电磁感应现象中“导轨问题”的能量关系

合集下载

高中物理电流的磁效应和电磁感应中的能量问题

高中物理电流的磁效应和电磁感应中的能量问题

电流的磁效应和电磁感应中的能量问题原平市第一中学朱东平1820年丹麦物理学家奥斯特发现:把一段直导线平行地放在小磁针的上方,当导线中有电流通过时小磁针就会发生偏转,这说明不仅磁铁能产生磁场,电流也能产生磁场,这就是电流的磁效应。

电流的磁效应发现以后,人们很自然地想到:利用磁场是不是也能产生电流呢?英国物理学家法拉第经过十年坚持不懈的努力,终于取得重大突破,在1983年发现了由磁场产生电流的条件和规律。

由磁场产生电流的现象称为电磁感应现象。

在这里我就这两类问题中的能量转化情况谈谈我的看法:一、在电流产生磁场的现象中:无论是通电直导线产生磁场的现象,还是通电线圈产生磁场的现象,都是原来空间没有磁场,现在有了磁场,这个过程中必然有了磁场能量的增加。

磁场的能量显然是来源于给导线或线圈提供电流的电源。

二、在电磁感应现象中:原来电路中没有电流,现在发生电磁感应产生了电流,电流通过有电阻的导体转化成了焦耳热;或者电流通过化学电源给其充电;总之,消耗了电能,那么这个电能从哪里来呢?是来源于磁场能量吗?在电磁感应中一部分情况感应电流的电能是来源于磁场能量;而还有一部分感应电流的电能不是消耗了磁场能量,而是以磁场为桥梁实现的其他形式的能量和电能的相互转化或者转移。

我们分情况来讨论:1、闭合电路中的部分导线〔或线圈〕与磁场相对运动而产生的电磁感应现象中〔切割类〕的情况下,显然电能是来源于磁铁、导线、导线框的机械能或者控制它们运动的人的内能或者其他物体的能量。

例1、在含有电阻的水平光滑导轨上有一导体棒AB,整个装置处在竖直向下的匀强磁场中;导体棒开始具有初速度v,试分析AB运动中的能量转化情况?分析:导体棒向右运动时由于切割磁感线而产生了感应电流,而导体棒就会受到向左的安培力;导体棒就做向右的减速运动;导体棒克服安培力做功动能减少转化成了回路中的电能。

如果要保持导体棒匀速运动人或者其他物体必须对导体棒做正功,而导体棒对人或者物体做负功,从而消耗人或者其他物体的能量转化成回路中的电能。

电磁感应中的“杆+导轨”类问题(3大模型)(解析版)

电磁感应中的“杆+导轨”类问题(3大模型)(解析版)

电磁感应中的“杆+导轨”类问题(3大模型)电磁感应“杆+导轨”模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:模型一 单杆+电阻+导轨模型[初建模型][母题] 如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。

整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。

将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。

重力加速度为g ,导轨电阻不计,杆与导轨接触良好。

求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。

[解析] (1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BL v ,回路中的感应电流I =ER +R杆所受的安培力F =BIL 根据牛顿第二定律有mg sin θ-B 2L 2v2R=ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L 2,方向沿导轨平面向下。

(2)杆cd 从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sin θ=Q 总+12m v m 2又Q 杆=12Q 总,所以Q 杆=12mgx sin θ-m 3g 2R 2sin 2θB 4L 4。

[答案] (1)g sin θ,方向沿导轨平面向下 2mgR sin θB 2L 2,方向沿导轨平面向下 (2)12mgx sin θ-m 3g 2R 2sin 2θB 4L 4[内化模型]单杆+电阻+导轨四种题型剖析开始时a =g sin α,B L[变式] 此题若已知金属杆与导轨之间的动摩擦因数为μ。

现用沿导轨平面向上的恒定外力F 作用在金属杆cd 上,使cd 由静止开始沿导轨向上运动,求cd 的最大加速度和最大速度。

电磁感应中的“杆 导轨”类问题(3大模型)解题技巧

电磁感应中的“杆 导轨”类问题(3大模型)解题技巧

辅导23:电磁感应中的“杆+导轨”类问题(3大模型)解题技巧电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:类型一:单杆+电阻+导轨模型类【初建模型】【例题1】(2017·淮安模拟)如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。

整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。

将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。

重力加速度为g ,导轨电阻不计,杆与导轨接触良好。

求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。

【思路点拨】:【答案】:(1)g sin θ,方向沿导轨平面向下;2mgR sin θB 2L 2,方向沿导轨平面向下;(2)12mgx sin θ-m 3g 2R 2sin 2θB 4L 4【解析】:(1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BLv 回路中的感应电流I =ER +R杆所受的安培力F =BIL根据牛顿第二定律有mg sin θ-B 2L 2v2R =ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下 当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L 2,方向沿导轨平面向下。

(2)杆cd 从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sin θ=Q 总+12mv m 2又Q杆=12Q总,所以Q杆=12mgx sin θ-m3g2R2sin2θB4L4。

【内化模型】单杆+电阻+导轨四种题型剖析【变式】:此题若已知金属杆与导轨之间的动摩擦因数为μ。

高考物理一轮复习课件 第十一章 专题强化二十四 电磁感应中的动力学和能量问题

高考物理一轮复习课件 第十一章 专题强化二十四 电磁感应中的动力学和能量问题
a、v反向 v减小,F安减小,a减小,当a=0, 静止或匀速直线运动
F合
考向1 “单棒+电阻”模型
例1 (多选)(2021·全国甲卷·21)由相同材料的导线绕成边长相同的甲、乙两个正方 形闭合线圈,两线圈的质量相等,但所用导线的横截面积不同,甲线圈的匝数是乙 的2倍.现两线圈在竖直平面内从同一高度同时由静止开始下落,一段时间后进入一 方向垂直于纸面的匀强磁场区域,磁场的上边界水平,如图所示.不计空气阻力,已 知下落过程中线圈始终平行于纸面,上、下边保持水平.在线圈下边进入磁场后且上 边进入磁场前,可能出现的是
由牛顿第二定律有mg-F=ma 联立解得 a=g-mF=g-1B6ρ2vρ0
加速度和线圈的匝数、横截面积无关,则甲
和乙进入磁场时,具有相同的加速度. 当 g>1B6ρ2vρ0时,甲和乙都加速运动, 当 g<1B6ρ2vρ0时,甲和乙都减速运动, 当 g=1B6ρ2vρ0时,甲和乙都匀速运动,故选 A、B.
例2 如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30° 角固定,间距为L=1 m,质量为m的金属杆ab垂直放置在轨道上且与轨 道接触良好,其阻值忽略不计.空间存在匀强磁场,磁场方向垂直于轨道 平面向上,磁感应强度为B=0.5 T.P、M间接有阻值为R1的定值电阻, Q、N间接电阻箱R.现从静止释放ab, 改变电阻箱的阻值R,测得最大速 度为vm,得到v1m与R1的关系如图乙所 示.若轨道足够长且电阻不计,重力 加速度g取10 m/s2,则
当金属棒到达x0处时,金属棒产生的感应电动势为 E′=2Bvx0tan θ 则此时电容器的电荷量为 Q′=CE′=2BCvx0tan θ,B错误; 由于金属棒做匀速运动, 则F=F安=BIL=4B2Cv3tan2θ·t, F与t成正比,则F为变力,根据力做功的功率公式P=Fv 可知功率P随力F变化而变化,D错误.

电磁感应中的“杆+导轨”模型

电磁感应中的“杆+导轨”模型

电磁感应中的“杆+导轨”模型电磁感应中的“杆+导轨”模型一、单棒模型阻尼式:在单棒模型中,导体棒相当于电源,根据洛伦兹力的公式,可以得到安培力的特点为阻力,并随速度减小而减小,加速度随速度减小而减小,最终状态为静止。

根据能量关系、动量关系和瞬时加速度,可以得到公式B2l2v R rF和q mv/Bl,其中q表示流过导体棒的电荷量。

需要注意的是,当有摩擦或者磁场方向不沿竖直方向时,模型的变化会受到影响。

举例来说,如果在电阻不计的光滑平行金属导轨固定在水平面上,间距为L、导轨左端连接一阻值为R的电阻,整个导轨平面处于竖直向下的磁感应强度大小为B的匀强磁场中,一质量为m的导体棒垂直于导轨放置,a、b之间的导体棒阻值为2R,零时刻沿导轨方向给导体棒一个初速度v,一段时间后导体棒静止,则零时刻导体棒的加速度为0,零时刻导体棒ab两端的电压为BLv,全过程中流过电阻R的电荷量为mv/Bl,全过程中导体棒上产生的焦耳热为0.二、发电式在发电式中,导体棒同样相当于电源,当速度为v时,电动势E=Blv。

根据安培力的特点,可以得到公式22Blv/l=Blv/(R+r)。

加速度随速度增大而减小,最终特征为匀速运动。

在稳定后的能量转化规律中,F-BIl-μmg=m*a,根据公式可以得到a=-(F-μmg)/m、v=0时,有最大加速度,a=0时,有最大速度。

需要注意的是,当电路中产生的焦耳热为mgh时,电阻R中产生的焦耳热也为mgh。

1.如图所示,相距为L的两条足够长的光滑平行金属导轨MN、PQ与水平面的夹角为θ,N、Q两点间接有阻值为R的电阻。

整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向下。

将质量为m、阻值也为R的金属杆cd垂直放在导轨上,杆cd由静止释放,下滑距离x时达到最大速度。

重力加速度为g,导轨电阻不计,杆与导轨接触良好。

求:1)杆cd下滑的最大加速度和最大速度;2)上述过程中,杆上产生的热量。

高考物理复习:电磁感应中的动力学与能量问题

高考物理复习:电磁感应中的动力学与能量问题

为h。初始时刻,磁场的下边缘和线框上边缘的高度差为2h,将重物从静止
开始释放,线框上边缘刚进磁场时,恰好做匀速直线运动,滑轮质量、摩擦
阻力均不计。下列说法正确的是(ABD)
A.线框进入磁场时的速度为 2ℎ
2
2
B.线框的电阻为2
2ℎ
C.线框通过磁场的过程中产生的热量 Q=2mgh
D.线框通过磁场的过程中产生的热量 Q=4mgh
热量等于系统重力势能的减少量,即 Q=3mg×2h-mg×2h=4mgh,C 错误, D 正
确。
能力形成点3
整合构建
电磁感应中的动量综合问题——规范训练
电磁感应中的有些题目可以从动量角度着手,运用动量定理或动量守恒
定律解决。
(1)应用动量定理可以由动量变化来求解变力的冲量。如在导体棒做非
匀变速运动的问题中,应用动量定理可以解决牛顿运动定律不易解答的问
解析:(1)由ab、cd棒被平行于斜面的导线相连,故ab、cd速度大小总是相
等,cd也做匀速直线运动。设导线的拉力的大小为FT,右斜面对ab棒的支持
力的大小为FN1,作用在ab棒上的安培力的大小为F,左斜面对cd棒的支持力
大小为FN2,对于ab棒,受力分析如图甲所示。
由力的平衡条件得2mgsin θ=μFN1+FT+F ①
电动势,该导体或回路就相当于电源。
(2)分析清楚有哪些力做功,就可以知道有哪些形式的能量发生了相互转化。
(3)根据能量守恒列方程求解。
训练突破
2.(多选)如图所示,质量为3m的重物与一质量为m的线框用一根绝缘细线
连接起来,挂在两个高度相同的定滑轮上。已知线框的横边边长为l,水平
方向匀强磁场的磁感应强度为B,磁场上下边界的距离、线框竖直边长均

电磁感应中导轨问题的分类及应用

电磁感应中导轨问题的分类及应用

电磁感应中导轨问题的分类及应用一、单动式导轨的基本特点和规律如图所示,间距为l的平行导轨与电阻R相连,整个装置处在大小为B、垂直导轨平面向上的匀强磁场中。

质量为m、电阻为r的导体从静止开始沿导轨滑下,已知导体与导轨的动摩擦因数为μ。

1.电路特点导体为发电边,与电源等效。

当导体速度为v时,其电动势为E=Blv。

2.安培力特点安培力为运动阻力,并随速度按正比规律增大F B=Blv=B2l2v/(R+r)∝v3.加速度特点加速度随速度增大而减小,导体做加速度减小的加速运动ma=mgsinθ-μmgcosθ-B2l2v/(R+r)4.两个极值的规律当v=0时,F B =0,加速度最大为a=gsinθ-μgcosθ当a=0时,F合=0,速度最大。

根据平衡条件有mgsinθ=-μmgcosθ+B2l2v/(R+r)所以最大速度为v m=mg(sinθ-μcosθ)(R+r)/(B2l2)5.匀速运动时能量转化规律当导体以最大速度匀速运动时,重力的机械功率等于安培力功率(即电功率)和摩擦力功率之和,并均达到最大值。

P G=P F+Pμ P G=mgv m sinθ Pμ=μmgv m cosθP F=F m v m=I m E m=E m2/(R+r)=I m2(R+r)当μ=0时,重力的机械功率就等于安培力功率,也等于电功率,这就是发电导轨在匀速运动过程中最基本的能量转化和守恒定律mgv m sinθ= F m v m=I m E m=E m2/(R+r)=I m2(R+r)二、双动式导轨的基本问题和规律如图所示,间距为l的光滑平行导轨水平放置,处在大小为B、方向竖直向上的匀强磁场中,质量均为m、电阻均为r的两根导体分别在平行于导轨方向的两个大小相等、方向相反的水平拉力F作用下,以速度v向左右两侧反向匀速运动。

1.电路特点两导体反方向(相向或背向)运动,均为发电边,与两个同样的电源串联等效。

2.回路中电动势和电流的计算根据欧姆定律,电动势和电流分别为E合=2E=2BlvI= E合/R=2Blv/(2r)=Blv/r3.拉力和安培力的特点和计算拉力为动力,安培力为阻力;在匀速运动的条件下,两者为平衡力。

电磁感应中的导轨类问题

电磁感应中的导轨类问题

.动态分析导体棒与导轨问题1、一根导体棒在导轨上滑动(单导体问题)类“电—动—电”型“动—电—动”型型示M b意P图NaQ棒 ab 长为 L ,质量为 m,电阻为 R,棒 ab 长为 L ,质量为 m,电阻为 R,导轨光滑,电阻不计。

导轨光滑,电阻不计。

分开关闭合后,棒 ab 受安培力 F=BLE/R ,棒 ab 释放后下滑,此时a=gsin α,棒 ab 的析此时, a=BLE/mR, 棒 ab 的速度增加—速度 v增加——感应电动势E=BLv 增加感应电动势 BLv 增加—安培力 F=BIL 减——感应电流增加——安培力 F 增加——小—加速度 a 减小,当安培力 F=0 ( a=0)加速度 a 减小,当安培力F=mgsinα时, v 时, v 最大最大。

2、两根导体棒在导轨上滑动(双导体问题)初速度不为零,不受其他水平外力作用NQNQ V 0V 0示MP MP意图质量 =m 1=m 2电阻 =r1 =r2质量 =m 1=m 2电阻 =r1=r 2长度 =L 1=L 2长度 =L 1=L 2分杆 MN 做边减速运动,杆 PQ 做变稳定时,两杆的加速度为零,两杆的速度析加速运动,稳定时,两杆的加速度之比为 1: 2为零,以相等的速度匀速运动。

初速度为零,受其他水平外力的作用.N QNQ示F F意MP MP图质量 =m 1=m 2电阻 =r1=r2摩擦力 f 1=f 2,质量 =m 1=m 2长度 =L 1=L 2电阻 =r1=r2长度 =L 1=L 2分开始时,两杆做变加速运动;稳定时,稳定时,若 F≤2f,则 PQ 先变加速后匀析两杆以相同的加速度做匀变速直线运速运动;若 F>2f ,则 PQ 先变加速,之动。

后两杆匀加速运动。

一、“动—电—动”型1.(2007 山东济南)如图所示,水平放置的光滑平行金属导轨上有一质量为m 的金属棒 ab.导轨地一端连接电阻R,其他电阻均不计,磁感应强度为 B 的匀强磁场垂直于导轨平面向下,金属棒ab 在一水平恒力 F 作用下由静止起向右运动.则()A .随着 ab 运动速度的增大,其加速度也增大B .外力 F 对 ab 做的功等于电路中产生的电能C.当 ab 做匀速运动时,外力 F 做功的功率等于电路中的电功率D .无论 ab 做何种运动,它克服安培力做的功一定等于电路中产生的电能2、如图所示,有两根和水平方向成角的光滑平行的金属轨道,上端接有可变电阻 R,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感强度为B,一根质量为 m 的金属杆从轨道上由静止滑下.经过足够长的时间后,金属杆的速度会趋近于一个最大速度v m,则()A .如果B 增大, v m将变大 B .如果变大, v m将变大C.如果 R 变大, v 将变大D.如果 m 变小, v将变大m m3.如图所示,一光滑平行金属轨道平面与水平面成θ角,两导轨上端用一电阻 R 相连,该装置处于匀强磁场中,磁场方向垂直轨道平面向上。

电磁感应中的能量转化与守恒

电磁感应中的能量转化与守恒

2、解决电磁感应现象与力的结合问题的方法 (1) 平衡问题:动态分析过程中,抓住受力与运 动相互制约的特点,分析导体是怎样从初态过 渡到平衡状态的,再从受力方面列出平衡方程, 解决问题; (2)非平衡类:抓住导体在某个时刻的受力情况, 利用顿第二定律解决问题;
例题5
圆形导体环用一根轻质细杆悬挂在 O 点,导体环 可以在竖直平面内来回摆动,空气阻力和摩擦力 均可忽略不计.在图所示的正方形区域,有匀强 磁场垂直纸面向里.下列说法正确的是( BD ) A.此摆开始进入磁场前机械能不守恒 B.导体环进入磁场和离开磁场时,环中感应电流 的方向肯定相反 C.导体环通过最低位置时, 环中感应电流最大 D.最后此摆在匀强磁场中 振动时,机械能守恒
电磁感应中的综合应用
3、解决电磁感应现象与能量的结合问题的方法 要注意分析电路中进行了那些能量转化 , 守恒关系是什么,从功和能的关系入手,列出表 示能量转化关系的方程;
二、反电动势 相反 在电磁感应电路与电流方向 ________ 的电动 反电动势 此时总电动势等于电源电动势和 势叫做__________. 之差 . 反电动势______ 由于杆 ab 切割磁感线运动,因而产生感应电动 势 E´,根据右手定则,在杆 ab 上感应电动势 E´的方 向是从b到a,同电路中的电流方向相反,在电路中与 电流方向相反的电动势叫做反电动势,杆ab中的感应 电动势 E´就是反电动势,这时总电动势等于电池电 动势和反电动势之差.
2. 如图所示 , 当图中电阻 R 变化时 , 螺线管 M 中变化的电 流产生变化的磁场 ,从而使螺线管 N中的磁通量发生变 化 , 在 N 中产生感应电流 ,此处电能是螺线管 M 转移给 N 的.但此处的转移并不像导向导线导电一样直接转移,而 电能 磁场能 → 是 一 个 间 接 的 转 移 : ________ → ________ 电能 ,实质上还是能量的转化. ________

高中物理 电磁感应中的导轨上的导体棒问题

高中物理  电磁感应中的导轨上的导体棒问题

电磁感应中的导轨上的导体棒问题,是力学和电学的综合问题。

解决 电磁感应中的导轨上的导体棒问题 ,首先要挖掘出导体棒的稳定条件及它最后能达到的稳定状态,然后才能利用相关知识和稳定条件列方程求解。

下文是常见导轨上的导体棒问题的分类及结合典型例题的剖析。

想必你阅过全文,你会对滑轨上的导体棒运动问题,有一个全面的细致的了解,能迅速分析出稳定状态,挖掘出稳定条件,能准确的判断求解所运用的方法。

一、滑轨上只有一个导体棒的问题滑轨上只有一个导体棒的问题,分两类情况:一种是含电源闭合电路的导体棒问题,另一种是闭合电路中的导体棒在安培力之外的力作用下的问题。

(一)含电源闭合电路的导体棒问题例 1、如图1所示,水平放置的光滑导轨MN、PQ上放有长为L、电阻为R、质量为m的金属棒 ab ,导轨左端接有内阻不计、电动势为E的电源组成回路,整个装置放在竖直向上的匀强磁场B中,导轨电阻不计且足够长,并与电键S串联。

当闭合电键后,求金属棒可达到的最大速度。

图 1分析:本题的稳定状态是金属棒最后的匀速运动;稳定条件是金属棒的加速度为零(安培力为零,棒产生的感应电动势与电源电动势大小相等)。

解析:闭合电键后,金属棒在安培力的作用下向右运动。

当金属棒的速度为v时,产生的感应电动势,它与电源电动势为反接,从而导致电路中电流减小,安培力减小,金属棒的加速度减小,即金属棒做的是一个加速度越来越小的加速运动。

但当加速度为零时,导体棒的速度达到最大值,金属棒产生的电动势与电源电动势大小相等,回路中电流为零,此后导体棒将以这个最大的速度做匀速运动。

金属板速度最大时,有解得(二)闭合电路中的导体棒在安培力之外的力作用下的问题1.导体棒在外力作用下从静止运动问题例 2、 如图 2,光滑导体棒 bc固定在竖直放置的足够长的平行金属导轨上,构成框架 abcd ,其中 bc棒电阻为R,其余电阻不计。

一质量为m且不计电阻的导体棒 ef 水平放置在框架上,且始终保持良好接触,能无摩擦地滑动。

应用动力学和能量观点解决电磁感应中的“导轨+杆”模型问题

应用动力学和能量观点解决电磁感应中的“导轨+杆”模型问题

简单物理 2014年3月第1页光滑导轨运动过程收尾状态v=0匀速匀速无电阻时匀速匀加速应用动力学和能量观点解决电磁感应中的“导轨+杆”模型问题RvRFtvtvCvCFtvtvvvttv Fxv1.模型概述“导轨+杆”模型是电磁感应问题在高考命题中的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“导轨+杆”模型又分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,情景复杂,形式多变.2.常见模型类型“电—动—电”型“动—电—动”型示意图已知量棒ab长L,质量m,电阻R;导轨光滑水平,电阻不计棒ab长L,质量m,电阻R;导轨光滑,电阻不计过程分析S闭合,棒ab受安培力F=BLER,此时加速度a=BLEmR,棒ab速度v↑→感应电动势E′=BLv↑→电流I↓→安培力F=BIL↓→加速度a↓,当安培力F=0时,a=0,v最大,最后匀速运动棒ab释放后下滑,此时加速度a=g sin α,棒ab速度v↑→感应电动势E=BLv↑→电流I=ER↑→安培力F=BIL↑→加速度a↓,当安培力F=mg sin α时,a=0,v最大,最后匀速运动能量转化通过安培力做功,把电能转化为动能克服安培力做功,把重力势能转化为内能运动形式变加速运动变加速运动最终状态匀速运动,v m=E′BL匀速运动v m=mgR sin αB2L2解析 (1)设甲在磁场区域abcd 内运动时间为t 1,乙从开始运动到ab 位置的时间为t 2, 则由运动学公式得L =12·2g sin θ·t 21,L =12g sin θ·t 22解得t 1= L g sin θ,t 2= 2Lg sin θ (1分)因为t 1<t 2,所以甲离开磁场时,乙还没有进入磁场. (1分) 设乙进入磁场时的速度为v 1,乙中产生的感应电动势为E 1,回路中的电流为I 1,则12mv 21=mgL sin θ (1分) E 1=Bdv 1 (1分) I 1=E 1/2R (1分) mg sin θ=BI 1d (1分)解得R =B 2d 22m 2Lg sin θ (1分)(2)从释放金属杆开始计时,设经过时间t ,甲的速度为v ,甲中产生的感应电动势为E , 回路中的电流为I ,外力为F ,则v =at (1分) E =Bdv (1分) I =E /2R (1分) F +mg sin θ-BId =ma (1分) a =2g sin θ 联立以上各式解得 F =mg sin θ+mg sin θ2g sin θL·t (0≤t ≤ Lg sin θ) (1分) 方向垂直于杆平行于导轨向下. (1分) (3)甲在磁场运动过程中,乙没有进入磁场,设甲离开磁场时速度为v 0,甲、乙产生的热 量相同,均设为Q 1,则v 20=2aL (1分)W +mgL sin θ=2Q 1+12mv 20 (2分)解得W =2Q 1+mgL sin θ乙在磁场运动过程中,甲、乙产生相同的热量,均设为Q 2,则2Q 2=mgL sin θ(2分)根据题意有Q =Q 1+Q 2 (1分) 解得W =2Q (1分)答案 (1)B 2d 22m 2Lg sin θ(2)F =mg sin θ+mg sin θ 2g sin θL ·t (0≤t ≤ Lg sin θ),方向垂直于杆平行于导轨向下(3)2Q突破训练3 如图7甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离s 与时间t的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s 2(忽略ab 棒运动过程中对原磁场的影响),求:甲 乙图7(1)磁感应强度B 的大小;(2)金属棒ab 在开始运动的1.5 s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的1.5 s 内,电阻R 上产生的热量. 答案 (1)0.1 T (2)0.67 C (3)0.26 J解析 (1)金属棒在AB 段匀速运动,由题中图象乙得:v =ΔsΔt =7 m/s I =BLv r +R ,mg =BIL 解得B =0.1 T (2)q =I Δt I =ΔΦR +r Δt ΔΦ=ΔS Δt B解得:q =0.67 C(3)Q =mgs -12mv 2解得Q =0.455 J从而Q R =Rr +R Q =0.26 J高考题组1. (2012·山东理综·20)如图8所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强 磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由 静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加 一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好, 图8 不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是 ( ) A .P =2mgv sin θ B .P =3mgv sin θC .当导体棒速度达到v 2时加速度大小为g2sin θD .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功 答案 AC解析 根据I =E R =BLvR ,导体棒由静止释放,速度达到v 时,回路中的电流为I ,则根据共点力的平衡条件,有mg sin θ=BIL .对导体棒施加一平行于导轨向下的拉力,使其以2v 的速度匀速运动时,则回路中的电流为2I ,则根据平衡条件,有F +mg sin θ=B ·2IL ,所以拉力F =mg sin θ,拉力的功率P =F ×2v =2mgv sin θ,故选项A 正确,选项B 错误;当导体棒的速度达到v 2时,回路中的电流为I 2,根据牛顿第二定律,得mg sin θ-B I 2L =ma ,解得a =g2sin θ,选项C 正确;当导体棒以2v 的速度匀速运动时,根据能量守恒定律知,重力和拉力所做的功之和等于R 上产生的焦耳热,故选项D 错误.2. (2012·江苏单科·13)某兴趣小组设计了一种发电装置,如图9所示.在磁极和圆柱状铁芯之间形成的两磁场区域的圆心角α均为49π,磁场均沿半径方向.匝数为N 的矩形线圈abcd 的边长ab =cd =l 、bc =ad =2l .线圈以角速度ω绕中心轴匀速转动,bc 边和ad 边同时进入磁场.在磁场中,两条边所经过处的磁感应强度大小均为B 、方向始终与两边的运动方向垂直.线圈的总电阻为r ,外接电阻为R .求:图9(1)线圈切割磁感线时,感应电动势的大小E m ; (2)线圈切割磁感线时,bc 边所受安培力的大小F ; (3)外接电阻上电流的有效值I .答案 (1)2NBl 2ω (2)4N 2B 2l 3ωr +R (3)4NBl 2ω3 r +R解析 (1)bc 、ad 边的运动速度v =ωl2感应电动势E m =4NBlv 解得E m =2NBl 2ω(2)电流I m =E mr +R安培力F =2NBI m l解得F =4N 2B 2l 3ωr +R(3)一个周期内,通电时间t =49TR 上消耗的电能W =I 2m Rt 且W =I 2RT解得I =4NBl 2ω3 r +R .模拟题组3. 如图10,两根足够长光滑平行金属导轨PP ′、QQ ′倾斜放置,匀强磁场垂直于导轨平面,导轨的上端与水平放置的 两金属板M 、N 相连,板间距离足够大,板间有一带电微粒,金属棒ab 水平跨放在导轨上,下滑过程中与导轨接触良好. 图10 现同时由静止释放带电微粒和金属棒ab ,则 ( ) A .金属棒ab 最终可能匀速下滑 B .金属棒ab 一直加速下滑C .金属棒ab 下滑过程中M 板电势高于N 板电势D .带电微粒不可能先向N 板运动后向M 板运动 答案 BC解析 金属棒沿光滑导轨加速下滑,棒中有感应电动势而对金属板M 、N 充电,充电电 流通过金属棒时金属棒受安培力作用,只有金属棒速度增大时才有充电电流,因此总有 mg sin θ-BIl >0,金属棒将一直加速下滑,A 错,B 对;由右手定则可知,金属棒a 端(即 M 板)电势高,C 对;若微粒带负电,则电场力向上,与重力反向,开始时电场力为0, 微粒向下加速,当电场力增大到大于重力时,微粒的加速度向上,可能向N 板减速运动 到零后再向M 板运动,D 错.4. 如图11所示,足够长的光滑平行金属导轨cd 和ef 水平放置,在其左端连接倾角为θ=37°的光滑金属导轨ge 、hc ,导轨间距均为L =1 m ,在水平导轨和倾斜导轨上,各放一根与导轨垂直的金属杆,金属杆与导轨接触良好.金属杆a 、b 质量均为m =0.1 kg ,电阻R a =2 Ω、R b =3 Ω,其余电阻不计.在水平导轨和斜面导轨区域分别有竖直向上和竖直向下的匀强磁场B 1、B 2,且B 1=B 2=0.5 T .已知从t =0时刻起,杆a 在外力F 1作用下由静止开始水平向右运动,杆b 在水平向右的外力F 2作用下始终保持静止状态,且F 2=0.75+0.2t (N).(sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2)图11简单物理2014年3月第 PAGE \* MERGEFORMAT 7 页(1)通过计算判断杆a的运动情况;(2)从t=0时刻起,求1 s内通过杆b的电荷量;(3)若t=0时刻起,2 s内作用在杆a上的外力F1做功为13.2 J,则这段时间内杆b上产生的热量为多少?答案(1)以4 m/s2的加速度做匀加速运动(2)0.2 C(3)6 J解析(1)因为杆b静止,所以有F2-B2IL=mg tan 37°而F2=0.75+0.2t(N)解得I=0.4t (A)整个电路中的电动势由杆a运动产生,故E=I(R a+R b)E=B1Lv解得v=4t所以,杆a做加速度为a=4 m/s2的匀加速运动.(2)杆a在1 s内运动的距离d= eq \f(1,2) at2=2 mq= eq \x\to(I) Δteq \x\to(I) = eq \f(E,R a+R b)E= eq \f(ΔΦ,Δt) = eq \f(B1Ld,Δt)q= eq \f(ΔΦ,R a+R b) = eq \f(B1Ld,R a+R b) =0.2 C即1 s内通过杆b的电荷量为0.2 C(3)设整个电路中产生的热量为Q,由能量守恒定律得W1-Q= eq \f(1,2) mv EMBED Equation.3v1=at=8 m/s解得Q=10 J从而Q b= eq \f(R b,R a+R b) Q=6 J。

电磁感应中的动力学问题和能量问题

电磁感应中的动力学问题和能量问题

析清楚电磁感应过程中能量转化的关系,是解决电磁
感应问题的重要途径之一.
编辑课件
题型探究
题型1 电磁感应中的动力学问题
【例1】 如图2所示,光滑斜面的倾角
=30°,在斜面上放置一矩形线框
abcd,ab边的边长l1=1 m,bc边的边长
l2=0.6 m,线框的质量m=1 kg,电阻
R=0.1 Ω,线框通过细线与重物相
s-l2=v t3+12 at32
解得t3=1.2 s
因此ab边由静止开始运动到gh线所用的时间
t=t1+t2+t3=1.2 s+0.1 s+1.2 s=2.5 s
答案 (1)6 m/s
(2)2.5 s
编辑课件
规律总结 此类问题中力现象和电磁现象相互联系,相互制
约,解决问题首先要建立“动→电→动”的思维顺 序,可概括为 (1)找准主动运动者,用法拉第电磁感应定律和 楞次定律求解电动势大小和方向. (2)根据等效电路图,求解回路中电流的大小及 方向. (3)分析导体棒的受力情况及导体棒运动后对电 路中电学参量的“反作用”,即分析由于导体棒 受到安培力,对导体棒运动速度、加速度的影响, 从而推理得出对电路中的电流有什么影响,最后定 性分析出导体棒的最终运动情况. (4)列出牛顿第二定律或编平辑衡课件方程求解.
到最大这一关键.
编辑课件
特别提示 1.对电学对象要画好必要的等效电路图. 2.对力学对象要画好必要的受力分析图和过程示 意图. 热点二 电路中的能量转化分析 从能量的观点着手,运用动能定理或能量守恒定律. 基本方法是: 受力分析→弄清哪些力做功,做正功还是负功→明确 有哪些形式的能参与转化,哪些增哪些减→由动能定 理或能量守恒定律列方程求解.

电磁感应中的导轨类问题-陈国庆

电磁感应中的导轨类问题-陈国庆

v0
4.运动特点 a减小的减速运动
5.最终状态 静止
O
t
阻尼式单棒
6.两个规律
(1)能量关系:
1 2
mv02

0

Q
v0
QR
Qr

R r
(2)瞬时加速度: a FB B2l2v
m m(R r)
7.变化 (1)有摩擦 (2)磁场方向不沿竖直方向
练习:AB杆受一冲量作用后以初速度 v0=4m/s,沿水 平面内的固定轨道运动,经一段时间后而停止。AB的 质量为m=5g,导轨宽为L=0.4m,电阻为R=2Ω,其余 的电阻不计,磁感强度B=0.5T,棒和导轨间的动摩擦 因数为μ=0.4,测得杆从运动到停止的过程中通过导线 的电量q=10-2C,求:上述过程中 (g取10m/s2)
v
加速度随速度增大而减小
vm
a FB mg = B (E Blv)l g
m
m(R r)
4.运动特点 a减小的加速运动 O
t
电动式单棒
5.最终特征 匀速运动
6.两个极值
(1)最大加速度: v=0时,E反=0,电流、加速度最大
Im

E R
r
Fm BIml,
am

Fm
mg
vm
B2l2
发电式单棒
F
7.稳定后的能量转化规律
发电式单棒
8.几种变化 (1) 电路变化
F
(2)磁场方向变化
B
F
(3) 导轨面变化(竖直或倾斜)
B
M
N

加沿斜面恒力
通过定滑轮挂 一重物
电磁感应中的导轨类问题

电磁感应中的能量关系

电磁感应中的能量关系

电磁感应中的能量关系1、如图所示,竖直面内的虚线上方是一匀强磁场B,从虚线下方竖直上抛一正方形线圈,线圈越过虚线进入磁场,最后又落回原处,运动过程中线圈平面保持在竖直平面内,不计空气阻力,则()A.上升过程克服磁场力做的功大于下降过程克服磁场力做的功B.上升过程克服磁场力做的功等于下降过程克服磁场力做的功C.上升过程克服重力做功的平均功率大于下降过程中重力的平均功率D.上升过程克服重力做功的平均功率等于下降过程中重力的平均功率2、如图所示,在水平绝缘平面上固定足够长的平行光滑金属导轨(电阻不计),导轨左端连接一个阻值为R的电阻,质量为m的金属棒(电阻不计)放在导轨上,金属棒与导轨垂直且与导轨接触良好.整个装置放在匀强磁场中,磁场方向与导轨平面垂直,在用水平恒力F把金属棒从静止开始向右拉动的过程中,下列说法正确的是( ) A.恒力F做的功一定等于电路中产生的电能与金属棒获得的动能之和B.恒力F做的功一定等于克服安培力做的功与电路中产生的电能之和C.恒力F做的功一定等于克服安培力做的功与金属棒获得的动能之和D.恒力F与安培力做的功之和等于电路中产生的电能与金属棒获得的动能和3、两根足够长的光滑导轨竖直放置,间距为L ,底端接阻值为R 的电阻。

将质量为m 的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B 的匀强磁场垂直,如图所示。

除电阻R 外其余电阻不计。

现将金属棒从弹簧原长位置由静止释放.则( )A.释放瞬间金属棒的加速度等于重力加速度gB.金属棒向下运动时,流过电阻R 的电流方向为a→bC.金属棒的速度为v时.所受的安培力大小为F =B2L2v/RD.电阻R 上产生的总热量等于金属棒重力势能的减少4.如图所示,平行金属导轨与水平面成θ角,导轨与两相同的固定电阻R1和R2相连,匀强磁场垂直穿过导轨平面。

有一导体棒ab,质量为m,导体棒的电阻R =2R1,与导轨之间的动摩擦因数为μ,导体棒ab沿导轨向上滑动,当上滑的速度为v时,固定电阻R1消耗的热功率为P,此时A.整个装置因摩擦而产生的热功率为μmgcosθ vB.整个装置消耗的机械功率为μmgcosθ vC.导体棒受到的安培力的大小为8P/VD.导体棒受到的安培力的大小为10P/V5、水平固定放置的足够长的U形金属导轨处于竖直向上的匀强磁场中,在导轨上放着金属棒ab,开始时ab棒以水平初速度v0向右运动,最后静止在导轨上,就导轨光滑和粗糙两种情况比较,这个过程 ( )A.安培力对ab棒所做的功不相等B.电流所做的功相等C .产生的总内能相等D .通过ab 棒的电量相等6、如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R ,质量不能忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,棒在竖直向上的恒力F 作用下加速上升的一段时间内,力F 做的功与安培力做的功的代数和等于( )A.棒的机械能增加量B.棒的动能增加量C.棒的重力势能增加量D.电阻R 上放出的热量7、如图所示,边长为L 的正方形导线框质量为m ,由距磁场H 高处自由下落,其下边ab 进入匀强磁场后,线圈开始做减速运动,直到其上边cd刚刚穿出磁场时,速度减为ab 边进入磁场时的一半,磁场的宽度也为L ,则线框穿越匀强磁场过程中产生的焦耳热为 ( ) A .2mgL B .2mgL +mgH C .2mgL +34mgH D .2mgL +74mgH 8.如图所示,平行金属导轨与水平面间的倾角为θ,导轨电阻不计,与阻值为R 的定值电阻相连,匀强磁场垂直穿过导轨平面,磁感应强度为B .有一质量为m 长为l 的导体棒从ab 位置获得平行于斜面的,大小为v 的初速度向上运动,最远到达a′b′的位置,滑行的距离为s ,导体棒的电阻也为R ,与导轨之间的动摩擦因数为μ.则A .上滑过程中导体棒受到的最大安培力为B 2l 2v RB .上滑过程中电流做功发出的热量为12mv 2-mgs(sin θ+μcos θ) C .上滑过程中导体棒克服安培力做的功为12mv 2 D .上滑过程中导体棒损失的机械能为12mv 2-mgssin θ 9、如图所示,ef 、gh 为水平放置的足够长的平行光滑导轨,导轨间距为L=1m ,导轨左端连接一个R =2Ω的电阻,将一根质量为0.2kg 的金属棒cd 垂直地放置导轨上,且与导轨接触良好,导轨与金属棒的电阻均不计,整个装置放在磁感应强度为B =2T 的匀强磁场中,磁场方向垂直导轨平面向下,现对金属棒施加一水平向右的拉力F ,使棒从静止开始向右运动,解答以下问题。

电磁感应中的双杆双动导轨滑轨能量动量问题大综合

电磁感应中的双杆双动导轨滑轨能量动量问题大综合

问题3:电磁感应中的“双杆问题”电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。

要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。

下面对“双杆”类问题进行分类例析1.“双杆”向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。

[例1] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。

已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。

(1)求作用于每条金属细杆的拉力的大小。

(2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。

2.“双杆”同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。

[例2 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。

导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。

两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。

在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。

设两导体棒均可沿导轨无摩擦地滑行。

开始时,棒cd静止,棒ab有指向棒cd的初速度v0。

若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少。

(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?3. “双杆”中两杆都做同方向上的加速运动。

“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。

[例3]如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。

(物理)高中物理法拉第电磁感应-导轨问题全面总结

(物理)高中物理法拉第电磁感应-导轨问题全面总结

1 由动能定理: smg sin 0 - W -sJtmg cos 0=-mv 2 - 0
2
1
-mv
2
+W
s= 2
=2.Sm
mg(sin 0-µcos 0)
(3) 通过 ab 的电荷噩
q
=l.11t
=— BL—s , R
代入数据得 q=2
C
【例2】如图所示,质朵m10= l . kg, 电阻R1 =0.30 , 长 度l0= .m 4 的导体棒b a 横放在U型金属框架上。框架
当b a 运动到某处时,框架开始运动。设框架 与水平面间最大静陎擦力等于滑动摩擦力,g取Ol m/s2.
8

.\/'
.v
N'
(1)求框架开始运动时 b a 速度v的大小;
(2)从ab开始运动到框架开始运动的过程中,MN上产生的热垃Q=O. lJ, 求该过程ab位移x的大小。
【解析】: (1)ab对框架的压力F; = m 1g
p
b
【解析】(1)ab运动切割磁感线产生感应电动势E, 所以ab相当千电源,与外电阻R构成回路。
:• Uab= R BLV =-2 BLV
R+1/2
3
(2) 若无外力作用则ab在安培力作用下做减速运动,最终静止。动能全部转化为电热。Q =-mv2 . 2
由动址定理得:Ft =mv即BILt =mv,
架的其他部分电阻不计, 框架足够长垂直于框平面的方向存在向上的匀强磁场, 磁感应强度B=2Ta. b为金 属杆,其长度为L=04. m, 质址m=08. kg, 电阻r=0.50, 棒与框架的动脖擦因数µ = DS. . 由静止开始下滑, 直到速度达到最大的过程中,上端电阻R。产生的热品Oo=03. 75J(已知sin37° =06. , cos37 ° =08. ; g取10m / s2)求: (1) 杆ab的最大速度; (2)从开始到速度最大的过程中ab杆沿斜面下滑的距离; (3) 在该过程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档