5) 1,3,6,10,15,…, n(n+1)/2.(6) 1,1/2,1/3,1/4,…, 1/n.(7) 1,1/4,1/9,1/16,…, 1/n2.(8) 1/2,1/6,1/12,1/20,…, 1/n(n+1).【典例评析】:例1、探索规律:观察以下图形,并填写下表(4)(3)(2)(1)例2,我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。
”如图,在一个边长为1的正方形纸版上,依次贴上面积为21,41,81,…,n21的矩形彩色纸片(n为大于1的整数)。
请你用“数形结合”的思想,依数形变化的规律,计算n21814121++++ = 。
例3,观察下面一列有规律的数,486,355,244,153,82,31,根据这个规律可知第n个数是(n是正整数)例4.据测算,树的高度与树生长的年数有关,测得某棵树的有关数据如下表(树苗原高100厘米):①填出第4年树苗可能达到的高度;②请用含a的代数式表示: a年后树的高度h=____________;③根据这种长势,10年后这棵树可能达到的高度是厘米。
例5.一列小球按如下图规律排列,第20个白球前面的黑球数目是个。
初中数学找规律的方法与技巧
初中数学找规律的方法与技巧1. 哎呀呀,初中数学找规律呀,那首先咱得瞪大眼睛仔细瞧!比如说数列 1,3,5,7,9,这不就是相邻两个数相差 2 嘛,那下一个数不就很容易猜出来是11 啦!这就像走在路上找脚印,顺着就能发现下一步往哪儿走。
2. 嘿,你还可以用画图的办法来帮忙找规律呢!像图形的排列规律,你就画出来看看嘛。
比如三角形、正方形、三角形、正方形这样的排列,一画就明白接下来该是三角形啦!就好像给图案排队,一下子就清楚顺序啦。
3. 还有哇,把数字拆开来分析也超有用的呢!像 123,234,345,你看每个数的个位、十位、百位是怎么变化的,不就能找到规律啦!这多像拆礼物一样,一层一层解开就发现里面的奥秘啦。
4. 哇塞,你可别小瞧了计算哦!通过计算前后数的差值或者比值也能找到规律呢。
比如 2,4,8,16,算一下比值都是 2 呀,那下一个肯定是 32 啦!这不就跟升级打怪一样,知道了打法就不难啦。
5. 咱还可以从特殊到一般来找规律呢!先找几个特殊的例子看看,然后总结出一般的规律。
就好像从几个小朋友身上发现他们共同的爱好,那这就是大家普遍的特点啦。
6. 哈哈,别忘了观察数字的奇偶性呀!奇数偶数的分布有时候也藏着规律呢。
像 1,4,9,16,奇数位置和偶数位置就有不同的规律呢!这就像区分男生女生,特点一下子就出来了嘛。
7. 找规律的时候要大胆假设呀!觉得是什么规律就试试看嘛。
如果不对再换个想法,就像试衣服一样,这件不合适就换另一件呗。
8. 记住,细心和耐心是关键哟!千万别着急,慢慢找肯定能发现规律。
就跟找宝藏一样,得慢慢挖才能找到呀!我觉得呀,初中数学找规律并不难,只要掌握了这些方法与技巧,再加上自己的细心观察和思考,就能轻松搞定啦!。
七年级数学上册《规律的探索》
培养逻辑思维
探索规律有助于培养学生的逻 辑思维和推理能力,使他们能 够更好地理解和分析问题。
发现新知识
通过探索规律,学生可以发现 新的数学概念和定理,进一步
丰富数学知识体系。
解决实际问题
探索规律有助于学生解决实际 问题,如预测未来趋势、优化
资源配置等。
提高创新能力
探索规律有助于培养学生的创 新思维和创造力,为未来的科 技发展和社会进步做出贡献。
在科学实验中的应用
生物学实验
01
在生物学实验中,科学家经常使用周期性实验来研究生物的生
长和繁殖规律,如植物的光合作用、动物的繁殖周期等。
物理学实验
02
在物理学中,很多物理量都有一定的规律变化,如温度、压力、
电流等,科学家通过实验来研究这些规律。
环境监测
03
环境监测中需要定期采集数据,如空气质量、水质等,通过这
02
数的规律探索
数的排列规律
总结词
数的排列规律是指按照一定的顺序排列数字,形成特定的模 式或序列。
详细描述
在数的排列规律中,我们通常关注数字的顺序,以及它们如 何按照特定的模式或序列进行排列。例如,1、2、3、4、5 是一个递增的排列规律,而3、2、1则是一个递减的排列规 律。
数的增减规律
总结词
函数关系式
用函数关系式来表示规律,如 $f(x) = x^2$ 表示二次函数的规律。
方程式
方程式也可以用来表示规律,如 $x^2 - y^2 = (x + y)(x - y)$ 表 示差平方的规律。
用表格表示规律
01
表格可以清晰地展示数据和规律 ,通过表格可以直观地观察到数 据的变化趋势和规律。
初一数学专题规律探究
初一数学专题——规律探索一、教学内容:专题——规律探索在学习和生活中,我们经常会碰到一些连续重复出现某种现象的有规律的问题.我们如何寻找这些规律,解决这些问题呢?本讲就此问题中常见的几种类型,举例说明如何解决规律性问题.二、考点分析:近年来有关规律探索性题目在初中数学的考试题中频繁出现,所占分值不高,但难度偏大.主要类型有:图形规律、数的运算规律、代数式的规律等问题.【典型例题】题型一关于图形排列的规律性问题例1.观察下列图形,根据变化规律推测第100个与第_______个图形位置相同.例2.观察下列图形:它们是按一定规律排列的,依照此规律,第20个图形共有__________个★.例3. 如图所示,在锐角∠AOB内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;……照此规律,画10条不同射线,可得锐角__________个.(1)在一条直线上取n个不同的点可以组成多少条线段,如图所示.题型二有理数的规律性问题例4. 有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为__________.(2)已知a n=(-1)n+1,当n=1时,a1=0;当n=2时,a2=2;当n=3时,a3=0;….则a1+a2+a3+a4+a5+a6的值为__________.例5. 观察下图中一列有规律的数,然后在“?”处填上一个合适的数,这个数是__________.例6. 符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f()-f(2008)=__________.一. 选择题1. 用M,N,P,Q各代表四种简单几何图形(线段、正三角形、正方形、圆)中的一种.图1~图4是由M,N,P,Q中的两种图形组合而成的(组合用“&”表示).()那么,下列组合图形中,表示P&Q的是()2. 观察下列图形,并按照此规律从左向右第2007个图形是()3. 观察下面给出的四个点阵,s表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n个点阵中的点的个数s为()A. 3n-2B. 3n-1C. 4n+1 D. 4n-34. 有30张分别标示1~30号的纸牌.先将号码数为3的倍数的纸牌拿掉,然后从剩下的纸牌中,拿掉号码数为2的倍数的纸牌.若将最后剩下的纸牌,依号码数由小到大排列,则第5张纸牌的号码为()A. 7B. 11C.13 D. 17*5. 观察表1,寻找规律.表2是从表1中截取的一部分,其中a、b、c的值分别为()表11 2 3 4 ……2 4 6 8 ……3 6 9 12 ……4 8 12 16 ………………………………表216 a20 bc30A. 20,25,24B. 25,20,24C. 18,25,24D. 20,30,25**6. 23,33和43分别可以按如图所示方式“分裂”成2个、3个和4个连续奇数的和,63也能按此规律进行“分裂”,则63“分裂”出的奇数中最大的是()A. 41B. 39C. 31D.29二. 填空题1. 根据下列图形的排列规律,第2008个图形是福娃__________(填写福娃名称即可).2. 观察下列图形的排列规律(其中☆,□,●分别表示五角星、正方形、圆).●□☆●●□☆●□☆●●□☆●……若第一个图形是圆,则第2008个图形是__________(填名称).3. 如图,观察下列图案,它们都是由边长为1cm的小正方形按一定规律拼接而成的,依此规律,则第16个图案中的小正方形有__________个.4. 用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖__________块,第n个图形中需要黑色瓷砖__________块(用含n的代数式表示)**5. 如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为__________.。
七年级上册数学同步培优:第7讲 规律探索--尖子班
第7讲 规律探究⎧⎨⎩数字类规律探究图形类知识点1:规律探究之数字变化数字的变化问题一般有找循环周期、等差数列、等比数列、平方数等类型。
【典例】1.如图,是蜘蛛结网过程示意图,一只蜘蛛先以O 为起点结六条线OA ,OB ,OC ,OD ,OE ,OF 后,再从线OA 上某点开始按逆时针方向依次在OA ,OB ,OC ,OD ,OE ,OF ,OA ,OB…上结网,若将各线上的结点依次记为:1,2,3,4,5,6,7,8,…,那么第2016个结点在( )A. 线OA 上B. 线OB 上C. 线OC 上D. 线OF 上【方法总结】遇到循环节问题首先找到循环节(循环周期)是什么,循环节可以通过将图形中的元素一一列举得到;其次要找到所求元素所在的循环节;最后找到在循环节中的位置。
2.一组数23,45,67,89…按一定的规律排列着,请你根据排列规律,推测这组数的第10个数应为_____【方法总结】等差数列问题首先找出公差,即后一项与前一项的差,其次用第一项与公差、序号来表示每一项;遇到分数数列,如果找不到公差,可以考虑将分子、分母作为两个不同的数列分别找出其中的规律,最后确定数字的正负与序号奇偶的关系。
3.下面是一组按规律排列的数:1,2,4,8,16,…,则第2008个数是_______【方法总结】等比数列问题首先找出后一项与前一项的比值;其次通过列举观察、用第一个数字和公比来表示每一个数字。
4.按一定的规律排列的一列数依次为:﹣2,5,﹣10,17,﹣26,…,按此规律排列下去,这列数中第9个数及第n个数(n为正整数)分别是______【方法总结】平方数问题要找准数列的序数与每一个数字的平方关系。
解决这种问题首先将序数平方;其次对比序列中每一个数字的绝对值与序数平方的大小关系;最后确定数字的正负与序数奇偶的关系。
5.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a,b的值分别为____【方法总结】规律表格问题首先找出表格内部各数字之间的关系,其次表示出相邻两个表格内相同位置的数字的关系,通常找最小数字之间的关系。
规律探索方法总结及分析
规律探索⽅法总结及分析
规律探索⾃七年级上整式的加减开始,⼀直到中考,贯穿着整个初中的学习。
就规律探索这个题型的难度⽽⾔,难度中等偏上。
很多童鞋在做题的时候总是找不到合适的⽅法去解决。
⽽且童鞋们⼀般看到规律题就这个表情:
不⽤担⼼,规律题是有⽅法的。
今天张哥就来给⼤家剖析⼀下规律问题的常⽤⽅法。
对于七年级的规律题要⿇烦⼀些,因为会涉及到⼀些尾数特征等题型,所以计算三个是不够的,要直到算出周期为⽌。
除开这⼀类题型之外,其他题型均可以通过步步为营法解决。
现在来看⼀个例题:
这就是规律探索的基本⽅法--步步为营法的⼀个具体的体现。
下⾯我们再来看⼀个题⽬.
这就是步步为营法的巩固。
我们再来介绍第⼆个⽅法:釜底抽薪法。
对于部分题型,我们可以直接算第n种情况,不需要进⾏讨论。
我们通过⼀个题⽬来说明。
(A0的横坐标为1,则0对应1,A1的横坐标为2,则1对应2,故A n的横坐标为n+1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(2011浙江省嘉兴,9,4分)一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部
分,剩下部分如图所示,则被截去部分纸环的个数可能是()
(A)2011 (B)2011 (C)2012 (D)2013
2.(2011山东日照,12,4分)观察图中正方形四个顶点所标的数字规律,可知数2011应标在()
(A)第502个正方形的左下角(B)第502个正方形的右下角
(C)第503个正方形的左上角(D)第503个正方形的右下角
3.(2011四川绵阳18,4)观察上面的图形,它们是按一定规律排列的,依照此规律,第_个图形共有120 个。
4. 若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,
则100
98
!
!
的值为()
(A)
50
49
(B)99!(C)9900 (D)2!
5.观察下列图形,并阅读图形下面的相关文字
:
两条直线相交, 三条直线相交, 四条直线相交,
最多有1个交点最多有3个交点最多有6个交点
像这样,10条直线相交,最多交点的个数是( )
A.40个
B.45个
C.50个
D.55个
(2001年湖北省荆门市中考题)
6.一串数排成一行,它们的规律是这样的:头两个数都是1,从第三个数开始,•每一个数都是前两个
数的和,也就是1,1,2,3,5,8,13,21,34,55,…问:•这串数的前100个数中(包括第100个数),有
多少个偶数? (“华杯”赛试题)
7.(2011浙江中考)10.如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A2比图
A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,……,
照此规律,图A6比图A2多出“树枝”()
A.28
B.56
C.60
D. 124
……
红黄绿蓝紫红黄绿黄绿蓝紫。