黑龙江省绥化市望奎五中2013年中考数学一模试卷
绥化市初三中考数学第一次模拟试卷【含答案】
绥化市初三中考数学第一次模拟试卷【含答案】一.选择题(每小题3分,共30分1.(3分)﹣的绝对值是()A.2B.C.﹣D.﹣22.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()A.3.9×10﹣8B.﹣3.9×10﹣8C.0.39×10﹣7D.39×10﹣93.(3分)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A.B.C.D.4.(3分)下列运算正确的是()A.a2+a2=a4B.a6÷a2=a3C.(﹣2a)3=﹣8a3D.(a+1)2=a2+15.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°6.(3分)在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.(3分)如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°8.(3分)若函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,则m的值为()A.﹣2或3B.﹣2或﹣3C.1或﹣2或3D.1或﹣2或﹣3 9.(3分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE 交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2B.C.D.10.(3分)如图,点A在x轴上,点B,C在反比例函数y=(k>0,x>0)的图象上.有一个动点P从点A出发,沿A→B→C→O的路线(图中“→”所示路线)匀速运动,过点P作PM⊥x轴,垂足为M,设△POM的面积为S,点P的运动时间为t,则S关于t 的函数图象大致为()A.B.C.D.二.填空题(每题3分,共15分)11.(3分)计算:+(﹣1)0﹣()﹣2=.12.(3分)如图,随机闭合开关S1,S2,S3中的两个,能够让灯泡发光的概率为.13.(3分)不等式组的解集是.14.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.15.(3分)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC 上,当△DCM为直角三角形时,折痕MN的长为.三.解答题16.(8分)先化简,再求值:(﹣)÷,其中x满足x2﹣2x﹣2=0.17.(9分)某校在一次社会实践活动中,组织学生参观了虎园、烈士陵园、博物馆和植物园,为了解本次社会实践活动的效果,学校随机抽取了部分学生,对“最喜欢的景点”进行了问卷调查,并根据统计结果绘制了如下不完整的统计图.其中最喜欢烈士陵园的学生人数与最喜欢博物馆的学生人数之比为2:1,请结合统计图解答下列问题:(1)本次活动抽查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是度;(4)该校此次参加社会实践活动的学生有720人,请求出最喜欢烈士陵园的人数约有多少人?18.(9分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=时,四边形AOCP是菱形;②连接BP,当∠ABP=时,PC是⊙O的切线.19.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)20.(9分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.21.(10分)“京东电器”准备购进A、B两种品牌台灯,其中A每盏进价比B每盏进价贵30元,A售价120元,B售价80元已知用1040元购进的A数量与用650元购进B的数量相同.(1)求A、B的进价;(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?(3)在(2)的条件下,该超市决定对A台灯进行降价促销,A台灯每盏降价m(8<m <15),B的售价不变,超市如何进货获利最大?22.(10分)(1)问题发现在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC交AB于点F,将AD绕点D顺时针旋转α得到ED,连接BE.如图(1),当α=90°时,试猜想:①AF与BE的数量关系是;②∠ABE=;(2)拓展探究如图(2),当0°<α<90°时,请判断AF与BE的数量关系及∠ABE的度数,并说明理由.(3)解决问题如图(3),在△ABC中,AC=BC,AB=8,∠ACB=α,点D在射线BC上,将AD绕点D顺时针旋转α得到ED,连接BE,当BD=3CD时,请直接写出BE的长度.23.(11分)如图,已知直线y=﹣3x+c与x轴相交于点A(1,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A,B,与x轴的另一个交点是C.(1)求抛物线的解析式;(2)点P是对称轴的左侧抛物线上的一点,当S△P AB=2S△AOB时,求点P的坐标;(3)连接BC抛物线上是否存在点M,使∠MCB=∠ABO?若存在,请直接写出点M的坐标;否则说明理由.参考答案与试题解析一.选择题(每小题3分,共30分1.(3分)﹣的绝对值是()A.2B.C.﹣D.﹣2【分析】根据绝对值的定义进行计算.【解答】解:||=,故选:B.【点评】本题考查了绝对值.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()A.3.9×10﹣8B.﹣3.9×10﹣8C.0.39×10﹣7D.39×10﹣9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000039=3.9×10﹣8.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得左视图为:.故选:A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.(3分)下列运算正确的是()A.a2+a2=a4B.a6÷a2=a3C.(﹣2a)3=﹣8a3D.(a+1)2=a2+1【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则、完全平方公式分别计算得出答案.【解答】解:A、a2+a2=2a2,故此选项错误;B、a6÷a2=a4,故此选项错误;C、(﹣2a)3=﹣8a3,正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.【点评】此题主要考查了积的乘方运算以及同底数幂的乘除运算、完全平方公式,正确掌握相关运算法则是解题关键.5.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°【分析】根据两直线平行,内错角相等求出∠3,再求解即可.【解答】解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选:C.【点评】本题考查了两直线平行,内错角相等的性质,熟记性质是解题的关键.6.(3分)在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是15【分析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.【解答】解:A、众数是90分,人数最多,正确;B、中位数是90分,错误;C、平均数是分,错误;D、方差是=19,错误;故选:A.【点评】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、方差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、方差.7.(3分)如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°【分析】由P A与PB都为圆O的切线,利用切线的性质得到OA垂直于AP,OB垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C 的度数求出∠AOB的度数,在四边形P ABO中,根据四边形的内角和定理即可求出∠P 的度数.【解答】解:∵P A、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选:C.【点评】本题主要考查了切线的性质,四边形的内角与外角,以及圆周角定理,熟练运用性质及定理是解本题的关键.8.(3分)若函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,则m的值为()A.﹣2或3B.﹣2或﹣3C.1或﹣2或3D.1或﹣2或﹣3【分析】根据m=1和m≠1两种情况,根据一次函数的性质、二次函数与方程的关系解答.【解答】解:当m=1时,函数解析式为:y=﹣6x+是一次函数,图象与x轴有且只有一个交点,当m≠1时,函数为二次函数,∵函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,∴62﹣4×(m﹣1)×m=0,解得,m=﹣2或3,故选:C.【点评】本题考查的是抛物线与x轴的交点问题,掌握二次函数与一元二次方程的关系、灵活运用分情况讨论思想是解题的关键.9.(3分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE 交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2B.C.D.【分析】如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【解答】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF==,∴AK=OK==,∴OA=,由△FOC∽△OBA,可得==,∴==,∴OB=,AB=,∴A(,),∴k=.故选:B.【点评】本题考查作图﹣复杂作图,反比例函数图象上的点的坐标特征,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.(3分)如图,点A在x轴上,点B,C在反比例函数y=(k>0,x>0)的图象上.有一个动点P从点A出发,沿A→B→C→O的路线(图中“→”所示路线)匀速运动,过点P作PM⊥x轴,垂足为M,设△POM的面积为S,点P的运动时间为t,则S关于t 的函数图象大致为()A.B.C.D.【分析】结合点P的运动,将点P的运动路线分成A→B、B→C、C→O三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.【解答】解:设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S==a2•cosα•sinα•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选:D.【点评】本题考查了动点问题的函数图象,解答此类题目并不需要求出函数解析式,只要判断出函数的增减性,或者函数的性质即可,注意排除法的运用.二.填空题(每题3分,共15分)11.(3分)计算:+(﹣1)0﹣()﹣2=0.【分析】直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案.【解答】解:原式=3+1﹣4=0.故答案为:0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,随机闭合开关S1,S2,S3中的两个,能够让灯泡发光的概率为.【分析】根据题意可得:随机闭合开关S1,S2,S3中的两个,有3种方法,其中有两种能够让灯泡发光,故其概率为.【解答】解:P(灯泡发光)=.故本题答案为:.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(3分)不等式组的解集是﹣1≤x<3.【分析】分别解每一个不等式,再求解集的公共部分.【解答】解:,解不等式①得:x≥﹣1,解不等式②得:x<3,所以不等式组的解集是:﹣1≤x<3,故答案为:﹣1≤x<3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.14.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为π﹣2.【分析】空白处的面积等于△ABC的面积减去扇形BCD的面积的2倍,阴影部分的面积等于△ABC的面积减去空白处的面积即可得出答案.【解答】解:∵∠ACB=90°,AC=BC=2,∴S△ABC=×2×2=2,S扇形BCD==π,S空白=2×(2﹣π)=4﹣π,S阴影=S△ABC﹣S空白=2﹣4+π=π﹣2,故答案为π﹣2.【点评】本题考查了扇形的面积公式,正确理解公式是关键.15.(3分)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC 上,当△DCM为直角三角形时,折痕MN的长为或.【分析】依据△DCM为直角三角形,需要分两种情况进行讨论:当∠CDM=90°时,△CDM是直角三角形;当∠CMD=90°时,△CDM是直角三角形,分别依据含30°角的直角三角形的性质以及等腰直角三角形的性质,即可得到折痕MN的长.【解答】解:分两种情况:①如图,当∠CDM=90°时,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,∴∠C=30°,AB=AC=,由折叠可得,∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=,∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AN=MN=;②如图,当∠CMD=90°时,△CDM是直角三角形,由题可得,∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN=AN,BN=BD,又∵AB=,∴AN=2,BN=,过N作NH⊥AM于H,则∠ANH=30°,∴AH=AN=1,HN=,由折叠可得,∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=,∴MN=,故答案为:或.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三.解答题16.(8分)先化简,再求值:(﹣)÷,其中x满足x2﹣2x﹣2=0.【分析】先根据分式的混合运算顺序和运算法则化简原式,再由x2﹣2x﹣2=0得x2=2x+2=2(x+1),整体代入计算可得.【解答】解:原式=[﹣]÷=•=,∵x2﹣2x﹣2=0,∴x2=2x+2=2(x+1),则原式==.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.17.(9分)某校在一次社会实践活动中,组织学生参观了虎园、烈士陵园、博物馆和植物园,为了解本次社会实践活动的效果,学校随机抽取了部分学生,对“最喜欢的景点”进行了问卷调查,并根据统计结果绘制了如下不完整的统计图.其中最喜欢烈士陵园的学生人数与最喜欢博物馆的学生人数之比为2:1,请结合统计图解答下列问题:(1)本次活动抽查了60名学生;(2)请补全条形统计图;(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是36度;(4)该校此次参加社会实践活动的学生有720人,请求出最喜欢烈士陵园的人数约有多少人?【分析】(1)由虎园人数及其所占百分比可得总人数;(2)设最喜欢博物馆的学生人数为x,则最喜欢烈士陵园的学生人数为2x,根据各参观项目人数和等于总人数求得x的值,据此即可补全图形;(3)用360°乘以最喜欢植物园的学生人数占被调查人数的比例可得;(4)用总人数乘以样本中最喜欢烈士陵园的人数所占比例.【解答】解:(1)本次活动调查的学生人数为18÷30%=60人,故答案为:60;(2)设最喜欢博物馆的学生人数为x,则最喜欢烈士陵园的学生人数为2x,则x+2x=60﹣18﹣6,解得:x=12,即最喜欢博物馆的学生人数为12,则最喜欢烈士陵园的学生人数为24,补全条形图如下:(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是360°×=36°,故答案为:36;(4)最喜欢烈士陵园的人数约有720×=288人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=120°时,四边形AOCP是菱形;②连接BP,当∠ABP=45°时,PC是⊙O的切线.【分析】(1)由AAS证明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出结论;(2)①证出OA=OP=P A,得出△AOP是等边三角形,∠A=∠AOP=60°,得出∠BOP =120°即可;②由切线的性质和平行线的性质得出∠BOP=90°,由等腰三角形的性质得出∠ABP=∠OPB=45°即可.【解答】(1)证明:∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵点M是OP的中点,∴OM=PM,在△CPM和△AOM中,,∴△CPM≌△AOM(AAS),∴PC=OA.∵AB是半圆O的直径,∴OA=OB,∴PC=OB.又PC∥AB,∴四边形OBCP是平行四边形.(2)解:①∵四边形AOCP是菱形,∴OA=P A,∵OA=OP,∴OA=OP=P A,∴△AOP是等边三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案为:120°;②∵PC是⊙O的切线,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案为:45°.【点评】本题是圆的综合题目,考查了全等三角形的判定与性质、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键.19.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)【分析】延长CA交BE于点D,得CD⊥BE,设AD=x,得BD=x米,CD=(20+x)米,根据=tan∠DCB列方程求出x的值即可得.【解答】解:如图,延长CA交BE于点D,则CD⊥BE,由题意知,∠DAB=45°,∠DCB=33°,设AD=x米,则BD=x米,CD=(20+x)米,在Rt△CDB中,=tan∠DCB,∴≈0.65,解得x≈37,答:这段河的宽约为37米.【点评】本题考查了解直角三角形的应用﹣方向角问题,作出辅助线构造直角三角形是解题的关键.20.(9分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.【分析】(1)根据待定系数法,将点的坐标分别代入两个函数的表达式中求出待定系数,可得答案;(2)利用△AOP的面积减去△AOQ的面积.【解答】解:(1)反比例函数y=(m≠0)的图象经过点(1,4),∴,解得m=4,故反比例函数的表达式为,一次函数y=﹣x+b的图象与反比例函数的图象相交于点Q(﹣4,n),∴,解得,∴一次函数的表达式y=﹣x﹣5;(2)由,解得或,∴点P(﹣1,﹣4),在一次函数y=﹣x﹣5中,令y=0,得﹣x﹣5=0,解得x=﹣5,故点A(﹣5,0),S△OPQ=S△OP A﹣S△OAQ==7.5.【点评】本题考查了反比例函数图象与一次函数图象的交点坐标问题,(1)用待定系数法求出函数表达式是解题的关键,(2)转化思想是解题关键,将三角形的面积转化成两个三角形的面积的差.21.(10分)“京东电器”准备购进A、B两种品牌台灯,其中A每盏进价比B每盏进价贵30元,A售价120元,B售价80元已知用1040元购进的A数量与用650元购进B的数量相同.(1)求A、B的进价;(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?(3)在(2)的条件下,该超市决定对A台灯进行降价促销,A台灯每盏降价m(8<m <15),B的售价不变,超市如何进货获利最大?【分析】(1)设A品牌台灯进价为x元/盏,则B品牌台灯进价为(x﹣30)元/盏,根据题意,列出方程即可(2)设超市购进A品牌台灯a盏,则购进B品牌台灯有(100﹣a)盏,根据题意得:3400≤(120﹣80)a+(80﹣50)(100﹣a)≤3550,求即可(3)令超市销售台灯所获总利润记作w,根据题意,有w=(120﹣m﹣80)a+(80﹣50)(100﹣a)=(10﹣m)a+3000,分情况讨论即可.【解答】解:(1)设A品牌台灯进价为x元/盏,则B品牌台灯进价为(x﹣30)元/盏,根据题意得=,解得x=80,经检验x=80 是原分式方程的解.∴x﹣30=80﹣30=50(元/盏),答:A、B两种品牌台灯的进价分别是80 元/盏,50 元/盏(2)设超市购进A品牌台灯a盏,则购进B品牌台灯有(100﹣a)盏,根据题意得:3400≤(120﹣80)a+(80﹣50)(100﹣a)≤3550解得,40≤a≤55.∵a为整数,∴该超市有16 种进货方案(3)令超市销售台灯所获总利润记作w,根据题意,有w=(120﹣m﹣80)a+(80﹣50)(100﹣a)=(10﹣m)a+3000∵8<m<15∴①当8<m<10 时,即10﹣m>0,w随a的增大而增大,故当a=55 时,所获总利润w最大,即A品牌台灯55 盏、B品牌台灯45 盏;②当m=10 时,w=3000;故当A品牌台灯数量满足40≤a≤55时,利润均为3000元;③当10<m<15 时,即10﹣m<0,w随a的增大而减小,故当a=40 时,所获总利润w最大,即A品牌台灯40 盏、B品牌台灯60 盏【点评】此题为一次函数的应用,渗透了函数与方程的思想,关键是掌握销售利润公式:利润=(售价﹣成本)×数量.22.(10分)(1)问题发现在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC交AB于点F,将AD绕点D顺时针旋转α得到ED,连接BE.如图(1),当α=90°时,试猜想:①AF与BE的数量关系是AF=BE;②∠ABE=90°;(2)拓展探究如图(2),当0°<α<90°时,请判断AF与BE的数量关系及∠ABE的度数,并说明理由.(3)解决问题如图(3),在△ABC中,AC=BC,AB=8,∠ACB=α,点D在射线BC上,将AD绕点D顺时针旋转α得到ED,连接BE,当BD=3CD时,请直接写出BE的长度.【分析】(1)只要证明△ADF≌△EDB,可得AF=BE,再利用“8字型”字母∠OBE=∠ADO=90°即可解决问题;(2)结论:AF=BF,∠ABE=a.只要证明△ADF≌△EDB,即可解决问题;(3)分两种情形分别求解即可;【解答】解(1)如图1中,设AB交DE于O.∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵DF∥AC,∴∠FDB=∠C=90°,∴∠DFB=∠DBF=45°,∴DF=DB,∵∠ADE=∠FDB=90°,∴∠ADF=∠EDB,∵DA=DE,∴△ADF≌△EDB,∴AF=BE,∴∠DAF=∠E,∵∠AOD=∠EOB,∴∠ABE=∠ADO=90°故答案为AF=BF,90°.(2)结论:AF=BE,∠ABE=α.理由如下:∵DF‖AC∴∠ACB=∠FDB=α,∠CAB=∠DFB,∵AC=BC,∴∠ABC=∠CAB,∴∠ABC=∠DFB,∴DB=DF,∵∠ADF=∠ADE﹣∠FDE,∠EDB=∠FDB﹣∠FDE,∴∠ADF=∠EDB,又∵AD=DE,∴△ADF≌△EDB,∴AF=BE,∠AFD=∠EBD∵∠AFD=∠ABC+∠FDB,∠DBE=∠ABD+∠ABE,∴∠ABE=∠FDB=α.(3)①如图3﹣1中,当点D在BC上时,由(2)可知:BE=AF,∵DF∥AC,∴==,∵AB=8,∴AF=2,∴BE=AF=2,②如图3﹣2中,当点D在BC的延长线上时,∵AC∥DF,∴==,∵AB=8,∴AF=4,故答案为2或4.【点评】本题考查几何变换综合题、等腰三角形的性质、全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.23.(11分)如图,已知直线y=﹣3x+c与x轴相交于点A(1,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A,B,与x轴的另一个交点是C.(1)求抛物线的解析式;(2)点P是对称轴的左侧抛物线上的一点,当S△P AB=2S△AOB时,求点P的坐标;(3)连接BC抛物线上是否存在点M,使∠MCB=∠ABO?若存在,请直接写出点M的坐标;否则说明理由.【分析】(1)先把A点坐标代入y=﹣3x+c求出得到B(0,3),然后利用待定系数法求抛物线解析式;(2)连接OP,如图1,抛物线的对称轴为直线x=﹣1,设P(x,﹣x2﹣2x+3)(x<﹣1),由于S△P AB=S△POB+S△ABO﹣S△POA,S△P AB=2S△AOB,则S△POB﹣S△POA=S△ABO,讨论:当P点在x轴上方时,•3•(﹣x)﹣•1•(﹣x2﹣2x+3)=•1•3,当P点在x轴下方时,•3•(﹣x)+•1•(x2+2x﹣3)=•1•3,然后分别解方程求出x即可得到对应P 点坐标;(3)解方程﹣x2﹣2x+3=0得C(﹣3,0),则可判断△OBC为等腰直角三角形,讨论:当∠BCM在直线BC下方时,如图2,直线CM交y轴于D,作DE⊥BC于E,设D(0,t),表示出DE=BE=(3﹣t),接着利用tan∠MCB=tan∠ABO得到==,所以3﹣(3﹣t)=(3﹣t),解方程求出t得到D点坐标,接下来利用待定系数法确定直线CD的解析式为y=x+,然后解方程组得此时M点坐标;当∠BCM在直线CB上方时,如图3,CM交直线AB于N,易得直线AB的解析式为y=﹣3x+3,设N(k,﹣3k+3),证明△ABC∽△ACN,利用相似比求出AN=,再利用两点间的距离公式得到(k﹣1)2+(﹣3k+3)2=()2,解方程求出t得N 点坐标为(﹣,),易得直线CN的解析式为y=2x+6,然后解方程组得此时M点坐标.【解答】解:(1)把A(1,0)代入y=﹣3x+c得﹣3+c=0,解得c=3,则B(0,3),把A(1,0),B(0,3)代入y=﹣x2+bx+c得,解得,∴抛物线解析式为y=﹣x2﹣2x+3;(2)连接OP,如图1,抛物线的对称轴为直线x=﹣=﹣1,设P(x,﹣x2﹣2x+3)(x<﹣1),S△P AB=S△POB+S△ABO﹣S△POA,∵S△P AB=2S△AOB,∴S△POB﹣S△POA=S△ABO,当P点在x轴上方时,•3•(﹣x)﹣•1•(﹣x2﹣2x+3)=•1•3,解得x1=﹣2,x2=3(舍去),此时P点坐标为(﹣2,3);当P点在x轴下方时,•3•(﹣x)+•1•(x2+2x﹣3)=•1•3,解得x1=﹣2(舍去),x2=3(舍去),综上所述,P点坐标为(﹣2,3);(3)存在.当y=0时,﹣x2﹣2x+3=0,解得x1=﹣1,x2=﹣3,则C(﹣3,0),∵OC=OB=3,∴△OBC为等腰直角三角形,∴∠OBC=∠OCB=45°,BC=3,当∠BCM在直线BC下方时,如图2,直线CM交y轴于D,作DE⊥BC于E,设D(0,t),∵∠DBE=45°,∴△BDE为等腰直角三角形,∴DE=BE=BD=(3﹣t),∵∠MCB=∠ABO,∴tan∠MCB=tan∠ABO,∴==,即CE=3DE,∴3﹣(3﹣t)=(3﹣t),解得t=,则D(0,),设直线CD的解析式为y=mx+n,把C(﹣3,0),D(0,)代入得,解得,∴直线CD的解析式为y=x+,解方程组得或,此时M点坐标为(,);当∠BCM在直线CB上方时,如图3,CM交直线AB于N,易得直线AB的解析式为y=﹣3x+3,AB=,AC设N(k,﹣3k+3),∵∠MCB=∠ABO,∠CBO=∠OCB,∴∠NCA=∠ABC,而∠BAC=∠CAN,∴△ABC∽△ACN,∴AB:AC=AC:AN,即:4=4:AN,∴AN=,∴(k﹣1)2+(﹣3k+3)2=()2,整理得(k﹣1)2=,解得k1=(舍去),k2=﹣,∴N点坐标为(﹣,),易得直线CN的解析式为y=2x+6,解方程组,得或,此时M点坐标为(﹣1,4),综上所述,满足条件的M点的坐标为(,)或(﹣1,4).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰直角三角形的性质;会利用待定系数法求函数解析式,能把求函数交点问题转化为解方程组的问题;灵活运用锐角三角函数的定义和相似比进行几何计算;理解坐标与图形性质,记住两点间的距离公式.中学数学一模模拟试卷一.选择题(每小题3分,共30分1.(3分)﹣的绝对值是()A.2B.C.﹣D.﹣22.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()A.3.9×10﹣8B.﹣3.9×10﹣8C.0.39×10﹣7D.39×10﹣9 3.(3分)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A.B.C.D.4.(3分)下列运算正确的是()A.a2+a2=a4B.a6÷a2=a3C.(﹣2a)3=﹣8a3D.(a+1)2=a2+15.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°6.(3分)在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.(3分)如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°。
2013年中考数学模拟试卷(含答案)
数学试题 第1页(共4页)2013年初中毕业生学业水平调研测试数 学本试卷共4页,22小题,满分120分,考试时间100分钟. 注意事项:⒈ 答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的姓名、考生号等,用2B 铅笔把对应号码的标号涂黑.⒉ 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.⒊ 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.⒋ 考生务必保持答题卡整洁.考试结束时,将答卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.31的相反数是A .31 B .31-C .3D .3-2.下列算式正确的是A .632a a a =+B .532a a a =+C .632a a a =⋅D .532a a a =⋅ 3.如图1是一个底面水平放置的圆柱,它的左视图是A .B .C .D .4.菱形ABCD 的对角线长为分别32=AC ,2=BD ,则菱形的内角=∠BAD A .o30 B .o60 C .o120 D .o1505.袋中有2个红球和4个白球,它们除颜色上的区别外其他都相同.从袋中随机地取出一个球,取到红球的概率是 A .61 B .32 C .31 D .21二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6.据统计,某市2011年有初中毕业生约53600人.试用科学计数法表示=53600 .数学试题 第2页(共4页)7.在2012年“植树节”义务植树活动中,某校九年级5个班植树的颗数分别为16、20、15、21、18,则这组数据的平均数是 . 8.若点)213, 12(-+m m P 在第四象限,则常数m 的取值范围是 .9.如图2,⊙O 的半径5=R ,13=PO ,过P 作⊙O 的切线,切点为A ,则=PA . 10.观察下列连等式:⑴21)1(1)1)(1(x x x x x x -=-+-=+-⑵222)1(1])1)[(1()1)(1(x x x x x x x x -+-=++-=++-⑶43332321)1(1])1)[(1()1)(1(x x x x x x x x x x x x -=-+-=+++-=+++- 依此下去,第四个连等式为: . 三、解答题㈠(本大题5小题,每小题6分,共30分) 11.计算:o145cos 2)21( |22|)13( +---+--.12.先化简,再求值:xx x xx 1121222+++÷+,其中3=x .13.如图3,E 、F 分别是平行四边形ABCD 的边AD 、BC 的中点.⑴求证:DF BE =;⑵直接写出直线BE 与DF 的位置关系(不需要证明.....).14.如图4,在边长为 1 个单位长度的正方形方格纸中建立直角坐标系,坐标轴都在格线上.已知ABC ∆各顶点的坐标为)0 , 1(-A 、)3 , 4(-B 、)1 , 5(-C . ⑴画出ABC ∆关于y 轴对称的///C B A ∆;⑵写出点/B 的坐标,并直接写出//A ABB 是怎样的特殊四边形(不需要证明.....).AB CDEF15.如图5,反比例函数xky=的部分图象与直线xy-=1交点A的横坐标为2-.⑴试确定k的值;⑵当31<≤x时,求反比例函数y的取值范围.四、解答题㈡(本大题4小题,每小题7分,共28分)16.去冬今春,我国西南地区遭遇历史上罕见的旱灾,武警某部接到了限期打30口水井的作业任务,部队官兵到达灾区后,目睹灾情心急如焚,他们增派机械车辆,争分夺秒,每天比原计划多打3口井,结果提前5天完成任务,求原计划每天打多少口井?17.开展阳光体育运动后,体育老师为了解九年级360名男生的身体素质状况,在九年级随机抽取50位男生进行100米跑测试,以测试数据为样本,绘制出如下的频数分布表和频数分布直方图(均未完成):请根据图表数据解答下列问题:⑴求频数分布表中a的值,并把频数分布直方图补充完整;⑵这个样本数据的中位数落在第组(直接填写结果,不必写出求解过程);⑶若九年级男生100米跑的时间小于3.14秒为优秀,根据以上图表,估计九年级全级大约有多少名男生达到优秀?18.如图6,已知ABD∆和ACE∆都是等边三角形,CD、BE相交于点F.⑴求证:ABE∆≌ADC∆;⑵ABE∆可由ADC∆经过怎样的旋转变换得到?数学试题第3页(共4页)数学试题 第4页(共4页)19.为美化环境,建设绿色校园,学校计划铺设一块面积为230m 的等腰三角形绿地,已知等腰三角形一边长为m 10,且顶角是锐角,试求这块等腰三角形绿地另外两边的长.五、解答题㈢(本大题3小题,每小题9分,共27分)20.如图7,B 是线段AD 上一点,ABC ∆和BDE ∆都是等边三角形,⊙O 是ABC ∆的外接圆.CE 与⊙O 相交于G ,CE 的延长线与AD 的延长线相交于F . ⑴求证:BCF ∆∽DEF ∆; ⑵求证:BE 是⊙O 的切线; ⑶若21=BCDE ,求CGEG .21.某商场销售一批进价为16元的日用品,为了获得更多利润,商场需要确定适当的销售价格.调查发现:若按每件20元销售,每月能卖出360件;若按每件25元销售,每月能卖出210件.假定每月销售量y (件)是销售价格x (元/件)的一次函数. ⑴试求y 与x 之间的函数关系式;⑵销售价格定为多少时,商场每月获得的利润最大?每月的最大利润是多少?22.如图8,在平面直角坐标系xOy 中,二次函数542++-=x x y 的图象交x 轴于点A 、B ,交y 轴于点C ,顶点为P ,点M 是x 轴上的动点. ⑴求MB MA +的最小值; ⑵求MC MP -的最大值;⑶当M 在x 轴的正半轴(不包含坐标原点)上运动时, 以CP 、CM 为邻边作平行四边形PCMD .PCMD 能否 为矩形?若能,求M 点的坐标;若不能,简要说明理由.(参考公式:二次函数c bx ax y ++=2图象的顶点坐标是)44, 2(2ab ac ab --)数学试题 第5页(共4页)评分参考一、选择题 BDABC二、填空题 6.41036.5⨯ 7.18 8.3121<<-m 9.1210.5444324321)1(1])1)[(1()1)(1(x x x x x x x x x x x x x x -=-+-=++++-=++++-三、解答题㈠ 11.原式222)2( )22(1⨯+---+=……4分(每项1分) 5=……6分12.原式xx x x 1)1()1(22++⨯+=……2分, xx xxx 321)1(2+=++=……4分,3=x 时,原式332+=……5分, 32+=……6分.13.⑴(方法一)ABCD 是平行四边形,所以BC AD //,且BC AD =……2分,因为E 、F 分别的边AD 、BC 的中点.所以BF ED =……3分,所以DEBF 是平行四边形……4分,所以DF BE =……5分.(方法二)ABCD 是平行四边形,所以CD AB =,BC AD =且C A ∠=∠……2分,因为E 、F 分别的边AD 、BC 的中点.所以CF AE =……3分,所以CDF ABE ∆≅∆……4分,所以DF BE =……5分.⑵DF BE //……6分.14.⑴正确画图……3分,正确写出顶点/A 、/B 、/C ……4分⑵)3 , 4(/B ……5分;//A ABB 是等腰梯形……6分.15.⑴2-=x 时,31=-=x y ……1分,所以632-=⨯-=k ……2分.⑵1=x 时,反比例函数的值616-=-==x k y ……3分;3=x 时,236-=-==x k y……4分.所以,31<≤x 时,反比例函数的取值范围为26-<≤-y ……6分.数学试题 第6页(共4页)ABCADB CD四、解答题㈡16.设原计划每天打x 口井……1分,由题意得:533030=+-x x ……3分去分母,整理得01832=-+x x ……4分, 解得31=x ,62-=x …… 5分,经检验,31=x ,62-=x 都是原方程的根,但62-=x 不合题意,舍去……6分 答(略)……7分.17.⑴503122043=+++++a ……1分,所以8=a ……2分,画图……3分⑵4……5分⑶估计九年级达到优秀的男生大约有36050843⨯++……6分,108=(名)……7分.18.⑴因为A B D ∆和ACE ∆都是等边三角形,所以AE AC =,AB AD =……2分,60=∠=∠CAE BAD ……3分,BAC BAE DAC ∠+=∠=∠060……4分,所以ABE ∆≌ADC ∆……5分.⑵ABE ∆可由ADC ∆逆时针旋转060得到……7分.19.如图,等腰三角形ABC ∆,AC AB =,面积为230m若底边长m BC 10=(如左图),作BC AD ⊥,垂足为D ,由3021=⨯⨯=BC AD S 得6=AD ……1分,因为ABC ∆是等腰三角形,所以521=⨯=BC BD ……2分,所以61==AC AB ……3分若腰长m AC AB 10==(如右图),作AC BD ⊥,垂足为D ,由3021=⨯⨯=BD AC S 得6=BD ……4分,所以822=-=BDABAD ……5分,所以2=CD ,10222=+=BDCDBC ……6分所以,这块等腰三角形绿地另外两边的长为m 61、m 61或m 10、m 102……7分.数学试题 第7页(共4页)五、解答题㈢20.⑴ABC ∆和BDE ∆都是等边三角形,所以060=∠=∠BDE ABC ,所以DE BC //……1分,所以DEF BCF ∠=∠,又因为F F ∠=∠,所以BCF ∆∽DEF ∆……2分 ⑵连接OB ,依题意得,OB 是ABC ∠的平分线,03021=∠=∠ABC ABO ……3分,90)(180=∠+∠-=∠DBE ABO EBO ……4分,所以BE OB ⊥,BE 是⊙O 的切线……5分⑶由⑴DE BC //得21==BCDE BFDF ,所以DE DB DF ==,所以030=∠=∠=∠BCE DEF F ……6分,连接OC 、OG ,与⑵同理得030=∠OCB ,所以060=∠OCG ,从而060=∠COG ,3021=∠=∠COG CBG ……7分,在EBC ∆中,030=∠BCE ,060=∠CBE ,090=∠CEB ,所以BE CE 3=,同理在EBG ∆中,000303060=-=∠EBG ,090=∠GEB ,所以BE EG 33=……8分,所以EG CE 3=,从而21=CGEG ……9分.21.⑴依题意,设b kx y +=……1分,则⎩⎨⎧=+=+2102536020b k b k ……2分,解得⎩⎨⎧=-=96030b k (3)分,所以96030+-=x y ,3216≤≤x (不写x 的取值范围不扣分)……4分.⑵商场每月获利)16)(96030(-+-=x x w ……6分,153601440302-+-=x x ……7分,1920)24(302+--=x ……8分,所以,当24=x 时w 有最大值,最大值是1920元。
黑龙江省绥化市中考数学真题试题(解析版)
黑龙江省绥化市2013年中考数学试卷一、填空题(共11小题,每小题3分,满分33分)1.(3分)(2013•绥化)按如图所示的程序计算.若输入x的值为3,则输出的值为﹣3 .考点:代数式求值.专题:图表型.分析:根据x的值是奇数,代入下边的关系式进行计算即可得解.解答:解:x=3时,输出的值为﹣x=﹣3.故答案为:﹣3.点评:本题考查了代数式求值,准确选择关系式是解题的关键.2.(3分)(2013•绥化)函数y=中自变量x的取值范围是x>3 .考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.专题:计算题.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式即可求解.解答:解:依题意,得x﹣3>0,解得x>3.点评:本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数是非负数.3.(3分)(2013•绥化)如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件AE=CB ,使得△EAB≌△BCD.考点:全等三角形的判定.专题:开放型.分析:可以根据全等三角形的不同的判定方法添加不同的条件.解答:解:∵∠A=∠C=90°,AB=CD,∴若利用“SAS”,可添加AE=CB,若利用“HL”,可添加EB=BD,若利用“ASA”或“AAB”,可添加∠EBD=90°,若添加∠E=∠DBC,看利用“AAS”证明.综上所述,可添加的条件为AE=CB(或EB=BD或∠EBD=90°或∠E=∠DBC等).故答案为:AE=CB.点评:本题主要考查了全等三角形的判定,开放型题目,根据不同的三角形全等的判定方法可以选择添加的条件也不相同.4.(3分)(2013•绥化)在九张质地都相同的卡片上分别写有数字﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,从中任意抽取一张卡片,则所抽卡片上数字的绝对值不大于2的概率是.考点:概率公式.分析:让绝对值不大于2的数的个数除以数的总数即为所抽卡片上数字的绝对值小于2的概率.解答:解:∵数的总个数有9个,绝对值不大于2的数有﹣2,﹣1,0,1,2共5个,∴任意抽取一张卡片,则所抽卡片上数字的绝对值不大于2的概率是.故答案为.点评:本题考查概率公式,用到的知识点为:概率=所求情况数与总情况数之比.得到绝对值不大于2的数的个数是解决本题的易错点.5.(3分)(2013•绥化)计算:= .考点:分式的加减法.分析:首先通分,然后根据同分母的分式加减运算法则求解即可求得答案.注意运算结果需化为最简.解答:解:=﹣===.故答案为:.点评:此题考查了分式的加减运算法则.此题比较简单,注意运算要细心,注意运算结果需化为最简.6.(3分)(2013•绥化)由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是4或5 .考点:由三视图判断几何体.分析:易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.解答:解:由俯视图易得最底层有3个立方体,由主视图可得第二层左边第一列有1个正方体或2个正方体,那么共有4或5个正方体组成.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.7.(3分)(2013•绥化)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为2.考点:垂径定理;勾股定理.专题:计算题.分析:连接OA,由AB垂直平分OC,求出OD的长,再利用垂径定理得到D为AB的中点,在直角三角形AOD中,利用垂径定理求出AD的长,即可确定出AB的长.解答:解:连接OA,由AB垂直平分OC,得到OD=OC=1,∵OC⊥AB,∴D为AB的中点,则AB=2AD=2=2=2.故答案为:2.点评:此题考查了垂径定理,以及勾股定理,熟练掌握垂径定理是解本题的关键.8.(3分)(2013•绥化)如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线OC 上.考点:规律型:图形的变化类.分析:根据规律得出每6个数为一周期.用2013除以3,根据余数来决定数2013在哪条射线上.解答:解:∵1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OA上,…每六个一循环,2013÷6=335…3,∴所描的第2013个点在射线和3所在射线一样,∴所描的第2013个点在射线OC上.故答案为:OC.点评:此题主要考查了数字变化规律,根据数的循环和余数来决定数的位置是解题关键.9.(3分)(2013•绥化)某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有 2 种租车方案.考点:二元一次方程的应用.分析:设租用每辆8个座位的车x辆,每辆有4个座位的车y辆,根据车座位数等于学生的人数列出二元一次方程,再根据x、y都是正整数求解即可.解答:解:设租用每辆8个座位的车x辆,每辆有4个座位的车y辆,根据题意得,8x+4y=20,整理得,2x+y=5,∵x、y都是正整数,∴x=1时,y=3,x=2时,y=1,x=3时,y=﹣1(不符合题意,舍去),所以,共有2种租车方案.故答案为:2.点评:本题考查了二元一次方程的应用,解题的关键在于车辆数是正整数.10.(3分)(2013•绥化)若关于x的方程=+1无解,则a的值是 2 .考点:分式方程的解.分析:把方程去分母得到一个整式方程,把方程的增根x=2代入即可求得a的值.解答:解:x﹣2=0,解得:x=2.方程去分母,得:ax=4+x﹣2,把x=2代入方程得:2a=4+2﹣2,解得:a=2.故答案是:2.点评:首先根据题意写出a的新方程,然后解出a的值.11.(3分)(2013•绥化)直角三角形两直角边长是3cm和4cm,以该三角形的边所在直线为轴旋转一周所得到的几何体的表面积是24π,36π,πcm2.(结果保留π)考点:圆锥的计算;点、线、面、体.专题:分类讨论.分析:先利用勾股定理进行出斜边=5(cm),然后分类讨论:当以3cm的边所在直线为轴旋转一周时;当以4cm的边所在直线为轴旋转一周时;当以5cm的边所在直线为轴旋转一周时,再利用圆锥的侧面展开图为扇形和扇形的面积公式计算即可.解答:解:三角形斜边==5(cm),当以3cm的边所在直线为轴旋转一周时,其所得到的几何体的表面积=π•42+•5•2π•4=36π(cm2);当以4cm的边所在直线为轴旋转一周时,其所得到的几何体的表面积=π•32+•5•2π•3=24π(cm2);当以5cm的边所在直线为轴旋转一周时,其所得到的几何体为共一个底面的两圆锥,其底面圆的面积=cm,所以此几何体的表面积=•2π••3+•2π••4=π(cm2).故答案为24π,36π,π.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.二、选择题(共9小题,每小题3分,满分27分)12.(3分)(2013•绥化)下列计算正确的是()A.a3•a3=2a3B.a2+a2=2a4C.a8÷a4=a2D.(﹣2a2)3=﹣8a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:利用同底数的幂的乘法、除法以及合并同类项的法则即可求解.解答:解:A、a3•a3=a6,选项错误;B、a2+a2=2a2,选项错误;C、a8÷a4=a4,选项错误;D、正确.故选D.点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.13.(3分)(2013•绥化)下列几何图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.矩形C.平行四边形D.等腰梯形考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念结合各图形的特点求解.解答:解:A、此图形不是中心对称图形,是轴对称图形,故此选项错误;B、此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形是中心对称图形,不是轴对称图形,故此选项错误;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选B.点评:本题考查了中心对称图形与轴对称图形的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.14.(3分)(2013•绥化)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF交AC于点H,则的值为()A.1B.C.D.考点:三角形中位线定理;平行四边形的性质.分析:根据三角形的中位线平行于第三边并且等于第三边的一半求出H是AO的中点,再根据平行四边形的对角线互相平分可得AO=CO,然后求出CH=3AH,再求解即可.解答:解:∵点E,F分别是边AD,AB的中点,∴AH=HO,∵平行四边形ABCD的对角线AC、BD相交于点O,∴AO=CO,∴CH=3AH,∴=.故选C.点评:本题考查了平行四边形对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记各性质是解题的关键.15.(3分)(2013•绥化)对于反比例函数y=,下列说法正确的是()A.图象经过点(1,﹣3)B.图象在第二、四象限C.x>0时,y随x的增大而增大D.x<0时,y随x增大而减小考点:反比例函数的性质.分析:根据反比例函数的性质得出函数增减性以及所在象限和经过的点的特点分别分析得出即可.解答:解:A、∵反比例函数y=,∴xy=3,故图象经过点(1,3),故此选项错误;B、∵k>0,∴图象在第一、三象限,故此选项错误;C、∵k>0,∴x>0时,y随x的增大而减小,故此选项错误;D、∵k>0,∴x<0时,y随x增大而减小,故此选项正确.故选:D.点评:此题主要考查了反比例函数的性质,根据解析式确定函数的性质是解题关键.16.(3分)(2013•绥化)在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:金额(元)20 30 35 50 100学生数(人)510 5 15 10在这次活动中,该班同学捐款金额的众数和中位数分别是()A.30,35 B.50,35 C.50,50 D.15,50考点:众数;中位数.分析:根据众数、中位数的定义,结合表格数据进行判断即可.解答:解:捐款金额学生数最多的是50元,故众数为50;共45名学生,中位数在第23名学生处,第23名学生捐款50元,故中位数为50;故选C.点评:本题考查了众数及中位数的知识,解答本题的关键是熟练掌握众数及中位数的定义.17.(3分)(2013•绥化)如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD的边上有一动点P,沿A→B→C→D→A运动一周,则点P的纵坐标y与P所走过的路程S之间的函数关系用图象表示大致是()A.B.C.D.考点:动点问题的函数图象.分析:根据则点P的纵坐标y随点P走过的路程s之间的函数关系图象可以分为4部分,当P点在AB上,当P点在BC上,当P点在CD上,点P在AD上即可得出图象.解答:解:∵长、宽分别为2和1的矩形ABCD的边上有一动点P,沿A→B→C→D→A运动一周,则点P的纵坐标y随点P走过的路程s之间的函数关系图象可以分为4部分,∴P点在AB上,此时纵坐标越来越小,最小值是1,P点在BC上,此时纵坐标为定值1.当P点在CD上,此时纵坐标越来越大,最大值是2,P点在AD上,此时纵坐标为定值2.故选D.点评:此题主要考查了动点问题的函数图象问题,解决问题的关键是分解函数得出不同位置时的函数关系,进而得出图象.18.(3分)(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD 于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.7考点:圆周角定理;圆心角、弧、弦的关系;相似三角形的判定与性质.分析:根据圆周角定理∠CAD=∠CDB,继而证明△ACD∽△DCE,设AE=x,则AC=x+4,利用对应边成比例,可求出x的值.解答:解:设AE=x,则AC=x+4,∴∠BAC=∠CAD,∵∠CDB=∠BAC(圆周角定理),∴∠CAD=∠CDB,∴△ACD∽△DCE,∴=,即=,解得:x=5.故选B.点评:本题考查了圆周角定理、相似三角形的判定与性质,解答本题的关键是得出∠CAD=∠CDB,证明△ACD∽△DCE.19.(3分)(2013•绥化)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的个数是()A.1B.2C.3D.4考点:全等三角形的判定与性质;勾股定理;等腰直角三角形.专题:计算题.分析:①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出三角形ABD与三角形AEC全等,由全等三角形的对应边相等得到BD=CE,本选项正确;②由三角形ABD与三角形AEC全等,得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD垂直于CE,本选项正确;③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°,本选项正确;④由BD垂直于CE,在直角三角形BDE中,利用勾股定理列出关系式,等量代换即可作出判断.解答:解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,本选项正确;②∵△BAD≌△CAE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,本选项正确;③∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,本选项正确;④∵BD⊥CE,∴在Rt△BDE中,利用勾股定理得:BE2=BD2+DE2,∵△ADE为等腰直角三角形,∴DE=AD,即DE2=2AD2,∴BE2=BD2+DE2=BD2+2AD2,而BD2≠2AB2,本选项错误,综上,正确的个数为3个.故选C点评:此题考查了全等三角形的判定与性质,勾股定理,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.20.(3分)(2013•绥化)如图,在Rt△ABC中,∠C=90°,AC=,BC=1,D在AC上,将△ADB沿直线BD翻折后,点A落在点E处,如果AD⊥ED,那么△ABE的面积是()A.1B.C.D.考点:翻折变换(折叠问题).分析:先根据勾股定理计算出AB=2,根据含30度的直角三角形三边的关系得到∠BAC=30°,在根据折叠的性质得BE=BA=2,∠BED=∠BAD=30°,DA=DE,由于AD⊥ED得BC∥DE,所以∠CBF=∠BED=30°,在Rt△BCF中可计算出CF=,BF=2CF=,则EF=2﹣,在Rt△DEF中计算出FD=1﹣,ED=﹣1,然后利用S△ABE=S△ABD+S△BED+S△ADE=2S△ABD+S△ADE计算即可.解答:解:∵∠C=90°,AC=,BC=1,∴AB==2,∴∠BAC=30°,∵△ADB沿直线BD翻折后,点A落在点E处,∴BE=BA=2,∠BED=∠BAD=30°,DA=DE,∵AD⊥ED,∴BC∥DE,∴∠CBF=∠BED=30°,在Rt△BCF中,CF==,BF=2CF=,∴EF=2﹣,在Rt△DEF中,FD=EF=1﹣,ED=FD=﹣1,∴S△ABE=S△ABD+S△BED+S△ADE=2S△ABD+S△ADE=2×BC•AD+AD•ED=2××1×(﹣1)+×(﹣1)(﹣1)=1.故选A.点评:本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了勾股定理和含30度的直角三角形三边的关系.三、解答题(共8小题,满分60分)21.(5分)(2013•绥化)如图,在△ABC中,AD⊥BC于点D,AB=8,∠ABD=30°,∠CAD=45°,求BC的长.考点:解直角三角形.分析:首先解Rt△ABD,求出AD、BD的长度,再解Rt△ADC,求出DC的长度,然后由BC=BD+DC 即可求解.解答:解:∵AD⊥BC于点D,∴∠ADB=∠ADC=90°.在Rt△ABD中,∵AB=8,∠ABD=30°,∴AD=AB=4,BD=AD=4.在Rt△ADC中,∵∠CAD=45°,∠ADC=90°,∴DC=AD=4,∴BC=BD+DC=4+4.点评:本题考查了解直角三角形的知识,属于基础题,解答本题的关键是在直角三角形中利用解直角三角形的知识求出BD、DC的长度.22.(6分)(2013•绥化)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC向右平移3个单位后得到的△A1B1C1,再画出将△A1B1C1绕点B1按逆时针方向旋转90°后所得到的△A2B1C2;(2)求线段B1C1旋转到B1C2的过程中,点C1所经过的路径长.考点:作图-旋转变换;作图-平移变换.分析:(1)根据平移的性质得出对应点位置以及利用旋转的性质得出对应点位置画出图形即可;(2)根据弧长计算公式求出即可.解答:解:(1)如图所示:(2)点C1所经过的路径长为:=2π.点评:此题主要考查了图形的旋转与平移变换以及弧长公式应用等知识,根据已知得出对应点位置是解题关键.23.(6分)(2013•绥化)为了解今年全县2000名初四学生“创新能力大赛”的笔试情况.随机抽取了部分参赛同学的成绩,整理并制作如图所示的图表(部分未完成).请你根据表中提供的信息,解答下列问题:(1)此次调查的样本容量为300 ;(2)在表中:m= 120 ;n= 0.3 ;(3)补全频数分布直方图;(4)如果比赛成绩80分以上(含80分)为优秀,那么你估计该县初四学生笔试成绩的优秀人数大约是1200 名.分数段频数频率60≤x<70 30 0.170≤x<80 90 n80≤x<90 m 0.490≤x<100 60 0.2考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.分析:(1)根据第一组的频数是30,频率是0.1,以及频率公式即可求解;(2)依据频率公式:频率=即可求解;(3)作出第三组对应的矩形即可;(4)利用总人数2000乘以笔试成绩的优秀的频率即可求解.解答:解:(1)样本容量是:30÷0.1=300;(2)m=300×0.4=120,n==0.3;(3)画图如下:(4)2000×(0.4+0.2)=1200(人).点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.(7分)(2013•绥化)如图,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(﹣2,﹣2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.考点:二次函数综合题专题:综合题.分析:(1)将M坐标代入抛物线解析式求出a的值即可;(2)①求出的a代入确定出抛物线解析式,令y=0求出x的值,确定出B与C坐标,令x=0求出y的值,确定出E坐标,进而得出BC与OE的长,即可求出三角形BCE的面积;②根据抛物线解析式求出对称轴方程为直线x=﹣1,根据C与B关于对称轴对称,连接BE,与对称轴交于点H,即为所求,设直线BE解析式为y=kx+b,将B与E 坐标代入求出k与b的值,确定出直线BE解析式,将x=﹣1代入直线BE解析式求出y的值,即可确定出H的坐标.解答:解:(1)将M(﹣2,﹣2)代入抛物线解析式得:﹣2=(﹣2﹣2)(﹣2+a),解得:a=4;(2)①由(1)抛物线解析式y=(x﹣2)(x+4),当y=0时,得:0=(x﹣2)(x+4),解得:x1=2,x2=﹣4,∵点B在点C的左侧,∴B(﹣4,0),C(2,0),当x=0时,得:y=﹣2,即E(0,﹣2),∴S△BCE=×6×2=6;②由抛物线解析式y=(x﹣2)(x+4),得对称轴为直线x=﹣1,根据C与B关于抛物线对称轴直线x=﹣1对称,连接BE,与对称轴交于点H,即为所求,设直线BE解析式为y=kx+b,将B(﹣4,0)与E(0,﹣2)代入得:,解得:,∴直线BE解析式为y=﹣x﹣2,将x=﹣1代入得:y=﹣2=﹣,则H(﹣1,﹣).点评:此题属于二次函数综合题,涉及的知识有:待定系数法确定函数解析式,抛物线与坐标轴的交点,对称的性质,坐标与图形性质,熟练掌握待定系数法是解本题的关键.25.(8分)(2013•绥化)2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x (小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?考点:一次函数的应用专题:阅读型;图表型.分析:(1)由于线段AB与x轴平行,故自3时到4.9时这段时间内甲组停留在途中,所以停留的时间为1.9时;(2)观察图象可知点B的纵坐标就是甲组的汽车在排除故障时距出发点的路程的千米数,所以求得点B的坐标是解答(2)题的关键,这就需要求得直线EF和直线BD 的解析式,而EF过点(1.25,0),(7.25,480),利用这两点的坐标即可求出该直线的解析式,然后令x=6,即可求出点C的纵坐标,又因点D(7,480),这样就可求出CD即BD的解析式,从而求出B点的坐标;(3)由图象可知:甲、乙两组第一次相遇后在B和D相距最远,在点B处时,x=4.9,求出此时的y乙﹣y甲,在点D有x=7,也求出此时的y甲﹣y乙,分别同25比较即可.解答:解:(1)1.9;(2分)(2)设直线EF的解析式为y乙=kx+b∵点E(1.25,0)、点F(7.25,480)均在直线EF上∴(3分)解得∴直线EF的解析式是y乙=80x﹣100;(4分)∵点C在直线EF上,且点C的横坐标为6,∴点C的纵坐标为80×6﹣100=380;∴点C的坐标是(6,380);(5分)设直线BD的解析式为y甲=mx+n;∵点C(6,380)、点D(7,480)在直线BD上,∴;(6分)解得;∴BD的解析式是y甲=100x﹣220;(7分)∵B点在直线BD上且点B的横坐标为4.9,代入y甲得B(4.9,270),∴甲组在排除故障时,距出发点的路程是270千米.(8分)(3)符合约定;由图象可知:甲、乙两组第一次相遇后在B和D相距最远.在点B处有y乙﹣y甲=80×4.9﹣100﹣(100×4.9﹣220)=22千米<25千米(10分)在点D有y甲﹣y乙=100×7﹣220﹣(80×7﹣100)=20千米<25千米(11分)∴按图象所表示的走法符合约定.(12分)点评:本题是依据函数图象提供的信息,解答相关的问题,充分体现了“数形结合”的数学思想,是中考的常见题型,其关键是认真观察函数图象、结合已知条件,正确地提炼出图象信息.26.(8分)(2013•绥化)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.考点:四边形综合题.分析:(1)三角形ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得CF=BD,据此即可证得;(2)同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF ﹣CD=BC;(3)首先证明△BAD≌△CAF,△FCD是直角三角形,然后根据正方形的性质即可求得DF的长,则OC即可求得.解答:证明:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,则在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∵BD+CD=BC,∴CF+CD=BC;(2)CF﹣CD=BC;(3)①CD﹣CF=BC②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF,∵在△BAD和△CAF中,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=90°,∴△FCD是直角三角形.∵正方形ADEF的边长为2且对角线AE、DF相交于点O.∴DF=AD=4,O为DF中点.∴OC=DF=2.点评:本题考查了正方形与全等三角形的判定与性质的综合应用,证明三角形全等是关键.27.(10分)(2013•绥化)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240 160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?考点:一次函数的应用;分式方程的应用;一元一次不等式组的应用.分析:(1)用总价除以单价表示出购进鞋的数量,根据两种鞋的数量相等列出方程求解即可;(2)设购进甲种运动鞋x双,表示出乙种运动鞋(200﹣x)双,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据鞋的双数是正整数解答;(3)设总利润为W,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.解答:解:(1)依题意得,=,整理得,3000(m﹣20)=2400m,解得m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,,解不等式①得,x≥95,解不等式②得,x≤105,所以,不等式组的解集是95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案;(3)设总利润为W,则W=(140﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤105),①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=95时,W有最大值,即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.点评:本题考查了一次函数的应用,分式方程的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系,(3)要根据一次项系数的情况分情况讨论.28.(10分)(2013•绥化)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C 两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.考点:一次函数综合题分析:(1)通过解方程x2﹣14x+48=0可以求得OC=6,OA=8.则C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).把点A、C的坐标分别代入解析式,列出关于系数k、b的方程组,通过解方程组即可求得它们的值;(3)需要分类讨论:PB为腰,PB为底两种情况下的点P的坐标.根据等腰三角形的性质、两点间的距离公式以及一次函数图象上点的坐标特征进行解答.解答:解:(1)解方程x2﹣14x+48=0得x1=6,x2=8.∵OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根,∴OC=6,OA=8.∴C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).由(1)知,OA=8,则A(8,0).∵点A、C都在直线MN上,∴,解得,,∴直线MN的解析式为y=﹣x+6;(3)∵A(8,0),C(0,6),∴根据题意知B(8,6).∵点P在直线MNy=﹣x+6上,。
2013绥化中考数学试题
黑龙江省绥化市2013年中考数学试卷一、填空题(共11小题,每小题3分,满分33分)1.(3分)(2013•绥化)按如图所示的程序计算.若输入x的值为3,则输出的值为.2.(3分)(2013•绥化)函数y=中自变量x的取值范围是.3.(3分)(2013•绥化)如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件,使得△EAB≌△BCD.4.(3分)(2013•绥化)在九张质地都相同的卡片上分别写有数字﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,从中任意抽取一张卡片,则所抽卡片上数字的绝对值不大于2的概率是.5.(3分)(2013•绥化)计算:=.6.(3分)(2013•绥化)由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是.7.(3分)(2013•绥化)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为.8.(3分)(2013•绥化)如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O 后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线上.9.(3分)(2013•绥化)某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有种租车方案.10.(3分)(2013•绥化)若关于x的方程=+1无解,则a的值是.11.(3分)(2013•绥化)直角三角形两直角边长是3cm和4cm,以该三角形的边所在直线为轴旋转一周所得到的几何体的表面积是cm2.(结果保留π)二、选择题(共9小题,每小题3分,满分27分)E,F分别是边AD,AB的中点,EF交AC于点H,则的值为()15.(3分)(2013•绥化)对于反比例函数y=,下列说法正确的是()17.(3分)(2013•绥化)如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD 的边上有一动点P,沿A→B→C→D→A运动一周,则点P的纵坐标y与P所走过的路程S 之间的函数关系用图象表示大致是()B18.(3分)(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC 交BD于点E,CE=4,CD=6,则AE的长为()点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的个数是()20.(3分)(2013•绥化)如图,在Rt△ABC中,∠C=90°,AC=,BC=1,D在AC上,将△ADB沿直线BD翻折后,点A落在点E处,如果AD⊥ED,那么△ABE的面积是()三、解答题(共8小题,满分60分)21.(5分)(2013•绥化)如图,在△ABC中,AD⊥BC于点D,AB=8,∠ABD=30°,∠CAD=45°,求BC的长.22.(6分)(2013•绥化)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC向右平移3个单位后得到的△A1B1C1,再画出将△A1B1C1绕点B1按逆时针方向旋转90°后所得到的△A2B1C2;(2)求线段B1C1旋转到B1C2的过程中,点C1所经过的路径长.23.(6分)(2013•绥化)为了解今年全县2000名初四学生“创新能力大赛”的笔试情况.随机抽取了部分参赛同学的成绩,整理并制作如图所示的图表(部分未完成).请你根据表中提供的信息,解答下列问题:(1)此次调查的样本容量为;(2)在表中:m=;n=;(3)补全频数分布直方图;(4)如果比赛成绩80分以上(含80分)为优秀,那么你估计该县初四学生笔试成绩的优24.(7分)(2013•绥化)如图,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(﹣2,﹣2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.25.(8分)(2013•绥化)2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?26.(8分)(2013•绥化)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.27.(10分)(2013•绥化)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?28.(10分)(2013•绥化)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.答案的概率是.故答案为.5解答:解:=﹣===.故答案为:.OC=1AB=2AD=2=2=2..=542+•32+••••π•4=,∴=y=∴=,即=AD,=2=,EF=1FD=×BC AD××(×﹣(AB=4BD=AD=4.BC=BD+DC=4所经过的路径长为:=0.32=(0=(BCE=y=()代入得:解得:x﹣﹣,﹣)解:(1)1.9;(2分)(2)设直线EF的解析式为y乙=kx+b∵点E(1.25,0)、点F(7.25,480)均在直线EF上∴(3分)解得∴直线EF的解析式是y乙=80x﹣100;(4分)∵点C在直线EF上,且点C的横坐标为6,∴点C的纵坐标为80×6﹣100=380;∴点C的坐标是(6,380);(5分)设直线BD的解析式为y甲=mx+n;∵点C(6,380)、点D(7,480)在直线BD上,∴;(6分)解得;∴BD的解析式是y甲=100x﹣220;(7分)∵B点在直线BD上且点B的横坐标为4.9,代入y甲得B(4.9,270),∴甲组在排除故障时,距出发点的路程是270千米.(8分)(3)符合约定;由图象可知:甲、乙两组第一次相遇后在B和D相距最远.在点B处有y乙﹣y甲=80×4.9﹣100﹣(100×4.9﹣220)=22千米<25千米(10分)在点D有y甲﹣y乙=100×7﹣220﹣(80×7﹣100)=20千米<25千米(11分)∴按图象所表示的走法符合约定.(12分)26解答:证明:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,则在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∵BD+CD=BC,∴CF+CD=BC;(2)CF﹣CD=BC;(3)①CD﹣CF=BC②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF,∵在△BAD和△CAF中,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=90°,∴△FCD是直角三角形.∵正方形ADEF的边长为2且对角线AE、DF相交于点O.∴DF=AD=4,O为DF中点.∴OC=DF=2.=,,∴,解得,﹣a+6a+6(﹣,,)a+6,则﹣a+6=﹣,﹣,)(,)()。
黑龙江省绥化市数学中考一模试卷
黑龙江省绥化市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018七上·天门期末) 下列各数与-6相等的()A . |-6|B . -|-6|C . -32D . -(-6)2. (2分) (2015八上·郯城期末) 要使分式有意义,则x的取值应满足()A . x≠2B . x≠﹣1C . x=2D . x=﹣13. (2分) (2020八下·临朐期末) 下列设计的图案中,既是轴对称图象又是中心对称图形的是()A .B .C .D .4. (2分)(2020·新泰模拟) 下列计算正确的是()A . 2x2•2xy=4x3y4B . 3x2y﹣5xy2=﹣2x2yC . x﹣1÷x﹣2=x﹣1D . (﹣3a﹣2)(﹣3a+2)=9a2﹣45. (2分)空气是由多种气体混合而成的,为了简明扼要的介绍空气的组成情况,较好的描述数据,最适合使用的统计图是()A . 扇形图B . 条形图C . 折线图D . 直方图6. (2分)(2019·岳阳) 下列立体图形中,俯视图不是圆的是()A .B .C .D .7. (2分)下列各式能用平方差公式计算的是()A . (-2a-b)(2a+b)B . (a-b)(2a+b)C . (-2a+b)(2a-b)D . (-2a-b)(-2a+b)8. (2分) (2017八下·潮阳期末) 如图,四边形ABCD是平行四边形,下列说法不正确的是()A . 当AC=BD时,四边形ABCD是矩形B . 当AB=BC时,四边形ABCD是菱形C . 当AC⊥BD时,四边形ABCD是菱形D . 当∠DAB=90°时,四边形ABCD是正方形9. (2分)已知a、b、c分别为Rt△ABC(∠C=90°)的三边的长,则关于x的一元二次方程(c+a)x2+2bx+(c-a)=0根的情况是().A . 方程无实数根B . 方程有两个不相等的实数根C . 方程有两个相等的实数根D . 无法判断10. (2分) (2019八上·鄞州期末) 如图,平分,为上一点,分别在上,且满足,若,则的度数是()A . 40°B . 50°C . 60°D . 70°二、填空题 (共8题;共11分)11. (1分)若x的立方根是﹣,则x=________.12. (1分)将5400 000用科学记数法表示为________.13. (1分) (2020七下·东台期中) 计算:=________.14. (2分) (2017九上·东台月考) 已知圆锥的侧面积为 cm2 ,侧面展开图的圆心角为45°,则该圆锥的母线长为 ________cm。
【3套试卷】绥化市中考第一次模拟考试数学精选
中考模拟考试数学试卷考试时间:100分钟一、单选题1.左边图形通过()变换可以得到右边图形.A.顺时针旋转90o B.平移C.逆时针旋转90o D.旋转100o2.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()A.5 B.4 C.6 D.73.下面计算正确的是()A.(m+1)a﹣ma=1 B.a+3a2=4a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b 4.一个几何体的三视图如图所示,根据图中的相关数据求得该几何体的侧面积为()A.ΠB.2πC.3πD.4π5.已知直角三角形ABC中,∠ACB=90°,AC=4,BC=3,AB=5,点D从点A到点B沿AB运动,CD=x,则x的取值范围是( ) .A.125≤x≤3B.125≤x<4 C.125≤x≤4D.125≤x≤56.如图,AB∥CD,∠B=20°,∠D=60°,则∠BED的度数为( )A.40°B.80°C.90°D.l00°7.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”,则半径为2的“等边扇形”的面积为()A.πB.1 C.23πD.28.下列等式一定成立的是()A.9-4=5B.∣2-5∣=2-5C.164255=±D.-()24-=-49.一个人做“抛硬币”的游戏,抛10次,正面出现4次,反面出现6次,正确的说法是()A.出现正面的频率是4 B.出现正面的频数是6C.出现反面的频率是60% D.出现反面的频数是60%10.如图,点A,B,C都在直线a上,下列说法错误的是()A.点A在射线BC上B.点C在直线AB上C.点A在线段BC上D.点C在射线AB上二、填空题11.若23xy=⎧⎨=-⎩和12xy=⎧⎨=⎩都是关于x、y的方程y=kx+b的解,则k+b的值是_____.12.单项式﹣232x y的系数是_____,次数是_____.13.若关于x的方程kx2+3x+1=0是一元二次方程,则k______.14.把多项式32333a m a-分解因式的结果是________________.15.若a,b互为相反数,m,n互为倒数,那么______________三、解答题16.某校举行“汉字听写”比赛,每位学生听写汉字39个.比赛结束后随机抽查部分学生听写结果,图1,图2是根据抽查结果绘制的统计图的一部分.组别听写正确的个数x 人数A 0≤x<8 10B 8≤x<16 15C 16≤x<24 25D 24≤x<32 mE 32≤x<40 n根据以上信息解决下列问题:(1)本次共随机抽查了多少名学生,求出m,n的值并补全图2的条形统计图;(2)求出图1中∠α的度数;(3)该校共有3000名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.17.计算:(1)a3•(﹣b3)2+(﹣2ab2)3;(2)(a﹣b)10÷(b﹣a)3÷(b﹣a)3.18.解不等式组3312183(1)xxx x-⎧++⎪⎨⎪+<+-⎩…19.2019年5月以来昆明高温天气创历史新高,市民戏称昆明“春城”变“夏城”,百姓对电风扇的需求量比往年明显增加.某超市销售每台进价分别为160元、120元的A B、两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A B 、两种型号的电风扇每台售价各是多少元?(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.20. 如图,在△ABC 中,已知AB=AC ,AD 平分∠BAC ,点M 、N 分别在AB 、AC 边上,AM=2MB ,AN=2NC ,求证:DM=DN21.如图,已知正比例函数和反比例函数的图像都经过点()2,1M --,且()1,2P --为双曲线上的一点,Q 为坐标平面上一动点,PA 垂直于x 轴,QB 垂直于y 轴,垂足分别是A 、B .(1)写出正比例函数和反比例函数的关系式.(2)当点Q 在直线MO 上运动时,直线MO 上是否存在这样的点Q ,使得OBQ △与OAP △的面积相等?如果存在,请求出点的坐标;如果不存在,请说明理由.22.化简:(1)()()222442aa a-⋅-(2)222233242ab a b c cdd --⎛⎫+⋅ ⎪⎝⎭参考答案1.A 2.D 3.C 4.B 5.C 6.B 7.D 8.D 9.D 10.C 11.2 12.32-3 13.≠014.33(1)(1)a m m +- 15.16.(1)用B 组的人数除以百分比即可得出参加比赛的总人数;总人数×30%=D 组人数,总人数×20%=E 组人数; (2)90°;(3)1500名. 17.(1)、-763b a ;(2)、4)(a b -(2)、原式=10)(a b -÷3)(a b -÷3)(a b -=3310)(---a b =4)(a b -.18.不等式组的解集为﹣2<x≤1.19.(1)A 、B 两种型号的电风扇单价分别200元,150元;(2)A 种型号的电风扇最多能采购37台,采购金额不多于7500元; (3)能,方案如下;当36a =时,采购A 种型号的电风扇36台,B 种型号的电风扇14台; 当37a =时,采购A 种型号的电风扇37台,B 种型号的电风扇13台;20.根据AM=2MB ,AN=2NC ,AB=AC 得出AM=AN ,根据角平分线得出∠MAD=∠NAD ,结合AD=AD 得出△AMD 和△AND 全等,从而得出MD=ND . 试题解析:∵AM=2MB ∴AM=23AB 同理AN=23AC 又∵AB=AC ∴AM=AN ∵AD 平分∠BAC ∴∠MAD=∠NAD 又∵AD=AD ∴△AMD ≌△AND ∴DM=DN 考点:三角形全等的性质. 21.(1)正比例函数的解析式为12y x =,反比例函数的解析式为2y x=; (2)在直线MO 上存在这样的点()2,1Q 或()2,1--,使得OBQ △与OAP △面积相等.22.(1)83a ;(2)222222498ab d a b cc d中考第一次模拟考试数学试题含答案(1)一.填空题(满分18分,每小题3分)1.|x﹣3|=3﹣x,则x的取值范围是.2.一个多边形的每个外角都等于72°,则这个多边形的边数为.3.将数12000000科学记数法表示为.4.在函数y=中,自变量x的取值范围是.5.如图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于.6.已知△ABC的周长是1,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形…依此类推,则第2018个三角形的周长为.二.选择题(满分32分,每小题4分)7.在2,﹣4,0,﹣1这四个数中,最小的数是()A.2 B.﹣4 C.0 D.﹣18.如图所示的几何体的俯视图是()A.B.C.D.9.下列各式中,运算正确的是()A.a6÷a3=a2B.C.D.10.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°11.下列各命题是真命题的是()A.平行四边形对角线互相垂直B.矩形的四条边相等C.菱形的对角线相等D.正方形既是矩形,又是菱形12.若数组2,2,x,3,4的平均数为3,则这组数中的()A.x=3 B.中位数为3 C.众数为3 D.中位数为x 13.已知|a+b﹣1|+=0,则(b﹣a)2019的值为()A.1 B.﹣1 C.2019 D.﹣201914.下列选项中,矩形具有的性质是()A.四边相等B.对角线互相垂直C.对角线相等D.每条对角线平分一组对角三.解答题15.(6分)已知:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.16.(6分)已知:AD是△ABC中BC边上的中线,延长AD至E,使DE=AD,连接BE,求证:△ACD≌△EBD.17.(8分)《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?18.(6分)为了美化环境,建设宜居城市,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)试求出y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉的种植面积的2倍.①试求种植总费用W元与种植面积x(m2)之间的函数关系式;②应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用W最少?最少总费用为多少元?19.(7分)如图,在平面直角坐标系中,一次函数y=x﹣3的图象与x轴交于点A,与y 轴交于点B,点B关于x轴的对称点是C,二次函数y=﹣x2+bx+c的图象经过点A和点C.(1)求二次函数的表达式;(2)如图1,平移线段AC,点A的对应点D落在二次函数在第四象限的图象上,点C的对应点E落在直线AB上,求此时点D的坐标;(3)如图2,在(2)的条件下,连接CD,交x轴于点M,点P为直线AC上方抛物线上一动点,过点P作PF⊥AC,垂足为点F,连接PC,是否存在点P,使得以点P,C,F为顶点的三角形与△COM相似?若存在,求点P的横坐标;若不存在,请说明理由.20.(8分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.(1)小礼诵读《论语》的概率是;(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.21.(8分)某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图中C对应的中心角度数是;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?22.(9分)如图,点P为正方形ABCD的对角线AC上的一点,连接BP并延长交CD于点E,交AD的延长线于点F,⊙O是△DEF的外接圆,连接DP.(1)求证:DP是⊙O的切线;(2)若tan∠PDC=,正方形ABCD的边长为4,求⊙O的半径和线段OP的长.23.(12分)如图,分别延长▱ABCD的边AB、CD至点E、点F,连接CE、AF,其中∠E=∠F.求证:四边形AECF为平行四边形.参考答案一.填空题1.解:3﹣x≥0,∴x≤3;故答案为x≤3;2.解:多边形的边数是:360÷72=5.故答案为:5.3.解:12 000 000=1.2×107,故答案是:1.2×107,4.解:由题意,得2x+1≠0,解得x≠﹣.故答案为:x≠﹣.5.解:作DG⊥AC,垂足为G.∵DE∥AB,∴∠BAD=∠ADE,∵∠DAE=∠ADE=15°,∴∠DAE=∠ADE=∠BAD=15°,∴∠DEG=15°×2=30°,∴ED=AE=8,∴在Rt△DEG中,DG=DE=4,∴DF=DG=4.故答案为:4.6.解:设第n个三角形的周长为∁,n∵C1=1,C2=C1=,C3=C2=,C4=C3=,…,∴∁n=()n﹣1,∴C2018=()2017.故答案为:()2017.二.选择题(共8小题,满分32分,每小题4分)7.解:根据有理数比较大小的方法,可得﹣4<﹣1<0<2,∴在2,﹣4,0,﹣1这四个数中,最小的数是﹣4.故选:B.8.解:从上往下看,易得一个长方形,且其正中有一条纵向实线,故选:B.9.解:A、a6÷a3=a3,故本选项错误;B、=2,故本选项错误;C、1÷()﹣1=1÷=,故本选项正确;D、(a3b)2=a6b2,故本选项错误.故选:C.10.解:如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选:C.11.解:A、平行四边形对角线互相平分但不一定垂直,故错误,是假命题;B、矩形的四边不一定相等,故错误,是假命题;C、菱形的对角线垂直但不一定相等,故错误,是假命题;D、正方形既是矩形,又是菱形,正确,是真命题;故选:D.12.解:根据平均数的定义可知,x=3×5﹣2﹣2﹣4﹣3=4,这组数据从小到大的顺序排列后,处于中间位置的数是3,那么由中位数的定义和众数的定义可知,这组数据的中位数是3,故选:B.13.解:∵|a+b﹣1|+=0,∴,解得:,则原式=﹣1,故选:B.14.解:∵矩形的对边平行且相等,对角线互相平分且相等,∴选项C正确故选:C.三.解答题15.解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z﹣x+z+x ﹣2y)(z﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴x=y=z.∴==1.16.证明:∵AD是△ABC的中线,∴BD=CD,在△ACD和△EBD中,,∴△ACD ≌△EBD (SAS ).17.解:设矩形的长为x 步,则宽为(60﹣x )步,依题意得:x (60﹣x )=864,整理得:x 2﹣60x +864=0,解得:x =36或x =24(不合题意,舍去),∴60﹣x =60﹣36=24(步),∴36﹣24=12(步),则该矩形的长比宽多12步.18.解:(1)当0≤x ≤300时,设y =k 1x ,根据题意得300k 1=39000,解得k 1=130,即y =130x ;当x >300时,设y =k 2x +b ,根据题意得,解得,即y =80x +15000,∴y =; (2)①当200≤x ≤300时,w =130x +100(1200﹣x )=30x +120000;当x >300时,w =80x +15000+100(1200﹣x )=﹣20x +135000;②设甲种花卉种植为 am 2,则乙种花卉种植(1200﹣a )m 2, ∴,∴200≤a ≤800当a =200 时.W min =126000 元当a =800时,W min =119000 元∵119000<126000∴当a =800时,总费用最少,最少总费用为119000元. 此时乙种花卉种植面积为1200﹣800=400m 2.答:应该分配甲、乙两种花卉的种植面积分别是800m 2 和400m 2,才能使种植总费用最少,最少总费用为119000元.19.(1)解:∵一次函数y =x ﹣3的图象与x 轴、y 轴分别交于点A 、B 两点,∴A(3,0),B(0,﹣3),∵点B关于x轴的对称点是C,∴C(0,3),∵二次函数y=﹣x2+bx+c的图象经过点A、点C,∴∴b=2,c=3,∴二次函数的解析式为:y=﹣x2+2x+3.(2)∵A(3,0),C(0,3),平移线段AC,点A的对应为点D,点C的对应点为E,设E(m,m﹣3),则D(m+3,m﹣6),∵D落在二次函数在第四象限的图象上,∴﹣(m+3)2+2(m+3)+3=m﹣6,m 1=1,m2=﹣6(舍去),∴D(4,﹣5),(3)∵C(0,3),D(4,﹣5),∴解得,∴直线CD的解析式为y=﹣2x+3,令y=0,则x=,∴M(,0),∵一次函数y=x﹣3的图象与x轴交于A(3,0),C(0,3),∴AO=3,OC=3,∴∠OAC=45°,过点P作PF⊥AC,点P作PN⊥OA交AC于点E,连PC,∴△PEF和△AEN都是等腰直角三角形,设P(m,﹣m2+2m+3),E(m,﹣m+3),∴PE=PN﹣EN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,∴EN=﹣m+3,AE=,FE=,∴CF=AC﹣AE﹣EF=,①当△COM∽△CF P,,∴,=0,舍去,,解得m1②当△COM∽△PFC时,,∴,解得m=0(舍去),,1综合可得P点的横坐标为或.20.解:(1)小红诵读《论语》的概率=;故答案为.(2)画树状图为:共有9种等可能的结果数,其中小红和小亮诵读两个不同材料的结果数为6,所以小红和小亮诵读两个不同材料的概率==.21.解:(1)本次调查的学生有30÷20%=150人;(2)C类别人数为150﹣(30+45+15)=60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360°×=144°故答案为:144°(4)600×()=300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.22.(1)连接OD,∵正方形ABCD中,CD=BC,CP=CP,∠DCP=∠BCP=45°,∴△CDP≌△CBP(SAS),∴∠CDP=∠CBP,∵∠BCD=90°,∴∠CBP+∠BEC=90°,∵OD=OE,∴∠ODE=∠OED,∠OED=∠BEC,∴∠BEC=∠OED=∠ODE,∴∠CDP+∠ODE=90°,∴∠ODP=90°,∴DP是⊙O的切线;(2)∵∠CDP=∠CBE,∴tan,∴CE=,∴DE=2,∵∠EDF=90°,∴EF是⊙O的直径,∴∠F+∠DEF=90°,∴∠F=∠CDP,在Rt△DEF中,,∴DF=4,∴==2,∴,∵∠F=∠PDE,∠DPE=∠FPD,∴△DPE∽△FPD,∴,设PE=x,则PD=2x,∴,解得x=,∴OP=OE+EP=.23.证明:∵四边形ABCD是平行四边形∴AB=CD,AD=BC,∠ADC=∠ABC∴∠ADF=∠CBE,且∠E=∠F,AD=BC ∴△ADF≌△CBE(AAS)∴AF=CE,DF=BE∴AB+BE=CD+DF∴AE=CF,且AF=CE∴四边形AECF是平行四边形中考模拟考试数学试卷一、选择题(每小题3分,共9小题,共27分)1.已知x =-1是一元二次方程x 2-m =0的一个解,则m 的值是( )A .1B .-2C .2D .-12.下列图形中,是中心对称图形但不是..轴对称图形的是( )3.下列说法正确的是( )A .哥哥的身高比弟弟高是必然事件B .2017年元旦武汉下雨是随机事件C .随机掷一枚均匀的硬币两次,都是正面朝上是不可能事件D .“彩票中奖的概率为15”表示买5张彩票肯定会中奖 4.抛物线y =-3(x +1)2-2的项点坐标是( )A .(-1,-2)B .(-1,2)C .(1,-2))D .(1,2)5.小军的旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开旅行箱的概率是( )A .110B .19C .16D .156.如图,PA ,PB 是⊙O 的两条切线,A ,B 为切点,AC 为⊙O 的直径,∠P =70°,则∠PBC 的度数是( )A .110°B .120°C .135°D .145°第 6 题图P O 第 6 题图O C BAP7.如图,P 为∠AOB 边OA 上ー点,∠AOB =45°,OP =4cm ,以P 为圆心,2cm 长为半径的圆与直线OB 的位置关系是( )A .相离B .相交C .相切D .无法确定8.如图,扇形AOB 的半径为6cm ,圆心角的度数为120°,若将此扇形围成一个圆锥,则围成的圆锥的底面积为( )A .9π cm 2B .6π cm 2C .4π cm 2D .12π cm 2120°O A B9.函数y =kx 2-6x +3的图象与x 轴有交点,则k 的取值范围是( )A .k <3B .k <3且k ≠0C .k ≤3D .k ≤3且k ≠0二、填空题(每小题3分,共4小题,共12分)11.如图,在平面直角坐标系中,若△ABC 与△A 1B 1C 1关于E 点成中心对称,则对称中心E 点的坐标是 .12.如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一个点C ,使△ABC 为等腰三角形的概率是 .第 12 题图AB13.武汉某区的消费品月零售总额持续增长,十月份为1.2亿元,十一月,十二月两个月一共为28亿元.设九月份到十一月份平均每月增长的百分率为x ,则可列方程 .14.把抛物线向下平移1个单位,再向左平移3个单位后得到抛物线y =2x 2,则平移前的抛物线解析式为 .三、解答题(共8题,共61分)17.(本题8分)已知关于x 的方程x 2+ax -2=0.(1)当该方程的一个根为1时,求a 的值;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.18.(本题8分)已知,点P 是半径为1的⊙O 外的一点,PA 与⊙O 相切于点A ,且PA =1,AB 是⊙O 的弦.(1)如图,若PB =1,求弦AB 的长;(2)若AB 2,求PB 的长.P BO19.(本题8分)甲、乙两校分别有一男一女共4名教师报名到农村中学支教.(1)若从甲、乙两校报名的教师中分别随机选1名,则所选的2名教师性别相同的概率是 ;(2)若从报名的4名教师中随机选2名,用列表或画树状图的方法求出这2名教师来自同一所学校的概率.20.(本题9分)如图,正方形ABCD 中,P 是BC 边上一点,将△ABP 绕点A 逆时针旋转90°,点P 旋转后的对应点为P '.(1)画出旋转后的三角形;(2)连接PP ',若正方形边长为1,∠BAP =15°,求PP '的长.DCP B A21.(本题10分)如图1,AB 为⊙O 的直径,BD 为⊙O 的弦,C 为⊙O 上一点,过C 作⊙O 的切线交直线BD 于点M ,且CM ⊥DM .(1)求证:AC =DC .C 图 2图 1C22.(本题10分)某商场销售的某种商品每件的标价是80元,若按标价的八折销售,仍可盈利60%,此时该种商品每星期可卖出220件,市场调查发现:在八折销售的基础上,该种商品每降价1元,每星期可多卖20件.设每件商品降价x 元(x 为整数),每星期的利润为y 元.(1)求该种商品每件的进价为多少元;(2)当售价为多少时,每星期的利润最大?(3)若要求该种商品每星期的售价均为每件m 元,且该周的利润要超过6000元,请直接写出的m 的取值范围.23.(1)(本题4分)如图,已知△ABC 是等边三角形,点E 在线段AB 上,点D 在直线BC 上,且DE =EC ,△BCE 绕点E 顺时针旋转至△ACF ,连接EF .求证:AB =DB +AF .FE AB C D24.(1)(本题4分)如图,抛物线y=ax2-2ax-3a(a<0)与x轴交于点A,B,经过点A的直线y=ax+a与抛物线交于点C,求C点的坐标(用含a的式子表示).参考答案一、选择题1.A2.A3.B4.A5.A6.D7.A8.C9.C二、填空题11.(3,-1) 12.5713.1.2(1+x )+1.2(1+x )2=2.8 14.y =2(x -3)2+1 三、解答题17.(1)a =1;(2)△=a 2=-4×1×(-2)=a 2+8>0.18.(1)连接OA ,OB ,证四边形OAPB 是正方形,∵AB(2)(如图),AB ,∴OA 2+OB 2=AB 2,∴∠AOB =90°,①当B ,P 在OA 的同侧时,易证四边形OAPB 是正方形,∴PB =OA =1;②当B ,P 在OA 的异侧时,则B ',O ,B 三点共线,PB∴PB =1.B BP 19.(1)12; (2)列表略,P =41=123. 20.(1)略;(2)由旋转可得,AP =AP ',∠PAP '=90°,BP =DP ',△APP '是等腰直角三角形,∴∠APP '=45°,又∵∠BAP =15°,∠APB =75°,∠CPP '=60°,∴Rt △PCP '中,∠CP 'P =30°,设CP =x ,则BP =DP '=1-x ,PP '=2x ,∴CP 2+P 'C 2=P 'P 2,∴x 2+(2-x )2=(2x )2,解得x 1,(负值舍去),∴CP 1,PP '=2.21.解:(1)连AD ,延长CO 交AD 于H ,证四边形CMDH 为矩形,∴CH ⊥AD ,又CH过⊙O 的圆心O ,由垂径定理得»C A =»CD . (2)由»C A =»C D ,»AE =»ED可得CE 为直径,连CD ,过O 作OH ⊥BD 于H ,则OC =MH =5,又OB =OC =5,∴OH =4,∴CM =4,CD CE =20C =10,∴DE图2C图1C22.解:(1)设或本为n元,80×0.8-a=0.6a,∴a=40.(2)y=(80×0.8-x-40)(220+20x)=-20x2+260x+5280=-20(x-6.5)2+6125.又∵x为整数,∴x1=7,x2=6时,y最大=6120,∴当x=6或7时,80×0.8-6=58(元),80×0.8-7=57(元),即售价为57元或58元时,每星期利润最大;(3)55<m<60.23.解:作EG∥BC交AC于G,证△EDB≌△CEC.△AEG是等边三角形,BD=EG=AE,则AB=AE+BE=D B+AF.24.解:联立223y ax ax ay ax a⎧=--⎨=+⎩,可求C(4,5a).。
黑龙江省绥化市望奎五中2013年中考数学一模试卷(解析版) 新人教版
2013年某某省某某市望奎五中中考数学一模试卷一、填空题(每小题3分,满分33分)1.(3分)(2010•越秀区一模)某病毒植株的直径约为0.000 000 395cm,用科学记数法表示为: 4.0×10﹣7cm(保留两个有效数字)考点:科学记数法与有效数字.专题:应用题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于0.000 000 395向右移动7位,|a|才有意义,所以n为﹣7.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:0.000 000 395=3.95×10﹣7≈4.0×10﹣7.故答案为:4.0×10﹣7.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.用科学记数法保留有效数字,要在标准形式a×10n中a 的部分保留,从左边第一个不为0的数字数起,需要保留几位就数几位,然后根据四舍五入的原则进行取舍.2.(3分)(2010•越秀区一模)函数中自变量x的取值X围是x≤3.考点:函数自变量的取值X围;负整数指数幂;二次根式有意义的条件.专题:计算题.分析:易得分式的分母中恒为正值,所以不再考虑,让被开方数为非负数列式求值即可.解答:解:∵分母中为x2+3,恒为正值,∴不用考虑分母中未知数的取值,由题意得3﹣x≥0,解得x≤3.故答案为:x≤3.点评:考查函数自变量的取值;二次根式的被开方数是非负数;注意一个完全平方式和正数的和恒为正值.3.(3分)(2009•某某)反比例函数的图象在每个象限内,y随x的增大而增大,则a的值可以是﹣4 .(写出一个符合条件的实数即可)考点:反比例函数的性质.专题:压轴题;开放型.分析:根据反比例函数的性质解答.解答:解:依题意有a+3<0,则a<﹣3.故a的值可以是﹣4.(答案不唯一,符合条件的实数即可.)点评:本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.4.(3分)(2010•越秀区一模)已知菱形的一个内角为60°,一条对角线的长,则这个菱形的边长为2或2 cm.考点:解直角三角形;菱形的性质.专题:分类讨论.分析:可分对角线为连接60°的内角和120°的内角两种情况,利用直角三角形的特殊三角函数值进行解答.解答:解:∠BAD=60°,①BD=2cm.∵四边形ABCD是菱形,∴AB=AD,∴△ABD是等边三角形,∴AB=BD=2cm;②AC=2cm.∵四边形ABCD是菱形,∴AO=,∠BAO=30°,∴AB=AO÷cos30°=2cm.故答案为:2或2.点评:本题综合考查了菱形的性质及解直角三角形的知识;分情况探讨对角线的长度是解决本题的易错点.5.(3分)(2010•越秀区一模)若等式(x+2)0=1和同时成立,那么x应满足的条件是x≤且x≠﹣2考点:二次根式的性质与化简;零指数幂.专题:计算题.分析:根据零指数幂的底数不为0和二次根式的性质:根号里面大于等于0,进行求解.解答:解:∵等式(x+2)0=1∴x+2≠0,∴x≠﹣2,∵≥0,∴3x≤4,∴x≤且x≠﹣2.故答案为x≤且x≠﹣2.点评:此题主要考查零指数幂的性质和二次根式的性质及其化简,是一道基础题.6.(3分)(2010•越秀区一模)如图,在矩形ABCD中,AB=4cm,AD=12cm,点P从点A向点D以每秒1cm 的速度运动,Q以每秒4cm的速度从点C出发,在B、C两点之间做往返运动,两点同时出发,点P到达点D为止,这段时间内线段PQ有 4 次与线段AB平行.考点:矩形的性质.专题:动点型.分析:由已知可得:点Q需要4次到达B点,而在每次的运动过程中都有一次PQ∥AB,根据AD∥BC,PQ∥AB,则可知四边形APQB是平行四边形,则当PA=BQ时四边形APQB是平行四边形,列方程求解即可得到所需时间.解答:解:根据已知可知:点Q将4次到达B点;在点Q第一次到达点B过程中,∵四边形ABCD是矩形,∴AD∥BC,若PQ∥AB,则四边形APQB是平行四边形,∴AP=BQ,设过了t秒,PQ∥AB,则PA=t,BQ=12﹣4t,∴t=12﹣4t,∴t=2.4(s),在点Q第二次到达点B过程中,设过了t秒,则PA=t,BQ=4(t﹣3),解得:t=4(s),在点Q第三次到达点B过程中,设过了t秒,则PA=t,BQ=12﹣4(t﹣6),解得:t=7.2(s),在点Q第四次到达点B的过程中,设过了t秒,则PA=t,BQ=4(t﹣9),解得:t=12(s).∴这段时间内线段PQ有4次与线段AB平行.故答案为:4.点评:此题考查了矩形的性质与平行四边形的判定与性质,此题属于运动型题目.此题属于中档题,解题时要注意数形结合与方程思想的应用.7.(3分)如图,AB是⊙O的直径,弦CD⊥AB于E,∠CDB=30°,⊙O的半径为cm,则劣弧的长为cm.考点:弧长的计算;圆周角定理.分析:连接OD,求出圆心角∠COD,然后根据弧长公式求解.解答:解:连接OD,∵AB是⊙O的直径,弦CD⊥AB于E,∠CDB=30°,∴∠OCD=30°,∴∠COD=120°,由l=αr知,劣弧的长为.点评:本题主要考查弧长的计算,知道弧长的计算公式l=αr是解题关键.8.(3分)(2010•越秀区一模)直线y=kx+b与抛物线y=ax2+bx+c交于A(﹣1,1)和B(4,2)两点,如图,则关于x的不等式kx+b>ax2+bx+c的解集是﹣1<x<4 .考点:二次函数与不等式(组).专题:计算题;数形结合.分析:根据图形直线y=kx+b与抛物线y=ax2+bx+c交于A(﹣1,1)和B(4,2)两点,即可得出关于x的不等式kx+b>ax2+bx+c的解集.解答:解:∵直线y=kx+b与抛物线y=ax2+bx+c交于A(﹣1,1)和B(4,2)两点,∴关于x的不等式kx+b>ax2+bx+c的解集是﹣1<x<4.故答案为:﹣1<x<4.点评:本题主要考查了二次函数与不等式组.解答此题时,利用了图象上的点的坐标特征来解一次函数与二次函数的解析式.9.(3分)(2011•潮南区模拟)在实数X围内定义运算“※”,其法则为a※b=a2﹣b2,那么方程(4※3)※x=24的解为x1=5,x2=﹣5 .考点:解一元二次方程-直接开平方法.专题:新定义.分析:根据a※b=a2﹣b2,得出(4※3)※x=24整理后的方程,再利用直接开平方法解方程即可.解答:解:∵a※b=a2﹣b2,∴(4※3)※x=24,(16﹣9)※x=24,∴7 2﹣x 2=24,∴x 2=25,解得:x1=5,x2=﹣5,故答案为:x1=5,x2=﹣5.点评:此题主要考查了直接开平方法解一元二次方程以及新定义运算,根据已知得出运算规律是解决问题的关键.10.(3分)(2010•越秀区一模)从2、3、4、5这四个数字中任取两个数字组成一个两位数,能被5整除的概率是考点:概率公式.专题:计算题.分析:列举出2、3、4、5中任意两数组成的两位数,找出能被5整除的数,根据概率公式计算即可.解答:解:2、3、4、5中任取两位数有,23,24,25,34,35,45,32,42,52,43,53,54.共12个;能被5整除的数有25,35,45,共3个.于是P(能被5整除)==.故答案为:.点评:此题考查了列举法求概率,概率公式是解题的关键,统计时不要漏掉可能的情况.11.(3分)(2010•越秀区一模)将一些黑点按如图所示的规律排列,则第27个图案有760 个黑点.考点:规律型:图形的变化类.专题:压轴题;规律型.分析:首先观察数出已知4个图黑点的个数,通过数出的4个数找出规律,根据规律得出第27个图案的黑点数.解答:解:观察已知4个图案得出的黑点数分别为,6,10,16,24,6=1×(1+1)+4,10=2×(2+1)+4,16=3×(3+1)+4,24=4×(4+1)+4,…所以按此规律得第27个图案的黑点数为:27×(27+1)+4=760.故答案为:760.点评:此题考查的知识点是图形和数字的变化类问题,解题的关键是由图形得出的数字,从这些数字中找出规律.二、选择题(每小题3分,满分27分)12.(3分)(2010•越秀区一模)下列计算正确的是()A.(a0﹣1)2=1 B.|﹣a|3÷(﹣a)2=﹣a C.(a﹣b)2=a2﹣b2D.=﹣3+考点:二次根式的混合运算;同底数幂的除法;完全平方公式;零指数幂.专题:计算题.分析:根据二次根式的混合运算和有关性质,对每个式子进行计算,然后找出正确答案即可.解答:解:A∵(a0﹣1)2=(1﹣1)2=02=0故本选项错误;B∵a>0时,|﹣a|3÷(﹣a)2=a3÷a2=a故本选项错误;C∵(a﹣b)2=a2﹣2ab+b2故本选项错误;D ==﹣3+故本选项正确.故选D点评:本题主要考查了二次根式的混合运算和有关性质,解题时要注意结果的符号.13.(3分)(2010•越秀区一模)下列命题中,①对角线相等的四边形是矩形,②相邻的两个角都互补的四边形是平行四边形,③平分弦的直径垂直于弦,并且平分弦所对的两条弧,④当两圆的圆心距小于两圆半径之和时,两圆相交,⑤相等的圆心角所对的弧相等,其中正确的有()A.1个B.2个C.3个D.4个考点:圆与圆的位置关系;平行四边形的判定;矩形的判定;垂径定理;圆心角、弧、弦的关系.分析:根据矩形的判定方法以及垂径定理的推论圆心角定理,两圆的位置判定方法,可以分别对5个答案进行分析,得出正确的个数.解答:解:①对角线相等的四边形是矩形,∵等腰梯形的对角线也相等,∴故①错误;②相邻的两个角都互补的四边形是平行四边形,∵根据相邻的两个角都互补,可以得出四边形的对边平行,∴四边形是平行四边形,∴故②正确;③平分弦的直径垂直于弦,并且平分弦所对的两条弧,∵被平分的弦如果是直径,那么平分弦的直径不一定垂直于弦,∴故③错误;④当两圆的圆心距小于两圆半径之和时,两圆相交,∵两圆的圆心距小于两圆半径之和时,也可能等于两圆半径之差,此时两圆内切;∴故④错误;⑤相等的圆心角所对的弧相等,∵如果不在同圆内,圆心角相等,∴所对的弧不一定相等.∴故⑤错误.其中正确的有:②.故选A.点评:此题主要考查了圆与圆的位置关系以及垂径定理的推论和圆心角定理等知识,题目综合性较强,正确记忆与区分以上定理是解决问题的关键.14.(3分)(2010•越秀区一模)在Rt△ABC中,∠C=90°,AC=2,BC=4,则cosA=()A.B.C.D.考点:锐角三角函数的定义;勾股定理.分析:根据勾股定理,求出斜边的长度后,再根据锐角三角函数的定义求出cosA.解答:解:在Rt△ABC中,∵∠C=90°,AC=2,BC=4,∴AB=2,∴cosA=.故选B.点评:本题主要考查了勾股定理、锐角三角函数的定义,解题的关键在于求出斜边的长度,然后根据余弦的定义即可求出结果.15.(3分)(2010•越秀区一模)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3cm,EF=4cm,则边AB的长是()A.B.C.D.无法计算考点:翻折变换(折叠问题).专题:数形结合.分析:易得△EHF为直角三角形,那么HF=5,EM为直角三角形斜边上的高,AB=2EM.解答:解:∵∠HEM=∠AEH,∠BEF=∠FEM,∴∠HEF=∠HEM+∠FEM=×180°=90°,∴HF===5,∴EM=3×4÷5=2.4,∴AB=AE+BE=EM+EM=.故选B.点评:主要考查学生对翻转、折叠矩形、三角形等知识的掌握情况.错误的主要原因是空间观念以及转化的能力不强,缺乏简单的逻辑推理能力;得到EM的值是解决本题的突破点.16.(3分)(2009•某某)一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为()A.2B.3C.4D.5考点:由三视图判断几何体.分析:可以根据画三视图的方法,发挥空间想象能力,分别得到每一行小正方体的个数,相加即可.解答:解:综合三视图,第一行第1列有1个,第一行第2列有2个,第一行第3列有1个,一共有1+2+1=4个.故选C.点评:本题考查了几何体的三视图及空间想象能力.17.(3分)(2010•越秀区一模)如图,小明家到学校有两条路,一条沿北偏东45°方向可直达学校前门,另一条从小明家一直往东,到商店处向正北走100米,到学校后门;若两条路程相等,学校南北走向,学校后门在小明家北偏东67.5°处,学校前门到后门的距离是()A.100米B.米C.米D.米考点:解直角三角形的应用-方向角问题.专题:数形结合.分析:易得∠CAB为45°,那么利用45°的余弦值可得AB的长,也就是BC的长,减去100即为所求的距离.解答:解:由题意得∠CAB=45°,AB+100=AC,∵cos∠CAB==,∴AB=100+100,∴BC=AB=100+100,∴CD=100米.故选B.点评:本题考查解直角三角形的应用;综合利用题中所给条件得到AB的长是解决本题的突破点.18.(3分)(2010•越秀区一模)如图,A是半径为2的⊙O外的一点,OA=4,AB切⊙O于点B,弦BC∥OA,连接AC,则图中阴影部分的面积等于()A.B.C.πD.考点:扇形面积的计算;切线的性质.分析:根据三角形面积求法,得出△OCB与△ACB同底等高面积相等,再利用切线的性质得出∠COB=60°,利用扇形面积求出即可.解答:解:延长CB,做AD⊥CB,交于一点D,∵△OCB与△ACB同底等高面积相等,∴图中阴影部分的面积等于扇形OCB的面积,∵A是半径为2的⊙O外的一点,OA=4,AB切⊙O于点B∴BO⊥AB,∴∠OAB=30°,∴∠AOB=60°,∵弦BC∥OA,∴∠OBC=60°,∴△OBC是等边三角形,∴图中阴影部分的面积等于扇形OCB的面积为:=π.故选:A.点评:此题主要考查了切线的性质以及三角形面积求法和扇形的面积公式等知识,根据已知得出△OCB与△ACB面积相等以及∠COB=60°是解决问题的关键.19.(3分)(2010•越秀区一模)学校文艺部组织部分文艺积极分子看演出,共购得8X甲票,4X乙票,总计用了112元.已知每X甲票比乙票贵2元,则每X甲票、每X乙票的价格分别是()A.10元和8元B.8元和10元C.12元和10元D.10元和12元考点:二元一次方程组的应用.专题:计算题.分析:设每X甲票、每X乙票的价格分别是x元,y元,列方程组得,求解即可.解答:解:设每X甲票、每X乙票的价格分别是x元,y元,则,解得,答:每X甲票、每X乙票的价格分别是10元,8元.故选A.点评:本题考查了二元一次方程组的应用,找出等量关系,列出方程组,是解此题的关键.20.(3分)(2010•越秀区一模)如图,直角梯形ABCD中,AB⊥BC,AD∥BC,点E是AB的中点,且AD+BC=DC、下列结论中:①△ADE∽△BEC;②DE2=DA•DC;③若设AD=a,CD=b,BC=c,则关于x的方程ax2+bx+c=0有两个不相等的实数根;④若设AD=a,AB=b,BC=c,则关于x的方程ax2+bx+c=0有两个相等的实数根.其中正确的结论有()个.A.1个B.2个C.3个D.4个考点:相似三角形的判定与性质;根的判别式;直角梯形.专题:压轴题.分析:过E作梯形两底的平行线EF,交CD于F;由梯形的中位线定理知AD+BC=2EF,故DC=2EF,由于F是CD的中点,即可证得△DEC是直角三角形,然后根据得到这个条件对四个结论逐一判断.解答:解:过E作EF∥AD∥BC;∵E是AB的中点,∴EF是梯形ABCD的中位线,即AD+BC=2EF,F是CD的中点;又∵AD+BC=CD,∴CD=2EF,又F是CD的中点,易得△DEC是直角三角形,即∠DEC=90°;由于AD∥EF,且F是Rt△EDC斜边CD的中点(即FE=FD),∴∠ADE=∠FED=∠FDE,过E作EG⊥CD,∵∠A=∠EGD=90°,∠ADE=∠GDE,DE=DE,∴△ADE≌△DEG,同理可证△BEC≌△GEC;①∵∠DEC=90°,∴∠AED+∠BEC=90°,又∠ADE+∠AED=90°,∴∠ADE=∠BEC,又∠A=∠B,∴△ADE∽△BEC,故①正确;②在Rt△DEC中,EG⊥CD,由射影定理得:DE2=DG•DC,由于AD=DG,所以DE2=DA•DC,故②正确;③若AD=a,CD=b,BC=c,则由:a+c=b,即c=b﹣a;∴关于x的方程ax2+bx+c=0根的判别式为:△=b2﹣4ac=b2﹣4a(b﹣a)=b2﹣4ab+4a2=(b﹣2a)2;由于EF≠AD,即CD≠2AD,b≠2a,∴△=(b﹣2a)2>0,即方程有两个不相等的实数根,故③正确;④在Rt△EDC中,EG=AE=AB=b,DG=AD=a,CG=BC=c;由射影定理得:EG2=DG•CG,即(b)2=ac,即b2=4ac,b2﹣4ac=0;所以关于x的方程ax2+bx+c=0有两个相等的实数根.故④正确;因此正确的结论有4个,故选D.点评:此题考查的知识点有:直角梯形的性质、相似三角形的判定和性质、梯形中位线定理以及根的判别式等知识,解此题的关键有两步:①证明△DEC是直角三角形,②通过辅助线构造出全等三角形.三、解答题(满分60分)21.(5分)(2010•越秀区一模)先化简:,再从﹣1,0,1,中选择一个数代入求值.考点:分式的化简求值.专题:计算题.分析:本题的关键是化简,然后把给定的值代入求值.解答:解:=•=;由分式分母不为零的条件可得:x≠±1;当x=0时,=0,不满足除数不能为零的条件;因此只能选择x=,原式===2+2.点评:本题考查了分式的化简求值,在选取代入的值时关键是注意分式有意义的条件.22.(6分)(2010•越秀区一模)在四边形ABCD中,∠BAD=90°,AB=cm,连接AC,△ABC恰好为等边三角形,△ACD恰好为直角三角形.求四边形ABCD的面积.考点:解直角三角形.分析:首先对图形进行分析,当∠ADC=90°和当ACD=90°,所画图形不同,再利用勾股定理可以求出三角形ABC的面积,再利用解直角三角形的知识求出AD,CD,从而得出三角形面积,从而得出答案.解答:解:①作AE⊥BC于点E,当∠ADC=90°,∵△ABC为等边三角形,∴AB=AC=BC=4,∴EC=2,∴AE==6,∠BAC=60°,∵∠BAD=90,∴∠CAD=90°﹣60°=30°,在Rt△ACD中,CD=AC=2,AD==6,S四边形ABCD=S△ABC+S△ACD=×BC×AE+CD×AD,=×4×6+×2×6,=12+6,=18;②当∠ACD=90°,∵AC=4,∠BAD=90°,∴∠CAD=30°,∴tan30°=,解得:CD=4,S四边形ABCD=S△ABC+S△ACD=×BC×AE+CD×AC,=×4×6+×4×4,=12+8,=20.点评:此题主要考查了勾股定理与解直角三角形的应用,根据已知进行分类讨论得出两种情况,这种思想经常运用与数学运算与证明,同学们应熟练掌握此知识.23.(8分)(2010•越秀区一模)如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形,解决下面的问题:(1)图中的格点△A′B′C′是由格点△ABC通过旋转和平移变换得到的;(2)若点A坐标为(﹣3,4),建立符合题意的坐标系,那么△DEF中点F的坐标为(2,﹣3),△DEF 的面积为 4 .考点:旋转的性质;三角形的面积;平移的性质.专题:计算题.分析:(1)观察△A′B′C′和△ABC的位置关系可知,可以先将△ABC绕C点顺时针旋转90°,再向右平移5个单位即可;(2)根据点A的坐标建立坐标系,可求F点的坐标,将△DEF放到一个6×2的矩形中,利用割补法求△DEF的面积.解答:解:(1)图中的格点△A′B′C′是由格点△ABC通过旋转和平移变换得到的;故答案为:旋转,平移.(2)根据A(﹣3,4)建立坐标系(如图),根据图形得F(2,﹣3),S△DEF=6×2﹣×2×4﹣×2×1﹣×1×6=4.故答案为:(2,﹣3),4.点评:本题考查了旋转的性质,点的坐标的确定方法,网格中三角形面积的计算.关键是建立坐标系,运用形数结合求解.24.(8分)(2010•越秀区一模)“农民可报销医疗费了!”这是我国推行新型农村合作医疗的成果.农民只要每年交10元钱,就可以加入合作医疗,每年现由自己支付医疗费,年终时可得到按一定比例返回的返还款.这一举措极大地增强了农民抵御大病风险的能力.小华与同学随机调查了他们乡的一些农民,根据收集的数据绘制了如图所示的统计图:根据以上信息,解答下列问题:(1)本次调查了300 名村民,被调查的村民中有7 人参加合作医疗得到了返款;(2)若该乡有10000村民,估计有8000 人参加了合作医疗;(3)若两年后参加合作医疗人数增加的9600人,假设这两年平均每年增长率相同,则平均每年增长的百分率为10% .考点:条形统计图;一元二次方程的应用;用样本估计总体;扇形统计图.分析:(1)根据条形图直接可以求出;(2)根据样本估计总体,由条形图中参加合作医疗的比例可以估计全村参保率;(3)利用增长率相同,得出一元二次方程,从而求出结果.解答:解:(1)由条形图可得:本次调查了240+60=300名村民,被调查的村民中,240×3%≈7人参加合作医疗得到了返款;(2)若该乡有10000村民,大致有10000×=8000人参加了合作医疗;(3)若两年后参加合作医疗人数增加的9600人,假设这两年平均每年增长率相同,假设为x,根据题意得:8000(1+x)2=9600,解得:x1≈0.1,x2≈﹣2.1(不合题意舍去),∴平均每年增长的百分率为10%.故答案为:10%.点评:此题主要考查了用样本估计总体和一元二次方程中增长率问题以及条形图,扇形图的综合应用等知识,题目综合性较强,也是近几年中考中的热点题型,同学们应学会正确分析并解答.25.(8分)(2010•越秀区一模)一货车从A地开往B地,一辆轿车从B地开往A地,两车同时出发,设货车离A地距离为y1(km),轿车离A地距离为y2(km);行驶时间为x(h),y1、y2与x的函数关系图象如下图所示.(1)根据图象直接写出y1、y2关于x的函数关系式;(2)若设两车间距离S(km),请写出S与x之间的函数关系式;(3)A、B两地之间有甲、乙两个加油站,相距200km;若货车、轿车同时分别进入甲、乙两站加油,求甲加油站距A地的距离.考点:一次函数的应用.分析:(1)由题意结合图,很容易确定直线;(2)当两车相遇时耗时为x,得到S.代入时间6小时,求得S,当轿车停下来,货车往B地行驶,又得到S.(3)由题意代入S=200,①当0≤x≤154时求得x而得到y.②当154≤x≤6时,求得x,并得y.③当6≤x≤10时60x≥360不合题意.从而得到答案.解答:解:(1)由题意列式:y1=60x(0≤x≤10),y2=﹣100x+600(0≤x≤6);(2)当两车相遇时耗时为x,y1=y2,解得x=,S=﹣160x+600(0≤x≤)当轿车到达A地用时为6小时,此时两车距离为S=160x﹣600(≤x≤6),当轿车停下来,货车往B地行驶,两车的距离为S=60x(6≤x≤10);(3)由题意得:S=200,①当0≤x≤时﹣160x+600=200,∴x=52,∴y1=60x=150km.②当≤x≤6时160x﹣600=200,∴x=5,∴y1=300km,③当6≤x≤10时60x≥360不合题意.即:甲加油站到A地距离为150km或300km.点评:本题考查了一次函数的应用,解答一次函数的应用问题中,要注意自变量的取值X围还必须使实际问题有意义,问题全面考虑,该题难度中等偏上.26.(8分)(2009•莱芜)已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).考点:旋转的性质;全等三角形的判定与性质;直角三角形斜边上的中线;正方形的性质.专题:压轴题.分析:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.还知道EG⊥CG.解答:(1)证明:在Rt△FCD中,∵G为DF的中点,∴CG=FD,同理,在Rt△DEF中,EG=FD,∴CG=EG.(2)解:(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DA G与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG(ASA),∴MG=NG;在矩形AENM中,AM=EN,在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.证法二:延长CG至M,使MG=CG,连接MF,ME,EC,在△DCG与△FMG中,∵F G=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG.∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB.∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG=MC,∴EG=CG.(3)解:(1)中的结论仍然成立.理由如下:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形,∵G为CM中点,∴EG=CG,EG⊥CG.点评:本题利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质.27.(8分)(2010•越秀区一模)某酒店客房有三人间和双人间客房,收费标准如右表所示:普通间(元/间/天)三人间 150双人间 140为吸引游客,实行团体入住五折优惠政策,一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房(每间客房正好住满).(1)若一天的住宿费用不超过1500元,则至少需要三人普通间几间?(2)若酒店三人普通间客房每天获利a元,双人普通间客房每天获利b元(a<b),请你讨论对此50人的旅游团在一天住宿费不超过1500元的条件下如何安排两种客房的数量,使酒店获利最大?考点:一次函数的应用.专题:几何图形问题;增长率问题.分析:(1)设若一天的住宿费用不超过1500元,则至少需要三人普通间x间,那么需要双人间的是间,根据一天的住宿可求出结果.(2)因为酒店三人普通间客房每天获利a元,双人普通间客房每天获利b元(a<b),酒店的获利越多时就是用三人间最少时.解答:解:(1)设至少需要三人普通间x间.(150x+140•)•50%≤1500x≥8因为每间客房正好住满,所以9不可以,x=10.所以至少需要10间3人房.(2)因为酒店三人普通间客房每天获利a元,双人普通间客房每天获利b元(a<b),酒店的获利越多时就是用三人间最少时.所以当10间3人房,10间双人房时获利最大.点评:本题考查理解题意能力,关键是根据费用不超过1500元,且每间客房正好住满确定x的值,且酒店里3人房间用的越少获利越大,问题可解.28.(9分)(2010•越秀区一模)如图,将Rt△BCO置于平面直角坐标系xoy中,斜边OB在y轴的正半轴上,过点B作BA∥OC交x轴于点A,点C的纵坐标为8,tan∠BOC=0.5.(1)求B点坐标;(2)点P在线段OB上,OP与OB的长分别是关于x的方程x2﹣(m+10)x+2m2=0的两个实数根,求线段OP的长;(3)在x轴上是否存在点D,使以点A、B、P、D为顶点的四边形为梯形?若存在,请直接写出直线PD的解析式;若不存在,说明理由.考点:一次函数综合题.专题:代数综合题;压轴题.分析:(1)要求B点坐标需要知道OB的长,在直角三角形BOC中,过C作CH⊥OB,则CH=8,有tan∠BOC=0.5,所以可求出OC的值,进而求出OB的长,问题得解;(2)把B点的坐标代入方程x2﹣(m+10)x+2m2=0,可求出m的值,再解方程进而求出线段OP的长,问题得解;(3)由图形可知 D点的坐标为(﹣10,0).设过直线PD的解析式为y=kx+b,解得k,b的值即可.所以存在x轴上点D,使以点A、B、P、D为顶点的四边形为梯形.解答:解:(1)过C作CH⊥OB,∵点C的纵坐标为8,∴OH=8.∵tan∠BOC=0.5,∴=.∴CH=4.∴CO==4.在Rt△BCO中,tan∠BOC=0.5,∴BC=2.∴OB=10.∴B点坐标为(0,10).(2)∵OB的长是关于x的方程x2﹣(m+10)x+2m2=0的一个实数根,∴102﹣(m+10)×10+2m2=0.解得:m1=0(舍),m2=5,当m=5时,方程变为x2﹣15x+50=0.解得:x1=5,x2=10.∴线段OP的长为5.(3)答:存在x轴上点D,使以点A、B、P、D为顶点的四边形为梯形.直线PD的解析式为:y=x+5或y=2x+5.点评:本题考查了一次函数与几何图形(直角三角形)的问题:从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.。
2013 年中考数学模拟试卷参考答案
1 1 1 1 6( x 2) 2 x x(6 x) x 2 x 6 2 2 2 2 当 4 x 6 时,△EPQ 的面积等于梯形 ABPQ 的面积减去△AEQ 和△BEP 的面积 1 1 1 y 4( x 10 x) 2(10 x) 2 x 10 2 2 2 y
1 2
3 2
15. 4 3 3或4 3 3 三、解答题(本大题共 11 小题,共 88 分) 17(本题 6 分) 解:△= 62 4 7 8
16. 2 2 2或2 - 2 2
x1
6 8 6 8 3 2, x2 3 2 2 2
18(本题 9 分)
2013 年中考数学模拟试卷参考答案
一、选择题(每小题 2 分,共 12 分) 题号 答案 1 B 2 D 3 D 4 B 5 D 6 B
二、填空题(每小题 2 分,共 20 分) 7. 4 11.9.0 8.圆柱体(此题答案不唯一) 12.( 1,3 ) 9. 1或 1 13. 10. 6 14. m 1且m
4x 1 x 解不等式 3 4 x 6 x 6
得 3 x 1 满足条件的整数 a 的值为-2、-1、0、1 但由
a2 1 a 2 2a 1 1 知 a 1 a2 a a
a -1、0、1
所以满足条件的整数 a 的值只有-2
a2 1 a 2 2a 1 1 a 1 a2 a a (a 1) 2 1 (a 1)(a 1) a 1 a (a 1) a (a 1) 1 a 1 a (a 1) a 1 1 a 1 a a a 1 = 当a 2时,原式= 1
y1 950 250 x, y2 300( x 0.5)
2013年中考数学模拟卷含答案一
各位同学,考试开始请认真作答一.选择题(每小题3分,共30分)1.方程x -1=1的解是( ).A 、x =-1B 、x =0C 、x =1D 、x =2 2.21的倒数( ).A 、2B 、-2C 、21D 、21-3.如图,直线a 、b 被直线c 所截,如果a ∥b ,那么( ). A 、∠1>∠2 B 、∠1=∠2 C 、∠1<∠2 D 、∠1+∠2=180°4.近几年某地区义务教育普及率不断提高,据2006年末统计的数据显示,仅初中在校生就约有13万人.数据13万人用科学记数法表示为( ).A 、13×104人B 、1.3×106人C 、1.3×105人D 、0.13×106人 5.在正方形网格中,∠α的位置如图所示,则sin α的值为( ).A 、21B 、22C 、23D 、336.若顺次连接四边各边中点所得四边形是矩形,则原四边形一定是( ).A 、等腰梯形B 、对角线相等的四边形C 、平行四边形D 、对角线互相垂直的四边形 7.如图,CD 是⊙O 的直径,A 、B 是⊙O 上的两点,若∠ABD =20°,则∠ADC 的度数为( ).A 、40°B 、50°C 、60°D 、70° 8.当x <0时,反比例函数x31y -=( ).A 、图象在第二象限内,y 随x 的增大而减小B 、图象在第二象限内,y 随x 的增大而增大C 、图象在第三象限内,y 随x 的增大而减小 C 、图象在第三象限内,y 随x 的增大而增大 9.下面有关概率的叙述,正确的是( ).A 、投掷一枚图钉,钉尖朝上的概率和钉尖着地的概率不相同B 、因为购买彩票时有“中奖”与“不中奖”两种情形,所以购买彩票中奖的概率为21C 、投掷一枚均匀的正方体骰子,每一种点数出现的概率都是61,所以每投掷6次,肯定出现一次6点D 、某种彩票的中奖概率是1%,买100张这样的彩票一定中奖10.如图①是一个几何体的主视图和左视图.某班同学在探究它的俯视图时,画出了如图②的几个图形,其中,可能是该几何体俯视图的共有( ). A 、3个 B 、4个 C 、5个 D 、6个二.填空题(每小题2分,共20分) 11.计算:(-3)2的结果等于_______. 12.比较大小:-3___-2.(用“>”、“=”或“<”填空)α (第05题图) (第07题图)(第10题图) a b c d 图① 图②左视图主视图第03题图) ab c1213.函数3x 1y -=的自变量x 的取值范围是___________. 14.分解因式:a 3+a 2=_____________.15.小亮的身高是1.6米,某一时刻他在水平地面上的影长是2米,若同一时刻测得附近一古塔在水平地面上的影长为18米,则古塔的高度是________米.16.如图,在8×8的网格中,每个小正方形的顶点叫做格点,△OAB 的顶点都在格点上,请在网格中画出.....△OAB 的一个位似图形,使两个图形以O 为位似中心,且所画图形与△OAB 的位似比为________.17.小明要用圆心角为120°,半径是27cm 的扇形纸片(如图)围成一个圆锥形纸帽,做成后这个纸帽的底面直径为____________cm .(不计接缝部分,材料不剩余) 18.二次函数y =x 2+bx +c 的图象经过点A(-1,0)、B(3,0)两点.其顶点坐标是_____________. 19.如图,正方形ABCD 的边长为216cm ,对角线AC 、BD 相交于点O ,过O作OD 1⊥AB 于D 1,过D 1作D 1D 2⊥BD 于点D 2,过D 2作D 2D 3⊥AB 于D 3,…,依次类推.其中的OD 1+D 2D 3+D 4D 5+D 6D 7=__________cm .20.用长度分别为2、3、4、5、6(单位:cm)的5根细木棒摆成一个三角形(允许连接,但不允许折断),在所有摆成的三角形中,面积最大的三角形的面积为____________cm 2.三.解答题(本大题含9个小题,共80分)21.(本小题满分7分)解不等式组:⎪⎩⎪⎨⎧-≤--x 2382x x6x 2>,并把它的解集表示在数轴上.22.(本小题满分8分)先化简,再求值:4a 4a a 2)2a 12a 1(2+-÷++-,其中a =-4.23.(本小题满分8分)市政府为了解决老百姓看病贵的问题,决定下调一些药品的价格.某种药品原售价为125元/盒,连续两次降价后售价为80元/盒.假设每次降价的百分率相同,求这种药品每次降价的百分率.24.(本小题满分8分)如图①,在等腰梯形ABCD 中,AB ∥CD ,E 、F 是边AB 上的两点,且AE =BF ,DE 与CF 相交于梯形ABCD 内一点O . (1)求证:OE =OF ;(2)如图②,当EF =CD 时,请你连接DF 、CE ,判断四边形DCEF 是什么样的四边形,并证明你的结论.AB O (第17题图)A (第19题图)BDCOD 1 D 3 D 2 D 4 …(第24题图)C DOC DO25.(本小题满分8分)某地区教育部门要了解初中学生阅读课外书籍的情况,随机调查了本地区500名初中学生一学期阅读课外书的本数,并绘制了如图的统计图.请根据统计图反映的信息回答问题. (1)这些课外书籍中,哪类书的阅读数量最大?(2)这500名学生一学期平均每人阅读课外书多少本?(精确到1本)(3)若该地区共有2万名初中学生,请估计他们一学期阅读课外书的总本数.26.(本小题满分9分)今年的全国助残日这天,某单位的青年志愿者到距单位6千米的福利院参加“爱心捐助活动”.一部分人步行,另一部分人骑自行车,他们沿相同的路线前往.如图,l 1、l 2分别表示步行和骑自行车的人前往目的地所走的路程y(千米)随时间x (分钟)变化的函数图象. (1)分别求l 1、l 2的函数表达式; (2)求骑车的人用多长时间追上步行的人.27.(本小题满分10分)如图,有两个可以自由转动的均匀转盘,转盘A 被分成面积相等的三个扇形,转盘B 被分成面积相等的四个扇形,每个扇形内都涂有颜色.同时转动两个转盘,停止转动后,若一个转盘的指针指向红色,另一个转盘的指针指向蓝色,则配成紫色;若其中一个指针指向分界线时,需重新转动两个转盘.(1)用列表或画树状图的方法,求同时转动一次转盘A 、B 配成紫色的概率; (2)小强和小丽要用这两个转盘做游戏,他们想出如下两种游戏规则: ①转动两个转盘,停止后配成紫色,小强获胜;否则小丽获胜;②转动两个转盘,停止后指针都指向红色,小强获胜;指针都指向蓝色,小丽获胜. 判断以上两种规则的公平性,并说明理由.(第25题图) 术类技类记类说类它类漫类(第26题图) )(第27题图)转盘A 转盘B28.(本小题满分10分)数学课上,同学们探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你解答问题(1).(1)已知:如图①,在△ABC 中,AB =AC ,∠A =36°,直线BD 平分∠ABC 交AC 于点D .求证:△ABD 与△DBC 都是等腰三角形;(2)在证明了该命题后,小颖发现:下面两个等腰三角形如图②、③也具有这种特性.请你在图②、图③中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所画等腰三角形两个底角的度数;(3)接着,小颖又发现:直角三角形和一些非等腰三角形也具有这样的特性,如:直角三角形斜边上的中线可把它分成两个小等腰三角形.请你画出两个具有这种特性的三角形的示意图,并在图中标出三角形各内角的度数.说明:要求画出的两个三角形不相似,而且既不是等腰三角形也不是直角三角形.29.(本小题满分12分)如图,在平面直角坐标系中,□ABCO 的顶点O 在原点,点A 的坐标为(-2,0),点B 的坐标为(0,2),点C 在第一象限. (1)直接写出点C 的坐标;(2)将□ABCO 绕点O 逆时针旋转,使OC 落在y 轴的正半轴上,如图②,得□DEFG(点D 与点O 重合).FG 与边AB 、x 轴分别交于点Q 、点P .设此时旋转前后两个平行四边形重叠部分的面积为S 0,求S 0的值;(3)若将(2)中得到的□DEFG 沿x 轴正方向平移,在移动的过程中,设动点D 的坐标为(t ,0),□DEFG 与□ABCO 重叠部分的面积为S .写出S 与t(0<t ≤2)的函数关系式.(直接写出结果)(第29题图)A (第28题图)BC D图① 图② 图③36°123数学试题参考答案一.选择题(每小题3分,共30分)二.填空题(每小题2分,共20分)11.9 12.< 13.x ≠3 14.a 2(a +1) 15.144 16.2∶1 17.1818.(1,-4) 19.215 20.106三.解答题(本大题含9个小题,共80分)21.解:解不等式2x -6>-x ,得x >2解不等式x 2382x -≤,得x ≤4 所以,原不等式组的解集伟2<x ≤4在数轴上表示为22.解:原式=2)2a (a2)2a )(2a (2a 2a -÷-+-++ =)2a )(2a (a2-+·a 2)2a (2-=2a 2a +- 当a =-4时,原式=323.解:设这种药品每次降价的百分率为x ,根据题意得125(1-x)2=80解这个方程,得x 1=0.2,x 2=1.8 ∵x =1.8不合题意,舍去 ∴x =0.2=20%答:这种药品每次降价的百分率为20%. 24.证明:(1)∵梯形ABCD 为等腰梯形,AB ∥CD∴AD =BC ,∠A =∠B ∵AE =BF∴△ADE ≌△BCF ∴∠DEA =∠CFB ∴OE =OF(2)∵DC ∥EF 且DC =EF∴四边形DCEF 是平行四边形 又由(1)得△ADE ≌△BCF ∴CF =DE∴四边形DCEF 是矩形25.解:(1)这些类型得课外书籍中,小说类课外书阅读数量最大(2)(2.0+3.5+6.4+8.4+2.4+5.5)×100÷500=5.64≈6(本) 答:这500名学生一学期平均每人阅读课外书6本. (3)20000×6=120000(本)或2×6=12(万本)答:他们一学期阅读课外书得总数是12万本.26.解:(1)设l 1的表达式为y 1=k 1x由图象知l 1过点(60,6)∴60k 1=6,k 1=101 ∴y 1=101x 设l 2的表达式为y 2=k 2x +b 2由图象知l 2过点(30,0)和(50,6)两点∴⎩⎨⎧=+=+6b k 500b k 302222解得⎪⎩⎪⎨⎧-==9b 103k 22 ∴y 2=103x -9 (2)当骑车的人追上步行的人时, y 1=y 2,即101x =103x -9 ∴x =4545-30=15(分钟)答:骑车的人用15分钟追上步行的人.27.解:∴P (配成紫色)=124=31(2)由(1)可知,P (配不成紫色)=128=32≠P (配成紫色) ∴规则①不公平∵P (都指向红色)=122=61 P (都指向蓝色)=122=61∴规则②是公平的28.证明:(1)在△ABC 中,AB =AC∴∠ABC =∠C ∵∠A =36°∴∠ABC =∠C =21(180°-∠A)=72° ∵BD 平分∠ABC ∴∠1=∠2=36°∴∠3=∠1+∠A =72° ∴∠1=∠A ,∠3=∠C ∴AD =BD ,BD =BC∴△ABD 与△BDC 都是等腰三角形 (2)如下图所示:(3)如下图所示:29.解:(1)C(2,2);(2)∵A(-2,0),B(0,2) ∴OA =OB =2∴∠BAO =∠ABO =45°∵□EFGD 由□ABCO 旋转而成∴DG =OA =2,∠G =∠BAO =45° ∵□EFGD ∴FG ∥DE∴∠FP A =∠EDA =90°或40°80°60°35°70°75°α 2α20°60°100° 80°25°75°35°105°45°α 3α…或…0°<α<45°, 其中,α≠30°, α≠36°.0°<α<45°, α≠36°,a ≠7180.其中,α≠30°,∵∠AQP =90°-∠BAO =45° ∴PQ =AP =OA -OP =2-2 S 0=21(PQ +OB)·OP =21(2-2+2)·2=22-1当□DEFG 运动到点F 在AB 上是,如图①,t =22-2 <1>当0<t ≤22-2时,如图②,S =-t 2+2t +22-1 <2>当22-2<t ≤2时,如图③,S =-21t 2+42-3<3>当2<t ≤2时,如图④,S =-2t +42-2图①图② 图③图④。
黑龙江省绥化市中考数学一模考试试卷
黑龙江省绥化市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本题共16分,每小题2分)第1-8题均有四个选。
正确 (共8题;共16分)1. (2分)(2018·防城港模拟) 神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A . 2.8×103B . 28×103C . 2.8×104D . 0.28×1052. (2分)仓库里堆积着正方体的货箱若干,根据如图所示的三视图可得出箱子的个数是()A . 6B . 7C . 8D . 93. (2分)数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是()A . 2002或2003B . 2003或2004C . 2004或2005D . 2005或20064. (2分)(2017·无锡) 下列图形中,是中心对称图形的是()A .B .C .D .5. (2分) (2019七下·江苏月考) 如图,直线a、b被直线c所截,a∥b,若∠1=40°,则∠2的度数()A . 100°B . 140°C . 80°D . 40°6. (2分)如下图所示,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么B的位置是()A . (4,5)B . (5,4)C . (4,2)D . (4,3)7. (2分) (2019八下·江苏月考) 下列说法正确的是()A . 调查市场上某种白酒的塑化剂的含量,采用普查方式;B . 要反映兴化市一周内每天的最高气温的变化情况,宜采用折线统计图;C . 为了解一批电视机的使用寿命,任意抽取80台电视机进行试验,样本容量为80台;D . 在一个透明的口袋中装有大小、外形一模一样的5个黄球,1个红球,摸出一个球是黄球是必然事件.8. (2分)用含30°角的两块同样大小的直角三角板拼图形,下列五种图形:①平行四边形,②菱形,③矩形,④直角梯形,⑤等边三角形.其中可以被拼成的图形是()A . ①②B . ①③⑤C . ③④⑤D . ①②③二、填空题(本题共16分,每小题2分) (共8题;共16分)9. (2分)(2019·蒙自模拟) 已知m,n是两个连续整数,且m< +1<n,则m+n=________.10. (2分)(2018·奉贤模拟) 已知△ABC,AB=AC,BC=8,点D、E分别在边BC、AB上,将△ABC沿着直线DE翻折,点B落在边AC上的点M处,且AC=4AM,设BD=m,那么∠ACB的正切值是________.(用含m的代数式表示)11. (2分) (2016九上·桐乡期中) 一个黑袋中装有3个红球和5个白球,它们除颜色外其余都相同.从中任意摸出一个球,是红球的概率________12. (2分)(2016·连云港) 如图,正十二边形A1A2…A12 ,连接A3A7 , A7A10 ,则∠A3A7A10=________.13. (2分) (2019九上·港南期中) 如图,在中,点在线段上,,,,那么 ________.14. (2分)已知﹣=,则﹣﹣2=________15. (2分) (2017七上·灌云月考) 如图,宽为50 cm的长方形图案由10个完全相同的小长方形拼成,其中一个小长方形的面积为________16. (2分)(2018·南京模拟) 如图,在⊙O的内接五边形ABCDE中,∠B+∠E=210°,则∠CAD=________°.三、解答题(本题共68分,第17-22题,每小题5分,第23-2 (共12题;共68分)17. (5.0分)已知如图,根据下列要求画图:(1)作线段AB;(2)作射线OA、射线OB;(3)分别在线段AB、OA上取一点C、D(点C、D都不与线段的端点重合),作直线CD,使直线CD与射线OB 交于点E.19. (5分) (2015八下·深圳期中) 解不等式组,并写出不等式组的整数解.20. (5.0分) (2018九上·黄石期中) 设a,b,c是△ABC的三条边,关于x的方程 x2+ x+c- a=0有两个相等的实数根,方程3cx+2b=2a的根为x=0.(1)试判断△ABC的形状;(2)若a,b为方程x2+mx-3m=0的两个根,求m的值.21. (5.0分)(2018·兰州) 如图,在中,过点C作,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若,,,求AB的长.22. (5.0分)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O 于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为⊙O的切线.23. (6分)(2013·湖州) 如图①,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,sin∠AOB=,反比例函数y= (k>0)在第一象限内的图象经过点A,与BC交于点F.(1)若OA=10,求反比例函数解析式;(2)若点F为BC的中点,且△AOF的面积S=12,求OA的长和点C的坐标;(3)在(2)中的条件下,过点F作EF∥OB,交OA于点E(如图②),点P为直线EF上的一个动点,连接PA,PO.是否存在这样的点P,使以P、O、A为顶点的三角形是直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.24. (6分) (2017九上·西城期中) 已知二次函数y=x2﹣2x﹣3.(1)将y=x2﹣2x﹣3化成y=a(x﹣h)2+k的形式;(2)与y轴的交点坐标是________,与x轴的交点坐标是________;(3)在坐标系中利用描点法画出此抛物线.x……y……(4)不等式x2﹣2x﹣3>0的解集是________.25. (6分)(2018·荆州) 为了参加“荆州市中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通过数据分析,列表如下:班级平均分中位数众数方差八(1)85b c22.8八(2)a858519.2(1)直接写出表中a,b,c的值;(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.26. (6分) (2018九下·游仙模拟) 如图,二次函数y=x2-2mx+8m的图象与x轴交于A、B两点(点A在点B 的左边且OA≠OB),交y轴于点C,且经过点(m,9m),⊙E过A、B、C三点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新世纪教育网 精品资料版权所有@新世纪教育网
2013年黑龙江省绥化市望奎五中中考数学一模试卷
参考答案与试题解析
一、填空题(每小题3分,满分33分)
1.(3分)(2010•越秀区一模)某病毒植株的直径约为0.000 000 395cm,用科学记数法表示为: 4.0×10﹣7cm(保留两个有效数字)
2.(3分)(2010•越秀区一模)函数中自变量x的取值范围是
x≤3.
3.(3分)(2009•伊春)反比例函数的图象在每个象限内,y随x的增大而增大,则a的值可以是﹣4.(写出一个符合条件的实数即可)
新世纪教育网-- 中国最大型、最专业的中小学教育资源门户网站。
版权所有@新世纪教育网
4.(3分)(2010•越秀区一模)已知菱形的一个内角为60°,一条对角线的长,则这个菱形的边长为2或2cm.
BD=2
AB=BD=2cm
AC=2
AO=
2
5.(3分)(2010•越秀区一模)若等式(x+2)0=1和同时成立,那么x应满足的条件是
x≤且x≠﹣2
≤
≤
6.(3分)(2010•越秀区一模)如图,在矩形ABCD中,AB=4cm,AD=12cm,点P从点A向点D以每秒1cm的速度运动,Q以每秒4cm的速度从点C出发,在B、C两点之间做往返运动,两点同时出发,点P 到达点D为止,这段时间内线段PQ有4次与线段AB平行.
7.(3分)如图,AB是⊙O的直径,弦CD⊥AB于E,∠CDB=30°,⊙O的半径为cm,则劣弧的长
为cm.
劣弧的长为
8.(3分)(2010•越秀区一模)直线y=kx+b与抛物线y=ax2+bx+c交于A(﹣1,1)和B(4,2)两点,如图,则关于x的不等式kx+b>ax2+bx+c的解集是﹣1<x<4.
9.(3分)(2011•潮南区模拟)在实数范围内定义运算“※”,其法则为a※b=a2﹣b2,那么方程(4※3)※x=24的解为
x1=5,x2=﹣5.
10.(3分)(2010•越秀区一模)从2、3、4、5这四个数字中任取两个数字组成一个两位数,能被5整除的概率是
=
故答案为:.
11.(3分)(2010•越秀区一模)将一些黑点按如图所示的规律排列,则第27个图案有760个黑点.
二、选择题(每小题3分,满分27分)
.=﹣
=3+
13.(3分)(2010•越秀区一模)下列命题中,①对角线相等的四边形是矩形,②相邻的两个角都互补的四边形是平行四边形,③平分弦的直径垂直于弦,并且平分弦所对的两条弧,④当两圆的圆心距小于两
B.
AB=2
cosA=.
15.(3分)(2010•越秀区一模)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3cm,EF=4cm,则边AB的长是()
FEM=
=
16.(3分)(2009•益阳)一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为()
17.(3分)(2010•越秀区一模)如图,小明家到学校有两条路,一条沿北偏东45°方向可直达学校前门,另一条从小明家一直往东,到商店处向正北走100米,到学校后门;若两条路程相等,学校南北走向,学校后门在小明家北偏东67.5°处,学校前门到后门的距离是()
米米.米
=,
AB=100+100
BC=AB=100+100
CD=100米.
18.(3分)(2010•越秀区一模)如图,A是半径为2的⊙O外的一点,OA=4,AB切⊙O于点B,弦BC∥OA,连接AC,则图中阴影部分的面积等于()
B.
的面积为:π
19.(3分)(2010•越秀区一模)学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,
元,列方程组得
,
解得
20.(3分)(2010•越秀区一模)如图,直角梯形ABCD中,AB⊥BC,AD∥BC,点E是AB的中点,且AD+BC=DC、下列结论中:①△ADE∽△BEC;②DE2=DA•DC;③若设AD=a,CD=b,BC=c,则关于x的方程ax2+bx+c=0有两个不相等的实数根;④若设AD=a,AB=b,BC=c,则关于x的方程ax2+bx+c=0有两个相等的实数根.其中正确的结论有()个.
AB=b
,即(b
三、解答题(满分60分)
21.(5分)(2010•越秀区一模)先化简:,再从﹣1,0,1,中选择一个数代入求值.
解:==
时,
,原式==2
22.(6分)(2010•越秀区一模)在四边形ABCD中,∠BAD=90°,AB=cm,连接AC,△ABC恰好为等边三角形,△ACD恰好为直角三角形.求四边形ABCD的面积.
AB=AC=BC=4,
EC=2
AE=
∠BAC=60°,
∵∠BAD=90,
∴∠CAD=90°﹣60°=30°,
在Rt△ACD中,
CD=AC=2,AD==6,
=S△ABC+S△ACD=×BC×AE+CD×AD,
四边形ABCD
×4×6+×2×6,
=12,
=18
AC=4
,
×CD
××××
=12,
=20
23.(8分)(2010•越秀区一模)如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形,解决下面的问题:
(1)图中的格点△A′B′C′是由格点△ABC通过旋转和平移变换得到的;
(2)若点A坐标为(﹣3,4),建立符合题意的坐标系,那么△DEF中点F的坐标为(2,﹣3),△DEF 的面积为4.
﹣××
24.(8分)(2010•越秀区一模)“农民可报销医疗费了!”这是我国推行新型农村合作医疗的成果.农民只要每年交10元钱,就可以加入合作医疗,每年现由自己支付医疗费,年终时可得到按一定比例返回的返还款.这一举措极大地增强了农民抵御大病风险的能力.小华与同学随机调查了他们乡的一些农民,根据收集的数据绘制了如图所示的统计图:
根据以上信息,解答下列问题:
(1)本次调查了300名村民,被调查的村民中有7人参加合作医疗得到了返款;
(2)若该乡有10000村民,估计有8000人参加了合作医疗;
(3)若两年后参加合作医疗人数增加的9600人,假设这两年平均每年增长率相同,则平均每年增长的百分率为10%.
×
25.(8分)(2010•越秀区一模)一货车从A地开往B地,一辆轿车从B地开往A地,两车同时出发,设货车离A地距离为y1(km),轿车离A地距离为y2(km);行驶时间为x(h),y1、y2与x的函数关系图象如下图所示.
(1)根据图象直接写出y1、y2关于x的函数关系式;
(2)若设两车间距离S(km),请写出S与x之间的函数关系式;
(3)A、B两地之间有甲、乙两个加油站,相距200km;若货车、轿车同时分别进入甲、乙两站加油,求甲加油站距A地的距离.
x=
≤
(
时﹣
26.(8分)(2009•莱芜)已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)求证:EG=CG;
(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).
CG=
FD
EG=
一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房(每间客房正好住满).
(1)若一天的住宿费用不超过1500元,则至少需要三人普通间几间?
(2)若酒店三人普通间客房每天获利a元,双人普通间客房每天获利b元(a<b),请你讨论对此50人的旅游团在一天住宿费不超过1500元的条件下如何安排两种客房的数量,使酒店获利最大?
•
8
28.(9分)(2010•越秀区一模)如图,将Rt△BCO置于平面直角坐标系xoy中,斜边OB在y轴的正半轴上,过点B作BA∥OC交x轴于点A,点C的纵坐标为8,tan∠BOC=0.5.
(1)求B点坐标;
(2)点P在线段OB上,OP与OB的长分别是关于x的方程x2﹣(m+10)x+2m2=0的两个实数根,求线段OP的长;
(3)在x轴上是否存在点D,使以点A、B、P、D为顶点的四边形为梯形?若存在,请直接写出直线PD 的解析式;若不存在,说明理由.
=.
CO=.BC=2
x+5。