第十章回归分析
第十章 直线回归与相关分析
115 125 128 143 132 121 129 112 120 130 125.5
135 137 128 127 155 132 148 117 134 132 134.5
图10-2 NaCl含量对单位叶面积干物重影响的散点图
Y . X X
含义是:对于变量X的每一个值,都有一个Y 的分布,这个分布的平均数就是该线性函数。
ˆ a bX Y
回归截距 与x值相对应的依变量y的点估计值
此方程称为Y对X的直线回归方程(linear regression equation),画出的直线称为回归线 ( regression line)。
ˆ Y a bx
ˆi ) 2 L ( yi y
i 1 n
Y
最小
编号 1 2 3 4 5 血球体积x /mm3 45 52 56 48 42 红血球数y /106 6.53 6.30 9.52 7.50 6.99 6 7 8 9 10 编号 血球体积x /mm3 35 58 40 39 50 红血球数y /106 5.90 9.49 6.20 6.55 8.72
n n
整理后得:
an b xi yi i1 i1 n n n a xi b xi2 xi yi i1 i1 i1
解正规方程得:
x y ( x )( y ) / n b x ( x ) / n ( x x)( y y) = S S ( x x)
第二节:一元线性回归 1 散点图的绘制
2 一元正态线性回归模型 3 直线回归方程的参数估计和回归方 程的建立 4 直线回归的假设检验
5 直线回归的方差分析
6 直线回归的意义( 自学)
第十章_logit回归
第十章 logitic 回归本章导读:Logitic 回归模型是离散选择模型之一,属于多重变数分析范畴,是社会学、生物统计学、临床、数量心理学、市场营销、会计与财务等实证分析的常用方法。
10.1 logit 模型和原理Logistic 回归分析是对因变量为定性变量的回归分析。
它是一种非线性模型。
其基本特点是:因变量必须是二分类变量,若令因变量为y ,则常用y=1表示“yes ”,y=0表示“no ”。
[在发放股利与不发放股利的研究中,分别表示发放和不发放股利的公司]。
自变量可以为虚拟变量也可以为连续变量。
从模型的角度出发,不妨把事件发生的情况定义为y=1,事件未发生的情况定义为0,这样取值为0、1的因变量可以写作:⎩⎨⎧===事情未发生事情发生01y 我们可以采用多种方法对取值为0、1的因变量进行分析。
通常以P 表示事件发生的概率(事件未发生的概率为1-P ),并把P 看作自变量x 的线性函数。
由于y 是0-1型Bernoulli 分布,因此有如下分布:P=P (y=1|x ):自变量为x 时y=1的概率,即发放现金股利公司的概率1-P=P (y=0|x ):自变量为x 时y=0的概率,即不发放现金股利公司的概率 事件发生和不发生的概率比成为发生比,即相对风险,表现为PP odds -=1.因为是以 对数形式出现的,故该发生比为对数发生比(log odds ),表现为)1ln(P P odds -=。
对数发生比也是事件发生概率P 的一个特定函数,通过logistic 转换,该函数可以写成logistic 回归的logit 模型:)1(log )(log PP P it e -= Logit 一方面表达出它是事件发生概率P 的转换单位;另一方面,它作为回归的因变量就可以自己与自变量之间的依存关系保持传统回归模式。
根据离散型随即变量期望值的定义,可得:E(y)=1(P)+0(1-P)=P进而得到x P y E 10)(ββ+==因此,从以上分析可以看出,当因变量的取值为0、1时,均值x y E 10)(ββ+=总是代表给定自变量时y=1的概率。
(DLu)第10章两变量间相关与回归分析PPT课件
2.34
YY
3.26
XY
blXY 3.26 0.1698 lXX 19.20
a Y b X 0 .9 9 4 8 0 .1 6 9 8 4 .0 4 8 0 .3 0 7 5
3、绘制回归直线
Y0.30750.1698X
二、直线回归中的统计推断
样本回归系数b是总体回归系数
是否有 0
b X x (Y y ) X YX Yn lXY
(X x )2
X 2 ( X )2n lXX
aybx
实例求解回归方程
例10.1 计算甘油三酯(Y)对血清胆固醇(X)的 直线回归方程 。
1、绘制散点图 2、计算
XX85.014.048
n 21
YY20.890.9948 n 21
l l l 19.20 XX
简单相关系数(simple correlation coefficient)等;
符号r表示样本相关系数,ρ表示总体相关系数。
它说明具有直线关系的两个变量,相关关系的密 切程度与相关方向的指标。其值为-1≤r≤1。
条件:双变量正态分布
二、计算公式
r XxYy lX Y Xx2 Yy2 lX X lY Y
Yˆ abX
a称为截距, b称之为斜率或回归系数, 表示当自变量X每改变一个单位,因变量Y平 均变动的单位数。
I型回归 II型回归 直线回归(linear regression) 或简单线性回归(simple linear regression)
总体和
YX X
a称为常数项, b称为样本回归系数
FSS回回=MS回=0.55361=5.888
SS剩
b与=0
(一)方差分析
1、回归系数的假设检验——方差分析
生物统计学:第10章 多元线性回归分析及一元非线性回归分析
H0 : 1 2 k 0 H A : 至少有一个i 0
拒绝H0意味着至少有一个自变量对因变量是有影 响的。
检验的程序与一元的情况基本相同,即用方差
胸围X2 186.0 186.0 193.0 193.0 172.0 188.0 187.0 175.0 175.0 185.0
体重Y 462.0 496.0 458.0 463.0 388.0 485.0 455.0 392.0 398.0 437.0
序号 体长X1 胸围X2 体重Y 11 138.0 172.0 378.0 12 142.5 192.0 446.0 13 141.5 180.0 396.0 14 149.0 183.0 426.0 15 154.2 193.0 506.0 16 152.0 187.0 457.0 17 158.0 190.0 506.0 18 146.8 189.0 455.0 19 147.3 183.0 478.0 20 151.3 191.0 454.0
R r Y•1,2,,k
yp yˆ p
,
p 1,2,, n
对复相关系数的显著性检验,相当于对整个回 归的方差分析。在做过方差分析之后,就不必再检 验复相关系数的显著性,也可以不做方差分析。
例10.1的RY·1,2为:
RY •1,2
24327 .8 0.9088 29457 .2
从附表(相关系数检验表)中查出,当独立
表示。同样在多元回归问题中,可以用复相关系数表 示。对于一个多元回归问题,Y与X1,X2,… ,Xk 的线性关系密切程度,可以用多元回归平方和与总平 方和的比来表示。因此复相关系数由下式给出,
应用回归分析 第十章
第10章 含定性变量的回归模型10.1 一个学生使用含有季节定性自变量的回归模型,对春夏秋冬四个季节引入4个0-1型自变量,用SPSS 软件计算的结果中总是自动删除了其中的一个自变量,他为此感到困惑不解。
出现这种情况的原因是什么? 答:假如这个含有季节定性自变量的回归模型为:其中含有k 个定量变量,记为x i 。
对春夏秋冬四个季节引入4个0-1型自变量,记为D i ,只取了6个观测值,其中春季与夏季取了两次,秋、冬各取到一次观测值,则样本设计矩阵为:显然,(X,D)中的第1列可表示成后4列的线性组合,从而(X,D)不满秩,参数无法唯一求出。
这就是所谓的“虚拟变量陷井”,应避免。
当某自变量x j 对其余p-1个自变量的复判定系数2j R 超过一定界限时,SPSS 软件将拒绝这个自变量x j 进入回归模型。
称Tol j =1-2j R 为自变量x j 的容忍度(Tolerance ),SPSS 软件的默认容忍度为0.0001。
也就是说,当2j R >0.9999时,自变量x j 将被自动拒绝在回归方程之外,除非我们修改容忍度的默认值。
而在这个模型中出现了完全共线性,所以SPSS 软件计算的结果中总是自动删除了其中的一个定性自变量。
10.2对自变量中含有定性变量的问题,为什么不对同一属性分别建立回归模型,而采取设虚拟变量的方法建立回归模型?答:原因有两个,以例10.1说明。
一是因为模型假设对每类家庭具有相同的斜率和误差方差,把两类家庭放在一起可以对公共斜率做出最佳估计;二是对于其tt t t kt k t t D D D X X Y μαααβββ++++++=332211110 ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=000110010110001010010010100011)(616515414313212111k k k k k k X X X X X X X X X X X XD X,⎪⎪⎪⎪⎪⎭⎫⎝⎛=k βββ 10β⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4321ααααα他统计推断,用一个带有虚拟变量的回归模型来进行也会更加准确,这是均方误差的自由度更多。
伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第10章 时间序列数据的基本回归分析【圣才出
第10章时间序列数据的基本回归分析10.1复习笔记一、时间序列数据的性质时间序列数据与横截面数据的区别:(1)时间序列数据集是按照时间顺序排列。
(2)时间序列数据与横截面数据被视为随机结果的原因不同。
①横截面数据应该被视为随机结果,因为从总体中抽取不同的样本,通常会得到自变量和因变量的不同取值。
因此,通过不同的随机样本计算出来的OLS估计值通常也有所不同,这就是OLS统计量是随机变量的原因。
②经济时间序列满足作为随机变量是因为其结果无法事先预知,因此可以被视为随机变量。
一个标有时间脚标的随机变量序列被称为一个随机过程或时间序列过程。
搜集到一个时间序列数据集时,便得到该随机过程的一个可能结果或实现。
因为不能让时间倒转重新开始这个过程,所以只能看到一个实现。
如果特定历史条件有所不同,通常会得到这个随机过程的另一种不同的实现,这正是时间序列数据被看成随机变量之结果的原因。
(3)一个时间序列过程的所有可能的实现集,便相当于横截面分析中的总体。
时间序列数据集的样本容量就是所观察变量的时期数。
二、时间序列回归模型的例子1.静态模型假使有两个变量的时间序列数据,并对y t和z t标注相同的时期。
把y和z联系起来的一个静态模型(staticmodel)为:10 1 2 t t t y z u t nββ=++=⋯,,,,“静态模型”的名称来源于正在模型化y 和z 同期关系的事实。
若认为z 在时间t 的一个变化对y 有影响,即1t t y z β∆=∆,那么可以将y 和z 设定为一个静态模型。
一个静态模型的例子是静态菲利普斯曲线。
在一个静态回归模型中也可以有几个解释变量。
2.有限分布滞后模型(1)有限分布滞后模型有限分布滞后模型(finitedistributedlagmodel,FDL)是指一个或多个变量对y 的影响有一定时滞的模型。
考察如下模型:001122t t t t ty z z z u αδδδ--=++++它是一个二阶FDL。
第十章双变量回归与相关
(9-3) (9-4)
式中 lXY 为 X 与 Y 的离均差积和:
l
XY
(X
X
)(Y
Y
)
XY
(
X
)( n
Y
)
(9 5)
除了图中所示两变量呈直线关系外,一 般还假定每个 X 对应Y 的总体为正态分布, 各个正态分布的总体方差相等且各次观测 相互独立。这样,公式(9-1)中的 Yˆ 实际上 是 X 所对应 Y 的总体均数 Y|X 的一个样本估 计值,称为回归方程的预测值(predicted value), 而 a 、 b 分别为 和 的样本估计。
(Y Y ) 2 (Yˆ Y ) 2 (Y Yˆ ) 2
数理统计可证明:
å (Yˆ - Y )(Y - Yˆ ) = 0
上式用符号表示为
SS总 SS回 SS残
(9-6)
式中
SS总 即 (Y Y)2 , 为 Y 的 离 均 差 平 方
和,表示未考虑 X 与Y 的回归关系时Y 的 总变异。
离 Y Yˆ 。
➢ 求解a、b实际上就是“合理 地”找到一条能最好地代表
数据点分布趋势的直线。
最小二乘法(least sum of squares)原则:即保证各实 测点至直线的纵向距离的 平方和最小。
(X,Y)
b lXY lXX
( X X )(Y Y ) (X X )2
a Y bX
5.列出回归方程(回归直线绘制见图 9-1)
Yˆ 1.6617 0.1392X
此直线必然通过点( , )X且与Y 纵坐标轴相交于 截距 a 。如果散点图没有过坐标系原点,可在 自变量实测范围内远端取易于读数的 X 值代入 回归方程得到一个点的坐标,连接此点与点 ( , )也可X绘Y出回归直线。
第十章时间序列数据的基本回归分析-2
基期的变化;
价格指数:可用于计算通胀率,和将名义值换算为实际 值
大多数经济行为受真实变量而非名义变量的影响 工作时间与小时工资
Hale Waihona Puke log(hours)= 0+ 1log(w/p)+u log(hours)= 0+ 1log(w)+ 2log(p)+u
对华反倾销: 交互影响
R2 1 SSR SST
R21SSSS/R(n/T( nk1)1)
y的方差y2不等于SST/(n-1)
更合理的拟合优度度量:
R2 1
SSR
n t1
yt2
R2
1
SSR/(nk1) tn1yt2 (n2)
Var(yt)=Var(et)= e2
指数趋势
log(yt)=0+1t+et 参数1的经济含义:
1=log(yt) (yt-yt-1)/yt-1
回归分析中的趋势变量
若因变量y和自变量x1和x2含有线性趋势,引入趋势变 量:
yt=0+1x1t+2x2t+3t+ut
估计模型:
yˆt ˆ1x1t +ˆ2x2t
这与包含线性趋势的回归模型是等同的:
yt=0+1x1t+2x2t+3t+ut
包含线性趋势时的可决系数R2
yt=0+1x1t+2x2t+3t+ut
总体可决系数:
R2=1-(u2/y2)
样本可决系数和调整可决系数:
可以将线性趋势t理解为除x1和x2外,导致y中线性趋势 的其他不可观测因素。
简单回归分析-沈晓丽
表10-1 14名健康中年妇女的基础代谢与体重的测量值
编号
1 2 3 4 5 6 7
基础代谢 (kj/d)
4175.6 4435.0 3460.2 4020.8 3987.4 4970.6 5359.7
体重 (kg)
50.7 53.7 37.1 51.7 47.8 62.8 67.3
编号
8 9 10 11 12 13 14
4800
4300
Yˆ abx
3800
3300
2800 30 35 40 45 50 55 60 65 70 75
体重(kg)
利用回归方程,只要给定一个40-60岁的健康妇女的体重值,
就可估计出该体重个体的基础代谢值的平均值。
h
Yˆ
11
基础代谢(kJ/d)
线性回归关系的特点:
5800
5300 4800
h
5
线性回归(linear regression )又称简单回归
(simple regression ) :讨论两个变量间的数量依存关
系的统计方法,即研究一个变量如何随另一个变量变化 的常用方法。
两个变量:
因变量dependent variable 反应变量 response variable
:非独立的、受其它变量影响的变量,常用“Y”表 示。
在所有直线中找出 Y Yˆ 2 (残差平方和,记为 SS残差 )达最小值时所对应的直线作为回归线。
h
21
回归参数的估计方法:
按照最小二乘法原则,可得到:
n
(1b ) i1( Xi( XiX )X Y (i) 2Y)= L Lx x y x ,(i1,2,..n).,
(2)a Y bX
相关与回归分析课件
截距(intercept),直线与Y轴交点的纵坐标。
斜率(slope),回归系数(regression coefficient)。 意义:X每改变一个单位,Y平均改变b个单位。
0,Y随X的增大而增大(减少而减少)—— 斜上;
b<0,Y随X的增大而减小(减少而增加)—— 斜下;
b=0,Y与X无直线关系 —— 水平。 |b|越大,表示Y随X变化越快,直线越陡峭。
2
4
11
16
121
44
3
6
11
36
121
66
4
8
14
64
196
112
5
10
22
100
484
220
6
12
23
144
529
276
7
14
32
196
1024
448
8
16
29
256
841
464
9
18
32
324
1024
576
10
20
34
400
1156
680
11
22
33
484
1089
726
合计
132
246
2024
第十章 线性相关与回归 regression and correlation
叶孟良
—— 相关分析
06
—— 回归分析
04
变量间关系问题:年龄~身高、肺活量~体重、药物剂量与动物死亡率等。
01
依存关系:应变量(dependent variable) Y 随自变量(independent variable) X变化而变化。
时间序列数据的基本回归分析
例10.1 静态菲利普斯曲线 研究失业和通货膨胀之间是否存在替代关系。
H0: 1 0 H1: 1 0 文件:PHILLIPS.RAW 命令:reg inf unem 结果:
上述方程并没有表明unem和inf之间存在替代关系 (因为 ˆ1 0 ) 分析中可能存在的问题: (1)CLM假定不成立(12章);(2)静态菲利普斯 曲线不是最佳模型(附加预期的菲利普斯曲线)
yt 0 1zt ut , t 1,2,, n
• “静态模型”的名称来源于我们正在模型化y和z的 同期关系的事实。
• 在一个静态回归模型中也可以有几个解释变量。 2、有限分布滞后模型 在有限分布滞后模型(finite distributed lag
model,FDL)中,我们容许一个或多个变量对y的 影响有一定时滞。
一个q阶有限分布滞后模型可写成:
yt 0 0 zt 1zt1 q ztq ut
静态模型是上式的一种特例,当1, 2 ,, q 都为0
即可。
冲击倾向总是同期z的系数 0 。
长期倾向便是所有变量 zt j 的系数之和。
LRP 0 1 q
该假定意味着,Var(ut X ) 不能依赖于X(只要ut 和X相互独立就
足够了—满足TS.3即可),且在所有时期都保持不变。
假定 TS.5(无序列相关): Corr(ut ,us X ) 0,t s
【提问:我们为什么不假定不同横截面观测的误差是无关的呢? 答:前述有随机抽样的假定,则以样本中所有解释变量为条件, 不同观测的误差是独立的。因此,就我们当前目的而言,序列 相关只是时间序列和回归中的一个潜在问题。】
ቤተ መጻሕፍቲ ባይዱ
第10章 回归分析
7
解: 依题意,实验次数n=5,y~x为一元线性关系y=a+bx。根据最小二乘 法原理,有:
i 1 2 3 4 5
xi 2 4 5 8 9 28
yi 2.01 2.98 3.50 5.02 5.07 18.58
x i2 4 16 25 64 81 190
yi2 4.04 8.88 12.25 25.20 25.70 76.07
xiyi 4.02 11.92 17.50 40.16 45.63 119.23
解得a=1.155,b=0.4573。 因此关系式为:y=1.155+0.4573x。
如果用简化算法,则有:
故关系式为:y=1.155+0.4573x,即两种计算方法结果是一致的。 可见,根据实验数据建立回归方程,可采用最小二乘法,基本步骤为: ① 根据实验数据画出散点图; ② 确定经验公式的函数类型; ③ 通过最小二乘法得到正规方程组; ④ 求解正规方程组,得到回归方程的表达式。 其实①②两点正是第9章建立数学模型的过程,所以建立数学模型是回 归分析的前提。
13
[例10-2] 试用相关系数检验法对例10-l中得到的经验公式进行显著性检验 (α=0.05)。 解:
当α=0.05,n=5时,查得相关系数临界值 r0.05,3=0.8783。所以r>r, f, 所得的经验公式有意义。
14
应当指出的是,相关系数r有一个明显的缺点:即它接近于1的程度与实 验数据组数n有关。当n较小时,|r|容易接近于1;当n较大时,|r| 容易偏小。特别是当n=2时,因两点确定一条直线,|r|总等于1。所 以,只有当实验次数n较多时,才能得出真正有实际意义的回归方程。
2
回归分析的主要内容: 确定回归方程,检验回归方程的可信性 10.2 一元线性回归分析 10.2.1 一元线性回归方程的建立 一元线性回归分析又称直线拟合,是处理两个变量x和y之间关系的方法。 所谓一元是指只有一个自变量x,因变量y在某种程度上是随x变化的。 设有一组实验数据,实验值为 (xi, yi) (i=1,2,…,n)。若x,y符合线性关 系,或已知经验公式为直线形式,就可拟合为直线方程,即:
数学建模案例分析第十章统计回归模型
岭回归原理及步骤
• 原理:岭回归是一种专用于共线性数据分析的有偏估计回归方 法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘 法的无偏性,以损失部分信息、降低精度为代价获得回归系数 更为符合实际、更可靠的回归方法,对病态数据的拟合要强于 最小二乘法。
岭回归原理及步骤
• 原理:岭回归是一种专用于共线性数据分析的有偏估计回归方 法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘 法的无偏性,以损失部分信息、降低精度为代价获得回归系数 更为符合实际、更可靠的回归方法,对病态数据的拟合要强于 最小二乘法。
一元线性回归
01
02
03
模型建立
一元线性回归模型用于描 述两个变量之间的线性关 系,通常形式为y=ax+b, 其中a和b为待估参数。
参数估计
通过最小二乘法等方法对 参数a和b进行估计,使得 预测值与实际观测值之间 的误差平方和最小。
假设检验
对模型进行假设检验,包 括检验模型的显著性、参 数的显著性等,以判断模 型是否有效。
线性回归模型检验
拟合优度检验
通过计算决定系数R^2等指标, 评估模型对数据的拟合程度。
残差分析
对模型的残差进行分析,包括残 差的分布、异方差性检验等,以
判断模型的合理性。
预测能力评估
通过计算预测误差、均方误差等 指标,评估模型的预测能力。同 时可以使用交叉验证等方法对模
型进行进一步的验证和评估。
线性回归模型检验
逐步回归原理及步骤
01
3. 对模型中已有的自变量进行检 验,如果不显著则将其从模型中 剔除。
02
4. 重复步骤2和3,直到没有新的 自变量可以进入模型,也没有不显 著的自变量可以从模型中剔除。
线性回归分析
注意: 逐步添加法或逐步剔除法, 都应当强调“逐步” . 不 能一次按照各个变量的统计量的值 fj 的显著性概率 p 是否 小于等于选定的显著性水平 , 来决定是否作为 Y 的自变 量. 因为每添加或剔除一个变量, 都会引起所有回归系数的 变化和统计量的值 fj 的变化. 一次处理会造成误判, 只有逐 步处理, 才是恰当的.
= ( 1, 2, …, k)T
若估计出, ˆ (ˆ1, ˆ2 ,, ˆk )T 则有 Yˆ Xˆ
所以
Y Yˆ e
于是有 Y Yˆ e Xˆ e
两边左乘XT, 得 X T Y X T Xˆ X T e
由几何解释XT e , 故有XTe = 0, 所以可以求出:
Y 1 2X u
其中 ˆ1, ˆ2 为1, 2 的估计值, 则 Y 的计算值Ŷ, 可以
用下式表达:
Yˆ ˆ1 ˆ2 X
所要求出待估参数 ˆ1, ˆ2, 要使 Y 与其计算值Ŷ之间 的“误差平方和”最小. 即: 使得
Q
(Y
Yˆ
2
)
ei2
(4) u ~ N(0, 2u In )
(5) E(XTu) =0 , 或者, X 为确定矩阵
1 X12 X1k
X
1 1
X 22
X n2
X2k
X nk
(6) 秩 ( X ) = k, ( k<n)
2. 普通最小二乘法估计式
在模型中, 代入样本观测值之后, 可得
人均收入X
这两个变量之间的不确定关系,大致可以用下式表示:
Y 1 2 LnX u
第10章 直线回归与相关分析
回归方程的基本条件(性质): 回归方程的基本条件(性质): 性质1 性质1 性质2 性质2 性质3 性质3
ˆ 最小; Q = ∑( y − y)2 = 最小;
ˆ ∑( y − y) = 0
; 。
回 归 直 线 通 过 点 (x, y)
2
ˆ Q = ∑( yi − yi ) = ∑[ yi − (a + bxi )]
二、直线回归的显著性检验
回归关系的假设测验: 回归关系的假设测验: 对于样本的回归方程,必须测定其来自无 对于样本的回归方程,必须测定其来自无 直线回归关系总体的概率大小。只有当这种概 直线回归关系总体的概率大小。 率小于0.05或0.01时,我们才能冒较小的危 或 率小于 时 险确认其所代表的总体存在着直线回归关系。 险确认其所代表的总体存在着直线回归关系。 这就是回归关系的假设测验 。 回归关系的假设测验有两种方法: 测验或F 回归关系的假设测验有两种方法:t测验或F测验
由于x变数的实测区间为[31.7,44.2], 由于x变数的实测区间为[31.7,44.2], [31.7 在应用=48.5-1.1x于预测时,需限定x 在应用=48.5-1.1x于预测时,需限定x的区间 =48.5 于预测时 为[31.7,44.2];如要在x<31.7或>44.2的 [31.7,44.2];如要在x 31.7或 44.2的 区间外延,则必须有新的依据。 区间外延,则必须有新的依据。
整理后可得: 整理后可得:
na + ( ∑ xi )b = ∑ yi ( ∑ xi ) a + ( ∑ x i ) b = ∑ x i y i
2
上式叫做a与b的正规方程组 正规方程组。 正规方程组
第十章_logit回归
第十章 logitic 回归本章导读:Logitic 回归模型是离散选择模型之一,属于多重变数分析范畴,是社会学、生物统计学、临床、数量心理学、市场营销、会计与财务等实证分析的常用方法。
10.1 logit 模型和原理Logistic 回归分析是对因变量为定性变量的回归分析。
它是一种非线性模型。
其基本特点是:因变量必须是二分类变量,若令因变量为y ,则常用y=1表示“yes ”,y=0表示“no ”。
[在发放股利与不发放股利的研究中,分别表示发放和不发放股利的公司]。
自变量可以为虚拟变量也可以为连续变量。
从模型的角度出发,不妨把事件发生的情况定义为y=1,事件未发生的情况定义为0,这样取值为0、1的因变量可以写作:⎩⎨⎧===事情未发生事情发生01y 我们可以采用多种方法对取值为0、1的因变量进行分析。
通常以P 表示事件发生的概率(事件未发生的概率为1-P ),并把P 看作自变量x 的线性函数。
由于y 是0-1型Bernoulli 分布,因此有如下分布:P=P (y=1|x ):自变量为x 时y=1的概率,即发放现金股利公司的概率1-P=P (y=0|x ):自变量为x 时y=0的概率,即不发放现金股利公司的概率 事件发生和不发生的概率比成为发生比,即相对风险,表现为PP odds -=1.因为是以 对数形式出现的,故该发生比为对数发生比(log odds ),表现为)1ln(P P odds -=。
对数发生比也是事件发生概率P 的一个特定函数,通过logistic 转换,该函数可以写成logistic 回归的logit 模型:)1(log )(log PP P it e -= Logit 一方面表达出它是事件发生概率P 的转换单位;另一方面,它作为回归的因变量就可以自己与自变量之间的依存关系保持传统回归模式。
根据离散型随即变量期望值的定义,可得:E(y)=1(P)+0(1-P)=P进而得到x P y E 10)(ββ+==因此,从以上分析可以看出,当因变量的取值为0、1时,均值x y E 10)(ββ+=总是代表给定自变量时y=1的概率。
生物统计学第十章可直线化的非线性回归分析
y = 0.1457e-0.0304x
15
30
45
60
R2 = 0.7333
r r0.01(9) 0.735
第五节:Logistic生长曲线
特点
开始增长缓慢,而在以后的某一范围内 迅速增长,达到某限度后,增长又缓慢 下来,曲线略呈拉长的“S”,因此,也 称为S型曲线。
y
yˆ
1
K aeb
x
K
0
x0
x
yˆ K 1 a
yˆ K
K 2 K 1+a
x
起始量
终极量
yˆ
1
K a eb x
y随x的增加而增加。
y
K
下凹
上凸
0
ln( 1 ) x a
b
yˆ K 2
K 2 K 1+a x
拐点
(x,y) y=a+bx y-y
y-y y
二、线性化的方法
直接引入新变量。
yˆablgx
x'lgx
yˆ abx'
数学变换后,引入新变量。
yˆ axb
lg y ˆlg ablg x
y'a'bx'
三、常见的可线性化的曲线类型
对数函数 yˆablgx
指数函数
yˆ aebx
幂函数
yˆ axb
双曲线
1 ab
yˆ
x
yˆ
a
1 bex
S形曲线
四、常用曲线模型的直线化方法
一、确定曲线类型的方法
一、确定曲线类型的方法
(1)不能对变量间的关系有一个整体上的认识。
数学变换后,引入新变量。
第五节:Logistic生长曲线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阜师院数科院
§1.3 平方和分解公式与线性相关关系
• 对面n组数据(x1,y1),(x2,y2),……,(xn,yn),有
ST
n
n
( yt y )
2
t 1
2 ˆ ˆ [( y t y t ) ( y t y )] t 1
n
2 ˆ 2 ˆ ˆ ˆ [( y t y t ) 2 ( y t y t )( y t y ) ( y t y ) ] t 1
2
xt n x
t 1
t 1
ˆ ˆ a y bx
阜师院数科院
并且这个解是唯一的.数学上还可证明,它们确实 使Q(a,b)达到最小.
于是 , 对于给定的样本值 ( x 1 , y 1 ), ( x 2 , y 2 ),..., ( x n , y n ) 用最小二乘法得到了 从而得到一条直线 ˆ ˆ ˆ y a bx 称这条直线为经验回归 直线 , 回归直线 ). 方程 ( 或经验公式 , 经验回归 ˆ ˆ ˆ ˆ a , b 估计 a , b ( a , b 都为随机变量 )
.
• 由上面的分析可知,y1,y2,…yn 分散程度可以分解 为两部分ST=SR+SE,其中一部分是通过x对于Y的线 性相关关系而引起的Y的分散性,另一部分是剩余 部分引起的Y的分散性.
阜师院数科院
• 现在来回答x,Y之间是否存在线性相关关系的 问题.不难想到把回归平方和SR与剩余平方和SE 进行比较.即在数理统计中,选取统计量
阜师院数科院
§1 一元线性回归
§1.1 一元线性回归模型
• 在一元线性回归分析里,我们要考察随机变 量Y与一个普通变量x之间的联系. • 对于有一定联系的两个变量:x与Y,通过观 测或实验得到n对数据 (x1,Y1), (x2,Y2), ...,(xn,Yn) 用什么方法可以得到这两个变量之间的经验 公式呢?为此举例如下:
F SR S E /( n 2 )
来体现x与Y的线性相关关系的相对大小.若F值相 当大,则表明x对Y的线性影响较大,这时可以认为x 与Y之间有线性相关关系.反之,若F值较小,则没有 理由认为x与Y之间有线性相关关系.
阜师院数科院
衡量F值的大小需要有一个定量的界限.可以证 明在假定
Y1=a+bx1+ε1 Y2=a+bx2+ε2 ………… Yn=a+bxn+εn 下,此定量界限F就是自由度为1,n-2的F分布的 临界值,其中ε1,ε2,…,εn服从N(0,σ2)的独立随机 变量.
, 所以使 Q ( a , b )
最小原则 , 习惯上称为最小 ˆ ˆ a , b 的方法称为最小
二乘原则 .根据最小二乘原则找 二乘法 .
阜师院数科院
根据最小二乘原则找 原理来解一个二元方程 Q a Q b
n
ˆ ˆ a , b , 通常用微积分中的极值 组 :
2 y t ( a bx t ) 0
阜师院数科院
• 例:维尼纶纤维的耐热水性能好坏可以用指标“缩 醛化度”Y(克分子%)来衡量.这个指标越高,耐热水 性能也越好.而甲醛浓度是影响缩醛化度的重要因 素.在生产中常用甲醛浓度x(克/升)去控制这一指标. 为此必须找出它们之间的关系,现安排了一批试验, 获得如下数据:
甲醛浓度 缩醛化度 18 20 22 24 26 28 30
n
平方和 , 记作 S xx .它描述了
SE
x 1 , x 2 ,..., x n的分散程度
.
n
ˆ 2 ( yt yt )
t 1
n
2 ˆ ˆ ˆ ˆ [ y t ( a b x t )] Q ( a , b ) 就是
t 1
Q ( a , b )的最小值 , 称为残差平方和
阜师院数科院
§1.4 数学模型与相关性检验
• F值究竟多大才能认为x与Y之间有线性相关关 系呢?为此对数据结构提出下列假定: Y1=a+bx1+ε1 Y2=a+bx2+ε2 ………… Yn=a+bxn+εn 其中ε1,ε2,…,εn服从N(0,σ2)的独立随机变量. • 判断x与Y之间是否有线性相关关系,就是要检 验假设
t 1 n
2 y t ( a bx t ) x t 0
t 1
即 na n x b n y n 2 n x a xt b t 1
n
xt yt
t 1
其中 x , y 分别是 x t , y t的平均数 .
阜师院数科院
由于原始数据 的系数行列式 n nx nx
1
n
n
n
ˆ yt
1
t 1
n
n
t 1
ˆ ˆ1 ˆ bt ) a b ˆ (a n
x
t 1
n
t
ˆ ˆ a bx y
于是 S R
n
2 ˆ ˆ ˆ ˆ ( y t y ) 就是 y 1 , y 2 ,..., y n 这 n 个数的偏差
t 1
平方和 .它描述了
• 实际上,由于实验误差的影响,即使是具有确定性 关系的变量之间,也常表现出某种程度的不确定性. • 回归分析方法是处理变量间相关关系的有力工 具.它不仅为建立变量间关系的数学表达式(经验 公式)提供了一般的方法,而且还能判明所建立的 经验公式的有效性,从而达到利用经验公式预测、 控制等目的.因此,回归分析方法的应用越来越 广泛,其方法本身也在不断丰富和发展.
2 ˆ ˆ b [( y t y )( x t x ) b ( x t x ) ] 0 t 1
阜师院数科院
所以
n
( yt y )
2
t 1
n
ˆ 2 ( yt yt )
t 1
n
2 ˆ ( yt y )
t 1Βιβλιοθήκη 几个平方和的意义:ST
n
( yt y )
第十章 回归分析
• 回归分析方法是一种常用的数理统计方法,是处理 多个变量变之间相关的一种数学方法. • 在实际问题中我们常常会遇到多个变量同处于一 个过程之中,它们互相联系、互相制约.在有的变量间 有完全确定的函数关系,例如电压V、电阻R与电流I 之间有关系式:V=IR;在圆面积S与半径R之间有关系 式S=πR2. • 自然界众多的变量之间,除了以上所说的那种确定 性的关系外,还有一类重要的关系,即所谓的相关关系. 比如,人的身高与体重之间的关系.虽然一个人的身高 并不能确定体重,但是总的说来,身高者,体重也大.我 们称身高与体重这两个变量具有相关关系. 阜师院数科院
由此可知,若H0:b=0成立,则
F SR S E /( n 2 ) ~ F (1, n 2 )
而且b偏离0越远,即b的绝对值越大,F也越大.
• 相关性检验的一般程序:
(1)计算SR,SE,再计算F; (2)对于给定的显著性水平α,查Fα(1,n-2);
(3)若F> Fα(1,n-2),则否定H0:b=0,即认为x与Y之间具 有线性相关关系;否则,就认为x与Y之间不具有线性 相关关系.
n
x t 不会全部相同
, 所以此方程组
x
2 t
n ( xt n x ) n ( xt x ) 0
2 2 2 t 1 t 1
n
n
t 1
于是解出
ˆ b
x
t 1 n
n
t
yt nx y
2 2
(x
t 1 n
n
t
x )( y t y ) ( xt x )
2 6 .8 6 2 8 .3 5 2 8 .7 5 2 8 .8 7 2 9 .7 5 3 0 .0 0 3 0 .3 6
• 若重复这些试验,在同一甲醛浓度x下,所获得的缩 醛化度Y不完全一致.这表明x与Y之间不能用一个 完全确定的函数关系来表达. 阜师院数科院
散点与近似直线图
y
31 30 29 28
SR
ˆ ˆ ˆ y 1 , y 2 ,..., y n的分散程度
2 2 ˆ ˆ ˆ ˆ [ a b x t ( a b x )] t 1 n n
.
ˆ ( yt y )
t 1
n
t 1
2 2 ˆ2 ˆ2 b ( xt x ) b ( xt x ) t 1
阜师院数科院
于是
n
[ y t ( a bx t )]
2
t 1
就定量地描述了直线l跟这n个点的总的远近程度. 这个量是随着不同的直线而且变化,或是说是随 不同的a与b而变化的,也就是说它是a,b的二元函 数,记为Q(a,b):
Q (a, b)
[ y t ( a bx t )]
ˆ ˆ ˆ 由此可见 , y 1 , y 2 ,..., y n的分散性来源于 的分散性 , 并且是通过
x1 , x 2 ,..., x n .
x 对 Y 的线性相关关系引起的
阜师院数科院
而 ( x t x ) 就是 x 1 , x 2 ,..., x n 这 n 个数的偏差
2 t 1
一般假设随机误差ε~N(0,σ2).即
Y~ N(a+bx,σ2)
阜师院数科院
• 在Y=a+bx+ε中,x是一般变量,它可以精确测量或 可以加以控制,Y是可观察其值的随机变量, ε~ N(0,σ2)是不可观察的随机变量, a,b是未知参数.