【精品】内蒙古霍林郭勒市2017届九年级《数学》上学期期末考试试题及答案
2016-2017学年第一学期期末考试九年级数学答案
2016—2017学年第一学期期末考试试卷九年级数学参考答案二、填空题(每题5分,共30分)11.60 12.3 13.π48 14.5415. ②③ 16.5 三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.3602r n S π= ………………4分=ππ91036021002=⨯(2cm )………………4分 18.解:(1)一次出拳小聪出“石头”的概率是;………………2分(2)如图:………………4分则小聪胜小明的概率是=; ………………2分19.设经过t 小时后,乙船在甲船的正东方………………1分︒⨯=︒-302045)10100(Sin t Sin t ………………3分解得:)12(101210-=+=t ………………3分(不化简不扣分)答:经过)12(10-小时后,乙船在甲船的正东方.………………1分 20.(1) C ………………3分(2) 4)1(221--=x y ,其顶点为(1,-4), ………………1分 而抛物线2y 的顶点坐标为(m ,2),由它们的系数关系,可以得出友好抛物线的顶点的横坐标相同,纵坐标抛物线1y 是抛物线2y 的k 倍,………………2分∴2-=k , ∴1222++-=x x y ………………2分21.解:(1)y 1=2x ﹣20,(0<x≤200)………………2分y 2=10x ﹣40﹣0.05x 2=﹣0.05x 2+10x ﹣40.(0<x≤80).………………2分(2)对于y 1=2x ﹣20,当x=200时,y 1的值最大=380万元.………………2分对于y 2=﹣0.05(x ﹣100)2+460, ∵0<x≤80, ∴x=80时,y 2最大值=440万元.………………2分∵440>380,∴选择生产乙产品利润比较高.………………2分22.(1)证△OPI ≌△ODI (SAS) ………………6分 (2) I 为△OPQ 的内心,且∠OQP=90°,所以∠OIP=135°,……………4分则∠OID=135°,所以∠PID=90°………………2分23.(1)证△BHF ∽△DFG (两角对应相等的两个三角形相似) ………2分得出DGBFDF BH =,………………2分 又因为F 是BD 的中点,所以24BD GD BH =⋅………………2分 (2)同理可得△CBF ∽△FDG , ∴FGCFDF BC =, 又∵DF=BF ,∴FGCFBF BC = ∵∠CBF=∠CFG ,∴△CBF ∽△CFG ………………4分 ∴∠BCF =∠FCG ………………1分当CA=CG 时,CF ⊥AD ………………1分24.(1)3(2)(4)8y x x =-+-343832++-=x x ………………5分(2)当CD ∥BF 时,△COD ∽△FDB ∴DBDFOD OC = ∴ tt t t --+-=4)4)(2(833………………3分解得:41-=t (舍),22=t ………………2分∴ t=2时,CD ∥BF(3)当40<<t 时,①若CE=EF ,t t t 2383452+-=,32=t ………………1分 ②若CF=EF , 53)2383(852⨯+-=t t t ,911=t ………………1分③若CE=CF , 3433438362+-++-=t t t ,0=t (舍………1分当t>4时,只有CE=EF ,t t t 2383452-=,322=t …………1分∴ 当32=t 或119或223时CEF ∆为等腰三角形.。
九年级数学上期末试题及答案
九年级数学上期末试题及答案2017九年级数学上期末试题及答案2017九年级数学期末考试就要到了,们要对学过的数学知识一定要多加练习,这样才能进步。
以下是店铺为你整理的2017九年级数学上期末试题,希望对大家有帮助!2017九年级数学上期末试题一、选择题(每小题3分,共12分)1.我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中是中心对称图形的是( )A. B. C. D.2.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( )A. B. C. D.3.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cosA的值等于( )A. B. C. D.4.如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是( )A.AE=BEB. =C.OE=DED.∠DBC=90°5.将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A.y=3(x+2)2+3B.y=3(x﹣2)2+3C.y=3(x+2)2﹣3D.y=3(x﹣2)2﹣36.若ab>0,则一次函数y=ax+b与反比例函数y= 在同一坐标系数中的大致图象是( )A. B. C. D.二、填空题(每小题3分,共24分)7.方程x2=2x的根为.8.已知 =3,则 = .9.抛物线y=(x﹣1)2﹣3的顶点坐标是.10.如图,铁道路口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.5m时,长臂端点升高为.(杆的宽度忽略不计)11.如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC的度数为.12.某校去年投资2万元购买实验器材,预计今明2年的投资总额为8万元.若该校这两年购买的实验器材的投资年平均增长率为x,则可列方程为.13.如图,在平面直角坐标系中,点A是函数y= (k<0,x<0)图象上的点,过点A与y轴垂直的直线交y轴于点B,点C、D在x轴上,且BC∥AD.若四边形ABCD的面积为3,则k值为.14.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c=0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1三、解答题(一)(每小题5分,共20分)15.计算:(π﹣3.14)0﹣| sin60°﹣4|+( )﹣1.16.解方程:x2﹣1=2(x+1).17.先化简:•(x ),然后x在﹣1,0,1,2四个数中选一个你认为合适的数代入求值.18.某学校为了了解九年级学生“一份中内跳绳次数”的情况,随机选取了3名女生和2名男生,从这5名学生中,选取2名同时跳绳,请你用列表或画树状图求恰好选中一男一女的概率是多少?四、解答题(二)(每小题7分,共28分)19.△ABC的顶点坐标为A(﹣2,3)、B(﹣3,1)、C(﹣1,2),以坐标原点O为旋转中心,顺时针旋转90°,得到△A′B′C′,点B′、C′分别是点B、C的对应点.(1)求过点B′的反比例函数解析式;(2)求线段CC′的长.20.如图,在▱ABCD中,点E在边BC上,点F在边AD的延长线上,且DF=BE=4,连接EF交CD于G.若 = ,求AD的长.21.如图,在平面直径坐标系中,反比例函数y= (x>0)的图象上有一点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D,CD=(1)点D的横坐标为(用含m的式子表示);(2)求反比例函数的解析式.22.如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南安边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走60m到达C点,测得点B在点C的北偏东60°方向.回答下列问题:(1)∠CBA的度数为.(2)求出这段河的宽(结果精确到1m,备用数据≈1.41,≈1.73.五、解答题(三)(每小题10分,共20分)23.如图,AB是⊙O的直径,点C是⊙O上一点,连接AC,∠MAC=∠CAB,作CD⊥AM,垂足为D.(1)求证:CD是⊙O的切线;(2)若∠ACD=30°,AD=4,求图中阴影部分的面积.24.课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.六、解答题(四)(每小题10分,共20分)25.正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,①直接写出O、P、A三点坐标;②求抛物线L的解析式;(2)求△OAE与△OCE面积之和的最大值.26.已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为E、F,点O为AC的中点.(1)当点P与点O重合时如图1,求证:OE=OF(2)直线BP绕点B逆时针方向旋转,当点P在对角线AC上时,且∠OFE=30°时,如图2,猜想线段CF、AE、OE之间有的数量关系?并给予证明.(3)当点P在对角线CA的延长线上时,且∠OFE=30°时,如图3,猜想线段CF、AE、OE之间有怎样的数量关系?直接写出结论即可. 2017九年级数学上期末试题答案与解析一、选择题(每小题3分,共12分)1.我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中是中心对称图形的是( )A. B. C. D.【考点】中心对称图形.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选A.2.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( )A. B. C. D.【考点】概率公式.【分析】直接得出偶数的个数,再利用概率公式求出答案.【解答】解:∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴朝上一面的数字是偶数的概率为: = .故选:C.3.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cosA的值等于( )A. B. C. D.【考点】锐角三角函数的定义;勾股定理.【分析】首先运用勾股定理求出斜边的长度,再利用锐角三角函数的定义求解.【解答】解:∵在Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB= .∴cosA= ,故选:D.4.如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是( )A.AE=BEB. =C.OE=DED.∠DBC=90°【考点】垂径定理;圆周角定理.【分析】根据垂径定理及圆周角定理对各选项进行逐一分析即可.【解答】解:∵CD是⊙O的直径,弦AB⊥CD于E,∴AE=BE, = ,故A、B正确;∵CD是⊙O的直径,∴∠DBC=90°,故D正确.故选C.5.将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A.y=3(x+2)2+3B.y=3(x﹣2)2+3C.y=3(x+2)2﹣3D.y=3(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将抛物线y=3x2向上平移3个单位所得抛物线的解析式为:y=3x2+3;由“左加右减”的原则可知,将抛物线y=3x2+3向左平移2个单位所得抛物线的解析式为:y=3(x+2)2+3.故选A.6.若ab>0,则一次函数y=ax+b与反比例函数y= 在同一坐标系数中的大致图象是( )A. B. C. D.【考点】反比例函数的图象;一次函数的图象.【分析】根据ab>0,可得a、b同号,结合一次函数及反比例函数的特点进行判断即可.【解答】解:A、根据一次函数可判断a>0,b>0,根据反比例函数可判断ab>0,故符合题意,本选项正确;B、根据一次函数可判断a<0,b<0,根据反比例函数可判断ab<0,故不符合题意,本选项错误;C、根据一次函数可判断a<0,b>0,根据反比例函数可判断ab>0,故不符合题意,本选项错误;D、根据一次函数可判断a>0,b>0,根据反比例函数可判断ab<0,故不符合题意,本选项错误;故选A.二、填空题(每小题3分,共24分)7.方程x2=2x的根为x1=0,x2=2 .【考点】解一元二次方程﹣因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2=2x,x2﹣2x=0,x(x﹣2)=0,x=0,或x﹣2=0,x1=0,x2=2,故答案为:x1=0,x2=2.8.已知 =3,则 = 2 .【考点】比例的性质.【分析】根据比例的合比性质即可求解.【解答】解:∵ =3,∴ =3﹣1=2.故答案为:2.9.抛物线y=(x﹣1)2﹣3的顶点坐标是(1,﹣3) .【考点】二次函数的性质.【分析】根据抛物线y=a(x﹣h)2+k的顶点坐标是(h,k)直接写出即可.【解答】解:抛物线y=(x﹣1)2﹣3的顶点坐标是(1,﹣3).故答案为(1,﹣3).10.如图,铁道路口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.5m时,长臂端点升高为8m .(杆的宽度忽略不计) 【考点】相似三角形的应用.【分析】由题意证△ABO∽△CDO,可得,即 = ,解之可得.【解答】解:如图,由题意知∠BAO=∠C=90°,∵∠AOB=∠COD,∴△ABO∽△CDO,∴ ,即 = ,解得:CD=8,故答案为:8m.11.如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC的度数为80°.【考点】切线的性质.【分析】根据切线的性质得出∠OCD=90°,进而得出∠OCB=40°,再利用圆心角等于圆周角的2倍解答即可.【解答】解:∵在⊙O中,AB为直径,BC为弦,CD为切线,∴∠OCD=90°,∵∠BCD=50°,∴∠OCB=40°,∴∠AOC=80°.故答案为:80°.12.某校去年投资2万元购买实验器材,预计今明2年的投资总额为8万元.若该校这两年购买的实验器材的投资年平均增长率为x,则可列方程为2(1+x)+2(1+x)2=8 .【考点】由实际问题抽象出一元二次方程.【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果该校这两年购买的实验器材的投资年平均增长率为x,根据题意可得出的方程.【解答】解:设该校这两年购买的实验器材的投资年平均增长率为x,今年的投资金额为:2(1+x);明年的投资金额为:2(1+x)2;所以根据题意可得出的方程:2(1+x)+2(1+x)2=8.故答案为:2(1+x)+2(1+x)2=8.13.如图,在平面直角坐标系中,点A是函数y= (k<0,x<0)图象上的点,过点A与y轴垂直的直线交y轴于点B,点C、D在x轴上,且BC∥AD.若四边形ABCD的面积为3,则k值为﹣3 .【考点】反比例函数系数k的几何意义.【分析】根据已知条件得到四边形ABCD是平行四边形,于是得到四边形AEOB的面积=AB•OE,由于S平行四边形ABCD=AB•CD=3,得到四边形AEOB的面积=3,即可得到结论.【解答】解:∵AB⊥y轴,∴AB∥CD,∵BC∥AD,∴四边形ABCD是平行四边形,∴四边形AEOB的面积=AB•OE,∵S平行四边形ABCD=AB•CD=3,∴四边形AEOB的面积=3,∴|k|=3,∵<0,∴k=﹣3,故答案为:﹣3.14.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c=0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1【考点】二次函数图象与系数的关系.【分析】①根据抛物线与x轴交点个数可判断;②根据抛物线对称轴可判断;③根据抛物线与x轴的另一个交点坐标可判断;④根据B、C 两点到对称轴的距离,可判断.【解答】解:由函数图象可知抛物线与x轴有2个交点,∴b2﹣4ac>0即b2>4ac,故①正确;∵对称轴为直线x=﹣1,∴﹣ =﹣1,即2a﹣b=0,故②错误;∵抛物线与x轴的交点A坐标为(﹣3,0)且对称轴为x=﹣1,∴抛物线与x轴的.另一交点为(1,0),∴将(1,0)代入解析式可得,a+b+c=0,故③正确;∵a<0,∴开口向下,∵|﹣ +1|= ,|﹣ +1= ,∴y1综上,正确的结论是:①③④,故答案为①③④.三、解答题(一)(每小题5分,共20分)15.计算:(π﹣3.14)0﹣| sin60°﹣4|+( )﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题涉及零指数幂、二次根式化简、绝对值、特殊角的三角函数值四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解::(π﹣3.14)0﹣| sin60°﹣4|+( )﹣1=1﹣|2 × ﹣4|+2=1﹣|﹣1|+2=2.16.解方程:x2﹣1=2(x+1).【考点】解一元二次方程﹣因式分解法.【分析】首先把x2﹣1化为(x+1)(x﹣1),然后提取公因式(x+1),进而求出方程的解.【解答】解:∵x2﹣1=2(x+1),∴(x+1)(x﹣1)=2(x+1),∴(x+1)(x﹣3)=0,∴x1=﹣1,x2=3.17.先化简:•(x ),然后x在﹣1,0,1,2四个数中选一个你认为合适的数代入求值.【考点】分式的化简求值.【分析】利用分解因式、完全平方公式以及通分法化简原分式,再分析给定的数据中使原分式有意义的x的值,将其代入化简后的算式中即可得出结论.【解答】解:原式= • • ,= • ,=x+1.∵在﹣1,0,1,2四个数中,使原式有意义的值只有2,∴当x=2时,原式=2+1=3.18.某学校为了了解九年级学生“一份中内跳绳次数”的情况,随机选取了3名女生和2名男生,从这5名学生中,选取2名同时跳绳,请你用列表或画树状图求恰好选中一男一女的概率是多少?【考点】列表法与树状图法.【分析】画树状图展示所有12种等可能的结果数,再找出选中一男一女的结果数,然后根据概率公式求解.【解答】解:画树状图为:共12种等可能的结果数,其中选中一男一女的结果数为12,所以恰好选中一男一女的概率= = .四、解答题(二)(每小题7分,共28分)19.△ABC的顶点坐标为A(﹣2,3)、B(﹣3,1)、C(﹣1,2),以坐标原点O为旋转中心,顺时针旋转90°,得到△A′B′C′,点B′、C′分别是点B、C的对应点.(1)求过点B′的反比例函数解析式;(2)求线段CC′的长.【考点】待定系数法求反比例函数解析式;坐标与图形变化﹣旋转.【分析】(1)据图形旋转方向以及旋转中心和旋转角度得出对应点,根据待定系数法,即可求出解.(2)根据勾股定理求得OC,然后根据旋转的旋转求得OC′,最后根据勾股定理即可求得.【解答】解:(1)如图所示:由图知B点的坐标为(﹣3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,点B的对应点B′的坐标为(1,3),设过点B′的反比例函数解析式为y= ,∴k=3×1=3,∴过点B′的反比例函数解析式为y= .(2)∵C(﹣1,2),∴OC= = ,∵△ABC以坐标原点O为旋转中心,顺时针旋转90°,∴OC′=OC= ,∴CC′= = .20.如图,在▱ABCD中,点E在边BC上,点F在边AD的延长线上,且DF=BE=4,连接EF交CD于G.若 = ,求AD的长.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据相似三角形的判定与性质,可得答案.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF∥EC,∴△DFG∽CEG,∴ = = ,∴CE=6,∴AD=BC=BE+CE=10.21.如图,在平面直径坐标系中,反比例函数y= (x>0)的图象上有一点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D,CD=(1)点D的横坐标为m+2 (用含m的式子表示);(2)求反比例函数的解析式.【考点】待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征;坐标与图形变化﹣平移.【分析】(1)由点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,可求得点C的坐标,又由过点C作y 轴的平行线交反比例函数的图象于点D,CD= ,即可表示出点D的横坐标;(2)由点D的坐标为:(m+2,),点A(m,4),即可得方程4m= (m+2),继而求得答案.【解答】解:(1)∵A(m,4),AB⊥x轴于点B,∴B的坐标为(m,0),∵将点B向右平移2个单位长度得到点C,∴点C的坐标为:(m+2,0),∵CD∥y轴,∴点D的横坐标为:m+2;故答案为:m+2;(2)∵CD∥y轴,CD= ,∴点D的坐标为:(m+2, ),∵A,D在反比例函数y= (x>0)的图象上,∴4m= (m+2),解得:m=1,∴点A的坐标为(1,4),∴k=4m=4,∴反比例函数的解析式为:y= .22.如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南安边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走60m到达C点,测得点B在点C的北偏东60°方向.回答下列问题:(1)∠CBA的度数为15°.(2)求出这段河的宽(结果精确到1m,备用数据≈1.41,≈1.73.【考点】解直角三角形的应用﹣方向角问题.【分析】(1)根据三角形的外角的性质、结合题意计算即可;(2)作BD⊥CA交CA的延长线于D,设BD=xm,根据正切的定义用x表示出CD、AD,根据题意列出方程,解方程即可.【解答】解:(1)由题意得,∠BAD=45°,∠BCA=30°,∴∠CBA=∠BAD﹣∠BCA=15°.故答案为15°;(2)作BD⊥CA交CA的延长线于D,设BD=xm,∵∠BCA=30°,∴CD= = x,∵∠BAD=45°,∴AD=BD=x,∵CD﹣AD=AC=60,∴ x﹣x=60,解得x=30( +1)≈82,答:这段河的宽约为82m.五、解答题(三)(每小题10分,共20分)23.如图,AB是⊙O的直径,点C是⊙O上一点,连接AC,∠MAC=∠CAB,作CD⊥AM,垂足为D.(1)求证:CD是⊙O的切线;(2)若∠ACD=30°,AD=4,求图中阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)先证明OC∥AM,由CD⊥AM,推出OC⊥CD即可解决问题.(2)根据S阴=S△ACD﹣(S扇形OAC﹣S△AOC)计算即可.【解答】解:(1)连接OC.∵OA=OC.∴∠OAC=∠OCA,∵∠MAC=∠OAC,∴∠MAC=∠OCA,∴OC∥AM,∵CD⊥AM,∴OC⊥CD,∴CD是⊙O的切线.(2)在RT△ACD中,∵∠ACD=30°,AD=4,∠ADC=90°,∴AC=2AD=8,CD= AD=4 ,∵∠MAC=∠OAC=60°,OA=OC,∴△AOC是等边三角形,∴S阴=S△ACD﹣(S扇形OAC﹣S△AOC)= ×4×4 ﹣( ﹣×82)=24 ﹣π.24.课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.【考点】二次函数的应用.【分析】(1)根据矩形和正方形的周长进行解答即可;(2)设AB为xcm,利用二次函数的最值解答即可.【解答】解:(1)由已知可得:AD= ,则S=1× m2,(2)设AB=xm,则AD=3﹣ m,∵ ,∴ ,设窗户面积为S,由已知得:,当x= m时,且x= m在的范围内,,∴与课本中的例题比较,现在窗户透光面积的最大值变大.六、解答题(四)(每小题10分,共20分)25.正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,①直接写出O、P、A三点坐标;②求抛物线L的解析式;(2)求△OAE与△OCE面积之和的最大值.【考点】二次函数综合题.【分析】(1)以O点为原点,线段OA所在的直线为x轴,线段OC 所在的直线为y轴建立直角坐标系.①根据正方形的边长结合正方形的性质即可得出点O、P、A三点的坐标;②设抛物线L的解析式为y=ax2+bx+c,结合点O、P、A的坐标利用待定系数法即可求出抛物线的解析式;(2)由点E为正方形内的抛物线上的动点,设出点E的坐标,结合三角形的面积公式找出S△OAE+SOCEm的函数解析式,根据二次函数的性质即可得出结论.【解答】解:(1)以O点为原点,线段OA所在的直线为x轴,线段OC所在的直线为y轴建立直角坐标系,如图所示.①∵正方形OABC的边长为4,对角线相交于点P,∴点O的坐标为(0,0),点A的坐标为(4,0),点P的坐标为(2,2).②设抛物线L的解析式为y=ax2+bx+c,∵抛物线L经过O、P、A三点,∴有,解得:,∴抛物线L的解析式为y=﹣ +2x.(2)∵点E是正方形内的抛物线上的动点,∴设点E的坐标为(m,﹣ +2m)(0∴S△OAE+SOCE= OA•yE+ OC•xE=﹣m2+4m+2m=﹣(m﹣3)2+9,∴当m=3时,△OAE与△OCE面积之和最大,最大值为9.26.已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为E、F,点O为AC的中点.(1)当点P与点O重合时如图1,求证:OE=OF(2)直线BP绕点B逆时针方向旋转,当点P在对角线AC上时,且∠OFE=30°时,如图2,猜想线段CF、AE、OE之间有怎样的数量关系?并给予证明.(3)当点P在对角线CA的延长线上时,且∠OFE=30°时,如图3,猜想线段CF、AE、OE之间有怎样的数量关系?直接写出结论即可.【考点】四边形综合题.【分析】(1)由△AOE≌△COF即可得出结论.(2)图2中的结论为:CF=OE+AE,延长EO交CF于点G,只要证明△EOA≌△GOC,△OFG是等边三角形,即可解决问题.(3)图3中的结论为:CF=OE﹣AE,延长EO交FC的延长线于点G,证明方法类似.【解答】解:(1)∵AE⊥PB,CF⊥BP,∴∠AEO=∠CFO=90°,在△AEO和△CFO中,,∴△AOE≌△COF(AAS),∴OE=OF.(2)图2中的结论为:CF=OE+AE.图3中的结论为:CF=OE﹣AE.选图2中的结论证明如下:延长EO交CF于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠EAO=∠GCO,在△EOA和△GOC中,,∴△EOA≌△GOC(ASA),∴EO=GO,AE=CG,在Rt△EFG中,∵EO=OG,∴OE=OF=GO,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=GF,∵OE=OF,∴OE=FG,∵CF=FG+CG,∴CF=OE+AE.选图3的结论证明如下:延长EO交FC的延长线于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠AEO=∠G,在△AOE和△COG中,,∴△AOE≌△COG(AAS),∴OE=OG,AE=CG,在R t△EFG中,∵OE=OG,∴OE=OF=OG,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=FG,∵OE=OF,∴OE=FG,∵CF=FG﹣CG,∴CF=OE﹣AE.。
2017九年级上学期数学期末试卷(2)
2017九年级上学期数学期末试卷(2)2017九年级上学期数学期末试卷参考答案一、选择题(本大题有12小题,在下面的每小题的四个选项中,有且只有一个符合题意,把符合题意的选项代号填在题后括号内,每小题3分,共36分.)1.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为( )A.﹣2B.2C.4D.﹣3【考点】根与系数的关系.【分析】根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出a的值和另一根.【解答】解:设一元二次方程的另一根为x1,则根据一元二次方程根与系数的关系,得﹣1+x1=﹣3,解得:x1=﹣2.故选A.【点评】本题考查了一元二次方程根与系数的关系,方程ax2+bx+c=0的两根为x1,x2,则x1+x2=﹣,x1•x2= .2.一元二次方程x2﹣8x﹣1=0配方后可变形为( )A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=17D.(x﹣4)2=15【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.下列几何图形中,既是轴对称图形,又是中心对称图形的是( )A.等腰三角形B.正三角形C.平行四边形D.正方形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、既是轴对称图形,又是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是( )A.2.5B.3C.5D.10【考点】切线的性质.【分析】根据直线与圆的位置关系可直接得到点O到直线l的距离是5.【解答】解:∵直线l与半径为r的⊙O相切,∴点O到直线l的距离等于圆的半径,即点O到直线l的距离为5.故选C.【点评】本题考查了切线的性质以及直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,直线l和⊙O相交⇔dr.5.如图,△ABC内接于⊙O,∠OBC=42°,则∠A的度数为( )A.84°B.96°C.116°D.132°【考点】圆内接四边形的性质;圆周角定理.【分析】连接OC,在优弧上取点D,连接BD、CD,根据等腰三角形的性质和三角形内角和定理求出∠BOC,根据圆周角定理求出∠BDC,根据圆内接四边形的性质计算即可.【解答】解:连接OC,在优弧上取点D,连接BD、CD,∵OB=OC,∴∠OCB=∠OBC=42°,∴∠BOC=96°,∴∠BDC= ∠BOC=48°,∴∠A=180°﹣∠BDC=132°,故选:D.【点评】本题考查的是圆周角定理、圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.6.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为( )A.1B.2C.3D.4【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵DE∥BC,∴ ,即,解得:EC=2,故选:B.【点评】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.7.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是( )A.∠ABP=∠CB.∠APB=∠ABCC. =D. =【考点】相似三角形的判定.【分析】分别利用相似三角形的判定方法判断得出即可.【解答】解:A、当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B、当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C、当 = 时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D、无法得到△ABP∽△ACB,故此选项正确.故选:D.【点评】此题主要考查了相似三角形的判定,正确把握判定方法是解题关键.8.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( )A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球【考点】随机事件.【分析】由于只有2个白球,则从中任意摸出3个球中至少有1个球是黑球,于是根据必然事件的定义可判断A选项正确.【解答】解:一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,至少有1个球是黑球是必然事件;至少有1个球是白球、至少有2个球是黑球和至少有2个球是白球都是随机事件.故选A.【点评】本题考查了随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件.事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,9.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为( )A.6B.﹣6C.12D.﹣12【考点】反比例函数图象上点的坐标特征.【分析】反比例函数的解析式为y= ,把A(3,﹣4)代入求出k=﹣12,得出解析式,把B的坐标代入解析式即可.【解答】解:设反比例函数的解析式为y= ,把A(3,﹣4)代入得:k=﹣12,即y=﹣,把B(﹣2,m)代入得:m=﹣ =6,故选A.【点评】本题考查了反比例函数图象上点的坐标特征的应用,解此题的关键是求出反比例函数的解析式,难度适中.10.如图,已知关于x的函数y=k(x﹣1)和y= (k≠0),它们在同一坐标系内的图象大致是( )A. B. C. D.【考点】反比例函数的图象;一次函数的图象.【分析】首先根据反比例函数图象所经过的象限判断出k的符号;然后由k的符号判定一次函数图象所经过的象限,图象一致的选项即为正确选项.【解答】解:A、反比例函数y= (k≠0)的图象经过第一、三象限,则k>0.所以一次函数y=kx﹣k的图象经过第一、三象限,且与y轴交于负半轴.故本选项错误;B、反比例函数y= (k≠0)的图象经过第二、四象限,则k<0.所以一次函数y=kx﹣k的图象经过第二、四象限,且与y轴交于正半轴.故本选项正确;C、反比例函数y= (k≠0)的图象经过第一、三象限,则k>0.所以一次函数y=kx﹣k的图象经过第一、三象限,且与y轴交于负半轴.故本选项错误;D、反比例函数y= (k≠0)的图象经过第二、四象限,则k<0.所以一次函数y=kx﹣k的图象经过第一、三象限,且与y轴交于正半轴.故本选项错误;故选:B.【点评】本题考查反比例函数与一次函数的图象特点:①反比例函数y= 的图象是双曲线;②当k>0时,它的两个分支分别位于第一、三象限;③当k<0时,它的两个分支分别位于第二、四象限.11.若抛物线y=(x﹣m)2+(m﹣1)的顶点在第四象限,则m的取值范围( )A.00 C.m<1 D.m>1【考点】二次函数的性质.【分析】根据顶点式得出点的坐标,再由第四象限点的符号得出m的取值范围.【解答】解:∵抛物线y=(x﹣m)2+(m﹣1)的顶点(m,m﹣1)在第四象限,∴ ,解得0故选A.【点评】本题考查了二次函数的性质,以及求抛物线的顶点坐标的方法,掌握每个象限内点的符号是解题的关键.12.对于二次函数y=﹣x2+4x,有下列四个结论:①它的对称轴是直线x=2;②设y1=﹣x12+4x1,y2=﹣x22+4x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(4,0);④当00.其中正确的结论的个数为( )A.1B.2C.3D.4【考点】二次函数的性质.【分析】利用配方法求出二次函数对称轴,再求出图象与x轴交点坐标,进而结合二次函数性质得出答案.【解答】解:y=﹣x2+4x=﹣(x﹣2)2+4,故①它的对称轴是直线x=2,正确;②∵直线x=2两旁部分增减性不一样,∴设y1=﹣x12+4x1,y2=﹣x22+4x2,则当x2>x1时,有y2>y1或y2③当y=0,则x(﹣x+4)=0,解得:x1=0,x2=4,故它的图象与x轴的两个交点是(0,0)和(4,0),正确;④∵a=﹣1<0,∴抛物线开口向下,∵它的图象与x轴的两个交点是(0,0)和(4,0),∴当00,正确.故选:C.【点评】此题主要考查了二次函数的性质以及一元二次方程的解法,得出抛物线的对称轴和其交点坐标是解题关键.二、填空题(本题有6个小题,每小题3分,计15)13.方程x2=5的解是x=± .【考点】解一元二次方程-直接开平方法.【分析】利用直接开平方法求解即可.【解答】解:x2=5,直接开平方得,x=± ,故答案为x=± .【点评】本题考查了用直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.14.二次函数y=﹣x2+2x+7的最大值为8 .【考点】二次函数的最值.【专题】计算题.【分析】先利用配方法把一般式配成顶点式,然后根据二次函数的性质求解.【解答】解:原式=﹣x2+2x+7=﹣(x﹣1)2+8,因为抛物线开口向下,所以当x=1时,y有最大值8.故答案为8.【点评】本题考查了二次函数的最值:二次函数y=ax2+bx+c,当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=﹣时,y= ;(2)当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=﹣时,y= .15.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.【考点】概率公式.【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用黄灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可.【解答】解:抬头看信号灯时,是绿灯的概率为 .故答案为: .【点评】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=0.16.如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于π.【考点】扇形面积的计算.【分析】图中阴影部分的面积=半圆的面积﹣圆心角是120°的扇形的面积,根据扇形面积的计算公式计算即可求解.【解答】解:图中阴影部分的面积= π×22﹣=2π﹣π= π.答:图中阴影部分的面积等于π.故答案为:π.【点评】本题考查了扇形面积的计算,求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.17.在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y= 的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.若反比例函数y= 的图象经过点Q,则k= 2+2 或2﹣2 .【考点】反比例函数图象上点的坐标特征;勾股定理.【专题】分类讨论.【分析】把P点代入y= 求得P的坐标,进而求得OP的长,即可求得Q的坐标,从而求得k的值.【解答】解:∵点P(1,t)在反比例函数y= 的图象上,∴t= =2,∴P(1.2),∴OP= = ,∵过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.∴Q(1+ ,2)或(1﹣,2)∵反比例函数y= 的图象经过点Q,∴2= 或2= ,解得k=2+2 或2﹣2故答案为2+2 或2﹣2 .【点评】本题考查了反比例函数图象上点的坐标特征,勾股定理的应用,求得Q点的坐标是解题的关键.三、解答题:共69分.18.已知:关于x的方程x2﹣2mx+m2﹣1=0.(1)不解方程:判断方程根的情况;(2)若方程有一个根为﹣3,求m的值.【考点】根的判别式;一元二次方程的解.【分析】(1)首先找出方程中a=1,b=﹣2m,c=m2﹣1,然后求△=b2﹣4ac的值即可;(2)把x=﹣3代入方程中列出m的一元二次方程并求出m的值即可.【解答】解:(1)∵关于x的方程x2﹣2mx+m2﹣1=0,∴a=1,b=﹣2m,c=m2﹣1,∴△=b2﹣4ac=(﹣2m)2﹣4×1×(m2﹣1)=4>0,∴方程x2﹣2mx+m2﹣1=0有两个不相等的实数根;(2)∵方程x2﹣2mx+m2﹣1=0的一根为﹣3,∴9+6m+m2﹣1=0,即m2+6m+8=0,∴m=﹣4或﹣2.【点评】本题主要考查了根的判别式以及一元二次方程解的知识,解答本题的关键是熟练掌握根的判别式的意义以及因式分解法解方程的知识.19.某种植物的主干长出若干个数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是111,每个支干长出的小分支是多少?【考点】一元二次方程的应用.【分析】由题意设每个支干长出的小分支的数目是x个,每个小分支又长出x个分支,则又长出x2个分支,则共有x2+x+1个分支,即可列方程求得x的值.【解答】解:设主干长出x个支干,由题意得1+x+x•x=111,即x2+x﹣110=0,解得:x1=10,x2=﹣11(舍去)答:每个支干长出的小分支是10.【点评】此题主要考查了一元二次方程的应用,解题时,要根据题意分别表示主干、支干、小分支的数目,列方程求解,注意能够熟练运用因式分解法解方程.20.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:△ABC是等边三角形;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论.【考点】圆周角定理;全等三角形的判定与性质.【分析】(1)利用圆周角定理可得∠BAC=∠CPB,∠ABC=∠APC,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,从而可判断△ABC的形状;(2)在PC上截取PD=AP,则△APD是等边三角形,然后证明△APB≌△ADC,证明BP=CD,即可证得.【解答】证明:(1)△ABC是等边三角形.证明如下:在⊙O中,∵∠BAC与∠CPB是对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;故答案为:△ABC是等边三角形;(2)在PC上截取PD=AP,如图1,又∵∠APC=60°,∴△APD是等边三角形,∴AD=AP=PD,∠ADP=60°,即∠ADC=120°.又∵∠APB=∠APC+∠BPC=120°,∴∠ADC=∠APB,在△APB和△ADC中,,∴△APB≌△ADC(AAS),∴BP=CD,又∵PD=AP,∴CP=BP+AP.【点评】本题考查了圆周角定理、等边三角形的判定、三角形的全等的判定与性质,正确作出辅助线,证明△APB≌△ADC是关键.21.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为 .(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表或树状图灯方法求出两次摸到的球是1个红球和1个白球的概率.【考点】列表法与树状图法.【专题】计算题.【分析】(1)设红球的个数为x个,根据概率公式得到 = ,然后解方程即可;(2)先画树状图展示所有12种等可能结果,再找出两次摸到的球是1个红球1个白球的结果数,然后根据概率公式计算.【解答】解:(1)设红球的个数为x个,根据题意得 = ,解得x=1(检验合适),所以布袋里红球有1个;(2)画树状图如下:共有12种等可能结果,其中两次摸到的球是1个红球1个白球的结果数为4种,所以两次摸到的球都是白球的概率= = .【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.22.已知反比例函数y= 的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为10,求m的值.【考点】反比例函数的性质;反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.【分析】(1)根据反比例函数的图象是双曲线.当k>0时,则图象在一、三象限,且双曲线是关于原点对称的;(2)由对称性得到△OAC的面积为5.设A(x、 ),则利用三角形的面积公式得到关于m的方程,借助于方程来求m的值.【解答】解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m﹣3>0,则m>3;(2)∵点B与点A关于x轴对称,若△OAB的面积为10,∴△OAC的面积为5.设A(x, ),则x• =5,解得:m=13.【点评】本题考查了反比例函数的性质、图象,反比例函数图象上点的坐标特征等知识点.根据题意得到△OAC的面积是解题的关键.23.四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心 A 点,按顺时针方向旋转90 度得到;(3)若BC=8,DE=6,求△AEF的面积.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【专题】证明题.【分析】(1)根据正方形的性质得AD=AB,∠D=∠ABC=90°,然后利用“SAS”易证得△ADE≌△ABF;(2)由于△ADE≌△ABF得∠BAF=∠DAE,则∠BAF+∠BAE=90°,即∠FAE=90°,根据旋转的定义可得到△ABF可以由△ADE绕旋转中心A 点,按顺时针方向旋转90 度得到;(3)先利用勾股定理可计算出AE=10,再根据△ABF可以由△ADE 绕旋转中心 A点,按顺时针方向旋转90 度得到AE=AF,∠EAF=90°,然后根据直角三角形的面积公式计算即可.【解答】(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,而F是CB的延长线上的点,∴∠ABF=90°,在△ADE和△ABF中,∴△ADE≌△ABF(SAS);(2)解:∵△ADE≌△ABF,∴∠BAF=∠DAE,而∠DAE+∠EAB=90°,∴∠BAF+∠EAB=90°,即∠FAE=90°,∴△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90 度得到;故答案为A、90;(3)解:∵BC=8,∴AD=8,在Rt△ADE中,DE=6,AD=8,∴AE= =10,∵△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90 度得到,∴AE=AF,∠EAF=90°,∴△AEF的面积= AE2= ×100=50(平方单位).【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了全等三角形的判定与性质以及勾股定理.24.某服装店销售一种内衣,每件进价为40元.经过市场调查,一周的销售量y件与销售单价x元/件的关系如表:销售单价x(元/件) … 55 60 70 75 …一周的销售量y(件) … 450 400 300 250 …(1)试求出y与x的之间的函数关系式;(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价的什么范围内变化时,一周的销售利润随着销售单价的增大而增大?(3)服装店决定将一周的销售内衣的利润全部捐给福利院,在服装店购进该内衣的贷款不超过8000元情况下,请求出该服装店最大捐款数额是多少元?【考点】二次函数的应用.【分析】(1)设y=kx+b,把点的坐标代入解析式,求出k、b的值,即可得出函数解析式;(2)根据利润=(售价﹣进价)×销售量,列出函数关系式,继而确定销售利润随着销售单价的增大而增大的销售单价的范围;(3)根据购进该商品的贷款不超过8000元,求出进货量,然后求最大销售额即可.【解答】解:(1)设y=kx+b,由题意得,,解得:,则函数关系式为:y=﹣10x+1000,(x≥50)(2)由题意得,S=(x﹣40)y=(x﹣40)(﹣10x+1000)=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000,∵﹣10<0,∴函数图象开口向下,对称轴为直线x=70,∴当40(3)∵购进该商品的货款不超过8000元,∴y的最大值为 =200(件).由(1)知y随x的增大而减小,∴x的最小值为:x=80,由(2)知当x≥70时,S随x的增大而减小,∴当x=80时,销售利润最大,此时S=8000,即该商家最大捐款数额是8000元.【点评】本题考查了二次函数的应用,难度一般,解答本题的关键是将实际问题转化为求函数最值问题,从而来解决实际问题.25.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交 AB于点F.(1)求证:AE为⊙O的切线.(2)当BC=8,AC=12时,求⊙O的半径.(3)在(2)的条件下,求线段BG的长.【考点】圆的综合题.【专题】证明题.【分析】(1)连接OM.利用角平分线的性质和平行线的性质得到AE⊥OM后即可证得AE是⊙O的切线;(2)设⊙O的半径为R,根据OM∥BE,得到△OMA∽△BEA,利用平行线的性质得到 = ,即可解得R=3,从而求得⊙O的半径为3;(3)过点O作OH⊥BG于点H,则BG=2BH,根据∠OME=∠MEH=∠EHO=90°,得到四边形OMEH是矩形,从而得到HE=OM=3和BH=1,证得结论BG=2BH=2.【解答】(1)证明:连接OM.∵AC=AB,AE平分∠BAC,∴AE⊥BC,CE=BE= BC=4,∵OB=OM,∴∠OBM=∠OMB,∵BM平分∠ABC,∴∠OBM=∠CBM,∴∠OMB=∠CBM,∴OM∥BC又∵AE⊥BC,∴AE⊥OM,∴AE是⊙O的切线;(2)设⊙O的半径为R,∵OM∥BE,∴△OMA∽△BEA,∴ = 即 = ,解得R=3,∴⊙O的半径为3;(3)过点O作OH⊥BG于点H,则BG=2BH,∵∠OME=∠MEH=∠EHO=90°,∴四边形OMEH是矩形,∴HE=OM=3,∴BH=1,∴BG=2BH=2.【点评】本题考查了圆的综合知识,题目中还运用到了切线的判定与性质、相似三角形的判定与性质,综合性较强,难度较大.26.在平面直角坐标系中,抛物线y=﹣ x2+bx+c与x轴交于点A,B,与y轴交于点C,直线y=x+4经过A,C两点.(1)求抛物线的解析式;(2)在AC上方的抛物线上有一动点P.①如图1,当点P运动到某位置时,以AP,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P的坐标;②如图2,过点O,P的直线y=kx交AC于点E,若PE:OE=3:8,求k的值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)由直线的解析式y=x+4易求点A和点C的坐标,把A和C的坐标分别代入y=﹣x2+bx+c求出b和c的值即可得到抛物线的解析式;(2)①若以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,则PQ∥AO,再根据抛物线的对称轴可求出点P的横坐标,由(1)中的抛物线解析式,进而可求出其纵坐标,问题得解;②过P点作PF∥OC交AC于点F,因为PF∥OC,所以△PEF∽△OEC,由相似三角形的性质:对应边的比值相等可求出PF的长,进而可设点点F(x,x+4),利用,可求出x的值,解方程求出x的值可得点P的坐标,代入直线y=kx即可求出k的值.【解答】解:(1)∵直线y=x+4经过A,C两点,∴A点坐标是(﹣4,0),点C坐标是(0,4),又∵抛物线过A,C两点,∴ ,解得:,∴抛物线的解析式为 .(2)①如图1∵ ,∴抛物线的对称轴是直线x=﹣1.∵以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,∴PQ∥AO,PQ=AO=4.∵P,Q都在抛物线上,∴P,Q关于直线x=﹣1对称,∴P点的横坐标是﹣3,∴当x=﹣3时,,∴P点的坐标是 ;②过P点作PF∥OC交AC于点F,∵PF∥OC,∴△PEF∽△OEC,∴ .又∵ ,∴ ,设点F(x,x+4),∴ ,化简得:x2+4x+3=0,解得:x1=﹣1,x2=﹣3.当x=﹣1时, ;当x=﹣3时,,即P点坐标是或 .又∵点P在直线y=kx上,∴ .【点评】本题是二次函数综合题,考查了待定系数法求函数解析式,平行四边形的判定和性质,相似三角形的判定和性质,解一元二次方程,题目综合性较强,难度不大,是一道很好的中考题.。
2017九年级数学上册期末试卷
九年级数学上册期末试卷2017九年级数学上册期末试卷九年级是初中升入高中的关键时期,要认真对待每一次的考试。
下面YJBYS小编为大家整理了2017九年级数学上册期末试卷,希望能帮到大家!2017九年级数学上册期末试卷一、选择题 (每小题3分,共24分)1.方程x2﹣4 = 0的解是【】A.x = ±2B.x = ±4C.x = 2D. x =﹣22.下列图形中,不是中心对称图形的是【】A. B. C. D.3.下列说法中正确的是【】A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“概率为0.0001的事件” ”是不可能事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次4.已知关于x的一元二次方程(a﹣1)x2﹣2x+1= 0有两个不相等的实数根,则a的取值范围是【】A.a>2B.a <2C. a <2且a ≠ lD.a <﹣25.三角板ABC中,∠ACB=90°,∠B=30°,AC=2 ,三角板绕直角顶点C逆时针旋转,当点A的对应点A′ 落在AB边的起始位置上时即停止转动,则B点转过的路径长为【】A.2πB.C.D.3π6.一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,求这张卡片与口袋外的两张卡片上的数能构成三角形的概率是【】A. 1B.C.D.7.如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为【】A.50°B.55°C.60°D.65°8.如图,在边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接CE,将线段CE绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是【】A.6B.3C.2D.1.5二、填空题( 每小题3分,共21分)9.抛物线y = x2+2x+3的顶点坐标是.10.m是方程2x2+3x﹣1= 0的根,则式子4m2+6m+2016的值为.11.如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为直线.12.在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的半径为R,扇形的圆心角等于90°,则r与R之间的关系是r = .13.在一个不透明的盒子中装有n个规格相同的乒乓球,其中有2个黄色球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到黄色球的频率稳定于0.2,那么可以推算出n大约是.14.矩形ABCD中,AD = 8,半径为5的⊙O与BC相切,且经过A、D两点,则AB = .15.如图,在△ABC中,∠ACB=90°,AC=2,BC=4,E为边AB的中点,点D是BC边上的动点,把△ACD沿AD翻折,点C落在C′处,若△AC′E是直角三角形,则CD的长为.三、解答题:(本大题共8个小题,满分75分)16.(8分)先化简,再求值:17.(9分)已知关于x的方程x2+ax+a﹣2=0.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.18.(9分)如图所示,A B是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于点D,连接AD.(1)求直径AB的长;(2)求图中阴影部分的面积.(结果保留π)19.(9分)如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.(1)现随机转动转盘一次,停止后,指针指向1的概率为;(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.20.(9分)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O 是AB上一点,以O为圆心,OA为半径的⊙O经过点D.(1)求证:BC是⊙O的切线;(2)若BD=5,DC=3,求AC的长.21.(10分)某商店代销一批季节性服装,每套代销成本40元,第一个月每套销售定价为52元时,可售出180套;应市场变化需上调第一个月的销售价,预计销售定价每增加1元,销售量将减少10套.(1)若设第二个月的销售定价每套增加x元,填写表格:时间第一个月第二个月销售定价(元)销售量(套)(2)若商店预计要在第二个月的销售中获利2000元,则第二个月销售定价每套多少元?(3)若要使第二个月利润达到最大,应定价为多少元?此时第二个月的最大利润是多少?22.(10分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B、C重合).以AD为边做正方形ADEF,连接CF.(1)如图①,当点D在线段BC上时,求证:CF+CD=BC;(2)如图②,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF、BC、CD三条线段之间的.关系;(3)如图③,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其他条件不变;①请直接写出CF、BC、CD三条线段之间的关系;②若正方形ADEF的边长为,对角线AE、DF相交于点O,连接OC.求OC的长度.23.(11分)如图①,抛物线与x轴交于点A( ,0),B(3,0),与y 轴交于点C,连接BC.(1)求抛物线的表达式;(2)抛物线上是否存在点M,使得△MBC的面积与△OBC的面积相等,若存在,请直接写出点M的坐标;若不存在,请说明理由;(3)点D(2,m)在第一象限的抛物线上,连接BD.在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P 的坐标;如果不存在,请说明理由.2017九年级数学上册期末试卷参考答案及评分标准一、选择题(每题3分共24分)题号 1 2 3 4 5 6 7 8答案 A C B C A B D D二、填空题9.(- 1,2) 10.2018 11.x =2 12. R 13.10 14.2或8 15.2或三、解答题16.解:原式= ……………………3分== ……………………5分∵ ,∴ ……………………7分∴原式= . ……………………8分17.解:(1)把x=1代入方程x2+ax+a﹣2=0,解得:a= ,…… ………………2分∴原方程即是,解此方程得:,∴a= ,方程的另一根为; ……………………5分(2)证明:∵ ,不论a取何实数,≥0,∴ ,即 >0,∴不论a取何实数,该方程都有两个不相等的实数根. ……………………9分18.解:(1)∵AB是⊙O的直径,∴∠ACB=90°,∵∠B=30°,∴AB=2AC,设AC的长为x,则AB=2x,在Rt△ACB中,,∴解得x= ,∴AB= . ……………………5分(2)连接OD.∵CD平分∠ACB,∴∠ACD=45°,∴∠AOD=90°,AO= AB= ,∴S△AOD =S 扇AOD =∴S阴影= ……………………9分19.解:(1)根据题意得:随机转动转盘一次,停止后,指针指向1的概率为; ……………………3分(2)列表得:1 2 31 (1,1) (2,1) (3,1)2 (1,2) (2,2) (3,2)3 (1,3) (2,3) (3,3)所有等可能的情况有9种,其中两数之积为偶数的情况有5种,之积为奇数的情况有4种,……………………7分∴P(小明获胜)= ,P(小华获胜)= ,∵ > ,∴该游戏不公平. ……………………9分20.(1)证明:连接OD;∵AD是∠BAC的平分线,∴∠1=∠3.∵OA=OD,∴∠1=∠2.∴∠2=∠3.∴OD∥AC.∴∠ODB=∠ACB=90°.∴OD⊥BC.∴BC是⊙O切线. ……………………4分(2)解:过点D作DE⊥AB,∵AD是∠BAC的平分线,∴CD=DE=3.在Rt△BDE中,∠BED=90°,由勾股定理得:,在Rt△AED和Rt△ACD中,,∴Rt△AED ≌ Rt△ACD∴AC=AE,设AC=x,则AE=x,AB=x+4,在Rt△ABC中,即,解得x=6,∴AC=6. ……………………9分21.解:(1)若设第二个月的销售定价每套增加x元,由题意可得,时间第一个月第二个月销售定价(元) 52 52+x销售量(套) 180 180﹣10x………… …………4分(2)若设第二个月的销售定价每套增加x元,根据题意得:(52+x﹣40)(180﹣10x)=2000,解得:x1=﹣2(舍去),x2=8,当x=8时,52+x=52+8=60.答:第二个月销售定价每套应为60元. ……………………7分(3)设第二个月利润为y元.由题意得到:y=(52+x﹣40)(180﹣10x)=﹣10x2+60x+2160=﹣10(x﹣3)2+2250∴当x=3时,y取得最大值,此时y=2250,∴52+x=52+3=55,即要使第二个月利润达到最大,应定价为55元,此时第二个月的最大利润是2250元. ……………………10分22.证明:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°-∠DAC,∠CAF=90°-∠DAC,∴∠BAD=∠CAF,则在△BAD和△CAF中,∴△BAD ≌ △CAF(SAS),∴BD=CF,∵BD+CD=BC,∴CF+CD=BC;…………………… 4分(2)CF CD=BC …………………… 5分(3)①CD CF =BC. …………………… 6分②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=A F,∠DAF=90°,∵∠BAD=90°-∠BAF,∠CAF=90°-∠BAF,∴∠BAD=∠CAF,则在△BAD和△CAF中,∴△BAD ≌ △CAF(SAS),∴∠ABD=∠ACF,∵∠ABC=45°,∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=90°,∴△FCD是直角三角形.∵正方形ADEF的边长为且对角线AE、DF相交于点O,∴DF= AD=4,O为DF中点.∴OC= DF=2. ……………………10分23.解:(1)∵抛物线与x轴交于点A( ,0),B(3,0),,解得,∴抛物线的表达式为.……………………3分(2)存在.M1 ( , ),M2( , )……………………5分(3)存在.如图,设BP交轴y于点G.∵点D(2,m)在第一象限的抛物线上,∴当x=2时,m= .∴点D的坐标为(2,3).把x=0代入,得y=3.∴点C的坐标为(0,3).∴CD∥x轴,CD = 2.∵点B(3,0),∴OB = OC = 3∴∠OBC=∠OCB=45°.∴∠DCB=∠OBC=∠OCB=45°,又∵∠PBC=∠ DBC,BC=BC,∴△CGB ≌ △CDB(ASA),∴CG=CD=2.∴OG=OC CG=1,∴点G的坐标为(0,1).设直线BP的解析式为y=kx+1,将B(3,0)代入,得3k+1=0,解得k= .∴直线BP的解析式为y= x+1. ……………………9分令 x+1= .解得, .∵点P是抛物线对称轴x= =1左侧的一点,即x<1,∴x= .把x= 代入抛物线中,解得y=∴当点P的坐标为( ,)时,满足∠PBC=∠DBC (11)分。
九年级上期末考试数学答案
2017—2017学年第一学期期末考试九年级数学试题参考答案及评分标准(共3页)一、选择题(10×3分=30分)1.C ; 2.D ; 3.C ; 4.A ; 5.B ; 6.B ; 7.B ; 8.C ; 9.C ; 10.D .二、填空题(6×3分=18)11.60°; 12.12; 13.20%; 14.(1,0); 15.6π-; 16.(3,2) . 三、解答题(72分)17.(6分)解:a=1, b=1-, c=3-. ------------ 1分△=224(1)41(3)130b ac -=--⨯⨯-=> ------------ 3分方程有两个不等的实数根122b x a -±±== ------------ 5分即121122x x == ----------- 6分 18.(6分)解:设该班男生人数为x 人,依题意得: -2483x = ------------ 4分 解得:x =32, 48-x =16 ------------ 5分即该班男生人数为32人,女生人数为16人. ------------ 6分19.(7分)证明:连OC ,则OC ⊥PQ∴∠BCP +∠BCO =90° ------------ 2分又∵AB 是直径, ∴∠ACB =90°∴∠A +∠B =90° ------------ 4分∵OB =OC∴∠B =∠BCO ------------ 6分∴∠BCP =∠A ------------ 7分20.(7分)解:(1)画树形图:------------ 2分∴21(63P A ==选中型号电脑) ------------ 3分 (2) 设购买A 型号电脑x 台,由(1)知,则购买D 型号电脑或E 型号电脑(36-x )台. 依题意得:①6000x +5000(36-x )=100000 ------------ 4分方程解不合题意,舍去. ------------ 5分②6000x +2000(36-x )=100000 ------------ 6分解得:x =7 ------------7分综合①、②知购买A 型号电脑7台.21.(7分)解:(1)由题知△=2241(24)0k -⨯⨯->, ------------ 2分 解得:52k < ------------ 3分 (2)由(1)知52k <,又k 为正整数,∴k =1或k =2 ------------ 4分 ①当k =1时,原方程可化为:2220x x +-=该方程的两根都不是整数,不合题意,舍去. ------------ 5分②当k =2时,原方程可化为:220x x +=该方程的两根都是整数,符合题意. ------------ 6分∴k =2. ------------ 7分22.(8分)解:(1)设A (a ,b ) 由11122OAM S OM AM ab ∆=== 得:2ab = ------------ 2分 ∴2k ab == ------------ 3分 ∴反比例函数解析式为:2y x =(2)由122y x y x⎧=⎪⎪⎨⎪=⎪⎩解得点A 的坐标为A (2,1) ------------ 4分 由题知B (1,2) ------------ 5分延长AM 到A ',使AM =A 'M ,连A 'B 交x 轴于点P ,则P 为所求由B (1,2),(2,1)A '-求得直线A 'B 的解析式为:35y x =-+ ------------ 6分在35y x =-+中,令y =0,得x =53 ------------ 7分 ∴所求点P 坐标为P (53,0). ------------ 8分 23.(8分)解:(1)设所求函数关系式为:y kx b =+由图象知:360830010k b k b =+⎧⎨=+⎩,解得:30300k b =-⎧⎨=⎩∴所求函数关系式为:y =-30x +600 ------------ 3分(2) 2(6)30(13)1470w y x x =-=--+ ------------ 5分∵a =-30<0,对称轴为x =13 ------------ 6分∴当x ≤13时,w 随x 增大而增大 ------------ 7分∴当x =12时,w 值最大,且最大值为1440元. ------------ 8分24.(10分)(1)证明:连OE .∵AB =AC ,D 是BC 中点∴AD ⊥BC ------------ 1分∵OA =OE , ∴∠OAE =∠OEA∵AE 平分∠BAD , ∴∠DAE =∠OAE∴∠DAE =∠OEA ------------ 2分∴OD ∥AC∴OE ⊥BC ------------ 3分又∵点E 在⊙O 上∴BC 与⊙O 相切. ------------ 4分(2)解:∵AB =AC ,D 是BC 中点∴AD ⊥BC ,∠BAD =∠CAD∵AE 平分∠BAD , ∠BAC =120°∴∠DAE =∠EAF =∠B =30° ------------ 5分在Rt △DAE 中:由2222(2)AD DE AE DE +==,得:2223(2)DE DE +=解得:DE------------ 7分∴AE =2 DE =在Rt △AEF 中,由勾股定理,同上可得:EF =2 ------------ 8分∴AF =2 EF =4在Rt △ABD 中,∵∠B =30°∴AB =2 AD =6 ------------ 9分∴BF =AB -AF =2. ------------ 10分25.(12分)解:(1)把A (-2,0)代入y =a (x -1)2+33,得0=a (-2-1)2+33.∴a =-33 ∴该抛物线的解析式为y =-33(x -1)2+33 ------------ 2分 即y =-33x 2+332x +338. (2)设点D 的坐标为(x D ,y D ),则x D =-)(-332332 =1,y D =-33×1 2+332×1+338=33. ∴顶点D 的坐标为(1,33). ------------ 3分 如图,过点D 作DN ⊥x 轴于N ,则DN =33,AN =3,∴AD =22333)+(=6.∴∠ADN =60°∴∠DAO =60° ------------ 4分 ∵OM ∥AD①当DP ⊥OM 时,四边形DAOP 为直角梯形.过点O 作OE ⊥AD 轴于E .在Rt △AOE 中,∵AO =2,∠EAO =60°,∴AE =1.∵四边形DEOP 为矩形,∴OP =DE =6-1=5.∴t =5(s ) ------------ 5分②当PD =OA 时,四边形DAOP 为等腰梯形,此时OP =AD -2AE =6-2=4.∴t =4(s ) ------------ 6分综上所述,当t =5s ,4s 时,四边形DAOP 分别为直角梯形,等腰梯形.(3)由题知DAOC 是平行四边形.∵∠DAO =60°,OM ∥AD ,∴∠COB =60°.又∵OC =OB ,∴△COB 是等边三角形,∴OB =OC =AD =6.∵BQ =2t ,∴OQ =6-2t (0<t <3) ------------ 7分过点P 作PF ⊥x 轴于F ,则PF =23t . ∴S 四边形BCPQ =S △COB -S △POQ =21×6×33-21×(6-2t )×23t =23(t -23)2+8363 ------------ 10分 ∴当t =23(s )时,S 四边形BCPQ 的最小值为8363. ------------ 11分 此时OQ =6-2t =6-2×23=3,OP =23,OF =43, ∴QF =3-43=49,PF =433. ∴PQ =22QF PF +=2249433)+()(=233. ------------ 12分。
2016--2017学年度上学期期末九年级数学试题及答案
2016-2017学年度上学期期末考试九年级数学试题2017.01注意事项:1.答题前,请先将自己的姓名、考场、考号在卷首的相应位置填写清楚;2.选择题答案涂在答题卡上,非选择题用蓝色、黑色钢笔或圆珠笔直接写在试卷上.第Ⅰ卷(选择题共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.方程xx22=的根是A.2 B.0 C.2或0 D.无解2.若反比例函数的图象过点(2,1),则这个函数的图象一定过点A.(-2,-1) B.(1,-2) C.(-2,1) D.(2,-1)3. 如图,点A为α∠边上任意一点,作BCAC⊥于点C,ABCD⊥于点D,下列用线段比表示αsin的值,错误..的是A.BCCDB.ABACC.ACADD.ACCD4. 如图,AD∥BE∥CF,直线a,b与这三条平行线分别交于点A,B,C和点D,E,F,若AB=2,AC=6,DE=1.5,则DF的长为A.7.5 B.6 C.4.5 D.35.如图,四边形A BCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是A.88°B.92°C.106°D.136°6. 在Rt△ABC中,∠C=90°,34tan=A,若AC=6cm,则BC的长度为A.8cm B.7cm C.6cm D.5cm7. 已知二次函数)0()3(2≠-+=abxay有最大值1,则该函数图象的顶点坐标为A.)1,3(-- B.)(1,3- C.)1,3( D.)1,3(-8. 从n个苹果和4个雪梨中,任选1个,若选中苹果的概率是53,则n的值是(第3题图)(第4题图)(第5题图)A .8B .6C .4D .29. 已知反比例函数xy 5-=,则下列结论不正确...的是 A .图象必经过点)5,1(-, B .图象的两个分支分布在第二、四象限 C .y 随x 的增大而增大 D .若x >1,则5-<y <010. 直角三角形纸片的两直角边长分别为6,8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则cos ∠CBE 的值是A .724B .37C .247 D .252411. 如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形 的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm ,则这 块扇形铁皮的半径是 A .40cm B .50cm C .60cm D .80cm12.如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,AE =6,则tan∠BDE 的值是 A .34 B .43 C .21D .1:2 13.如图,△ABC 中,AD 是中线,BC =4,∠B =∠DAC ,则线段AC 的长为 A .22B .2C .3D .3214. 如图所示,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (2-,0)、B (1,0),直线x =21-与此抛物线交于点C ,与x 轴交于点M ,在直线上取点D ,使MD =MC ,连接AC ,BC ,(第13题图) (第14题图)(第10题图) (第11题图)(第12题图)AD ,BD ,某同学根据图象写出下列结论:①0=-b a ; ②当x <21-时,y 随x 增大而增大;③四边形ACBD 是菱形;④cba +-39>0.你认为其中正确的是 A .②③④B .①②③C .①③④D .①②③④第II 卷 非选择题(共78分)二、填空题(本题共5小题,每小题3分,共15分)15.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是 . 16. 若n (其中0≠n )是关于x 的方程022=++n mx x 的根,则m +n 的值为 . 17.如图,大圆半径为6,小圆半径为3,在如图所示的圆形区域中,随机撒一把豆子,多次重复这个实验,若把“豆子落在小圆区域A 中”记作事件W ,请估计事件W 的概率P (W )的值 .18. 如图,在△ABC 中,AD 平分∠BAC ,与BC 边的交点为D ,且DC =31BC ,DE ∥AC ,与AB 边的交点为E ,若DE =4,则BE 的长为 .19. 如图,在直角坐标系中,直线221-=x y 与坐标轴交于A ,B 两点,与双曲线)0(2>=x xky 交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA =AD ,则以下结论:①当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小;②4=k ;③当0<x <2时,y 1<y 2;④如图,当x=4时,EF =5.其中结论正确的有____________.(填序号)三、解答题(本大题共7小题,共63分) 20.(本题满分5分) 计算:2cos30sin 45tan 601cos60︒+︒--︒o .题号 二 三Ⅱ卷总分20 21 22 23 24 25 26 得分得分 评卷人(第19题图)(第17题图) (第18题图)21.(本题满分8分)解方程:(1))1(212+=-x x ; (2)05422=--x x .22. (本题满分8分)如图,一楼房AB 后有一假山,山坡斜面CD 与水平面夹角为30°,坡面上点E 处有一亭子,测得假山坡脚C 与楼房水平距离BC =10米,与亭子距离CE =20米,小丽从楼房顶测得点E 的俯角为45°.求楼房AB 的高(结果保留根号).得分 评卷人得分 评卷人(第22题图)30°23. (本题满分9分)如图,AB 是⊙O 的直径,CD 与⊙O相切于点C ,与AB 的延长线交于点D ,DE ⊥AD 且与AC 的延长线交于点E .(1)求证:DC =DE ;(2)若tan ∠CAB =21,AB =3,求BD 的长.(第23题图)24. (本题满分10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=35.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.得分评卷人(第24题图)25.(本题满分11分)如图,已知抛物线c bx x y ++=2经过A (1-,0)、B (3,0)两点,点C 是抛物线与y 轴的交点.(1)求抛物线的解析式和顶点坐标;(2)当0<x <3时,求y 的取值范围;(3)在抛物线的对称轴上是否存在点M ,使△BCM 是等腰三角形,若存在请直接写出点M 坐标,若不存在请说明理由.得分 评卷人(第25题图)26.(本题满分12分)如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C =90°,∠B =∠E =30°.(1)操作发现如图2,固定△ABC ,使△DE C 绕点C 旋转,当点D 恰好落在AB 边上时,填空:①线段DE 与AC 的位置..关系是_________; ②设△BDC 的面积为1S ,△AEC 的面积为2S ,则1S 与2S 的数量关系是____________.(2)猜想论证当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中S 1与S 2的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC 、CE 边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC =60°,点D 是其角平分线上一点,BD =CD =4,DE //AB 交BC 于点E (如图4).若在射线BA 上存在点F ,使BDE DCF S S ∆∆=,请直接写出相应的BF 的长.得分 评卷人A (D )B (E )C 图1 ACBDE图22016-2017学年度上学期期末考试 九年级数学参考答案 2017-1注意:解答题只给出一种解法,考生若有其他正确解法应参照本标准给分. 一、选择题(每小题3分,共42分)1-~5 CADCD 6~10BABCD 11~14 ACAB 二、填空题(每小题3分共15分) 15.2:1 16. 2- 17.4118. 8 19.①②③④ 三、解答题(本大题共7小题,共63分)20. 解:原式=21(1)()222÷-+2分124分 =12……5分 21. (8分)解:(1)将原方程变形为:0)1(2)1)(1(=+--+x x x ……………….1分∴0)21)(1(=--+x x ∴x +1=0或x ﹣3=0,……………………….3分 ∴x 1=﹣1,x 2=3;……………………………………………………….4分 (2)∵2x 2﹣4x ﹣5=0, ∴a =2,b =﹣4,c =﹣5,∴b 2﹣4ac =16+40=56,∴4564242±=-±-=a ac b b x ,…………………….3分∴2141,214121-=+=x x .…………………………………..4分 22.(8分)解:过点E 作EF ⊥BC 于点F .在Rt △CEF 中,CE =20,∠ECF =30° ∴EF =10 …………2分 CF =3 EF =103(米) ………4分 过点E 作EH ⊥AB 于点H .则HE =BF ,BH=EF .在Rt△AHE 中,∠HAE =45°,∴AH =HE ,又∵BC =10米,∴HE =(10+103)米, ………6分∴AB =AH +BH =10+103+10=20+103(米) ………………………7分 答:楼房AB 的高为(20+103) 米. ………………………8分23. (9分)(1)证明:如图,连接OC .…………………1分∵CD 与⊙O 相切于点C , ∴∠OCD =90°. ………………………2分 ∴∠1+∠2=90°.∵ED ⊥AD ,∴∠EDA =90°,∴∠A +∠E =90°. …………………3分 ∵OC =OA ,∴∠A =∠2.(2)解:设BD =x ,则AD =AB +BD =3+x ,OD =OB +BD =1.5+x . ………5分在Rt △AED 中,∵tan ∠CAB =21=AD DE ,∴DE =21AD =21(3+x ). ………6分 由(1)得DC =DE =21(3+x ). ……………7分 在Rt △OCD 中,222OD CD OC =+,∴222)5.1()3(215.1x x +=⎥⎦⎤⎢⎣⎡++. …………8分解得11=x ,32-=x (不合题意,舍去). ∴BD =1. ……………9分24.(10分)解:(1)过点A 作AE ⊥x 轴于点E ,如图所示.∵AE ⊥x 轴,∴∠AEO =90°.在Rt △AEO 中,AO =5,sin∠AOC =35,∴AE =AO •sin∠AOC =3,OE =22AO AE -=4,………2分∴点A 的坐标为(﹣4,3). ……………………3分设反比例函数解析式为k y x =.∵点A (﹣4,3)在反比例函数ky x=的图象上, ∴3=4k -,解得k =﹣12. ∴反比例函数解析式为y =﹣12x. …………………5分(2)∵点B (m ,﹣4)在反比例函数y =﹣12x的图象上,∴﹣4=﹣12m,解得m =3,∴点B 的坐标为(3,﹣4).…………………………6分设直线AB 的解析式为y =ax +b ,将点A (﹣4,3)、点B (3,﹣4)代入y =ax +b 中, 得34,43,a b a b =-+⎧⎨-=+⎩ 解得1,1.a b =-⎧⎨=-⎩ ∴一次函数解析式为y =﹣x ﹣1.…………8分 令一次函数y =﹣x ﹣1中y =0,则0=﹣x ﹣1,解得x =﹣1,即点C 的坐标为(﹣1,0). S △AOB =12OC •(y A ﹣y B )=12×1×[3﹣(﹣4)]=72. ……………10分 25.(10分)解:(1)把A (﹣1,0)、B (3,0)分别代入y =x 2+bx +c 中,得:⎩⎨⎧=++=+-03901c b c b ,解得:⎩⎨⎧-=-=32c b ,∴抛物线的解析式为y =x 2﹣2x ﹣3.……………3分∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴顶点坐标为(1,﹣4).…………………4分(2)由图可得当0<x <3时,﹣4≤y <0;…………….5分(3)存在……………….6分①当BC BM =时,141=m ,142-=m ;②当CM =CB 时,1733+-=m , 1734--=m ;③当BM =CM 时,(1,1-).所以点M 的坐标为(1,14)或(1,14-)或(1,173+-)或(1,173--)或(1,1-).………………….11分26.(12分)解:(1)①DE ∥AC ;………………2分 ②S 1=S 2;………………4分(2)如图,∵△DEC 是由△ABC 绕点C 旋转得到,∴BC =CE ,AC =CD ,∵∠ACN +∠BCN =90°, ∠DCM +∠BCN =180°-90°=90°,∴∠ACN =∠DCM ,在△AC N 和△DCM 中,⎪⎩⎪⎨⎧=︒=∠=∠∠=∠CD AC N CMD DCN ACN 90∴△ACN ≌△DCM (AAS),…………………6分∴AN =DM ,∴△BD C 的面积和△AEC 的面积相等(等底等高的三角形的面积相等), 即S 1=S 2;…………………7分如图,过点D 作1DF ∥BE ,易求四边形1BEDF 是菱形,所以BE =1DF ,且BE 、1DF 上的高相等,此时 BDE DCF S S ∆∆=1…………………8分过点D 作BD DF ⊥2,∵∠ABC =60°,1DF ∥BE ,∴︒=∠6021F DF ,︒=∠=∠=∠30211ABC DBE DB F ,∴︒=∠6021DF F , ∴21F DF ∆是等边三角形,∴1DF =2DF ,∵BD =CD ,∠ABC =60°,点D 是角平分线上一点,∴∠CDF 1=180°-30°=150°,∠CDF 2=360°-150°-60°=150°,∴∠CDF 1=∠CDF 2,在△CDF 1和△CDF 2中,⎪⎩⎪⎨⎧=∠=∠=CD CD CDF CDF DF DF 2121,∴△CDF 1≌△CDF 2(SAS), ∴点F 2也是所求的点,……………10分∵∠ABC =60°,点D 是角平分线上一点,DE ∥AB ,DF 1∥BE ,易证1BEDF 是菱形, 连接EF 1, 则BD EF ⊥1, 垂足为O ,在1BOF Rt ∆中,BO =21BD =2,︒=∠301BO F , ∴︒=30cos 1BF BO , ∴33423230cos 1==︒=BO BF ………………11分. 在Rt BD F 2中,︒=30cos 2BF BD ,∴33823430cos 2==︒=BD BF , 故BF 的长为334或338.…………………12分。
2017学年第一学期期末教学质量监测九年级数学试卷及详细解答
2017学年第一学期期末教学质量监测九年级 数学试卷考生须知:1.本试卷分试题卷和答题卷两部分。
满分100分,考试时间90分钟。
2.答题前,必须在答题卷的密封区内填写校名、班级、学号、姓名、试场、座位码。
3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号对应。
4.考试结束后,只需上交答题卷。
试题卷一、选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.两个相似三角形的面积比为2:3,则这两个三角形的面积比为( ) A. 2:3B.2:3C. 4:9D. 9:42.已知圆O 的半径为2,点P 在同一平面内,PO=3,那么点P 与圆O 的位置关系是( ) A. 点P 在圆O 内 B. 点P 在圆O 上 C. 点P 在圆O 外 D. 无法确定3.下列函数中有最小值的是( ) A. y=2x -1 B.y=x3-C.y=-2x +1 C.y=22x+3x4.“a 是实数,|a|⩾0”这一事件是( ) A. 必然事件 B. 不确定事件 C. 不可能事件 D. 随机事件5.在Rt △ABC 中,∠C=90∘, ∠B=58∘,BC=3 , 则AB 的长为( ) A. ︒58sin 3B.︒58cos 3C. 3sin58∘D. 3cos58∘6.已知圆心角为120°的扇形的面积为12π,则扇形的弧长为( ) A. 4π B.2π C. 4 D.27.如图,圆O 是△ABC 的外接圆,BC 的中垂线与弧AC 相交于D 点,若∠A =60°,∠C =40°,则弧AD 的度数为( ) A. 80°B. 70°D. 30°8.如图,在相同的4×4的正方形网格中,三角形相似的是()A.①和②B.②和④C.②和③D.①和③9.定义符号min{a ,b}的含义为:当a ≥b 时,min{a ,b}=b ;当a <b 时,min{a ,b}=a.如:min{5,-2}=-2,min{-6,-3}=-6,则min{2-x+3,x}的最大值是( )A.2131+ B.2131+- C.3 D.213-1-10.如图,AB 是圆O 的直径,弦CD ⊥AB 于点G ,点F 是CD 上一点,且满足CF :FD=3:7,连接AF 并延长交圆O 于点E ,连接AD 、DE ,若CF=3,AF=3,给出下列结论:①FG=2; ②tan ∠E=55 ③S △DEF=6549 其中正确的有( )个。
人教新课标版2017-2018学年度上学期九年级数学期末试题及答案
4题图5题图满洲里市2017-2018学年度(上)期末检测九年级数学试题姓名 班级_____得分_____温馨提示:1.本试卷共6页,满分为120分。
考试时间90分钟。
2.答卷前务必将自己的学校、班级、姓名、座位号填写在本试卷相应位置上。
一、 选择题(每小题3分,共36分.下列各题的选项中只有一个正确,请将正确答案选出来,并将其字母填入后面的括号内)1.下列图形中,既是中心对称图形又是轴对称图形的是( )A. B. C. D.2. 一元二次方程02=+x x 的根是( )A. x 1=0,x 2=1B. x 1=0,x 2=-1C. x 1=1,x 2=-1D. x 1=x 2=-1 3. 用配方法将方程0182=--x x 变形为m x =-2)4(的过程中,其中m 的值正确的是( )A. 17B. 15C. 9D. 7 4.一条排水管的截面如图所示,已知排水管的半径OB=10, 水面宽AB=16,则截面圆心O 到水面的距离OC 是( ) A. 4 B. 5 C.36 D. 65.如图,⊙O 是△ABC 的外接圆,已知∠ABO=50°,则∠ACB 的大小为( )A. 40°B. 30°C. 45°D. 50°6.若抛物线c bx ax y ++=2与x 轴的两个交点坐标是(-1,0) 和(2,0),则此抛物线的对称轴是直线( )A.1-=xB.21-=xC.21=x D.1=x7.有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如图),从中任意摸出一张是数字3的概率是( ) A. 61 B. 31 C. 21 D.328.如果矩形的面积为6,那么它的长y 与宽x 的函数关系用图象表示为( )A. B. C. D.9.如图,将Rt △ABC (其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△AB 1C 1的位置,使得点C 、A 、B 1在 同一条直线上,那么旋转角等于( )A. 55°B. 70°C. 125°D. 145°10.一次函数b ax y +=与二次函数c bx ax y ++=2在同一直角坐标系中的图象可能是( )A. B. C. D. 11.在一幅长80cm ,宽50cm 的矩形风景画的四周镶等宽的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400 cm 2,设金色纸边的宽为x cm ,根据题意所列方程正确的是( )A. 014001302=-+x xB. 0350652=-+x xC. 014001302=--x xD. 0350652=--x x17题图18题图12.如图,有一圆锥形粮堆,其侧面展开图是半径为6m 的半圆, 粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时,小猫正 在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的 最短路程长为( )X|k |B| 1 . c|O |mA .3m B..53 m D .4m 二、填空题(本题6个小题,每小题3分,共18分) 13.如果关于x 的方程052=+-k x x 没有实数根,那么k 的取值范围是 .14.圆内接正六边形的边长为10cm ,则它的边心距等于________cm . 15.在双曲线xk y 32+=上有三个点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3), 若x 1<x 2<0<x 3, 则y 1,y 2 ,y 3的大小关系是 .(用“<”连接) 16.已知抛物线12--=x x y 与x 轴的一个交点为(m ,0),则代数式20172+-m m 的值为________.17.如图,PA 、PB 分别切⊙O 于点A 、B ,点E 是⊙O 上一点, 且∠AEB=60°,则∠P=________度.18.如图,将△ABC 绕点C 旋转60°得到△A ′B ′C ′, 已知AC=6,BC=4,则线段AB 扫过图形(阴影部分)的 面积为 (结果保留π).三、解答题(本题4个小题,每小题6分,共24分) 19.解方程:22)1(3-=-x x x20.在平面直角坐标系中,△ABC 的位置如图所示,(每个小方格都是边长 为1个单位长度的正方形).(1) 将△ABC 沿x 轴方向向左平移6个单位长度,画出平移后得到的△A 1B 1C 1; (2) 将△ABC 绕着点A 顺时针旋转90°,画出旋转后得到的△AB 2C 2, 并直接写出点B 2,C 2的坐标.21.已知抛物线2(3)2y a x =-+经过点(1,-2) (1)求a 的值;(2)若点A (m ,y 1)、B (n ,y 2)(m <n <3)都在该抛物线上, 试比较y 1与y 2的大小.22.如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底 面积为800平方厘米.求截去正方形的边长.12题图号四、(本小题7分)23.如图,△ABC 中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作AC的垂线,垂足为E.求证:DE是⊙O切线.五、(本小题7分)24. 有A、B两组卡片共5张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,5.它们除了数字外没有任何区别.(1)随机从A组抽取一张,求抽到数字为2的概率;(2)随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?六、(本题8分)25.如图,已知反比例函数xky=的图象与一次函数bxy+=的图象交于点A(1,4)、点B(-4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.座位七、(本题10分)26.某商场购进一批日用品,若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y (件)与价格x (元/件)之间满足一次函数关系. (1)试求:y 与x 之间的函数关系式;(2)若这批日用品购进时进价为4元,则当销售价格定为多少时,才能使每月的润最大?每月的最大利润是多少?八、(本题10分)27.如图,已知抛物线c bx x y ++-=2与x 轴、y 轴分别相交于点A (-1,0) 和B (0,3),其顶点为D . (1)求这条抛物线的解析式;(2)若抛物线与x 轴的另一个交点为E ,求△ODE 的面积;抛物线的对称轴 上是否存在点P 使得△PAB 的周长最短.若存在请求出点P 的坐标,若不 存在说明理由.2017.12期末检测九年级数学试题答案二、填空:13. 14. 5 15. y 2 < y 1 < y 3 16 201817. 60° 18.19.解: 3x (x ﹣1)=2x ﹣23x (x ﹣1)-2(x ﹣1)=0…………1分 (3x -2)(x ﹣1)=0…………3分 ∴3x -2=0或x ﹣1=0,…………5分 解得,,.…………6分20.解:(1)如图,△A 1B 1C 1即为所求.……2分(2) 如图,△AB 2C 2即为所求.……2分点B 2(4,-2),C 2(1,-3).……6分21.解:(1)∵抛物线2(3)2y a x =-+经过点(1,-2), ∴22(13)2a -=-+,解得a=-1;……3分(2)∵函数2(3)2y x =--+的对称轴为x=3,∴ A (m ,y 1)、B (n ,y 2)(m <n <3)在对称轴左侧,又∵抛物线开口向下,∴ 对称轴左侧y 随x 的增大而增大, ∵ m <n <3,∴ y 1<y 2.……6分22..解:设截去的小正方形的边长为xcm ,由题意,得 (60﹣2x )(40﹣2x )=800--------------------3分 解得:x 1=10,x 2=40(不合题意,舍去),---------------5分 答:矩形铁皮的面积是117平方米.-------------6分23.证明:连接AD ,OD ,∵AB 是直径,∴∠ADB=90°, ∵AB=AC ,∴BD=DC ,∵OB=OA ,∴OD 是△ABC 的中位线,∴OD ∥AC , 又∵DE ⊥AC ,∴∠AED=90°,∴∠ODE=∠AED=90° ∴DE 是⊙O 的切线. 备注:证法不唯一24. (1)解:P (抽到数字为2)=1/3-----------------2分(2)解:不公平,理由如下.画树状图如下:从树状图中可知共有6个等可能的结果,而所选出的两数之积为3的倍数的机会有4个.---------------5分∴P (甲获胜)= ,而P (乙获胜)= ,------------6分∵P (甲获胜)>P (乙获胜)∴这样的游戏规则对甲乙双方不公平-------------------7分25. 解:把A 点(1,4)分别代入反比例函数y= ,一次函数y=x+b , ∴解得k=4, b=3 -------2分 ∵点B (﹣4,n )在直线y=x+3上, ∴ n=-1 -------3分(2)∵直线y=x+3与y 轴的交点C 坐标为(0,3), ∴OC=3∴S △AOB =S △AOC +S △BOC = =---------------------------6分(3)根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值 ------8分26.解:(1)由题意,可设y=kx+b (k ≠0),…………1分把(5,30000),(6,20000)代入得:,解得:,…………4分所以y 与x 之间的关系式为:y=﹣10000x+80000;…………5分 (2)设利润为W 元,则W=(x ﹣4)(﹣10000x+80000)…………6分整理得 W=﹣10000(x ﹣6)2+40000 …………8分所以当x=6时,W 取得最大值,最大值为40000元.答:当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元…………10分27.解:(1)解:根据题意得,解得,∴抛物线解析式为y=﹣x2+2x+3----------------------3分(2)解:当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则E(3,0);--------4分∵抛物线y=﹣(x﹣1)2 + 4的顶点坐标D(1,4),∴S△ODE= 1/2×3×4=6;---------6分连接BE交直线x=1于点P,如图,由对称性知PA=PE,∴PA+PB=PE+PB=BE,此时PA+PB的值最小,----------7分求得直线BE的解析式为y=﹣x+3当x=1时,y=﹣x+3=3,----------------9分∴点P坐标(1,2)---------------10分。
九年级数学上学期期末检测试题(含答案)
九年级数学上学期期末检测试题(含答案)注意事项:本试题共8页,满分为150分,考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并将考点、姓名、准考证号和座号填写在试题规定的位置.考试结束后,仅交回答题卡....... 第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.) 1.sin30︒的值为( ) A.1223 D.12.如图中几何体的左视图为( )A. B.C. D.3.如果25a b =,那么下列比例式中正确的是( ) A.25a b = B.25a b= C.52a b = D.25a b = 4.下列的各点中,在反比例函数1y x=图象上的点是( ) A.()2,4B.()1,5C.1,22⎛⎫⎪⎝⎭D.11,23⎛⎫⎪⎝⎭5.关于x 的一元二次方程2210kx x ++=有两个相等的实数根,则k 的值为( )A.2-B.1-C.0D.16.若点()11,y -,()21,y ,()32,y 在反比例函数ky x=(0k <)的图象上,则下列结论中正确的是( ) A.123y y y >> B.132y y y >>C.312y y y >>D.321y y y >>7.如图,在64⨯网格正方形中,每个小正方形的边长为1,顶点为格点,若ABC △的顶点均是格点,则sin ABC ∠的值是( )510 25D.458.一次函数y cx a =-(0c ≠)和二次函数2y ax x c =++(0a ≠)在同一平面直角坐标系中的图象可能是( )A. B.C. D.9.如图,在矩形ABCD 中,连接BD ,分别以B 、D 为圆心,大于12BD 的长为半径画弧,两弧交于P 、Q 两点,作直线PQ ,分别与AD 、BC 交于点M 、N ,连接BM 、DN .若3AB =,6BC =,则四边形MBND 的周长为( )A.15B.9C.154D.9410.如图,已知开口向上的抛物线2y ax bx c =++与x 轴交于点()1,0-,对称轴为直线1x =.下列结论:①0abc >;②20a b +=;③若关于x 的方程210ax bx c +++=一定有两个不相等的实数根;④13a >.其中正确的个数有( )A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题4分,共24分.)11.如图,四边形ABCD ∽四边形A B C D '''',若55B ∠=︒,80C ∠=︒,110A ∠'=︒,则D ∠=______°.12.在一个不透明的袋子里装有若干个红球和6个黄球,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则估计袋子中红球的个数是______个. 13.如图,若点A 在反比例函数ky x=(0k ≠)的图象上,AM x ⊥轴于点M ,AMO △的面积为8,k =______.14.将抛物线()2213y x =-+向右移3单位,上移2单位所得到的新抛物线解析式为______. 15.定义一种运算:()sin sin cos cos sin αβαβαβ+=+,()sin sin cos cos sin αβαβαβ-=-. 例如:当60α=︒,45β=︒时,()321262sin 604522224-︒=⨯-⨯︒=, 则sin75︒的值为______.16.如图,在正方形ABCD 中,点M 、N 为边BC 和CD 上的动点(不含端点),45MAN ∠=︒, 下列四个结论:①当2MN MC =时,则22.5BAM ︒∠=;②90AMN MNC ︒∠+∠=;③MNC △的周长不变;④若2DN =,3BM =,则ABM △的面积为15.其中正确结论的序号是______.三、解答题(本大题共10小题,共86分) 17.(6分)计算:()0π12sin60123︒---. 18(6分)2670x x +-=.19.(6分)如图,在菱形ABCD 中,CE AB ⊥于点E ,CF AD ⊥于点F ,求证:AE AF =.20.(8分)如图,12∠=∠,B D ∠=∠,9AE =,12AD =,20AB =.求AC 的长度.21.(8分)某校为落实“双减”工作,增强课后服务的吸引力,充分用好课后服务时间,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组):A .音乐;B .体育;C .美术;D .阅读;E .人工智能.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)①此次调查一共随机抽取了______名学生; ②补全条形统计图(要求在条形图上方注明人数); ③扇形统计图中圆心角a =______度;(2)若该校有2800名学生,估计该校参加D 组(阅读)的学生人数;(3)学校计划从E 组(人工智能)的甲、乙、丙、丁四位学生中随机抽取两人参加市青少年机器人竞赛,请用树状图法或列表法求出恰好抽中甲、乙两人的概率.22.(8分)为进一步加强疫情防控工作,长清区某学校决定安装红外线体温检测仪,对进入测温区域的人员进行快速测温(如图1),其红外线探测点O 可以在垂直于地面的支杆OP 上下调节(如图2),已知探测最大角(OBC ∠)为61°,探测最小角(OAC ∠)为37°.若该校要求测温区域的宽度AB 为1.4米,请你帮助学校确定该设备的安装高度OC .(参考数据:sin610.87≈︒,cos610.48︒≈,tan61 1.8≈︒,sin370.6≈︒,cos370.8≈︒tan370.75︒︒≈)23.(10分)某商店准备进一批季节性小家电,单价40元,经市场预测,销售定价为52元时,可售出180个.现在采取提高商品定价减少销售量的办法增加利润,定价每增加1元,销售量净减少10个. (1)商店若将准备获利2000元,则定价应增加多少元?(2)若商店要获得最大利润,则定价应增加多少元?最大利润是多少? 24.(10分)如图,一次函数1y x =-的图象与反比例函数ky x=(0x >)的图象交于点()3,B a ,与x 轴交于点A .点C 在反比例函数ky x=(0x >)的图象上的一点,CD x ⊥轴,垂足为D ,CD 与AB 交于点E ,OA AD =.(1)求a ,k 的值;(2)若点P 为x 轴上的一点,求当PB PC +最小时,点P 的坐标;(3)F 是平面内一点,是否存在点F 使得以A 、B 、C 、F 为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点F 的坐标;若不存在,请说明理由. 25.(12分)【发现问题】(1)如图1,已知CAB △和CDE △均为等边三角形,D 在AC 上,E 在CB 上,易得线段AD 和BE 的数量关系是______.(2)将图1中的CDE △绕点C 旋转到图2的位置,直线AD 和直线BE 交于点F . ①判断线段AD 和BE 的数量关系,并证明你的结论; ②图2中AFB ∠的度数是______. 【探究拓展】(3)如图3,若CAB △和CDE △均为等腰直角三角形,90ABC DEC ︒∠=∠=,AB BC =,DE EC =,直线AD 和直线BE 交于点F ,分别写出AFB ∠的度数,线段AD 、BE 间的数量关系,并说明理由.26.(12分)综合与探究:如图,抛物线23y ax bx =+-(0a ≠)与x 轴交于点()3,0A -和点()1,0B ,与y 轴交于点C .(1)求此抛物线的函数表达式;(2)若点D 是第三象限抛物线上一动点,连接AD ,CD ,AC ,求ACD △面积的最大值,并求出此时点D 的坐标;(3)若点E 在抛物线的对称轴上,线段EB 绕点E 逆时针旋转90°后,点B 的对应点B '恰好也落在此抛物线上,请直接写出点E 的坐标.参考答案一、选择题(本大题共10小题,每小题4分,共40分) 题号 1 2 3 4 5 6 7 8 9 10 答案ADCCDBABAD11. 115 12. 2 13.16- 14.()2245y x =-+ 15.426+ 16.①③. 三.解答题(本大题共10小题,共86分)17.(6分)计算:()03π12sin601231223332--︒+-=-= 18.(6分)2670x x +-=.公式法:算出64=△,11x ∴=,27x =-因式分解法:()()170x x -+=,11x ∴=,27x =- 配方法:()2316x +=,11x ∴=,27x =- 19.(6分) 证明:菱形ABCD ,AB AD BC CD ∴===,B D ∠=∠CE AB ⊥,CF AD ⊥.90BEC DFC ∴∠=∠=︒()BCE DCF AAS ∴△≌△(或者连接AC ,证()ACE ACF AAS △≌△) AE AF ∴=.20.(8分) 证明:12∠=∠,12BAE BAE ∴∠+∠=∠+∠,DAE BAC ∴∠=∠B D ∠=∠,DAE BAC ∴△∽△ AD AE AB AC ∴=,12920AC∴=,15AC ∴= 21.(8分)根据图中信息,解答下列问题: (1)①400;②60,60;③54 (2)1402800980400⨯=(人) 答:参加D 组(阅读)的学生人数为280人 (3)列表或画树状图正确共有12中等可能的结果,其中恰好抽到A ,C 两人同时参赛的有两种P ∴(恰好抽中甲、乙两人)21126== 22.(8分)方法1:解:在Rt OBC △中,8tan tan 6 1.1O B OBC CC∠==︒=, ∴设BC x =,则 1.8OC x =在Rt OAC △中,1tan ta 5n 37.80.71.4OC C AC O xA x=+==∠︒=, 1x ∴=.经检验,1x =是原方程的解1.8 1.8OC x ∴==方法2:解:在Rt OAC △中,7tan tan 330.547O C A C A O C ∠=︒===∴设3OC x =,则4AC x =在Rt OBC △中,3 1.81tan .t 4n 614a O C C x BC OB x ==-∠=︒=0.6x ∴=经检验,0.6x =是原方程的解3 1.8OC x ∴==23.(10分)(1)解:设定价应增加x 元()()5240180102000x x -+-=解得18x =,22x =-采取提高商品定价减少销售量的办法增加利润22x ∴=-不合题意舍去,8x ∴=答:定价应增加8元.(1)设定价增加x 元时获利y 元()()215240108016010026y x x x x -+=-+-=+当3x =时,y 有最大值,为2250元.答:若商店要获得最大利润,则定价应增加3元,最大利润是2250元. 24.(10分)(1)求出2a =,6k =;(2)求出()2,3C ,画图找到P 点,求出点P 的坐标1305⎛⎫⎪⎝⎭,; (3)()14,5F ,()22,1F -,()30,1F 25.(12分)【发现问题】 (1)AD BE =(2)①AD BE =,证明过程 ②60度 (3)写出45AFB ∠=度,2AD BE =证明过程26.(12分)(1)解出1a =,2b =,∴抛物线的函数表达式223y x x =+- (2)求出点()0,3C -,AC 直线关系式3y x =--设点()2,23D m m m +-,过点D 作x 轴的垂线,交AC 于点F , 则点(),3F m m --,()()223233DE m m m m m ∴=---+-=--23922m m S --∴=当32m =-时,S 有最大值为827,此时315,24D ⎛⎫-- ⎪⎝⎭,(3)()11,3E -,()21,2E --。
2017年上期末数学试题(九年级)
2016—2017学年第一学期期末考试九 年 级 数 学 试 卷注意事项: 1.本卷共4页,共有25小题,满分120分,考试时限120分钟。
2.答题前,考生要将自己的姓名、考号、学校和班级写在答题卡指定的位置,并在答题卡所规定的方框内答题。
3.考生必须保持答题卡的整洁,考试结束后,只上交答题卡。
一、选择题(本题共 10 题,每小题 3 分,共 30 分)下列各题均有四个备选答案, 其中有且仅有个答案是正确的, 请用2B 铅笔在答题卡上将正确的答案代号涂黑.1.下列四个图形中,不是中心对称图形的是( ) A .①③ B .②④ C .①④ D .②③2.如图,ABC △内接于O ⊙,OD ⊥BC 于D ,若70A ∠=︒,则OCD ∠的大小为 ( ) A .35° B .30° C .25° D .20° 3.一元二次方程230x x -=的根为( ) A .x =3 B .x =-3 C .x 1=0,x 2=3 D .x 1=0,x 2=-3 4.若函数1ky x-=的图象与直线y x =没有交点,则k 的取值范围是( )A .k >1B .k <1C .k >-1D .k <-15.小明要给朋友小林打电话,电话号码是七位正整数,他只记住了电话号码前四位顺序,后三位是3,6,7三位数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨对的概率是( ) A .112 B .61 C .41 D .136.已知⊙O 的半径为5cm ,弦AB 长为8cm ,则这条弦的中点到弦所对劣弧的中点的距离为( ) A .1 B .2 C .3 D .47.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸出一个球,那么两次都摸到黄球的概率是( ) A .21 B .41 C .61 D .818.在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点 C 顺时针旋转60°,则顶点A 所经过的路径长为( ) A .10π B .103 C .103π D .π9.如图,点A 在双曲线6y x=上,且OA =4,过A 作AC ⊥x 轴, 垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为( ) A .47 B .22 C .27 D .5(第2题图) (第8题图)(第9题图)10.如图,二次函数c bx ax y ++=2(a ≠0)的图象经过点(1,2) 且与x 轴交点的横坐标分别为x 1,x 2,其中一1<x 1<0,1<x 2<2, 下列结论:①c b a ++24<0;②b a +2<0;③a b 82+>4ac ;④a <-1. 其中结论正确的个数有( )A .1个B .2个C .3个D .4个二、填空题:(本题有6个小题,每小题3分,共18分)11.如图,P 是正△ABC 内的一点,若将△PBC 绕点B 旋转到△P BA ',则∠PBP '的度数是 . 12.十张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张, 则(P 摸到数字大于4)= . 13.某种型号的笔记本电脑,原售价7500元/台,经连续两次降价后,现售价为4800元/台, 则平均每次降价的百分率为 .14.将抛物线222y x x =-+沿y 向下平移1个单位,则所得的抛物线的顶点坐标是 . 15.如图,正方形ABCD 边长为4,以BC 为直径的半圆O 交对角线BD 于E . 则阴影部分面积为 (结果保留π).16.如图,正方形ABCD 的边BC 在x 轴上,E 是对角线AC 、BD 的交点,反比例函数y = 2x(x >0)的图象经过A 、E 两点,则点D 的坐标为____________.三、解答题(本题有9个小题,共72分)17.(本题满分6分) 用公式法解方程:230x x --=18.(本题满分6分)从男女学生共48人的班级中,选一名班长,假设任何人都有同样的当选机会,如果选得男生的概率为32,求男女学生人数. 19.(本题满分7分) 如图,AB 是⊙O 的直径,直线PQ 过⊙O 上的点C ,PQ 是⊙O 的切线. 求证:∠BCP =∠A .(第15题图)(第10题图) 12 (第16题图)(第11题图)(第19题图)20.(本题满分7分) 某电脑公司现有A ,B ,C 三种型号的甲品牌电脑和D ,E 两种型号的乙品牌电脑. 东沟中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)若各种选购方案被选中的可能性相同,求选中A 型号电脑的概率; (2)已知东沟中学购买甲、乙两种品牌电脑共36台(价格如图所示), 恰好用了10万元人民币,其中甲品牌电脑为A 型号电脑, 求购买的A 型号电脑有几台.21.(本题满分7分)已知关于x 的一元二次方程04222=-++k x x 有两个不相等的实数根 (1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.22.(本题满分8分)如图,正比例函数12y x =的图象与反比例函数ky x=第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知△OAM 的面积为1..(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使P A +PB 最小.23.(本题满分9分)武当超市购进一批每千克价格为6元的新上市西瓜,在超市试销中发现:销售单价x (元/千克)与每天销售量y (千克)之间满足如图所示的一次函数关系. (1)求y 与x 之间的函数关系式;(2)写出每天的利润w 与销售单价x 之间的函数关系式,为了缩短西瓜销售期,规定每千克销售单价不超过12元,若你是超市负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?(第22题图)(第23题图)E24.(本题满分10分) 如图,在△ABC 中,AB = AC ,D 是BC 中点,AE 平分∠BAD 交BC 于点E , 点O 是AB 上一点,⊙O 过A 、E 两点, 交AD 于点G ,交AB 于点F .(1)求证:BC 与⊙O 相切; (2)当∠BAC =120°,AD =3时,求BF 的长.25.(本题满分12分)如图,已知抛物线2(1)33y a x =-+(a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 作平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.(第24题图)BA CDEGOFxyMCDPQOAB (第25题图)。
2017年九年级数学上期末试卷
2017年九年级数学上期末试卷相信就是强大,怀疑只会抑制能力。
相信同学们有能力完成九年级数学期末试卷题。
以下是店铺为你整理的2017年九年级数学上期末试题,希望对大家有帮助!2017年九年级数学上期末试题一、选择题:本大题共16小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是( )A. B. C. D.2.已知线段a、b、c,其中c是a、b的比例中项,若a=9cm,b=4cm,则线段c长( )A.18cmB.5cmC.6cmD.±6cm3.对于二次函数y=﹣ +x﹣4,下列说法正确的是( )A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣7)D.图象与x轴有两个交点4.发展工业是强国之梦的重要举措,如图所示零件的左视图是( )A. B. C. D.5.如图,已知AB是⊙O的直径,∠D=40°,则∠CAB的度数为( )A.20°B.40°C.50°D.70°6.若关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是( )A.k<1B.k≤1C.k>﹣1D.k>17.如图,已知点P在△ABC的边AC上,下列条件中,不能判断△ABP∽△ACB的是( )A.∠ABP=∠CB.∠APB=∠ABCC.AB2=AP•ACD. =8.函数y=﹣x2+1的图象大致为( )A. B.C. D.9.已知α为锐角,如果sinα= ,那么α等于( )A.30°B.45°C.60°D.不确定10.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为( )A.E、F、GB.F、G、HC.G、H、ED.H、E、F11.小李同学掷一枚质地均匀的骰子,点数为2的一面朝上的概率为( )A. B. C. D.12.已知反比例函数y= 图象的两个分支分别位于第二、四象限,则k的取值范围是( )A.k>1B.k<1C.k>0D.k<013.餐桌桌面是长为160cm,宽为100cm的长方形,妈妈准备设计一块桌布,面积是桌面的2倍,且使四周垂下的边等宽.若设垂下的桌布宽为xcm,则所列方程为( )A.(160+x)(100+x)=160×100×2B.(160+2x)(100+2x)=160×100×2C.(160+x)(100+x)=160×100D.2(160x+100x)=160×10014.如图,一艘轮船以40海里/时的速度在海面上航行,当它行驶到A处时,发现它的北偏东30°方向有一灯塔B.轮船继续向北航行2小时后到达C处,发现灯塔B在它的北偏东60°方向.若轮船继续向北航行,那么当再过多长时间时轮船离灯塔最近?( )A.1小时B. 小时C.2小时D. 小时15.某旅游景点的收入受季节的影响较大,有时候出现赔本的经营状况.因此,公司规定:若无利润时,该景点关闭.经跟踪测算,该景点一年中的利润W(万元)与月份x之间满足二次函数W=﹣x2+16x﹣48,则该景点一年中处于关闭状态有( )月.A.5B.6C.7D.816.如图是某公园一块草坪上的自动旋转喷水装置,这种旋转喷水装置的旋转角度为240°,它的喷灌区是一个扇形,小涛同学想了解这种装置能够喷灌的草坪面积,他测量出了相关数据,并画出了示意图,如图,A、B两点的距离为18米,则这种装置能够喷灌的草坪面积为( )m2.A.36πB.72πC.144πD.18π二、填空题:本大题共3小题,共10分,17-18题各3分,19小题有2个空,每空2分,把答案写在题中横线上.17.若x2﹣4x+5=(x﹣2)2+m,则m= .18.某校甲乙两个体操队队员的平均身高相等,甲队队员身高的方差是S甲2=1.9,乙队队员身高的方差是S乙2=1.2,那么两队中队员身高更整齐的是队.(填“甲”或“乙”)19.(4分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm 2)的反比例函数,其图象如图所示.(1)写出y与S的函数关系式:.(2)当面条粗 1.6mm 2时,面条总长度是m.三、解答题:本大题共7小题,共68分,解答应写出文字说明、证明过程或演算步骤.20.(9分)某销售冰箱的公司有营销人员14人,销售部为指定销售人员月销售冰箱定额(单位:台),统计了这14位营销人员该月的具体销售量如下表:每人销售台数 20 17 13 8 5 4人数 1 1 2 5 3 2(1)该月销售冰箱的平均数、众数、中位数各是多少?(2)销售部选择哪个数据作为月销售冰箱定额更合适?请你结合上述数据作出合理的分析.21.(9分)某种电子产品共4件,其中有正品和次品.已知从中任意取出一件,取得的产品为次品的概率为 .(1)该批产品有正品件;(2)如果从中任意取出2件,求取出2件都是正品的概率.22.(9分)把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米)适用公式h=20t﹣5t2(0≤t≤4).(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t;(3)若存在实数t1,t2(t1≠t2)当t=t1或t2时,足球距离地面的高度都为m(米),求m的取值范围.23.(9分)有一位滑翔伞爱好者,正在空中匀速向下滑翔,已知水平方向上的风速为5.8m/s,如图,在A点他观察到C处塔尖的俯角为30°,5s后在B点的他观察到C处塔尖的俯角为45°,此时,塔尖与他本人的距离BC是AC的,求此人垂直下滑的距离.(参考数据,结果精确到0.1m)24.(10分)已知:如图,在△ABC中,∠A=45°,以AB为直径的⊙O交AC于点D,且AD=DC,CO的延长线交⊙O于点E,过点E 作弦EF⊥AB,垂足为点G.(1)求证:BC是⊙O的切线;(2)若AB=2,求EF的长.25.(10分)如图,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.(1)建立如图所示的坐标系,求抛物线的解析式;(2)一艘装满物资的小船,露出水面部分的高为0.8m、宽为4m(横断面如图所示).若暴雨后,水位达到警戒线CD,此时这艘船能从这座拱桥下通过吗?请说明理由.26.(12分)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ、CP,若AQ⊥CP,求t的值.2017年九年级数学上期末试卷答案一、选择题:本大题共16小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是( )A. B. C. D.【考点】锐角三角函数的定义;坐标与图形性质.【分析】利用勾股定理列式求出OA,再根据锐角的余弦等于邻边比斜边列式即可.【解答】解:由勾股定理得OA= =5,所以cosα= .故选D.【点评】本题考查了锐角三角函数的定义,坐标与图形性质,勾股定理,熟记概念并准确识图求出OA的长度是解题的关键.2.已知线段a、b、c,其中c是a、b的比例中项,若a=9cm,b=4cm,则线段c长( )A.18cmB.5cmC.6cmD.±6cm【考点】比例线段.【分析】由c是a、b的比例中项,根据比例中项的定义,列出比例式即可得出线段c的长,注意线段不能为负.【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c2=4×9,解得c=±6(线段是正数,负值舍去),故选C.【点评】此题考查了比例线段;理解比例中项的概念,这里注意线段不能是负数.3.对于二次函数y=﹣ +x﹣4,下列说法正确的是( )A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣7)D.图象与x轴有两个交点【考点】二次函数的性质;二次函数的图象.【分析】先用配方法把函数化为顶点式的形式,再根据其解析式即可求解.【解答】解:∵二次函数y=﹣ +x﹣4可化为y=﹣ (x﹣2)2﹣3,又∵a=﹣ <0∴当x=2时,二次函数y=﹣ x2+x﹣4的最大值为﹣3.故选B.【点评】本题考查了二次函数的性质,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.4.发展工业是强国之梦的重要举措,如图所示零件的左视图是( )A. B. C. D.【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个矩形平均分成2个,故选:C.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.5.如图,已知AB是⊙O的直径,∠D=40°,则∠CAB的度数为( )A.20°B.40°C.50°D.70°【考点】圆周角定理.【分析】先根据圆周角定理求出∠B及∠ACB的度数,再由直角三角形的性质即可得出结论.【解答】解:∵∠D=40°,∴∠B=∠D=40°.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣40°=50°.故选C.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.6.若关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是( )A.k<1B.k≤1C.k>﹣1D.k>1【考点】根的判别式.【分析】当△>0时,方程有两个不相等的两个实数根,据此求出k 的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,∴(﹣2)2﹣4×1×k>0,∴4﹣4k>0,解得k<1,∴k的取值范围是:k<1.故选:A.【点评】此题主要考查了利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况,要熟练掌握,解答此题的关键是要明确:当△>0时,方程有两个不相等的两个实数根.7.如图,已知点P在△ABC的边AC上,下列条件中,不能判断△ABP∽△ACB的是( )A.∠ABP=∠CB.∠APB=∠ABCC.AB2=AP•ACD. =【考点】相似三角形的判定.【分析】根据相似三角形的判定定理(①有两角分别相等的两三角形相似,②有两边的比相等,并且它们的夹角也相等的两三角形相似)逐个进行判断即可.【解答】解:A、∵∠A=∠A,∠ABP=∠C,∴△ABP∽△ACB,故本选项错误;B、∵∠A=∠A,∠APB=∠ABC,∴△ABP∽△ACB,故本选项错误;C、∵∠A=∠A,AB2=AP•AC,即 = ,∴△ABP∽△ACB,故本选项错误;D、根据 = 和∠A=∠A不能判断△ABP∽△ACB,故本选项正确;故选:D.【点评】此题考查了相似三角形的性质.此题比较简单,解题的关键是掌握有两角对应相等的三角形相似与两边对应成比例且夹角相等的三角形相似定理的应用.8.函数y=﹣x2+1的图象大致为( )A. B.C. D.【考点】二次函数的图象.【分析】根据二次函数的开口方向,对称轴,和y轴的交点可得相关图象.【解答】解:∵二次项系数a<0,∴开口方向向下,∵一次项系数b=0,∴对称轴为y轴,∵常数项c=1,∴图象与y轴交于(0,1),故选B.【点评】考查二次函数的图象的性质:二次项系数a<0,开口方向向下;一次项系数b=0,对称轴为y轴;常数项是抛物线与y轴的交点的纵坐标.9.已知α为锐角,如果sinα= ,那么α等于( )A.30°B.45°C.60°D.不确定【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值求解.【解答】解:∵α为锐角,sinα= ,∴α=45°.故选B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.10.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为( )A.E、F、GB.F、G、HC.G、H、ED.H、E、F【考点】点与圆的位置关系.【分析】根据网格中两点间的距离分别求出,OE,OF,OG,OH然后和OA比较大小.最后得到哪些树需要移除.【解答】解:∵OA= = ,∴OE=2OF=2OG=1OH= =2 >OA,所以点H在⊙O外,故选A【点评】此题是点与圆的位置关系,主要考查了网格中计算两点间的距离,比较线段长短的方法,计算距离是解本题的关键.点到圆心的距离小于半径,点在圆内,点到圆心的距离大于半径,点在圆外,点到圆心的距离大于半径,点在圆内.11.小李同学掷一枚质地均匀的骰子,点数为2的一面朝上的概率为( )A. B. C. D.【考点】概率公式.【分析】抛掷一枚质地均匀的骰子,有6种结果,每种结果等可能出现,点数为2的情况只有一种,即可求.【解答】解:抛掷一枚质地均匀的骰子,有6种结果,每种结果等可能出现,出现“点数为2”的情况只有一种,故所求概率为 .故选:A.【点评】本题考查的是古典型概率.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= .12.已知反比例函数y= 图象的两个分支分别位于第二、四象限,则k的取值范围是( )A.k>1B.k<1C.k>0D.k<0【考点】反比例函数的性质.【分析】根据反比例函数的性质列出关于k的不等式,求出k的取值范围即可.【解答】解:∵反比例函数y= 图象的两个分支分别位于第二、四象限,∴k﹣1<0,解得k<1.故选B.【点评】本题考查的是反比例函数的性质,熟知反比例函数的图象与系数的关系是解答此题的关键.13.餐桌桌面是长为160cm,宽为100cm的长方形,妈妈准备设计一块桌布,面积是桌面的2倍,且使四周垂下的边等宽.若设垂下的桌布宽为xcm,则所列方程为( )A.(160+x)(100+x)=160×100×2B.(160+2x)(100+2x)=160×100×2C.(160+x)(100+x)=160×100D.2(160x+100x)=160×100【考点】由实际问题抽象出一元二次方程.【分析】本题可先求出桌布的面积,再根据题意用x表示桌面的长与宽,令两者的积为桌布的面积即可.【解答】解:依题意得:桌布面积为:160×100×2,桌面的长为:160+2x,宽为:100+2x,则面积为=(160+2x)(100+2x)=2×160×100.故选B.【点评】本题考查的是一元二次方程的运用,要灵活地运用面积公式来求解.14.如图,一艘轮船以40海里/时的速度在海面上航行,当它行驶到A处时,发现它的北偏东30°方向有一灯塔B.轮船继续向北航行2小时后到达C处,发现灯塔B在它的北偏东60°方向.若轮船继续向北航行,那么当再过多长时间时轮船离灯塔最近?( )A.1小时B. 小时C.2小时D. 小时【考点】解直角三角形的应用-方向角问题.【分析】过B作AC的垂线,设垂足为D.由题易知:∠DAB=30°,∠DCB=60°,则∠CBD=∠CBA=30°,得AC=BC.由此可在Rt△CBD中,根据BC(即AC)的长求出CD的长,进而可求出该船需要继续航行的时间.【解答】解:作BD⊥AC于D,如下图所示:易知:∠DAB=30°,∠DCB=60°,则∠CBD=∠CBA=30°.∴AC=BC,∵轮船以40海里/时的速度在海面上航行,∴AC=BC=2×40=80海里,∴CD= BC=40海里.故该船需要继续航行的时间为40÷40=1小时.故选A.【点评】本题考查了解直角三角形的应用中的方向角问题,注意掌握“化斜为直”是解三角形的常规思路,需作垂线(高),原则上不破坏特殊角(30°、45°60°).15.某旅游景点的收入受季节的影响较大,有时候出现赔本的经营状况.因此,公司规定:若无利润时,该景点关闭.经跟踪测算,该景点一年中的利润W(万元)与月份x之间满足二次函数W=﹣x2+16x﹣48,则该景点一年中处于关闭状态有( )月.A.5B.6C.7D.8【考点】二次函数的应用.【分析】令W=0,解得x=4或12,求出不等式﹣x2+16x﹣48>0的解即可解决问题.【解答】解:由W=﹣x2+16x﹣48,令W=0,则x2﹣16x+48=0,解得x=12或4,∴不等式﹣x2+16x﹣48>0的解为,4∴该景点一年中处于关闭状态有5个月.故选A.【点评】本题考查二次函数的应用,二次不等式与二次函数的关系等知识,解题的关键是学会解二次不等式,属于中考常考题型.16.如图是某公园一块草坪上的自动旋转喷水装置,这种旋转喷水装置的旋转角度为240°,它的喷灌区是一个扇形,小涛同学想了解这种装置能够喷灌的草坪面积,他测量出了相关数据,并画出了示意图,如图,A、B两点的距离为18米,则这种装置能够喷灌的草坪面积为( )m2.A.36πB.72πC.144πD.18π【考点】垂径定理的应用;扇形面积的计算.【分析】作OC⊥AB,根据垂径定理得出AC=9米,继而可得圆的半径OA的值,再根据扇形面积公式可得答案.【解答】解:过点O作OC⊥AB于C点.∵OC⊥AB,AB=18米,∴AC= AB=9米,∵OA=OB,∠AOB=360°﹣240°=120°,∴∠AOC= ∠AOB=60°.在Rt△OAC中,OA2=OC2+AC2,又∵OC= OA,∴r=OA=6 .∴S= πr2=72π(m2).故选:B.【点评】本题主要考查垂径定理和扇形的面积公式,熟练掌握垂径定理求得圆的半径是解题的关键.二、填空题:本大题共3小题,共10分,17-18题各3分,19小题有2个空,每空2分,把答案写在题中横线上.17.若x2﹣4x+5=(x﹣2)2+m,则m= 1 .【考点】配方法的应用.【分析】已知等式左边配方得到结果,即可确定出m的值.【解答】解:已知等式变形得:x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1=(x﹣2)2+m,则m=1,故答案为:1【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.18.某校甲乙两个体操队队员的平均身高相等,甲队队员身高的方差是S甲2=1.9,乙队队员身高的方差是S乙2=1.2,那么两队中队员身高更整齐的是乙队.(填“甲”或“乙”)【考点】方差.【分析】根据方差的定义,方差越小数据越稳定.【解答】解:∵S甲2=1.9,S乙2=1.2,∴S甲2=1.9>S乙2=1.2,∴两队中队员身高更整齐的是乙队;故答案为:乙.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.19.你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm 2)的反比例函数,其图象如图所示.(1)写出y与S的函数关系式:y= .(2)当面条粗 1.6mm 2时,面条总长度是80 m.【考点】反比例函数的应用.【分析】(1)首先根据题意,y与s的关系为乘积一定,为面团的体积,即可得出y与s的反比例函数关系式;(2)将数据代入用待定系数法可得反比例函数的关系式;进一步求解可得答案.【解答】解:(1)设y与x的函数关系式为y= ,将s=4,y=32代入上式,解得:k=4×32=128,∴y= ;故答案为:= .(2)当s=1.6时,y= =80,当面条粗1.6mm2时,面条的总长度是80m;故答案为:80.【点评】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.三、解答题:本大题共7小题,共68分,解答应写出文字说明、证明过程或演算步骤.20.某销售冰箱的公司有营销人员14人,销售部为指定销售人员月销售冰箱定额(单位:台),统计了这14位营销人员该月的具体销售量如下表:每人销售台数 20 17 13 8 5 4人数 1 1 2 5 3 2(1)该月销售冰箱的平均数、众数、中位数各是多少?(2)销售部选择哪个数据作为月销售冰箱定额更合适?请你结合上述数据作出合理的分析.【考点】众数;统计表;加权平均数;中位数.【分析】(1)根据平均数、中位数和众数的定义求解;(2)众数和中位数,是大部分人能够完成的台数.【解答】解:(1)平均数是9(台),众数是8(台),中位数是8(台).(2)每月销售冰箱的定额为8台才比较合适.因为在这儿8既是众数,又是中位数,是大部分人能够完成的台数.若用9台,则只有少量人才能完成,打击了大部职工的积极性.【点评】此题考查了学生对中位数,众数,平均数的掌握情况.它们都是反映数据集中趋势的指标.21.某种电子产品共4件,其中有正品和次品.已知从中任意取出一件,取得的产品为次品的概率为 .(1)该批产品有正品 3 件;(2)如果从中任意取出2件,求取出2件都是正品的概率.【考点】列表法与树状图法;概率公式.【分析】(1)由某种电子产品共4件,其中有正品和次品.已知从中任意取出一件,取得的产品为次品的概率为,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取出2件都是正品的情况,再利用概率公式即可求得答案.【解答】解:(1)∵某种电子产品共4件,从中任意取出一件,取得的产品为次品的概率为 ;∴批产品有正品为:4﹣4× =3.故答案为:3;(2)画树状图得:∵结果共有12种情况,且各种情况都是等可能的,其中两次取出的都是正品共6种,∴P(两次取出的都是正品)= = .【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.22.把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米)适用公式h=20t﹣5t2(0≤t≤4).(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t;(3)若存在实数t1,t2(t1≠t2)当t=t1或t2时,足球距离地面的高度都为m(米),求m的取值范围.【考点】一元二次方程的应用;二次函数的应用.【分析】(1)将t=3代入解析式可得;(2)根据h=10可得关于t的一元二次方程,解方程即可;(3)由题意可得方程20t﹣t2=m 的两个不相等的实数根,由根的判别式即可得m的范围.【解答】解:(1)当t=3时,h=20t﹣5t2=20×3﹣5×9=15(米),∴当t=3时,足球距离地面的高度为15米;(2)∵h=10,∴20t﹣5t2=10,即t2﹣4t+2=0,解得:t=2+ 或t=2﹣,故经过2+ 或2﹣时,足球距离地面的高度为10米;(3)∵m≥0,由题意得t1,t2是方程20t﹣5t2=m 的两个不相等的实数根,∴b2﹣4ac=202﹣20m>0,∴m<20,故m的取值范围是0≤m<20.【点评】本题主要考查二次函数背景下的求值及一元二次方程的应用、根的判别式,根据题意得到相应的方程及将实际问题转化为方程问题是解题的关键.23.有一位滑翔伞爱好者,正在空中匀速向下滑翔,已知水平方向上的风速为5.8m/s,如图,在A点他观察到C处塔尖的俯角为30°,5s后在B点的他观察到C处塔尖的俯角为45°,此时,塔尖与他本人的距离BC是AC的,求此人垂直下滑的距离.(参考数据,结果精确到0.1m)【考点】解直角三角形的应用-仰角俯角问题.【分析】过点C作点A所在水平线的垂线,垂足为D,交点B所在水平线于点E,则CE⊥BE,设BC=x,则AC=4x,建立关于x的方程,求出x的值,进而可求出DE=CD﹣CE=2x﹣x≈13.6m,即此人垂直下滑的距离.【解答】解:过点C作点A所在水平线的垂线,垂足为D,交点B所在水平线于点E,则CE⊥BE设BC=x,则AC=4x,在Rt△BCE中,∠B=45°,∴BE=CE= ,在Rt△ACD中,∵∠A=30°,∴CD=AC•sin30°=2x,AD=AC•cos30°= •4x=2 x,由题意可知,解得x≈10.52,∴DE=CD﹣CE=2x﹣x≈13.6m,答:此人垂直下滑的距离是13.6米.【点评】本题考查俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.24.(10分)(2016•聊城模拟)已知:如图,在△ABC中,∠A=45°,以AB为直径的⊙O交AC于点D,且AD=DC,CO的延长线交⊙O 于点E,过点E作弦EF⊥AB,垂足为点G.(1)求证:BC是⊙O的切线;(2)若AB=2,求EF的长.【考点】切线的判定;勾股定理;垂径定理;相似三角形的判定与性质.【分析】(1)连接BD,有圆周角性质定理和等腰三角形的性质以及已知条件证明∠ABC=90°即可;(2)AB=2,则圆的直径为2,所以半径为1,即OB=OE=1,利用勾股定理求出CO的长,再通过证明△EGO∽△CBO得到关于EG的比例式可求出EG的长,进而求出EF的长.【解答】(1)证明:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴BD⊥AC,∵AD=CD,∴AB=BC,∴∠A=∠ACB=45°,∴∠ABC=90°,∴BC是⊙O的切线;(2)解:∵AB=2,∴BO=1,∵AB=BC=2,∴CO= = ,∵EF⊥AB,BC⊥AB,∴EF∥BC,∴△EGO∽△CBO,∴ ,∴ ,∴EG= ,∴EF=2EG= .【点评】本题考查了切线的判定与性质、相似三角形的判定于性质以及勾股定理的运用;证明某一线段是圆的切线时,一般情况下是连接切点与圆心,通过证明该半径垂直于这一线段来判定切线.25.(10分)(2016秋•安平县期末)如图,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.(1)建立如图所示的坐标系,求抛物线的解析式;(2)一艘装满物资的小船,露出水面部分的高为0.8m、宽为4m(横断面如图所示).若暴雨后,水位达到警戒线CD,此时这艘船能从这座拱桥下通过吗?请说明理由.【考点】二次函数的应用.【分析】(1)先设抛物线的解析式y=ax2,再找出几个点的坐标,代入解析式后可求解.(2)求出拱桥顶O到CD的距离为1m,x=2时,y=﹣0.16,由此即可判定.【解答】解:(1)设所求抛物线的解析式为:y=ax2(a≠0),由CD=10m,可设D(5,b),由AB=20m,水位上升3m就达到警戒线CD,则B(10,b﹣3),把D、B的坐标分别代入y=ax2得:,解得 .∴y=﹣ x2;(2))∵b=﹣1,∴拱桥顶O到CD的距离为1m,∵x=2时,y=﹣ =﹣0.16,1﹣0.8=0.2>0.16,∴水位达到警戒线CD,此时这艘船能从这座拱桥下通过.【点评】本题考查二次函数的应用,解题的关键是把一个实际问题通过数学建模,转化为二次函数问题,用二次函数的性质加以解决.26.(12分)(2015•潍坊模拟)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ、CP,若AQ⊥CP,求t的值.【考点】相似三角形的判定与性质.【分析】(1)分两种情况:①当△BPQ∽△BAC时,BP:BA=BQ:BC;当△BPQ∽△BCA时,BP:BC=BQ:BA,再根据BP=5t,QC=4t,AB=10cm,BC=8cm,代入计算即可;(2)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,根据△ACQ∽△CMP,得出AC:CM=CQ:MP,代入计算即可.【解答】解:根据勾股定理得:BA= ;(1)分两种情况讨论:①当△BPQ∽△BAC时,,∵BP=5t,QC=4t,AB=10,BC=8,∴ ,解得,t=1,②当△BPQ∽△BCA时,,∴ ,解得,t= ;∴t=1或时,△BPQ∽△BCA;(2)过P作PM⊥BC于点M,AQ,CP交于点N,如图所示:则PB=5t,PM=3t,MC=8﹣4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM,∵∠ACQ=∠PMC,∴△ACQ∽△CMP,∴ ,∴ ,解得t= .。
九年级数学上期末试卷附答案
九年级数学上期末试卷附答案2017年九年级数学上期末试卷附答案对于九年级的学生来说,要提高自己的数学呢?做一些相关知识点的试题是很不错的选择,以下是店铺为你整理的2017年九年级数学上期末试卷,希望对大家有帮助!2017年九年级数学上期末试题一、选择题1.与是同类二次根式的是( )A. B. C. D.2.方程x2=2x的解是( )A.x=0B.x=2C.x=0或x=2D.x=±3.从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是( )A. B. C. D.4.在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,下列各式成立的是( )A.b=a•sinBB.a=b•cosBC.a=b•tanBD.b=a•tanB5.如图:抛物线y=ax2+bx+c(a≠0)的图象与x轴的一个交点是(﹣2,0),顶点是(1,3).下列说法中不正确的是( )A.抛物线的对称轴是x=1B.抛物线的开口向下C.抛物线与x轴的另一个交点是(2,0)D.当x=1时,y有最大值是36.已知x的方程kx2+(1﹣k)x﹣1=0,下列说法正确的是( )A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=﹣1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解7.如图,菱形ABCD的周长为40cm,DE⊥AB,垂足为E,sinA= ,则下列结论正确的有( )①DE=6cm;②BE=2cm;③菱形面积为60cm2;④BD= cm.A.1个B.2个C.3个D.4个8.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于( )A.2:5B.14:25C.16:25D.4:21二、填空题9.当x 时,在实数范围内有意义.10.已知四条线段a,b,c,d成比例,并且a=2,b= ,c= ,则d= .11.在一个陡坡上前进5米,水平高度升高了3米,则坡度i= .12.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为.13.两个相似三角形对应的中线长分别是6cm和18cm,若较大三角形的周长是42cm,面积是12cm2,则较小三角形的周长为cm,面积为cm2.14.共青团县委准备在艺术节期间举办学生绘画展览,为美化画面,在长30cm、宽20cm的矩形画面四周镶上宽度相等的彩纸,并使彩纸的面积恰好与原画面面积相等(如图所示),若设彩纸的宽度为xcm,则列方程整理成一般形式为.15.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3.点D是BC边上的一动点(不与点B、C重合),过点D作DE⊥BC交AB于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处.当△AEF为直角三角形时,BD的长为.三、解答题(共75分)16.(7分)计算:4cos30°﹣| ﹣2|+( )0﹣ +(﹣ )﹣2.17.(7分)用配方法解方程:x2+4x﹣1=0.18.(9分)如图,梯形ABCD中,AB∥CD,点F在BC上,连DF 与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.19.(10分)如图,一条抛物线经过(﹣2,5),(0,﹣3)和(1,﹣4)三点.(1)求此抛物线的函数解析式.(2)假如这条抛物线与x轴交于点A,B,与y轴交于点C,试判断△OCB的形状.20.(10分)如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:,且AB=30m,李亮在大堤上A点处用高1.5m的测量仪测出高压电线杆CD顶端D的仰角为30°,己知地面BC宽30m,求高压电线杆CD的高度(结果保留三个有效数字,≈1.732)21.(10分)为迎接“五一”节的到来,某食品连锁店对某种商品进行了跟踪调查,发现每天它的销售价与销售量之间有如下关系:每千克售价(元) 25 24 23 (15)每天销售量(千克) 30 32 34 (50)如果单价从最高25元/千克下调到x元/千克时,销售量为y千克,已知y与x之间的函数关系是一次函数:(1)求y与x之间的函数解析式;(不写定义域)(2)若该种商品成本价是15元/千克,为使“五一”节这天该商品的销售总利润是200元,那么这一天每千克的销售价应定为多少元?22.(11分)阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图 2).请回答:∠ACE的度数为,AC的长为.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.23.(11分)如图,在平面直角坐标系中,点A的坐标为(0,2),点P(t,0)在x轴上,B是线段PA的中点.将线段PB绕着点P顺时针方向旋转90°,得到线段PC,连结OB、BC.(1)判断△PBC的形状,并简要说明理由;(2)当t>0时,试问:以P、O、B、C为顶点的四边形能否为平行四边形?若能,求出相应的t的值?若不能,请说明理由;(3)当t为何值时,△AOP与△APC相似?2017年九年级数学上期末试卷答案与解析一、选择题1.与是同类二次根式的是( )A. B. C. D.【考点】同类二次根式.【分析】根据同类二次根式的定义进行选择即可.【解答】解:A、与不是同类二次根式,故错误;B、 =3与不是同类二次根式,故错误;C、 =3 与不是同类二次根式,故错误;D、 = 与是同类二次根式,故正确;故选D.【点评】本题考查了同类二次根式,掌握同类二次根式的定义是解题的关键.2.方程x2=2x的解是( )A.x=0B.x=2C.x=0或x=2D.x=±【考点】解一元二次方程-因式分解法.【分析】方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x2﹣2x=0,分解因式得:x(x﹣2)=0,解得:x1=0,x2=2.故选C【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.3.从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是( )A. B. C. D.【考点】概率公式.【分析】列举出所有情况,看能被3整除的数的情况占总情况的多少即可.【解答】解:第一个数字有4种选择,第二个数字有3种选择,易得共有4×3=12种可能,而被3整除的有4种可能(12、21、24、42),所以任意抽取两个数字组成两位数,则这个两位数被3整除的概率为 = ,故选A.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= .4.在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,下列各式成立的是( )A.b=a•sinBB.a=b•cosBC.a=b•tanBD.b=a•tanB【考点】锐角三角函数的定义.【分析】根据三角函数的定义即可判断.【解答】解:A、∵si nB= ,∴b=c•sinB,故选项错误;B、∵cosB= ,∴a=c•cosB,故选项错误;C、∵tanB= ,∴a= ,故选项错误;D、∵tanB= ,∴b=a•tanB,故选项正确.故选D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.如图:抛物线y=ax2+bx+c(a≠0)的图象与x轴的一个交点是(﹣2,0),顶点是(1,3).下列说法中不正确的是( )A.抛物线的对称轴是x=1B.抛物线的开口向下C.抛物线与x轴的另一个交点是(2,0)D.当x=1时,y有最大值是3【考点】二次函数的性质.【分析】根据二次函数的性质,结合图象,逐一判断.【解答】解:观察图象可知:A、∵顶点坐标是(1,3),∴抛物线的对称轴是x=1,正确;B、从图形可以看出,抛物线的开口向下,正确;C、∵图象与x轴的一个交点是(﹣2,0),顶点是(1,3),∴1﹣(﹣2)=3,1+3=4,即抛物线与x轴的另一个交点是(4,0),错误;D、当x=1时,y有最大值是3,正确.故选C.【点评】主要考查了二次函数的性质,要会根据a的值判断开口方向,根据顶点坐标确定对称轴,掌握二次函数图象的对称性.6.已知关于x的方程kx2+(1﹣k)x﹣1=0,下列说法正确的是( )A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=﹣1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解【考点】根的判别式;一元一次方程的解.【分析】利用k的值,分别代入求出方程的根的情况即可.【解答】解:关于x的方程kx2+(1﹣k)x﹣1=0,A、当k=0时,x﹣1=0,则x=1,故此选项错误;B、当k=1时,x2﹣1=0方程有两个实数解,故此选项错误;C、当k=﹣1时,﹣x2+2x﹣1=0,则(x﹣1)2=0,此时方程有两个相等的实数解,故此选项正确;D、由C得此选项错误.故选:C.【点评】此题主要考查了一元二次方程的解,代入k的值判断方程根的情况是解题关键.7.如图,菱形ABCD的周长为40cm,DE⊥AB,垂足为E,sinA= ,则下列结论正确的有( )①DE=6cm;②BE=2cm;③菱形面积为60cm2;④BD= cm.A.1个B.2个C.3个D.4个【考点】解直角三角形.【分析】根据角的正弦值与三角形边的关系,可求出各边的长,运用验证法,逐个验证从而确定答案.【解答】解:∵菱形ABCD的周长为40cm,∴AD=AB=BC=CD=10.∵DE⊥AB,垂足为E,sinA= = = ,∴DE=6cm,AE=8cm,BE=2cm.∴菱形的面积为:AB×DE=10×6=60cm2.在三角形BED中,BE=2cm,DE=6cm,BD=2 cm,∴①②③正确,④错误; =2∴结论正确的有三个.故选C.【点评】此题看上去这是一道选择题实则是一道综合题,此题考查直角三角形的性质,只要理解直角三角形中边角之间的关系即可求解.8.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于( )A.2:5B.14:25C.16:25D.4:21【考点】翻折变换(折叠问题).【分析】在Rt△BEC中利用勾股定理计算出AB=10,根据折叠的性质得到AD=BD=5,EA=EB,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中根据勾股定理计算出x= ,则EC=8﹣ = ,利用三角形面积公式计算出S△BCE= BC•CE= ×6× = ,在Rt△BED中利用勾股定理计算出ED= = ,利用三角形面积公式计算出S△BDE= BD•DE= ×5× = ,然后求出两面积的比.【解答】解:在Rt△BAC中,BC=6,AC=8,∴AB= =10,∵把△ABC沿DE使A与B重合,∴AD=BD,EA=EB,∴BD= AB=5,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中,∵BE2=EC2+BC2,即x2=(8﹣x)2+62,∴x= ,∴EC=8﹣x=8﹣ = ,∴S△BCE= BC•CE= ×6× = ,在Rt△BED中,∵BE2=ED2+BD2,∴ED= = ,∴S△BDE= BD•DE= ×5× = ,∴S△BCE:S△BDE= : =14:25.故选B.【点评】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等,对应角相等.也考查了勾股定理.二、填空题9.当x > 时,在实数范围内有意义.【考点】二次根式有意义的条件;分式有意义的条件.【分析】本题考查了代数式有意义的x的取值范围.一般地从两个角度考虑:分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【解答】解:由分式的分母不为0,得2x﹣3≠0,即x≠ ,又因为二次根式的被开方数不能是负数,所以有2x﹣3≥0,得x≥ ,所以,x的取值范围是x> .故当x> 时,在实数范围内有意义.【点评】判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母的不等于0混淆.10.已知四条线段a,b,c,d成比例,并且a=2,b= ,c= ,则d= .【考点】比例线段.【分析】根据题意列出比例式,再根据比例的基本性质,易求d 的值.【解答】解:∵四条线段a,b,c,d成比例,并且a=2,b= ,c= ,∴a:b=c:d,即2: = :d,解得d= ,故答案为 .【点评】本题考查了比例线段,解题的关键是利用了两内项之积等于两外项之积.11.在一个陡坡上前进5米,水平高度升高了3米,则坡度i= .【考点】解直角三角形的应用-坡度坡角问题.【分析】先求出水平方向上前进的距离,然后根据山坡的坡度=竖直方向上升的距离:水平方向前进的距离,即可解题.【解答】解:如图所示:AC=5米,BC=3米,则AB= = =4(米),则坡度i= = .故答案为:3:4.【点评】本题考查了坡度的概念,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比.12.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为.【考点】旋转的性质;解直角三角形.【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【解答】解:过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB= = ,∴tanB′=tanB= .故答案为 .【点评】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.13.两个相似三角形对应的中线长分别是6cm和18cm,若较大三角形的周长是42cm,面积是12cm2,则较小三角形的周长为14 cm,面积为cm2.【考点】相似三角形的性质.【分析】由两个相似三角形对应的中线长分别是6cm和18cm,可得此相似三角形的相似比为:6:18=1:3;即可得此相似三角形的周长比为:1:3,面积比为:1:9,又由较大三角形的周长是42cm,面积是12cm2,即可求得答案.【解答】解:∵两个相似三角形对应的中线长分别是6cm和18cm,∴此相似三角形的相似比为:6:18=1:3;∴此相似三角形的周长比为:1:3,面积比为:1:9,∵较大三角形的周长是42cm,面积是12cm2,∴较小三角形的周长为:42× =14(cm),面积为:12× = (cm2).故答案为:14, .【点评】此题考查了相似三角形的性质.此题比较简单,注意掌握相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比.相似三角形的`面积的比等于相似比的平方.14.共青团县委准备在艺术节期间举办学生绘画展览,为美化画面,在长30cm、宽20cm的矩形画面四周镶上宽度相等的彩纸,并使彩纸的面积恰好与原画面面积相等(如图所示),若设彩纸的宽度为xcm,则列方程整理成一般形式为x2+25x﹣150=0 .【考点】由实际问题抽象出一元二次方程.【分析】设彩纸的宽度为xcm,则镶上宽度相等的彩纸后长度为30+2x,宽为20+2x,它的面积等于原来面积的2倍,由此列出方程.【解答】解:设彩纸的宽度为xcm,则由题意列出方程为:(30+2x)(20+2x)=2×30×20.整理得:x2+25x﹣150=0,故答案为:x2+25x﹣150=0.【点评】本题主要考查一元二次方程的应用,变形后的面积是原来的2倍,列出方程即可.15.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3.点D是BC边上的一动点(不与点B、C重合),过点D作D E⊥BC交AB于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处.当△AEF为直角三角形时,BD的长为1或2 .【考点】翻折变换(折叠问题);含30度角的直角三角形;勾股定理.【分析】首先由在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,即可求得AC的长、∠AEF与∠BAC的度数,然后分别从从∠AFE=90°与∠EAF=90°去分析求解,又由折叠的性质与三角函数的知识,即可求得CF的长,继而求得答案.【解答】解:根据题意得:∠EFB=∠B=30°,DF=BD,EF=EB,∵DE⊥BC,∴∠FED=90°﹣∠EFD=60°,∠BEF=2∠FED=120°,∴∠AEF=180°﹣∠BEF=60°,∵在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,∴AC=BC•tan∠B=3× = ,∠BAC=60°,如图①若∠AFE=90°,∵在Rt△ABC中,∠ACB=90°,∴∠EFD+∠AFC=∠FAC+∠AFC=90°,∴∠FAC=∠EFD=30°,∴CF=AC•tan∠FAC= × =1,∴BD=DF= =1;如图②若∠EAF=90°,则∠FAC=90°﹣∠BAC=30°,∴CF=AC•tan∠FAC= × =1,∴BD=DF= =2,∴△AEF为直角三角形时,BD的长为:1或2.【点评】此题考查了直角三角形的性质、折叠的性质以及特殊角的三角函数问题.此题难度适中,注意数形结合思想与分类讨论思想的应用.三、解答题(共75分)16.计算:4cos30°﹣| ﹣2|+( )0﹣ +(﹣ )﹣2.【考点】特殊角的三角函数值;绝对值;零指数幂;负整数指数幂;二次根式的性质与化简.【分析】按照实数的运算法则依次计算:cos30°= ,| ﹣2|= ,( )0=1, =3 ,(﹣ )﹣2=9.【解答】解:4cos30°﹣| ﹣2|+( )0﹣ +(﹣ )﹣2== (5分)=8.(6分)【点评】本题重点考查了实数的基本运算能力.涉及知识:负指数为正指数的倒数;任何非0数的0次幂等于1;绝对值的化简;二次根式的化简.17.用配方法解方程:x2+4x﹣1=0.【考点】解一元二次方程-配方法.【分析】方程变形后,利用配方法求出解即可.【解答】解:方程变形得:x2+4x=1,配方得:x2+4x+4=5,即(x+2)2=5,开方得:x+2=± ,解得:x1=﹣2+ ,x2=﹣2﹣ .【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.18.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB 的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.【考点】相似三角形的判定;三角形中位线定理;梯形.【分析】(1)利用平行线的性质可证明△CDF∽△BGF.(2)根据点F是BC的中点这一已知条件,可得△CDF≌△BGF,则CD=BG,只要求出BG的长即可解题.【解答】(1)证明:∵梯形ABCD,AB∥CD,∴∠CDF=∠G,∠DCF=∠GBF,(2分)∴△CDF∽△BGF.(2)解:由(1)△CDF∽△BGF,又∵F是BC的中点,BF=FC,∴△CDF≌△BGF,∴DF=GF,CD=BG,(6分)∵AB∥DC∥EF,F为BC中点,∴E为AD中点,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×4﹣6=2,∴CD=BG=2cm.(8分)【点评】本题主要考查了相似三角形的判定定理及性质,全等三角形的判定及线段的等量代换,比较复杂.19.(10分)(2016秋•唐河县期末)如图,一条抛物线经过(﹣2,5),(0,﹣3)和(1,﹣4)三点.(1)求此抛物线的函数解析式.(2)假如这条抛物线与x轴交于点A,B,与y轴交于点C,试判断△OCB的形状.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】(1)待定系数法求解可得;(2)分别求出抛物线与坐标轴的交点即可得出答案.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,将(﹣2,5),(0,﹣3)和(1,﹣4)三点代入,得:,解得:,∴抛物线的解析式为y=x2﹣2x﹣3;(2)令y=0,即x2﹣2x﹣3=0,解得:x=﹣1或x=3,∴抛物线与x轴的两个交点为(﹣1,0)、(3,0),∵c=﹣3,∴抛物线与y轴的交点为(0,﹣3),∴OB=OC,∴△OCB是等腰直角三角形.【点评】本题主要考查待定系数法求二次函数的解析式,在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.20.(10分)(2012•苏州模拟)如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:,且AB=30m,李亮同学在大堤上A点处用高1.5m的测量仪测出高压电线杆CD顶端D的仰角为30°,己知地面BC 宽30m,求高压电线杆CD的高度(结果保留三个有效数字,≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【分析】由i的值求得大堤的高度AE,点A到点B的水平距离BE,从而求得MN的长度,由仰角求得DN的高度,从而由DN,AM,h求得高度CD.【解答】解:延长MA交直线BC于点E,∵AB=30,i=1:,∴AE=15,BE=15 ,∴MN=BC+BE=30+15 ,又∵仰角为30°,∴DN= = =10 +15,CD=DN+NC=DN+MA+AE=10+15+15+1.5≈17.32+31.5≈48.8(m).【点评】本题考查了直角三角形在坡度上的应用,由i的值求得大堤的高度和点A到点B的水平距离,求得MN,由仰角求得DN高度,进而求得总高度.21.(10分)(2013•闸北区二模)为迎接“五一”节的到来,某食品连锁店对某种商品进行了跟踪调查,发现每天它的销售价与销售量之间有如下关系:每千克售价(元) 25 24 23 (15)每天销售量(千克) 30 32 34 (50)如果单价从最高25元/千克下调到x元/千克时,销售量为y千克,已知y与x之间的函数关系是一次函数:(1)求y与x之间的函数解析式;(不写定义域)(2)若该种商品成本价是15元/千克,为使“五一”节这天该商品的销售总利润是200元,那么这一天每千克的销售价应定为多少元?【考点】一元二次方程的应用;一次函数的应用.【分析】(1)利用表格中的数据得到两个变量的对应值,然后利用待定系数法确定一次函数的解析式即可;(2)设这一天每千克的销售价应定为x元,利用总利润是200元得到一元二次方程求解即可.【解答】解:(1)设y=kx+b (k≠0),将(25,30)(24,32)代入得:…(1分)解得:,∴y=﹣2x+80.(2)设这一天每千克的销售价应定为x元,根据题意得:(x﹣15)(﹣2x+80)=200,x2﹣55x+700=0,∴x1=20,x2=35.(其中,x=35不合题意,舍去)答:这一天每千克的销售价应定为20元.【点评】本题考查了一元二次方程及一次函数的应用,列方程及函数关系式的关键是找到等量关系.22.(11分)(2014•北京)阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图 2).请回答:∠ACE的度数为75°,AC的长为 3 .参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.【考点】相似三角形的判定与性质;勾股定理;解直角三角形.【分析】根据相似的三角形的判定与性质,可得=2,根据等腰三角形的判定,可得AE=AC,根据正切函数,可得DF的长,根据直角三角形的性质,可得AB与DF的关系,根据勾股定理,可得答案.【解答】解:∠ABC+∠ACB=∠ECD+∠ACB=∠ACE=180°﹣75°﹣30°=75°,∠E=75°,BD=2DC,∴AD=2DE,AE=AD+DE=3,∴AC=AE=3,∠ACE=75°,AC的长为3.过点D作DF⊥AC于点F.∵∠BAC=90°=∠DFA,∴AB∥DF,∴△ABE∽△FDE,∴ =2,∴EF=1,AB=2DF.在△ACD中,∠CAD=30°,∠ADC=75°,∴∠ACD=75°,AC=AD.∵DF⊥AC,∴∠AFD=90°,在△AFD中,AF=2+1=3,∠FAD=30°,∴DF=AFtan30°= ,AD=2DF=2 .∴AC=AD=2 ,AB=2DF=2 .∴BC= =2 .【点评】本题考查了相似三角形的判定与性质,利用了相似三角形的判定与性质,直角三角形的性质,勾股定理.23.(11分)(2016秋•唐河县期末)如图,在平面直角坐标系中,点A的坐标为(0,2),点P(t,0)在x轴上,B是线段PA的中点.将线段PB绕着点P顺时针方向旋转90°,得到线段PC,连结OB、BC.(1)判断△PBC的形状,并简要说明理由;(2)当t>0时,试问:以P、O、B、C为顶点的四边形能否为平行四边形?若能,求出相应的t的值?若不能,请说明理由;(3)当t为何值时,△AOP与△APC相似?【考点】相似形综合题.【分析】(1)根据旋转的现在得出PB=PC,再根据B是线段PA的中点,得出∠BPC=90°,从而得出△PBC是等腰直角三角形.(2)根据∠OBP=∠BPC=90°,得出OB∥PC,再根据B是PA的中点,得出四边形POBC是平行四边形,当OB⊥BP时,得出OP2=2OB2,即t2=2( t2+1),求出符合题意的t的值,即可得出答案;(3)根据题意得出∠AOP=∠APC=90°,再分两种情况讨论,当 = = 时和 = = 时,得出△AOP∽△APC和△AOP∽△CPA,分别求出t的值即可.【解答】解:(1)△PBC是等腰直角三角形,理由如下:∵线段PB绕着点P顺时针方向旋转90°,得到线段PC,∴PB=PC,∵B是线段PA的中点,∴∠BPC=90°,∴△PBC是等腰直角三角形.(2)当OB⊥BP时,以P、O、B、C为顶点的四边形为平行四边形.∵∠OBP=∠BPC=90°,∴OB∥PC,∵B是PA的中点,∴OB= AP=BP=PC,∴四边形POBC是平行四边形,当OB⊥BP时,有OP= OB,即OP2=2OB2,∴t2=2( t2+1),∴t1=2,t2=﹣2(不合题意),∴当t=2时,以P、O、B、C为顶点的四边形为平行四边形.(3)由题意可知,∠AOP=∠APC=90°,当 = = 时,△AOP∽△APC,此时OP= OA=1,∴t=±1,当 = = 时,△AOP∽△CPA,此时OP=2OA=4,∴t=±4,∴当t=±1或±4时,△AOP与△CPA相似.【点评】此题考查了相似形的综合,用到的知识点是旋转的性质、平行四边形的判定,相似三角形的判定与性质,注意分情况讨论,不要漏解.。
2017-2018学年度上学期期末考试九年级数学试卷(含答案)
2017~2018学年度上学期期末考试九年级数学试卷一、选择题(每小题3分,共30分)1.下列方程中,关于x 的一元二次方程是( ) A .20ax bx c ++= B .212x x += C .2221x x x +=+ D .220x +=2.若α、β为方程22510x x --=的两个实数根,则2235ααββ++的值为( ) A .﹣13B .12C .14D .153.袋内装有标号分别为1、2、3、4的4个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为( ) A .14B .516C .716 D .124.由所有到已知点O 的距离大于或等于3,并且小于或等于5的点组成的图形的面积为( )A .4πB .9πC .16πD .25π 5.已知函数2(3)21y k x x =-++的图象与x 轴有交点,则k 的取值范围是( ) A .k ≤4且k ≠3B .k <4且k ≠3C .k <4D .k ≤46.如图,矩形OABC 中,A(1,0),C (0,2),双曲线(02)ky k x=<<的图象分别交AB,CB 于点E ,F,连接OE ,OF,EF,S △OEF =2S △BEF ,则k 值为( )A .23B .1C .43 D .27.如图,在Rt △ABC 中,∠C=90°,AC=6 cm ,BC=2 cm,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动.若点P ,Q 均以1 cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ 的最小值是( ) A .20 cm B .18 cm C .25cm D .32cm8.如图,抛物线2(0)y ax bx c a =++≠的对称轴为直线2x =-,与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示.则下列结论:①40a b -=;②0c <;③30a c -+>;④242a b at bt ->+(t 为实数);⑤点19)2y -(,,25)2y -(,,31)2y -(,是该抛物线上的点,则y 1<y 2<y 3,正确的个数有( )A .4个B .3个C .2个D .1个第6题图 第7题图 第8题图9.如图,在平面直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P是直线3=-+y x 上的一个动点,点P作⊙A的切线,切点为Q,则切线长PQ的最小值是()A.3B.5C.7D.310.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC,其中正确的是()A.①②③④ B.②③C.①②④D.①③④第9题图第10题图二、填空题(每小题3分,共18分)11.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是____.12.若抛物线2=-++中不管p取何值时都通过定点,则定点坐标为.241y x px p13.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为.14.如图,在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,2),∠OCB=60°,∠COB=45°,则OC=.15.如图.在等边△ABC中,AC=8,点D、E、F分别在三边AB、BC、AC上,且AF=2,FD⊥DE,∠DFE=60°,则AD的长为.第13题图第14题图第15题图16.在平面直角坐标系中,点C沿着某条路径运动,以点C为旋转中心,将点A(0,4)逆时针旋转90°到点B(m,1),若﹣5≤m≤5,则点C运动的路径长为.三、解答题(17-20题每题8分,21、22题每题9分,23题10分,24题12分)17.解方程:(1)5x(x+1)=2(x+1);(2)x2﹣3x﹣1=0.18.关于x的方程22(21)230x k x k k--+-+=有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2,存不存在这样的实数k,使得125x x-=?若存在,求出这样的k值;若不存在,说明理由.19.阅读材料,回答问题:材料:题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少有两辆车向左转的概率.题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.问题:(1)事件“至少有两辆车向左转"相当于“袋中摸球"的试验中的什么事件?(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案.(3)请直接写出题2的结果.20.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.21.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.22.一块三角形废料如图所示,∠A=30°,∠C=90°,AB=12.用这块废料剪出一个矩形CDEF,其中,点D、E、F分别在AC、AB、BC上.要使剪出的矩形CDEF面积最大,点E应选在何处?23.某公司产销一种产品,为保证质量,每个周期产销商品件数控制在100以内,产销成本C是商品件数x的二次函数,调查数据如表:产销商品件数(x/件)10 20 30产销成本(C/元) 120 180 260商品的销售价格(单位:元)为13510P x=-(每个周期的产销利润=P•x﹣C)(1)直接写出产销成本C与商品件数x的函数关系式(不要求写出自变量的取值范围)(2)该公司每个周期产销多少件商品时,利润达到220元?(3)求该公司每个周期的产销利润的最大值.24.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线2y x bx c=++经过A,B两点.(1)求抛物线的解析式;(2)点E是直角△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E、F的坐标;(3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.2017~2018学年度上学期期末考试九年级数学试卷参考答案与试题解析一、选择题(共10小题)1.下列方程中,关于x 的一元二次方程是( )A .20ax bx c ++=B .212x x+= C .2221x x x +=+ D .220x += 【分析】只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.【解答】解:A 、当a =0时,边上一元二次方程,不符合题意; B 、为分式方程,不符合题意;C 、不是关于x 的一元二次方程,不符合题意;D 、只含有一个未知数,未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意; 故选D【点评】本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为0.2.若α、β为方程22510x x --=的两个实数根,则2235ααββ++的值为( )A .﹣13B .12C .14D .15【分析】根据一元二次方程解的定义得到22510αα--=,即22=51αα+,则2235ααββ++可表示为531αβαβ+++(),再根据根与系数的关系得到5=2αβ+,1=2αβ-,然后利用整体代入的方法计算.【解答】解:∵α为22510x x --=的实数根, ∴22510αα--=,即22=51αα+,∴2235=5135=531ααββααββαβαβ++++++++(), ∵α、β为方程22510x x --=的两个实数根,∴5=2αβ+,1=2αβ-,∴251235=531=1222ααββ++⨯+⨯-+(). 故选B .【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程200ax bx c a ++=≠()的两根时,12=b x x a +-,12=cx x a .也考查了一元二次方程解的定义.3.袋内装有标号分别为1、2、3、4的4个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为( )A .14B .516C .716D .12【分析】画树状图展示所有16种等可能的结果数,再找出所成的两位数是3的倍数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有16种等可能的结果数,其中所成的两位数是3的倍数的结果数为5,所以成的两位数是3的倍数的概率=516.故选B .【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.4.由所有到已知点O 的距离大于或等于3,并且小于或等于5的点组成的图形的面积为( ) A .4π B .9π C .16π D .25π【分析】根据题意、利用圆的面积公式计算即可.【解答】解:由所有到已知点O 的距离大于或等于3,并且小于或等于5的点组成的图形的面积是以5为半径的圆与以3为半径的圆组成的圆环的面积,即π×52﹣π×32=16π, 故选:C .【点评】本题考查的是圆的认识、圆的面积的计算,掌握圆的面积公式是解题的关键.5.已知函数2(3)21y k x x =-++的图象与x 轴有交点,则k 的取值范围是( )A .k ≤4且k ≠3B .k <4且k ≠3C .k <4D .k ≤4【分析】由于不知道函数是一次函数还是二次函数,需对k 进行讨论.当k =3时,函数=21y x +是一次函数,它的图象与x 轴有一个交点;当k ≠3,函数2(3)21y k x x =-++是二次函数,当Δ≥0时,二次函数与x 轴都有交点,解Δ≥0,求出k 的范围.【解答】解:当k =3时,函数=21y x +是一次函数,它的图象与x 轴有一个交点;当k ≠3,函数2(3)21y k x x =-++是二次函数,当△=22﹣4(k ﹣3)≥0,即k ≤4时,函数的图象与x 轴有交点. 综上k 的取值范围是k ≤4. 故选D .【点评】本题考察了二次函数、一次函数的图象与x 轴的交点、一次不等式的解法.解决本题的关键是对k 的值分类讨论.6.如图,矩形OABC 中,A (1,0),C (0,2),双曲线(02)ky k x=<<的图象分别交AB ,CB于点E ,F,连接OE,OF ,EF ,S △OEF =2S △BEF ,则k 值为( )A .23B .1C .43D .2【分析】设E 点坐标为(1,m ),则F 点坐标为(2m,2),根据三角形面积公式得到S △BEF =(1﹣2m )(2﹣m ),根据反比例函数k 的几何意义得到S △OFC =S △OAE =12m ,由于S △OEF =S 矩形ABCO ﹣S △OCF﹣S △OEA ﹣S △BEF ,列方程即可得到结论.【解答】解:∵四边形OABC 是矩形,BA ⊥OA ,A (1,0),∴设E 点坐标为(1,m ),则F 点坐标为(2m,2), 则S △BEF =(1﹣2m)(2﹣m ),S △OFC =S △OAE =m , ∴S △OEF =S 矩形ABCO ﹣S △OCF ﹣S △OEA ﹣S △BEF =2﹣12m ﹣12m ﹣(1﹣2m)(2﹣m ),∵S △OEF =2S △BEF ,∴2﹣12m ﹣12m ﹣(1﹣2m )(2﹣m)=2×(1﹣2m )(2﹣m ),整理得232204m m -+-=(),解得m 1=2(舍去),m 2=23,∴E 点坐标为(1,23),∴k =23. 故选A .【点评】本题考查了反比例函数k 的几何意义和矩形的性质;会利用面积的和差计算不规则图形的面积.7.如图,在Rt △ABC 中,∠C=90°,AC=6 cm ,BC=2 cm ,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动.若点P ,Q 均以1 cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( )A .20 cmB .18 cmC .25cmD .32cm【分析】根据已知条件得到CP=6﹣t ,得到22222(6)2(3)18PQ PC CQ t t t +-+++于是得到结论.【解答】解:∵AP=CQ=t , ∴CP=6﹣t ,∴22222(6)2(3)18PQ PC CQ t t t =+-+++ ∵0≤t ≤2,∴当t =2时,PQ 的值最小, ∴线段PQ 的最小值是25故选C .【点评】本题考查了二次函数的最值,勾股定理,正确的理解题意是解题的关键.8.如图,抛物线2(0)y ax bx c a =++≠的对称轴为直线2x =-,与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示.则下列结论:①40a b -=;②0c <;③30a c -+>;④242a b at bt ->+(t 为实数);⑤点19)2y -(,,25)2y -(,,31)2y -(,是该抛物线上的点,则y 1<y 2<y 3,正确的个数有( )A .4个B .3个C .2个D .1个【分析】根据抛物线的对称轴可判断①,由抛物线与x 轴的交点及抛物线的对称性可判断②,由1x =-时y >0可判断③,由2x =-时函数取得最大值可判断④,根据抛物线的开口向下且对称轴为直线2x =-知图象上离对称轴水平距离越小函数值越大,可判断⑤.【解答】解:∵抛物线的对称轴为直线22bx a=-=-,∴40a b -=,所以①正确;∵与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间, ∴抛物线与y 轴的交点在y 轴的负半轴,即c <0,故②正确; ∵由②知,1x =-时y >0,且4b a =,∴430a b c a a c a c -+=-+=-+>,所以③正确; 由函数图象知当2x =-时,函数取得最大值,∴242a b c at bt c -+≥++,即242a b at bt -≥+(t 为实数),故④错误;∵抛物线的开口向下,且对称轴为直线x =﹣2, ∴抛物线上离对称轴水平距离越小,函数值越大, ∴y 1<y 3<y 2,故⑤错误; 故选:B .【点评】本题考查了二次函数与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.9.如图,在平面直角坐标系中,⊙A 的圆心A 的坐标为(﹣1,0),半径为1,点P 是直线3y x =-+上的一个动点,点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是( ) A .3 B .5 C .7 D .3【分析】连接AP,PQ,当AP 最小时,PQ 最小,当AP ⊥直线3y x =-+时,PQ 最小,根据相似三角形的性质得到AP ,根据勾股定理即可得到结论.【解答】解:如图,作AP ⊥直线3y x =-+,垂足为P ,作⊙A 的切线PQ ,切点为Q ,当AP ⊥BC 时,此时切线长PQ 最小,∵A 的坐标为(﹣1,0),设直线与x 轴,y 轴分别交于B ,C , ∴B (0,3),C (3,0), ∴OB=3,AC=4,∴BC=32,在△APC 与△BOC 中, ∵∠APC=∠BOC=90°,∠ACP=∠OCB , ∴△APC ∽△OBC , ∴AP AC OB BC =, ∴AP=22,∴227PQ AP AQ =-=,故选C .【点评】本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键,用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.10.如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F,连接BD 、DP ,BD 与CF 相交于点H ,给出下列结论:①BE=2AE ;②△DFP ∽△BPH ;③△PFD ∽△PDB ;④DP 2=PH•PC ,其中正确的是( )A .①②③④B .②③C .①②④D .①③④【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论. 【解答】解:∵△BPC 是等边三角形, ∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°, 在正方形ABCD 中,∵AB=BC=CD ,∠A=∠ADC=∠BCD=90° ∴∠ABE=∠DCF=30°, ∴BE=2AE ;故①正确; ∵PC=CD ,∠PCD=30°, ∴∠PDC=75°, ∴∠FDP=15°, ∵∠DBA=45°, ∴∠PBD=15°, ∴∠FDP=∠PBD ,∵∠DFP=∠BPC=60°,∴△DFP ∽△BPH ;故②正确; ∵∠FDP=∠PBD=15°,∠ADB=45°, ∴∠PDB=30°,而∠DFP=60°, ∴∠PFD ≠∠PDB ,∴△PFD 与△PDB 不会相似;故③错误; ∵∠PDH=∠PCD=30°,∠DPH=∠DPC , ∴△DPH ∽△CPD ,∴DP PHPC DP=, ∴DP 2=PH•PC,故④正确; 故选C .【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.二.填空题(共6小题) 11.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是 50(1﹣x )2=32 .【分析】根据某药品经过连续两次降价,销售单价由原来50元降到32元,平均每次降价的百分率为x ,可以列出相应的方程即可.【解答】解:由题意可得, 50(1﹣x )2=32,故答案为:50(1﹣x )2=32.【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.12.若抛物线2241y x px p =-++中不管p 取何值时都通过定点,则定点坐标为(4,33).【分析】把含p 的项合并,只有当p 的系数为0时,不管p 取何值抛物线都通过定点,可求x 、y 的对应值,确定定点坐标.【解答】解:2241y x px p =-++可化为22(4)1y x p x =--+, 分析可得:当x =4时,y =33;且与p 的取值无关; 故不管p 取何值时都通过定点(4,33).【点评】本题考查二次函数图象过定点问题,解决此类问题:首先根据题意,化简函数式,提出未知的常数,化简后再根据具体情况判断.13.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC 上,使得△ADP 与△ABC 相似,则线段AP 的长为4或254.【分析】先根据勾股定理求出AB 的长,再分△ADP ∽△ABC 与△ADP ∽△ACB 两种情况进行讨论即可.【解答】解:∵在△ABC 中,∠C=90°,AC=8,BC=6,∴2286=10AB =+. ∵D 是边AB 的中点, ∴AD=5.当△ADP ∽△ABC 时,AD AP AB AC =,即5108AP=,解得AP=4; 当△ADP ∽△ACB 时,AD AP AC AB =,即5810AP =,解得AP=254. 故答案为:4或254.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解. 14.如图,在平面直角坐标系中,△OCB 的外接圆与y 轴交于A(0,2),∠OCB=60°,∠COB=45°,则OC= 13+.【分析】连接AB ,由圆周角定理知AB 必过圆心M ,Rt △ABO 中,易知∠BAO=∠OCB=60°,已知OA=2,即可求得OB 的长;过B 作BD ⊥OC ,通过解直角三角形即可求得OD 、BD 、CD 的长,进而由OC=OD+CD 求出OC 的长.【解答】解:连接AB,则AB 为⊙M 的直径. Rt △ABO 中,∠BAO=∠OCB=60°,∴332=6OB OA ==⨯. 过B 作BD ⊥OC 于D . Rt △OBD 中,∠COB=45°, 则2=32OD BD OB ==. Rt △BCD 中,∠OCB=60°,则3=13CD BD =. ∴OC=CD+OD=13+.故答案为:13+.【点评】此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.15.如图.在等边△ABC 中,AC=8,点D 、E 、F 分别在三边AB 、BC 、AC 上,且AF=2,FD ⊥DE ,∠DFE=60°,则AD 的长为 3 .【分析】根据三角形的内角和定理列式求出∠2=∠3,再根据等边三角形的三个角都是60°求出∠A=∠C,然后根据两组角对应相等的两个三角形相似求出△ADF和△CFE相似,根据相似三角形对应边成比例可得AD DFCF EF=,再根据直角三角形30°角所对的直角边等于斜边的一半可得12DF EF=,然后代入数据进行计算即可得解.【解答】解:∵∠DFE=60°,∴∠1+∠2+60°=180°,∴∠2=120°﹣∠1,在等边△ABC中,∠A=∠C=60°,∴∠A+∠1+∠3=180°,∴∠3=180°﹣∠A﹣∠1=120°﹣∠1,∴∠2=∠3,又∵∠A=∠C,∴△ADF∽△CFE,∴AD DF CF EF=,∵FD⊥DE,∠DFE=60°,∴∠DEF=90°﹣60°=30°,∴12DF EF=,又∵AF=2,AC=8,∴CF=8﹣2=6,∴1 62 AD=,解得AD=3.故答案为:3.【点评】本题考查了相似三角形的判定与性质,等边三角形的性质,直角三角形30°角所对的直角边等于斜边的一半,根据平角等于180°和三角形的内角和定理求出∠2=∠3是解题的关键,也是本题的难点.16.在平面直角坐标系中,点C沿着某条路径运动,以点C为旋转中心,将点A(0,4)逆时针旋转90°到点B(m,1),若﹣5≤m≤5,则点C运动的路径长为52.【分析】在平面直角坐标系中,在y轴上取点P(0,1),过P作直线l∥x轴,作CM⊥OA于M,作CN⊥l于N,构造Rt△BCN≌Rt△ACM,得出CN=CM,若连接CP,则点C在∠BPO的平分线上,进而得出动点C在直线CP上运动;再分两种情况讨论C的路径端点坐标:①当m=﹣5时,②当m=5时,分别求得C(﹣1,0)和C1(4,5),而C的运动路径长就是CC1的长,最后由勾股定理可得CC1的长度.【解答】解:如图1所示,在y 轴上取点P (0,1),过P 作直线l ∥x 轴, ∵B (m ,1), ∴B 在直线l 上,∵C 为旋转中心,旋转角为90°, ∴BC=AC ,∠ACB=90°, ∵∠APB=90°,∴∠1=∠2,作CM ⊥OA 于M ,作CN ⊥l 于N,则Rt △BCN ≌Rt △ACM ,∴CN=CM ,若连接CP ,则点C 在∠BPO 的平分线上, ∴动点C 在直线CP 上运动;如图2所示,∵B(m ,1)且﹣5≤m ≤5, ∴分两种情况讨论C 的路径端点坐标, ①当m=﹣5时,B (﹣5,1),PB=5, 作CM ⊥y 轴于M ,作CN ⊥l 于N , 同理可得△BCN ≌△ACM , ∴CM=CN,BN=AM , 可设PN=PM=CN=CM=a , ∵P (0,1),A (0,4), ∴AP=3,AM=BN=3+a , ∴PB=a +3+a =5,∴a =1, ∴C (﹣1,0);②当m =5时,B (5,1),如图2中的B 1,此时的动点C 是图2中的C 1, 同理可得C 1(4,5),∴C 的运动路径长就是CC 1的长,由勾股定理可得,221[4(1)]55052CC =--+==.【点评】本题主要考查了旋转图形的坐标、全等三角形的判定与性质以及轨迹的运用,解题时注意:图形或点旋转之后要结合旋转的角度和图形的特殊性质,求出旋转后的点的坐标.三、解答题(共8小题) 17.解方程:(1)5x (x +1)=2(x +1);(2)x 2﹣3x ﹣1=0. 【分析】(1)先移项得到5x (x +1)﹣2(x +1)=0,然后利用因式分解法解方程; (2)利用求根公式法解方程. 【解答】解:(1)5x (x +1)﹣2(x +1)=0, (x +1)(5x ﹣2)=0 x +1=0或5x ﹣2=0,所以x 1=﹣1,x 2=25;(2)△=(﹣3)2﹣4×(﹣1)=13,31321x ±=⨯, 所以13132x +=,23132x -=.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了公式法解一元二次方程.18.关于x 的方程22(21)230x k x k k --+-+=有两个不相等的实数根. (1)求实数k 的取值范围;(2)设方程的两个实数根分别为x 1、x 2,存不存在这样的实数k ,使得12x x -=?若存在,求出这样的k 值;若不存在,说明理由.【分析】(1)由方程有两个不相等的实数根知△>0,列出关于k 的不等式求解可得;(2)由韦达定理知1221x x k +=-,221223(1)20x x k k k =-+=-+>,将原式两边平方后把12x x +,12x x 代入得到关于k 的方程,求解可得.【解答】解:(1)∵方程有两个不相等的实数根, ∴22=[(21)]4(23)4110k k k k ∆----+=->,解得:114k >;(2)存在,1221x x k +=-,221223(1)20x x k k k =-+=-+>∴将12x x -=两边平方可得22112225x x x x -+=,即21212()45x x x x +-=, 代入得:22(21)4(23)5k k k ---+=,4k ﹣11=5, 解得:k =4.【点评】本题主要考查根与系数的关系及根的判别式,熟练掌握判别式的值与方程的根之间的关系及韦达定理是解题的关键.19.阅读材料,回答问题:材料:题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少要两辆车向左转的概率.题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.问题:(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件? (2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案. (3)请直接写出题2的结果.【分析】题1:因为此题需要三步完成,所以画出树状图求解即可,注意要做到不重不漏;题2:根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率;问题:(1)绿球代表左转,所以为:至少摸出两个绿球; (2)写出方案;(3)直接写结果即可.【解答】解:题1:画树状图得:∴一共有27种等可能的情况;至少有两辆车向左转的有7种:直左左,右左左,左直左,左右左,左左直,左左右,左左左,则至少有两辆车向左转的概率为:727.题2:列表得:锁1 锁2钥匙1 (锁1,钥匙1)(锁2,钥匙1)钥匙2 (锁1,钥匙2) (锁2,钥匙2)钥匙3 (锁1,钥匙3)(锁2,钥匙3)所有等可能的情况有6种,其中随机取出一把钥匙开任意一把锁,一次打开锁的2种,则2163P==.问题:(1)至少摸出两个绿球;(2)一口袋中放红色和黑色的小球各一个,分别表示不同的锁;另一口袋中放红色、黑色和绿色的小球各一个,分别表示不同的钥匙;其中同颜色的球表示一套锁和钥匙.“随机取出一把钥匙开任意一把锁,一次打开锁的概率”,相当于“从两个口袋中各随机摸出一个球,两球颜色一样的概率”;(3)13.【点评】此题考查了树状图法或列表法求概率以及利用类比法解决问题,解题的关键是根据题意画出树状图或表格,再由概率=所求情况数与总情况数之比求解.20.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.【分析】先根据相似三角形的判定得出△ABC∽△ANM,再利用相似三角形的性质解答即可.【解答】解:在△ABC与△AMN中,305549AC AB ==,1000518009AM AN ==,∴AC AMAB AN =,又∵∠A=∠A , ∴△ABC ∽△ANM ,∴BC AC MN AM =,即45301000MN =, 解得:MN=1500米,答:M 、N 两点之间的直线距离是1500米;【点评】此题考查了相似三角形的判定与性质;熟记相似三角形的判定方法是解决问题的关键.21.如图,△ABD 是⊙O 的内接三角形,E 是弦BD 的中点,点C 是⊙O 外一点且∠DBC=∠A,连接OE 延长与圆相交于点F ,与BC 相交于点C .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径为6,BC=8,求弦BD 的长.【分析】(1)连接OB,由垂径定理的推论得出BE=DE,OE ⊥BD ,=12,由圆周角定理得出∠BOE=∠A ,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC ,由△OBC 的面积求出BE,即可得出弦BD 的长. 【解答】(1)证明:连接OB,如图所示: ∵E 是弦BD 的中点,∴BE=DE,OE ⊥BD,=12,∴∠BOE=∠A ,∠OBE+∠BOE=90°, ∵∠DBC=∠A , ∴∠BOE=∠DBC, ∴∠OBE+∠DBC=90°, ∴∠OBC=90°, 即BC ⊥OB ,∴BC 是⊙O 的切线;(2)解:∵OB=6,BC=8,BC ⊥OB ,∴2210OC OB BC =+=,∵△OBC 的面积=12OC•BE=12OB•BC , ∴684.810OB BC BE OC ⨯===,∴BD=2BE=9.6,即弦BD 的长为9.6.【点评】本题考查了切线的判定、垂径定理的推论、圆周角定理、勾股定理、三角形面积的计算;熟练掌握垂径定理的推论和圆周角定理是解决问题的关键.22.一块三角形废料如图所示,∠A=30°,∠C=90°,AB=12.用这块废料剪出一个矩形CDEF ,其中,点D 、E 、F 分别在AC 、AB 、BC 上.要使剪出的矩形CDEF 面积最大,点E 应选在何处?【分析】首先在Rt △ABC 中利用∠A=30°、AB=12,求得BC=6、AC 的长,然后根据四边形CDEF 是矩形得到EF ∥AC 从而得到△BEF ∽△BAC ,设AE=x ,则BE=12﹣x .利用相似三角形成比例表示出EF 、DE ,然后表示出有关x 的二次函数,然后求二次函数的最值即可.【解答】解:在Rt △ABC 中,∠A=30°,AB=12,∴BC=6,AC=AB•cos30°=31263= ∵四边形CDEF 是矩形, ∴EF ∥AC .∴△BEF ∽△BAC .∴EF BEAC BA=. 设AE=x ,则BE=12﹣x . ∴63(12)3)x EF x --.在Rt △ADE 中,1122DE AE x ==.矩形CDEF 的面积S=DE•EF=2133(12)=33(012)22x x x x -+<<.当336232()bx a=-==⨯-时,S 有最大值.∴点E 应选在AB 的中点处.【点评】本题考查了相似三角形的应用及二次函数的应用,解题的关键是从几何问题中整理出二次函数模型,并利用二次函数的知识求最值.23.某公司产销一种产品,为保证质量,每个周期产销商品件数控制在100以内,产销成本C 是商品件数x 的二次函数,调查数据如表:产销商品件数(x /件) 10 20 30 产销成本(C/元) 120 180 260商品的销售价格(单位:元)为13510P x =-(每个周期的产销利润=P•x ﹣C ) (1)直接写出产销成本C 与商品件数x 的函数关系式(不要求写出自变量的取值范围) (2)该公司每个周期产销多少件商品时,利润达到220元? (3)求该公司每个周期的产销利润的最大值.【分析】(1)根据题意设出C 与x 的函数关系式,然后根据表格中的数据即可解答本题;(2)根据题意可以列出相应的方程,从而可以解答本题;(3)根据题意可以得到利润与销售价格的关系式,然后化为顶点式即可解答本题. 【解答】解:(1)设2C ax bx c =++,则 2221010=1202020=1803030=260a b c a b c a b c ⎧⨯+⨯+⎪⨯+⨯+⎨⎪⨯+⨯+⎩,解得,=0.1=3=80a b c ⎧⎪⎨⎪⎩,即产销成本C 与商品件数x 的函数关系式是:2138010C x x =++; (2)依题意,得211(35)(380)2201010x x x x --++=; 解得,x 1=10,x 2=150,∵每个周期产销商品件数控制在100以内, ∴x =10.即该公司每个周期产销10件商品时,利润达到220元; (3)设每个周期的产销利润为y 元,∵2221111(35)(380)3280(80)1200101055y x x x x x x x =--++=-+-=--+, ∴当x =80时,函数有最大值,此时y =1200,即当每个周期产销80件商品时,产销利润最大,最大值为1200 元.【点评】本题考查二次函数的应用、一元二次方程的应用,解题的关键是明确题意,找出所求问题需要的条件.24.如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线2y x bx c =++经过A ,B 两点.(1)求抛物线的解析式;(2)点E 是直角△ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的垂线交抛物线于点F ,当线段EF 的长度最大时,求点E 、F 的坐标;(3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP 是以EF 为直角边的直角三角形?若存在,请求出所有点P 的坐标;若不存在,请说明理由.【分析】(1)根据AC=BC ,求出BC 的长,进而得到点A ,B 的坐标,利用待定系数法即可求得抛物线的解析式;(2)利用待定系数法求出直线AB 的解析式,用含m 的式表示出E,F 的坐标,求出EF 的长度最大时m 的值,即可求得E ,F 的坐标;(3)分两种情况:∠E=90°和∠F=90°,分别得到点P 的纵坐标,将纵坐标代入抛物线解析式,即可求得点P 的值.【解答】解:(1)∵OA=1,OC=4,AC=BC,。
内蒙古霍林郭勒市九年级数学上学期期末考试试题 新人教版
内蒙古霍林郭勒市2016届九年级数学上学期期末考试试题注意事项:本试卷满分120分,考试时间120分钟 Ⅰ卷一、选择题(每题3分,计30分.请将正确选项的标号填在Ⅱ卷相应表格内) 1.下列图形中,是中心对称图形的是( )A .B .C .D . 2.下列事件中,必然发生的为( )A. 我市冬季比秋季的平均气温低B. 走到车站公共汽车正好开过来C. 打开电视机正转播奥运会实况D. 掷一枚均匀硬币正面一定朝上3.平面直角坐标系内点P (-2,3)关于原点对称点的坐标是( )A.(3,-2)B.(2,3)C.(-2,-3)D.(2,-3)4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A .51 B .31 C .85 D .83 5.一元二次方程0)1(=-x x 的解是( )A.0=xB.1=xC. 0=x 或1=xD. 0=x 或1-=x6.将抛物线y=-2x 2向左平移1个单位,然后向上平移3个单位,则所得新抛物线的表达式为( ) A.y=-2(x-1)2+3 B.y=-2(x+1)2+3 C.y=-2(x-1)2-3 D.y=-2(x+1)2-37.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( ) A .1k >- B .1k >-且0k ≠ C .1k < D .1k <8.如图,点A,B,C 都在⊙O 上,∠ABC =40º,则∠AOC 等于( ) A .40 º B. 60 º C. 80 º(第15题)D.100 º9.现有一个圆心角为90°,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为( )A .1cmB .2cmC .3cmD .4cm 10.如图所示,二次函数y=ax 2+bx+c 的图象中,下面四条信息:①b 2﹣4ac >0;②c >1;③2a ﹣b <0;④a+b+c <0,其中错误的有( ) A .1个 B .2个 C .3个 D .4个二、空题(每小题3分,共21分,请将答案填在Ⅱ卷的答题卡上相应的题号后面) 11.二次函数y=3(x-1)2-2的顶点坐标为 .12.已知圆锥的底面半径为3cm ,高为4cm ,则这个圆锥的侧面积为 . 13.在一个不透明的盒子中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同. 从中随机摸出一个球,它是白球的概率为52,则n =___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内蒙古霍林郭勒市2016届九年级数学上学期期末考试试题注意事项:本试卷满分120分,考试时间120分钟 Ⅰ卷一、选择题(每题3分,计30分.请将正确选项的标号填在Ⅱ卷相应表格内) 1.下列图形中,是中心对称图形的是( )A .B .C .D . 2.下列事件中,必然发生的为( )A. 我市冬季比秋季的平均气温低B. 走到车站公共汽车正好开过来C. 打开电视机正转播奥运会实况D. 掷一枚均匀硬币正面一定朝上3.平面直角坐标系内点P (-2,3)关于原点对称点的坐标是( )A.(3,-2)B.(2,3)C.(-2,-3)D.(2,-3)4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A .51 B .31 C .85 D .83 5.一元二次方程0)1(=-x x 的解是( )A.0=xB.1=xC. 0=x 或1=xD. 0=x 或1-=x6.将抛物线y=-2x 2向左平移1个单位,然后向上平移3个单位,则所得新抛物线的表达式为( ) A.y=-2(x-1)2+3 B.y=-2(x+1)2+3 C.y=-2(x-1)2-3 D.y=-2(x+1)2-37.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( ) A .1k >- B .1k >-且0k ≠ C .1k < D .1k <8.如图,点A,B,C 都在⊙O 上,∠ABC =40º,则∠AOC 等于( ) A .40 º B. 60 º C. 80 º(第15题)D.100 º9.现有一个圆心角为90°,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为( )A .1cmB .2cmC .3cmD .4cm 10.如图所示,二次函数y=ax 2+bx+c 的图象中,下面四条信息:①b 2﹣4ac >0;②c >1;③2a ﹣b <0;④a+b+c <0,其中错误的有( ) A .1个 B .2个 C .3个 D .4个二、空题(每小题3分,共21分,请将答案填在Ⅱ卷的答题卡上相应的题号后面) 11.二次函数y=3(x-1)2-2的顶点坐标为 .12.已知圆锥的底面半径为3cm ,高为4cm ,则这个圆锥的侧面积为 . 13.在一个不透明的盒子中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同. 从中随机摸出一个球,它是白球的概率为52,则n =___________。
14已知正六边形的边长为2,则此正六边形的面积是___________。
15.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕B 点按顺时针方向转动一 个角度到A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于 .16.如图,DB 切⊙O 于点A ,∠AOM=66°,则∠17. 如图所示,长为4cm ,宽为3cm 的长方形木板在桌面上做无滑动的翻滚(顺时针方向),木板上点A 位置变化为12A A A →→,由12A A 翻滚到时被桌面上一小木块挡住, 此时长方形木板的边2A C 与桌面成30°角,则点A 翻滚到A 2位置时所经过的路径总长度为 cm.三、解答题(18题8分,19题6分,20题7分,21题8分,22,23,24,题各9分,25题13分)18.(8分)解方程:①x2-4x+3=0 ② x(x-2)+x-2=019.(6分)如图,△ABC三个顶点的坐标分别为A(-2,3)、B(-4,1)C(-1,2):在图中作出△ABC关于原点对称的图形△A1B1C1;并写出A1、B1、C1点的坐标.20.(7分)下图是输水管的切面,阴影部分是有水部分,其中水面AB宽16㎝,水的最大深度是4cm.(1)求输水管的半径.(2)当∠A OB=120°时,求阴影部分的面积.21.(8分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2015年起逐月增加,据统计该商城1月份销售自行车64辆,3月份销售了100辆.(1)求这个运动商城这两个月的月平均增长率是多少?(2)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?22.(9分)甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.23.(9分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.24.(9分)如图,在△ABC中,∠C=90°, AD是∠BAC的平分线,O是AB上一点, 以OA为半径的⊙O经过点D。
(2)若BD=5, DC=3, 求AC的长。
25.(13分)如图①,抛物线22y x x k =-+与x 轴交于A 、B 两点,与y 轴交于点 C (0,3-).[图②为解答备用图](1)k =__________,点A 的坐标为___________,点B 的坐标为__________; (2)设抛物线22y x x k =-+的顶点为M ,求四边形ABMC 的面积;(3)在x 轴下方的抛物线上是否存在一点D ,使四边形ABDC 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由.霍林郭勒市2015-2016学年度第一学期九年级期末教学质量抽测数学答题卡Ⅱ卷注意事项:本试卷满分120分,考试时间120分钟(每题3分,计30分.请将正确的选项的标号填在下面相应表格内)二、填空题(每小题3分,共21分)11、. 12、.13、.14、 .15、 . 16、 .17、 .三、解答题)18.(8分)解方程:①x 2-4x-3=0 ② x(x-2)+x-2=019.(6分)20.(7分)21.(8分)22.(9分)23.(9分)24.(9分)25.(13分)(1)k __________,点A的坐标为___________,点B的坐标为__________;霍林郭勒市2015-2016学年度第一学期九年级期末教学质量抽测 数 学 答 题卡注意事项:本试卷满分120分,考试时间120分钟一、选择题(每题3分,计30分.请将正确的选项的标号填在下面相应表格内)8 二、填空题(每小题3分,共21分)11、 (1,-2) . 12、 15πcm 2.13、 3 .14、 120° . 16、 33° . 17、27. 三、(18题8分,19题6分,20题7分,21题8分,22,23,24,题各9分,25题13分) 18.(8分,每题4分)解方程:①x 2-4x+3=0 ② x(x-2)+x-2=0解得x 1=1,x 2=3 解得x 1=2,x 2=-1关于原点对称图形; 分20.(7分)…………1分………………………2分………………………4分(2)∵r=10cm,∴OD=r-4=10-4=6cm,∴cm2,cm2………………6分cm21.(8分)……………………………………………………………8分22.(9分)的概率为:;………………∵共有9种等可能的结果,两次摸出的球的标号之和为偶数的有∴P(甲胜)=,P(乙胜)=.…………………………………………8分∴P(甲胜)≠P(乙胜),∴这个游戏不公平.………………………9分23.(9分)===8,∴=,∴=5;……=∠(1)证明:如图1,连接OD∵ OA=OD,AD平分∠BAC。
∴∠ODA=∠OAD,∠OAD=∠CAD。
∴∠ODA=∠CAD ………2分∴ OD//AC。
∴∠ODB=∠C=90 。
∴ BC是⊙O的切线。
………………………………………4分解法一:如图2,过D作DE⊥AB于E∴∠AED=∠C=90。
又∵ AD=AD,∠EAD=∠CAD∴△AED≌△ACD.∴ A E=AC, DE=DC=3。
………………………………………6分在Rt△BED中,∠BED =90。
,由勾股定理,得……………………7分设AC=x(x>0), 则AE=x。
在Rt△ABC中,∠C=90。
, BC=BD+DC=8,AB=x+4,由勾股定理,得 x2 +82= (x+4) 2。
解得x=6。
即 AC=6。
………………………………………9分解法二:如图3,延长AC到E,使得AE=AB。
∵ AD=AD, ∠EAD =∠BAD∴△AED≌△ABD. ∴ ED=BD=5。
在Rt△DCE中,∠DCE=90。
, 由勾股定理,得CE=在Rt△ABC中,∠ACB=90。
, BC=BD+DC=8, 由勾股定理,得AC2+BC2= AB 2。
即 AC2+82=(AC+4) 2。
解得 AC=6。
25.(13分)解:(1), A(-1,0), B(3,0).……………………3分(2)如图14(2)抛物线的顶点为M(1,-4),………………4分∴四边形 ABMC的面积=△AOC的面积+△MOC的面积+△MOB的面积=9.……8分(说明:也可过点M作抛物线的对称轴,将四边形ABMC的面积转化为求1个梯形与2个直角三角形面积的和.)…………10分…………………………………………12分……………13分。