【精品试卷】人教版九年级下期末复习《第27章相似》单元试卷((有答案))-(数学)

合集下载

人教版九年级数学下册《第27章相似》单元检测试卷【有答案】

人教版九年级数学下册《第27章相似》单元检测试卷【有答案】

人教版九年级数学下册《第27章相似》单元检测试卷【有答案】教版九年级数学下册第27章相似单元检测试卷考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.已知x:y=2:5,下列等式中正确的是()A.(x+y):y=2:5B.(x+y):y=5:2C.(x+y):y=3:5D.(x+y):y=7:52.如图,在△ABF中,D为AB的中点,C为BF上一点,AC与DF交于点E,AE=34AC,则BCCF的值为()A.1B.34C.43D.23.如图,点D在BC上,∠ADC=∠BAC,下列结论中,正确的是()A.△ABC∽△DACB.△ABC∽△ADCC.△ABC∽△DABD.△ABD∽△ACD4.已知如图,点C是线段AB的黄金分割点(AC>BC),则下列结论中正确的是()A.AB2=AC2+BC2B.BC2=AC⋅BAC.AC2=AB⋅BCD.AC=2BC5.若三角形的每条边长都扩大为原来的5倍,则下列说法正确的是()A.每个角都扩大5倍B.周长扩大5倍C.面积扩大5倍D.无法确定6.如图,在△ABC中,DE // BC,下列比例式成立的是()A.AD DB =DEBCB.DEBC=ACECC.AD DB =AEECD.DBAD=AEEC7.下列说法正确的是()①所有的等腰三角形都相似;②所有的等边三角形都相似;③所有的直角三角形都相似;④所有的等腰直角三角形都相似.A.①②B.②③C.③④D.②④8.下列命题错误的是()A.两个全等的三角形一定相似B.两个直角三角形一定相似C.两个相似三角形的对应角相等,对应边成比例D.相似的两个三角形不一定全等9.在相同水压下,口径为4cm的水管的出水量是口径为1cm的水管出水量的()A.4倍B.8倍C.12倍D.16倍10.身高1.6米的小芳站在一棵树下照了一张照片,小明量得照片上小芳的高度是1.2厘米,树的高度为6厘米,则树的实际高度大约是()A.8米B.4.5米C.8厘米D.4.5厘米二、填空题(共 10 小题,每小题 3 分,共 30 分)11.在梯形ABCD中,AB // DC,AB=18cm,DC=8cm,E,F分别是腰AD,BC上的点,且EF // AB,若梯形DEFC∽梯形EABF,那么EF=________cm.12.若△ABC∽△DEF,△ABC与△DEF的周长比为1:2,则△ABC与△DEF的面积比为________.13.如图,在Rt△ABC中,∠C=90∘,CD⊥AB于D.若AD=2cm,DB=6cm,则CD=________.14.如图,△AOB∽△DOC,且AO=3,OB=4,OD=6,则BC=________.AB,在AC上取一点E,使以A、D、E为顶点的三角形与ABC相似,则AE等于________.15.如图,△ABC,AB=12,AC=15,D为AB上一点,且AD=2316.如图,在△ABC中,DE // BC,AE:EC=3:5,则S△ADE:S△ABC=________.17.如图,在△ABC中,P为AB上一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP⋅AB;④AB⋅CP=AP⋅CB,能满足△APC与△ACB 相似的条件是________(只填序号).18.如图,梯形ABCD中,AB // CD,∠B=∠C=90∘,点F在BC边上,AB=8,CD=2,BC=10,若△ABF与△FCD相似,则CF的长为________.19.如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交A8于点F,AF=x(0.2≤x≤0.8),EC=y.则大致能反映y与x之闻函数关系的是________.20.数学兴趣小组想测量一棵树的高度,在阳光下,一名同学测得一根长为1米的竹竿的影长为0.8米.同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),其影长为1.2米,落在地面上的影长为2.4米,则树高为________米.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.如图,在正方形网格上,请你画两个三角形,使它们不全等且分别与图中的△ABC相似,其相似比不为1,三角形的顶点都在正方形的顶点上,并注明相应的字母.22.如图,AB⊥MN,CD⊥MN,垂足分别为点B,D,AB=2,CD=4,BD=3,在直线MN上是否存在点P,能使△PAB与△PCD相似?如果存在,满足上述条件的点P有几个?说明点P与点B,D的距离,并作出图形.23.如图,△ABC中,A、B两点在x轴的上方,点C的坐标是(−1, 0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是2,求点B的横坐标.24.已知:线段a、b、c,且a2=b3=c4.(1)求a+bb 的值.(2)如线段a、b、c满足a+b+c=27.求a、b、c的值.25.已知△ABC∽△DEF,DEAB =23,△ABC的周长是12cm,面积是30cm2.(1)求△DEF的周长;(2)求△DEF的面积.26.如图,已知△ABC,AB=AC=1,∠A=36∘,∠ABC的平分线BD交AC于点D.(1)求AD的长;(2)求cosA的值(结果保留根号).答案1.D2.D3.A4.C5.B6.C7.D8.B9.D10.A11.1212.1:413.2√3cm14.1215.10或6.416.96417.①,②,③18.2或819.y=1x20.4.221.解:如图所示:△A′B′C′和△DEF即为所求.22.解:存在点P,能使△PAB与△PCD相似,满足上述条件的点P有4个.设PB=x,若点P在点B的左侧,如图1,∵∠PBA=∠PCD=90∘,∴当ABCD =PBPD时,△PBA∽△PDC,即24=xx+3,解得x=3,此时PD=6;当ABPD =PBCD时,△PBA∽△CDP,即2x+3=x4,解得x1=−3+√412,x2=−3−√412(舍去),此时PD=3+√412;若点P在线段BD上,如图2,∵∠PBA=∠PCD=90∘,∴当ABCD =PBPD时,△PBA∽△PDC,即24=x3−x,解得x=1,此时PD=2;当ABPD =PBCD时,△PBA∽△CDP,即23−x=x4,无解;若点P在D点右侧,如图3,∵∠PBA=∠PCD=90∘,∴当ABCD =PBPD时,△PBA∽△PDC,即24=xx−3,解得x=−3,舍去;当AB PD =PB CD 时,△PBA ∽△CDP ,即2x−3=x4,解得x 1=3+√412,x 2=3−√412(舍去),此时PD =−3+√413;综上所述,满足上述条件的点P 有4个,当PB =3时,PD =6;当PB =−3+√412时PD =3+√412;当PB =1时,PD =2;当PB =3+√412,PD =−3+√413.23.解:过点B 、B ′分别作BD ⊥x 轴于D ,B ′E ⊥x 轴于E , ∴∠BDC =∠B ′EC =90∘.∵△ABC 的位似图形是△A ′B ′C , ∴点B 、C 、B ′在一条直线上, ∴∠BCD =∠B ′CE , ∴△BCD ∽△B ′CE . ∴CD CE =BC B′C , 又∵BCB′C =12,∴CDCE =12,又∵点B ′的横坐标是2,点C 的坐标是(−1, 0), ∴CE =3,∴CD =32. ∴OD =52,∴点B 的横坐标为−52.24.解:(1)∵a 2=b3, ∴ab =23,∴a+bb =53,(2)设a 2=b 3=c4=k , 则a =2k ,b =3k ,c =4k , ∵a +b +c =27, ∴2k +3k +4k =27, ∴k =3,∴a =6,b =9,c =12.25.解:(1)∵DE AB =23,∴△DEF 的周长=12×23=8(cm);(2)∵DE AB =23, ∴△DEF 的面积=30×(23)2=1313(cm 2). 26.解:(1)∵AB =AC ,∠A =36∘,∴∠C =∠ABC =12(180∘−∠A)=72∘, ∵BD 平分∠ABC ,∴∠ABD=∠CBD=36∘=∠A,∴AD=BD,∵∠C=72∘,∠CBD=36∘,∴由三角形内角和定理得:∠BDC=72∘=∠C,∴BD=BC=AD,∵∠C=∠C,∠CBD=∠A,∴△ABC∽△BDC,∴BC CD =ACBC,∴BC2=AC×CD,∵AD=BD=BC,∴AD2=AC×CD=AC×(AC−AD),解关于AD的方程得:AD=√5−12AC=√5−12,即AD=√5−12;(2)如图,过点D作DE⊥AB于点E.由(1)知,AD=BD,则AE=12AB=12,∴cosA=AEAD,即12√5−12=√5+14,∴cosA的值是√5+14.。

第二十七章 相似单元测试卷(含答案)

第二十七章 相似单元测试卷(含答案)

人教版数学九年级下册第二十七章《相似》测试卷[时间:100分钟 满分:120分]一、选择题(每小题3分,共30分) 1. 下列说法正确的是( ) A. 所有的矩形都是相似形B. 有一个角等于100°的两个等腰三角形相似C. 对应角相等的两个多边形相似D. 对应边成比例的两个多边形相似2. 下列四条线段中,不是成比例线段的为( )A. a =3,b =6,c =2,d =4B. a =4,b =6,c =5,d =10C. a =1,b =2,c =6,d = 3D. a =2,b =5,c =15,d =2 3 3. 如图,在△ABC 中,DE ∥BC ,AD AB =13,BC =12,则DE 的长是( )A. 3B. 4C. 5D. 6第3题 第4题4. 如图,已知在正方形网格中的两个格点三角形是位似形,它们的位似中心是( ) A. 点A B. 点B C. 点C D. 点D5. 如图,线段AB 两个端点的坐标分别为A (4,4),B (6,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 和D 的坐标分别为( )A. (2,2),(3,2)B. (2,4),(3,1)C. (2,2),(3,1)D. (3,1),(2,2)第5题第6题6. 如图,已知△ABC∽△DEF,AB∶DE=1∶2,则下列等式一定成立的是()A. BCDF=12B.AD的度数的度数=12C. ABCDEF的面积的面积=12错误!未找到引用源。

D.ABCDEF的周长的周长=127. 如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A. (6,0)B. (6,3)C. (6,5)D. (4,2)第7题第8题8. 如图,CD是☉O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是()A. AE>BEB. AD=BCC. ∠D=12∠AEC D. △ADE∽△CBE9.如图,在平行四边形ABCD中,E是CD上的一点,DE:EC=2 :3,连接AE,BE,BD,且AE,BD交于点F,则S△DEF:S△EBF:S△ABF的值是()A. 2 :5 :25B. 4 :9 :25C. 2 :3 :5D. 4 :10 :25第9题第10题10. 如图,△ABC为等边三角形,P为BC上一点,△APQ为等边三角形,PQ与AC相交于点M,则下列结论中正确的是()①AB∥CQ;②∠ACQ=60°;③AP2=AM·AC;④若BP=PC,则PQ⊥AC.A. 只有①②B. 只有①③C. 只有①②③D. ①②③④二、填空题(每小题3分,共24分)11. 在比例尺为1∶40000的地图上,某条道路的长为7 cm,则该道路的实际长度是km.12. 如图,∠DAE=∠BAC=90°,请补充一个条件:________________,使Rt△ABC∽Rt△ADE.第12题第13题13. 如图,在ABCD中,E在DC上,若DE :EC=1 :2,则BF :BE=________.14. △OAB三个顶点的坐标分别为O(0,0),A(4,6),B(3,0),以O为位似中心,将△OAB缩小为原来的12,得到△OA′B′,则点A的对应点A′的坐标为.15. 如图,点D,E分别在AB,AC上,且∠ABC=∠AED.若DE=4,AE=5,BC=8,则AB的长为.第15题第16题16. 如图,一条4 m宽的道路将矩形花坛分为一个直角三角形和一个直角梯形,根据图中数据,可知这条道路的占地面积为m2.17. 如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1∶3,点A 的坐标为(0,1),则点E的坐标是________.第17题第18题18.如图,A,B,C,D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A,D,E三点,且∠AOD=120°,设AB=x,CD=y,则y与x的函数关系式为________.三、解答题(共66分)19. (8分)如图,AC=4,BC=6,∠B=36°,∠D=117°,△ABC∽△DAC.(1)求∠ACB的度数;(2)求CD的长.20.(8分)如图,在△ABC中,AB=AC=8,BC=6,点D为BC上一点,BD=2.过点D作射线DE交AC于点E,使∠ADE=∠B.求线段EC的长度.21. (8分)如图,在平行四边形ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)证明:FD=AB;(2)当平行四边形ABCD的面积为8时,求△FED的面积.22.(10分)如图,明珠大厦的顶部建有一直径为16 m的“明珠”,它的西面45 m处有一高16 m 的小型建筑CD,人站在CD的西面附近无法看到“明珠”的外貌,如果向西走到点F处,可以开始看到“明珠”的顶端B;若想看到“明珠”的全貌,必须往西至少再走12 m.求大厦主体建筑的高度AE(不含顶部的“明珠”部分的高度).23. (10分)(1)如图(1),△ABC内接于☉O,且AB=AC,☉O的弦AE交BC于D.求证:AB·AC=AD·AE;(2)在(1)的条件下当弦AE的延长线与BC的延长线相交于点D时,如图(2),上述结论是否还成立?若成立,请给予证明.若不成立,请说明理由.24.(10分)如图,AB,AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦ED分别交⊙O 于点E,交AB于点H,交AC于点F,过点C的切线交ED的延长线于点P.(1)若PC=PF,求证:AB⊥DE;(2)点D在劣弧AC的什么位置时,才能使AD2=DE·DF,为什么?25. (12分)在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP·AB;(2)若M为CP的中点,AC=2.如图2,若∠PBM=∠ACP,AB=3,求BP的长.。

人教版九年级下期末复习《第27章相似》单元试卷((有答案))-(数学)

人教版九年级下期末复习《第27章相似》单元试卷((有答案))-(数学)

期末复习:人教版九年级数学下册第27章相似单元检测试卷一、单选题(共10题;共30分)1.若△ABC∽△A΄B΄C΄,∠A=40°,∠B=110°,则∠C΄=().A. 40°B. 110°C. 70°D. 30°2.已知:a、b是不等于0的实数,2a=3b,那么下列等式中正确的是()A. ;B. ;C. ;D. .3.下列4组条件中,能判定△ABC∽△DEF的是()A. AB=5,BC=4,∠A=45°;DE=10,EF=8,∠D=45°B. ∠A=45°,∠B=55°;∠D=45°,∠F=75°C. BC=4,AC=6,AB=9;DE=18,EF=8,DF=12D. AB=6,BC=5,∠B=40°;DE=5,EF=4,∠E=40°4.如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是()A. ∠ABD=∠CB. ∠ADB=∠ABCC.D.5.如果x:(x+y)=3:5,那么的值是()A. B. C. D.6.如图,已知===,且△ABC的周长为15cm,则△ADE的周长为()A. 6cmB. 9cmC. 10cmD. 12cm7.如果两个相似三角形对应边之比是1:4,那么它们的对应中线之比是()A. 1:2B. 1:4C. 1:8D. 1:168.如图,在△ABC中,D、E分别是AB、AC的点,且DE∥BC,如果AD=2cm,DB=1cm,DE=1.6cm,则BC=()A. 0.8cmB. 2cmC. 2.4cmD. 3.2cm9.将两个长为a cm,宽为b cm的矩形铁片加工成一个长为c cm,宽为d cm的矩形铁片,有人就a,b,c,d的关系写出了如下四个等式,但是有一个写错了,它是( )A. B. C. D.10.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1,…,按这样的规律进行下去,第2013个正方形的面积为()A. B. C. D.二、填空题(共10题;共30分)11.如图,在△ABC中,D,E分别为AB,AC上的点,若DE∥BC, ,则=________.12.如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设B′的坐标是(3,﹣1),则点B的坐标是________.13.在△ABC中,AB=5,AC=4,BC=3,D是边AB上的一点,E是边AC上的一点(D,E均与端点不重合),如果△CDE与△ABC相似,那么CE=________14.已知= ,那么的值是________.15.如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为________m.16.在直角坐标系中,△ABC的坐标分别是A(﹣1,2),B(﹣2,0),C(﹣1,1),若以原点O为位似中心,将△ABC放大到原来的2倍得到△A′B′C′,那么落在第四象限的A′的坐标是________17.有一块三角形的草地,它的一条边长为25m.在图纸上,这条边的长为5cm,其他两条边的长都为4cm,则其他两边的实际长度都是________m.18.如图,在△ABC中,D、E分别为边AB、AC上的点.= ,点F为BC边上一点,添加一个条件:________,可以使得△FDB与△ADE相似.(只需写出一个)19.已知等腰直角三角形ABC中,∠C=90°,AC=BC=4,点D在直线AC上,且CD=2,连接BD,作BD的垂直平分线交三角形的两边于E、F,则EF的长为________ .20.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= AE2;④S△ABC=2S△ADF.其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题(共8题;共60分)21.已知:如图,△ABC∽△ADE ,∠A=45°,∠C=40°.求:∠ADE的度数.22.如图,在△ABC和△CDE中,∠B=∠D=90°,C为线段BD上一点,且AC⊥CE,证明:△ABC∽△CDE.23.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,求证:△ABE∽△DEF.24.如图,点C、D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB,求∠APB的度数.25.已知AD⊥BC,BE=CE,∠ABC=2∠C,BF为∠B的平分线.求证:AB=2DE.26.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.27.在正方形ABCD中,点M是射线BC上一点,点N是CD延长线上一点,且BM=DN.直线BD与MN相交于E.(1)如图1,当点M在BC上时,求证:BD-2DE=BM;(2)如图2,当点M在BC延长线上时,BD、DE、BM之间满足的关系式是什么?;(3)在(2)的条件下,连接BN交AD于点F,连接MF交BD于点G.若DE=,且AF:FD=1:2时,求线段DG的长.28.(1)如图1,在等边△ABC中,点M是边BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是边BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是边BC上的任意一点(不含端点B、C),联结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.联结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.答案解析部分一、单选题1.【答案】D【考点】相似三角形的性质【解析】【解答】∵∠A=40°,∠B=110°,∴∠C=180°-∠A-∠B=180°-40°-110°=30°又∵△ABC∽△A΄B΄C΄,∴∠C΄=∠C=30°.故选D .【分析】根据相似三角形的性质:相似三角形的对应角相等,即可解答.2.【答案】B【考点】比例的性质【解析】【解答】∵2a=3b,∴,∴,∴A、C、D选项错误,B选项正确,故答案为:B.【分析】利用比例的性质进行等式变形即可。

人教版数学九年级下册:《第27章 相似》单元测试卷(含答案)

人教版数学九年级下册:《第27章 相似》单元测试卷(含答案)

9.如图,若△ABC∽△DEF,则∠D 的度数为

cba
b+c
10.已知4=5=6≠0,则 a 的值为

BO 2
11.如图,已知 AB∥CD,AD 与 BC 相交于点 O.若OC=3,AD=10,则 AO=

12.在长 8 cm,宽 6 cm 的矩形中,截去一个矩形,使留下的矩形与原矩形相似,那么
留下的矩形面积是
.
13.如图,AB 是半圆直径,半径 OC⊥AB 于点 O,AD 平分∠CAB 交弧 BC 于点 D,连接 CD、
OD,给出以下四个结论:
①AC∥OD; ②CE=OE; ③△ODE∽△ADO; ④2CD2=CE·AB.
其中正确结论的序号是

14.如图,正五边形的边长为 2,连接对角线 AD,BE,CE,线段 AD 分别与 BE 和 CE 相
1/7
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
甲:将边长为 3,4,5 的三角形按图 1 的方式向外扩张,得到新三角形,它们的对应边 间距为 1,则新三角形与原三角形相似.
乙:将邻边为 3 和 5 的矩形按图 2 的方式向外扩张,得到新的矩形,它们的对应边间距 均为 1,则新矩形与原矩形不相似.
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
《第 27 章 相似》单元测试
班级:
姓名:
一、选择题(每小题 4 分,共 32 分) 1.下面图形中,形状相同的一组是( )
成绩:
2.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段 AC 的长为( )
A.4
B.6
C.4 2
D.4 3
对于两人的观点,下列说法正确的是( )

人教版数学九年级下学期第27章《相似》测试卷含答案

人教版数学九年级下学期第27章《相似》测试卷含答案

人教版数学九年级下学期第27章《相似》测试卷(测试时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知:线段a、b,且,则下列说法错误的是( )A.a=2cm,b=3cm B.a=2k,b=3k(k≠0)C.3a=2b D.2.下列命题正确的是()A.有一个角对应相等的平行四边形都相似B.对应边成比例的两个平行四边形相似C.有一个角对应相等的两个等腰梯形相似D.有一个角对应相等的菱形是相似多边形3.如果(其中顶点、、依次与顶点、、对应),那么下列等式中不一定成立的是()A.B.∠B=∠E C.D.4.在比例尺为1∶8 000的某学校地图上,矩形运动场的图上尺寸是1 cm×2 cm,那么矩形运动场的实际尺寸应为( )A.80 m×160 m B.8 m×16 m C.800 m×160 m D.80 m×800 m5.如图,在平面直角坐标系中,已知点,,以原点为位似中心,相似比为,把缩小,则点的对应点的坐标是()A.(-1, 2)B.(-9, 18)C.(-9, 18)或(9, -18) D.(-1, 2)或(1, -2)6.如图,点O是△ABC内任一点,点D,E,F分别为OA,OB,OC的中点,则图中相似三角形有( ) A.1对B.2对C.3对D.4对7.已知:如图,在中,,则下列等式成立的是( )A .B .C .D .8.如图,在平行四边形中,是上的一点,直线与的延长线交于点,并与交于点,下列式子中错误的是( )A .B .C .D .9.如图,在中,是边上一点,连接,给出下列条件:①;②;③;④.其中单独能够判定的个数是( )A . 1个B . 2个C . 3个D . 4个 10.点是线段的黄金分割点,且,下列命题:,中正确的有( )A . 1个B . 2个C . 3个D . 4个二、填空题(每小题3分,共30分) 11.如图,在△ABC 中,DE ∥BC ,23AD DB =,则DEBC = .12. 如图,直角三角形ABC 中,︒=∠90ACB ,10=AB , 6=BC ,在线段AB 上取一点D ,作AB DF ⊥交AC 于点F .现将ADF ∆沿DF 折叠,使点A 落在线段DB 上,对应点 记为H ;AD 的中点E 的对应点记为G. 若GFH ∆∽GBF ∆,则AD =______ ____.13.如图,等边ABC △的边长为3,P 为BC 上一点,且1BP =,D 为AC 上一点,若60APD ∠=°,则CD 的长为 .14.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O , 若S △DOE :S △COA =1:25,则S △BDE 与S △CDE 的比=___________.15.如图,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A′B′C′D′E′,已知OA=10cm ,OA′=20cm,则五边形ABCDE 的周长与五边形A′B′C′D′E′的周长的比值是 .16.把一个矩形剪去一个正方形,若剩下的矩形与原矩形相似,则原矩形的长边与短边之比为 17.如图,菱形ABCD 的边长为1,直线l 过点C ,交AB 的延长线于M ,交AD 的延长线于N ,则AM1+AN1= .18.如图,在菱形ABCD 中,E 是BC 边上的点,AE 交BD 于点F ,若EC=2BE ,则BFFD的值是 .19.已知女排赛场球网的高度是2.24米,某排球运动员在一次扣球时,球恰好擦网而过,落在对方场地距离球网4米的位置上,此时该运动员距离球网1.5米,假设此次排球的运行路线是直线,则该运动员击球的高度是米.2.244 1.520.如图,在矩形ABCD中,AB=2,AD=,在边CD上有一点E,使EB平分∠AEC.若P为BC 边上一点,且BP=2CP,连接EP并延长交AB的延长线于F.给出以下五个结论:①点B平分线段AF;②PF=DE;③∠BEF=∠FEC;④S矩形ABCD=4S△BPF ;⑤△AEB是正三角形.其中正确结论的序号是.三、解答题(共60分)21.(本题6分)如图,在△ABC中,D是AB上一点,且∠ACD=∠B,已知AD=8cm,BD=4cm,求AC的长.22.(本题6分)如图,在边长为1 的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和格点O,按要求画出格点△A1B1C1和格点△A2B2C2.(1)将△ABC绕O点顺时针旋转90°,得到△A1B1C1;(2)以A1为一个顶点,在网格内画格点△A1B2C2,使得△A1B1C1∽△A1B2C2,且相似比为1:2.23.(本题6分)如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.24.(本题8分)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.25.(本题7分)为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一根标杆、皮尺,设计如图所示的测量方案.已知测量同学眼睛A、标杆顶端F、树的顶端E在同一直线上,此同学眼睛距地面1.6米,标杆高为3.2米,且BC=2米,CD=6米,求树ED的高.26.(本题8分)如图,正方形A1A2B1C1,A2A3B2C2,…A n a n+1B n C n,如图位置依次摆放,已知点C1,C2,C3…,C n在直线y=x上,点A1的坐标为(1,0).(1)写出正方形A1A2B1C1,A2A3B2C2,…A n a n+1B n C n,的位似中心坐标;(2)正方形A4A3B4C4四个顶点的坐标.27.(本题8分)如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.(1)求证:AE•BC=BD•A C;(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.28.(本题11分) (1)、问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)、探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)、应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.答案(测试时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知:线段a、b,且,则下列说法错误的是( )A.a=2cm,b=3cm B.a=2k,b=3k(k≠0)C.3a=2b D.【答案】A【解析】选项A,两条线段的比,没有长度单位,它与所采用的长度单位无关,选项A错误;选项B,,根据等比性质,a=2k,b=3k(k≠0),选项B正确;选项C,,根据比例的基本性质可得3a=2b,选项C正确;选项D,,根据比例的基本性质可得a=b,选项D正确.故选A.2.下列命题正确的是()A.有一个角对应相等的平行四边形都相似B.对应边成比例的两个平行四边形相似C.有一个角对应相等的两个等腰梯形相似D.有一个角对应相等的菱形是相似多边形【答案】D3.如果(其中顶点、、依次与顶点、、对应),那么下列等式中不一定成立的是()A.B.∠B=∠E C.D.【答案】C【解析】△ABC∽△DEF,故:A.∠A=∠D正确,故本选项错误;B.∠B=∠E正确,故本选项错误;C.AB=DE不一定成立,故本选项正确;D.正确,故本选项错误.故选C.4.在比例尺为1∶8 000的某学校地图上,矩形运动场的图上尺寸是1 cm×2 cm,那么矩形运动场的实际尺寸应为( )A.80 m×160 m B.8 m×16 m C.800 m×160 m D.80 m×800 m【答案】A解得y=16000(cm)=160(m)∴矩形运动场的实际尺寸是80m×160m.故选A.5.如图,在平面直角坐标系中,已知点,,以原点为位似中心,相似比为,把缩小,则点的对应点的坐标是()A.(-1, 2)B.(-9, 18)C.(-9, 18)或(9, -18) D.(-1, 2)或(1, -2)【答案】D6.如图,点O是△ABC内任一点,点D,E,F分别为OA,OB,OC的中点,则图中相似三角形有( )A.1对B.2对C.3对D.4对【答案】D【解析】因为点D,E,F分别为OA,OB,OC的中点,所以DE是△AOB的中位线,DF是△AOC的中位线,EF是△BOC的中位线,所以DE//AB,DF//AC,EF//BC,所以△DOE∽△AOD,△DOF∽△AOC,△EOF∽△BOC,因为DE是△AOB的中位线,DF是△AOC的中位线,EF是△BOC的中位线,所以,,所以,所以△DEF∽△ABC,因此有四对相似三角形,故选D.7.已知:如图,在中,,则下列等式成立的是()A.B.C.D.【答案】C8.如图,在平行四边形中,是上的一点,直线与的延长线交于点,并与交于点,下列式子中错误的是()A.B.C.D.【答案】D【解析】∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BE,∵CG∥AE,∴四边形AGCF是平行四边形,△BCG∽△BEA,△CEF∽△BEA,∴,,CF=AG,∴DF=BG,,∴选项A、B正确;∵AD∥BE,∴,∴,∴选项C正确,D不正确;故选D.9.如图,在中,是边上一点,连接,给出下列条件:①;②;③;④.其中单独能够判定的个数是()A.1个B.2个C.3个D.4个【答案】B10.点是线段的黄金分割点,且,下列命题:,中正确的有()A.1个B.2个C.3个D.4个【答案】B二、填空题(每小题3分,共30分) 11.如图,在△ABC 中,DE ∥BC ,23AD DB =,则DEBC = .【答案】25【解析】根据AD:DB=2:3可得:AD:AB=2:5,∵DE ∥BC ,∴△ADE ∽△ABC ,∴25DE AD BC AB . 12. 如图,直角三角形ABC 中,︒=∠90ACB ,10=AB , 6=BC ,在线段AB 上取一点D ,作AB DF ⊥交AC 于点F .现将ADF ∆沿DF 折叠,使点A 落在线段DB 上,对应点 记为H ;AD 的中点E 的对应点记为G. 若GFH ∆∽GBF ∆,则AD =______ ____.【答案】3.2 【解析】利用勾股定理列式求出AC=8,设AD=2x ,得到AE=DE=DE 1=A 1E 1=x ,然后求出BE 1=10-3x ,再利用相似三角形对应边成比例列式求出DF=32x ,然后利用勾股定理列式求出E 1F=132x ,然后根据相似三角形对应边成比例列式求解得到x=85,从而可得AD 的长为2×85=165=3.2. 13.如图,等边ABC △的边长为3,P 为BC 上一点,且1BP =,D 为AC 上一点,若60APD ∠=°,则CD的长为 .【答案】23.14.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥A C,AE、CD相交于点O,若S△DO E:S△COA=1:25,则S△BDE与S△CDE的比=___________.【答案】1:4【解析】根据S△DOE:S△COA=1:25可得:DE:AC=1:5,则BE:BC=1:4,即BE:CE=1:4,△BDE和△CDE是登高三角形,则S△BDE:S△CDE=BE:EC=1:4.15.如图,以点O为位似中心,将五边形ABCDE放大后得到五边形A′B′C′D′E′,已知OA=10cm,OA′=20cm,则五边形ABCDE的周长与五边形A′B′C′D′E′的周长的比值是.【答案】1:2【解析】由五边形ABCDE与五边形A′B′C′D′E′位似,可得五边形ABCDE∽五边形A′B′C′D′E′,又由OA=10cm,OA′=20cm,即可求得其相似比为1:2,根据相似多边形的周长的比等于其相似比,即可求得答案为五边形ABCDE 的周长与五边形A′B′C′D′E′的周长的比为:OA :OA′=1:2.16.把一个矩形剪去一个正方形,若剩下的矩形与原矩形相似,则原矩形的长边与短边之比为 【答案】152【解析】设原矩形的长为x ,宽为y ,则剩下的矩形的长为y ,宽为(x -y),根据矩形相似可求出比值. 17.如图,菱形ABCD 的边长为1,直线l 过点C ,交AB 的延长线于M ,交AD 的延长线于N ,则AM1+AN1= .【答案】1.18.如图,在菱形ABCD 中,E 是BC 边上的点,AE 交BD 于点F ,若EC=2BE ,则BFFD的值是 .【答案】13【解析】根据菱形的性质得出AD=BC ,AD ∥BC ,求出AD=3BE ,根据相似三角形的判定得出△AFD ∽△EFB ,根据相似得出比例式BF BE DF AD =,代入求出即可求得结果为13. 19.已知女排赛场球网的高度是2.24米,某排球运动员在一次扣球时,球恰好擦网而过,落在对方场地距离球网4米的位置上,此时该运动员距离球网1.5米,假设此次排球的运行路线是直线,则该运动员击球的高度是 米.41.52.24【答案】3.08 【解析】根据三角形相似的性质可得:x24.25.144=+,则x=3.08 20.如图,在矩形ABCD 中,AB=2,AD=,在边CD 上有一点E ,使EB 平分∠AEC.若P 为BC 边上一点,且BP=2CP ,连接EP 并延长交AB 的延长线于F .给出以下五个结论: ①点B 平分线段AF ;②PF=DE ;③∠BEF=∠FEC;④S 矩形ABCD =4S △BPF ;⑤△AEB 是正三角形.其中正确结论的序号是.【答案】①②③⑤在Rt△BPF 中,BF=2,由勾股定理可求得PF=22BF BP +=22343⎛⎫+ ⎪ ⎪⎝⎭=433,∵DE=1,∴PF=433DE ,故②正确;在Rt△BCE 中,EC=1,BC=3,由勾股定理可求得BE=2,∴BE=BF,∴∠BEF=∠F,又∵AB∥CD,∴∠FEC=∠F,∴∠BEF=∠FEC, 故③正确;∵AB=2,AD=3,∴S 矩形ABCD =AB×AD=2×3=23,∵BF=2,BP=433,∴S △BPF =12BF×BP=12×2×433=433, ∴4S △BPF =1633,∴S 矩形ABCD =≠4S △BPF ,故④不正确; 由上可知AB=AE=BE=2,∴△AEB 为正三角形,故⑤正确; 综上可知正确的结论为:①②③⑤.故答案为:①②③⑤. 三、解答题(共60分)21.(本题6分)如图,在△ABC 中,D 是AB 上一点,且∠ACD=∠B,已知AD=8cm ,BD=4cm ,求AC 的长.【答案】4622.(本题6分)如图,在边长为1 的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点)和格点O ,按要求画出格点△A 1B 1C 1和格点△A 2B 2C 2. (1)将△ABC 绕O 点顺时针旋转90°,得到△A 1B 1C 1;(2)以A 1为一个顶点,在网格内画格点△A 1B 2C 2,使得△A 1B 1C 1∽△A 1B 2C 2,且相似比为1:2.【答案】(1)图形见解析;(2)图形见解析.【解析】(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A1B2C2,即为所求.23.(本题6分)如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.【答案】4.【解析】∵DE⊥AB,∴∠BED=90°,又∠C=90°,∴∠BED=∠C.又∠B=∠B,∴△BED∽△BCA,∴BD DEAB AC,∴DE=BD ACAB⋅=8714⨯=4.24.(本题8分)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【答案】(1)证明见解析;(2) AD=3525.(本题7分)为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一根标杆、皮尺,设计如图所示的测量方案.已知测量同学眼睛A、标杆顶端F、树的顶端E在同一直线上,此同学眼睛距地面1.6米,标杆高为3.2米,且BC=2米,CD=6米,求树ED的高.【答案】8米【解析】如图,过A作AH垂直ED,垂足为H,交线段FC与G,由题知,FG//EH, △AFG∽△AEH,FG AG EH AH=又因为AG=BC=2,AH=BD=2+6=8,FG=FC-GC=3.2 -1.6=1.6,所以1.628EH=,EH=6.4,∴ED=EH+HD=6.4+1.6=8 树ED的高为8米26.(本题8分)如图,正方形A1A2B1C1,A2A3B2C2,…A n a n+1B n C n,如图位置依次摆放,已知点C1,C2,C3…,C n在直线y=x上,点A1的坐标为(1,0).(1)写出正方形A1A2B1C1,A2A3B2C2,…A n a n+1B n C n,的位似中心坐标;(2)正方形A4A3B4C4四个顶点的坐标.【答案】(1)(0,0);(2)A4(8,0),A5(16,0),B4(16,8),C4(8,8).27.(本题8分)如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.(1)求证:AE•BC=BD•AC;(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.【答案】(1)证明见解析;(2) BC=10.28.(本题11分) (1)、问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)、探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)、应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.【答案】(1)证明见解析;(2)证明见解析;(3) t=1秒或5秒.【解析】(1)、如图1 ∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠ADP =∠BPC ∴△ADP∽△BPC.∴ADBP=APBC.即AD·BC=AP·BP.(2)结论AD·BC=AP·BP 仍成立.理由:如图2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠ADP,∴∠DPC+∠BPC =∠A+∠ADP,∵∠DPC =∠A=θ,∴∠BPC =∠ADP ,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴ADBP=APBC.,∴AD·BC=AP·BP.(3)如图3,过点D作DE⊥AB于点E,∵AD=BD=5,AB=6,∴AE=BE=3,由勾股定理得DE=4,∴DC=DE=4,∴BC=5-4=1,又∵AD=BD,∴∠A=∠B,由已知,∠DPC =∠A,∴∠DPC =∠A=∠B,由(1)、(2)可得:AD·BC=AP·BP,又AP=t,BP=6-t,∴t(6-t)=5×1,解得t1=1,t2=5,∴t的值为1秒或5秒.。

人教版九年级下册《第27章相似》单元评估检测试卷(有答案)-(数学)

人教版九年级下册《第27章相似》单元评估检测试卷(有答案)-(数学)

人教版九年级数学下册第27章相似单元评估检测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 已知3x =25,则x的值是()A.103B.152C.310D.2152. 如图,C是线段AB上的一点,且AC:CB=2:3,那么AB:BC等于()A.2:3B.5:3C.3:2D.3:53. 如图,在△ABF中,D为AB的中点,C为BF上一点,AC与DF交于点E,AE=34AC,则BCCF的值为()A.1B.34C.43D.24. 如图所示,点C是线段AB的黄金分割点,且AC<BC,AC=mBC,则m的值是()A.√5−12B.√5+12C.3−√52D.√5−25. 如图,∠PAQ=∠MBN=30∘,∠MBN的顶点B在射线AP上,射线BM和射线BN分别交射线AQ于点C、D,当∠MBN绕点B转动时.若AB=2√3,则CA⋅CD的最小值是()A.3B.√3C.4D.126. 如图,△ABC中,D为BC边上一点,且BD:DC=1:2,E为AD中点,则S△ABE:S△ABF=()A.2:1B.1:2C.1:3D.2:37. 已知两个相似三角形周长分别为8和6,则它们的面积比为()A.4:3B.16:9C.2:√3D.√3:√28. 如图L1 // L2 // L3,AB=4,DE=3,EF=6,则BC的长()A.4B.6C.8D.109. 如图,将矩形ABCD沿对角线BD折叠,使C落在F处,BF交AD于E,则下列结论不一定成立的是()A.△ABE∽△CBDB.∠EBD=∠EDBC.AD=BFD.sin∠ABE=AEDE10. 把矩形ABCD对折,折痕为MN,且矩形DMNC与矩形ABCD相似,则矩形ABCD的长AD与宽AB的比为()A.1:√3B.1:√2C.√3:1D.√2:1二、填空题(本题共计 8 小题,每题 3 分,共计24分,)11. 如果两个相似多边形面积的比为4:9,那么这两个相似多边形周长的比是________.12. 若两个相似三角形的面积比是4:9,则这两个三角形的周长比为________;对应边上的中线的比为________.13. 如图,在矩形ABCD中,点E在AD上,EF⊥BE交CD于F,连接BF,则图中与△ABE一定相似的三角形是________.14. 在△ABC中,AB>BC>AC,D是AC的中点,过点D作直线L,使截得的三角形与原三角形相似,这样的直线L有________条.15. 在阳光下,一名同学测得一根长为1米的竹竿的影长为0.8米,同时另一名同学测得一棵树落在学校墙壁上的影长为1.2米,此树落在地面上的影长为2.4米,则此树的高为________米.16. 如图,在△ABC中,AB=AC,∠A=36∘,BD平分∠ABC交AC于点D,下列结论中:①BD=BC=AD;②S△ABD:S△BCD=AD:DC;③BC2=CD⋅AC;④若AB=2,则BC=√2−1,其中正确结论的个数是________个.17. 如图所示,为了测量操场上的树高,小明拿来一面小镜子,平放在离树根部12m的地面上,然后他沿着树根和镜子所在直线后退,当他退了4m时,正好在镜中看见树的顶端.若小明的目高为1.6m,则树的高度是________.18. 在四边形ABCD中,E是对角线AC上的一点,EF // AB,EG // CD,求EFAB +EGCD=________.三、解答题(本题共计 6 小题,共计66分,)19.(10分) 如图,AD是直角三角形△ABC斜边上的高(1)若AD=6cm,CD=12cm,求BD的长;(2)若AB=15cm,BC=25cm,求BD的长.20.(10分) 如图,在直角坐标系中,△ABC是格点三角形(三角形的三个顶点都是小正方形的顶点).(1)在第一象限内找一点P,以格点P、A、B为顶点的三角形与△ABC相似但不全等,请写出符合条件格点P的坐标;(2)请用直尺与圆规在第一象限内找到两个点M、N,使∠AMB=∠ANB=∠ACB.请保留作图痕迹,不要求写画法.21.(10分) 如图所示,在矩形ABCD中,对角线AC,BD相交于点O.(1)过点O作0E⊥BC于点E,连接DE交OC于点F,作FG⊥BC于G点,则△ABC与△FGC是位似图形吗?若是,请说出位似中心,并求出位似比;若不是,请说明理由.(2)连接DG交AC于点H,作HI⊥BC于I,试确定CIBC的值.22.(12分) 如图,有三条线段AB、BD、DC,AB=6,BD=8,DC=2,且AB // DC.点E和点F分别为BD上的两个动点,且DFBE =13.(1)求证:△ABE∽△CDF;(2)当EF=2时,求BE的长度;(3)在以上2个问题的解题过程中,概括(或者描述)你所用到数学基本知识(定义、定理等)或者是利用的数学思想方法.(共写出2点即可)23. (12分)如图是几组三角形的组合图形,图①中,△AOB ∽△DOC ;图②中,△ABC ∽△ADE ;图③中,△ABC ∽△ACD ;图④中,△ACD ∽△CBD .小Q 说:图①、②是位似变换,其位似中心分别是O 和A .小R 说:图③、④是位似变换,其位似中心是点D .请你观察一番,评判小Q ,小R 谁对谁错.24.(12分) 如图1,点C 将线段AB 分成两部分,如果AC AB =BC AC ,那么称点C 为线段AB 的黄金分割点,某教学兴趣小组在进行研究时,由“黄金分割点”联想到“黄金分割线”,类似的给出“黄金分割线”的定义:“一直线将一个面积为S 的图形分成两部分,这两部分的面积分别为S 1,S 2,如果S 1S =S 2S 1,那么称这条直线为该图形的黄金分割线.(1)如图2,在△ABC 中,∠A =36∘,AB =AC ,∠C 的平分线交AB 于点D ,请问直线CD 是不是△ABC 的黄金分割线,并证明你的结论;(2)如图3,在边长为1的正方形ABCD 中,点E 是边BC 上一点,若直线AE 是正方形ABCD 的黄金分割线,求BE 的长.答案1. B2. B3. D4. A5. A6. D7. B8. C9. A10. D11. 2:312. 2:32:313. △DEF14. 415. 4.216. 417. 4.8m18. 119. 解:(1)∵AD是直角三角形△ABC斜边上的高,∴AD2=CD⋅BD,∴BD=6212=3(cm);(2)∵AD是直角三角形△ABC斜边上的高,∴AB2=BD⋅BC,∴BD=15225=9(cm).20. 解:(1)如图所示:P(1, 4)或P′(3, 4);(2)作△ABC的外接圆,在ACB^上取两点M,N即可.21. 解:(1)∵FG⊥BC,AB⊥BC,∴FG // AB,∴△ABC∽△FGC,△ABC与△FGC对应顶点的连线相交于一点,对应边互相平行或重合,∴△ABC与△FGC是位似图形,位似中心是点C,∵BO=OD,OE // CD,∴DCOE =BDOB=2∴CFFO =DCOE=2,∴CGCE =23,∴CGCB =13,则△ABC与△FGC的位似比为3;(2)由(1)得,EGEC =13,FG // CD,∴FGCD =EGEC=13,∴CICG =CHCF=34,又CGCE=23,∴CICE =12,∴CIBC =14.22. (1)证明:∵AB // CD∴∠B=∠D,又∵CDAB =13,DEBE=13,∴△ABE∽△CDF.(2)解:设BE=x,则DF=13x,又∵BD=8,∴x+13x=8−2,解得:x=92,∴BE的长度为:92.(3)解:①两直线平行,内错角相等②相似三角形对应边成比例③两边对应成比例,且夹角相等的两个三角形相似④分类讨论思想⑤数形结合思想⑥方程思想(列方程解决实际问题).23. 解:根据位似图形的定义得出:小Q 对,①,②都可以看成位似变换,位似中心分别为O 、A ,③、④虽然都存在相似三角形,但对应顶点的连线不相交于一点,而且对应边也不平行,所以③、④不是位似变换.24. 解:(1)直线CD 是△ABC 的黄金分割线.理由:如图2,∵AB =AC ,∠A =36∘,∴∠ABC =∠ACB =180∘−36∘2=72∘. ∵CD 平分∠ACB ,∴∠ACD =∠BCD =12∠ACB =36∘, ∴∠BDC =72∘=∠B ,∠A =∠ACD ,∴BC =DC ,AD =DC ,∴BC =AD .∵∠B =∠B ,∠BCD =∠A ,∴△BCD ∽△BAC ,∴BD BC =BC BA ,∴BD DA =DA BA .∵S △BCD S △ADC =BD AD ,S △ADC S △ABC =AD AB , ∴S △BCDS △ADC =S △ADC S △ABC ,∴直线CD 是△ABC 的黄金分割线;(2)设BE =x ,如图3,∵正方形ABCD 的边长为1,∴S △ABE =12AB ⋅BE =12x ,S 正方形ABCD =12=1, ∴S 四边形ADCE =1−12x .∵直线AE 是正方形ABCD 的黄金分割线,∴S △ABES 四边形ADCE =S 四边形ADCE S 正方形ABCD , ∴S 四边形ADCE 2=S △ABE ⋅S 正方形ABCD ,∴(1−12x)2=12x ⋅1,整理得:x 2−6x +4=0,解得:x 1=3+√5,x 2=3−√5.∵点E 是边BC 上一点,∴x <1,∴x =3−√5,∴BE 长为3−√5.。

人教版数学九年级下学期第27章《相似》单元考试测试卷(配答案)

人教版数学九年级下学期第27章《相似》单元考试测试卷(配答案)

人教版数学九年级放学期期第 27 章《相像》单元测试卷(配答案)(满分120 分,限时120 分钟)一、选择题(每题 3 分,共 30 分 )1.以下四条线段为成比率线段的是( B )A .a= 10,b= 5, c=4, d= 7B . a= 1, b= 3,c=6, d= 2C. a= 8, b=5, c= 4,d= 3 D . a=9, b=3,c= 3, d= 62.两个相像多边形的面积比是9∶ 16,此中较小多边形的周长为36 cm,则较大多边形的周长为( A )A .48 cm B. 54 cm C. 56 cm D. 64 cm3.如图,△ABC 中,∠ A = 78°,AB = 4,AC = 6.将△ ABC 沿图示中的虚线剪开,剪下的暗影三角形与原三角形不相像的是( C )4.如图,为估量某河的宽度,在河对岸边选定一个目标点 A ,在近岸取点B, C,D ,使得 AB ⊥BC ,CD⊥ BC ,点 E 在 BC 上,而且点 A, E, D 在同一条直线上.若测得BE = 20 m, EC= 10 m, CD = 20 m,则河的宽度AB 等于 ( B )A .60 mB .40 m C. 30 m D . 20 m,第 4 题图 )5.如图, E(- 4,2) ,F(- 1,- 1),以,第 5 题图 )O 为位似中心,按比率尺1∶2 把△ EFO,第 6 题图 )减小,则点 E 的对应点 E′的坐标为( A )A .(2,- 1)或 (- 2,1)B . (8,- 4)或 (- 8, 4) C. (2,-1) D . (8,- 4)6.如图,若∠ 1=∠ 2=∠ 3,则图中的相像三角形有( D )A .1 对B. 2 对C.3 对D. 4 对7.如图,在平行四边形 ABCD 中,点 E 在边 DC 上, DE ∶ EC= 3∶1,连结 AE 交 BD 于点 F,则△ DEF 的面积与△ BAF 的面积之比为 ( B )A .3∶ 4 B. 9∶16 C. 9∶ 1 D . 3∶ 1,第 7 题图 ),第 8 题图 ),第 9 题图 ),第 10 题图 )8.如图,在平面直角坐标系的4× 4 的正方形方格中,△ABC是格点三角形(三角形的三个极点是小正方形的极点 ),若以格点 P, A , B 为极点的三角形与△ABC 相像 (全等除外 ),则格点 P 的坐标是 ( D )A .(1, 4) B. (3, 4) C.(3 ,1)D. (1, 4)或 (3, 4)9.如图,在四边形 ABCD 中,∠ B= 90°,AC = 4, AB ∥CD , DH 垂直均分 AC ,点 H 为垂足.设AB = x, AD =y,则 y 对于 x 的函数关系用图象大概能够表示为 ( D )10.如图,在四边形ABCD 中, AD ∥ BC,∠ABC = 90°, E 是 AB 上一点,且 DE ⊥CE.若 AD = 1,BC =2, CD= 3,则 CE 与 DE 的数目关系正确的选项是( B )A .CE=3DEB .CE=2DE C. CE=3DE D. CE= 2DE二、填空题 (每题 3 分,共 24 分 )3.6 厘米,那么A, B 两地的实质距离11.假如在比率1∶ 2000000 的地图上,A ,B 两地的图上距离为为__72__千米.12.如图,已知∠ A =∠ D,要使△ ABC ∽△ DEF ,还需增添一个条件,你增添的条件是 __AB ∥ DE (答案不独一 )__.(只要写一个条件,不增添协助线和字母 ),第 12 题图 ),第 13题图 ),第 14 题图 ),第 15 题图 )13.如图,在△ ABC 中,点 D,E,F 分别在 AB ,AC ,BC 上,DE ∥BC, EF∥ AB. 若 AB = 8,BD = 3,12BF =4,则 FC 的长为 __ 5 __.14.如图,在△ ABC 中, AB = 2, AC = 4,将△ ABC 绕点 C 按逆时针方向旋转获得△ A ′ B′ C,使CB ′∥ AB ,分别延伸 AB , CA ′订交于点 D,则线段 BD 的长为 __6__.2 15.如图,矩形 EFGH 内接于△ ABC ,且边 FG 落在 BC 上,若 AD ⊥BC ,BC=3,AD = 2,EF=3EH,3那么 EH 的长为 __ __.16.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池 ABCD ,东边城墙 AB 长 9 里,南边城墙 AD 长 7 里,东门点E,南门点 F 分别是 AB ,AD 的中点,EG⊥ AB ,FH⊥ AD ,EG= 15 里,HG 经过 A 点,则 FH= __1.05__ 里.,第 16 题图 ),第 17 题图 ),第 18题图 )17. 如图,点 M 是 Rt △ ABC 的斜边 BC 上异于 B , C 的一点 ,过 M 点作直线截△ ABC ,使截得的三角形与△ ABC 相像,这样的直线共有 __3__条.18. 如图,在矩形 ABCD 中, E 是 AD 边的中点 , BE ⊥ AC 于点 F ,连结 DF ,剖析以下四个结论:①△AEF ∽△ CAB ;② CF = 2AF ;③ DF = DC ;④ S 四边形 CDEF = 5S △ABF .此中正确的结论有 __①②③④ __.(填序号 )2三、解答题 (共 66 分)19. (8 分 )图,△ ABC 三个极点的坐标分别为 A(0 , - 3), B(3 , - 2), C(2, - 4),正方形网格中 ,每个小正方形的边长是 1 个单位长度.(1)画出△ ABC 向上平移 6 个单位获得的△ A 1B 1C 1;(2)以点 C 为位似中心 ,在网格中画出△ AB C ,使△ A B C 与△ ABC 位似,且△ A B C 与△ ABC 的2 222 2 2 2 2 2相像比为 2∶ 1,并直接写出点 A 2 的坐标.解: (1)图略(2)图略, A 2(-2, - 2)20. (8 分 )如图,已知 AB ∥ CD , AD ,BC 订交于点 E , F 为 BC 上一点 ,且∠ EAF =∠ C.求证: (1)∠ EAF =∠ B ; (2)AF 2 = FE · FB.解: (1)∵ AB ∥CD , ∴∠ B =∠ C ,又∠ C =∠ EAF , ∴∠ EAF =∠ BAFFE , ∴ AF 2= FE · FB(2)∵∠ EAF =∠ B ,∠ AFE =∠ BFA , ∴△ AFE ∽△ BFA ,则 BF=FA21.(9 分 )如图 ,已知 B ,C ,E 三点在同一条直线上 ,△ ABC 与△ DCE 都是等边三角形 ,此中线段 BD 交AC 于点 G ,线段 AE 交 CD 于点 F.求证: (1)△ ACE ≌△ BCD ; (2) AG GC = AFFE .解: (1)∵△ ABC 与△ CDE 都是等边三角形 ,∴ AC = BC , CE = CD , ∠ ACB =∠ DCE = 60° ,∴∠ ACB +∠ ACD =∠ DCE +∠ ACD ,即∠ ACE =∠ BCD ,可证△ ACE ≌△ BCD (SAS) (2)∵△ ACE ≌△ BCD , ∴∠ AEC =∠ BDC ,可证△ GCD ≌△ FCE (ASA ),∴ CG =CF ,∴△ CFG 为等边三角形 ,∴∠ CGF =∠ ACB= 60° , ∴ GF ∥ CE , ∴AG= AFGC FE22. (9 分 )王亮同学利用课余时间对学校旗杆的高度进行丈量直搁置于旗杆一侧的地面上 ,测得标杆底端距旗杆底端的距离为正直漂亮不到旗杆顶端时为止 ,测得此时人与标杆的水平距离为,他是这样丈量的:把长为 3 m 的标杆垂15 m ,而后往退后 ,直到视野经过标杆顶2 m ,已知王亮的身高为1.6 m ,请帮他计算旗杆的高度. (王亮眼睛距地面的高度视为他的身高)解:依据题意知 AB ⊥ BF , CD ⊥ BF , EF ⊥ BF , EF = 1.6 m ,CD = 3 m , FD =2 m , BD = 15 m ,过 E点作 EH ⊥ AB ,交 AB 于点 H ,交 CD 于点 G ,则 EG ⊥CD , EH ∥FB ,EF = DG = BH , EG = FD ,CG =EGCG 2 3- 1.6 , ∴AH = 11.9m ,因此 AB = AH + HB = AH CD - EF , ∴△ ECG ∽△ EAH , ∴ EH = AH ,即2+ 15=AH +EF =11.9+ 1.6= 13.5(m),即旗杆的高度为 13.5 m23.(10 分 )如图 ,在△ ABC 中,以 AC 为直径的⊙ O 与边 AB 交于点 D ,点 E 为⊙ O 上一点 ,连结 CE 并延伸交 AB 于点 F ,连结 ED.(1)若∠ B +∠ FED = 90° ,求证: BC 是⊙ O 的切线; (2)若 FC = 6, DE = 3,FD = 2,求⊙ O 的直径.解: (1)∵∠ A +∠ DEC =180° ,∠ FED +∠ DEC = 180° , ∴∠ FED =∠ A , ∵∠ B +∠ FED = 90° ,∴∠ B +∠ A = 90° ,∴∠ BCA = 90° ,∴ BC 是⊙ O 的切线 (2)∵∠ CFA =∠ DFE , ∠ FED =∠ A , ∴△DFDE 2 3,解得 AC = 9,即⊙ O 的直径为 9FED ∽△ FAC , ∴FC =AC , ∴6= AC24. (10 分 )如图 ,在平行四边形 ABCD 中,过点 A 作 AE ⊥ BC ,垂足为 E ,连结 DE ,F 为线段 DE 上一点 ,且∠ AFE =∠ B.(1)求证:∠ DAF =∠ CDE ; (2)△ ADF 与△ DEC 相像吗?为何?(3)若 AB = 4,AD = 3 3, AE = 3,求 AF 的长.解: (1)∵∠ AFE =∠ DAF +∠ FDA ,又∵四边形ABCD 为平行四边形,∴∠ B =∠ ADC =∠ ADF +∠CDE ,又∵∠ AFE =∠ B ,∴∠ DAF =∠ CDE (2)△ ADF ∽△ DEC ,原因:∵四边形ABCD 是平行四边形,∴AD ∥ BC ,∴∠ ADF =∠ CED ,由 (1)知∠ DAF =∠ CDE ,∴△ ADF ∽△ DEC (3)∵四边形ABCD是平行四边形,∴ AD ∥ BC ,CD = AB = 4,又∵ AE ⊥ BC ,∴ AE ⊥AD ,在Rt △ ADE 中, DE =AD 2+ AE 2=( 33)2+ 32= 6,∵△ ADFAD AF3 3∽△ DEC ,∴ DE = CD ,∴ 6=AF4 ,∴ AF = 2 325. (12 分 )如图① ,在 Rt△ ABC 中,∠BAC =90°, AD ⊥ BC 于点 D,点 O 是 AC 边上一点,连结BO 交 AD 于点 F, OE⊥ OB 交 BC 边于点 E.(1)求证:△ ABF ∽△ COE;AC= 2 时,如图② ,求OF的值;(2)当 O 为 AC 的中点,AB OEAC= n 时,请直接写出OF 的值.(3)当 O 为 AC 边中点,AB OE解: (1)∵ AD ⊥ BC ,∴∠ DAC +∠ C= 90° .∵∠ BAC = 90°,∴∠ DAC +∠ BAF = 90°,∴∠ BAF =∠C. ∵ OE⊥ OB ,∴∠ BOA +∠ COE = 90°,∵∠ BOA +∠ ABF =90°,∴∠ ABF =∠ COE ,∴△ ABF ∽△COE ( 2)过 O 作 AC 的垂线交 BC 于点 H ,则 OH ∥ AB ,由 (1)得∠ ABF =∠ COE ,∠BAF =∠ C ,∴∠ AFB =∠ OEC ,∴∠ AFO =∠ HEO ,而∠ BAF =∠ C ,∴∠ FAO =∠ EHO ,∴△ OEH ∽△ OFA ,∴OA ∶1 1 OH = OF ∶ OE ,又∵ O 为 AC 的中点, OH ∥AB ,∴ OH 为△ ABC 的中位线,∴ OH =2AB , OA = OC =2 AC OF OFAC ,而AB = 2,∴ OA ∶ OH =2∶ 1,∴ OF ∶ OE = 2∶ 1,即OE = 2 (3)OE = n。

人教版九年级下数学《第27章相似》单元检测卷含答案

人教版九年级下数学《第27章相似》单元检测卷含答案

第27章相似单元检测卷姓名:__________ 班级:__________一、选择题(每小题3分;共36分)1.如果=,那么的值是()A. B. C. D.2.已知线段a=2,b=8,线段c是线段a、b的比例中项,则c=()A. 2B. ±4C. 4D. 83.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC.若=,AD=9,则AB等于()A. 10B. 11C. 12D. 164.如图,∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,则CD的长为()A. B. C. 2 D. 35.如图所示,在平面直角坐标系中,有两点A(4,2),B(3,0),以原点为位似中心,A′B′与AB的相似比为,得到线段A′B′.正确的画法是()A. B.C. D.6.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()A. 30°B. 50°C. 40°D. 70°7.如图所示,长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下矩形与原矩形相似,那么剩下矩形的面积是()A. 28cm2B. 27cm2C. 21cm2D. 20cm28.如图,BD、CE相交于点A,下列条件中,能推得DE∥BC的条件是()A. AE:EC=AD:DBB. AD:AB=DE:BCC. AD:DE=AB:BCD. BD:AB=AC:EC9.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,若EF:AF=2:5,则S△DEF:S为()四边形EFBCA. 2:5B. 4:25C. 4:31D. 4:3510.下列两个图形一定相似的是()A. 任意两个等边三角形B. 任意两个直角三角形C. 任意两个等腰三角形D. 两个等腰梯形11.如图,在四边形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC 的面积为2,那么四边形ABED的面积是()A. B. C. D.12.如果两个相似多边形的面积比为16:9,那么这两个相似多边形的相似比为()A. 16:9B. 4:3C. 2:3D. 256:81二、填空题(共9题;共27分)13.如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABC的面积为a,则△ACD的面积为________ .14.如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为________ m.15.若= ,则=________.16.如图,在△ABC中,若DE∥BC ,,DE=4cm,则BC的长为________cm.17.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,BD=3,CD=12,则AD的长为________18.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD:DB=1:2,AE=2,则AC=________ .19. 如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m,BD=14m,则旗杆AB的高为________m.20.已知= ,则的值是________.21.如图,把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中的阴影部分)的面积是△ABC 的面积的一半,若AB=,则此三角形移动的距离AA′=________.三、解答题(共4题;共37分)22.如图,矩形ABCD∽矩形ECDF,且AB=BE,求BC与AB的比值.23.已知:AB⊥BC于B,CD⊥BC于C,AB=4,CD=6,BC=14,点P在BD上移动,当以P,C,D为顶点的三角形与△ABP相似时,求PB的长?24.如图,直线l1、l2、l3分别交直线l4于点A、B、C,交直线l5于点D、E、F,且l1∥l2∥l3,已知EF:DF=5:8,AC=24.(1)求AB的长;当AD=4,BE=1时,求CF的长.25.如图,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)点G在BE上,且∠BDG=∠C,求证:DG•CF=DM•EG;(2)在图中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.参考答案一、选择题C C C BD A B A C A A B二、填空题13.14.9 15.16.12 17.618 . 6 19.9 20.21.-1三、解答题22.解:∵矩形ABCD∽矩形ECDF,∴,即∴BC2﹣BC•AB﹣CD2=0,解得,BC=CD,∵BC、CD是正数,∴23.解:(1)当△ABP∽△PCD时,=,则=,解得BP=2或BP=12;(2)当△ABP∽△DCP时,=,则=,解得BP=5.6.综合以上可知,当BP的值为2,12或5.6时,两三角形相似.24.解:(1)∵l1∥l2∥l3,EF:DF=5:8,AC=24,∴,∴,∴BC=15,∴AB=AC﹣BC=24﹣15=9.(2)解:∵l1∥l2∥l3,∴,∴,∴OB=3,∴OC=BC﹣OB=15﹣3=12,∴,∴,∴CF=4.25.(1)证明:如图1所示,∴D,E分别为AB,BC中点,∴DE∥AC∵DM∥EF,∴四边形DEFM是平行四边形,∴DM=EF,如图2所示,∵D、E分别是AB、BC的中点,∴DE∥AC,∴∠BDE=∠A,∠DEG=∠C,∵∠AFE=∠A,∴∠BDE=∠AFE,∴∠BDG+∠GDE=∠C+∠FEC,∵∠BDG=∠C,∴∠GDE=∠FEC,∴△DEG∽△ECF;∴,∴,∴,∴DG•CF=DM•EG(2)解:如图3所示,∵∠BDG=∠C=∠DEB,∠B=∠B,∴△BDG∽△BED,∴,∴BD2=BG•BE,∵∠AFE=∠A,∠CFH=∠B,∴∠C=180°﹣∠A﹣∠B=180°﹣∠AFE﹣∠CFH=∠EFH,又∵∠FEH=∠CEF,∴△EFH∽△ECF,∴= ,∴EF2=EH•EC,∵DE∥AC,DM∥EF,∴四边形DEFM是平行四边形,∴EF=DM=DA=BD,∴BG•BE=EH•EC,∵BE=EC,∴EH=BG=1.。

人教版九年级下册数学第 第27章 相似 单元测试卷(含答案)

人教版九年级下册数学第 第27章 相似 单元测试卷(含答案)

人教版九年级下册数学第 第二十七章 相似 单元测试卷一、选择题(每小题3分,共30分)1、下列各组图形中,必定相似的是(D)A.两个等腰三角形B.各有一个角是40°的两个等腰三角形C.两条边之比都是2∶3的两个直角三角形D.有一个角是100°的两个等腰三角形2、如图,DE ∥BC ,则下面比例式不成立的是(B)A.AD AB =AE ACB.DE BC =EC ACC.AD DB =AE ECD.BC DE =AC AE3、在△ABC 和△A′B′C′中,AB =9 cm ,BC =8 cm ,CA =5 cm ,A′B′=4.5 cm ,B′C′=2.5 cm ,C′A′=4 cm ,则下列说法错误的是(D)A.△ABC 与△A′B′C′相似B.AB 与B′A′是对应边C.两个三角形的相似比是2∶1D.BC 与B′C′是对应边4、如图,在▱ABCD 中,点E 在边DC 上,DE ∶EC =3∶1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为(B)A.3∶4B.9∶16C.9∶1D.3∶15、如图,以点O 为位似中心,将△ABC 放大后得到△DEF ,已知△ABC 与△DEF 的面积比为1∶9,则AB ∶DE 的值为(A)A.1∶3B.1∶2C.1∶ 3D.1∶96、.如果△ABC ∽△DEF ,A ,B 分别对应D ,E ,且AB ∶DE =1∶2,那么下列等式一定成立的是(D)A.BC ∶DE =1∶2B.△ABC 的面积∶△DEF 的面积=1∶2C.∠A 的度数∶∠D 的度数=1∶2D.△ABC 的周长∶△DEF 的周长=1∶27、如图,小明在打网球时,击球点距球网的水平距离为8 m ,已知网高为0.8 m ,要使球恰好能打过网,而且落在离网4 m 的位置,则球拍击球时的高度h 为( A ).A.2.4B.2.6C.3.2D.4.88、某个图形上各点的横、纵坐标都变成原来的12,连接各点所得图形与原图形相比(C) A.完全没有变化 B.扩大成原来的2倍C.面积缩小为原来的14D.关于纵轴成轴对称 9、如图,在▱ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,CD =2DE.若△DEF 的面积为10,则▱ABCD 的面积为( C )。

人教版初中数学九年级下册《第27章相似》整章测试题(含答案)

 人教版初中数学九年级下册《第27章相似》整章测试题(含答案)

人教版初中数学九年级下册《第27章相似》整章测试题(含答案)(时间90分钟,满分120分)一、填空题(每小题3分,共30分)1、如图1,在△ABC 中,AD :DB=1:2,DE ∥BC ,若△ABC 的面积为9,则四边形DBCE 的面积为 。

2、如图2,D 、E 两点分别在△ABC 的边AB 、AC 上,DE 与BC 不平行,当满足 条件(写出一个即可)时,△ADE ∽△ACB 。

图23、如图3,在8×8的网格中,每个小正方形的顶点叫做格点,△OAB 的顶点都在格点上,请在网格中画出△OAB 的一个位似图形,使两个图形以O 为位似中心,且所画图形与△的位似比为2:1。

图34、在△ABC 中,AB >BC >AC ,D 是AC 的中点,过D 作直线l ,使截得的三角形与原三角形相似,这样的直线l 有 条。

5、如图4,在矩形ABCD 中,AB=2,BC=3,对角线AC 的垂直平分线分别交AD ,BC 于点E 、F ,连结CE ,则CE 的长 。

A BCDE图1图46、雨后天晴,一学生在运动场上玩耍,从他前面2m 远处的一块小积水里,他看到了旗杆顶端的倒影,如果旗杆底端到积水处的距离为40m ,该学生的眼部高度为1.5m ,那么旗杆的高为 。

7、已知两个相似多边形的周长比为1:2,它们的面积和为25,则这两个多边形的面积分别是 和 。

8、如图5,已知在等腰直角三角形ABC 中,∠A=90°,四边形EFDH 为内接正方形,则AE :AB= 。

9、如果点C 是线段AB 靠近B 的黄金分割点,且AC=2,那么AB= 。

10、如图6,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知CE=3cm ,AB=8cm ,则图中阴影部分面积为 cm 2。

二、选择题(每小题4分,共40分)11、如图7,点A 、B 、C 、D 、E 、F 、G 、H 、K 都是7×8方格纸上的格点,为使△DEM ∽△ABC ,则点M 应是F 、G 、H 、K 四点中的( )A 、F B 、G C 、H D 、KABCDFEH图5ABCFED图6图712、已知△ABC ∽△DEF ,AB :DE=1:2,则△ABC 与△DEF 的周长比等于( )A 、1:2 B 、1:4 C 、2:1 D 、4:113、如图8,AB ∥CD ,AE ∥FD ,AE 、FD 分别交BC 于点G 、H ,则图中共有相似三角形( )A 、4对B 、5对C 、6对D 、7对14、已知==,且a-b+c=10,则a+b-c 的值为( )4a 5b 6cA 、6B 、5C 、4D 、315、两个相似五边形,一组对应边的长分别为3cm 和4.5cm ,如果它们的面积之和是78cm 2,则较大的五边形面积是( )cm 2。

人教版初中数学九年级下册《第27章 相似》单元测试卷(含答案解析

人教版初中数学九年级下册《第27章 相似》单元测试卷(含答案解析

人教新版九年级下学期《第27章相似》单元测试卷一.选择题(共36小题)1.若,则的值为()A.B.C.D.2.若,则的值是()A.1B.2C.3D.43.已知=,那么的值为()A.B.C.D.﹣4.已知线段a=2,线段b=8,线段c是a和b的比例中项,则c等于()A.2B.4C.±4D.85.已知==,且b+d≠0,则=()A.B.C.D.6.点C为线段AB的黄金分割点,且AC>BC,下列说法正确的有()①AC=AB,②AC=AB,③AB:AC=AC:BC,④AC≈0.618ABA.1个B.2个C.3个D.4个7.如果C是线段AB一点,并且AC>CB,AB=1,那么AC的长度为()时,点C是线段AB的黄金分割点.A.0.618B.C.D.8.一本书的宽与长之比为黄金比,书的宽为14cm,则它的长为()A.(7+7)cm B.(21﹣7)cm C.(7﹣7)cm D.(7﹣21)cm 9.如图,AB∥CD∥EF,直线l1,l2分别与这三条平行线交于点A,C,E和点B,D,F,则下列式子不定成立的是()A.=B.=C.=D.=10.AD是△ABC的中线,E是AD上一点,AE=AD,BE的延长线交AC于F,则的值为()A.B.C.D.11.下列说法正确的是()A.矩形都是相似图形B.各角对应相等的两个五边形相似C.等边三角形都是相似三角形D.各边对应成比例的两个六边形相似12.下列说法正确的是()A.菱形都相似B.正六边形都相似C.矩形都相似D.一个内角为80°的等腰三角形都相似13.下列说法正确的是()A.菱形都是相似图形B.各边对应成比例的多边形是相似多边形C.等边三角形都是相似三角形D.矩形都是相似图形14.下列说法中不正确的是()A.相似多边形对应边的比等于相似比B.相似多边形对应角平线的比等于相似比C.相似多边形周长的比等于相似比D.相似多边形面积的比等于相似比15.两个相似六边形的相似比为3:5,它们周长的差是24cm,那么较大的六边形周长为()A.40cm B.50cm C.60cm D.70cm16.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A.4:9B.2:3C.:D.16:81 17.如图的两个四边形相似,则∠α的度数是()A.87°B.60°C.75°D.120°18.如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b19.如果两个相似三角形对应高的比是4:9,那么它们的面积比是()A.4:9B.2:3C.16:81D.9:420.已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则△DEF与△ABC的面积之比为()A.9:1B.1:9C.3:1D.1:321.两个相似三角形的最短边分别为5cm和3cm,他们的周长之差为12cm,那么大三角形的周长为()A.14 cm B.16 cm C.18 cm D.30 cm22.如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,∠ACD=∠B,那么下列判断中,不正确的是()A.△ADE∽△ABC B.△CDE∽△BCD C.△ADE∽△ACD D.△ADE∽△DBC 23.下列说法正确的是()A.对角线相等且互相平分的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两角分别相等的两个三角形相似D.两边成比例且一角相等的两个三角形相似24.如图所示,下列条件中能单独判断△ABC∽△ACD的个数是()个.①∠ABC=∠ACD;②∠ADC=∠ACB;③=;④AC2=AD•ABA.1B.2C.3D.425.下列判断中,正确的是()A.各有一个角是67°的两个等腰三角形相似B.邻边之比为2:1的两个等腰三角形相似C.各有一个角是45°的两个等腰三角形相似D.邻边之比为2:3的两个等腰三角形相似26.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是()已知:如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,DF∥AC,求证:△ADE∽△DBF.证明:①又∵DF∥AC,②∵DE∥BC,③∴∠A=∠BDF,④∴∠ADE=∠B,∴△ADE∽△DBF.A.③②④①B.②④①③C.③①④②D.②③④①27.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延=4,则下列结论中不正确的是()长AD于点F,已知S△AEFA.B.S△BCE=36C.S△ABE=12D.△AFE∽△ACD 28.如图,在正方形ABCD中,以BC为边作等边△BPC,延长BP,CP分别交AD 于点E,F,连接BD、DP、BD与CF相交于点H,给出下列结论:①AE=CF;②∠BPD=135°;③△PDE∽△DBE;④ED2=EP•EB其中正确的是()A.①②③④B.②③C.①②④D.①③④29.如图,在菱形ABCD中,E为CD上一点,连接AE、BD,交于点O,若S△AOB:S△DOE=25:9,则CE:BC等于()A.2:5B.3:5C.16:25D.9:2530.身高1.6米的小明利用影长测量学校旗杆的高度,如图,当他站在点C处时,他头顶端的影子正好与旗杆顶端的影子重合在点A处,测量得到AC=2米,CB=18米,则旗杆的高度是()A.8米B.14.4米C.16米D.20米31.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,若AC=2,AB=3,则CD 为()A.B.C.2D.332.如图,在Rt△ABC中,∠C=90°,CD⊥AB,AD=4,BD=9,则CD的长是()A.B.6C.D.33.在平面直角坐标系中,点A(﹣6,2),B(﹣4,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣3,1)B.(﹣12,4)C.(﹣12,4)或(12,﹣4)D.(﹣3,1)或(3,﹣1)34.如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A'B'C'D'及其内部的点,其中点A、B的对应点分别为A',B'.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F'与点F重合,则点F的坐标是()A.(1,4)B.(1,5)C.(﹣1,4)D.(4,1)35.如图,已知△A1OB1与△A2OB2位似,且△A1OB1与△A2OB2的周长之比为1:2,点A1的坐标为(﹣1,2),则点A2的坐标为()A.(1,﹣4)B.(2,﹣4)C.(﹣4,2)D.(﹣)36.在平面直角坐标系中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(0,3),以O为位似中心,△OA′B′与△OAB位似,若B点的对应点B′的坐标为(0,﹣6),则A点的对应点A′坐标为()A.(﹣2,﹣4)B.(﹣4,﹣2)C.(﹣1,﹣4)D.(1,﹣4)二.填空题(共10小题)37.在比例尺为1:10000000的地图上,相距7.5cm的两地A、B的实际距离为千米.38.如果线段m是线段a、b、c的第四比例项,已知a=4,b=5,c=8,那么线段m的长等于.39.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若=,AE=4,则EC等于.40.如图.△ABC的中线AD、BE相交于点G,过点G作GH∥AC交BC于点H,如果GH=2,那么AC=.41.为了估算河的宽度,我们可以在河对岸的岸边选定一个目标记为点A,再在河的这一边选点B和点C,使得AB⊥BC,然后再在河岸上选点E,使得EC⊥BC,设BC与AE交于点D,如图所示,测得BD=120米,DC=60米,EC=50米,那么这条河的大致宽度是.42.有一块三角形的余料△ABC,它的高AH=40mm,边BC=80mm,要把它加工成一个矩形,使矩形的一边EF落在BC上,其余两个顶点DG分别在AB,AC 上,且DG=2DE,则矩形的面积为mm2.43.已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1、B1D1相交于点O,以点O为坐标原点,分别以OB1,OA1所在直线为x轴、y轴建立如图所示的直角坐标系,以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在y轴的正半轴上得到点A1,A2,A3,…,A n,则点A2018的坐标为44.如图,Rt△ABC中,∠BAC=90°,AD⊥BC,若BD=1,AD=3,则CD=.45.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,AD=4,BD=1,则CD的长为.46.如图,AB⊥AC,AD⊥BC,已知AB=6,BC=9,则图中线段的长BD=,AD=,AC=.三.解答题(共4小题)47.如图,AB为⊙O的直径,点C为⊙O上一点,AD和过点C的切线相互垂直,垂足为D.(1)求证:AC平分∠DAB;(2)AD交⊙O于点E,若AD=3CD=9,求AE的长度.48.如图,小明在A时测得某树的影长DE为2m,B时又测得该树的影长EF为8m,若两次日照的光线互相垂直,求树的高度CE是多少?49.如图,矩形ABCD中,AB=4,BC=m(m>1),点E是AD边上一定点,且AE=1.(1)当m=3时,AB上存在点F,使△AEF与△BCF相似,求AF的长度.(2)如图②,当m=3.5时.用直尺和圆规在AB上作出所有使△AEF与△BCF相似的点F.(不写作法,保留作图痕迹)(3)对于每一个确定的m的值,AB上存在几个点F,使得△AEF与△BCF相似?50.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1;(3)四边形AA2C2C的面积是平方单位.人教新版九年级下学期《第27章相似》单元测试卷参考答案与试题解析一.选择题(共36小题)1.若,则的值为()A.B.C.D.【分析】根据比例的性质解答即可.【解答】解:因为,所以b=,把b=代入则=,故选:B.【点评】此题考查比例的性质,关键是根据比例的性质代入解答.2.若,则的值是()A.1B.2C.3D.4【分析】先设=k,用k分别表示出x,y,z,进而代入解答即可.【解答】解:设=k,则x=2k,y=7k,z=5k,把x=2k,y=7k,z=5k代入,故选:B.【点评】此题考查比例的性质,关键是设=k解答.3.已知=,那么的值为()A.B.C.D.﹣【分析】直接利用已知将原式变形进而得出答案.【解答】解:∵=,∴3a﹣3b=2b,则3a=5b,故=.故选:B.【点评】此题主要考查了比例的性质,正确将已知变形是解题关键.4.已知线段a=2,线段b=8,线段c是a和b的比例中项,则c等于()A.2B.4C.±4D.8【分析】根据比例中项的定义得到c2=ab,然后利用算术平方根的定义求c的值.【解答】解:∵线段c是线段a、b的比例中项,∴c2=ab=2×8=16,∴c=4.故选:B.【点评】本题考查了比例线段,熟记比例中项的定义是解题的关键,要注意线段的长度是正数.5.已知==,且b+d≠0,则=()A.B.C.D.【分析】由==,和比例的性质解答即可.【解答】解:∵==,∴=,故选:A.【点评】此题考查比例的性质,关键是根据比例的性质解答.6.点C为线段AB的黄金分割点,且AC>BC,下列说法正确的有()①AC=AB,②AC=AB,③AB:AC=AC:BC,④AC≈0.618ABA.1个B.2个C.3个D.4个【分析】根据黄金分割的概念和黄金比值进行解答即可.【解答】解:∵点C数线段AB的黄金分割点,∴AC=AB,①正确;AC=AB,②错误;BC:AC=AC:AB,③正确;AC≈0.618AB,④正确.故选:C.【点评】本题考查的是黄金分割的概念,掌握把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值叫做黄金比是解题的关键.7.如果C是线段AB一点,并且AC>CB,AB=1,那么AC的长度为()时,点C是线段AB的黄金分割点.A.0.618B.C.D.【分析】根据黄金比值是计算即可.【解答】解:∵C是线段AB的黄金分割点C,AC>CB,∴AC=AB=,故选:C.【点评】本题考查的是黄金分割的概念,掌握把线段AB分成两条线段AC和BC (AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割是解题的关键.8.一本书的宽与长之比为黄金比,书的宽为14cm,则它的长为()A.(7+7)cm B.(21﹣7)cm C.(7﹣7)cm D.(7﹣21)cm 【分析】根据黄金比值是计算即可.【解答】解:由黄金比值可知,这本书的长==(7+7)cm,故选:A.【点评】本题考查的是黄金分割,掌握黄金比值是是解题的关键.9.如图,AB∥CD∥EF,直线l1,l2分别与这三条平行线交于点A,C,E和点B,D,F,则下列式子不定成立的是()A.=B.=C.=D.=【分析】根据平行线分线段成比例的性质(三条平行线截两条直线,所得的对应线段成比例),逐项分析推出正确的比例式,运用排除法即可找到正确的选项.【解答】解:∵AB∥CD∥EF,∴,,,,故选:D.【点评】本题主要考查平行线分线段成比例的性质,关键在于认真的逐项分析找到成比例的线段.10.AD是△ABC的中线,E是AD上一点,AE=AD,BE的延长线交AC于F,则的值为()A.B.C.D.【分析】作DH∥BF交AC于H,根据三角形中位线定理得到FH=HC,根据平行线分线段成比例定理得到,计算得到答案.【解答】解:作DH∥BF交AC于H,∵AD是△ABC的中线,∴FH=HC,∵DH∥BF,AE=AD,∴,∴AF:FC=1:6,∴的值故选:D.【点评】本题考查平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.11.下列说法正确的是()A.矩形都是相似图形B.各角对应相等的两个五边形相似C.等边三角形都是相似三角形D.各边对应成比例的两个六边形相似【分析】根据相似图形的定义,对应边成比例,对应角相等对各选项分析判断后利用排除法求解.【解答】解:A.矩形对应角相等,对应边不一定成比例,所以不一定是相似图形,故本选项错误;B.各角对应相等的两个五边形相似,对应角相等,对应边不一定成比例,所以不一定是相似图形,故本选项错误;C.等边三角形对应角相等,对应边成比例,所以是相似三角形,故本选项正确;D.各边对应成比例的六边形对应角不一定相等,所以不一定是相似六边形,故本选项错误;故选:C.【点评】本题考查了相似图形的定义,熟记定义是解题的关键,要注意从边与角两个方面考虑解答.12.下列说法正确的是()A.菱形都相似B.正六边形都相似C.矩形都相似D.一个内角为80°的等腰三角形都相似【分析】根据相似图形的定义,对选项进行一一分析,排除错误答案.【解答】解:A、所有的菱形,边长相等,所以对应边成比例,角不一定对应相等,所以不一定都相似,故本选项错误;B、所有的正六边形,边长相等,所以对应边成比例,角都是120°,相等,所以都相似,故本选项正确;C、所有的矩形,对应角的度数一定相同,但对应边的比值不一定相等,故本选项错误;D、一个内角为80°的等腰三角形可能是顶角80°也可能是底角是80°,无法判断,此选项错误;故选:B.【点评】本题考查的是相似形的识别,相似图形的形状相同,但大小不一定相同.13.下列说法正确的是()A.菱形都是相似图形B.各边对应成比例的多边形是相似多边形C.等边三角形都是相似三角形D.矩形都是相似图形【分析】根据相似图形的定义,对应边成比例,对应角相等对各选项分析判断后利用排除法求解.【解答】解:A、菱形对应边成比例,对应角不一定相等,所以不一定是相似图形,故本选项错误.B、各边对应成比例的多边形对应角不一定相等(如菱形),所以不一定是相似多边形,故本选项错误;C、等边三角形对应角相等,对应边成比例,所以是相似三角形,故本选项正确;D、矩形对应角相等,对应边不一定成比例,所以不一定是相似图形,故本选项错误;故选:C.【点评】本题考查了相似图形的定义,熟记定义是解题的关键,要注意从边与角两个方面考虑解答.14.下列说法中不正确的是()A.相似多边形对应边的比等于相似比B.相似多边形对应角平线的比等于相似比C.相似多边形周长的比等于相似比D.相似多边形面积的比等于相似比【分析】根据相似多边形的性质判断即可.【解答】解:若两个多边形相似可知:①相似多边形对应边的比等于相似比;②相似多边形对应角平线的比等于相似比③相似多边形周长的比等于相似比,④对应面积的比等于相似比的平方,故选:D.【点评】本题考查的是相似多边形的性质,即相似多边形对应边的比相等、应面积的比等于相似比的平方.15.两个相似六边形的相似比为3:5,它们周长的差是24cm,那么较大的六边形周长为()A.40cm B.50cm C.60cm D.70cm【分析】由于相似多边形的周长比等于相似比,可设未知数,表示出两多边形的周长;然后根据它们的周长差为4cm,求出未知数的值.进而可求出较大多边形的周长.【解答】解:由题意,可设较小多边形的周长为3x,则较大多边形的周长为5x,则有:5x﹣3x=24,解得x=12,∴5x=60,故选:C.【点评】本题考查的是相似多边形的性质,即相似多边形对应边的比相等、应面积的比等于相似比的平方.16.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A.4:9B.2:3C.:D.16:81【分析】直接根据相似多边形周长的比等于相似比,面积的比等于相似比的平方进行解答即可.【解答】解:∵两个相似多边形面积的比为4:9,∴两个相似多边形周长的比等于2:3,∴这两个相似多边形周长的比是2:3.故选:B.【点评】本题考查的是相似多边形的性质,即相似多边形周长的比等于相似比,面积的比等于相似比的平方.17.如图的两个四边形相似,则∠α的度数是()A.87°B.60°C.75°D.120°【分析】根据相似多边形的对应角相等求出∠1的度数,根据四边形内角和等于360°计算即可.【解答】解:∵两个四边形相似,∴∠1=138°,∵四边形的内角和等于360°,∴∠α=360°﹣60°﹣75°﹣138°=87°,故选:A.【点评】本题考查的是相似多边形的性质,掌握相似多边形的对应角相等、对应边相等是解题的关键.18.如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b【分析】根据对折表示出小长方形的长和宽,再根据相似多边形的对应边成比例列式计算即可得解.【解答】解:对折两次后的小长方形的长为b,宽为a,∵小长方形与原长方形相似,∴=,∴a=2b.故选:B.【点评】本题考查了相似多边形对应边成比例的性质,准确表示出小长方形的长和宽是解题的关键.19.如果两个相似三角形对应高的比是4:9,那么它们的面积比是()A.4:9B.2:3C.16:81D.9:4【分析】相似三角形对应高的比等于相似比,再根据相似三角形的面积比等于相似比的平方即可解决问题;【解答】解:∵两个相似三角形对应高之比为4:9,∴它们的相似比为4:9,∴面积比=()2=16:81.故选:C.【点评】本题考查对相似三角形性质的理解.相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方,相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.20.已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则△DEF与△ABC的面积之比为()A.9:1B.1:9C.3:1D.1:3【分析】根据相似三角形周长的比等于相似比、面积的比等于相似比的平方计算.【解答】解:∵△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,∴△ABC与△DEF的相似比为3,∴△DEF与△ABC的相似比为1:3,∴△DEF与△ABC的面积之比为1:9,故选:B.【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方是解题的关键.21.两个相似三角形的最短边分别为5cm和3cm,他们的周长之差为12cm,那么大三角形的周长为()A.14 cm B.16 cm C.18 cm D.30 cm【分析】利用相似三角形(多边形)的周长的比等于相似比得到两三角形的周长的比为5:3,于是可设两三角形的周长分别为5xcm,3xcm,所以5x﹣3x=12,然后解方程求出x后,得出5x即可.【解答】解:根据题意得两三角形的周长的比为5:3,设两三角形的周长分别为5xcm,3xcm,则5x﹣3x=12,解得x=6,所以5x=30,即大三角形的周长为30cm.故选:D.【点评】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形(多边形)的周长的比等于相似比;相似三角形的面积的比等于相似比的平方.22.如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,∠ACD=∠B,那么下列判断中,不正确的是()A.△ADE∽△ABC B.△CDE∽△BCD C.△ADE∽△ACD D.△ADE∽△DBC 【分析】若是两个三角形中两组角对应相等,那么这两个三角形相似,根据此判定作判断即可.【解答】解:∵点D、E分别在边AB、AC上,DE∥BC,∴△ADE∽△ABC.故A正确;∵DE∥BC∴∠BCD=∠EDC∵∠B=∠DCE,∴△CDE∽△BCD.故B正确;∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴△ADE∽△ACD,故C正确;△ADE与△DBC不一定相似,故D不正确;本题选择不正确的,故选:D.【点评】本题考查相似三角形的判定定理,要熟记这些判定定理才能灵活运用.23.下列说法正确的是()A.对角线相等且互相平分的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两角分别相等的两个三角形相似D.两边成比例且一角相等的两个三角形相似【分析】通过菱形的判定正方形的判定可判断A,B,根据相似三角形的判定可判断C,D.【解答】解:A.:对角线垂直且互相平分的四边形是菱形.则A错误B:对角线垂直且相等的平行四边形四边形是正方形,则B错误C:两角分别相等的两个三角形相似,则C正确D:两边成比例且夹角相等的两个三角形相似.则D错误.故选:C.【点评】本题考查了相似三角形的判定,菱形的判定,正方形的判定,关键是熟练运用这些判定解决问题.24.如图所示,下列条件中能单独判断△ABC∽△ACD的个数是()个.①∠ABC=∠ACD;②∠ADC=∠ACB;③=;④AC2=AD•ABA.1B.2C.3D.4【分析】由图可知△ABC与△ACD中∠A为公共角,所以只要再找一组角相等,或一组对应边成比例即可解答.【解答】解:有三个.①∠B=∠ACD,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;②∠ADC=∠ACB,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;③中∠A不是已知的比例线段的夹角,不正确④可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定;故选:C.【点评】本题考查了相似三角形的判定,此题主要考查学生对相似三角形判定定理的理解和掌握,难度不大,属于基础题,要求学生应熟练掌握.25.下列判断中,正确的是()A.各有一个角是67°的两个等腰三角形相似B.邻边之比为2:1的两个等腰三角形相似C.各有一个角是45°的两个等腰三角形相似D.邻边之比为2:3的两个等腰三角形相似【分析】根据相似三角形的判定方法及等腰三角形的性质对各个选项进行分析即可.【解答】解:A,C没有指明角是顶角还是底角无法判定;D没有指明谁是底边谁是腰,所以不相似;B中因为边的比值为2:1,所以大的一定是腰,否则不能组成三角形,所以对应边都成比例,相似.故选:B.【点评】此题考查了相似三角形的判定,①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.26.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是()已知:如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,DF∥AC,求证:△ADE∽△DBF.证明:①又∵DF∥AC,②∵DE∥BC,③∴∠A=∠BDF,④∴∠ADE=∠B,∴△ADE∽△DBF.A.③②④①B.②④①③C.③①④②D.②③④①【分析】由DE∥BC,EF∥AB,得出△ADE∽△ABC,△EFC∽△ABC,证出△ADE ∽△EFC;【解答】证明:②∵DE∥BC,④∴∠ADE=∠B,①又∵DF∥AC,③∴∠A=∠BDF,∴△ADE∽△DBF.故选:B.【点评】本题考查了相似三角形的判定与性质;关键是证明三角形相似.27.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延=4,则下列结论中不正确的是()长AD于点F,已知S△AEFA.B.S△BCE=36C.S△ABE=12D.△AFE∽△ACD 【分析】根据平行四边形的性质得到AE=CE,根据相似三角形的性质得到= =,等量代换得到AF=AD,于是得到=;故A选项正确;根据相似=36;故B选项正确;根据三角形的面积公式得到S△三角形的性质得到S△BCE=12,故C选项正确;由于△AEF与△ADC只有一个角相等,于是得到△AEF ABE与△ACD不一定相似,故D选项错误.【解答】解:∵在▱ABCD中,AO=AC,∵点E是OA的中点,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴==,∵AD=BC,∴AF=AD,∴=;故选项A正确,不合题意;=4,=()2=,∵S△AEF∴S=36;故选项B正确,不合题意;△BCE∵==,∴=,∴S=12,故选项C正确,不合题意;△ABE∵BF不平行于CD,∴△AEF与△ADC只有一个角相等,∴△AEF与△ACD不一定相似,故选项D错误,符合题意.故选:D.【点评】本题考查了相似三角形的判定和性质,平行四边形的性质,熟练掌握相似三角形的判定和性质是解题的关键.28.如图,在正方形ABCD中,以BC为边作等边△BPC,延长BP,CP分别交AD 于点E,F,连接BD、DP、BD与CF相交于点H,给出下列结论:①AE=CF;②∠BPD=135°;③△PDE∽△DBE;④ED2=EP•EB其中正确的是()A.①②③④B.②③C.①②④D.①③④【分析】由正方形的性质、等边三角形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴AE=BE=CF;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠EDP=∠EBD,∵∠DEP=∠DEP,∴△DEP∽△BED,∴=,即ED2=EP•EB,故④正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PBD=15°,∠PBD=30°,∴∠BPD=135°,故②正确;故选:C .【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.29.如图,在菱形ABCD 中,E 为CD 上一点,连接AE 、BD ,交于点O ,若S △AOB :S △DOE =25:9,则CE :BC 等于( )A .2:5B .3:5C .16:25D .9:25【分析】由题意可得AB=BC=CD ,AB ∥CD ,则可证△AOB ∽△EOD ,可得DE :AB=3:5,即可求CE :BC=2:5.【解答】解:∵四边形ABCD 是菱形∴AB=BC=CD ,CD ∥AB∴△AOB ∽△EOD∴S △AOB :S △DOE =(AB )2:(DE )2=25:9∴AB :DE=5:3∴设AB=5a ,则DE=3a∴BC=CD=5a ,EC=2a∴EC :BC=2:5故选:A .【点评】本题考查了相似三角形的判定和性质,菱形的性质,熟练运用相似三角形的性质是本题的关键.30.身高1.6米的小明利用影长测量学校旗杆的高度,如图,当他站在点C 处时,他头顶端的影子正好与旗杆顶端的影子重合在点A 处,测量得到AC=2米,CB=18米,则旗杆的高度是( )A .8米B .14.4米C .16米D .20米【分析】因为人和旗杆均垂直于地面,所以构成相似三角形,利用相似比解题即可.【解答】解:设旗杆高度为h,由题意得=,解得:h=16米.故选:C.【点评】本题考查了考查相似三角形的性质和投影知识,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.31.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,若AC=2,AB=3,则CD 为()A.B.C.2D.3【分析】根据勾股定理就可求得AB的长,再根据△ABC的面积=•AC•BC=•AB•CD,即可求得.【解答】解:根据题意得:BC===.∵△ABC的面积=•AC•BC=•AB•CD∴CD===2.故选:C.【点评】本题主要考查了勾股定理,根据三角形的面积是解决本题的关键.32.如图,在Rt△ABC中,∠C=90°,CD⊥AB,AD=4,BD=9,则CD的长是()。

人教版九年级下期末复习《第27章相似》单元试卷((有答案))(数学)【精品】

人教版九年级下期末复习《第27章相似》单元试卷((有答案))(数学)【精品】

期末复习:人教版九年级数学下册第27章相似单元检测试卷一、单选题(共10题;共30分)1.若△ABC ∽△A ΄B ΄C ΄,∠A=40°,∠B=110°,则∠C ΄=( ).A. 40°B. 110°C. 70°D. 30°2.已知:a 、b 是不等于0的实数,2a=3b ,那么下列等式中正确的是( ) A.ab=23; B. a b=32; C. a+b b=43; D. a+b b=53.3.下列4组条件中,能判定△ABC ∽△DEF 的是( ) A. AB=5,BC=4,∠A=45°;DE=10,EF=8,∠D=45° B. ∠A=45°,∠B=55°;∠D=45°,∠F=75° C. BC=4,AC=6,AB=9;DE=18,EF=8,DF=12 D. AB=6,BC=5,∠B=40°;DE=5,EF=4,∠E=40°4.如图,点D 在△ABC 的边AC 上,要判定△ADB 与△ABC 相似,添加一个条件,不正确的是( )A. ∠ABD=∠CB. ∠ADB=∠ABCC. AB BD=CBCDD. ADAB=ABAC 5.如果x :(x+y )=3:5,那么x−y x的值是( )A. 13B. 12C. 23D. 326.如图,已知AB AD =AC AE =BC DE =32,且△ABC 的周长为15cm ,则△ADE 的周长为( )A. 6cmB. 9cmC. 10cmD. 12cm 7.如果两个相似三角形对应边之比是1:4,那么它们的对应中线之比是( )A. 1:2B. 1:4C. 1:8D. 1:16 8.如图,在△ABC 中,D 、E 分别是AB 、AC 的点,且DE ∥BC ,如果AD=2cm ,DB=1cm ,DE=1.6cm ,则BC=( )A. 0.8cmB. 2cmC. 2.4cmD. 3.2cm9.将两个长为a cm ,宽为b cm 的矩形铁片加工成一个长为c cm ,宽为d cm 的矩形铁片,有人就a ,b ,c ,d 的关系写出了如下四个等式,但是有一个写错了,它是( )A.ac =d2b B.a2c =db C.2ac =db D.2ad =cb10.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1, …,按这样的规律进行下去,第2013个正方形的面积为( )A. 5×(32)2013B. 5×(94)2012C. 5×(32)2012D. 5×(94)2013二、填空题(共10题;共30分)11.如图,在△ABC 中,D,E 分别为AB,AC 上的点,若DE ∥BC, ADAB =13 ,则AD+DE+AEAB+BC+AC =________.12.如图,△ABC 中,A 、B 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A ′B ′C ,并把△ABC 的边长放大到原的2倍.设B ′的坐标是(3,﹣1),则点B 的坐标是________.13.在△ABC 中,AB=5,AC=4,BC=3,D 是边AB 上的一点,E 是边AC 上的一点(D ,E 均与端点不重合),如果△CDE 与△ABC 相似,那么CE=________ 14.已知xy = 23,那么x−y y的值是________.15.如图,小明在A 时测得某树的影长为2m ,B 时又测得该树的影长为8m ,若两次日照的光线互相垂直,则树的高度为________m .16.在直角坐标系中,△ABC 的坐标分别是A (﹣1,2),B (﹣2,0),C (﹣1,1),若以原点O 为位似中心,将△ABC 放大到原的2倍得到△A ′B ′C ′,那么落在第四象限的A ′的坐标是________17.有一块三角形的草地,它的一条边长为25m .在图纸上,这条边的长为5cm ,其他两条边的长都为4cm ,则其他两边的实际长度都是________m .18.如图,在△ABC 中,D 、E 分别为边AB 、AC 上的点.ADAC = AEAB ,点F 为BC 边上一点,添加一个条件:________,可以使得△FDB 与△ADE 相似.(只需写出一个)19.已知等腰直角三角形ABC 中,∠C=90°,AC=BC=4,点D 在直线AC 上,且CD=2,连接BD ,作BD 的垂直平分线交三角形的两边于E 、F ,则EF 的长为 ________ .20.如图,在△ABC 中,AD 和BE 是高,∠ABE=45°,点F 是AB 的中点,AD 与FE ,BE 分别交于点G 、H ,∠CBE=∠BAD .有下列结论:①FD=FE ;②AH=2CD ;③BC •AD= √2 AE 2;④S △ABC =2S △ADF .其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题(共8题;共60分)21.已知:如图,△ABC ∽△ADE , ∠A=45°,∠C=40°.求:∠ADE 的度数.22.如图,在△ABC和△CDE中,∠B=∠D=90°,C为线段BD上一点,且AC⊥CE,证明:△ABC∽△CDE.DC,求证:△ABE∽△DEF.23.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=1424.如图,点C、D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB,求∠APB的度数.25.已知AD⊥BC,BE=CE,∠ABC=2∠C,BF为∠B的平分线.求证:AB=2DE.DC,连接EF并延长交BC 26.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=14的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.27.在正方形ABCD中,点M是射线BC上一点,点N是CD延长线上一点,且BM=DN.直线BD与MN 相交于E.(1)如图1,当点M在BC上时,求证:BD-2DE=√2BM;(2)如图2,当点M在BC延长线上时,BD、DE、BM之间满足的关系式是什么?;(3)在(2)的条件下,连接BN交AD于点F,连接MF交BD于点G.若DE=√2,且AF:FD=1:2时,求线段DG的长.28.(1)如图1,在等边△ABC中,点M是边BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是边BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是边BC上的任意一点(不含端点B、C),联结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.联结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.答案解析部分一、单选题1.【答案】D【考点】相似三角形的性质【解析】【解答】∵∠A=40°,∠B=110°,∴∠C=180°-∠A-∠B=180°-40°-110°=30°又∵△ABC∽△A΄B΄C΄,∴∠C΄=∠C=30°.故选D .【分析】根据相似三角形的性质:相似三角形的对应角相等,即可解答.2.【答案】B【考点】比例的性质【解析】【解答】∵2a=3b,∴ab =32,∴a+bb=52,∴A、C、D选项错误,B选项正确,故答案为:B.【分析】利用比例的性质进行等式变形即可。

【3套】人教版九年级下册数学《第27章 相似》单元测试卷(解析版)

【3套】人教版九年级下册数学《第27章  相似》单元测试卷(解析版)

人教版九年级下册数学《第27章相似》单元测试卷(解析版)一.选择题(共10小题)1.若a:b=3:2,且b2=ac,则b:c=()A.4:3B.3:2C.2:3D.3:42.下列各组中的四条线段成比例的是()A.a=,b=3,c=2,d=B.a=4,b=6,c=5,d=10C.a=2,b=,c=2,d=D.a=2,b=3,c=4,d=13.已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC•BC B.BC2=AC•BC C.AC=BC D.BC=AC 4.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:DB=3:2,则AE:AC等于()A.3:2B.3:1C.2:3D.3:55.将直角三角形三边扩大同样的倍数,得到的新的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形6.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A.4:9B.2:3C.:D.16:817.两三角形的相似比是2:3,则其面积之比是()A.:B.2:3C.4:9D.8:278.如图所示,每个小正方形的边长均为1,则下列A、B、C、D四个图中的三角形(阴影部分)与△EFG相似的是()A.B.C.D.9.如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是()A.B.C.D.10.如图,是小孔成像原理的示意图,根据图所标注的尺寸,这支蜡烛在暗盒中所成的像CD的长是()A.B.C.D.1 cm二.填空题(共5小题)11.若,则=.12.如果在比例尺为1:1000000的地图上,A、B两地的图上距离是5.8cm,那么A、B两地的实际距离是km.13.若线段AB=6cm,点C是线段AB的一个黄金分割点(AC>BC),则AC的长为cm (结果保留根号).14.已知:AM:MD=4:1,BD:DC=2:3,则AE:EC=.15.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的倍.三.解答题(共4小题)16.已知a:b:c=2:3:4,且2a+3b﹣2c=10,求a,b,c的值.17.某考察队从营地P处出发,沿北偏东60°前进了5千米到达A地,再沿东南方向前进到达C地,C地恰好在P地的正东方向.回答下列问题:(1)用1cm代表1千米,画出考察队行进路线图;(2)量出∠PAC和∠ACP的度数(精确到1°);(3)测算出考察队从A到C走了多少千米?此时他们离开营地多远?(精确到0.1千米).18.如图,△ABC中,AB=AC,∠A=36°,CE平分∠ACB交AB于点E,(1)试说明点E为线段AB的黄金分割点;(2)若AB=4,求BC的长.19.如图,l1∥l2∥l3,AB=3,AD=2,DE=4,EF=7.5.求BC、BE的长.2019年人教版九年级下册数学《第27章相似》单元测试卷参考答案与试题解析一.选择题(共10小题)1.若a:b=3:2,且b2=ac,则b:c=()A.4:3B.3:2C.2:3D.3:4【分析】根据比例的基本性质,a:b=3:2,b2=ac,则b:c可求.【解答】解:∵b2=ac,∴b:a=c:b,∵a:b=3:2,∴b:c=a:b=3:2.故选:B.【点评】利用比例的基本性质,对比例式和等积式进行互相转换即可得出结果.2.下列各组中的四条线段成比例的是()A.a=,b=3,c=2,d=B.a=4,b=6,c=5,d=10C.a=2,b=,c=2,d=D.a=2,b=3,c=4,d=1【分析】根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得出答案.【解答】解:A.×3≠2×,故本选项错误;B.4×10≠5×6,故本选项错误;C.2×=×2,故本选项正确;D.4×1≠3×2,故本选项错误;故选:C.【点评】此题考查了比例线段,理解成比例线段的概念和变形是解题的关键,注意在线段两两相乘的时候,要让最小的和最大的相乘,另外两条相乘,看它们的积是否相等进行判断.3.已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC•BC B.BC2=AC•BC C.AC=BC D.BC=AC【分析】根据黄金分割的定义得出=,从而判断各选项.【解答】解:∵点C是线段AB的黄金分割点且AC>BC,∴=,即AC2=BC•AB,故A、B错误;∴AC=AB,故C错误;BC=AC,故D正确;故选:D.【点评】本题主要考查黄金分割,掌握黄金分割的定义和性质是解题的关键.4.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:DB=3:2,则AE:AC等于()A.3:2B.3:1C.2:3D.3:5【分析】由DE∥CB,根据平行线分线段成比例定理,可求得AE、AC的比例关系.【解答】解:∵DE∥BC,AD:DB=3:2,∴AE:EC=3:2,∴AE:AC=3:5.故选:D.【点评】此题主要考查了平行线分线段成比例定理,根据已知得出AE与EC的关系是解题关键.5.将直角三角形三边扩大同样的倍数,得到的新的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形【分析】因为直角三角形三边扩大同样的倍数,而角的度数不会变,所以得到的新的三角形是直角三角形.【解答】解:因为角的度数和它的两边的长短无关,所以得到的新三角形应该是直角三角形,故选B.【点评】主要考查“角的度数和它的两边的长短无关”的知识点.6.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A.4:9B.2:3C.:D.16:81【分析】直接根据相似多边形周长的比等于相似比,面积的比等于相似比的平方进行解答即可.【解答】解:∵两个相似多边形面积的比为4:9,∴两个相似多边形周长的比等于2:3,∴这两个相似多边形周长的比是2:3.故选:B.【点评】本题考查的是相似多边形的性质,即相似多边形周长的比等于相似比,面积的比等于相似比的平方.7.两三角形的相似比是2:3,则其面积之比是()A.:B.2:3C.4:9D.8:27【分析】根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:∵两三角形的相似比是2:3,∴其面积之比是4:9,故选:C.【点评】本题考查的是相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.8.如图所示,每个小正方形的边长均为1,则下列A、B、C、D四个图中的三角形(阴影部分)与△EFG相似的是()A.B.C.D.【分析】根据相似三角形的判定,易得出△ABC的三边的边长,故只需分别求出各选项中三角形的边长,分析两三角形对应边是否成比例即可.【解答】解:∵小正方形的边长为1,∴在△ABC中,EG=,FG=2,EF=,A中,一边=3,一边=,一边=,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故A错误;B中,一边=1,一边=,一边=,有,即三边与△ABC中的三边对应成比例,故两三角形相似.故B正确;C中,一边=1,一边=,一边=2,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故C错误;D中,一边=2,一边=,一边=,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故D错误.故选:B.【点评】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.9.如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是()A.B.C.D.【分析】首先证明△AED∽△ACB,再根据相似三角形的性质:对应边成比例可得答案.【解答】解:∵∠A=∠A,∠ADE=∠B,∴△AED∽△ACB,∴=.故选:A.【点评】此题主要考查了相似三角形的性质与判定,关键是掌握判断三角形相似的方法和相似三角形的性质.10.如图,是小孔成像原理的示意图,根据图所标注的尺寸,这支蜡烛在暗盒中所成的像CD的长是()A.B.C.D.1 cm【分析】据小孔成像原理可知△AOB∽△COD,利用它们的对应边成比例就可以求出CD 之长.【解答】解:如图过O作直线OE⊥AB,交CD于F,依题意AB∥CD∴OF⊥CD∴OE=12,OF=2而AB∥CD可以得△AOB∽△COD∵OE,OF分别是它们的高∴,∵AB=6,∴CD=1,故选:D.【点评】本题考查了相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,还有会用相似三角形对应边成比例.二.填空题(共5小题)11.若,则= .【分析】根据合比定理[如果a :b =c :d ,那么(a +b ):b =(c +d ):d (b 、d ≠0)]解答即可.【解答】解:∵,∴,即=.故答案为:.【点评】本题主要考查了合比定理:在一个比例里,第一个比的前后项的差与它的后项的比,等于第二个比的前后项的差与它们的后项的比,这叫做比例中的分比定理. 12.如果在比例尺为1:1000000的地图上,A 、B 两地的图上距离是5.8cm ,那么A 、B 两地的实际距离是 58 km .【分析】实际距离=图上距离:比例尺,根据题意代入数据可直接得出实际距离.【解答】解:根据题意,5.8÷=5800000厘米=58千米.即实际距离是58千米. 故答案为:58.【点评】本题考查了比例线段的知识,注意掌握比例线段的定义及比例尺,并能够灵活运用,同时要注意单位的转换.13.若线段AB =6cm ,点C 是线段AB 的一个黄金分割点(AC >BC ),则AC 的长为 3(﹣1) cm (结果保留根号).【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.【解答】解:根据黄金分割点的概念和AC >BC ,得:AC =AB =3(﹣1).故本题答案为:3(﹣1).【点评】此题考查了黄金分割点的概念,要熟记黄金比的值. 14.已知:AM :MD =4:1,BD :DC =2:3,则AE :EC = 8:5 .【分析】过点D作DF∥BE,再根据平行线分线段成比例,而为公共线段,作为中间联系,整理即可得出结论.【解答】解:过点D作DF∥BE交AC于F,∵DF∥BE,∴△AME∽△ADF,∴AM:MD=AE:EF=4:1=8:2∵DF∥BE,∴△CDF∽△CBE,∴BD:DC=EF:FC=2:3∴AE:EC=AE:(EF+FC)=8:(2+3)∴AE:EC=8:5.【点评】本题主要考查平行线分线段成比例定理的应用,作出辅助线,利用中间量EF 即可得出结论.15.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的5倍.【分析】由题意一个三角形的各边长扩大为原来的5倍,根据相似三角形的性质及对应边长成比例来求解.【解答】解:∵一个三角形的各边长扩大为原来的5倍,∴扩大后的三角形与原三角形相似,∵相似三角形的周长的比等于相似比,∴这个三角形的周长扩大为原来的5倍,故答案为:5.【点评】本题考查了相似三角形的性质:相似三角形的周长的比等于相似比.三.解答题(共4小题)16.已知a:b:c=2:3:4,且2a+3b﹣2c=10,求a,b,c的值.【分析】运用设k法,再进一步得到关于k的方程,解得k的值后,即可求得a、b、c 的值.【解答】解:设a=2k,b=3k,c=4k,又∵2a+3b﹣2c=10,∴4k+9k﹣8k=10,5k=10,解得k=2.∴a=4,b=6,c=8.【点评】已知几个量的比值时,常用的解法是:设一个未知数,把题目中的几个量用所设的未知数表示出来.17.某考察队从营地P处出发,沿北偏东60°前进了5千米到达A地,再沿东南方向前进到达C地,C地恰好在P地的正东方向.回答下列问题:(1)用1cm代表1千米,画出考察队行进路线图;(2)量出∠PAC和∠ACP的度数(精确到1°);(3)测算出考察队从A到C走了多少千米?此时他们离开营地多远?(精确到0.1千米).【分析】(1)先画出方向标,再确定方位角、比例尺作图;(2)动手操作利用量角器测量即可;(3)先利用刻度尺测量出图上距离,再根据比例尺换算成实际距离.【解答】解:(1)路线图(6分)(P、A、C点各2分)注意:起点是必须在所给的图形中画,否则即使画图正确扣;(2分)(2)量得∠PAC≈105°,∠ACP≈45°;(9分)(只有1个正确得2分)(3)量路线图得AC≈3.5厘米,PC≈6.8厘米.∴AC≈3.5千米;PC≈6.8千米(13分)【点评】主要考查了方位角的作图能力.要会根据比例尺准确的作图,并根据图例测算出实际距离.18.如图,△ABC中,AB=AC,∠A=36°,CE平分∠ACB交AB于点E,(1)试说明点E为线段AB的黄金分割点;(2)若AB=4,求BC的长.【分析】(1)根据等腰三角形两底角相等求出∠ACB=72°,再根据角平分线的定义求出∠BCE=36°,从而得到∠BCE=∠A,然后判定△ABC和△CBE相似,根据相似三角形对应边成比例列出比例式整理,并根据黄金分割点的定义即可得证;(2)根据等角对等边的性质可得AE=CE=BC,再根据黄金分割求解即可.【解答】(1)证明:∵AB=AC,∠A=36°,∴∠ACB=(180°﹣36°)=72°,∵CE平分∠ACB,∴∠BCE=∠ACB=×72°=36°,∴∠BCE=∠A=36°,∴AE=BC,又∵∠B=∠B,∴△ABC∽△CBE,∴=,∴BC2=AB•BE,即AE2=AB•BE,∴E为线段AB的黄金分割点;(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=180°﹣72°﹣36°=72°,∴BC=CE,由(1)已证AE=CE,∴AE=CE=BC,∴BC=•AB=×4=2﹣2.【点评】本题考查了黄金分割点的定义,相似三角形的判定与性质,理解黄金分割点的定义:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比是解题的关键.19.如图,l1∥l2∥l3,AB=3,AD=2,DE=4,EF=7.5.求BC、BE的长.【分析】根据平行线分线段成比例定理得==,则可计算出BC=6,BF=BE,然后利用BE+BE=7.5求BE.【解答】解:∵l1∥l2∥l3,∴==,即==,∴BC=6,BF=BE,∴BE+BE=7.5,∴BE=5.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.人教九下数学 第27章 相似三角形的判定及有关性质综合测试(含答案)一、选择题(每小题6分,共48分)1.在△ABC 中,D 、F 是AB 上的点,E 、H 是AC 上的点,直线DE//FH//BC ,且DE 、FH 将△ABC 分成面积相等的三部分,若线段FH=65,则BC 的长为( ) A .15 B .10 C.6215 D .15322.在△ABC 中,DE//BC ,DE 交AB 于D ,交AC 于E ,且S △ADE :S 四边形DBCE=1:2,则梯形的高与三角形的边BC 上的高的比为( )A .1:2B .1:)12(-C .1:)13(-D .)13(-:33.在Rt △ABC 中,∠C=90°,CD 是斜边AB 上的高,AC=5,BC=8,则S △ACD :S △CBD 为( ) A .85B .6425 C .3925 D .8925 4.如图1—5—1,D 、E 、F 是△ABC 的三边中点,设△DEF 的面积为4,△ABC 的周长为9,则△DEF 的周长与△ABC 的面积分别是( )A.29,16 B. 9,4 C. 29,8 D. 49,165.如图1—5—2,在△ABC 中,AD ⊥BC 于D ,下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC ; (3)ABAC AD CD =;(4)AB 2=BD ·BC 。

人教版九年级数学下册期末复习《第27章相似》单元检测试卷(含答案解析)

人教版九年级数学下册期末复习《第27章相似》单元检测试卷(含答案解析)

期末复习:人教版九年级数学下册 第27章 相似 单元检测试卷一、单选题(共10题;共30分)1.若△ABC ∽△A΄B΄C΄,∠A=40°,∠B=110°,则∠C΄=( ).A. 40°B. 110°C. 70°D. 30°2.已知:a 、b 是不等于0的实数,2a=3b ,那么下列等式中正确的是( )A.;B.;C.;D..a b=23a b=32a +b b=43a +b b=533.下列4组条件中,能判定△ABC ∽△DEF 的是( ) A. AB=5,BC=4,∠A=45°;DE=10,EF=8,∠D=45°B. ∠A=45°,∠B=55°;∠D=45°,∠F=75°C. BC=4,AC=6,AB=9;DE=18,EF=8,DF=12D. AB=6,BC=5,∠B=40°;DE=5,EF=4,∠E=40°4.如图,点D 在△ABC 的边AC 上,要判定△ADB 与△ABC 相似,添加一个条件,不正确的是( )A. ∠ABD=∠CB. ∠ADB=∠ABCC.D. AB BD=CBCD AD AB=AB AC5.如果x :(x+y )=3:5,那么的值是( )x -y x A. B. C. D. 131223326.如图,已知===,且△ABC的周长为15cm ,则△ADE 的周长为( )AB AD AC AE BC DE 32A. 6cmB. 9cmC. 10cmD. 12cm 7.如果两个相似三角形对应边之比是1:4,那么它们的对应中线之比是( ) A. 1:2 B. 1:4 C. 1:8 D. 1:168.如图,在△ABC 中,D 、E 分别是AB 、AC 的点,且DE ∥BC ,如果AD=2cm ,DB=1cm ,DE=1.6cm ,则BC=( )A. 0.8cmB. 2cmC. 2.4cmD. 3.2cm9.将两个长为a cm ,宽为b cm 的矩形铁片加工成一个长为c cm ,宽为d cm 的矩形铁片,有人就a ,b ,c ,d 的关系写出了如下四个等式,但是有一个写错了,它是( )A. B. C. D.a c=d2b a 2c=db 2a c=db 2a d=c b10.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1 , 作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2 , 作正方形A 2B 2C 2C 1 , …,按这样的规律进行下去,第2013个正方形的面积为( )A.B. C. D.5×(32)20135×(94)20125×(32)20125×(94)2013二、填空题(共10题;共30分)11.如图,在△ABC 中,D,E 分别为AB,AC 上的点,若DE ∥BC, ,则 =________.ADAB=13AD +DE +AEAB +BC +AC12.如图,△ABC 中,A 、B 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C ,并把△ABC 的边长放大到原来的2倍.设B′的坐标是(3,﹣1),则点B 的坐标是________.13.在△ABC 中,AB=5,AC=4,BC=3,D 是边AB 上的一点,E 是边AC 上的一点(D ,E 均与端点不重合),如果△CDE 与△ABC 相似,那么CE=________ 14.已知=,那么的值是________.x y 23x -y y 15.如图,小明在A 时测得某树的影长为2m ,B 时又测得该树的影长为8m ,若两次日照的光线互相垂直,则树的高度为________m .16.在直角坐标系中,△ABC 的坐标分别是A (﹣1,2),B (﹣2,0),C (﹣1,1),若以原点O 为位似中心,将△ABC 放大到原来的2倍得到△A′B′C′,那么落在第四象限的A′的坐标是________17.有一块三角形的草地,它的一条边长为25m .在图纸上,这条边的长为5cm ,其他两条边的长都为4cm ,则其他两边的实际长度都是________m . 18.如图,在△ABC 中,D 、E 分别为边AB 、AC 上的点.=,点F 为BC 边上一点,添加一个条件:AD AC AE AB ________,可以使得△FDB 与△ADE 相似.(只需写出一个)19.已知等腰直角三角形ABC 中,∠C=90°,AC=BC=4,点D 在直线AC 上,且CD=2,连接BD ,作BD 的垂直平分线交三角形的两边于E 、F ,则EF 的长为 ________ .20.如图,在△ABC 中,AD 和BE 是高,∠ABE=45°,点F 是AB 的中点,AD 与FE ,BE 分别交于点G 、H ,∠CBE=∠BAD .有下列结论:①FD=FE ;②AH=2CD ;③BC•AD= AE 2;④S △ABC =2S △ADF . 其中2正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题(共8题;共60分)21.已知:如图,△ABC ∽△ADE , ∠A=45°,∠C=40°.求:∠ADE 的度数.22.如图,在△ABC 和△CDE 中,∠B=∠D=90°,C 为线段BD 上一点,且AC ⊥CE ,证明:△ABC ∽△CDE .23.如图,在正方形ABCD 中,E 、F 分别是边AD 、CD上的点,AE=ED ,DF=DC ,求证:△ABE ∽△DEF .1424.如图,点C 、D 在线段AB 上,△PCD 是等边三角形,且△ACP ∽△PDB ,求∠APB 的度数.25.已知AD ⊥BC ,BE=CE ,∠ABC=2∠C ,BF 为∠B 的平分线.求证:AB=2DE .26.如图,在正方形ABCD 中,E 、F 分别是边AD 、CD 上的点,AE=ED ,DF=DC ,连接EF 并延长交BC 的延14长线于点G .(1)求证:△ABE ∽△DEF ;(2)若正方形的边长为4,求BG 的长.27.在正方形ABCD 中,点M 是射线BC 上一点,点N 是CD 延长线上一点,且BM=DN .直线BD 与MN 相交于E .(1)如图1,当点M 在BC 上时,求证:BD -2DE=BM ;2(2)如图2,当点M 在BC 延长线上时,BD 、DE 、BM 之间满足的关系式是什么?;(3)在(2)的条件下,连接BN 交AD 于点F ,连接MF 交BD 于点G .若DE=,且AF :FD=1:2时,2求线段DG 的长.28.(1)如图1,在等边△ABC中,点M是边BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是边BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是边BC上的任意一点(不含端点B、C),联结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.联结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.答案解析部分一、单选题1.【答案】D【考点】相似三角形的性质【解析】【解答】∵∠A=40°,∠B=110°,∴∠C=180°-∠A-∠B=180°-40°-110°=30°又∵△ABC ∽△A΄B΄C΄,∴∠C΄=∠C=30°.故选D .【分析】根据相似三角形的性质:相似三角形的对应角相等,即可解答.2.【答案】B 【考点】比例的性质【解析】【解答】∵2a=3b ,∴ ,∴ ,∴A 、C 、D选项错误,B 选项正确,ab=32a +b b=52故答案为:B.【分析】利用比例的性质进行等式变形即可。

人教版九年级下期末复习《第27章相似》单元评估测试题(有答案)-(数学)

人教版九年级下期末复习《第27章相似》单元评估测试题(有答案)-(数学)

期末专题复习:人教版九年级数学下册_第27章_ 相似_单元评估测试题一、单选题(共10题;共30分)1.若3a=4b,则(a﹣b):(a+b)的值是()A. B. 7 C. ﹣ D. ﹣72.相距125千米的两地在地图上的距离为25cm,则该地图的比例尺为( )A. 1∶5000B. 1∶50000C. 1∶500000D. 1∶50000003.如图,线段CD的两个端点的坐标分别为C(1,2),D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B的坐标为(5,0),则点A的坐标为()A. (2,5)B. (3,6)C. (3,5)D. (2.5,5)4.已知△ABC∽△DEF,且相似比为1:2,则△ABC与△DEF的面积比为()A. 1:4B. 4:1C. 1:2D. 2:15.如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得BC=3米, CA=1米, 则树的高度为()A. 4.5米B. 6米C. 3米D. 4米6.同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则这棵树的高度为()A. 2.4米B. 9.6米C. 2米D. 1.6米7.如图,已知D是△ABC中的边BC上的一点,∠BAD=∠C,∠ABC的平分线交边AC于点E,交AD于点F,那么下列结论中错误的是( )A.△BDF∽△BECB.△BFA∽△BECC.△BAC∽△BDAD.△BDF∽△BAE8.在平面直角坐标系中,已知点A(﹣4,2),B(﹣2,﹣2),以原点O为位似中心,相似比为,把△AOB缩小,则点A的对应点A′的坐标是()A. (﹣2,1)B. (﹣8,4)C. (﹣8,4)或(8,﹣4)D. (﹣2,1)或(2,﹣1)9.如图,l1∥l2∥l3,直线a,b与l1,l2,l3分别相交于点A、B、C和点D、E、F,若,DE=4,则DF的长是()A. B. C. 10 D. 610.如图,在△ABC中,∠ADE=∠B,DE:BC=2:3,则下列结论正确的是()A. AD:AB=2:3B. AE:AC=2:5C. AD:DB=2:3D. CE:AE=3:2二、填空题(共10题;共30分)11.已知△ABC~△DEF,BC边上的高与EF边上的高之比为2:3,则△ABC与△DEF的面积的比为________.12.如图,三角尺在灯泡O的照射下在墙上形成影子,现测得OA=20cm,′=50cm,则这个三角尺的面积与它在墙上所形成影子图形的面积之比是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末复习:人教版九年级数学下册第27章相似单元检测试卷一、单选题(共10题;共30分)1.若△ABC ∽△A΄B΄C΄,∠A=40°,∠B=110°,则∠C΄=( ).A. 40°B. 110°C. 70°D. 30° 2.已知:a 、b 是不等于0的实数,2a=3b ,那么下列等式中正确的是( ) A. ab =23; B. ab =32; C.a+b b=43; D.a+b b=53.3.下列4组条件中,能判定△ABC ∽△DEF 的是( ) A. AB=5,BC=4,∠A=45°;DE=10,EF=8,∠D=45° B. ∠A=45°,∠B=55°;∠D=45°,∠F=75° C. BC=4,AC=6,AB=9;DE=18,EF=8,DF=12 D. AB=6,BC=5,∠B=40°;DE=5,EF=4,∠E=40°4.如图,点D 在△ABC 的边AC 上,要判定△ADB 与△ABC 相似,添加一个条件,不正确的是( )A. ∠ABD=∠CB. ∠ADB=∠ABCC. AB BD =CB CDD. AD AB =ABAC 5.如果x :(x+y )=3:5,那么x−y x的值是( )A. 13 B. 12 C. 23 D. 32 6.如图,已知AB AD =AC AE =BC DE =32,且△ABC 的周长为15cm ,则△ADE 的周长为( )A. 6cmB. 9cmC. 10cmD. 12cm 7.如果两个相似三角形对应边之比是1:4,那么它们的对应中线之比是( ) A. 1:2 B. 1:4 C. 1:8 D. 1:168.如图,在△ABC 中,D 、E 分别是AB 、AC 的点,且DE ∥BC ,如果AD=2cm ,DB=1cm ,DE=1.6cm ,则BC=( )A. 0.8cmB. 2cmC. 2.4cmD. 3.2cm9.将两个长为a cm ,宽为b cm 的矩形铁片加工成一个长为c cm ,宽为d cm 的矩形铁片,有人就a ,b ,c ,d 的关系写出了如下四个等式,但是有一个写错了,它是( )A.ac =d2b B.a2c =db C.2ac =db D.2ad =cb10.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1, …,按这样的规律进行下去,第2013个正方形的面积为( )A. 5×(32)2013B. 5×(94)2012C. 5×(32)2012D. 5×(94)2013二、填空题(共10题;共30分)11.如图,在△ABC 中,D,E 分别为AB,AC 上的点,若DE ∥BC, ADAB =13 ,则AD+DE+AEAB+BC+AC =________.12.如图,△ABC 中,A 、B 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C ,并把△ABC 的边长放大到原来的2倍.设B′的坐标是(3,﹣1),则点B 的坐标是________.13.在△ABC 中,AB=5,AC=4,BC=3,D 是边AB 上的一点,E 是边AC 上的一点(D ,E 均与端点不重合),如果△CDE 与△ABC 相似,那么CE=________ 14.已知xy = 23,那么x−y y的值是________.15.如图,小明在A 时测得某树的影长为2m ,B 时又测得该树的影长为8m ,若两次日照的光线互相垂直,则树的高度为________m .16.在直角坐标系中,△ABC 的坐标分别是A (﹣1,2),B (﹣2,0),C (﹣1,1),若以原点O 为位似中心,将△ABC 放大到原来的2倍得到△A′B′C′,那么落在第四象限的A′的坐标是________17.有一块三角形的草地,它的一条边长为25m .在图纸上,这条边的长为5cm ,其他两条边的长都为4cm ,则其他两边的实际长度都是________m .18.如图,在△ABC 中,D 、E 分别为边AB 、AC 上的点.ADAC = AEAB ,点F 为BC 边上一点,添加一个条件:________,可以使得△FDB 与△ADE 相似.(只需写出一个)19.已知等腰直角三角形ABC 中,∠C=90°,AC=BC=4,点D 在直线AC 上,且CD=2,连接BD ,作BD 的垂直平分线交三角形的两边于E 、F ,则EF 的长为 ________ .20.如图,在△ABC 中,AD 和BE 是高,∠ABE=45°,点F 是AB 的中点,AD 与FE ,BE 分别交于点G 、H ,∠CBE=∠BAD .有下列结论:①FD=FE ;②AH=2CD ;③BC•AD= √2 AE 2;④S △ABC =2S △ADF .其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题(共8题;共60分)21.已知:如图,△ABC∽△ADE ,∠A=45°,∠C=40°.求:∠ADE的度数.22.如图,在△ABC和△CDE中,∠B=∠D=90°,C为线段BD上一点,且AC⊥CE,证明:△ABC∽△CDE.23.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=1DC,求证:△ABE∽△DEF.424.如图,点C、D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB,求∠APB的度数.25.已知AD⊥BC,BE=CE,∠ABC=2∠C,BF为∠B的平分线.求证:AB=2DE.DC,连接EF并延长交BC的延长26.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=14线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.27.在正方形ABCD中,点M是射线BC上一点,点N是CD延长线上一点,且BM=DN.直线BD与MN相交于E.(1)如图1,当点M在BC上时,求证:BD-2DE=√2BM;(2)如图2,当点M在BC延长线上时,BD、DE、BM之间满足的关系式是什么?;(3)在(2)的条件下,连接BN交AD于点F,连接MF交BD于点G.若DE=√2,且AF:FD=1:2时,求线段DG的长.28.(1)如图1,在等边△ABC中,点M是边BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是边BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是边BC上的任意一点(不含端点B、C),联结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.联结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.答案解析部分一、单选题1.【答案】D【考点】相似三角形的性质【解析】【解答】∵∠A=40°,∠B=110°,∴∠C=180°-∠A-∠B=180°-40°-110°=30°又∵△ABC∽△A΄B΄C΄,∴∠C΄=∠C=30°.故选D .【分析】根据相似三角形的性质:相似三角形的对应角相等,即可解答.2.【答案】B【考点】比例的性质【解析】【解答】∵2a=3b,∴ab =32,∴a+bb=52,∴A、C、D选项错误,B选项正确,故答案为:B.【分析】利用比例的性质进行等式变形即可。

3.【答案】C【考点】相似三角形的判定【解析】解答:A. = = ,夹角是∠B和∠E ,两角不一定相等,故本选项错误;B.应符合∠A=∠D=45°,∠B和∠E相等才能证两三角形相似,故本选项错误;C.根据= = = ,得到两三角形相似,故本选项正确;D.∠B=∠E=40°,但夹此角的两边不成比例,故本选项错误;故选C .分析:根据已知条件推出证三角形相似的条件,根据相似三角形的判定判断即可.4.【答案】C【考点】相似三角形的判定【解析】【解答】解:∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似);故A与B正确;当ADAB =ABAC时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似);故D正确;当ABBD =CBCD时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误.故答案为:C.【分析】△ADB与△ABC中已经有一个公共角相等,要使△ADB与△ABC相似,可以添加∠ABD=∠C或∠ADB=∠ABC或ADAB =ABAC即可,从而作出判断。

5.【答案】A【考点】比例的性质【解析】【解答】解:设x=3k,则y=2k,则x−yx = 3k−2k3k= 13.故选:A.【分析】可设x=3k,根据已知条件得到y=2k,再代入计算可求x−yx的值.6.【答案】C【考点】相似三角形的判定与性质【解析】【分析】由ABAD =ACAE=BCDE=32可得△ABC∽△ADE,再根据相似三角形的性质求解即可.【解答】∵ABAD =ACAE=BCDE=32∴△ABC∽△ADE∴△ABC与△ADE的周长比为32∵△ABC的周长为15cm∴△ADE的周长为10cm故选C.【点评】相似三角形判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中极为重要的知识点,一般难度不大,需熟练掌握.7.【答案】B【考点】相似三角形的性质【解析】【解答】解:∵两个相似三角形对应边之比是1:4,又∵相似三角形的对应高、中线、角平分线的比等于相似比,∴它们的对应中线之比为1:4.故选B.【分析】利用相似三角形的相似比,对应高、中线、角平分线的比,都等于相似比来解答.8.【答案】C【考点】平行线分线段成比例【解析】【解答】解:∵AD=2cm,DB=1cm,∴AB=AD+DB=3cm,∵DE∥BC,∴,解得:BC=2.4.故选:C.【分析】由平行线分线段成比例可得,把线段代入可求得BC.9.【答案】B【考点】比例的性质【解析】【解答】解:将两个小矩形拼成一个大矩形,由面积关系可知:2ab=dc,即ac =d2b,或2ac=db或2ad=cbA,C,D不符合题意.故答案为:B【分析】将两个小矩形拼成一个大矩形,由面积关系可知:2ab=dc,再利用比例的性质将其转化为比例式,即可作出判断。

相关文档
最新文档