2010年中考数学一轮复习课堂练习-二次函数与一元二次方程

合集下载

《二次函数与一元二次方程》专题练习含答案

《二次函数与一元二次方程》专题练习含答案

二次函数与一元二次方程专题复习练习题1.小兰画了一个函数y=x2+ax+b的图象如图,则关于的方程x2+ax+b=0的解是()A.无解B.x=1 C.x=-4 D.x=-1或x=42. 已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是()A.x1=1,x2=-1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3 3. 已知函数y=x2-2x-2的图象如图所示,根据其中提供的信息,可求得使y≥1成立的x的取值范围是()A.-1≤x≤3 B.-3≤x≤1 C.x≥-3 D.x≤-1或x≥34. 如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是()A.-1<x<5 B.x>5 C.x<-1且x>5 D.x<-1或x>55. 根据下列表格中的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)一个根x的范围是()A.3<x<3.23 B.3.23<x<3.24C.3.24<x<3.25 D.3.25<x<3.266. 已知函数y=ax2+bx+c的图象如图所示,则方程ax2+bx+c-3=0的根的情况为()A.有两个不相等实数根B.有两异号实数根C.有两个相等实数根D.无实数根7. 若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,则下列判断正确的是() A.a>0 B.b2-4ac≥0 C.x1<x0<x2D.a(x0-x1)(x0-x2)<08. 一元二次方程ax2+bx+c=0的实数根,就是二次函数y=ax2+bx+c,当________时,自变量x的值,它是二次函数的图象与x轴交点的________.9. 抛物线y=ax2+bx+c与x轴交点个数与一元二次方程ax2+bx+c=0根的判别式的关系:当b2-4ac<0时,抛物线与x轴________交点;当b2-4ac=0时,抛物线与x轴有________个交点;当b2-4ac>0时,抛物线与x轴有________个交点.10. 抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为________.11.若二次函数y=2x2-4x-1的图象与x轴交于A(x1,0),B(x2,0)两点,则1x1+1x2的值为________.12.若二次函数y=-x2+3x+m的图象全部在x轴下方,则m的取值范围为________.13.若抛物线y =12x 2与直线y =x +m 只有一个公共点,则m 的值为________. 14.二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax 2+bx +c =0的两个根; (2)写出不等式ax 2+bx +c >0的解集;(3)写出y 随x 的增大而减小的自变量x 的取值范围;(4)若方程ax 2+bx +c =k 有两个不相等的实数根,求k 的取值范围.15.已知关于x 的二次函数y =ax 2+bx +c(a >0)的图象经过点C(0,1),且与x 轴交于不同的两点A ,B ,点A 的坐标是(1,0). (1)求c 的值; (2)求a 的取值范围.16.已知抛物线y =-x 2+3(m +1)x +m +4与x 轴交于A ,B 两点,若A 点在x 轴负半轴上,B 点在x 轴正半轴上,且BO =4AO ,求抛物线的解析式.17.如图,抛物线y =-12x 2+22x +2与x 轴交于A ,B 两点,与y 轴交于C 点.(1)求A ,B ,C 三点的坐标; (2)证明△ABC 为直角三角形;(3)在抛物线上除C 点外,是否还存在另外一个点P ,使△ABP 是直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由. 答案:1---7 DBDAC CD8. y =0 横坐标 9. 无 一 两 10. 8 11. -4 12. m <-9/4 13. -1/214. 解:(1)由图象可得x 1=1,x 2=3(2)由图象可得ax 2+bx +c >0时,x 的取值范围为1<x <3(3)由图可知,当y 随x 的增大而减小时,自变量x 的取值范围为x >2 (4)方程ax 2+bx +c =k 有两个不相等的实数根,实际上就是函数y =ax 2+bx +c 的图象与直线y =k 有两个交点,由图象可知k <2 15. (1)c =1(2)由C(0,1),A(1,0)得a +b +1=0,故b =-a -1.由b 2-4ac >0,可得(-a -1)2-4a >0,即(a -1)2>0,故a≠1.又a >0,所以a 的取值范围是a >0且a≠1 16. 设A(x 1,0),B(x 2,0),x 1<0,x 2>0,x 2=-4x 1,x 1+x 2=3(m +1)>0,x 1x 2=-m -4,联立求得m =0或m =-74<-1(舍去),∴抛物线解析式为y =-x 2+3x+417. (1)令y =0得x 1=-2,x 2=22,令x =0,得y =2,∴A(-2,0),B(22,0),C(0,2)(2)AC =6,BC =23,AB =32,易知AC 2+BC 2=AB 2,∴∠ACB =90° (3)令y =2,得x 1=0,x 2=2,∴存在另外一个点P ,其坐标为(2,2)。

中考数学《二次函数与一元二次方程》专项练习题及答案

中考数学《二次函数与一元二次方程》专项练习题及答案

中考数学《二次函数与一元二次方程》专项练习题及答案.()=--2y x x my=mA.0个B.1个C.2个D.3个7.二次函数()20y ax bx c a =++≠()1,0-A .5个B .4个C .3个D .2个,使得ABP为等腰直角三角形,其中正确的结论的有(A.1个B.2个C.3个D.4个A.1个B.2个C.3个D.4个四个根的和为4-.其中正确的结论有_____.12.如图,抛物线1C :223y x x =+-与抛物线2C :2y ax bx c =++组成一个开口向上的“月牙线”,抛物线1C 和抛物线2C 与x 轴有着相同的交点A 、B (点B 在点A 右侧),与y 轴的交点分别为C 、D .如果BD CD =,那么抛物线2C 的表达式是______.13.二次函数()20y ax bx c a =++≠的图象的一部分如图所示,已知图象经过点()2,0-其对称轴为直线 2.x =下列结论①0abc >;①240b ac -<;①80a c +>;①9315a b c a ++=-;①点()()123,0,C y D y 是抛物线上的两点,则12y y <;①若抛物线经过点()3,n -,则关于x 的一元二次方程()200ax bx c n a ++-=≠的两根分别为3-,7.正确的有______ (填序号).14.已知y 是关于x 的函数,若该函数的图象经过点(),P t t ,则称点P 为函数图象上的“平衡点”,例如:直线23y x =-+上存在“平衡点”()1,1P ,若函数()2132y m x x m =--+的图象上存在唯一“平衡点”,则m =___________.15.已知抛物线2y ax bx c =++(a ,b ,c 是常数,a c ≠),且0a b c -+=,0a >下列四个结论:①对于任意实数m ,()()2110a m b m -+-≥恒成立;①若0a b +=,则不等式20ax bx c ++<的解集是12x -<<; ①一元二次方程()222a x bx b c --+=+有一个根1x =;①点()11,A x y ,()22,B x y 在抛物线上,若c a >,则当121x x -<<时,总有12y y <.其中正确的是__________.(填写序号)(1)求点M 的坐标;(用含m 的式子表示)时,请求出ODE 面积(3bx a +≠(1)求该二次函数解析式;,求BCP面积的最大值;所得新函数图象如图轴交于C点,(1)求该二次函数的表达式及其图象的顶点坐标;1.B2.B3.B4.D5.A6.D7.C。

中考数学二次函数与一元二次方程一轮复习课教案设计与反思

中考数学二次函数与一元二次方程一轮复习课教案设计与反思

授课人 备课时间 2.26 学 科 数学执教班级课 题 二次函数与一元二次方程 教学课时第 1 课时教学课型复习课授课时间3.19教材 分析 本课时主要包括两方面的内容,一方面,给出函数值,利用解一元二次方程或观察图像,得到自变量的取值范围,或利用二次函数的顶点坐标,求出最大值或最小值。

另一方面涉及从实际问题及图形信息中建立二次函数模型,并根据二次函数的最值解决实际问题 教学目标1、理解二次函数与一元二次方程之间的关系;2、会结合方程根的性质、一元二次方程根的判别式,判定抛物线与x 轴的交点情况;情感态度与价值观:学会利用二次函数解决实际问题,提高学习数学知识的自豪感。

应用信息技术2.0教学重点难点重点:会利用韦达定理解决有关二次函数的问题。

难点:会利用韦达定理解决有关二次函数的问题教学难点克服方法小组合作交流媒体运用电子白板 华为智慧云课堂预设过程(应包括课程导入、预习自学、展示交流、当堂练习检测等) 个人修改一、 构建知识网络首先我们一起来回顾一下各部分的知识结构图 函数 一元二次方程(找学生到黑板建构这部分的知识结构图,并找其他同学不断地完善。

)二、 典型例题:【例1】已抛物线1)2()1(2--+-=x m x m y (m 为实数)。

(1)m 为何值时,抛物线与x 轴有两个交点?(2)如果抛物线与x 轴相交于A 、B 两点,与y 轴交于点C ,且△ABC 的面积为2,求该抛物线的解析式。

分析:抛物线与x 轴有两个交点,则对应的一元二次方程有两个不相等的实数根,将问题转化为求一元二次方程有两个不相等的实数根m 应满足的条件。

略解:(1)由已知有⎩⎨⎧>=∆≠-0012m m ,解得0≠m 且1≠m (2)由0=x 得C (0,-1)又∵1-=∆=m m a AB∴2112121=⋅-⋅=⋅⋅=∆m m OC AB S ABC∴34=m 或54=m∴132312--=x x y 或156512---=x x y【例2】已知抛物线)6(2)8(222+++-=m x m x y 。

二次函数与一元二次方程 知识点+例题+练习(题型全面)

二次函数与一元二次方程 知识点+例题+练习(题型全面)

二次函数与一元二次方程(1)一、课前回顾:1.直线42-=x y 与y 轴交于点 ,与x 轴交于点 。

2.一元二次方程02=++c bx ax ,当Δ 时,方程有两个不相等的实数根;当Δ 时,方程有两个相等的实数根;当Δ 时,方程没有实数根; 二、模仿学习 1.解下列方程(1)0322=--x x (2)0962=+-x x (3)0322=+-x x2.观察二次函数的图象,写出它们与x 轴的交点坐标:3.对比第1题各方程的解,你发现什么? 三、知识导学:⑴一元二次方程02=++c bx ax 的实数根就是对应的二次函数c bx ax y ++=2与x 轴交点的 .(即把0=y 代入c bx ax y ++=2)⑵二次函数与一元二次方程的关系如下:(一元二次方程的实数根记为21x x 、)⑶二次函数c bx ax y ++=2与y 轴交点坐标是 . 四、例题教学:例1、已知抛物线y =x 2-(2m -1)x +m 2-m 与直线y =x -3m +4(1)当m 为何值时,抛物线与直线有两个交点?只有一个交点?没有交点? (2)若有一个交点在y 轴上,求m .五、当堂练习:1、已知二次函数772--=x kx y 与x 轴有交点,则k 的取值范围是 .2、一元二次方程02=--n x x 没有实数根,则抛物线n x x y --=2的顶点在第___象限;3、抛物线222++-=kx x y 与x 轴交点的个数为( )A 、0B 、1C 、2D 、以上都不对4、若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程x 2+bx =5的解为( )A .B .C .D .5、12++=kx x y 与k x x y --=2的图象相交,若有一个交点在x 轴上,则k 为( )A 、0B 、-1C 、2D 、41 6、若方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线( )A 、x =-3B 、x =-2C 、x =-1D 、x =1 7、已知二次函数2y x pxq 的图象与x 轴只有一个公共点,坐标为1,0,求,p q 的值8、画出二次函数322--=x x y 的图象,并利用图象求方程0322=--x x 的解,说明x 在什么范围时0322≤--x x .9、如图:(1) 求该抛物线的解析式;(2) 根据图象回答:当x 为何范围时,该函数值大于0.10、二次函数c bx ax y ++=2的图象过A(-3,0),B(1,0),C(0,3),点D 在函数图象上,点C 、D 是二次函数图象上的一对对称点,一次函数图象过点B 、D ,求 (1)一次函数和二次函数的解析式(2)写出使一次函数值大于二次函数值的x 的取值范围.11、已知抛物线22yx mxm.(1)求证此抛物线与x 轴有两个不同的交点;(2)当m=2时,设抛物线顶点为A ,抛物线与x 轴的两个交点中右侧交点为B.若M 为坐标轴上一点,且MA=MB ,求点M 的坐标.12、如图,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,二次函数y =-23x 2+bx +c 的图象经过B 、C 两点.(1)求该二次函数的解析式;(2)结合函数的图象探索:当y>0时x 的取值范围.二次函数与一元二次方程(2)二、模仿学习1.根据下列表格中二次函数2y ax bx c =++的自变量x 与函数值y 的对应值, 判断方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( )x6.176.186.196.202y ax bx c =++0.03-0.01-0.020.04A.6 6.17x << B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<2. 在同一直角坐标系中画出函数和的图象,根据图象回答:(1)当x = 时,y 1=y 2;(2)当x 满足 时,y 1>y 2;(3)当x 满足 时,y 1<y 2.31-=x y 3222--=x x y三、例题教学:例1.已知:关于x 的一元二次方程22(21)20x m x m m -+++-=. (1)求证:不论m 取何值,方程总有两个不相等的实数根;(2)若函数22(21)2y x m x m m =-+++-与x 轴的两个交点的横坐标为12x x ,,且满足12211m x x m +-=+-,求m 的值.五、当堂练习: 1.观察图像,填空:当函数值y >0时,x 的取值范围是_________________; 当函数值y <0时,x 的取值范围是_________________.2.根据下列表格的对应值:判断方程02=++c bx ax (a ≠0,a ,b ,c 为常数)一个解x 的范围.x3.23 3.24 3.25 3.26 c bx ax ++2-0.06 -0.02 0.030.094212--=x x y -24yOx253212+-=x x y 3.利用二次函数y =x 2-5x +5的图象,探索方程x 2-5x +5=0的介于1~2之间的根(精确到0.1).4、求出抛物线 (1)顶点A 的坐标; (2)与x 轴的交点B 、C (B 在C 的左边)的坐标及与y 轴的交点D 坐标;(3)画出函数图象的草图;(4)求此抛物线与x 轴两个交点间的距离;(5)求S 四边形ABDC.5.已知抛物线y =ax 2+bx +c 经过A ,B ,C 三点,当x ≥0时,其图象如图所示. (1)求抛物线的解析式,写出抛物线的顶点坐标; (2)画出抛物线y =ax 2+bx +c 当x <0时的图象; (3)利用抛物线y =ax 2+bx +c ,写出x 为何值时,y >0.2yxO121。

中考数学复习---二次函数之二次函数综合知识点总结与练习题(含答案解析)

中考数学复习---二次函数之二次函数综合知识点总结与练习题(含答案解析)

中考数学复习---二次函数之二次函数综合知识点总结与练习题(含答案解析) 知识点总结1. 二次函数与一元二次方程:①若二次函数()02≠++=a c bx ax y 与x 轴有两个交点⇔一元二次方程02=++c bx ax 有两个不相等的实数根⇔042>ac b −=∆。

②若二次函数()02≠++=a c bx ax y 与x 轴只有一个交点⇔一元二次方程02=++c bx ax 有两个相等的实数根⇔042=−=∆ac b 。

③若二次函数()02≠++=a c bx ax y 与x 轴没有交点⇔一元二次方程02=++c bx ax 没有实数根⇔042<ac b −=∆。

④若二次函数()02≠++=a c bx ax y 与直线m y =相交,则一元二次方程为m c bx ax =++2。

交点情况与方程的解的情况同与x 轴相交时一样。

2. 二次函数与不等式(组)若二次函数()02≠++=a c bx ax y 与一次函数()0≠+=k b kx y 存在交点,则不等式:b kx c bx ax +++>2的解集取二次函数图像在上方的部分所对应的自变量取值范围;b kx c bx ax +++<2的解集取二次函数图像在下方的部分所对应的自变量取值范围。

3. 二次函数的一些特殊的自变量的函数值:①当1=x 时所对应的函数值为c b a y ++=。

②当1−=x 时所对应的函数值为c b a y +−=。

③当2=x 时所对应的函数值为c b a y ++=24。

④当2−=x 时所对应的函数值为c b a y +−=24。

4. 对称轴的特殊值:①若对称轴为直线1=x 时,则02=+b a 。

②若对称轴为直线1−=x 时,则02=−b a 。

③判断b a +2与0的大小关系时,看对称轴与1=x 的位置关系。

④判断b a −2与0的大小关系时,看对称轴与1−=x 的位置关系。

练习题1、(2022•巴中)函数y =|ax 2+bx +c |(a >0,b 2﹣4ac >0)的图像是由函数y =ax 2+bx +c (a >0,b 2﹣4ac >0)的图像x 轴上方部分不变,下方部分沿x 轴向上翻折而成,如图所示,则下列结论正确的是( )①2a +b =0;②c =3;③abc >0;④将图像向上平移1个单位后与直线y =5有3个交点.A .①②B .①③C .②③④D .①③④【分析】根据函数图像与x 轴交点的横坐标求出对称轴为,进而可得2a +b =0,由图像可得抛物线y =ax 2+bx +c 与y 轴交点在x 轴下方,由抛物线y =ax 2+bx +c 的开口方向,对称轴位置和抛物线与y 轴交点位置可得abc 的符号,求出二次函数y =ax 2+bx +c 的顶点式,可得图像向上平移1个单位后与直线y =5有3个交点【解答】解:∵图像经过(﹣1,0),(3,0),∴抛物线y =ax 2+bx +c 的对称轴为直线x =1,∴﹣=1,∴b =﹣2a ,即2a +b =0,①正确.由图像可得抛物线y =ax 2+bx +c 与y 轴交点在x 轴下方,∴c<0,②错误.由抛物线y=ax2+bx+c的开口向上可得a>0,∴b=﹣2a<0,∴abc>0,③正确.设抛物线y=ax2+bx+c的解析式为y=a(x+1)(x﹣3),代入(0,3)得:3=﹣3a,解得:a=﹣1,∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为(1,4),∵点(1,4)向上平移1个单位后的坐标为(1,5),∴将图像向上平移1个单位后与直线y=5有3个交点,故④正确;故选:D.2、(2022•资阳)如图是二次函数y=ax2+bx+c的图像,其对称轴为直线x=﹣1,且过点(0,1).有以下四个结论:①abc>0,②a﹣b+c>1,③3a+c<0,④若顶点坐标为(﹣1,2),当m≤x≤1时,y有最大值为2、最小值为﹣2,此时m的取值范围是﹣3≤m≤﹣1.其中正确结论的个数是()A.4个B.3个C.2个D.1个【分析】①:根据二次函数的对称轴,c=1,即可判断出abc>0;②:结合图像发现,当x=﹣1时,函数值大于1,代入即可判断;③:结合图像发现,当x=1时,函数值小于0,代入即可判断;④:运用待定系数法求出二次函数解析式,再利用二次函数的对称性即可判断.【解答】解:∵二次函数y=ax2+bx+c的图像,其对称轴为直线x=﹣1,且过点(0,1),∴,c=1,∴ab>0,∴abc>0,故①正确;从图中可以看出,当x=﹣1时,函数值大于1,因此将x=﹣1代入得,(﹣1)2⋅a+(﹣1)⋅b+c>1,即a﹣b+c>1,故②正确;∵,∴b=2a,从图中可以看出,当x=1时,函数值小于0,∴a+b+c<0,∴3a+c<0,故③正确;∵二次函数y=ax2+bx+c的顶点坐标为(﹣1,2),∴设二次函数的解析式为y=a(x+1)2+2,将(0,1)代入得,1=a+2,解得a=﹣1,∴二次函数的解析式为y=﹣(x+1)2+2,∴当x=1时,y=﹣2;∴根据二次函数的对称性,得到﹣3≤m≤﹣1,故④正确;综上所述,①②③④均正确,故有4个正确结论,故选A.3、(2022•黄石)已知二次函数y=ax2+bx+c的部分图像如图所示,对称轴为直线x=﹣1,有以下结论:①abc<0;②若t为任意实数,则有a﹣bt≤at2+b;③当图像经过点(1,3)时,方程ax2+bx+c ﹣3=0的两根为x1,x2(x1<x2),则x1+3x2=0,其中,正确结论的个数是()A.0 B.1 C.2 D.3【分析】利用抛物线开口方向得到a>0,利用抛物线的对称轴方程得到b=2a>0,利用抛物线与y轴的交点位置得到c<0,则可对①进行判断;利用二次函数当x=﹣1时有最小值可对②进行判断;由于二次函数y=ax2+bx+c与直线y=3的一个交点为(1,3),利用对称性得到二次函数y=ax2+bx+c与直线y=3的另一个交点为(﹣3,3),从而得到x1=﹣3,x2=1,则可对③进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣1,即﹣=﹣1,∴b =2a >0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc <0,所以①正确;∵x =﹣1时,y 有最小值,∴a ﹣b +c ≤at 2+bt +c (t 为任意实数),即a ﹣bt ≤at 2+b ,所以②正确;∵图像经过点(1,3)时,得ax 2+bx +c ﹣3=0的两根为x 1,x 2(x 1<x 2),∴二次函数y =ax 2+bx +c 与直线y =3的一个交点为(1,3),∵抛物线的对称轴为直线x =﹣1,∴二次函数y =ax 2+bx +c 与直线y =3的另一个交点为(﹣3,3),即x 1=﹣3,x 2=1,∴x 1+3x 2=﹣3+3=0,所以③正确.故选:D .4、(2022•日照)已知二次函数y =ax 2+bx +c (a ≠0)的部分图像如图所示,对称轴为x =23,且经过点(﹣1,0).下列结论:①3a +b =0;②若点(21,y 1),(3,y 2)是抛物线上的两点,则y 1<y 2;③10b ﹣3c =0;④若y ≤c ,则0≤x ≤3.其中正确的有( )A.1个B.2个C.3个D.4个【分析】由对称轴为x=即可判断①;根据点(,y1),(3,y2)到对称轴的距离即可判断②;由抛物线经过点(﹣1,0),得出a﹣b+c=0,对称轴x=﹣=,得出a=﹣b,代入即可判断③;根据二次函数的性质以及抛物线的对称性即可判断④.【解答】解:∵对称轴x=﹣=,∴b=﹣3a,∴3a+b=0,①正确;∵抛物线开口向上,点(,y1)到对称轴的距离小于点(3,y2)的距离,∴y1<y2,故②正确;∵经过点(﹣1,0),∴a﹣b+c=0,∵对称轴x=﹣=,∴a=﹣b,∴﹣b﹣b+c=0,∴3c=4b,∴4b﹣3c=0,故③错误;∵对称轴x=,∴点(0,c)的对称点为(3,c),∵开口向上,∴y≤c时,0≤x≤3.故④正确;故选:C.5、(2022•荆门)抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)和点(x0,y0),且c>0.有下列结论:①a<0;②对任意实数m都有:am2+bm≥4a﹣2b;③16a+c>4b;④若x0>﹣4,则y0>c.其中正确结论的个数为()A.1个B.2个C.3个D.4个【分析】根据抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)且c>0,即可判断开口向下,即可判断①;根据二次函数的性质即可判断②;根据抛物线的对称性即可判断③;根据抛物线的对称性以及二次函数的性质即可判断④.【解答】解:∵抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2),且c>0,∴抛物线开口向下,则a<0,故①正确;∵抛物线开口向下,对称轴为x=﹣2,∴函数的最大值为4a﹣2b+c,∴对任意实数m都有:am2+bm+c≤4a﹣2b+c,即am2+bm≤4a﹣2b,故②错误;∵对称轴为x=﹣2,c>0.∴当x=﹣4时的函数值大于0,即16a﹣4b+c>0,∴16a+c>4b,故③正确;∵对称轴为x=﹣2,点(0,c)的对称点为(﹣4,c),∵抛物线开口向下,∴若﹣4<x0<0,则y0>c,故④错误;故选:B.6、(2022•绵阳)如图,二次函数y=ax2+bx+c的图像关于直线x=1对称,与x轴交于A (x1,0),B(x2,0)两点.若﹣2<x1<﹣1,则下列四个结论:①3<x2<4;②3a+2b >0;③b2>a+c+4ac;④a>c>b,正确结论的个数为()A.1个B.2个C.3个D.4个【分析】根据二次函数的对称性,即可判断①;由开口方向和对称轴即可判断②;根据抛物线与x轴的交点以及x=﹣1时的函数的取值,即可判断③;根据抛物线的开口方向、对称轴,与y轴的交点以及a﹣b+c<0,即可判断④.【解答】解:∵对称轴为直线x=1,﹣2<x1<﹣1,∴3<x2<4,①正确,∵﹣=1,∴b=﹣2a,∴3a+2b=3a﹣4a=﹣a,∵a>0,∴3a+2b<0,②错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,由题意可知x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,∵a>0,∴b=﹣2a<0,∴a+c<0,∴b2﹣4ac>a+c,∴b2>a+c+4ac,③正确;∵抛物线开口向上,与y轴的交点在x轴下方,∴a>0,c<0,∴a>c,∵a﹣b+c<0,b=﹣2a,∴3a+c<0,∴c<﹣3a,∴b=﹣2a,∴b>c,所以④错误;故选:B.7、(2022•牡丹江)如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣2,并与x 轴交于A,B两点,若OA=5OB,则下列结论中:①abc>0;②(a+c)2﹣b2=0;③9a+4c <0;④若m为任意实数,则am2+bm+2b≥4a,正确的个数是()A.1 B.2 C.3 D.4【分析】根据函数图像的开口方向、对称轴、图像与y轴的交点即可判断①;根据对称轴x =﹣2,OA=5OB,可得OA=5,OB=1,点A(﹣5,0),点B(1,0),当x=1时,y =0即可判断②;根据对称轴x=﹣2,以及,a+b+c=0得a与c的关系,即可判断③;根据函数的最小值是当x=﹣2时,y=4a﹣2b+c,即可判断④;【解答】解:①观察图像可知:a>0,b>0,c<0,∴abc<0,故①错误;②∵对称轴为直线x=﹣2,OA=5OB,可得OA=5,OB=1,∴点A(﹣5,0),点B(1,0),∴当x=1时,y=0,即a+b+c=0,∴(a+c)2﹣b2=(a+b+c)(a+c﹣b)=0,故②正确;③抛物线的对称轴为直线x=﹣2,即﹣=﹣2,∴b=4a,∵a+b+c=0,∴5a+c=0,∴c=﹣5a,∴9a+4c=﹣11a,∵a >0,∴9a +4c <0,故③正确;④当x =﹣2时,函数有最小值y =4a ﹣2b +c ,由am 2+bm +c ≥4a ﹣2b +c ,可得am 2+bm +2b ≥4a ,∴若m 为任意实数,则am 2+bm +2b ≥4a ,故④正确;故选:C .8、(2022•烟台)二次函数y =ax 2+bx +c (a ≠0)的部分图像如图所示,其对称轴为直线x =﹣21,且与x 轴的一个交点坐标为(﹣2,0).下列结论:①abc >0;②a =b ;③2a +c =0;④关于x 的一元二次方程ax 2+bx +c ﹣1=0有两个相等的实数根.其中正确结论的序号是( )A .①③B .②④C .③④D .②③【分析】根据对称轴、开口方向、与y 轴的交点位置即可判断a 、b 、c 与0的大小关系,然后将由对称轴可知a =b .图像过(﹣2,0)代入二次函数中可得4a ﹣2b +c =0.再由二次函数最小值小于0,从而可判断ax 2+bx +c =1有两个不相同的解.【解答】解:①由图可知:a >0,c <0,<0,∴b >0,∴abc <0,故①不符合题意.②由题意可知:=﹣,∴b =a ,故②符合题意.③将(﹣2,0)代入y =ax 2+bx +c ,∴4a ﹣2b +c =0,∵a =b ,∴2a +c =0,故③符合题意.④由图像可知:二次函数y =ax 2+bx +c 的最小值小于0,令y =1代入y =ax 2+bx +c ,∴ax 2+bx +c =1有两个不相同的解,故④不符合题意.故选:D .9、(2022•广安)已知抛物线y =ax 2+bx +c 的对称轴为x =1,与x 轴正半轴的交点为A (3,0),其部分图像如图所示,有下列结论:①abc >0; ②2c ﹣3b <0; ③5a +b +2c =0;④若B (34,y 1)、C (31,y 2)、D (﹣31,y 3)是抛物线上的三点,则y 1<y 2<y 3.其中正确结论的个数有( )A .1B .2C .3D .4【分析】①正确,根据抛物线的位置,判断出a ,b ,c 的符号,可得结论;②③错误,利用对称轴公式,抛物线经过A (3,0),求出b ,c 与a 的关系,判断即可; ④正确.利用图像法判断即可.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴是直线x=1,∴1=﹣,∴b=﹣2a,∴b<0,∵抛物线交y轴于负半轴,∴c<0,∴abc>0,故①正确,∵抛物线y=ax2﹣2ax+c经过(3,0),∴9a﹣6a+c=0,∴c=﹣3a,∴2c﹣3b=﹣6a+6a=0,故②错误,5a+b+2c=5a﹣2a﹣6a=﹣3a<0,故③错误,观察图像可知,y1<y2<y3,故④正确,故选:B.10、(2022•辽宁)抛物线y=ax2+bx+c的部分图像如图所示,对称轴为直线x=﹣1,直线y=kx+c与抛物线都经过点(﹣3,0).下列说法:①ab>0;②4a+c>0;③若(﹣2,y 1)与(21,y 2)是抛物线上的两个点,则y 1<y 2;④方程ax 2+bx +c =0的两根为x 1=﹣3,x 2=1;⑤当x =﹣1时,函数y =ax 2+(b ﹣k )x 有最大值.其中正确的个数是( )A .2B .3C .4D .5【分析】利用图像的信息与已知条件求得a ,b 的关系式,利用待定系数法和二次函数的性质对每个结论进行逐一判断即可得出结论.【解答】解:∵抛物线的开口方向向下,∴a <0.∵抛物线的对称轴为直线x =﹣1,∴﹣=﹣1,∴b =2a ,b <0.∵a <0,b <0,∴ab >0,∴①的结论正确;∵抛物线y =ax 2+bx +c 经过点(﹣3,0),∴9a ﹣3b +c =0,∴9a ﹣3×2a +c =0,∴3a +c =0.∴4a+c=a<0,∴②的结论不正确;∵抛物线的对称轴为直线x=﹣1,∴点(﹣2,y1)关于直线x=﹣1对称的对称点为(0,y1),∵a<0,∴当x>﹣1时,y随x的增大而减小.∵>0>﹣1,∴y1>y2.∴③的结论不正确;∵抛物线的对称轴为直线x=﹣1,抛物线经过点(﹣3,0),∴抛物线一定经过点(1,0),∴抛物线y=ax2+bx+c与x轴的交点的横坐标为﹣3,1,∴方程ax2+bx+c=0的两根为x1=﹣3,x2=1,∴④的结论正确;∵直线y=kx+c经过点(﹣3,0),∴﹣3k+c=0,∴c=3k.∵3a+c=0,∴c=﹣3a,∴3k=﹣3a,∴k=﹣a.∴函数y=ax2+(b﹣k)x=ax2+(2a+a)x=ax2+3ax=a﹣a,∵a<0,∴当x=﹣时,函数y=ax2+(b﹣k)x有最大值,∴⑤的结论不正确.综上,结论正确的有:①④,故选:A.11、(2022•内蒙古)如图,抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣1,0),抛物线的对称轴为直线x=1,下列结论:①abc<0;②3a+c=0;③当y>0时,x 的取值范围是﹣1≤x<3;④点(﹣2,y1),(2,y2)都在抛物线上,则有y1<0<y2.其中结论正确的个数是()A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:根据函数的对称性,抛物线与x轴的另外一个交点的坐标为(3,0);①函数对称轴在y轴右侧,则ab<0,而c=3>0,故abc<0,故①正确,符合题意;②∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,∴3a+c=0.∴②正确,符合题意;③由图像知,当y>0时,x的取值范围是﹣1<x<3,∴③错误,不符合题意;④从图像看,当x=﹣2时,y1<0,当x=2时,y2>0,∴有y1<0<y2,故④正确,符合题意;故选:C.12、(2022•枣庄)小明在学习“二次函数”内容后,进行了反思总结.如图,二次函数y =ax2+bx+c(a≠0)图像的一部分与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,结合图像他得出下列结论:①ab>0且c>0;②a+b+c=0;③关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1;④若点(﹣4,y1),(﹣2,y2),(3,y3)均在二次函数图像上,则y1<y2<y3;⑤3a+c<0,其中正确的结论有.(填序号,多选、少选、错选都不得分)【分析】由抛物线的对称轴的位置以及与y轴的交点可判断①;由抛物线过点(1,0),即可判断②;由抛物线的对称性可判断③;根据各点与抛物线对称轴的距离大小可判断④;对称轴可得b=2a,由抛物线过点(1,0)可判断⑤.【解答】解:∵抛物线对称轴在y轴的左侧,∴ab>0,∵抛物线与y轴交点在x轴上方,∴c>0,①正确;∵抛物线经过(1,0),∴a+b+c=0,②正确.∵抛物线与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,∴另一个交点为(﹣3,0),∴关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1,③正确;∵﹣1﹣(﹣2)<﹣1﹣(﹣4)<3﹣(﹣1),抛物线开口向下,∴y2>y1>y3,④错误.∵抛物线与x轴的一个交点坐标为(1,0),∴a+b+c=0,∵﹣=﹣1,∴b =2a ,∴3a +c =0,⑤错误.故答案为:①②③.13、(2022•内江)如图,抛物线y =ax 2+bx +c 与x 轴交于两点(x 1,0)、(2,0),其中0<x 1<1.下列四个结论:①abc <0;②a +b +c >0;③2a ﹣c >0;④不等式ax 2+bx +c >﹣1x c x +c 的解集为0<x <x 1.其中正确结论的个数是( )A .4B .3C .2D .1【分析】利用二次函数的图像和性质依次判断即可.【解答】解:∵抛物线开口向上,对称轴在y 轴右边,与y 轴交于正半轴, ∴a >0,b <0,c >0,∴abc <0,∴①正确.∵当x =1时,y <0,∴a +b +c <0,∴②错误.∵抛物线过点(2,0),∴4a+2b+c=0,∴b=﹣2a﹣,∵a+b+c<0,∴a﹣2a﹣+c<0,∴2a﹣c>0,∴③正确.如图:设y1=ax2+bx+c,y2=﹣x+c,由图值,y1>y2时,x<0或x>x1,故④错误.故选:C.14、(2022•鄂州)如图,已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图像顶点为P(1,m),经过点A(2,1).有以下结论:①a<0;②abc>0;③4a+2b+c=1;④x>1时,y随x的增大而减小;⑤对于任意实数t,总有at2+bt≤a+b,其中正确的有()A.2个B.3个C.4个D.5个【分析】①根据抛物线的开口方向向下即可判定;②先运用二次函数图像的性质确定a、b、c的正负即可解答;③将点A的坐标代入即可解答;④根据函数图像即可解答;⑤运用作差法判定即可.【解答】解:①由抛物线的开口方向向下,则a<0,故①正确;②∵抛物线的顶点为P(1,m),∴﹣=1,b=﹣2a,∵a<0,∴b>0,∵抛物线与y轴的交点在正半轴,∴c>0,∴abc<0,故②错误;③∵抛物线经过点A(2,1),∴1=a•22+2b+c,即4a+2b+c=1,故③正确;④∵抛物线的顶点为P(1,m),且开口方向向下,∴x>1时,y随x的增大而减小,即④正确;⑤∵a<0,∴at2+bt﹣(a+b)=at 2﹣2at ﹣a +2a=at 2﹣2at +a=a (t 2﹣2t +1)=a (t ﹣1)2≤0,∴at 2+bt ≤a +b ,则⑤正确综上,正确的共有4个.故选:C .15、(2022•达州)二次函数y =ax 2+bx +c 的部分图像如图所示,与y 轴交于(0,﹣1),对称轴为直线x =1.下列结论:①abc >0;②a >31;③对于任意实数m ,都有m (am +b )>a +b 成立;④若(﹣2,y 1),(21,y 2),(2,y 3)在该函数图像上,则y 3<y 2<y 1;⑤方程|ax 2+bx +c |=k (k ≥0,k 为常数)的所有根的和为4.其中正确结论有( )个.A .2B .3C .4D .5【分析】①正确,判断出a ,b ,c 的正负,可得结论;②正确.利用对称轴公式可得,b =﹣2a ,当x =﹣1时,y >0,解不等式可得结论; ③错误.当m =1时,m (am +b )=a +b ;④错误.应该是y 2<y 3<y 1,;⑤错误.当有四个交点或3个时,方程|ax 2+bx +c |=k (k ≥0,k 为常数)的所有根的和为4,当有两个交点时,方程|ax 2+bx +c |=k (k ≥0,k 为常数)的所有根的和为2.【解答】解:∵抛物线开口向上,∴a>0,∴抛物线与y轴交于点(0,﹣1),∴c=﹣1,∵﹣=1,∴b=﹣2a<0,∴abc>0,故①正确,∵y=ax2﹣2ax﹣1,当x=﹣1时,y>0,∴a+2a﹣1>0,∴a>,故②正确,当m=1时,m(am+b)=a+b,故③错误,∵点(﹣2,y1)到对称轴的距离大于点(2,y3)到对称轴的距离,∴y1>y3,∵点(,y2)到对称轴的距离小于点(2,y3)到对称轴的距离,∴y3>y2,∴y2<y3<y1,故④错误,∵方程|ax2+bx+c|=k(k≥0,k为常数)的解,是抛物线与直线y=±k的交点,当有3个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为3,当有4个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4,当有2个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为2,故⑤错误,故选:A.。

人教版九年级数学22.2二次函数与一元二次方程的关系练习(含答案)

人教版九年级数学22.2二次函数与一元二次方程的关系练习(含答案)

人教版九年级数学22.2二次函数与一元二次方程的关系练习(含答案)二次函数与一元二次方程的关系知识要点:1. 二次函数与一元二次方程的关系一般地,从二次函数y=ax 2+bx+c 的图像可得如下结论.(1)如果抛物线y=ax 2+bx+c 与x 轴有公共点,公共点的横坐标为x 0,那么当x=x 0时,函数值是0,因此x=x 0是方程的ax 2+bx+c=0的一个根.(2)二次函数y=ax 2+bx+c 的图像与x 轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程ax 2+bx+c=0的根的情况:没有实数根,有两个相等实数根,有两个不相等实数根。

2.利用抛物线y =ax 2+bx +c 与x 轴的交点的横坐标求一元二次方程ax 2+bx +c =0的根.具体过程如下:①在平面直角坐标系中画出抛物线y =ax 2+bx +c ;②观察图象,确定抛物线与x 轴的交点的横坐标;③交点的横坐标为一元二次方程ax 2+bx +c =0的根.3.用两点夹逼法估计一元二次方程的根,具体方法如下:在交点(抛物线与x 轴的交点)的两侧各取一点,则一元二次方程的根在这两个点的横坐标之间.一、单选题1.如图,一次函数与二次函数为的图象相交于点,1y x =-22y ax bx c =++M ,则关于的一元二次方程的根的情况是( )N x 2(1)0ax b x c +++=A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .有两个实数根【答案】A 2.已知抛物线y =ax 2+bx +c 的图象如图所示,则关于x 的方程ax 2+bx +c =0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有两个同号的实数根D .没有实数根【答案】D 3.抛物线与轴的交点坐标为( )2321y x x =-+-y A .B .C .D .()0,1()0,1-()1,0-()1,0【答案】B4.根据下面表格中的对应值:x 3.24 3.25 3.26ax 2+bx+c ﹣0.020.010.03判断关于x 的方程ax 2+bx+c =0(a≠0)的一个解x 的范围是( )A .x <3.24B .3.24<x <3.25C .3.25<x <3.26D .x >3.26【答案】B5.已知二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,则k的取值范围是( )A.k≥3B.k<3C.k≤3且k≠2D.k<2【答案】C6.若二次函数y=x2﹣2x+c的图象与x轴没有交点,则c的值可能是()A.﹣3B.﹣2C.0 D.2【答案】D7.二次函数y=x2+bx+1的图象与x轴只有一个公共点,则此公共点的坐标是( )A.(1,0)B.(2,0)C.(﹣1,0)或(﹣2,0)D.(﹣1,0)或(1,0)【答案】D8.已知关于x的一元二次方程ax2+bx+c=0有两个相等的实数根,则抛物线y=ax2+bx+c与x轴的交点个数是( )A.0个B.1个C.2个D.3个【答案】By=ax2+bx+c(a≠0)x ax2+bx+c=09.函数的图象如图所示,那么关于的方程的根的情况是A.有两个不相等的实数根B.有两个同号的实数根C.有两个相等实数根D.无实数根【答案】A10.函数y=kx2+(2k+1)x+1的图象与x轴的交点有A.2个B.1个C.0个D.1或2个【答案】A11.抛物线y=-2x2-x+2与坐标轴的交点个数是( )A.3 B.2 C.1 D.0【答案】A12.若抛物线y=x2﹣2x﹣1与x轴的交点坐标为(a,0),则代数式a2﹣2a+2017的值为( )A.2019 B.2018 C.2017 D.2016【答案】B13.若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为( ). A.-1或2 B.-1或1C.1或2 D.-1或2或1【答案】D14.根据下面表格中的对应值:x 3.23 3.24 3.25 3.26ax2+bx+c-0.06-0.020.030.09判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是( )A.3<x<3.23B.3.23<x<3.24C.3.24<x<3.25D.3.25<x<3.26【答案】C二、填空题15.抛物线与y 轴的公共点的坐标是____________.232y x x =++【答案】(0,2)16.二次函数的图象如图所示,则 的两根分别是2y x bx c =++2=0x bx c ++_________.【答案】-3,117.二次函数y =x 2﹣3x+c 的图象与x 轴有且只有一个交点,c =_____.【答案】9418.函数y=2x 2中,自变量x 的取值范围是____,函数值y 的取值范围是____.【答案】全体实数y ≥0.三、解答题19.抛物线经过和.y =ax 2-4x +c A(-1,-1)B(3,-9)(1)求该二次函数的表达式;(2)直接写出当时,的取值范围;y >0x (3)若点在该函数图像上,求点的坐标.P(m,m)P 【答案】.解:(1)根据题意得:,{a +4+c =-19a -12+c =-9解得:,{a =1c =-6所以抛物线的解析式为;y =x 2-4x -6(2)令,x 2-4x -6=0解得,,x 1=2+10x 2=2-10根据二次函数的性质可得时的取值范围是或y >0x x <2-10x >2+10(3)把代入,得,P(m,m)y =x 2-4x -6m =m 2-4m -6解得:,,m 1=-1m 2=6∴点的坐标为或.P (-1,-1)(6,6)故答案为:(1);(2)或;(3)点的坐标为y =x 2-4x -6x <2-10x >2+10P 或.(-1,-1)(6,6)21.我们把使得函数值为零的自变量的值称为函数的零点. 例如,对于函数y=-x+1,令y=0,可得x=1,我们就说x=1是函数y=-x+1的零点.己知函数y=x 2-2(m+1)x-2(m+2) (m 为常数) .(1)当m=-1时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点;(3)设函数的两个零点分别为和,且,求此时的函数解析式,并1x 2x 321121-=+x x 判断点(n+2,n 2-10)是否在此函数的图象上.【答案】(1)、当时,该函数为,令,可得.1m =-22y x =-0y =x =∴当时,该函数的零点为和. 1m =-x =x =(2)、令,得0y =[][]222(1)42(2)4(2)10m m m ∆=-+--+=++>∴无论取何值时,方程总有两个不相等的实数根,即m 22(1)2(2)0x m x m -+-+=无论取何值,该函数总有两个两个零点.m (3)、根据题意,得,,,122(1)x x m +=+122(2)x x m =-+∵,∴,即,解得.321121-=+x x 121223x x x x +=2(1)22(2)3m m +=-+1m =∴函数的解析式为.∴配方得,,把代入可得246y x x =--2(2)10y x =--2x n =+.210y n =-∴点在函数的图象上.)102(2-+n n ,246y x x =--考点:(1)、新定义型;(2)、二次函数的性质22.已知抛物线的顶点为A (1,4),抛物线与y 轴交于点B (0,3),与x 轴交于C 、D 两点。

中考数学总复习《二次函数图像与一元二次方程的综合应用》专项测试卷-附参考答案

中考数学总复习《二次函数图像与一元二次方程的综合应用》专项测试卷-附参考答案

中考数学总复习《二次函数图像与一元二次方程的综合应用》专项测试卷-附参考答案一、单选题(共12题;共24分)1.已知抛物线y=ax2+bx+c经过点(1,0)和点(0,−3),且对称轴在y轴的左侧,有下列结论:①a>0;②a+b=3;③抛物线经过点(−1,0);④关于x的一元二次方程ax2+bx+c=−1有两个不相等的实数根.其中,正确结论的个数是()A.0B.1C.2D.32.若关于x的一元二次方程(x−2)(x−3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②m>−14;③二次函数y=(x−x1)(x−x2)+m的图象与x轴的交点坐标分别为(2,0)和(3,0).其中正确的个数有()A.0B.1C.2D.33.如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的一元二次方程-x2+mx-t=0 (t为实数)在1<x<3的范围内有解,则t的取值范围是()A.-5<t≤4B.3<t≤4C.-5<t<3D.t>-54.如图,抛物线y=−x2+mx的对称轴为直线x=2,若关于x的一元二次方程−x2+mx−t=0(t为实数)在1≤x≤3的范围内有解,则t的取值错误的是()A.t=2.5B.t=3C.t=3.5D.t=45.若关于的方程x2+px+q=0没有实数根,则函数y=x2−px+q的图象的顶点一定在()A.x轴的上方B.x轴下方C.x轴上D.y轴上6.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如表所示:x…0√54…y…0.37﹣10.37…A.0或4B.√5或4﹣√5C.1或5D.无实根7.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx=−m有实数根,则m的最大()A.3B.−3C.−6D.98.若x1,x2(x1<x2)是方程(x﹣a)(x﹣b)=﹣1(a<b)的两根,则实数x1,x2,a,b的大小关系是()A.a<x1<x2<b B.x1<a<x2<b C.x1<a<b<x2D.x1<x2<a<b9.下列关于二次函数y=ax2-2ax+1(a>1)的图象与x轴交点的判断,下确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧10.已知b>0,二次函数y=ax2+bx+a2−1的图象为下列之一,则a的值为()A.1B.-1C.−1−√52D.−1+√5211.已知函数y=ax2+bx+c,当y>0时,−12<x<13.则函数y=cx2﹣bx+a的图象可能是下图中的()A.B.C.D.12.二次函数y=ax2+bx+c的部分图象如图所示,对称轴方程为x=−1,图象与x轴相交于点(1,0),则方程cx2+bx+a=0的根为()A.x1=1,x2=−3B.x1=−1C.x1=1,x2=−13D.x1=−1二、填空题(共6题;共6分)13.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=−1,与x轴的一个交点为(1 , 0),与y轴的交点为(0 , 3),则方程ax2+bx+c=0(a≠0)的解为.14.如图抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②a﹣b+c<0;③b+2a=0;④当y<0时,x的取值范围是﹣1<x<3;⑤当x<0时,y随x增大而增大;⑥方程ax2+bx+c=2有两个不等的实数根,其中结论正确的结论的序号是.15.二次函数y=x2+bx的对称轴为x=1,若关于x的一元二次方程x2+bx−c=0(c为实数),在﹣1≤x≤4范围内有解,则c的取值范围为.16.已知二次函数y=ax2+bx+c的图象如图所示,则方程ax2+bx+c=0的两根之和是.17.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是.18.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(−2,4),B(1,1),则方程ax2=bx+c的解是.三、综合题(共6题;共70分)19.某商场销售一批名牌衬衫:平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价促销措施,经市场调查发现:如果每件衬衫降价1元,那么平均每天就可多售出2件.(1)求出商场盈利与每件衬衫降价之间的函数关系式;(2)若每天盈利达1200元,那么每件衬衫应降价多少元?20.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.21.已知:二次函数y=ax2+bx+ 12(a>0,b<0)的图象与x轴只有一个公共点A.(1)当a=12时,求点A的坐标;(2)求A点的坐标(只含b的代数式来表示);(3)过点A的直线y=x+k与二次函数的图象相交于另一点B,当b≥﹣1时,求点B的横坐标m 的取值范围.22.已知抛物线y=x2-(m+1)x+m(1)求证:抛物线与x轴一定有交点;(2)若抛物线与x轴交于A(x1,0),B(x2,0)两点,x1﹤0﹤x2,且1OA−1OB=−34,求m的值. 23.十一黄金周期间,某商场销售一种成本为每件60元的服装,规定销售期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=-x+120(1)销售单价定为多少元时,该商场获得的利润恰为500元?(2)设该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少?24.如图,抛物线y=ax2+bx−4a(a≠0)经过A(−1,0),C(0,4)两点,与x轴交于另一点B,连接AC,BC.(1)求抛物线的解析式;(2)平行于x轴的直线y=−14与抛物线分别交于点D,E,求线段DE的长.参考答案1.【答案】D2.【答案】C3.【答案】B4.【答案】A5.【答案】A6.【答案】B7.【答案】A8.【答案】A9.【答案】D10.【答案】B11.【答案】A12.【答案】C13.【答案】x1=114.【答案】①③⑤⑥15.【答案】−1≤c≤816.【答案】217.【答案】a<518.【答案】x1=−219.【答案】(1)解:设每件降低x元,获得的总利润为y元则y=(40﹣x)(20+2x)=﹣2x2+60x+800(2)解:∵当y=1200元时,即﹣2x2+60x+800=1200∴x1=10,x2=20∵需尽快减少库存∴每件应降低20元时,商场每天盈利1200元。

九年级数学二次函数与一元二次方程(二)(含答案)

九年级数学二次函数与一元二次方程(二)(含答案)

学生做题前请先回答以下问题问题1:求解函数交点坐标,主要是____________,将函数问题转化为方程问题.问题2:结合一次函数、反比例函数以及二次函数的性质,思考函数y值比大小,主要利用函数的________和数形结合;两函数值比大小,借助数形结合,_____________________.二次函数与一元二次方程(二)一、单选题(共8道,每道12分)1.已知函数,其中为常数,且,若方程的两个根为,且,则的大小关系为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:二次函数图象与方程、不等式2.若一元二次方程的两个实数根分别为,则实数的大小关系为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:二次函数图象上点的坐标特征3.已知二次函数的图象与x轴交于两点,且,则实数的大小关系为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:二次函数图象平移4.如图,已知函数与的图象交于点P,若点P的纵坐标为1,则关于x的不等式的解集为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:数形结合思想5.如图,若抛物线与双曲线的交点A的横坐标为1,则关于x的不等式的解集是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:数形结合思想6.如图是二次函数图象的一部分,抛物线的顶点坐标为,与x轴的一个交点是,直线与抛物线交于A,B两点.下列结论:①;②;③方程有两个相等的实数根;④抛物线与x轴的另一个交点是;⑤当时,.其中正确的是( )A.①②③B.①③④C.①③⑤D.②④⑤答案:C解题思路:试题难度:三颗星知识点:二次函数图象7.已知函数,当直线y=k与此图象有两个公共点时,k的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:数形结合思想8.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),扇形的圆心角是60°,若抛物线与扇形OAB的边界总有两个公共点,则实数的取值范围是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:数形结合思想。

中考数学一轮复习学案:第12讲 二次函数

中考数学一轮复习学案:第12讲 二次函数

第12讲 二次函数【考纲要求】1.理解二次函数的有关概念.2.会用描点法画二次函数的图象,能从图象上认识二次函数的性质.3.会运用配方法确定二次函数图象的顶点、开口方向和对称轴,并会求解二次函数的最值问题.4.熟练掌握二次函数解析式的求法,并能用它解决有关的实际问题. 5.会用二次函数的图象求一元二次方程的近似解.【命题趋势】二次函数是中考的重点内容,题型主要有选择题、填空题及解答题,而且常与方程、不等式、几何知识等结合在一起综合考查,且一般为压轴题.中考命题不仅考查二次函数的概念、图象和性质等基础知识,而且注重多个知识点的综合考查以及对学生应用二次函数解决实际问题能力的考查.【考点探究】考点一、二次函数的图象及性质【例1】(1)二次函数y =-3x 2-6x +5的图象的顶点坐标是( ) A .(-1,8) B .(1,8) C .(-1,2) D .(1,-4)(2)已知抛物线y =ax 2+bx +c (a >0)的对称轴为直线x =1,且经过点(-1,y 1),(2,y 2),试比较y 1和y 2的大小:y 1________y 2.(填“>”“<”或“=”)解析:(1)抛物线的顶点坐标可以利用顶点坐标公式或配方法来求.∵-b2a =--62×(-3)=-1,4ac -b 24a =4×(-3)×5-(-6)24×(-3)=8, ∴二次函数y =-3x 2-6x +5的图象的顶点坐标是(-1,8).故选A.(2)点(-1,y 1),(2,y 2)不在对称轴的同一侧,不能直接利用二次函数的增减性来判断y 1,y 2的大小,可先根据抛物线关于对称轴的对称性,然后再用二次函数的增减性即可.设抛物线经过点(0,y 3),∵抛物线对称轴为直线x =1,∴点(0,y 3)与点(2,y 2)关于直线x =1对称.∴y 3=y 2. ∵a >0,∴当x <1时,y 随x 的增大而减小. ∴y 1>y 3.∴y 1>y 2. 答案:(1)A (2)>方法总结 1.将抛物线解析式写成y =a (x -h )2+k 的形式,则顶点坐标为(h ,k ),对称轴为直线x =h ,也可应用对称轴公式x =-b 2a ,顶点坐标⎝ ⎛⎭⎪⎫-b 2a,4ac -b 24a 来求对称轴及顶点坐标. 2.比较两个二次函数值大小的方法: (1)直接代入自变量求值法;(2)当自变量在对称轴两侧时,看两个数到对称轴的距离及函数值的增减性判断; (3)当自变量在对称轴同侧时,根据函数值的增减性判断.触类旁通1 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列结论中正确的是( )A .a >0B .当x >1时,y 随x 的增大而增大C .c <0D .3是方程ax 2+bx +c =0的一个根考点二、利用二次函数图象判断a ,b ,c 的符号【例2】如图,是二次函数y =ax 2+bx +c (a ≠0)的图象的一部分,给出下列命题:①a +b +c =0;②b >2a ;③ax 2+bx +c =0的两根分别为-3和1;④a -2b +c >0.其中正确的命题是__________.(只要求填写正确命题的序号)解析:由图象可知过(1,0),代入得到a +b +c =0;根据-b2a=-1,推出b =2a ;根据图象关于对称轴对称,得出与x 轴的交点是(-3,0),(1,0);由a -2b +c =a -2b -a -b =-3b <0,根据结论判断即可.答案:①③方法总结 根据二次函数的图象确定有关代数式的符号,是二次函数中的一类典型的数形结合问题,具有较强的推理性.解题时应注意a 决定抛物线的开口方向,c 决定抛物线与y 轴的交点,抛物线的对称轴由a ,b 共同决定,b 2-4ac 决定抛物线与x 轴的交点情况.当x =1时,决定a +b +c 的符号,当x =-1时,决定a -b +c 的符号.在此基础上,还可推出其他代数式的符号.运用数形结合的思想更直观、更简捷.触类旁通2 小明从如图的二次函数y =ax 2+bx +c 的图象中,观察得出了下面五个结论:①c <0;②abc >0;③a -b +c >0;④2a -3b =0;⑤c -4b >0,你认为其中正确的结论有( )A .2个B .3个C .4个D .5个考点三、二次函数图象的平移【例3】二次函数y =-2x 2+4x +1的图象怎样平移得到y =-2x 2的图象( ) A .向左平移1个单位,再向上平移3个单位 B .向右平移1个单位,再向上平移3个单位C .向左平移1个单位,再向下平移3个单位D .向右平移1个单位,再向下平移3个单位解析:首先将二次函数的解析式配方化为顶点式,然后确定如何平移,即y =-2x 2+4x +1=-2(x -1)2+3,将该函数图象向左平移1个单位,再向下平移3个单位就得到y =-2x 2的图象.答案:C方法总结 二次函数图象的平移实际上就是顶点位置的变换,因此先将二次函数解析式转化为顶点式确定其顶点坐标,然后按照“左加右减、上加下减”的规律进行操作.触类旁通3 将二次函数y =x 2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数解析式是( )A .y =(x -1)2+2B .y =(x +1)2+2C .y =(x -1)2-2D .y =(x +1)2-2 考点四、确定二次函数的解析式【例4】如图,四边形ABCD 是菱形,点D 的坐标是(0,3),以点C 为顶点的抛物线y =ax 2+bx +c 恰好经过x 轴上A ,B 两点.(1)求A ,B ,C 三点的坐标;(2)求经过A ,B ,C 三点的抛物线的解析式. 解:(1)由抛物线的对称性可知AE =BE . ∴△AOD ≌△BEC . ∴OA =EB =EA .设菱形的边长为2m ,在Rt △AOD 中, m 2+(3)2=(2m )2,解得m =1.∴DC =2,OA =1,OB =3.∴A ,B ,C 三点的坐标分别为(1,0),(3,0),(2,3).(2)解法一:设抛物线的解析式为y =a (x -2)2+3,代入A 的坐标(1,0),得a =- 3. ∴抛物线的解析式为y =-3(x -2)2+ 3.解法二:设这个抛物线的解析式为y =ax 2+bx +c ,由已知抛物线经过A (1,0),B (3,0),C (2,3)三点,得⎩⎪⎨⎪⎧a +b +c =0,9a +3b +c =0,4a +2b +c =3,解这个方程组,得⎩⎪⎨⎪⎧a =-3,b =43,c =-3 3.∴抛物线的解析式为y =-3x 2+43x -3 3.方法总结 用待定系数法求二次函数解析式,需根据已知条件,灵活选择解析式:若已知图象上三个点的坐标,可设一般式;若已知二次函数图象与x 轴两个交点的横坐标,可设交点式;若已知抛物线顶点坐标或对称轴与最大(或小)值,可设顶点式.触类旁通4 已知抛物线y =-12x 2+(6-m 2)x +m -3与x 轴有A ,B 两个交点,且A ,B 两点关于y 轴对称.(1)求m 的值;(2)写出抛物线的关系式及顶点坐标. 考点五、二次函数的实际应用【例5】我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售收益为:每投入x 万元,可获得利润P =-1100(x -60)2+41(万元).当地政府拟在“十二·五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的收益为:每投入x 万元,可获利润Q =-99100(100-x )2+2945(100-x )+160(万元).(1)若不进行开发,求5年所获利润的最大值是多少;(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少; (3)根据(1)、(2),该方案是否具有实施价值?解:(1)当x =60时,P 最大且为41万元,故五年获利最大值是41×5=205(万元). (2)前两年:0≤x ≤50,此时因为P 随x 的增大而增大,所以x =50时,P 值最大且为40万元,所以这两年获利最大为40×2=80(万元).后三年:设每年获利为y 万元,当地额为x 万元,则外地额为(100-x )万元,所以y =P +Q =⎣⎡⎦⎤-1100(x -60)2+41+⎝⎛⎭⎫-99100x 2+2945x +160=-x 2+60x +165=-(x -30)2+1 065,表明x =30时,y 最大且为1 065,那么三年获利最大为1 065×3=3 195(万元),故五年获利最大值为80+3 195-50×2=3 175(万元).(3)有极大的实施价值.方法总结 运用二次函数的性质解决生活和实际生产中的最大值和最小值问题是最常见的题目类型,解决这类问题的方法是:1.列出二次函数的关系式,列关系式时,要根据自变量的实际意义,确定自变量的取值范围.2.在自变量取值范围内,运用公式法或配方法求出二次函数的最大值和最小值.触类旁通5 一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x 倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x 倍,则预计今年年销售量将比去年年销售量增加x 倍(本题中0<x ≤11).(1)用含x 的代数式表示,今年生产的这种玩具每件的成本为__________元,今年生产的这种玩具每件的出厂价为__________元;(2)求今年这种玩具的每件利润y (元)与x 之间的函数关系式;(3)设今年这种玩具的年销售利润为w 万元,求当x 为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.【经典考题】1.(乐山)二次函数y =ax 2+bx +1(a ≠0)的图象的顶点在第一象限,且过点(-1,0).设t =a +b +1,则t 值的变化范围是( )A .0<t <1B .0<t <2C .1<t <2D .-1<t <12.(菏泽)已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c和反比例函数y=ax在同一平面直角坐标系中的图象大致是()'3.(上海)将抛物线y=x2+x向下平移2个单位,所得新抛物线的表达式是________.4.(枣庄)二次函数y=x2-2x-3的图象如图所示.当y<0时,自变量x的取值范围是______________.(第4题图)5.(珠海)如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(第5题图)(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.6.(益阳)已知:如图,抛物线y=a(x-1)2+c与x轴交于点A(1-3,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P′(1,3)处.(1)求原抛物线的解析式;(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P ′作x 轴的平行线交抛物线于C ,D 两点,将翻折后得到的新图象在直线CD 以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W ,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD )的比非常接近黄金分割比5-12(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:5≈2.236,6≈2.449,结果可保留根号)【模拟预测】1.抛物线y =x 2-6x +5的顶点坐标为( ) A .(3,-4) B .(3,4)C .(-3,-4)D .(-3,4)2.由二次函数y =2(x -3)2+1,可知( ) A .其图象的开口向下B .其图象的对称轴为直线x =-3C .其最小值为1D .当x <3时,y 随x 的增大而增大3.已知函数y =(k -3)x 2+2x +1的图象与x 轴有交点,则k 的取值范围是( ) A .k <4 B .k ≤4C .k <4且k ≠3D .k ≤4且k ≠34.如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( )(第4题图)A .m =n ,k >hB .m =n ,k <hC .m >n ,k =hD .m <n ,k =h5.如图,已知二次函数y =x 2+bx +c 的图象经过点A (-1,0),B (1,-2),该图象与x 轴的另一交点为C ,则AC 长为__________.(第5题图)6.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x …-2-1012…y …04664…从上表可知,下列说法中正确的是__________.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x=1 2;④在对称轴左侧,y随x增大而增大.7.抛物线y=-x2+bx+c的图象如图所示,若将其向左平移2个单位,再向下平移3个单位,则平移后的解析式为__________.8.长江中下游地区发出了特大旱情,为抗旱保丰收,某地政府制定了农户购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所的金额与政府补贴的额度存在下表所示的函数对应关系.(1)分别求y1和y2的函数解析式;(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.9.如图,已知二次函数L1:y=x2-4x+3与x轴交于A,B两点(点A在点B的左边),与y 轴交于点C.(1)写出二次函数L 1的开口方向、对称轴和顶点坐标; (2)研究二次函数L 2:y =kx 2-4kx +3k (k ≠0).①写出二次函数L 2与二次函数L 1有关图象的两条相同的性质;②若直线y =8k 与抛物线L 2交于E ,F 两点,问线段EF 的长度是否发生变化?如果不会,请求出EF 的长度;如果会,请说明理由.参考答案【考点探究】触类旁通1.D触类旁通2.C ∵抛物线开口向上,∴a >0; ∵抛物线与y 轴交于负半轴,∴c <0;对称轴在y 轴右侧,a ,b 异号,故b <0,∴abc >0. 由题图知当x =-1时,y >0, 即a -b +c >0.对称轴是直线x =13,∴-b 2a =13,即2a +3b =0;由⎩⎨⎧a -b +c >0,2a +3b =0,得c -52b >0.又∵b <0,∴c -4b >0.∴正确的结论有4个.触类旁通3.A 因为将二次函数y =x 2向右平移1个单位,得y =(x -1)2,再向上平移2个单位后,得y =(x -1)2+2,故选A.触类旁通4.解:(1)∵抛物线与x 轴的两个交点关于y 轴对称,∴抛物线的对称轴即为y 轴.∴-6-m 22×⎝⎛⎭⎫-12=0.∴m =±6.又∵抛物线开口向下,∴m -3>0,即m >3.∴m =6. (2)∵m =6,∴抛物线的关系式为y =-12x 2+3,顶点坐标为(0,3).触类旁通5.解:(1)(10+7x ) (12+6x ) (2)y =(12+6x )-(10+7x )=2-x . (3)∵w =2(1+x )(2-x )=-2x 2+2x +4, ∴w =-2(x -0.5)2+4.5. ∵-2<0,0<x ≤11,∴当x =0.5时,w 最大=4.5(万元).答:当x 为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.【经典考题】1.B ∵二次函数y =ax 2+bx +1的顶点在第一象限, 且经过点(-1,0),∴a -b +1=0,a <0,b >0.由a =b -1<0得到b <1,结合上面b >0,∴0<b <1①; 由b =a +1>0得到a >-1,结合上面a <0, ∴-1<a <0②.∴由①②得-1<a +b <1,且c =1, 得到0<a +b +1<2, ∴0<t <2.2.C ∵二次函数图象开口向下,∴a <0.∵对称轴x =-b2a<0,∴b <0.∵二次函数图象经过坐标原点,∴c =0.∴一次函数y =bx +c 过第二、四象限且经过原点,反比例函数y =ax 位于第二、四象限,故选C.3.y =x 2+x -2 因为抛物线向下平移2个单位,则y 值在原来的基础上减2,所以新抛物线的表达式是y =x 2+x -2.4.-1<x <3 因为二次函数的图象与x 轴两个交点的坐标分别是(-1,0),(3,0),由图象可知,当y <0时,自变量x 的取值范围是-1<x <3.5.解:(1)由题意,得(1-2)2+m =0,解得m =-1,∴y =(x -2)2-1.当x =0时,y =(0-2)2-1=3,∴C (0,3). ∵点B 与C 关于直线x =2对称,∴B (4,3).于是有⎩⎨⎧ 0=k +b ,3=4k +b ,解得⎩⎨⎧k =1,b =-1.∴y =x -1.(2)x 的取值范围是1≤x ≤4.6.解:(1)∵P 与P ′(1,3)关于x 轴对称, ∴P 点坐标为(1,-3).∵抛物线y =a (x -1)2+c 过点A (1-3,0),顶点是P (1,-3),∴⎩⎨⎧a (1-3-1)2+c =0,a (1-1)2+c =-3,解得⎩⎨⎧a =1,c =-3.则抛物线的解析式为y =(x -1)2-3,即y =x 2-2x -2. (2)∵CD 平行于x 轴,P ′(1,3)在CD 上, ∴C ,D 两点纵坐标为3,由(x -1)2-3=3,得x 1=1-6,x 2=1+6, ∴C ,D 两点的坐标分别为(1-6,3),(1+6,3), ∴CD =26,∴“W ”图案的高与宽(CD )的比=326=64(或约等于0.612 4). 【模拟预测】1.A 2.C3.D 由题意,得22-4(k -3)≥0,且k -3≠0,解得k ≤4且k ≠3,故选D. 4.A5.3 ∵把A (-1,0),B (1,-2)代入y =x 2+bx +c 得⎩⎨⎧ 1-b +c =0,1+b +c =-2,解得⎩⎨⎧b =-1,c =-2,∴y =x 2-x -2,解x 2-x -2=0得x 1=-1,x 2=2,∴C 点坐标为(2,0),∴AC =3.6.①③④ 由图表可知当x =0时,y =6;当x =1时,y =6,∴抛物线的对称轴是直线x =12,③正确;∵抛物线与x 轴的一个交点为(-2,0),对称轴是直线x =12,∴抛物线与x 轴的另一个交点为(3,0),①正确;由图表可知,在对称轴左侧,y 随x 增大而增大,④正确;当x =12时,y取得最大值,②错误.7.y =-x 2-2x 由题中图象可知,对称轴为直线x =1,所以-b-2=1,即b =2.把点(3,0)代入y =-x 2+2x +c ,得c =3.故原图象的解析式为y =-x 2+2x +3,即y =-(x -1)2+4,然后向左平移2个单位,再向下平移3个单位,得y =-(x -1+2)2+4-3,即y =-x 2-2x .8.解:(1)由题意,得5k =2,∴k =25,∴y 1=25x ;⎩⎨⎧4a +2b =2.4,16a +4b =3.2,∴⎩⎨⎧a =-15,b =85,∴y 2=-15x 2+85x . (2)设该农户t 万元购Ⅱ型设备,(10-t )万元购Ⅰ型设备,共获补贴Q 万元.∴y 1=25(10-t )=4-25t ,y 2=-15t 2+85t .∴Q =y 1+y 2=4-25t -15t 2+85t =-15t 2+65t +4=-15(t -3)2+295.∴当t =3时,Q 最大=295.∴10-t=7.即7万元购Ⅰ型设备,3万元购Ⅱ型设备,能获得最大补贴金额,最大补贴金额为5.8万元.9.解:(1)二次函数L 1的开口向上,对称轴是直线x =2,顶点坐标(2,-1).(2)①二次函数L2与L1有关图象的两条相同的性质:对称轴为直线x=2或顶点的横坐标为2;都经过A(1,0),B(3,0)两点.②线段EF的长度不会发生变化.∵直线y=8k与抛物线L2交于E,F两点,∴kx2-4kx+3k=8k,∵k≠0,∴x2-4x+3=8,解得x1=-1,x2=5.∴EF=x2-x1=6,∴线段EF的长度不会发生变化.11 / 11。

(完整版)中考数学一轮复习-二次函数的图像和性质(含答案),推荐文档

(完整版)中考数学一轮复习-二次函数的图像和性质(含答案),推荐文档
1、二次函数y=kx2+bx+c(a≠0)的同象是一条,其定点坐标为对称轴式
2、在抛物y=kx2+bx+c(a≠0)中:
①、当a>0时,y口向,当x< 时,y随x的增大而,当x时,y随x的增大而增大,
②、当a<0时,开口向当x< 时,y随x增大而增大,当x时,y随x增大而减小
注意2:注意几个特殊形式的抛物线的特点
a:开口方向向上则a0,向下则a0;|a|越大,开口越
b:对称轴位置,与a联系一起,用判断b=0时,对称轴是
c:与y轴的交点:交点在y轴正半轴上,则c0负半轴上则c0,当c=0时,抛物点过点
【名师提醒:在抛物线y= ax2+bx+c中,当x=1时,y=当x=-1时y=,经常根据对应的函数值判考a+b+c和a-b+c的符号】
综上,正确的结论有②④.
故选C
点评:此题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).
③由两函数图象可知,抛物线y1=a(x+2)2-3过原点,当x=0时,y2= (0-3)2+1= ,故y2-y1= ,故本小题错误;
④∵物线y1=a(x+2)2-3与y2= (x-3)2+1交于点A(1,3),
∴y1的对称轴为x=-2,y2的对称轴为x=3,
∴B(-5,3),C(5,3)

中考数学专题复习:二次函数与一元二次方程

中考数学专题复习:二次函数与一元二次方程

中考数学专题复习:二次函数与一元二次方程一、选择题1.函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是( ) A.x<-4或x>2 B.-4<x<2C.x<0或x>2 D.0<x<22.下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值:x 1 1.1 1.2 1.3 1.4y ﹣1 ﹣0.49 0.04 0.59 1.16那么方程x2+3x﹣5=0的一个近似根是()A.1 B.1.1 C.1.2 D.1.33.二次函数y=(x﹣a)(x﹣b)﹣2(a<b)与x轴的两个交点的横坐标分别为m和n,且m<n,下列结论正确的是()A.m<a<n<b B.a<m<b<nC.m<a<b<n D.a<m<n<b4.若二次函数y=ax2+bx+c的图象经过点(﹣1,0)和(3,0),则方程ax2+bx+c=0的解为()A.x1=﹣3,x2=﹣1 B.x1=1,x2=3C.x1=﹣1,x2=3 D.x1=﹣3,x2=15.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(,0)B.(3,0)C.(,0)D.(2,0)6.已知二次函数y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0的解是( )A .x 1=-3,x 2=1B .x 1=3,x 2=1C .x =-3D .x =-2 7.如图,在平面直角坐标系中,抛物线y =﹣x 2+2x 的顶点为A 点,且与x 轴的正半轴交于点B ,P 点为该抛物线对称轴上一点,则OP+AP 的最小值为( )A .B .C .3D .28.根据下表中二次函数y =ax 2+bx+c (a≠0)的对应值:x 3.23 3.24 3.25 3.26 y﹣0.06﹣0.020.030.09判断方程ax 2+bx+c =0(a≠0)的一个解x 的范围是( ) A .3.23<x <3.24 B .3.24<x <3.25 C .3.25<x <3.26 D .不能确定9. 如图,抛物线y =12x 2-7x +452与x 轴交于点A ,B ,把抛物线在x 轴及其下方的部分记作C 1,将C 1向左平移得到C 2,C 2与x 轴交于点B ,D ,若直线y =12x +m 与C 1,C 2共有3个不同的交点,则m 的取值范围是( )A .-458<m <-52B .-298<m <-12C .-298<m <-52D .-458<m <-12二、填空题10.将函数y =x 2+2x ﹣3的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的是新函数y =|x 2+2x ﹣3|的图象,若该新函数图象与直线y =﹣x+b 有两个交点,则b 的取值范围为________.11.若抛物线y =﹣x 2﹣6x+m 与x 轴没有交点,则m 的取值范围是________.12. 如图,已知抛物线y=x2+2x-3与x轴的两个交点分别是A,B(点A在点B的左侧).(1)点A的坐标为__________,点B的坐标为________;(2)利用函数图象,求得当y<5时x的取值范围为________.13.已知二次函数y=ax2+bx+c(a≠0,a,b,c,为常数),对称轴为直线x=1,它的部分自变量x与函数值y的对应值如下表.请写出ax2+bc+c=0的一个正数解的近似值________(精确到0.1)x ﹣0.4 ﹣0.3 ﹣0.2 ﹣0.1 y=ax2+bx+c 0.92 0.38 ﹣0.12 ﹣0.5814.已知函数y=a(x+2)(x﹣),有下列说法:①若平移函数图象,使得平移后的图象经过原点,则只有唯一平移方法:向右平移2个单位;②当0<a<1时,抛物线的顶点在第四象限;③方程a(x+2)(x﹣)=﹣4必有实数根;④若a<0,则当x<﹣2时,y随x的增大而增大.其中说法正确的是_________.(填写序号)15. 如图,抛物线y=ax2与直线y=bx+c的两个交点分别为A(-2,4),B(1,1),则方程ax2=bx+c的解是________.16.已知抛物线y1=(x﹣x1)(x﹣x2)与x轴交于A,B两点,直线y2=2x+b经过点(x1,0).若函数w=y1﹣y2的图象与x轴只有一个公共点,则线段AB的长为________.三、解答题17.有一个二次函数满足以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x2,y2)(点B在点A的右侧);②对称轴是x=3;③该函数有最小值是﹣2.(1)请根据以上信息求出二次函数表达式;(2)将该函数图象中x>x2部分的图象向下翻折与原图象未翻折的部分组成图象“G”,试结合图象分析:平行于x轴的直线y=m与图象“G”的交点的个数情况.18. 已知二次函数y=x2+mx+n的图象经过点P(-3,1),对称轴是直线x=-1.(1)求m,n的值;(2)当x取何值时,y随x的增大而减小?19.如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0).请解答下列问题:(1)求抛物线的解析式;(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH的长.20.如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和B(3,0),与y 轴交于点C.(I)求二次函数的表达式.(2)求二次函数图象的顶点坐标和对称轴.21. 利用图象解一元二次方程x2-2x-1=0时,我们采用的一种方法是在直角坐标系中画出抛物线y=x2和直线y=2x+1,两图象交点的横坐标就是该方程的解.(1)请你再给出一种利用图象求方程x2-2x-1=0的解的方法;(2)已知函数y=x3的图象(如图),求方程x3-x-2=0的解(精确到0.1).22.阅读材料,解答问题.例:用图象法解一元二次不等式:x2﹣2x﹣3>0解:设y=x2﹣2x﹣3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3.∴由此得抛物线y=x2﹣2x﹣3的大致图象如图所示.观察函数图象可知:当x<﹣1或x>3时,y>0.∴x2﹣2x﹣3>0的解集是:x<﹣1或x>3.(1)观察图象,直接写出一元二次不等式:x2﹣2x﹣3>0的解集是________;(2)仿照上例,用图象法解一元二次不等式:x2﹣1>0.23.如图,抛物线y=ax2﹣3ax+4(a<0)与x轴交于A、B两点,与y轴交于点C,直线y=m,交抛物线于D、E两点.(1)当a=﹣时,求A,B两点的坐标;(2)当m=2,DE=4时,求抛物线的解析式;(3)当a=﹣1时,方程ax2﹣3ax+4=m在﹣6≤x<4的范围内有实数解,请直接写出m的取值范围:________.24.已知函数y=x2+(b﹣1)x+c(b,c为常数),这个函数的图象与x轴交于两个不同的点A(x1,0)和B(x2,0).若x1,x2满足x2﹣x1>1;(1)求证:b2>2(b+2c);(2)若t<x1,试比较t2+bt+c与x1的大小,并加以证明.参考答案10.b>或﹣<b<11.m<﹣9.12. (1)(-3,0) (1,0) (2)-4<x<213.2.2.(答案不唯一,与其相近即可)14.②③.15. x1=-2,x2=116.617.解:(1)由上述信息可知该函数图象的顶点坐标为:(3,﹣2),设二次函数的表达式为:y=a(x﹣3)2﹣2.∵该函数图象经过点A(1,0),∴0=a(1﹣3)2﹣2,解得a=∴二次函数解析式为:y=(x﹣3)2﹣2.(2)如图所示:当m>0时,直线y=m与G有一个交点;当m=0时,直线y=m与G有两个交点;当﹣2<m<0时,直线y=m与G有三个交点;当m=﹣2时,直线y=m与G有两个交点;当m<﹣2时,直线y=m与G有一个交点.18. 解:(1)∵二次函数y=x2+mx+n的图象经过点P(-3,1),对称轴是直线x=-1,∴⎩⎪⎨⎪⎧1=9-3m +n ,-m 2=-1,解得⎩⎪⎨⎪⎧m =2,n =-2.(2)由(1)知二次函数的解析式为y =x 2+2x -2. ∵a =1>0,∴抛物线的开口向上, ∴当x ≤-1时,y 随x 的增大而减小.19. 解:(1)∵抛物线y =x 2+bx+c 经过点A (﹣1,0),B (3,0), ∴,解得:.∴抛物线的解析式为:y =x 2﹣2x ﹣3; (2)如图,连接BE , ∵点E (2,m )在抛物线上, ∴m =4﹣4﹣3=﹣3, ∴E (2,﹣3), ∴BE ==,∵点F 是AE 中点,抛物线的对称轴与x 轴交于点H ,即H 为AB 的中点, ∴FH 是三角形ABE 的中位线, ∴FH =BE =×=.20. 解:(1)用交点式函数表达式得:y =(x ﹣1)(x ﹣3)=x 2﹣4x+3; 故二次函数表达式为:y =x 2﹣4x+3; (2)函数的对称轴为直线x =﹣=﹣=2,当x =2时,y =x 2﹣4x+3=4﹣8+3=﹣1, 故顶点坐标为(2,﹣1).21. 解:(1)答案不唯一,如在直角坐标系中画出抛物线y =x 2-1和直线y =2x ,其交点的横坐标就是方程的解.(2)在图中画出直线y =x +2,与函数y =x 3的图象交于点B ,得点B 的横坐标x ≈1.5, ∴方程的解为x ≈1.5.22.解:(1)x<﹣1或x>3;(2)设y=x2﹣1,则y是x的二次函数,∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2﹣1=0,解得x1=﹣1,x2=1.∴由此得抛物线y=x2﹣1的大致图象如图所示.观察函数图象可知:当x<﹣1或x>1时,y>0.∴x2﹣1>0的解集是:x<﹣1或x>1.23.解:(1)当a=﹣时,令y=﹣x2﹣3×(﹣)x+4=0,解得:x=5或﹣2,故点A、B的坐标分别为(5,0)、(﹣2,0);(2)函数的对称轴为x=,∵DE=4,m=2,故点D(,2),将点D的坐标代入y=ax2﹣3ax+4并解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+4;(3)当a=﹣1时,y=﹣x2+3x+4,令y=0,则x=﹣6或4,当x=﹣6时,y=﹣x2+3x+4=﹣50,函数的对称轴为x=,则顶点坐标为(,),当﹣6≤x<4时,﹣50≤y≤,故m的取值范围为:﹣50≤m≤,故答案为:﹣50≤m≤.24.证明:(1)∵令y=x2+(b﹣1)x+c中y=0,得到x2+(b﹣1)x+c=0,∴x=,又x2﹣x1>1,∴,∴b2﹣2b+1﹣4c>1,∴b2>2(b+2c);(2)由已知x2+(b﹣1)x+c=(x﹣x1)(x﹣x2),∴x2+bx+c=(x﹣x1)(x﹣x2)+x,∴t2+bt+c=(t﹣x1)(t﹣x2)+t,t2+bt+c﹣x1=(t﹣x1)(t﹣x2)+t﹣x1=(t﹣x1)(t﹣x2+1),∵t<x1,∴t﹣x1<0,∵x2﹣x1>1,∴t<x1<x2﹣1,∴t﹣x2+1<0,∴(t﹣x1)(t﹣x2+1)>0,即t2+bt+c>x1.。

中考数学总复习《二次函数图像与一元二次方程的综合应用》练习题附带答案

中考数学总复习《二次函数图像与一元二次方程的综合应用》练习题附带答案

中考数学总复习《二次函数图像与一元二次方程的综合应用》练习题附带答案一、单选题(共12题;共24分)1.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴是直线x=12,且经过点(2,0),下列说法:①abc>0;②b2﹣4ac>0;③x=﹣1是关于x的方程ax2+bx+c=0的一个根;④a+b=0.其中正确的个数为()A.1B.2C.3D.42.若二次函数y=ax2﹣4ax+c的图象经过点(﹣1,0),则方程ax2﹣4ax+c=0的解为()A.x1=﹣1,x2=﹣5B.x1=5,x2=1C.x1=﹣1,x2=5D.x1=1,x2=﹣53.已知抛物线y=ax2+bx+c经过点(−4,m),(−3,n)若x1,x2是关于x的一元二次方程ax2+bx+c=0的两个根,且−4<x1<−3,x2>0则下列结论一定正确的是()A.m+n>0B.m−n<0C.m⋅n<0D.m n>04.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a +c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个B.3个C.2个D.1个5.设抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动,抛物线与x轴交于C,D两点(C在D 的左侧).若点A,B的坐标分别为(﹣2,3)和(1,3),给出下列结论:①c<3;②当x<﹣3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB为平行四边形时,a=﹣43.其中正确的是()A.①②④B.①③④C.②③D.②④6.已知二次函数y=x2−2x+m(m为常数)的图象与x轴的一个交点为(3,0),则关于x 的一元二次方程x2−2x+m=0的两个实数根是()A.x1=−1,x2=3B.x1=1C.x1=−1,x2=1D.x1=37.根据下列表格中的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的个数是()x 6.17 6.18 6.19 6.20y=ax2+bx+c0.020.010.020.04D.1或28.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(-1,0)则①二次函数的最大值为a+b+c;②a-b+c<0;③b2-4ac<0;④当y>0时,-1<x<3其中正确的个数是()A.1B.2C.3D.49.二次函数y=ax2+bx+c的部分图像如图所示,可知方程ax2+bx+c=0的所有解的积为()A.-4B.4C.5D.-510.抛物线y=﹣x2+bx+3的对称轴为直线x=﹣1,若关于x的一元二次方程﹣x2+bx+3﹣t=0(t为实数)在﹣2<x<3的范围内有实数根,则t的取值范围是()A.﹣12<t≤3B.﹣12<t<4C.﹣12<t≤4D.﹣12<t<311.二次函数y=ax2−2ax+c(a≠0)的图象过点(3,0),方程ax2−2ax+c=0的解为()A.x1=−3,x2=−1B.x1=−1C.x1=1,x2=3D.x1=−312.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(−1,0),其部分图象如图所示,下列结论中正确的有()①4ac<b2,②方程ax2+bx+c=0的两个根是x1=−1,x2=3③3a−c>0,④当y>0时,x的取值范围是−1≤x≤3.A.①②B.①②③C.①③④D.②④二、填空题(共6题;共6分)13.已知二次函数y=﹣x2+bx+c的顶点为(1,5),那么关于x的一元二次方程﹣x2+bx+c﹣m=0有两个相等的实数根,则m=.14.已知关于x的一元二次方程(x−2)(x−3)=m有实根x1,x2,且x1<x2,现有下列说法:①当)(x−m=0时,x1=2,x2=3;②当m>0时,2<x1<x2<3;③m>−14;④二次函数y=(x−x1x2)−m的图象与x轴的交点坐标为(2,0)和(3,0). 其中正确的有.15.如图所示为抛物线y=ax2−2ax+3,则一元二次方程ax2−2ax+3=0两根为.16.二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t 为实数)在﹣2<x<6的范围内有解,则t的取值范围是.17.如图,已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是.18.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②m+n=3;③抛物线与x轴的另一个交点是(﹣1,0);④方程ax2+bx+c=3有两个相等的实数根;⑤当1≤x≤4时,有y2<y1,其中正确的是三、综合题(共6题;共75分)19.已知抛物线y=﹣2x2+4x+c.(1)若抛物线与x轴有两个交点,求c的取值范围;(2)若抛物线经过点(﹣1,0),求方程﹣2x2+4x+c=0的根.20.已知P(-3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点.(1)求b的值;(2)判断关于x的一元二次方程2x2+bx+1=0是否有实数根,若有求出实数根;若没有请说明理由.21.在一次羽毛球比赛中,甲运动员在离地面53米的P点处发球,球的运动轨迹PAN可看作是一条抛物线的一部分,当球运动到最高点A处时,其高度为3米,离甲运动员站立地点O的水平距离为5米,球网BC离点O的水平距离为6米,以点O为原点建立平面直角坐标系,回答下列问题.(1)求抛物线的解析式(不要求些出自变量的取值范围);(2)羽毛球场地底线距离球网BC的水平距离为6米,此次发球是否会出界?(3)乙运动员在球场上M(m,0)处接球,乙原地起跳可接球的最大高度为2.5米,若乙因接球高度不够而失球,求m的取值范围.22.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加,某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=−2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.并指出该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(2)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?23.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程y=ax2+bx+c的两个根;(2)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围;(3)若抛物线与直线y=2x−2相交于A(1,0),B(2,2)两点,写出抛物线在直线下方时x 的取值范围.24.已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)求出b、c的值,并写出此二次函数的解析式;(2)根据图象,直接写出函数值y为正数时,自变量x的取值范围;(3)当﹣1≤x≤2时,求y的取值范围.参考答案1.【答案】C 2.【答案】C 3.【答案】C 4.【答案】B 5.【答案】D 6.【答案】A 7.【答案】A 8.【答案】B 9.【答案】D 10.【答案】C 11.【答案】B 12.【答案】A 13.【答案】5 14.【答案】①③ 15.【答案】x 1=−1 16.【答案】﹣1≤t <2417.【答案】有两个同号不等实数根 18.【答案】①②④19.【答案】(1)解:∵抛物线与x 轴有两个交点∴b 2﹣4ac >0 即16+8c >0 解得c >﹣2(2)解:由y=﹣2x 2+4x+c 得抛物线的对称轴为直线x=1 ∵抛物线经过点(﹣1,0)∴抛物线与x 轴的另一个交点为(3,0) ∴方程﹣2x 2+4x+c=0的根为x 1=﹣1,x 2=3.20.【答案】(1)解:∵抛物线经过P (-3,m )和Q (1,m )∴抛物线的对称轴为直线x=−3+12=-1∴-b 2×2=−1 ∴b=4;(2)解:方程有实数解.对于方程2x 2+4x+1=0 ∵Δ=42-4×2×1=8>0∴关于x 的一元二次方程2x 2+4x+1=0有两个不相等的实数根;∴x=−4±√82×2=−2±√22∴x 1=−1+√22,x 2=−1−√22.21.【答案】(1)解:设抛物线的解析式为y =a (x ﹣5)2+3,由题意,得 53=a (0﹣5)2+3;a =﹣ 475.∴抛物线的解析式为:y =﹣ 475 (x ﹣5)2+3(2)解:当y =0时,﹣ 475(x ﹣5)2+3=0解得:x 1=﹣ 52 (舍去),x 2= 252即ON = 252∵OC =6∴CN = 252 ﹣6= 132 >6∴此次发球会出界 (3)解:由题意,得 2.5=﹣ 475(m ﹣5)2+3;解得:m 1=5+ 5√64 ,m 2=5﹣ 5√64(舍去)∵m >6∴6<m <5+ 5√64. ∴m 的取值范围是6<m <5+ 5√6422.【答案】(1)解:根据题意得W =(x −20)(−2x +80) =−2x 2+120x −1600 =−2(x −30)2+200∴当x =30时,每天的利润最大,最大利润为200元. (2)令−2(x −30)2+200=150,解得:x =35或x =25 ∵这种产品的销售价不高于每千克28元 ∴x =25.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.23.【答案】(1)解:∵函数图象与x轴的两个交点坐标为(1,0)(3,0)∴方程的两个根为x1=1(2)解:∵二次函数的顶点坐标为(2,2)∴若方程ax2+bx+c=k有两个不相等的实数根,则k的取值范围为k<2(3)解:∵抛物线与直线y=2x−2相交于A(1,0),B(2,2)两点由图象可知,抛物线在直线下方时x的取值范围为:x<1或x>2.24.【答案】(1)解:∵二次函数图象与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3)∴x=﹣1,y=0代入y=﹣x2+bx+c得:﹣1﹣b+c=0①把x=0,y=3代入y=﹣x2+bx+c得:c=3把c=3代入①,解得b=2则二次函数解析式为y=﹣x2+2x+3;(2)解:令二次函数解析式中的y=0得:﹣x2+2x+3=0可化为:(x﹣3)(x+1)=0解得:x1=3,x2=﹣1由函数图象可知:当﹣1<x<3时,y>0;(3)解:由抛物线的表达式知,抛物线的对称轴为直线x=1当﹣1≤x≤2时,y在x=﹣1和顶点处取得最小和最大值当x=﹣1时,y=0当x=1时,y=﹣x2+2x+3=4故当﹣1≤x≤2时,求y的取值范围0≤y≤4.。

初中数学中考一轮复习专题5 二次函数重点、考点知识、方法总结及真题练习

初中数学中考一轮复习专题5 二次函数重点、考点知识、方法总结及真题练习

【答案】 【解析】解:(1)把 A(0,﹣1)代入 y1=a(x﹣2)2,得:﹣1=4a,即 a=﹣ ,
∴二次函数解析式为 y1=﹣ (x﹣2)2=﹣ a2+a﹣1;
设直线 AB 解析式为 y=kx+b,
把 A(0,﹣1),B(2,0)代入得:

解得:k= ,b=﹣1,
则直线 AB 解析式为 y= x﹣1;
选叏的五点为:顶点、不 y 轴的交点 0,c 、以及 0,c 关于对称轴对称的点 2h ,c 、 不 x 轴的交点 x1 ,0 , x2 ,0 (若不 x 轴没有交点,则叏两组关于对称轴对称的点).
画草图时应抓住以下几点:开口斱向,对称轴,顶点,不 x 轴的交点,不 y 轴的交点.
4. 二次函数 y ax2 bx c 的性质
正斱形的面积,∴y=﹣x2+36.
3.抛物线 y=x2﹣2x+3 的顶点坐标是

【答案】(1,2)
【解析】解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,
∴抛物线 y=x2﹣2x+3 的顶点坐标是(1,2).
4.已知抛物线 y=﹣2(x+1)2﹣3,如果 y 随 x 的增大而减小,那么 x 的叏值范围
D. y=1﹣ x2
【解析】解:把每一个函数式整理为一般形式, A、y=(x﹣1)(x+2)=x2+x﹣2,是二次函数,故 A 丌符合题意; B、y= (x+1)2= x2+x+ ,是二次函数,故 B 丌符合题意;
C、y=2(x+3)2﹣2x2=12x+18,是一次函数,故 C 符合题意; D、y=1﹣ x2=﹣ x2+1,是二次函数,故 D 丌符合题意. 故选:C.

中考数学一轮复习《一元二次方程》练习题(含答案)

中考数学一轮复习《一元二次方程》练习题(含答案)

中考数学一轮复习《一元二次方程》练习题(含答案)一、单选题1.解一元二次方程2210x x +-=,配方得到()21x a +=,则a 的值为( ) A .1B .1-C .2D .2-2.关于x 的一元二次方程x 2﹣2x +m ﹣1=0有两个不相等的实数根,则实数m 的取值范围是( ) A .m ≥2B .m ≤2C .m >2D .m <23.用配方法解一元二次方程27120x x -+=,配方后的方程为( ) A .27124x ⎛⎫-= ⎪⎝⎭B .27124x ⎛⎫+= ⎪⎝⎭C .()2737x -=D .()2737x +=4.某超市销售一种商品,其进价为每千克30元,按每千克45元出售,每天可售出300千克,为让利于民,超市采取降价措施,当售价每千克降低1元时,每天销量可增加50千克,若每天的利润要达到5500元,则实际售价应定为多少元?设售价每千克降低x 元,可列方程为( )A .(45-30-x )(300+50x )=5500B .(x -30)(300+50x )=5500C .(x -30)[300+50(x -45)]=5500D .(45-x )(300+50x )=55005.铜罗中学组织一次乒乓球赛,比赛采用单循环制,要求每两队之间赛一场.若整个比赛一共赛了45场,则有几个球队参赛?设有x 个球队参赛,则下列方程中正确的是( ) A .x (x +1)=45B .1(1)452x x +=C .x (x ﹣1)=45D .1(1)452x x -=6.一元二次方程22560x x -+=的根的情况为( ) A .无实数根B .有两个不等的实数根C .有两个相等的实数根D .不能判定7.已知关于x 的一元二次方程标()22120kx k x k --+-=有两个不相等的实数根,则实数k的取值范围是( )A .14k >-B .14k <C .14k >-且0k ≠D .14k <且0k ≠ 8.一个等腰三角形的两条边长分别是方程x 2﹣9x +18=0的两根,则该等腰三角形的周长是( )A .12B .9C .15D .12或159.某超市一月份的营业额为100万元,已知第一季度的总营业额共500万元,如果平均每月增长率为x ,则由题意列方程应为( )A .100+100(1+x )+100(1+x )2=500B .100(1+x )2=500C .100+100(1+x )2=500D .100(1+x )=50010.如图,在长为32米、宽为20米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪,要使小路的面积为100平方米,设道路的宽x 米,则可列方程为( )A .32203220100x x ⨯--=B .()()23220100x x x --+=C .23220100x x x +=+D .()()3220100x x --=11.对于任意实数k ,关于x 的方程222(5)24500x k x k k -++++=的根的情况为( ) A .有两个相等的实数根 B .无实数根 C .有两个不相等的实数根D .无法判定12.随着生产技术的进步,某制药厂生产成本逐年下降,两年前生产一吨药的成本是6000元,现在生产一吨药的成本是5000元.设生产成本的年平均下降为x ,下列所列的方程正确的是( ) A .6000(1+x )2=5000 B .5000(1+x )2=6000 C .6000(1﹣x )2=5000D .5000(1﹣x )2=6000二、填空题 13.方程290x 的根是_________.14.若关于x 的一元二次方程2210++-=x x m 有一个根为0,则m =________.15.关于x 的一元二次方程()21210m x x -+-=有两个不相等的实数根,则m 的取值范围是_______.16.已知关于x 的方程21(1)230m m x x +-+-=是一元二次方程,则m 的值为_________. 17.2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育活动.据了解,某展览中心3月份的参观人数为10万人,5月份的参观人数增加到12.1万人.设参观人数的月平均增长率为x ,则可列方程为________. 18.一元二次方程2430x x -+=配方为()22x k -=,则k 的值是______.19.已知x =﹣2时,二次三项式x 2﹣2mx +4的值等于﹣4,当x =_____时,这个二次三项式的值等于﹣1.20.常态化防疫形势下,某学生写了一份预防新型冠状病毒倡议书在微信朋友圈传播,规则为:将倡议书发表在自己的朋友圈,再邀请x 个好友转发倡议书,每个好友转发倡议书,又邀请x 个互不相同的好友转发倡议书,以此类推,已知经过两轮传播后,共有931人参与了传播活动,则方程列为__________________.三、解答题21.用适当的方法解下列方程: (1)23650x x +-= (2)2670x x +-= (3)2760x x += (4)()()22333x x x =--22.已知关于x 的一元二次方程2(2)10x m x m -+++=. (1)如果该方程有两个相等的实数根,求m 的值; (2)如果该方程有一个根小于0,求m 的取值范围.23.已知关于x 的一元二次方程23210x x a -+-=有两个不相等的实数根. (1)求a 的取值范围;(2)若a 为正整数,求方程的根.24.如图,在长方形ABCD 中,6cm,7cm ==AB BC ,点P 从点A 开始沿边AB 向点B 以1cm/s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.当点Q 运动到点C 时,两点停止运动.设运动时间为s t .多少秒后三角形BPQ 的面积等于25cm25.为应对新冠疫情,较短时间内要实现全国医用防护服产量成倍增长,有效保障抗击疫情一线需要,某医用防护服生产企业1月份生产9万套防护服,该企业不断加大生产力度,3月份生产达到12.96万套防护服.(1)求该企业1月份至3月份防护服产量的月平均增长率.(2)若平均增长率保持不变,4月份该企业防护服的产量能否达到16万套?请说明理由.26.某商店以每件16元的价格购进了一批热销商品,出售价格经过两个月的调整,从每件25元上涨到每件36元,此时每月可售出160件商品. (1)求该商品平均每月的价格增长率;(2)因某些原因商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降0.5元,每个月多卖出1件,当降价多少元时商品每月的利润可达到1800元.27.金都百货某小家电经销商销售一种每个成本为40元的台灯,当每个台灯的售价定为60元时,每周可卖出100个,经市场调查发现,该台灯的售价每降低2元.其每周的销量可增加20个.(1)台灯单价每降低4元,平均每周的销售量为 个.(2)如果该经销商每周要获得利润2240元,那么这种台灯的售价应降价多少元? (3)在(2)的条件下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?28.位于宁波市江北区的保国寺以其精湛绝伦的建筑工艺闻名全国,其中大雄宝殿(又称无梁殿)更是以四绝“鸟不栖,虫不入,蜘蛛不结网,梁上无灰尘”吸引了各地游客前来参观.据统计,假期第一天保国寺的游客人数为5000人次,第三天游客人数达到7200人次. (1)求游客人数从假期第一天到第三天的平均日增长率;(2)据悉,景区附近商店推出了保国寺旅游纪念章,每个纪念章的成本为5元,当售价为10元时,平均每天可售出500个,为了让游客尽可能得到优惠,商店决定降价销售.市场调查发现,售价每降低0.5元,平均每天可多售出100个,若要使每天销售旅游纪念章获利2800元,则售价应降低多少元?29.2022年北京冬奥会吉祥物“冰墩墩”意喻敦厚、健康、活泼、可爱,象征着冬奥会运动员强壮的身体、坚韧的意志和鼓舞人心的奥林匹克精神.随着北京冬奥会开幕日的临近,某特许零售店“冰墩墩”的销售日益火爆.据调查“冰墩墩”每盒进价8元,售价12元. (1)商店老板计划首月销售330盒,经过首月试销售,老板发现单盒“冰墩墩”售价每增长1元,月销量就将减少20盒.若老板希望“冰墩墩”月销量不低于270盒,则每盒售价最高为多少元?(2)实际销售时,售价比(1)中的最高售价减少了2a 元,月销量比(1)中最低销量270盒增加了60a 盒,于是月销售利润达到了1650元,求a 的值。

九年级数学二次函数与一元二次方程(一)(基础)(含答案)

九年级数学二次函数与一元二次方程(一)(基础)(含答案)

二次函数与一元二次方程(一)(基础)一、单选题(共9道,每道10分)1.已知关于x的一元二次方程有两个相等的实数根,则抛物线与坐标轴的交点个数是( )A.0个B.1个C.2个D.3个答案:B解题思路:二次函数的图象与x轴交点的横坐标可以看成一元二次方程的解,∵已知关于x的一元二次方程有两个相等的实数根∴抛物线与x轴的交点个数是1试题难度:三颗星知识点:略2.抛物线与x轴的交点个数为( )A.0B.1C.2D.3答案:B解题思路:二次函数的图象与x轴交点的横坐标可以看成一元二次方程的解,∴方程有两个相等的实数根∴抛物线与x轴的交点个数是13.若函数的图象与x轴有且只有一个交点,则m的值为( )A.1B.-1C. D.-2答案:B解题思路:二次函数的图象与x轴交点的横坐标可以看成一元二次方程的解,∵函数的图象与x轴有且只有一个交点∴解得:试题难度:三颗星知识点:略4.二次函数与x轴有两个不同的交点,则m的范围是( )A.m<1且m≠0B.m≤1且m≠0C.0<m<1D.m<0答案:A解题思路:二次函数的图象与x轴交点的横坐标可以看成一元二次方程的解,∵二次函数与x轴有两个不同的交点∴∴m<1且m≠05.设二次函数的图象与x轴交于A,B两点,则AB长为( )A.3B.C.2D.答案:D解题思路:二次函数的图象与x轴交点的横坐标可以看成一元二次方程的解,∵解得:,x2=2∴试题难度:三颗星知识点:略6.下表是一组二次函数的自变量x与函数值y的对应值:那么方程的一个近似根是( )A.1B.1.1C.1.2D.1.3答案:C解题思路:二次函数的图象与x轴交点的横坐标可以看成一元二次方程的解,观察表格得:方程的一个近似根为1.2试题难度:三颗星知识点:略7.如图,抛物线与直线的两个交点坐标分别为A(-2,4),B(1,1),则方程的解是( )A.x=1B.x=4C.x=-2或x=1D.x=4或x=1答案:C解题思路:∵抛物线与直线的两个交点的横坐标可看作方程的解∴方程的解是x=-2或x=1试题难度:三颗星知识点:略8.函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是( )A.x<-4或x>2B.-4<x<2C.x<0或x>2D.0<x<2答案:A解题思路:∵抛物线y=ax2+2ax+m(a<0)的对称轴为直线,与x轴的一个交点为(2,0)∴抛物线与x轴的另一交点为(-4,0)∵a<0∴抛物线开口向下画出草图如下:∴使函数值y<0成立的x的取值范围是x<-4或x>2试题难度:三颗星知识点:略9.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=1,则当y>0时,自变量x的取值范围是( )A.x>3B.x<-1C.-1<x<3D.-1≤x≤3答案:C解题思路:∵抛物线的对称轴为直线x=1,与x轴的一个交点为(-1,0)∴抛物线与x轴的另一交点为(3,0)∴当y>0时,自变量x的取值范围是-1<x<3试题难度:三颗星知识点:略。

2010年全国中考数学试题汇编专题九·一元二次方程

2010年全国中考数学试题汇编专题九·一元二次方程

一、选择题1.(2010江苏苏州)下列四个说法中,正确的是A .一元二次方程245x x ++=有实数根;B .一元二次方程245x x ++=C .一元二次方程2453x x ++=有实数根; D .一元二次方程x 2+4x+5=a(a ≥1)有实数根. 3.(2010安徽芜湖)关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足()A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠54.(10湖南益阳)一元二次方程)0(02≠=++a c bx ax 有两个不相等...的实数根,则ac b 42-满足的条件是A.ac b 42-=0 B.ac b 42->0 C.ac b 42-<0 D.ac b 42-≥05.(2010山东日照)如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是(A )-3,2 (B )3,-2 (C )2,-3 (D )2,36.(2010四川眉山)已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-⋅的值为A .7-B .3-C .7D .37.(2010台湾) 若a 为方程式(x -17)2=100的一根,b 为方程式(y -4)2=17的一根,且a 、b 都是正数,则a -b 之值为何?(A) 5 (B) 6 (C)83 (D) 10-17 。

8.(2010浙江杭州)方程 x 2 + x – 1 = 0的一个根是A. 1 –5B. 251-C. –1+5D. 251+- 9.(2010 嵊州市)已知n m ,是方程0122=--x x 的两根,且8)763)(147(22=--+-n n a m m ,则a的值等于 ( )A .-5 B.5 C.-9 D.910.(2010年上海)已知一元二次方程 x 2 + x ─ 1 = 0,下列判断正确的是( )A .该方程有两个相等的实数根B .该方程有两个不相等的实数根C .该方程无实数根D .该方程根的情况不确定11.(2010年贵州毕节)已知方程20x bx a ++=有一个根是(0)a a -≠,则下列代数式的值恒为常数的是( ) A .ab B .a bC .a b +D .a b - 12.(2010湖北武汉)若12,x x 是方程2x =4的两根,则12x x +的值是( ) A.8 B.4 C.2 D.013.(2010 山东滨州) 一元二次方程x 2+kx-3=0的一个根是x=1,则另一个根是( )A.3B.-1C.-3D.-214.(2010山东潍坊)关于x 的一元二次方程x2-6x +2k =0有两个不相等的实数根,则实数k 的取值范围是( ).A .k ≤92B .k <92C .k ≥92D .k >9215.(2010湖南常德)方程2560x x --=的两根为( )A . 6和-1B .-6和1C .-2和-3D .2和316.(2010云南楚雄)一元二次方程x 2-4=0的解是( )A .x 1=2,x 2=-2B .x =-2C .x =2D . x 1=2,x 2=017.(2010河南)方程230x -=的根是(A) 3x = (B) 123,3x x ==- (C) x =(D )12x x =18.(2010云南昆明)一元二次方程220x x +-=的两根之积是( )A .-1B .-2C .1D .219.(2010四川内江)方程x (x -1)=2的解是A .x =-1B .x =-2C .x 1=1,x 2=-2D .x 1=-1,x 2=2 20.(2010 湖北孝感)方程112,022x x x x 下面对的一较小根为=--的估计正确的是 ( )A .121-<<-xB .011<<-xC .101<<xD .211<<x21.(2010 内蒙古包头)关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( )A .1B .12C .13D .25 22.(2010广西桂林)一元二次方程2340x x +-=的解是 ( ).A .11x =,24x =-B .11x =-,24x =C .11x =-,24x =-D .11x =,24x =23.(2010四川攀枝花)下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A .x 2+1=0B .9 x 2—6x+1=0C .x 2—x+2=0D .x 2-2x-2=0二、填空题1.(2010甘肃兰州) 已知关于x 的一元二次方程01)12=++-x x m (有实数根,则m 的取值范围是 . 2.(2010江苏苏州)若一元二次方程x 2-(a+2)x+2a=0的两个实数根分别是3、b ,则a+b= ▲ .2.(2010安徽芜湖)已知x 1、x 2为方程x 2+3x +1=0的两实根,则x 12+8x 2+20=__________.3.(2010江苏南通)设x 1、x 2 是一元二次方程x 2+4x -3=0的两个根,2x 1(x 22+5x 2-3)+a =2,则a = ▲ .4.(2010山东烟台)方程x 2-2x-1=0的两个实数根分别为x 1,x 2,则(x 1-1)(x 1-1)=_________。

中考数学一轮复习专题解析—一元二次方程及其应用

中考数学一轮复习专题解析—一元二次方程及其应用

中考数学一轮复习专题解析—一元二次方程及其应用复习目标 1、理解配方法2、会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程; 考点梳理一、一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程. 它的一般形式为20ax bx c ++=(a ≠0).例1.下列是一元二次方程的有( )个.①240x =;②()200++=≠ax bx c a ;③223(1)32x x x -=+;④2120x -=. A .1 B .2 C .3 D .4【答案】B 【分析】一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.进而可以判断. 【详解】解:①240x =,是一元二次方程;②()200++=≠ax bx c a ,是一元二次方程;③223(1)32x x x -=+,整理得830x -=,是一元一次方程,不是一元一次方程; ④2120x -=,不是整式方程,不是一元二次方程;综上,是一元二次方程的是①②,共2个, 故选:B .二、一元二次方程的解法(1)直接开平方法:把方程变成2x m =的形式,当m >0时,方程的解为x =;当m =0时,方程的解1,20x =;当m <0时,方程没有实数解.(2)配方法:通过配方把一元二次方程20ax bx c ++=变形为222424b b ac x a a -⎛⎫+=⎪⎝⎭的形式,再利用直接开平方法求得方程的解.(3)公式法:对于一元二次方程20ax bx c ++=,当240b ac -≥时,它的解为x =.(4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解.注意:直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法.例2.关于x 的一元二次方程21x =的根是( ) A .1x = B .11x =,21x =- C .1x =- D .121x x ==【答案】B 【分析】利用直接开平方法求解即可. 【详解】解:∵x 2=1, ∴x 1=1,x 2=-1, 故选:B .三、一元二次方程根的判别式一元二次方程根的判别式为ac 4b 2-=∆.△>0⇔方程有两个不相等的实数根; △=0⇔方程有两个相等的实数根; △<0⇔方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边. 注意: △≥0⇔方程有实数根.例3.一元二次方程2310x x --=的根的情况为( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根 D .没有实数根【答案】B 【分析】计算出一元二次方程根的判别式,根据判别式的符号即可判断根的情况. 【详解】∵a =1,b =-3,c =-1∴224(3)41(1)130b ac ∆=-=--⨯⨯-=>∴一元二次方程2310x x --=有两个不相等的实数根 故选:B.四、一元二次方程根与系数的关系如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么acx x a b x x 2121=⋅-=+,.例4.方程22x -5x +m =0没有实数根,则m 的取值范围是( ) A .m >258B .m <258C .m ≤258D .m ≥258【答案】A 【分析】利用判别式的意义得到△=(-5)2﹣4×2m <0,然后解关于m 的不等式即可. 【详解】解:∵方程22x -5x +m =0没有实数根, ∴△=(-5)2﹣4×2m <0, 解得m>258. 故选:A .1.(2022·福建省福州杨桥中学九年级开学考试)方程()50x x -=的根是( ) A .5 B .-5,5C .0,-5D .0,5【答案】D 【分析】利用因式分解法求解即可. 【详解】解:∵x (x -5)=0∴x =0或x -5=0, ∴10x =,25x =. 故选D .2.(2022·福建省福州延安中学九年级开学考试)若0x =是一元二次方程2240x b ++-=的一个根,则b 的值是( )A .2B .2-C .2±D .4【答案】A 【分析】根据一元二次方程的解的定义,把0x =代入2240x b ++-=得240b -=,然后解关于b 的方程即可. 【详解】解:把x =0代入2240x b ++-=得b 2-4=0, 解得b =±2, ∵b -1≥0, ∴b ≥1, ∴b =2. 故选:A .3.(2022·云南师范大学实验中学九年级期末)如图,用长为20m 的篱笆,一面利用墙(墙的最大可用长度为11m ),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC 上用其他材料做了宽为1m 的两扇小门.若花圃的面积刚好为240m ,设AB 长为x m ,则可列方程为( )A .()22340x x -=B .()20240x x -=C .()18340x x -=D .()20340x x -=【答案】A 【分析】设AB =x 米,则BC =(20-3x +2)米,根据围成的花圃的面积刚好为40平方米,即可得出关于x 的一元二次方程. 【详解】解:设AB =x 米,则BC =(20-3x +2)米=(22-3x )米, 依题意,得:x (22-3x )=40, 故选A .4.(2022·蒙城县第六中学九年级开学考试)国家统计局统计数据 显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x .则可列方程为( ) A .()5000127500x += B .()5000217500x ⨯+= C .()2500017500x +=D .()()2500050001500017500x x ++++= 【答案】C 【分析】设我国2017年至2019年快递业务收入的年平均增长率为x ,根据增长率的定义即可列出一元二次方程. 【详解】解:设我国2017年至2019年快递业务收入的年平均增长率为x , ∵2017年至2019年我国快递业务收入由5000亿元增加到7500亿元, 即2019年我国快递业务收入为7500亿元, ∴可列方程:()2500017500x +=, 故选:C .5.(2022·厦门海沧实验中学九年级开学考试)判断关于x 的方程()2110kx k x -++=(k 是常数,1k <)的根的情况( )A .存在一个k ,使得方程只有一个实数根B .无实数根C .一定有两个不相等的实数根D .一定有两个相等的实数根【答案】A 【分析】当k =0时,可求出方程的根;k ≠0时,利用,Δ=[-(k +1)]2-4k =(k -1)2>0即可判断原方程有实数根. 【详解】 解:∵k <1,∴当k =0时,原方程为-x +1=0, 解得:x =1;当k ≠0时,Δ=[-(k +1)]2-4k =(k -1)2>0, ∴原方程有两个不相等的实数根,故选:A.6.(2022·厦门海沧实验中学九年级开学考试)为响应“坚持绿色低碳,建设一个清洁美丽的世界”的号召,某市今年第一季度进行宣传准备工作,从第二季度开始到今年年底全市全面实现垃圾分类.已知该市一共有285个社区,第二季度已有60个社区实现垃圾分类,第三、四季度实现垃圾分类的社区个数较前一季度平均增长率均为x,则下面所列方程正确的是()A.()2x601285-=x+=B.()2601285C.()()2+++=D.()()2 601601285x x++++=60601601285x x【答案】D【分析】设第三、四季度实现垃圾分类的社区个数较前一季度平均增长率均为x,则第三季度有60(1+x)个社区实现垃圾分类,第四季度有60(1+x)2个社区实现垃圾分类,根据年底全市共285个社区实现垃圾分类,即可得出关于x的一元二次方程,此题得解.【详解】解:设第三、四季度实现垃圾分类的社区个数较前一季度平均增长率均为x,则第三季度有60(1+x)个社区实现垃圾分类,第四季度有60(1+x)2个社区实现垃圾分类,依题意得:60+60(1+x)+60(1+x)2=285.故选:D.7.(2022·深圳市新华中学九年级期末)已知关于x的一元二次方程230+-=x x c没有实数根,即实数c的取值范围是________.【答案】94c <- 【分析】根据题意可知,判别式∆<0,求解即可. 【详解】解:∵方程没有实数根, ∴2340c =+<,解得94c <-故答案为94c <-8.(2022·全国九年级课时练习)已知关于x 的一元二次方程2(21)20ax a x a +++-=有两个不相等的实数根,则a 的取值范围是______. 【答案】112a >-且0a ≠ 【分析】根据一元二次方程的定义,以及根的判别式确定a 的取值范围即可. 【详解】根据题意得0a ≠且2Δ(21)4(2)0a a a =+-->, 解得112a >-且0a ≠. 故答案为:112a >-且0a ≠. 9.(2022·山东省青岛第二十六中学九年级期中)解下列方程: (1)2x 2+7x +3=0(用配方法). (2)5(x +3)2=x 2﹣9.【答案】(1)12132x x =-=-,;(2)x 1=−3,x 2=−92. 【分析】(1)利用配方法求解即可; (2)利用因式分解法求解即可. 【详解】解:(1)方程整理得:27322x x +=-,配方得:22277372424x x ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭⎝⎭,即2725416x ⎛⎫+= ⎪⎝⎭,开方得:7544x +=±,解得:12132x x =-=-,; (2)∵5(x +3)2=(x +3) (x -3), ∴5(x +3)2-(x +3) (x -3)=0, ∴(x +3) [5(x +3)-(x -3)]=0, 即(x +3) (4x +18)=0, ∴x 1=−3,x 2=−92.10.(2020·沭阳县怀文中学九年级月考)某玩具商店以每件50元为成本购进一批新型玩具,以每件80元的价格销售则每天可卖出20件,为了扩大销售,增加盈利,商店决定采取适当的降价措施,经调查发现:若每件玩具每降价1元,则每天可多卖2件.(1)若商店打算每天盈利750元,同时又要使顾客得到更多的实惠,那么每件玩具的售价应定为多少元?最多?最多盈利多少元?【答案】(1)65元;(2)每件玩具的售价定为70元时,商店每天盈利最多,最多盈利为800元【分析】(1)根据题意和题目中的数据,可以写出相应的方程,然后求解即可,注意又要使顾客得到更多的实惠,也就是售价越低越好;(2)根据题意,可以写出利润和售价之间的函数关系,然后根据二次函数的性质解答即可.【详解】解:(1)设每件玩具的售价为a元,由题意可得,(a﹣50)[20+2(80﹣a)]=750,解得a1=65,a2=75,∵要使顾客得到更多的实惠,∴a=65,答:商店打算每天盈利750元,同时又要使顾客得到更多的实惠,那么每件玩具的售价应定为65元;(2)设每件玩具的售价定为x元,商店每天盈利为w元,由题意可得,w=(x﹣50)[20+2(80﹣x)]=﹣2(x﹣70)2+800,∵a=﹣2,∴该函数开口向下,有最大值,∴当x=70时,该函数取得最大值,此时w=800,最多盈利为800元.。

九年级数学《二次函数与一元二次方程》同步练习题

九年级数学《二次函数与一元二次方程》同步练习题

九年级数学《二次函数与一元二次方程》同步练习题答案:B第7题. 已知抛物线21()3y x h k=--+的顶点在抛物线2y x =上,且抛物线在x 轴上截得的线段长是3h 和k 的值.答案:21()3y x h k=--+,顶点()h k ,在2y x =上,2hk∴=,22221122()3333y x h h x hx h ∴=--+=-++.又它与x轴两交点的距离为,2212121212()()443x x x x x x x x a∆∴-=-=+-==求得2h =±,4k =,即2h =,4k =或2h =-,4k =.第8题. 已知函数22y x mx m =-+-.(1)求证:不论m 为何实数,此二次函数的图像与x 轴都有两个不同交点;(2)若函数y 有最小值54-,求函数表达式.答案:(1)222()4(2)48(2)4m m m m m ∆=---=-+=-+,不论m 为何值时,都有0∆>,此时二次函数图像与x 轴有两个不同交点.(2)2244(2)5444ac b m m a ---==-,2430mm -+=,1m ∴=或3m =,所求函数式为21y x x =--或231y xx =-+.第9题. 下图是二次函数2y axbx c=++的图像,与x 轴交于B ,C两点,与y 轴交于A 点.(1)根据图像确定a ,b ,c 的符号,并说明理由; (2)如果A 点的坐标为(03)-,45ABC ∠=60ACB ∠=,求这个二次函数的函数表达式.答案:(1)抛物线开口向上,0a >;图像的对称轴在y 轴左侧,02b a -<,又0a >,b ∴>;图像与y 轴交点在x 轴下方,0c ∴<.0a ∴>,0b >,0c <.(2)(03)A -,,3OA =,45ABC ∠=,60ACB ∠=,3tan OAOB ABC ==∠, 3tan 60OAOC ==(30)B ∴-,,C .设二次函数式为(3)(y a x x =+-,AC O B xy把(03)-,代入上式,得3a=,∴所求函数式为23)(1)333y x x x x=+-=+-.第10题. 已知抛物线222my x mx=-+与抛物线2234my x mx=+-在直角坐标系中的位置如图所示,其中一条与x轴交于A,B两点.(1)试判断哪条抛物线经过A,B两点,并说明理由;(2)若A,B两点到原点的距离AO,OB满足条件1123OB OA-=,求经过A,B两点的这条抛物线的函数式.答案:(1)抛物线不过原点,0m≠,令2202mx mx-+=,ABOxy2221()402m m m ∆=--⨯=-<,222m y x mx =-+∴与x 轴无交点,∴抛物线2234y x mx m =+-经过A ,B 两点.(2)设1(0)A x ,,2(0)B x ,,1x ,2x 是方程2234x mx m +-=的两根12x xm+=-,21234x x m =-,A 在原点左边,B 在原点右边,则1AO x =-,2OB x =.123OB OA 1-=.211123x x∴+=,121223x x x x +=,22334m m -=-,得2m =,∴所求函数式为223y x x =+-.第11题. 已知二次函数2224y x mx m =-+.(1)求证:当0m ≠时,二次函数的图像与x 轴有两个不同交点;(2)若这个函数的图像与x 轴交点为A ,B ,顶点为C ,且△ABC 的面积为42答案:(1)22222(4)421688m m m m m ∆=--⨯⨯=-=.m ≠,280m∴>, ∴这个抛物线与x 轴有两个不同交点.(2)设1(0)A x ,,212(0)()B x x x >,,则1x ,2x 是方程22240x mx m -+=两根,122x x m+=,2122m xx =,21AB x x =-====,C点纵坐标22224816442c ac b m m y m a --===-⨯,∴△ABC 中AB 边上的高22h mm =-=.21124222ABCSAB h m m ===,2m =,2m =±, 2284y x x ∴=++或2284y xx =-+.第12题. 如图所示,函数2(2)7(5)y k xx k =-+-的图像与x 轴只有一个交点,则交点的横坐标0x = .答案:7第13题. 已知抛物线2y axbx c=++与y 轴交于C 点,与x 轴交于1(0)A x ,,212(0)()B x x x <,两点,顶点M 的纵坐标为4-,若1x ,2x 是方程222(1)70xm x m --+-=的两根,且221210xx +=.(1)求A ,B 两点坐标;(2)求抛物线表达式及点C 坐标;(3)在抛物线上是否存在着点P ,使△PAB 面积等于四边形ACMB 面积的2倍,若存在,求出P 点坐标;若不存在,Oy x请说明理由.答案:(1)由122(1)x xm +=-,2127x xm =-,22222121212()24(1)2(7)10x x x x x x m m +=+-=---=,得2m =,11x ∴=-,23x =,(10)A -,,(30)B ,.(2)抛物线过A ,B 两点,其对称轴为1x =,顶点纵坐标为4-,∴抛物线为2(1)4y a x =--.把1x =-,0y =代入得1a =,∴抛物线函数式为223y xx =--,其中(03)C -,.(3)存在着P 点.(10)A -,,(03)C -,,(14)M -,,(30)B ,,∴9ACMBS=四形,18ABPS=,即1182PyAB =.4AB =,9Py ∴=.把9y =代入抛物线方程得11x =2113x =(113P ∴,或(113P ,.第14题. 二次函数269y x x =-+-的图像与x 轴的交点坐标为 .答案:(3,0)第15题. 二次函数25106y x x =-+的图像与x 轴有 个交点.答案:0第16题. 对于二次函数2135y x x =++,当12x =时,y =.答案:11320第17题. 如图是二次函数2246y xx =--的图像,那么方程22460x x --=的两根之和 0.答案:>CBO A xy第18题. 求下列函数的图像与x 轴的交点坐标,并作草图验证. (1)25166y x x =-+; (2)2336y xx =+-.答案:(1)(13,0),(12,0),图略 (2)(1,0),(2-,0),图略第19题. 一元二次方程2ax bx c ++=的两根为1x ,2x ,且214x x+=,点(38)A -,在抛物线2y ax bx c=++上,求点A 关于抛物线的对称轴对称的点的坐标.答案:(1,8-)第20题. 若二次函数2y axc=+,当x 取1x 、2x (12xx ≠)时,函数值相等,则当x 取12x x +时,函数值为( ) A.a c + B.a c - C.c - D.c答案:D第21题. 下列二次函数中有一个函数的图像与x 轴有两个不同的交点,这个函数是( ) A.2y x = B.24y x=+ C.2325y x x =-+ D.2351y xx =+-答案:D第22题. 二次函数256y x x =-+与x 轴的交点坐标是( )A.(2,0)(3,0) B.(2-,0)(3-,0) C.(0,2)(0,3) D.(0,2-)(0,3-) 答案:A第23题. 试说明一元二次方程2441xx -+=的根与二次函数244y x x =-+的图像的关系,并把方程的根在图象上表示出来.答案:一元二次方程2441xx -+=的根是二次函数244y xx =-+与直线1y =的交点的横坐标,图略.第24题. 利用二次函数图象求一元二次方程的近似根.210x x+-=答案:11.6x≈-,20.6x≈第25题. 利用二次函数图象求一元二次方程的近似根.24834x x--=-答案:11.9x≈,20.1x≈第26题. 函数2y ax bx c=++的图象如图所示,那么关于x的一元二次方程230ax bx c++-=的根的情况是()A.有两个不相等的实数根B.有两个异号的实数根C.有两个相等的实数根D.没有实数根答案:C第27题. 利用二次函数的图象求一元二次方程的近似值.2530x x --=答案:15.5x ≈,20.5x≈-第28题. 抛物线2321y x x =-+-的图象与坐标轴交点的个数是( )A.没有交点 B.只有一个交点C.有且只有两个交点 D.有且只有三个交点答案:A第29题. 已知二次函数212y xbx c=-++,关于x 的一元二次方程2102xbx c -++=的两个实根是1-和5-,则这个二次函数的解析式为答案:215322y xx =---第30题. 已知二次函数2(0)y axbx c a =++≠的顶点坐标(1 3.2)--,及部分图象(如图4所示),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是1 1.3x =和2x =.答案: 3.3-1- 2-3-4- 1 2y。

初中数学 人教版中考第一轮复习 二次函数与一元二次方程

初中数学 人教版中考第一轮复习  二次函数与一元二次方程

第6讲二次函数专题一、二次函数与一元二方程【经典例题】1.(2020•阜新)已知二次函数y=﹣x2+2x+4,则下列关于这个函数图象和性质的说法,正确的是()A.图象的开口向上B.图象的顶点坐标是(1,3)C.当x<1时,y随x的增大而增大D.图象与x轴有唯一交点2.(2020•德阳)已知不等式ax+b>0的解集为x<2,则下列结论正确的个数是()(1)2a+b=0;(2)当c>a时,函数y=ax2+bx+c的图象与x轴没有公共点;(3)当c>0时,抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方;(4)如果b<3且2a﹣mb﹣m=0,则m的取值范围是﹣<m<0.A.1B.2C.3D.43.(2020•毕节市)已知y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=2.若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两个根,且x1<x2,﹣1<x1<0,则下列说法正确的是()A.x 1+x2<0B.4<x2<5C.b2﹣4ac<0D.ab>04.(2020•随州)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴的正半轴交于点C,顶点为D,则下列结论:①2a+b=0;②2c<3b;③当△ABC是等腰三角形时,a的值有2个;④当△BCD是直角三角形时,a=﹣.其中正确的有()A.1个B.2个C.3个D.4个5.抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,随着x的增大而减小.下列结论:△a﹣b+c=0;△若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2:△a(m﹣1)+b=0;△若c≤﹣1,则b2﹣4ac≤4a.其中正确的个数是()A.1个B.2个C.3个D.4个6.(2019•凉山州)已知二次函数y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,且+=1,求a的值.7.(2020•攀枝花)如图,开口向下的抛物线与x轴交于点A(﹣1,0)、B(2,0),与y轴交于点C(0,4),点P是第一象限内抛物线上的一点.(1)求该抛物线所对应的函数解析式;(2)设四边形CABP的面积为S,求S的最大值.8.(2020•鄂尔多斯)某水果店将标价为10元/斤的某种水果.经过两次降价后,价格为8.1元/斤,并且两次降价的百分率相同.(1)求该水果每次降价的百分率;(2)从第二次降价的第1天算起,第x天(x为整数)的销量及储藏和损耗费用的相关信息如下表所示:时间(天)x销量(斤)120﹣x储藏和损耗费用(元)3x2﹣64x+400已知该水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<10)之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少?9.(2020•潍坊)如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=S△ABC时,求点P的坐标;10.如图,抛物线y=x2+bx+c与直线y=x+3交于A、B两点,点A在y轴上,抛物线交x轴于C、D 两点,已知C(﹣3,0)(Ⅰ)求抛物线的解析式;(Ⅱ)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,请求出点M的坐标及这个最大值.11.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能,请直接写出所有符合条件的点P坐标;若不能,请说明理由.【课堂练习】1.(2020•眉山)已知二次函数y=x2﹣2ax+a2﹣2a﹣4(a为常数)的图象与x轴有交点,且当x>3时,y 随x的增大而增大,则a的取值范围是()A.a≥﹣2B.a<3C.﹣2≤a<3D.﹣2≤a≤32.如图,抛物线y=ax2+bx+c经过点(﹣1,0),与y轴交于(0,2),抛物线的对称轴为直线x=1,则下列结论中:①a+c=b;②方程ax2+bx+c=0的解为﹣1和3;③2a+b=0;④abc<0,其中正确的结论有()3.若抛物线y=ax2+bx+c与x轴两个交点之间的距离为10,且4a+b=0,则关于x的方程ax2+bx+c=0的根为()A.x1=﹣7,x2=3B.x1=﹣6,x2=4C.x1=6,x2=﹣4D.x1=7,x2=﹣34.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示,下列说法中:①abc<0;②2a+b=0;③当﹣1<x<3时,y>0;④a﹣b+c<0;⑤2c﹣3b>0.其中正确结论的个数是()A.2B.3C.4D.55.如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴的正半轴交于点C,顶点为D,则下列结论:①2a+b=0;②2c<3b;③当△ABC是等腰三角形时,a的值有2个;其中正确的有()A.0个B.1个C.2个D.3个6.如图,已知抛物线上有三点A(﹣4,0)、B(1,0)、C(0,﹣3).(1)求出抛物线的解析式;(2)是否存在一点D,能使A、B、C、D四点为顶点构成的四边形为菱形,若存在,请求出D点坐标,若没有,请说明理由.(3)在(2)问的条件,P为抛物线上一动点,请求出|PD﹣PB|取最大值时,点P的坐标.7.某花店用3600元按批发价购买了一批花卉.若将批发价降低10%,则可以多购买该花卉20盆.市场调查反映,该花卉每盆售价25元时,每天可卖出25盆.若调整价格,每盆花卉每涨价1元,每天要少卖出1盆.(1)该花卉每盆批发价是多少元?(2)若每天所得的销售利润为200元时,且销量尽可能大,该花卉每盆售价是多少元?(3)为了让利给顾客,该花店决定每盆花卉涨价不超过5元,问该花卉一天最大的销售利润是多少元?。

九年级数学《二次函数与一元二次方程》同步练习题

九年级数学《二次函数与一元二次方程》同步练习题

九年级数学《二次函数与一元二次方程》同步练习题第1题. 抛物线2283y x x =--与x 轴有个交点,因为其判别式24b ac -=0,相应二次方程23280x x -+=的根的情况为.第2题. 函数22y mx x m =+-(m 是常数)的图像与x 轴的交点个数为( )A.0个B.1个C.2个D.1个或2个第3题. 关于二次函数2y ax bx c =++的图像有下列命题:①当0c =时,函数的图像经过原点;②当0c >,且函数的图像开口向下时,方程20ax bx c ++=必有两个不相等的实根;③函数图像最高点的纵坐标是244ac b a-;④当0b =时,函数的图像关于y 轴对称. 其中正确命题的个数是( )A.1个B.2个C.3个D.4个第4题. 关于x 的方程25mx mx m ++=有两个相等的实数根,则相应二次函数25y mx mx m =++-与x 轴必然相交于点,此时m =.第5题. 抛物线2(21)6y x m x m =---与x 轴交于两点1(0)x ,和2(0)x ,,若121249x x x x =++,要使抛物线经过原点,应将它向右平移个单位.第6题. 关于x 的二次函数22(81)8y mx m x m =+++的图像与x 轴有交点,则m 的范围是( )A.116m <-B.116m -≥且0m ≠ C.116m =-D.116m >-且0m ≠ 第7题. 已知抛物线21()3y x h k =--+的顶点在抛物线2y x =上,且抛物线在x轴上截得的线段长是h 和k 的值.第8题. 已知函数22y x mx m =-+-.(1)求证:不论m 为何实数,此二次函数的图像与x 轴都有两个不同交点;(2)若函数y 有最小值54-,求函数表达式.第9题. 下图是二次函数2y ax bx c =++的图像,与x 轴交于B ,C 两点,与y 轴交于点. (1)根据图像确定a ,b ,c 的符号,并说明理由;(2)如果A 点的坐标为(03)-,,45ABC ∠=,60ACB ∠=,求这个二次函数的函数表达式.第10题. 已知抛物线222m y x mx =-+与抛物线2234m y x mx =+-在直角坐标系中的位置如图所示,其中一条与x 轴交于A ,B 两点.(1)试判断哪条抛物线经过A ,B 两点,并说明理由; (2)若A ,B 两点到原点的距离AO ,OB 满足条件1123OB OA -=,求经过A ,B 两点的这条抛物线的函数式.第11题. 已知二次函数2224y x mx m =-+.(1)求证:当0m ≠时,二次函数的图像与x 轴有两个不同交点;(2)若这个函数的图像与x 轴交点为A ,B ,顶点为C ,且△ABC的面积为表达式.第12题.如图所示,函数2(2)(5)y k x k =-+-的图像与x 轴只有一个交点,则交点的横坐标0x =.第13题. 已知抛物线2y ax bx c =++与y 轴交于C 点,与x 轴交于1(0)A x ,,212(0)()B x x x <,两点,顶点M 的纵坐标为4-,若1x ,2x 是方程222(1)70x m x m --+-=的两根,且221210x x +=. (1)求A ,B 两点坐标; (2)求抛物线表达式及点C 坐标;(3)在抛物线上是否存在着点P ,使△PAB 面积等于四边形ACMB 面积的2倍,若存在,求出P 点坐标;若不存在,请说明理由.第14题. 二次函数269y x x =-+-的图像与x 轴的交点坐标为.第15题. 二次函数25106y x x =-+的图像与x 轴有 个交点.第16题. 对于二次函数2135y x x =++,当12x =时,y = .第17题. 如图是二次函数2246y x x =--的图像,那么方程22460x x --=的两根之和 0.第18题. 求下列函数的图像与x 轴的交点坐标,并作草图验证. (1)25166y x x =-+; (2)2336y x x =+-. 第19题. 一元二次方程20ax bx c ++=的两根为1x ,2x ,且214x x +=,点(38)A -,在抛物线2y ax bx c =++上,求点A 关于抛物线的对称轴对称的点的坐标.第20题. 若二次函数2y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x 取12x x +时,函数值为( )A.a c + B.a c - C.c - D.c第21题. 下列二次函数中有一个函数的图像与x 轴有两个不同的交点,这个函数是( ) A.2y x =B.24y x =+ C.2325y x x =-+D.2351y x x =+-第22题. 二次函数256y x x =-+与x 轴的交点坐标是( )A.(2,0)(3,0) B.(2-,0)(3-,0) C.(0,2)(0,3) D.(0,2-)(0,3-)第23题. 试说明一元二次方程2441x x -+=的根与二次函数244y x x =-+的图像的关系,并把方程的根在图象上表示出来.第24题. 利用二次函数图象求一元二次方程的近似根.210x x +-=第25题. 利用二次函数图象求一元二次方程的近似根.24834x x --=-第26题. 函数2y ax bx c =++的图象如图所示,那么关于x 的一元二次方程230ax bx c ++-=的根的情况是( )A.有两个不相等的实数根 B.有两个异号的实数根 C.有两个相等的实数根D.没有实数根第27题. 利用二次函数的图象求一元二次方程的近似值.2530x x --=第28题. 抛物线2321y x x =-+-的图象与坐标轴交点的个数是( )A.没有交点B.只有一个交点 C.有且只有两个交点D.有且只有三个交点第29题. 已知二次函数212y x bx c =-++,关于x 的一元二次方程2102x bx c -++=的两个实根是1-和5-,则这个二次函数的解析式为第30题. 已知二次函数2(0)y ax bx c a =++≠的顶点坐标(1 3.2)--,及部分图象(如图4所示),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是1 1.3x =和2x = .y1、答案:092-<没有实数根. 2、答案:C 3、答案:C 4、答案:一 45、答案:4或96、答案:B7、答案:21()3y x h k =--+,顶点()h k ,在2y x =上,2h k ∴=,22221122()3333y x h h x hx h ∴=--+=-++.又它与x 轴两交点的距离为12x x a∴-==== 求得2h =±,4k =,即2h =,4k =或2h =-,4k =.8、答案:(1)222()4(2)48(2)4m m m m m ∆=---=-+=-+,不论m 为何值时,都有0∆>, 此时二次函数图像与x 轴有两个不同交点. (2)2244(2)5444ac b m m a ---==-,2430m m -+=,1m ∴=或3m =, 所求函数式为21y x x =--或231y x x =-+.9、答案:(1)抛物线开口向上,0a >;图像的对称轴在y 轴左侧,02ba-<,又0a >, 0b ∴>;图像与y 轴交点在x 轴下方,0c ∴<.0a ∴>,0b >,0c <.(2)(03)A -,,3OA =,45ABC ∠=,60ACB ∠=,3tan OAOB ABC==∠,3tan 60OAOC ==(30)B ∴-,,C .设二次函数式为(3)(y a x x =+-,把(03)-,代入上式,得a =∴所求函数式为23)(1)3y x x x =+=+-. 10、答案:(1)抛物线不过原点,0m ≠,令2202m x mx -+=,2221()402m m m ∆=--⨯=-<,222m y x mx =-+∴与x 轴无交点,∴抛物线2234y x mx m =+-经过A ,B 两点.(2)设1(0)A x ,,2(0)B x ,,1x ,2x 是方程22304x mx m +-=的两根12x x m +=-,21234x x m =-,A 在原点左边,B 在原点右边,则1AO x =-,2OB x =.123OB OA 1-=.211123x x ∴+=,121223x x x x +=,22334m m -=-,得2m =,∴所求函数式为223y x x =+-. 11、答案:(1)22222(4)421688m m m m m ∆=--⨯⨯=-=.0m ≠,280m ∴>,∴这个抛物线与x 轴有两个不同交点.(2)设1(0)A x ,,212(0)()B x x x >,,则1x ,2x 是方程22240x mx m -+=两根, 122x x m +=,2122m xx =,21AB x x =-====,C 点纵坐标22224816442c ac b m m y m a --===-⨯, ∴△ABC 中AB 边上的高22h m m =-=.21124222ABCSAB h m m ===,2m =,2m =±, 2284y x x ∴=++或2284y x x =-+.12、答案:13、答案:(1)由122(1)x x m +=-,2127x x m =-,22222121212()24(1)2(7)10x x x x x x m m +=+-=---=,得2m =,11x ∴=-,23x =,(10)A -,,(30)B ,.(2)抛物线过A ,B 两点,其对称轴为1x =,顶点纵坐标为4-,∴抛物线为2(1)4y a x =--.把1x =-,0y =代入得1a =,∴抛物线函数式为223y x x =--,其中(03)C -,. (3)存在着P 点.(10)A -,,(03)C -,,(14)M -,,(30)B ,,∴9ACMB S =四形,18ABPS =,即1182P y AB =.4AB=,9P y ∴=.把9y =代入抛物线方程得11x =,21x =,(1P ∴或(1P +.14、答案:(3,0) 15、答案:0 16、答案:1132017、答案:> 18、答案:(1)(13,0),(12,0),图略 (2)(1,0),(2-,0),图略 19、答案:(1,8-) 20、答案:D 21、答案:D 22、答案:A23、答案:一元二次方程2441x x -+=的根是二次函数244y x x =-+与直线1y =的交点的横坐标,图略.24、答案:1 1.6x ≈-,20.6x ≈ 25、答案:1 1.9x ≈,20.1x ≈ 26、答案:C 27、答案:1 5.5x ≈,20.5x ≈- 28、答案:A 29、答案:215322y x x =--- 30、答案: 3.3-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数与一元二次方程
一、选择题
1.下列哪一个函数,其图象与x 轴有两个交点的是( ) A .y =17(x +83)2
+2274 B .y =17(x -83)2
+2274 C .y =-17(x -83)2
-2274 D .y =-17(x +83)2
+2274 2.已知二次函数c bx ax y ++=2的y 与x 的部分对应值如下表:
x
… 1- 0 1 3 … y

3-
1
3
1

则下列判断中正确的是( )
A .抛物线开口向上
B .抛物线与y 轴交于负半轴
C .当x
=4时,y >0 D .方程02
=++c bx ax 的正根在3与4之间 3.在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A .3
B .2
C .1
D .0
4.如图,抛物线)0(2
>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则
c b a +-的值为( )
A. 0
B. - 1
C. 1
D. 2
5.二次函数c bx ax y ++=2的图象如图所示,则下列关系式不正确的是( ) A.a <0
B.abc >0
C.c b a ++>0
D.ac b 42->0
6.已知抛物线2
1y x x =--与x 轴的一个交点为(0)m ,
,则代数式22008m m -+的值为( ) A .2006 B .2007 C .2008 D .2009
.
.
二、填空题
1.将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm 2

2.抛物线2y x bx c =-++的部分图象如图8所示,请写出与其关系式、图象相关的2个正确结论: , .(对称轴方程,图象与x 正半轴、
y 轴交点坐标例外)
3.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)的函数关系式是2
9.8 4.9h t t =-,那么小球运动中的最大高度为 米.
4.已知二次函数2
y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),
的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 个.
5.下列命题:
①若0a b c ++=,则2
40b ac -≥;
②若b a c >+,则一元二次方程2
0ax bx c ++=有两个不相等的实数根; ③若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ④若2
40b ac ->,则二次函数的图像与坐标轴的公共点的个数是2或3. 其中正确的是__________.
6.某涵洞的截面是抛物线型,如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=-
14
x 2
,当涵洞水面宽AB 为12m 时,水面到桥拱顶点O•的距离为_______m .
7.甲,乙两人进行羽毛球比赛,甲发出一颗十分关键的球,出手点为P ,羽毛球飞行的水平距离s (m )与其距地面高度h (m )之间的关系式为h=-112s 2+23s+3
2
.如图,已知球网AB 距原点5m ,乙(用线段CD 表示)扣球的最大高度为
94
m ,•设乙的起跳点C 的横坐标为m ,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则m 的取值范围是____.
8.下列表格是二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程
20ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是_________.
x
6.17 6.18 6.19 6.20
2y ax bx c =++
0.03- 0.01- 0.02 0.04
9.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.
参考答案: 选择题 1. D 2. D 3. B
【解析】本题考察了二次函数与一元二次方程的联系。

抛物线2
1y x =-与x 轴的交点即x 2
-1=0.由于方程x 2
-1=0有两个不相等的实数根,故抛物线2
1y x =-与x 轴有两个交点,
所以选B. 4. A
【解析】本题考查二次函数的有关知识,由已知条件和图象可知抛物线与x 轴的另一个交点为(-1,0),所以当x =-1时,y =c b a +-=0 5. C
【解析】此题考查二次函数的图象及性质.图象开口向下,所以a <0;对称轴2b
x a
=-
<0,所以b<0,图象与y 轴次于y 轴正半轴,因此c>0,因此abc >0;当x=1时,由图象知,y<0,即c b a ++<0;图象与x 轴有两个交点,故ac b 42->0. 6. D
【解析】:①本题考察了二次函数和一元二次方程的相关系.抛物线c bx ax y ++=2与x 轴交点的横坐标,就是一元二次方程02
=++c bx ax 的两根.
②由题意得:012
=--m m ,即12
=-m m ,所以原式=2009,选D 答案.
③结合数形结合的思想方法,可运用函数的观点解一元二次方程、不等式等相关题目. 填空题 1.
25
2
或12.5 【解析】本题考查的二次函数求最值或配方法求最值。

设其中一段铁丝的长为x cm ,则另
一段为(20-x) cm;则这两个正方形的面积之和为()2
2
2
2
10100
20202004488x x x x x -+--+⎛⎫
⎛⎫+=
= ⎪
⎪⎝⎭
⎝⎭
, ∴当x =10时,2
2
2044x x -⎛⎫⎛⎫
+ ⎪ ⎪⎝⎭⎝⎭
有小值1002512.582==;所以这两个正方形的面积之和最小值为
25
2
或12.5 2. 答案不唯一.如:①c =3;②b +c =1;③c -3b =9;④b =-2;⑤抛物线的顶点为(-1,4),或二次函数的最大值为4;⑥方程-x2+bx +c =0的两个根为-3,1;⑦y>0时,-3<x<1;或y<0时,x<-3或x>1;⑧当x>-1时,y 随x 的增大而减小;或当x<-1时,y 随x 的增大而增大.等等. 3. 4.9
4. 4
5. ①③④
6. 9
7. 5<m<4+7 8. 6.18 6.19x << 【解析】:由二部分组成
本题考察了二次函数与一元二次方程的关系.
一元二次方程ax 2
+bx+c=0(a ≠0)的实数根的个数有三种情形:有两个不相等的实数根、两个相等的实数根、没有实数根.所以抛物线y=ax 2
+bx+c(a ≠0)与x 轴的交点也会有三种情况:当方程有两个不相同的实数根时,抛物线与x 轴有两个交点;当方程有两个相等的实数根时,x 的值只能算一个,所以抛物线与x 轴有一个交点;当方程没有实数根时,抛物线与x 轴没有交点.
重点把握二次函数图象与x 轴(或y=h )交点的个数与一元二次方程的根的关系.掌握此点,关键是理解二次函数y=ax 2
+bx +c 图象与x 轴交点,即y=0,即ax 2
+bx +c=0,从而转化为方程的根,再应用根的判别式,求根公式判断,求解即可,二次函数图象与x 轴的交点是二次函数的一个重要内容,在其考查中也有重要的地位. 9. 0.5
【解析】本题主要考查学生应用二次函数的知识解决实际问题的能力.可建立如图所示的坐标系,设此二次函数的解析式为y=ax 2
+c ,根据题意,点(-0.5,1)、(1,2.5)在抛物线上,从而确定二次函数的解析式为y=2x 2+0.5,顶点的纵坐标为0.5.。

相关文档
最新文档