九年级数学一元二次方程根与系数关系
一元二次方程的根与系数的关系-九年级数学上册(人教版)
归纳和判断的能力.
复习引入
人教版数学九年级上册
1.一元二次方程的一般形式是什么?
ax +bx +c 0 a 0
2
2.一元二次方程的求根公式是什么?
b b 2 4ac 2
x
b 4ac 0
2a
3.一元二次方程的根的情况怎样确定?
Δ 0 方程有两个不等的实数根;
a
互动新授
人教版数学九年级上册
因此,方程的两个根x1,x2和系数a,b,c有如下关系:
c
b
x1 x2 ,x1 x2 .
a
a
这表明任何一个一元二次方程的根与系数的关系为:两个
根的和等于一次项系数与二次项系数的比的相反数,两个根的
积等于常数项与二次项系数的比.
如果把上述方程ax2+bx+c=0(a≠0)
(3)方程化为x2-x-1=0. x1+x2=-(-1)=1,x1x2=-1.
(4)方程化为2x2-4x+1=0.
−
x1+x2=- =2,x1x2= .
拓展训练
人教版数学九年级上册
1.已知方程 + + + = 的两个实数根x1,x2,且
+ = ,求k的值.
思考 从因式分解法可知,方程(x-x1)(x-x2)=0(x1,x2为
已知数)的两根为x1和x2,将方程化为x2+px+q=0的形式,你能
看出x1,x2与p,q之间的关系吗?
把方程(x-x1)(x-x2)=0的左边展开,化成一般形式,
得方程
新人教版九年级数学(上)——一元二次方程根与系数的关系
知识点一、根的判别式 从配方法那里我们知道不是所有的一元二次方程都是有实数解的,原因在于配方得到的右边的项为2244a ac b - ;而当04422<-a ac b ,是不能开方的,所以方程无实数解。
而2244aac b -与0的大小关系又取决于ac b 42-; 所以:当042>-ac b 时,方程有两个不相等的实数根;当042=-ac b 时,方程有两个相等的实数根;当042<-ac b 时,方程没有实数根。
由此可知ac b 42-的取值决定了一元二次方程根的情况,我们把ac b 42-称作根的判别式,用符号“Δ”表示;即:ac b 42-=∆根的判别式的作用:①定根的个数;②求待定系数的值;③应用于其它。
例题精讲【例1】 不解方程,判别一元二次方程2261x x -=的根的情况是( )A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .无法确定一元二次方程根与系数的关系【例2】 若方程2(2)2(1)0m x m x m +-++=只有一个实数根,那么方程2(1)220m x mx m +-+-=( ).A .没有实数根B .有2个不同的实数根C .有2个相等的实数根D .实数根的个数不能确定【例3】 k 的何值时?关于x 的一元二次方程2450x x k -+-=:⑴有两个不相等的实数根;⑵有两个相等的实数根;⑶没有实数根.【例4】 m 为给定的有理数,k 为何值时,方程()22413240x m x m m k +-+-+=的根为有理数?【例5】 已知关于方程21(21)4()02x k x k -++-= ⑴求证:无论k 取何值,这个方程总有实数根;⑵若等腰ABC ∆的一边长为4,另两边长b 、c 恰好是这个方程的两个实数根,求这个三角形的周长.★1、方程3x 2+2=4x 的判别式b 2-4ac= ,所以方程的根的情况是 . ★2、一元二次方程x 2—4x+4=0的根的情况是( ) A 。
(完整版)一元二次方程根与系数的关系的关系(含答案)
(完整版)一元二次方程根与系数的关系的关系(含答案)21。
2。
4 一元二次方程的根与系数的关系A基础知识详解————————--——-—☆重难点根据方程中两根的关系确定方程中字母的值○随堂例题例1 已知关于x的方程x2+(2k—1)x+k2-1=0有(完整版)一元二次方程根与系数的关系的关系(含答案) 两个实数根x 1、x 2.(1)求实数k 的取值范围;(2)若x 1、x 2满足x 12+x 22=16+x 1•x 2,求实数k 的值.(2)∵关于x 的方程x +(2k-1)x+k -1=0有两个实数根x 1,x 2,∴x 1+x 2=1-2k,x 1•x 2=k 2-1.∵x 12+x 22=(x 1+x 2)2—2x 1•x 2=16+x 1•x 2,∴(1-2k )2-2×(k 2—1)=16+(k 2-1),即k 2—4k —12=0,解得k=—2或k=6(不符合题意,舍去). ∴实数k 的值为-2.【一中名师点拨】题目中提到两个实数根,即隐含着根的判别式大于等于0;当根据方程中两根的关系确定方程中字母的值,关键是把这种关系式转化为含x 1+x 2及x 1x 2的形式。
○随堂训练1.(2017烟台)若x 1,x 2是方程x 2-2mx+m 2-m —1=0的两个根,且x 1+x 2=1-x 1x 2,则m 的值为( D ) A .—1或2 B .1或-2 C .—2 D .12.已知关于x 的一元二次方程x 2+(m+2)x+m=0, (1)求证:无论m 取何值,原方程总有两个不相等的实数根;(2)若x 1,x 2是原方程的两根,且2111x x +=-2,求m 的值。
解:(1)△=(m+2)2—4m=m 2+4>0,∴无论m 取何值,原方程总有两个不相等的实数根; (2)∵x 1,x 2是原方程的两根, ∴x 1+x 2=-(m+2),x 1x 2=m .∵2111x x +=2121x x x x +=—mm 2+=—2, 解得m=2,经检验,m=2是分式方程的解,且符合题意,∴m 的值为2.课后达标基础训练1.(2017呼和浩特)关于x 的一元二次方程x 2+(a 2—2a )x+a-1=0的两个实数根互为相反数,则a 的值为( B ) A .2 B .0 C .1 D .2或02.(2017新疆)已知关于x 的方程x 2+x-a=0的一个根为2,则另一个根是( A ) A .-3 B .—2 C .3 D .63.已知m ,n 是一元二次方程x 2—4x-3=0的两个实数根,则代数式(m+1)(n+1)的值为( D ) A .-6 B .-2 C .0 D .24。
人教版九年级数学上册(RJ)第21章 一元二次方程 一元二次方程的根与系数的关系
第二十一章一元二次方程21.2 解一元二次方程*21.2.4 一元二次方程的根与系数的关系学习目标:1.探索一元二次方程的根与系数的关系.2.不解方程利用一元二次方程的根与系数的关系解决问题. 重点:探索一元二次方程的根与系数的关系.难点:不解方程利用一元二次方程的根与系数的关系解决问题.一、知识链接1.一元二次方程的求根公式是什么?2.如何用判别式b2-4ac来判断一元二次方程根的情况?算一算解下列方程并完成填空:(1)x2+3x-4=0; (2)x2-5x+6=0; (3)2x2+3x+1=0.想一想方程的两根x1,x2与系数a,b,c有什么关系?二、要点探究探究点1:探索一元二次方程的根与系数的关系猜一猜(1)一元二次方程 (x-x1)(x-x2) = 0 (x1,x2为已知数) 的两根是什么?若将此方程化为x2 + px + q = 0 的形式,你能看出 x1,x2与 p,q 之间的关系吗?(2)通过上表猜想,如果一元二次方程 ax2+bx+c=0(a≠0)的两个根分别是x1、 x2,那么,你可以发现什么结论?证一证:x1 + x2= x1·x2=归纳总结:一元二次方程的根与系数的关系如果ax2+bx+c=0(a≠0)的两个根为x 1、x2,那么12bx xa ,12cx xa.(前提条件是b2-4ac≥0).(1) x2–6x–15 = 0; (2) 3x2+7x-9 = 0; (3) 5x–1 = 4x2.归纳:在求两根之和、两根之积时,先把方程化为一般式,判别Δ≥0,如是则代入 a、b、c的值即可.例2 已知关于x的方程5x2+kx-6=0的一个根是2,求它的另一个根及k 的值.变式题已知关于的值.例3 不解方程,求方程2x2+3x-1=0的两根的平方和、倒数和.练一练设x1,x2为方程x2-4x+1=0的两个根,则:(1) 12x x , (2)12xx ,(3) 2212x x , (4)212()x x .归纳:求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和,两根之积的形式,再整体代入.常见的求值式子如下: 12111.x x +=22122.x x += 12213.=x x x x + 124.(1)(1)x x ++= 125.||=x x -例4 设x 1,x 2是方程 x 2-2(k -1)x + k 2 =0的两个实数根,且2212x x 4,求k 的值.方法总结:根据一元二次方程两实数根满足的条件,求待定字母的值时,务必要注意方程有两实数根的条件,即所求的字母代入方程中,方程应该满足Δ≥0 .2b x a,1c x a.2221212()2x x x x x 2221212)()4x x x x x122121x x x x x......1.如果-1是方程2x 2- = .2.已知一元二次方程x 2+px+q=0的两根分别为-2和1,则p = , q = .3.已知关于 的值.4.已知x 1,x 2是方程2x 2+2kx+k -1=0的两个根,且(x 1+1)(x 2+1)=4.(1)求k的值; (2)求(x1-x2)2的值.5.设x1,x2是方程3x2+4x-3 = 0的两个根.利用根系数之间的关系,求下列各式的值:(1) (x 1 + 1)(x2 + 1); (2)2112.x xx x拓展提升6. 当k为何值时,方程2x2-kx+1=0的两根之差为1.7.已知关于-2=0(1)若方程有实数根,求实数m的取值范围;(2)若方程两根x1,x2满足|x1-的值.242bb ac xa.时,方程有两个相12-132课堂探究二、要点探究探究点1:探索一元二次方程的根与系数的关系 猜一猜=b a,x 1x 2证一证:(注:b221242b b ac x x a +-+=2b b a -+--= 22b a -=.ba=- 1222b b x x a a•-+--⋅=()()22244b b ac a ---=244ac a=.ca =例1 解:(1) a=1 , b= – 6 , c= – 15. Δ = b 2– 4ac =( – 6 )2 – 4 × 1 ×(– 15) = 96 > 0. ∴方程有两个实数根.设方程的两个实数根是x 1,x 2,那么x 1 + x 2 = –( – 6 ) =6,x 1 x 2 = – 15 .(2)a = 3 , b =7, c = –9. Δ= b 2 - 4ac = 72 –4×3×(-9) =157 > 0,∴方程有两个实数根.设方程的两个实数根是x 1,x 2,那么x 1 + x 2 =73, x 1 x 2 =933.(3)方程可化为4x 2–5x +1 =0,a =4,b = – 5,c = 1.Δ = b 2- 4ac =(– 5)2 – 4×4×1=9>0.∴方程有两个实数根.设方程的两个实数根是x 1, x 2,那么x 1 + x 2 =5544,x 1 x 2 =1.4=6.5=3.5+ x 2=2+ 35=.5k 得k=答:方程的另一个根是3,5k=- 解:设方程的两个根分别是+ x 2=1+ x =5 .121231,.22x x x 222121122)2,x xx x x ∴22221212123113()22.224xxx x x x 121212131 3.22x x x x x练一练 (1)4 (2)1 (3)14 (4)12例4 解:由方程有两个实数根,得22221212()2x x x x x = 4(k 222x 4,得 2k +4 =4,解得k 1=0,k 2=4 . 当堂检测1.;-3. 2. 1 ; -2.1161.3c x a116.3x 12121,.2k x k x x 1()1 4.2kk 解得k = -7;4.-则222121212)()474(4)65.x x x x x12124, 1.3b c x x x aa)+1=441()1.33122221121221212()234.9x x x x x x x x x x x x 12121,.22kx x x 22121212()()4 1.x x x x x x 22141,3,2 3.222k k k7.解:(1)方程有实数根,所以Δ=b 2-4ac=(-2m)2-4·m·(m-2=4m 2-4m 2+8m=8m ≥0.∵m≠0,∴m 的取值范围为m >0. 121222,.m x x x m22121212()()4 1.x x x x x x 22241.m m解得m=8.经检验,解.。
一元二次方程根与系数的关系(5种题型)-2023年新九年级数学(苏科版)(解析版)
一元二次方程根与系数的关系(5种题型)1.探索一元二次方程的根与系数的关系.(重点)2.不解方程利用一元二次方程的根与系数的关系解决问题.(难点)韦达定理:如果12x x ,是一元二次方程 20(0)ax bx c a −+=≠的两个根,由解方程中的公式法得,12x x ==. 那么可推得1212b cx x x x a a+=−⋅=,这是一元二次方程根与系数的关系.题型1:求根与系数关系例1.(2023春·江苏南京·九年级专题练习)若1x ,2x 是一元二次方程2230x x −−=的两个根,则12x x +的值是( ) A .2 B .2− C .3 D .3−【答案】A【分析】根据一元二次方程根与系数的关系可得12x x +的值.【详解】解:一元二次方程2230x x −−=的二次项系数是1a =,一次项系数2b =−,∴由根与系数的关系,得122x x +=.故选:A .【点睛】本题考查了一元二次方程根与系数的关系:若1x ,2x 是一元二次方程()200ax bx c a ++=≠的两根,12b x x a +=−,12cx x a =,牢记公式是解题的关键.12x x 是【答案】D【分析】利用两根之积等于ca 即可解决问题.【详解】解:一元二次方程22410x x −+=的两个根为1x、2x ,1212x x ∴=,故选:D .【点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记“两根之和等于ba −,两根之积等于c a ”是解题的关键.题型2:利用根与系数的关系式求代数式的值【答案】4/0.75【分析】根据根与系数的关系求出12x x +和12x x ⋅的值,然后代入221212x x x x +计算即可.【详解】解:∵22310x x +−=,∴1232x x +=−,1212x x ⋅=−,∴()2212121212313224x x x x x x x x ⎛⎫==−⨯−=⎪⎝++⎭. 故答案为:34.【点睛】本题考查了一元二次方程根与系数的关系,若1x ,2x 为方程20(0)ax bx c a ++=≠的两个根,则1x ,2x 与系数的关系式:12b x x a +=−,12cx x a ⋅=. 例4.(2023春·江苏南京·九年级专题练习)若m ,n 分别是一元二次方程2410x x −+=的两个根,则23m m n −+的值为( ) A .3 B .4 C .5 D .6【答案】A【分析】根据一元二次方程解的定义和根与系数的关系得到2410m m −+=,m +n =4,然后利用整体代入的方法计算.【详解】解:∵m ,n 分别是一元二次方程2410x x −+=的两个根,∴2410m m −+=,m +n =4, ∴241m m −=−,∴2234143m m n m m m n −+=−++=−+=,故选:A .【点睛】本题考查了一元二次方程的解,根与系数的关系,若1x ,2x 是一元二次方程20ax bx c ++=(a≠0)的两根时,12b x x a +=−,12cx x a ⋅=,熟练掌握一元二次方程根与系数的关系是解题的关键. 例5.已知12x x ,是方程2133022x x −−=的两根,求下列各式的值:(1)1211x x +;(2)2212x x −;(3)2212x x +;(4)12||x x−.【答案】(1)2−;(2)−3)42;(4). 【解析】解:由韦达定理,得:126x x +=,123x x =−.原式=12122x x x x +=−;原式()()()1212126x x xx x x=+−=−=±6=±=±•=±原式=()21212242x x x x +−=;原式12x x −==.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的灵活应用.例6.已知2212510520.1m m n n mn n m−−=+−=≠+,,求的值. 【答案】5−.【解析】由22510m m −−=,可得:25120m m −−=,整理得:21520m m +−=,又由于2520n n +−=,所以可知1m 、n 是方程2520x x +−=的两根, 由韦达定理,可得:15n m +=−.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的灵活应用,而且还考查了一元二次方程的根的灵活应用,要注意观察.例7.已知αβ,是方程:2240x x −−=的两根,求代数式3+8+6αβ的值. 【答案】30.【解析】由题及韦达定理可得:2240αα−−=,2αβ+=,得:224αα=+.3+8+6αβ=286ααβ⋅++=()2486ααβ+++=22486ααβ+++=()224486ααβ++++=()81430αβ++=.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的灵活应用,运用了降次等的思想方法.题型3:已知含字母的一元二次方程的一个根,求另一个根及字母的值例8.(2023春·江苏徐州·九年级校考阶段练习)已知关于x 的方程220x x a +−=的一个根为2,则另一个根是______. 【答案】4−【分析】根据一元二次方程根与系数的关系即可求解.【详解】解:设方程220x x a +−=的另一个根为2x ,则222x +=− 解得:24x =−, 故答案为:4−.【点睛】本题考查了一元二次方程根与系数的关系:若12,x x 是一元二次方程()200axbx c a ++=≠的两根,12b x x a +=−,12cx x a =,掌握一元二次方程根与系数的关系是解题的关键.例9.若方程:2980kx x −+=的一个根为1x =,则k =________;另一个根为________. 【答案】1;8x =.【解析】将1x =代入方程,可得:1k =,再由韦达定理可得:128x x =,得另一根为8x =.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的应用.题型4:有关一元二次方程的根与系数关系的创新题例10.已知一个直角三角形的两个直角边的长恰好是方程:22870x x −+=两个根,求这个直角三角形的周长. 【答案】7.【解析】解:设直角三角形的三边长为a ,b ,c ,且c 是斜边长,由题知,4a b +=,72ab =,由勾股定理,可得:222c a b =+,所以3c =,所以直角三角形的周长7a b c ++=.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的灵活应用,并且考查了直角三角形的性质,即勾股定理的应用.例11.(2023春·江苏苏州·九年级苏州中学校考开学考试)已知关于x 的一元二次方程22430x mx m −+=. (1)求证:该方程总有两个实数根;(2)若0m >,且该方程的两个实数根的差为2,求m 的值. 【答案】(1)见详解;(2)1m =【分析】(1)由题意及一元二次方程根的判别式可直接进行求证;(2)设关于x 的一元二次方程22430x mx m −+=的两实数根为12,x x ,然后根据一元二次方程根与系数的关系可得212124,3x x m x x m +=⋅=,进而可得()2124x x −=,最后利用完全平方公式代入求解即可.【详解】(1)证明:由题意得:21,4,3a b m c m ==−=,∴22224164134b ac m m m ∆=−=−⨯⨯=,∵20m ≥,∴240m ∆=≥,∴该方程总有两个实数根;(2)解:设关于x 的一元二次方程22430x mx m −+=的两实数根为12,x x ,则有:212124,3x x m x x m +=⋅=,∵122x x −=,∴()()2222121212416124x x x x x x m m −=+−=−=,解得:1m =±, ∵0m >, ∴1m =.根与系数的关系是解题的关键.【答案】(1)③;(2)4;(3)10【分析】(1)分别求出①②③三个方程的根,然后根据题中所给定义可进行求解;(2)设关于x 的方程260x x c −+=的两个根为12,x x ,然后根据“三倍根方程”可令213x x =,进而根据一元二次方程根与系数的关系及方差的解可进行求解;(3)先把一元二次方程进行因式分解变形,然后根据“三倍根方程”的关系可进行求解.【详解】(1)解:由2320x x −+=可得:121,2x x ==,不满足“三倍根方程”的定义;由230x x −=可得:120,3x x ==,不满足“三倍根方程”的定义;由28120x x −+=可得:122,6x x ==,满足“三倍根方程”的定义;故答案为③;(2)解:设关于x 的方程260x x c −+=的两个根为12,x x ,由一元二次方程根与系数的关系可知:126x x +=,12x x c =,令213x x =,则有146x =, ∴132x =,292x =, ∴274c =; (3)解:由()20x m n x mn −++=可得:()()0x m x n −−=,∴12,x m x n==,令3m n =,则有:2222233910mn n m n n n ==++.【点睛】本题主要考查一元二次方程根与系数的关系及解法,熟练掌握一元二次方程根与系数的关系是解题的关键.一、单选题1.(2022秋·江苏无锡·九年级统考期中)关于下列一元二次方程,说法正确的是( ) A .2560x x ++=的两根之和等于5 B .231x x −=的两根之积等于1C .20x x m ++=两根不可能互为倒数D .210x mx ++=中m =0时,两根互为相反数【答案】C【分析】根据一元二次方程根的判别式以及一元二次方程根与系数的关系进行判断即可求解.【详解】A. 2560x x ++=的两根之和等于5−,故该选项不正确,不符合题意;B. 231x x −=,即方程2310x x −−=的两根之积等于1−,故该选项不正确,不符合题意;C. 20x x m ++=,∵1,1,a b c m ===,24140b ac m ∆=−=−≥,解得14m ≤,∵1m ≠,两根之积为m ,∴方程两根之积不可能互为倒数,故该选项正确,符合题意;D. 210x mx ++=中0m =时,即21x =−,此方程无实根,故该选项不正确,不符合题意.故选C .【点睛】本题考查了一元二次方程根的判别式以及一元二次方程根与系数的关系:若12,x x 是一元二次方程()200ax bx c a ++=≠的两根,12bx x a +=−,12c x x a =.一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.【答案】A【分析】利用根与系数的关系12bx x a +=−即可求解.【详解】解:利用根与系数的关系,可得:1222b a a x x a +=−−=−=,x 的方程220ax ax c −+=的一个解为11x =−,()212213x x ∴=−=−−=,故选:A .【点睛】本题主要考查根与系数的关系,解题的关键是熟练掌握根与系数的关系.【答案】D【分析】根据两根之和为10−,以及两根之间的数量关系,求出两个根,再根据两根之积等于26a +,求出a 的值即可.【详解】解:设方程的两个根为,m n ,4=m n ,由根与系数的关系可得:10m n +=−,即:410n n +=−, 解得:2n =−, ∴()428m =⨯−=−,∵()268216mn a =+=−⨯−=,∴5a=; 故选D .【点睛】本题考查一元二次方程根与系数的关系.熟练掌握两根之和等于ba −,两根之积等于c a ,是解题的关键.【答案】A【分析】根据:若一元二次方程()200ax bx c a ++=≠ 两根分别为12x x ,,则有:1212b x x a c x x a ⎧+=−⎪⎪⎨⎪⋅=⎪⎩, 代入数据计算即可.【详解】解:设方程的另一根为1x ,由根据根与系数的关系可得:11115x mx +=⎧⎨⨯=⎩,解得:156x m =⎧⎨=⎩故选:B.【点睛】本题考查了一元二次方程的根与系数的关系,关键要理解一元二次方程的两根之和只与二次项系数和一次项系数有关,两根之积只与二次项系数和常数项有关,从而快速计算结果.5.(2022·江苏南京·南师附中树人学校校考二模)方程()()1210x x +−+=的根的情况,下列结论中正确的是( ) A .两个正根 B .两个负根 C .一个正根,一个负根 D .无实数根【答案】C 【分析】先把方程()()1210x x -++=化为210x x +−=,再根据2Δ41450b ac =-=+=>可得方程有两个不相等的实数根. 【详解】解:∵()()1210x x -++=(p 为常数),∴210x x +−=,∴2Δ41450b ac =-=+=>,∴方程有两个不相等的实数根,根据根与系数的关系,方程的两个根的积为1−, ∴一个正根,一个负根. 故选:C .【点睛】本题考查一元二次方程根的判别式以及根与系数关系,注意利用偶次方的非负性判断代数式的符号是解决问题的关键. 二、填空题6.(2023·江苏盐城·统考一模)已知关于x 的一元二次方程280x kx +−=的一个根是2-,则它的另一个根为______. 【答案】4【分析】利用根与系数之间的关系来求解. 【详解】解:设方程的另一个根为m ,关于x 的一元二次方程280x kx +−=的一个根是2-,由根与系数之间的关系可得 28m −=− 4m ∴=,故答案为:4.【点睛】本题主要考查了一元二次方程根与系数之间的关系.解题的关键是一元二次方程20ax bx c ++=的两根如果为1x 、2x ,则有12b x x a +=−,12cx x a ⋅=. 7.(2022秋·江苏盐城·九年级统考期中)已知一元二次方程2202210x x −−=的两个根分别是1x 、2x ,则代数式221212x x x x +的值为______. 【答案】2022−【分析】结合题意利用一元二次方程根与系数的关系求得122022x x +=,121x x =−,代入即可求解.【详解】解:一元二次方程2202210x x −−=的两个根分别是1x、2x ,122022x x ∴+=,121x x =−,()2212121212x x x x x x x x ∴+=+12022=−⨯2022=−,故答案为:2022−.【点睛】本题考查了一元二次方程根与系数的关系,代数式求值;熟练掌握根与系数的关系是解题的关键.【答案】2【分析】由根与系数的关系可得12123x x x x m+==,,结合12121x x x x +−=可得出关于m 的一元一次方程,解之即可得出结论. 【详解】解:∵12x x ,是方程230x x m −+=的两个根,∴12123x x x x m+==,, ∵121231x x x x m +−=−=,∴2m =. 故答案为2.【点睛】本题考查了根与系数的关系:若12x x ,是一元二次方程()200ax bx c a ++=≠的两根时,1212cb a a x x x x +=−=,.9.(2023秋·江苏扬州·九年级校考期末)已知1x、2x 是关于x 的方程2250x x −−=的两个根,则12x x +值等于________. 【答案】2【分析】根据一元二次方程根与系数的关系得出两根之和即可求解. 【详解】解:1x 、2x 是关于x 的方程2250x x −−=的两个根,12221x x −∴+=−=,故答案为:2.【点睛】本题主要考查了一元二次方程的根与系数的关系,一元二次方程()200ax bx c a ++=≠的根与系数的关系为:12b x x a +=−,12cx x a ⋅=.【答案】6【分析】根据根与系数关系得到两根和与两根积的值,将式子通分代入求解即可得到答案. 【详解】解:由题意可得, ∵1x ,2x 是一元二次方程2560x x +−=的两个根,∴12551x x +=−=−,12661x x −==−,∴121212115566x x x x x x +−+===− 故答案为:56.【点睛】本题考查一元二次方程根与系数之间的关系,解题的关键是熟练掌握12b x x a +=−,12cx x a =.11.(2023秋·江苏南京·九年级统考期末)关于x 的方程221x x p −−=(p 为常数)有两个不相等的正根,则p 的取值范围是______. 【答案】21p −<<−【分析】根据一元二次方程根的判别式和根与系数得关系解答即可.【详解】由题意得: 221x x p −−=,∴22(1)0x x p −−+=,∴[]224(2)41(1)48b ac p p ∆=−=−−⨯⨯−+=+,∴122b x x a +=−=,12(1)cx x p a ⋅==−+,∵关于x 的方程221x x p −−=(p 为常数)有两个不相等的正根,∴480(1)0p p +>⎧⎨−+>⎩,解得:21p −<<− ∴p 的取值范围是:21p −<<− 故答案为:21p −<<−【点睛】本题主要考查一元二次方程根的判别式、根与系数的关系,熟练掌握相关知识点是解题的关键.【答案】1−/1−【分析】依据根与系数的关系即12bx x a +=−,12c x x a =代入即可求出m n 、的值,最后代入计算即可.1是方程20x mx n ++=的两个根,))11m∴+=−,)()1·1n=,即m =−1n =,1m n ∴+=−, 故答案为:1−.【点睛】本题考查了根与系数的关系,二次根式的混合运算;解题的关键是熟练掌握一元二次方程根与系数的关系.13.(2023·江苏南京·统考二模)若α、β为2240x x +−=的两根,则22ααβα++的值为______. 【答案】0【分析】由已知中α,β是方程2240x x +−=的两个实数根,结合根与系数的关系转化求解即可.【详解】解:α,β是方程2240x x +−=的两个实数根,可得2αβ+=−,∴22()2220ααβαααβααα++=++=−+=.∴22ααβα++的值为0.故答案为:0.【点睛】本题考查的知识点是一元二次方程根与关系,若α,β是一元二次方程20(0)ax bx c a ++=≠的两根时,b a αβ+=−,ca αβ=.14.(2023秋·江苏南京·九年级统考期末)设12,x x 是关于x 的方程2320x x −+=的两个根,则12x x +=_____________.【答案】3【分析】直接利用根与系数的关系12bx x a +=−求解.【详解】解∶根据根与系数的关系12bx x a +=−得123x x +=.故答案为:3.【点睛】本题考車了根与系数的关系∶若12,x x 是一元二次方程20(0)ax bx c a ++=≠的两根时,1212,b cx x x x a a +=−=.15.(2023秋·江苏南京·九年级南京外国语学校仙林分校校考期末)设1x 、2x 是方程230x mx m +−+=的两个根,则1212x x x x +−=___________. 【答案】3−【分析】根据根与系数关系,求出两根之和、两根之积即可. 【详解】解:1x 、2x 是方程230x mx m +−+=的两个根,所以,12x x m+=−,123x x m =−+,1212(3)3x x x x m m +−=−−−+=−,故答案为:3−.【点睛】本题考查了一元二次方程根与系数关系,解题根据是熟记根与系数关系,求出两根之和、两根之积.16.(2022秋·江苏淮安·九年级校考期末)若一元二次方程2220x x −−=有两个实数根1x ,2x ,则1212x x x x +−的值是________. 【答案】4【分析】根据一元二次方程根与系数的关系,即可求得.【详解】解:一元二次方程2220x x −−=有两个实数根1x ,2x,122x x ∴+=,122x x =−,()1212224x x x x ∴+−=−−=,故答案为:4.【点睛】本题考查了一元二次方程根与系数的关系,代数式求值问题,熟练掌握和运用一元二次方程根与系数的关系是解决本题的关键. 三、解答题17.(2023·江苏扬州·统考二模)已知关于x 的一元二次方程()2120x m x m −−+−=(1)求证:该方程总有两个实数根.(2)若该方程两个实数根的差为3,求m 的值. 【答案】(1)证明见解析 (2)0或6【分析】(1)由()2120x m x m −−+−=,可知1a =,()1b m =−−,2c m =−,根据()()()222414230b ac m m m =−=−−−−=−≥⎡⎤⎣⎦,证明即可;(2)由()2120x m x m −−+−=,可得121bx x m a +=−=−,122c x x m a ⋅==−,由该方程两个实数根的差为3,可得()2129x x −=,即()()221212124x x x x x x −=+−⋅,()()21429m m −−−=,计算求解即可.【详解】(1)证明:()2120x m x m −−+−=,1a =,()1b m =−−,2c m =−,∴()()()222414230b ac m m m =−=−−−−=−≥⎡⎤⎣⎦,∴该方程总有两个实数根;(2)解:∵()2120x m x m −−+−=,∴121b x x m a +=−=−,122cx x m a ⋅==−,∵该方程两个实数根的差为3,∴()2129x x −=,∵()()221212124x xx x x x −=+−⋅,∴()()21429m m −−−=,解得0m =或6m =, ∴m 的值为0或6.【点睛】本题考查了一元二次方程根的判别,一元二次方程根与系数的关系,完全平方公式的变形.解题的关键在于对知识的熟练掌握与灵活运用.18.(2020秋·江苏南京·九年级统考期中)已知关于x 的方程()220x mx m −+=−.(1)求证:不论m 为何值,该方程总有两个不相等的实数根; (2)若方程有一个根是2,求m 的值以及方程的另一个根. 【答案】(1)见解析(2)m 的值为2,另一个根为0【分析】(1)先计算判别式的值得到2(2)4m ∆=−+,然后根据判别式的意义得到结论; (2)设方程的另一个为t ,利用根与系数的关系得到2,22t m t m +==−,然后解方程组即可. 【详解】(1)证明:∵1,,2a b m c m ==−=−,∴22224()41(2)48(2)4b ac m m m m m −=−−⨯⨯−=−+=−+, ∵2(2)0m −≥, ∴2(2)40m −+>,∴0∆>,∴不论m 为何值,该方程都有两个不相等的实数根; (2)解:设方程的另一个为t ,根据根与系数的关系得:2,22t m t m +==−, ∴222t t +−=,解得0=t , ∴2m =,∴m 的值为2,另一个根为0.【点睛】本题考查了判别式的意义以及根与系数的关系:若x1,x2是一元二次方程20(0)ax bx c a ++=≠的两根时,1212,b cx x x x a a +=−=.一、单选题1.(2022·江苏·九年级专题练习)设一元二次方程2210x x −−=的两根为1x ,2x ,则1122x x x x −+的值为( ) A .1 B .﹣1 C .0 D .3【答案】D【分析】先利用一元二次方程根与系数的关系得122x x +=,121x x =−,再变形得到11221212x x x x x x x x −+=+−,然后利用整体代入的方法计算.【详解】解:根据根与系数的关系得122x x +=,121x x =−,∴1122x x x x −+1212x x x x =+−()21=−−3=,故选:D .【点睛】本题考查利用一元二次方程根与系数的关系求代数式的值,若1x ,2x 是一元二次方程()200ax bx c a ++=≠的两根,则12b x x a +=−,12cx x a =,掌握一元二次方程根与系数的关系是解决问题的关键.2.(2022秋·江苏常州·九年级校考阶段练习)若m 、n 是方程210x x +−=的两个实数根,则22m m n ++的值为( ) A .4 B .2 C .0 D .-1【答案】C【分析】根据根与系数的关系及方程的解的定义即可求解.【详解】∵m 、n 是方程210x x +−=的两个实数根,∴210m m +−=,1bm n a +=−=−,∴21m m +=,∴()()222110m m n m m m n ++=+++=−=,故选:C .【点睛】此题主要考查根与系数的关系,解题的关键是熟知根与系数的关系、一元二次方程根的定义. 3.(2022秋·江苏南京·九年级校考阶段练习)若关于x 的方程260x mx =--的一个根是2−,则另一个根是( ) A .2 B .﹣2 C .﹣3 D .3【答案】D【分析】根据根与系数关系得出两根之积为-6,进而可以求出另一个根. 【详解】解:关于x 的方程260x mx =--的一个根是2−, 根据根与系数关系可知,两根之积为-6,则另一个根为632=−-,故选:D .【点睛】本题考查了一元二次方程根与系数关系,解题关键是利用根与系数关系求出两根之积为-6. 4.(2022秋·九年级课时练习)若α和β是关于x 的方程210x bx +−=的两根,且2211αβαβ−−=−,则b 的值是( ) A .-3 B .3C .-5D .5【答案】C【分析】根据一元二次方程根与系数的关系得出+=,1b αβαβ−=−,代入2211αβαβ−−=−得到关于b 的方程,求出b 的值即可.【详解】解:∵α和β是关于x 的方程210x bx +−=的两根,∴+=,1b αβαβ−=−,∴222()1211b αβαβαβαβ−−=−+=−+=− ∴=5b − 故选:C【点睛】本题考查了根与系数的关系,熟练掌握两根之和为-b a ,两根之积为ca 是解题的关键.5.(2022秋·江苏苏州·九年级校考阶段练习)设x 1,x 2是方程x 2+5x ﹣6=0的两个根,则x 12+x 22的值是( ) A .5 B .13C .35D .37【答案】D【分析】根据根与系数的关系可以得到x1+x2=-5,x1x2=-6,然后利用将代数式的值代入,计算x12+x22=(x1+x2)2-2x1x2的值.【详解】解:根据题意得x1+x2=-5,x1x2=-6, x12+x22=(x1+x2)2-2x1x2=25+12=37. 故选:D .【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,12bx x a +=−,12cx x a •=.【答案】C【分析】设直角三角形的斜边为c ,两直角边分别为a 与b .根据一元二次方程根与系数关系可得8a b +=,14ab =.再根据勾股定理即可求.【详解】解:设直角三角形的斜边为c ,两直角边分别为a 与b ,直角三角形两直角边是方程28140x x −+=的两根,8a b ∴+=,14ab =,根据勾股定理可得:2222()2642836c a b a b ab =+=+−=−=,6c ∴=.故选:C .【点睛】本题考查勾股定理,一元二次方程根与系数关系,熟练掌握一元二次方程根与系数关系是解题的关键.7.(2020秋·江苏连云港·九年级校考阶段练习)两根均为负数的一元二次方程是( ) A .2712+5=0x x - B .26135=0x x -- C .24215=0x x ++ D .2158=0x x -+【答案】C【分析】因为两根均为负数,所以两实数根的和小于零,两根之积大于零.解题时检验两根之和ba −是否小于零,及两根之积ca 是否大于零.【详解】解:A.125>07x x =,1212>07x x +=,两根均为正数;B.125<06x x =-,1213>06x x +=,两根为一正一负;C.125>04x x =,1221<04x x +=-,两根均为负数;D.128<0x x =-,1215<0x x +=-,两根为一正一负.故答案为:C .【点睛】本题考查了根与系数的关系:若1x ,2x 是一元二次方程()2=00ax bx c a ++¹的两根时,12=bx x a +−,12=c x x a .二、填空题8.(2022秋·江苏连云港·九年级校考阶段练习)若a ,b 是方程2220x x +−=的两个实数根,则代数式23a a b ++的值为______. 【答案】0【分析】由一元二次方程的解的定义可得出2220a a +−=,即得出222a a +=.根据一元二次方程根与系数的关系可得出2a b +=−,从而即可求出22320a a b a a a b ++=+++=.【详解】∵a ,b 是方程2220x x +−=的两个实数根,∴2220a a +−=,221a b +=−=−,∴222a a +=,∴22322(2)0a b a a a a b ++=+++=+−=. 故答案为:0.【点睛】本题考查一元二次方程的解的定义,一元二次方程根与系数的关系.掌握方程的解就是使方程成立的未知数的值和熟记一元二次方程根与系数的关系:12b x x a +=−、12cx x a ⋅=是解题关键. 9.(2023春·江苏泰州·九年级泰州市姜堰区第四中学校考阶段练习)设方程2202310x x −−=的两个根分别为12x x 、,则1212x x x x +−的值是___________. 【答案】2024【分析】先根据根与系数的关系可求121220231x x x x +==−,,再把12x x +,12x x 的值整体代入所求代数式计算即可.【详解】解:∵方程2202310x x −−=的两个根分别为12x x、,∴121220231x x x x +==−,,∴1212202312024x x x x =−++=.故答案是:2024.【点睛】本题考查了一元二次方程20(0)ax bx c a ++=≠的根与系数的关系:若方程的两根为12x x、,则1212b cx x x x a a +=−⋅=,.10.(2023·江苏南京·九年级专题练习)已知1x 、2x 是一元二次方程250x x −−=的两个实数根,则221122x x x x −+的值是________.【答案】16【分析】先根据根与系数的关系得到121215x x x x +==−,,然后利用整体代入的方法计算.【详解】解:根据题意得121215x x x x +==−,,所以()222211221212313516x x x x x x x x −+=+−=−⨯−=().故答案为:16.【点睛】本题考查了根与系数的关系:若12,x x 是一元二次方程20(0)ax bx c a ++=≠的两根时,1212,b cx x x x a a +=−⋅=.11.(2022春·江苏南通·九年级校考阶段练习)已知:m 、n 是方程2310x x +−=的两根,则22(33)(33)m m n n ++++=_____.【答案】16【分析】根据m 、n 是方程2310x x +−=的两根,即可得到3m n +=−,1mn =−,2310m m +−=,2310n n +−=,从而得到231m m +=,231n n +=,代入计算即可得到答案.【详解】解:∵m 、n 是方程2310x x +−=的两根,∴3m n +=−,1mn =−,2310m m +−=,2310n n +−=,∴231m m +=,231n n +=,∴()()22(33)(33)131316m m n n ++++=++=,故答案为:16.【点睛】本题考查了一元二次方程根的定义,根与系数的关系,熟知一元二次方程根的定义,根与系数的关系,并根据题意将所求代数式变形是解题关键. 三、解答题12.(2022秋·江苏·九年级专题练习)已知关于x 的一元二次方程2220x x m −+−=有两个实数根1x ,2x . (1)求m 的取值范围;(2)当11x =−时,求另一个根2x 的值. 【答案】(1)3m ≤ (2)23x =【分析】(1)根据题意得()()22420m ∆=−−−≥,解不等式即可求解; (2)根据根与系数的关系得122x x +=,根据11x =−,即可求解.【详解】(1)解:∵关于x 的一元二次方程2220x x m −+−=有两个实数根1x ,2x∴()()22420m ∆=−−−≥,解得3m ≤,所以m 的取值范围为3m ≤;(2)解:∵关于x 的一元二次方程2220x x m −+−=有两个实数根1x ,2x∴122x x +=, ∵11x =−, ∴23x =.【点睛】本题考查了一元二次方程根的判别式,一元二次方程根与系数的关系,掌握以上知识是解题的关键.13.(2022秋·江苏盐城·九年级滨海县第一初级中学校联考阶段练习)已知关于x 的一元二次方程22430x mx m −+=.(1)求证:该方程总有两个实数根;(2)若0m >,且该方程的两个实数根的平方和为10,求m 的值. 【答案】(1)见解析 (2)1m =【分析】(1)由题意及一元二次方程根的判别式可直接进行求证;(2)设关于x 的一元二次方程22430x mx m −+=的两实数根为1x,2x ,然后根据一元二次方程根与系数的关系可得124x x m+=,2123x x m ⋅=,再根据两个实数根的平方和为10,可得()222121212210x x x x x x +=+−=,由此可解.【详解】(1)证明:由题意得:1a =,4b m =−,23c m =,∴22224164134b ac m m m ∆=−=−⨯⨯=,∵20m ≥,∴240m ∆=≥,∴该方程总有两个实数根;(2)解:设关于x 的一元二次方程22430x mx m −+=的两实数根为1x ,2x ,则有124x x m +=,2123x x m ⋅=,∵221210x x +=,∴()222222121212216231010x x x x x x m m m +=+−=−⨯==,解得:1m =±, ∵0m >, ∴1m =.【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.14.(2022秋·江苏连云港·九年级校考阶段练习)已知关于x 的一元二次方程()21360x m x m −++−=.(1)求证:方程总有两个实数根; (2)若12127x x x x ++=,求m 的值. 【答案】(1)见解析 (2)3m =【分析】(1 (2)根据一元二次方程根与系数的关系可得1212136x x m x x m +=+=−,,整体代入12127x x x x ++=中,解出m 的值即可.【详解】(1)∵该一元二次方程为()21360x m x m −++−=,∴()1136a b m c m ==−+=−,,,∴()()2222414361025(5)0b ac m m m m m ⎡⎤−=−+−⨯−=−+=−≥⎣⎦,∴该方程总有两个实数根; (2)∵1212136b cx x m x x m a a +=−=+==−,,又∵12127x x x x ++=,∴1367m m ++−=,解得:3m =.【点睛】本题考查根据判别式判断一元二次方程根的情况,一元二次方程的根与系数的关系.掌握一元二次方程20(0)ax bx c a ++=≠的根的判别式为24b ac ∆=−,且当0∆>时,该方程有两个不相等的实数根;当Δ0=时,该方程有两个相等的实数根;当Δ0<时,该方程没有实数根.熟记一元二次方程根与系数的关系:12b x x a +=−和12cx x a ⋅=是解题关键. 15.(2022秋·江苏·九年级专题练习)关于x 的方程:2(x ﹣k )=x ﹣4①和关于x 的一元二次方程:(k ﹣1)x 2+2mx+(3﹣k )+n =0②(k 、m 、n 均为实数),方程①的解为非正数. (1)求k 的取值范围;(2)如果方程②的解为负整数,k ﹣m =2,2k ﹣n =6且k 为整数,求整数m 的值;(3)当方程②有两个实数根x 1、x 2,满足(x 1+x 2)(x 1﹣x 2)+2m (x 1﹣x 2+m )=n+5,且k 为正整数,试判断|m|≤2是否成立?请说明理由.【答案】(1)k≤2且k≠1;(2)m =﹣2或﹣3;(3)成立,见解析【分析】(1)先解出方程①的解,根据一元二次方程的定义和方程①的根为非正数,得出k 的取值范围,即可;(2)先把k =m+2,n =2m ﹣2代入方程②化简,通过因式分解法,用含m 的代数式表示出一元二次方程的两个实数根,根据方程②的解为负整数,m 为整数,即可求出m 的值;(3)根据(1)中k 的取值范围和k 为正整数得出k =2,化简一元二次方程,并将两根和与积代入计算,得出关于m 、n 的等式,结合根的判别式,即可得到结论. 【详解】(1)∵关于x 的方程:2(x ﹣k )=x ﹣4, 解得:x =2k ﹣4,∵关于x 的方程2(x ﹣k )=x ﹣4的解为非正数, ∴2k ﹣4≤0,解得:k≤2, ∵由一元二次方程②,可知k≠1, ∴k≤2且k≠1;(2)∵一元二次方程(k ﹣1)x2+2mx+(3﹣k )+n =0中k ﹣m =2,2k ﹣n =6, ∴k =m+2,n =2k ﹣6=2m+4﹣6=2m ﹣2,∴把k =m+2,n =2m ﹣2代入原方程得:(m+1)x2+2mx+m ﹣1=0, 因式分解得,[(m+1)x+(m ﹣1)](x+1)=0,∴x1=﹣11mm−+=211m−+,x2=﹣1,∵方程②的解为负整数,m为整数,∴m+1=﹣1或﹣2,∴m=﹣2或﹣3;(3)|m|≤2成立,理由如下:由(1)知:k≤2且k≠1,∵k是正整数,∴k=2,∵(k﹣1)x2+2mx+(3﹣k)+n=0有两个实数根x1、x2,∴x1+x2=21mk−−=﹣2m,x1x2=31k nk−+−=1+n,∵(x1+x2)(x1﹣x2)+2m(x1﹣x2+m)=n+5,∴2m2=n+5 ①,△=(2m)2﹣4(k﹣1)[(3﹣k)+n]=4m2﹣4(n+1)≥0 ②,把①代入②得:4m2﹣8m2+16≥0,即m2≤4,∴|m|≤2.【点睛】本题主要考查一元一次方程与一元二次方程,涉及解一元一次方程,一元二次方程以及一元二次方程的根与系数的关系,根的判别式,熟练掌握因式分解法解一元二次方程,一元二次方程的根与系数的关系,根的判别式,是解题的关键.16.(2022秋·江苏·九年级专题练习)关于x的方程2220x ax a−++=有两个不相等的实数根,求分别满足下列条件的取值范围:(1)两根都小于0;(2)两根都大于1;(3)方程一根大于1,一根小于1.【答案】(1)-2<a<-1;(2)2<a<3;(3)a>3【分析】由关于x的方程x2-2ax+a+2=0有两个不相等的实根,得出△=(-2a)2-4(a+2)>0,解得a<-1或a>2.设方程x2-2ax+a+2=0的两根为α,β,利用根与系数的关系得到α+β=2a,αβ=a+2,再分别根据:(1)由两根都小于0,得出α+β=2a<0,αβ=a+2>0,此求出a的取值范围;(2)由两根都大于1,得出(α-1)(β-1)>0,且对称轴212a−−>,依此求出a的取值范围;(3)由一根大于1,一根小于1,得出(α-1)(β-1)<0,依此求出a的取值范围;【详解】解:∵关于x的方程x2-2ax+a+2=0有两个不相等的实根,∴△=(-2a)2-4(a+2)>0,∴a<-1或a>2.设方程x2-2ax+a+2=0的两根为α,β,α+β=2a,αβ=a+2.(1)∵两根都小于0,∴α+β=2a<0,αβ=a+2>0,解得:-2<a<0,又22a−−<,a<0;∵a<-1或a>2,∴-2<a<-1;(2)∵两根都大于1,∴(α-1)(β-1)>0,∴αβ-(α+β)+1>0,∴a+2-2a>-1,∴a<3,又212a−−>,a>1;又a<-1或a>2,∴2<a<3;(3))∵一根大于1,一根小于1,∴(α-1)(β-1)<0,∴αβ-(α+β)+1<0,∴a+2-2a<-1,∴a>3.【点睛】本题考查了根的判别式,根与系数的关系,属于基础题,关键是要熟记x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=ba−,x1x2=ca.17.(2022秋·江苏·九年级专题练习)如果方程x2+px+q=0有两个实数根x1,x2,那么x1+x2=﹣p,x1x2=q,请根据以上结论,解决下列问题:【答案】(1)43(2)4(3)存在,当k=﹣2时,1212212x xy yx x−−=【分析】(1)根据a,b是x2+15x+5=0的解,求出a+b和ab的值,即可求出a bb a+的值.(2)根据a+b+c=0,abc=16,得出a+b=-c,ab=16c,a、b是方程x2+cx+16c=0的解,再根据c2-4•16c≥0,即可求出c的最小值.(3)运用根与系数的关系求出x1+x2=1,x1•x2=k+1,再解y1y2-1221x xx x−=2,即可求出k的值.【详解】(1)∵a、b是方程x2+15x+5=0的二根,∴a+b=﹣15,ab=5,∴a bb a+=()22a b abab+−215255−−⨯=43,故答案是:43;(2)∵a+b+c=0,abc=16,∴a+b=﹣c,ab=16 c,∴a、b是方程x2+cx+16c=0的解,∴c2﹣4•16c≥0,c2﹣34c≥0,∵c是正数,∴c3﹣43≥0,c3≥43,c≥4,∴正数c的最小值是4.(3)存在,当k=﹣2时,1212212x xy yx x−−=.由x2﹣y+k=0变形得:y=x2+k ,由x ﹣y=1变形得:y=x ﹣1,把y=x ﹣1代入y=x2+k ,并整理得:x2﹣x+k+1=0, 由题意思可知,x1 , x2是方程x2﹣x+k+1=0的两个不相等的实数根,故有:()()()()()()()212112121221212121212211214101112112k x x x x k y y x x x x x x x x y y x x x x x x =⎧−−+>⎪+⎪⎪=+⎪⎪=−−⎨⎪+−⎪−−=−−−=⎪⎪⎪⎩即:23420k k k ⎧<−⎪⎨⎪+=⎩解得:k=﹣2.【点睛】本题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.【答案】(1)x1x2=x3x4= (2)454.【分析】(1)利用换元法解方程,设y =x2,则原方程可化为y2﹣5y+6=0,解关于y 的方程得到y1=2,y2=3,则x2=2或x2=3,然后分别解两个元二次方程即可;(2)根据已知条件,把a2、b2看作方程2x2﹣7x+1=0的两不相等的实数根,然后根据根与系数的关系求解.【详解】(1)解:42560x x −+=,设2y x =,则原方程可化为2560y y −+=,解得12y =,23y =,当=2y 时,22x =,解得1x 2=x当=3y 时,23x =,解得3x 4=x −所以原方程的解为1x 2=x 3x 4x =故答案为:1x ,2=x 3x =4x =(2)解:∴实数a ,b 满足:422710a a −+=,422710b b −+=且a b ≠,2a ∴、2b 可看作方程22710x x −+=的两不相等的实数根,2272a b ∴+=,2212a b =g ;∴2424222714522224a b a b a b +=+-=-´=g ()(); 故答案为:454.【点睛】本题主要考查了用“换元法”把高次方程转化为一元二次方程,韦达定理,完全平方公式,其中转化思想是解决问题的关键.。
一元二次方程根与系数关系(知识讲解)九年级数学上册基础知识讲与练
专题2.14 一元二次方程根与系数关系(知识讲解)【学习目标】掌握一元二次方程的根与系数的关系以及在各类问题中的运用. 【要点梳理】一元二次方程的根与系数的关系 1.一元二次方程的根与系数的关系如果一元二次方程的两个实数根是, 那么,. 注意它的使用条件为a ≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.2. 一元二次方程的根与系数的关系的应用⎧⎪⎪⎪→→⎨⎪⎪⎪⎩知识框图:1、求代数式的值2、求待定系数一元二次方程求根公式根与系数关系应用3、构造方程4、解特殊的二元二次方程组5、二次三项式的因式分解【典型例题】类型一、由根与系数关系直接求值1.已知x 1,x 2是一元二次方程x 2-3x -1=0的两根,不解方程求下列各式的值:(1)2211+x x (2)1211+x x 【答案】(1)11;(2) -3. 【分析】由一元二次方程的根与系数的关系可得12123,1x x x x +=⋅=-;(1)将所求式子变形为(x 1+x 2)2-2x 1x 2 ,然后整体代入上面两个式子计算即可; (2)将所求式子变形为1212x x x x +⋅,然后整体代入上面两个式子计算即可.解:∵x 1,x 2是一元二次方程x 2-3x -1=0的两根,∵12123,1x x x x +=⋅=-,(1)2211+x x = (x 1+x 2)2-2x 1x 2 =32-2×(-1)=11;)0(02≠=++a c bx ax 21x x ,a b x x -=+21ac x x =21(2)12121211331x x x x x x ++===-⋅-. 【点拨】本题考查了一元二次方程的根与系数的关系,属于基本题目,熟练掌握一元二次方程的两根之和与两根之积与系数的关系是解题关键.举一反三:【变式1】利用根与系数的关系,求下列方程的两根之和、两根之积: (1)2760x x ++=; (2)22320x x --=.【答案】(1)12127,6x x x x +=-=;(2)12123,12x x x x +==-【分析】直接运用一元二次方程根与系数的关系求解即可. 解:(1)这里1,7,6a b c ===.22Δ474164924250b ac =-=-⨯⨯=-=>,∵方程有两个实数根. 设方程的两个实数根是12,x x , 那么12127,6x x x x +=-=. (2)这里2,3,2a b c ==-=-.22Δ4(3)42(2)916250b ac =-=--⨯⨯-=+=>,∵方程有两个实数根.设方程的两个实数根是12,x x ,那么12123,12x x x x +==-.【点拨】本题考查了一元二次方程根与系数的关系,熟知1212,b cx x x x a a+=-=是解题的关键.【变式2】 甲、乙两人同解一个二次项系数为1的一元二次方程,甲抄错了常数项,解得两根分别为3和2,乙抄错了一次项系数,解得两根分别为-5和-1,求原来的方程.【答案】2550x x -+= 【分析】解法一:利用甲乙解出的根,可以得出两个一元二次方程,取甲方程的一次项系数,取乙方程的常数项,即可重新组合出原来正确的方程.解法二:利用根与系数的关系,取甲方程的一次项系数,取乙方程的常数项,即可重新组合出原来正确的方程.解:解法一:设原一元二次方程为2+a b 0+=x x ,代入甲解出的两根3、2得9+3a+b=04+2a+b=0⎧⎨⎩,解得a=5b=6-⎧⎨⎩,因为甲抄错常数项,所以取a=5-同理,代入乙解出的两根-5和-1,可得a=6b=5⎧⎨⎩,而乙抄错了常数项,所以取b=5,综上可得原方程为2550x x -+=解法二:甲抄错常数项,解得两个为3和2,两根之和正确;乙抄错了一次项系数,解得两根为-5和-1,则两根之积正确.设原方程的两根分别为1x 、2x ,可得12+=5x x ,12=5x x ,所以原方程就是2550x x -+=.【点拨】在没有学习根与系数关系之前,可用方程的解的性质,代入两根求出方程系数,学习之后可直接利用根与系数关系得出方程系数,更为简单.类型二、由根与系数关系求参数的值2.关于x 的一元二次方程22(21)0x m x m --+=的两根为,a b ,且4a b ab +=-,求m 的值.嘉佳的解题过程如下: 解:221,a b m ab m +=-=,2214m m ∴-=-, 整理,得2230m m --=, 解得121,3m m =-=.嘉佳的解题过程漏了考虑哪个条件?请写出正确的解题过程. 【答案】m 的值为1-. 【分析】根据一元二次方程根的判别式结合根与系数的关系解答.解:嘉佳的解题过程漏了考虑0∆这一条件.正确的解题过程如下:根据题意得22(21)40m m ∆=--,解得14m. 221,a b m ab m +=-=,2214m m ∴-=-,整理得2230m m --=,解得121,3m m =-=(舍去), m ∴的值为1-.【点拨】本题中忽略0∆这一条件导致错解针对这一类题,我们一定要看清题目中所给的条件,考虑一元二次方程有解的条件是“0∆”,才能得出正确结果.举一反三:【变式1】已知1x 、2x 是方程2220x kx k k -+-=的两个实根,是否存在常数k ,使122132x x x x +=成立?若存在,请求出k 的值;若不存在,请说明理由. 【答案】不存在.理由见分析【分析】根据根与系数关系列出关于k 的方程,根据方程有实数根列出关于k 的不等式,求解即可.解:不存在.∵1x 、2x 是方程2220x kx k k -+-=的两个实根, ∵240b ac -≥,即22(2)4()0k k k ---≥, 解得,0k ≥;由题意可知122x x k +=,212x x k k =-,∵12121212122221122()232x x x x x x x x x x x x x x +=+-=+=, ∵222(2)32)2(k k k k k --=-,解得120,7k k ==-,经检验,27k =-是原方程的解,∵0k ≥,∵不存在常数k ,使122132x x x x +=成立. 【点拨】本题考查了一元二次方程根与系数关系和解方程,解题关键是根据根与系数关系列出方程并求解,注意:根的判别式要大于或等于0.【变式2】 已知方程2 420x x m +-=的一个根比另一个根小4,求这两个根和m 的值.【答案】10x =,24x =-,0m =【分析】设两根为x 1和x 2,根据根与系数的关系得x 1+x 2,x 1·x 2,由|x 2-x 1|=4两边平方,得(x 1+x 2)2-4x 1·x 2=16,代入解得m ,此时方程为x 2+4x=0,解出两根 .解:x 2+4x -2m=0设两根为x 1和x 2,则∵=16+8m>0, 且x 1+x 2=-4,x 1·x 2=-2m 由于|x 2-x 1|=4两边平方得x 12-2x 1·x 2+x 22=16 即(x 1+x 2)2-4x 1·x 2=16 所以16+8m=16 解得:m=0此时方程为x 2+4x=0, 解得 x 1=0 , x 2=−4 .【点拨】本题考查一元二次方程的根与系数的关系,解题的关键是灵活利用一元二次方程根与系数的关系,以及完全平方公式进行变形,求出两根.类型三、根的判断别与根与系数关系综合3、已知一元二次方程220x x m -+=. (1)若方程有两个实数根,求m 的范围;(2)若方程的两个实数根为12x x 、,且1233x x +=,求m 的值. 【答案】(1)1m ≤;(2)34m = 【分析】(1)一元二次方程220x x m -+=有两个实数根,∵≥0,把系数代入可求m 的范围; (2)利用根与系数的关系,已知122x x +=结合1233x x +=,先求12x x 、,再求m . 解:(1)∵方程220x x m -+=有两个实数根,∵()22424440b ac m m =-=--=-≥, 解得1m ≤;(2)由根与系数的关系可知,122x x +=,12x x m =,解方程组1212233x x x x +=⎧⎨+=⎩,解得123212x x ⎧=⎪⎪⎨⎪=⎪⎩,∵12313224m x x ==⨯=.【点拨】本题考查了一元二次方程根的判别式以及根与系数的关系,熟练掌握根的判别式、根与系数的关系是解题的关键.【变式1】已知关于x 的一元二次方程2(8)80x k x k -++=. (1)证明:无论k 取任何实数,方程总有实数根.(2)若221268x x +=,求k 的值.(3)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.【答案】(1)证明见分析;(2)2k =±;(3)这个等腰三角形的周长为21或18. 【分析】(1)根据根的判别式即可得到结论;(2)先计算∵=(8+k )2−4×8k ,整理得到∵=(k−8)2,根据非负数的性质得到∵≥0,然后根据∵的意义即可得到结论;(3)先解出原方程的解为x 1=k ,x 2=8,然后分类讨论:腰长为8时,则k =8;当底边为8时,则得到k =5,然后分别计算三角形的周长.解:(1)22(8)48(8)k k k ∆=+-⨯=-.2(8)0k -,0∴∆,∴无论k 取任何实数,方程总有实数根;(2)221212128,8,68x x k x x k x x +=+=+=,()2221212122x x x x x x +=++,2(8)6816k k ∴+=+,解得2k =±;(3)解方程2(8)80x k x k -++=得12,8x k x ==.∵当腰长为8时,8k . 85138+=>,能构成三角形,∴周长为88521++=.∵当底边长为8时,5k =.55108+=>∴能构成三角形,周长为55818++=.综上,这个等腰三角形的周长为21或18.【点拨】本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=−b a ,x 1•x 2=ca.也考查了一元二次方程的判别式和等腰三角形的性质,掌握这些知识点是解题关键.【变式2】 已知关于x 的一元二次方程()22121202x k x k -++-=.(1)求证:无论k 为何实数,方程总有两个不相等的实数根; (2)若方程的两个实数根1x ,2x 满足123x x -=,求k 的值. 【答案】(1)见分析 (2)0,-2 【分析】(1)根据根的判别式即可求证出答案;(2)可以根据一元二次方程根与系数的关系得k 与的1x 、2x 的关系式,进一步可以求出答案.解:(1)证明:∵()222121422492k k k k ⎛⎫∆=+-⨯-=++ ⎪⎝⎭()2217k =++,∵无论k 为何实数,()2210k +≥, ∵()22170k +∆=+>,∵无论k 为何实数,方程总有两个不相等的实数根;(2)由一元二次方程根与系数的关系得: 1221x x k +=+,212122x x k =-, ∵123x x -=, ∵()2129x x -=, ∵()2121249x x x x +-=,∵()221214292k k ⎛⎫+-⨯-= ⎪⎝⎭,化简得:220k k +=,解得0k =,2-.【点拨】本题主要考查根的判别式和根与系数的关系,熟练掌握概念和运算技巧即可解题.类型四、根与系数关系拓展应用14、已知m ,n 是方程x 2﹣2x ﹣1=0的两个根,是否存在实数a 使﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7)的值等于8?若存在,求出a 的值;若不存在,请说明理由.【答案】存在,a =-6 【分析】根据方程的解的定义得出m 2-2m =1,n 2-2n =1,m +n =2,再整体代入即可得出a 的值. 解:存在,理由如下:∵m ,n 是方程x 2﹣2x ﹣1=0的两个根, ∵m 2﹣2m =1,n 2﹣2n =1,m +n =2, ∵﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7) =﹣(m +n )[7(m 2﹣2m )+a ][3(n 2﹣2n )﹣7] =﹣2×(7+a )(3﹣7) =8(7+a ),由8(7+a )=8得a =﹣6,∵存在实数a =﹣6,使﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7)的值等于8. 【点拨】本题考查了一元二次方程的解、根与系数的关系,解题的关键是得出m 2-2m =1,n 2-2n =1,m +n =2,注意解题中的整体代入思想.【变式1】阅读材料:已知方程p 2﹣p ﹣1=0,1﹣q ﹣q 2=0且pq ≠1,求1pq q+的值. 解:由p 2﹣p ﹣1=0,及1﹣q ﹣q 2=0可知p ≠0, 又∵pq ≠1,∵p ≠1q.∵1﹣q ﹣q 2=0可变形为211()-q q ﹣1=0,根据p 2﹣p ﹣1=0和211()-q q﹣1=0的特征,∵p 、1q 是方程x 2﹣x ﹣1=0的两个不相等的实数根,则p +1q,即11pq q +=. 根据阅读材料所提供的方法,完成下面的解答. 已知:2m 2﹣5m ﹣1=0,21520n n+-=,且m ≠n ,求: (1)mn 的值; (2)2211m n +. 【答案】(1)12-;29.【分析】(1)由题意可知:可以将方程22510m m --=化简为21520m m+-=的形式,根据根与系数的关系直接得:11m n的值; (2)将2211m n +变形为2112m n mn ⎛⎫=+- ⎪⎝⎭求解.解:由22m 5m 10--=知m≠0,∵21520m m+-=, ∵21520n n+-=,m ≠n , ∵11m n≠, ∵1m 和1n是方程2520x x +-=的两个根, (1)由1m 和1n 是方程2520x x +-=的两个根得112m n⋅=-, ∵12mn =-;经检验:12mn =-是原方程的根,且符合题意.(2)由1m和1n是方程2520x x+-=的两个根得115m n+=-,112m n⋅=-,∵2221111225429 m n m n mn⎛⎫+=+-=+=⎪⎝⎭.【点拨】本题考查一元二次方程根与系数关系,代数式的值,乘法公式,掌握一元二次方程根与系数关系与乘法公式恒等变形是解题关键.【变式2】定义:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2(x1<x2),分别以x1,x2为横坐标和纵坐标得到点M(x1,x2),则称点M为该一元二次方程的衍生点.(1)若方程为x2﹣2x=0,写出该方程的衍生点M的坐标.(2)若关于x的一元二次方程x2﹣(2m+1)x+2m=0(m<0)的衍生点为M,过点M向x轴和y轴作垂线,两条垂线与坐标轴恰好围成一个正方形,求m的值.(3)是否存在b,c,使得不论k(k≠0)为何值,关于x的方程x2+bx+c=0的衍生点M始终在直线y=kx﹣2(k﹣2)的图象上,若有请直接写出b,c的值,若没有说明理由.【答案】(1)衍生点为M(0,2);(2)12-;(3)存在,b=﹣6,c=8;【分析】(1)求出方程的两根,根据一元二次方程的衍生点即可解决问题;(2)求出方程的两根,根据一元二次方程的衍生点的定义,再利用正方形的性质构建方程即可解决问题;(3)求出定点,利用根与系数的关系解决问题即可;解:(1)∵x2﹣2x=0,∵x(x﹣2)=0,解得:x1=0,x2=2故方程x2﹣2x=0的衍生点为M(0,2).(2)x2﹣(2m+1)x+2m=0(m<0)∵m<0∵2m<0解得:x1=2m,x2=1,方程x2﹣(2m+1)x+2m=0(m<0)的衍生点为M(2m,1).点M在第二象限内且纵坐标为1,由于过点M向两坐标轴做垂线,两条垂线与x 轴y轴恰好围城一个正方形,所以2m =﹣1,解得12m =-.(3)存在.直线y =kx ﹣2(k ﹣2)=k (x ﹣2)+4,过定点M (2,4), ∵x 2+bx+c =0两个根为x 1=2,x 2=4, ∵2+4=﹣b ,2×4=c , ∵b =﹣6,c =8.【点拨】本题考查一元二次方程的解法及根与系数的关系、正方形的性质等知识,解题的关键是理解题意,学会用转化的思想思考问题.类型五、根与系数关系拓展应用25、如图,在平面直角坐标系中,∵ABC 的BC 边与x 轴重合,顶点A 在y 轴的正半轴上,线段OB ,OC (OB OC <)的长是关于x 的方程2760x x -+=的两个根,且满足CO =2AO .(1)求直线AC 的解析式;(2)若P 为直线AC 上一个动点,过点P 作PD ∵x 轴,垂足为D ,PD 与直线AB 交于点Q ,设∵CPQ 的面积为S (0S ≠),点P 的横坐标为a ,求S 与a 的函数关系式;(3)点M 的坐标为()m,2,当∵MAB 为直角三角形时,直接写出m 的值.【答案】(1)132y x =+; (2)22721,6042721,6042a a a a S a a a ⎧+-⎪⎪=⎨⎪---<<⎪⎩或;(3)m 的值为-3或-1或2或7;【分析】(1)根据一元二次方程的解求出OB 和OC 的长度,然后得到点B ,点C 坐标和OA 的长度,进而得到点A 坐标,最后使用待定系数法即可求出直线AC 的解析式;(2)根据点A ,点B 坐标使用待定系数法求出直线AB 的解析式,根据直线AB 解析式和直线AC 解析式求出点P ,Q ,D 坐标,进而求出PQ 和CD 的长度,然后根据三角形面积公式求出S ,最后对a 的值进行分类讨论即可;(3)根据∵MAB 的直角顶点进行分类讨论,然后根据勾股定理求解即可.(1)解:解方程2760x x -+=得16x =,21x =,∵线段OB ,OC (OB OC <)的长是关于x 的方程2760x x -+=的两个根,∵OB =1,OC =6,∵()10B ,,()6,0C -, ∵CO =2AO ,∵OA =3,∵()0,3A ,设直线AC 的解析式为()0y kx b k =+≠,把点()0,3A ,()6,0C -代入得603k b b -+=⎧⎨=⎩, 解得123k b ⎧=⎪⎨⎪=⎩, ∵直线AC 的解析式为132y x =+; (2)解:设直线AB 的解析式为y =px +q ,把()0,3A ,()10B ,代入直线AB 解析式得30q p q=⎧⎨=+⎩, 解得33p q =-⎧⎨=⎩, ∵直线AB 的解析式为33y x =-+,∵PD ∵x 轴,垂足为D ,PD 与直线AB 交于点Q ,点P 的横坐标为a , ∵1,32P a a ⎛⎫+ ⎪⎝⎭,(),33Q a a -+,(),0D a , ∵()1733322PQ a a a ⎛⎫=-+-+= ⎪⎝⎭,6CD a =+, ∵1176222S PQ CD a a =⋅=⨯⋅+,当点P 与点A 或点C 重合时,即当a =0或6a =-时,此时S =0,不符合题意,当6a <-时,()21772162242S a a a a ⎛⎫⎡⎤=⨯--+=+ ⎪⎣⎦⎝⎭, 当60a -<<时,()21772162242S a a a a ⎛⎫=⨯-+=-- ⎪⎝⎭, 当0a >时,()21772162242S a a a a =⨯+=+, ∵22721,6042721,6042a a a a S a a a ⎧+-⎪⎪=⎨⎪---<<⎪⎩或; (3)解:∵()0,3A ,()10B ,,(),2M m , ∵AB ==AM ==,BM =当∵MAB =90°时,222AM AB BM +=,∵222+=, 解得3m =-,当∵ABM =90°时,222AB BM AM+=,∵222+=, 解得m =7, 当∵AMB =90°时,222AM BM AB +=,∵222+=, 解得11m =-,22m =,∵m 的值为-3或-1或2或7.【点拨】本题考查解一元二次方程、待定系数法求一次函数解析式、三角形面积公式、勾股定理,正确应用分类讨论思想是解题关键.【变式1】PAC △在平面直角坐标系中的位置如图所示,AP 与y 轴交于点(0,2)B ,点P 的坐标为(1,3)-,线段OA ,OC 的长分别是方程29140x x -+=的两根,OC OA >.(1)求线段AC 的长;(2)动点D 从点O 出发,以每秒1个单位长度的速度沿x 轴负半轴向终点C 运动,过点D 作直线l 与x 轴垂直,设点D 运动的时间为t 秒,直线l 扫过四边形OBPC 的面积为S ,求S 与t 的关系式;(3)M 为直线l 上一点,在平面内是否存在点N ,使以A ,P ,M ,N 为顶点的四边形为正方形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.【答案】(1)9 (2)()()221201217317424t t t S t t t ⎧+<≤⎪⎪=⎨⎪-+-<≤⎪⎩ (3)存在满足条件的N 点,其坐标为(2,3)或(-4,0)或(-1,-3).【分析】(1)解方程可求得OA 、OC 的长,则可求得A 、C 的坐标,从而可得AC 长;(2)分两种情况:∵当0<t ≤1时;∵当1<t ≤7时,利用梯形的面积公式即可求解; (3)分两种情况:∵AP 为正方形的对角线时,∵AP 为正方形的边时,根据正方形以及等腰直角三角形的性质,可求得N 点坐标.(1)解:解方程x 2﹣9x +14=0可得x =2或x =7,∵线段OA ,OC 的长分别是方程x 2﹣9x +14=0的两根,且OC >OA ,∵OA =2,OC =7,∵A (2,0),C (﹣7,0),279.AC(2) 解:过点P 作PH ∵OC 于H ,而()1,3P - ,1OH ∴=,3PH = ,6CH =设直线AB 解析式为y =kx +b ,而点B (0,2),∵32k b b -+=⎧⎨=⎩, 解得12k b =-⎧⎨=⎩, ∵直线AB 解析式为y =﹣x +2,∵如图1所示,当0<t ≤1时,点E (﹣t ,t +2),∵S =S 梯形OBED =21122222t t t t (0<t ≤1); ∵如图2所示,当1<t ≤7时,设直线CP 解析式为y =mx +n ,∵C (﹣7,0),点P 的坐标为(﹣1,3),∵703m n m n -+=⎧⎨-+=⎩ ,解得1272m n ⎧=⎪⎪⎨⎪=⎪⎩, ∵直线CP 解析式为1722y x =+, 设17,22E t t , ∵DE =1722t , ∵S =S 梯形OBPH +S 梯形HPED =11172+31+132222t t 217317424t t t ;综上,()()221201217317424t t t S t t t ⎧+<≤⎪⎪=⎨⎪-+-<≤⎪⎩;图1 图2(3) 分两种情况:∵AP 为正方形的对角线时,如图3所示,∵A (2,0),B (0,2),∵∵OAB =45°,∵四边形AMPN 是正方形,∵∵P AN =45°,∵NAM =90°,∵∵OAB +∵P AN =90°,∵点M 在x 轴上,NA ∵x 轴,NP x ∥轴,∵N (2,3);∵AP 为正方形的边时,如图4所示,∵∵OAB =45°,四边形AMNP 是正方形,∵∵NAM =∵OAB =45°,AP =AM ,∵HN =PH =3,∵N (-4,0);如图5所示,四边形ANMP 是正方形,∵PH =NH =3,∵()1,3N --;∵N (-4,0)或(-1,-3),综上可知,存在满足条件的N 点,其坐标为(2,3)或(-4,0)或(-1,-3).图3 图4 图5【点拨】本题为四边形的综合题,考查了一元二次方程、勾股定理、待定系数法、正方形的性质、等腰直角三角形的性质等知识.在(1)中求得OA 、OC 的长是解题的关键,在(2)中分类讨论是解题的关键,在(3)中分类思想的运用是解题的关键.本题考查知识点较多,综合性较强,难度适中.【变式2】 菱形ABCD 的边长为5,两条对角线AC 、BD 相交于O 点,且AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的两根,求m 的值.【答案】3m =-.【分析】由题意可知:菱形ABCD 的边长是5,则AO 2+BO 2=25,则再根据根与系数的关系可得:AO +BO =−(2m −1),AO ∙BO =m 2+3;代入AO 2+BO 2中,得到关于m 的方程后,即可求得m 的值.解:∵AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的两根,设方程的两根为1x 和2x ,可令1OA x =,2OB x =,∵四边形ABCD 是菱形,∵AC BD ⊥,在Rt AOB 中:由勾股定理得:222OA OB AB +=,∵222125+=x x ,则()21212225x x x x +-=,由根与系数的关系得:12(21)x x m +=--,2123x x m ⋅=+,∵[]()22(21)2325m m ---+=, 整理得:22150m m --=,解得:15m =,23m =-又∵0∆>,∵()22(21)430--+>m m ,解得114m <-, ∵3m =-.【点拨】此题主要考查了菱形的性质、勾股定理、以及根与系数的关系,将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法.。
一元二次方程的根和系数的关系
一元二次方程的根和系数的关系
一元二次方程一般形式为ax^2 + bx + c = 0,其中a、b、c为系数,x为未知数,求得的根为方程的解。
一元二次方程的根与系数之间存在一些关系,可以通过系数来推断方程的根的性质。
1. 判别式与根的关系:
判别式D = b^2 - 4ac是一个与方程根相关的重要参数。
a) 当D > 0时,方程有两个不相等的实根;
b) 当D = 0时,方程有两个相等的实根(重根);
c) 当D < 0时,方程没有实根,但可能有复数根。
2. 根与系数的关系:
根据一元二次方程求根公式,方程的根可以用系数来表示:设方程的根为x1和x2,那么有以下关系:
a) x1 + x2 = - b / a;
b) x1 * x2 = c / a;
通过这些关系,我们可以根据方程的系数来推断方程的根的情况。
一元二次方程根与系数的关系知识点
一元二次方程根与系数的关系知识点一元二次方程是我们在数学学习中经常遇到的一种方程形式,它的一般形式可以表示为:ax^2 + bx + c = 0其中,a、b、c为实数且a≠0。
解一元二次方程的根与方程的系数之间存在着一些关系,我们可以通过这些关系来推导和解释一元二次方程的根的特性。
我们来讨论一元二次方程的判别式Δ(delta)。
判别式的计算公式为Δ = b^2 - 4ac。
根据判别式的值可以判断一元二次方程的根的情况:1. 当Δ > 0时,方程有两个不相等的实根;2. 当Δ = 0时,方程有两个相等的实根;3. 当Δ < 0时,方程没有实根,而是有两个共轭复根。
接下来,我们来讨论一元二次方程的根与系数之间的关系。
对于一元二次方程ax^2 + bx + c = 0,其中a、b、c为系数,x 为未知数,方程的根可以表示为x1和x2。
根据韦达定理,我们可以得到以下关系:1. x1 + x2 = -b / a2. x1 * x2 = c / a这两个关系式告诉我们,一元二次方程的根与系数之间确实存在着一定的关系。
首先,根的和等于系数b的相反数除以系数a的倒数。
这个关系可以帮助我们计算方程的根的和。
其次,根的乘积等于常数项c除以系数a。
这个关系可以帮助我们计算方程的根的乘积。
通过这两个关系式,我们可以进一步推导出一元二次方程的根与系数之间的其他关系。
我们来看一元二次方程的根的和与根的乘积之间的关系。
根据前面的韦达定理,我们知道x1 + x2 = -b / a,x1 * x2 = c / a。
我们可以将根的和的平方展开得到:(x1 + x2)^2 = (-b / a)^2展开后得到:x1^2 + 2x1x2 + x2^2 = b^2 / a^2根据根的乘积的定义,我们可以将x1 * x2替换为c / a,得到:x1^2 + 2(c / a) + x2^2 = b^2 / a^2接下来,我们来看一元二次方程的根的差与根的乘积之间的关系。
21.2.4 一元二次方程根与系数的关系 课件(共17张PPT) 人教版数学九年级上册
求 a 的值及该方程的另一个根.
解:由方程有两个实数根,得 Δ = a2 - 4 ≥0,
即 a ≥ 2或a ≤ -2.
由根与系数的关系得 x1 + x2 = 2a,x1 x2 = 16.
∴
x1 x2
x1 x2
1
1
1
x1
x2
x1 x2
16
解得 a = 8
21.2.4 一元二次方程根与系数的关系
x1 x2 x12 x22 ( x1 x2 )2 2 x1 x2
3.
;
x2 x1
x1 x2
x1 x2
4.( x1 1)( x2 1) x1 x2 ( x1 x2 ) 1;
5. x1 x2 ( x1 x2 )2 ( x1 x2 )2 4 x1 x2 .
21.2.4 一元二次方程
的根与系数的关系
九年级上
学习目标
目
录
新课引入
新知学习
随堂练习
课堂小结
21.2.4 一元二次方程根与系数的关系
学习目标
1. 了解一元二次方程的根与系数的关系. (2022年版课标将*删除)
2. 会用一元二次方程的根与系数的关系解决简单问题.
21.2.4 一元二次方程Βιβλιοθήκη 与系数的关系7-9
(2) x1+x2=- ,x1 x2= =-3.
3
3
(3)方程化为 4x2-5x+1=0,∴
x1+x2=-
1
5 5
= , x1 x2= .
4
4 4
21.2.4 一元二次方程根与系数的关系
1
1
一元二次方程根与系数的关系
第一讲 一元二次方程根与系数的关系一、一元二次方程的根的判别式一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为: 2224()24b b ac x a a-+= (1) 当240b ac ->时,方程有两个不相等的实数根:x =(2) 当240b ac -=时,方程有两个相等的实数根:1,22b x a=-; (3) 当240b ac -<时,方程没有实数根.由于可以用24b ac -的取值情况来判定一元二次方程的根的情况.因此,把24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式:∆=24b ac -.二、一元二次方程的根与系数的关系一元二次方程20 (0)ax bx c a ++=≠的两个根为:1222b b x x a a-+--==所以:12b x x a+=+=-,221222()422(2)4b b b ac cx x a a a a a-+----⋅=⋅===定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么: 12x x +=______________, 12x x =______________.说明:一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现,所以通常把此定理称为韦达定理.上述定理成立的前提是0∆≥.例1:已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值.例2:若12,x x 是方程2220090x x +-=的两个根,试求下列各式的值:(1) 2212x x +; (2)1211x x +; (3) 12(5)(5)x x --;(4) 12||x x -.说明:在求判断式时,务必先把方程变形为一元二次方程的一般形式. 例3:已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根. (1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由. (2) 求使12212x x x x +-的值为整数的实数k 的整数值.练习:1.已知一元二次方程2(1)210k x x ---=有两个不等的实数根,求k 的取值范围.2.若方程22(1)30x k x k -+++=的两根之差为1,求k 的值.3.已知关于x 的一元二次方程2(41)210x m x m +++-=. (1) 求证:不论m 为任何实数,方程总有两个不相等的实数根; (2) 若方程的两根为12,x x ,且满足121112x x +=-,求m 的值.图(12) 第二讲 一次函数、反比例函数、二次函数1.当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为 ,对称轴为直线 ;当x <2b a -时,y 随着x 的增大而 ;当x >2ba-时,y 随着x 的增大而 ;当x =2ba-时,函数取最小值y = .2.当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为 ,对称轴为直线 ;当x <2b a -时,y 随着x 的增大而 ;当x >2ba-时,y 随着x 的增大而 ;当x =2ba-时,函数取最大值y = .3.二次函数的三种表示方式:一般式 顶点式 交点式 注:确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.二次函数的关系式可设如下三种形式:①给出三点坐标可利用一般式来求;②给出两点,且其中一点为顶点时可利用顶点式来求.③给出三点,其中两点为与x 轴的两个交点)0,(1x .)0,(2x 时可利用交点式来求.例1:如图,反比例函数ky x=的图象与一次函数y mx b =+的图象交于A (1)B n -,两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x 取何值时,反比例函数的值大于一次函数的值.例2:求二次函数y =-3x 2-6x +1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x 取何值时,y 随x 的增大而增大(或减小)?并画出该函数的图象.例3:根据下列条件,分别求出对应的二次函数的关系式.(1)某二次函数的最大值为2,图像的顶点在直线y =x +1上,并且图象经过点(3,-1); (2)已知二次函数的图象过点(-3,0),(1,0),且顶点到x 轴的距离等于2; (3)已知二次函数的图象过点(-1,-22),(0,-8),(2,8).巩固练习1.若函数12-+=a ax y 在11≤≤-x 上的值有正也有负,则a 的取值范围是_________2.若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,则实数a 的取值范围是_____________.3.二次函数y =-x 2+23x +1的函数图象与x 轴两交点之间的距离为 .4.把函数y =-(x -1)2+4的图象向左平移2个单位,向下平移3个单位,所得图象对应的解析式为________________.第三讲 解不等式一、一元一次不等式(组)及其解法 :例1:(1)解关于x 的不等式组0,231x a x -<⎧⎨-+<⎩二、一元二次不等式及其解法形如20(0) (0)ax bx c a ++><≠或其中的不等式称为关于x 的一元二次不等式例2:解下列不等式:(1) 260x x +->; (2)(2)(3)6x x +-< (3) (1)(2)(2)(21)x x x x -+≥-+例:3:已知关于x 的不等式22(1)30kx k x -+-<的解为13x -<<,求k 的值.二、简单分式不等式的解法例4:解下列不等式: (1) 2301x x -<+; (2)2301x x x +≥-+.例5:解不等式132x ≤+.三、含绝对值不等式的解法 例6:解不等式:(1) 13x ->; (2) 327x x ++-< ;练习:1、二次函数2365y x x =--+的图像的顶点坐标是________.2、如果22()530x a b x b x x ++⋅+=--,则b =___________.3、若2是关于x 的一元二次方程23100x mx +-=的一个根,则m =________.4、若一次函数(12)y k x k =--的图像不经过第二象限,则k 的取值范围是________.5、若函数2y x b =--与24y x =+的图像交于x 轴上一点A ,且与y 轴分别交于B ,C 两点,则ABC ∆的面积为________.6、已知一个直角三角形的两个直角边的长恰是方程22870x x -+=的两个根,则这个直角三角形的斜边长为____________.7、当22x -≤≤时,函数223y x x =--的最大值为______.8、不等式260x x -+<的解为_______.9、已知关于x 的方程22310x x m -++-=的两个实根同号,则实数m 的取值范围为____.10、函数231y ax x =-+的最小值大于0,则实数a 的取值范围为_________.11、两个数的和为60,它们的积的最大值为___________.12、如果不等式210ax ax ++<无解,则a 的取值范围是_________.13、已知(3,2),(1,1)M N -,点P 在y 轴上,且PM PN +最短,则点P 的坐标为_______.14、解下列不等式:(1) 23180x x --≤ ; (2)31221x x +<-; (3)116x x -++>. 15、已知关于x 的不等式20mx x m -+<的解是一切实数,求m 的取值范围.16、解关于x 的不等式(2)1m x m ->-.17、已知关于x 的方程2(1)(23)10k x k x k -+-++=有两个不相等的实数根12,x x . (1)求实数k 的取值范围;(2)是否存在实数k ,使方程的两实根互为相反数?如果存在,求出k 的值;如果不存在,请说明理由.18、已知二次函数212y x bx c =-++的图像经过(2,0),(0,6)A B -两点. (1) 求这个二次函数的解析式;(2) 设该二次函数图像的对称轴与x 轴交于点C ,连接,BA BC ,求ABC ∆的面积.19、已知关于x 的函数222y x ax =++在55x -≤≤上. (1) 当1a =-时,求函数的最大值和最小值; (2) 当a 为实数时,求函数的最大值.。
21.2.4一元二次方程的根与系数的关系
7 3
x1x2=
9 3
3
(3)5x-1=4x²
解:方程化为4x²-5x+1=0
x1+x2=
5 4
5 4
x1x2=
1 4
课件PPT
课件PPT
典题精讲
x 例2 已知关于 的方程 x2 2m1xm2 2 0 ,m
取何值时,(1)方程有两个不相等的实数根;
1
无论k取何值, k
2
2
0
,
k
2 2
1
0
所以此方程有两个不相等的实数根。
课堂作业
课件PPT
9、关于x的方程kx2+(k+1)x+k/4=0有两个不相等 的实数根,求k的取值范围.
k>-1/2,且k≠0.
10、已知:a,b,c是△ABC的三边,若方程
ax 2 2 b 2 c 2x 2(b c) 2a 有 两 个 等 根 ,
(2)利用求根公式解一元二次方程的方法叫公式法.
(3)由求根公式可知,一元二次方程最多有 个实数根,也可能有 1 个实根或者没有实根.
(4)一般地,式子b2-4ac叫做方程ax2+bx+ c=0(a≠0)的根的判别式,通常用希腊字母Δ 表示它,即Δ=b2-4ac.
课件PPT
探索新知
1.一元二次方程ax2+bx+c=0(a≠0)的根的情况: (1)当Δ>0时,方程有两个不相等的实数根; (2)当Δ=0时,方程有两个相等的实数根; (3)当Δ<0时,方程无实数根.
典题精讲
例2
已知关于x的方程
x22m1xm22 0
一元二次方程根与系数的关系的关系(含答案)
21.2.4 一元二次方程的根与系数的关系A基础知识详解——————————————☆知识点一元二次方程根与系数的关系B重难点解读—————————☆重难点根据方程中两根的关系确定方程中字母的值○随堂例题例1 已知关于x的方程x2+(2k-1)x+k2-1=0有两个实数根x1、x2.(1)求实数k的取值范围;(2)若x1、x2满足x12+x22=16+x1•x2,求实数k的值.(2)∵关于x 的方程x +(2k-1)x+k -1=0有两个实数根x 1,x 2,∴x 1+x 2=1-2k ,x 1•x 2=k 2-1.∵x 12+x 22=(x 1+x 2)2-2x 1•x 2=16+x 1•x 2,∴(1-2k )2-2×(k 2-1)=16+(k 2-1),即k 2-4k-12=0, 解得k=-2或k=6(不符合题意,舍去). ∴实数k 的值为-2.【一中名师点拨】题目中提到两个实数根,即隐含着根的判别式大于等于0;当根据方程中两根的关系确定方程中字母的值,关键是把这种关系式转化为含x 1+x 2及x 1x 2的形式. ○随堂训练1.(2017烟台)若x 1,x 2是方程x 2-2mx+m 2-m-1=0的两个根,且x 1+x 2=1-x 1x 2,则m 的值为( D )A .-1或2B .1或-2C .-2D .12.已知关于x 的一元二次方程x 2+(m+2)x+m=0, (1)求证:无论m 取何值,原方程总有两个不相等的实数根; (2)若x 1,x 2是原方程的两根,且2111x x +=-2,求m 的值.解:(1)△=(m+2)2-4m=m 2+4>0,∴无论m 取何值,原方程总有两个不相等的实数根; (2)∵x 1,x 2是原方程的两根, ∴x 1+x 2=-(m+2),x 1x 2=m . ∵2111x x +=2121x x x x +=-mm 2+=-2,解得m=2,经检验,m=2是分式方程的解,且符合题意,∴m 的值为2.课后达标基础训练1.(2017呼和浩特)关于x 的一元二次方程x 2+(a 2-2a )x+a-1=0的两个实数根互为相反数,则a 的值为( B ) A .2 B .0 C .1 D .2或02.(2017新疆)已知关于x 的方程x 2+x-a=0的一个根为2,则另一个根是( A ) A .-3 B .-2 C .3 D .63.已知m ,n 是一元二次方程x 2-4x-3=0的两个实数根,则代数式(m+1)(n+1)的值为( D ) A .-6 B .-2 C .0 D .24.已知实数x 1,x 2满足x 1+x 2=11,x 1x 2=30,则以x 1,x 2为根的一元二次方程是( A )A .x 2-11x+30=0B .x 2+11x+30=0C .x 2+11x-30=0D .x 2-11x-30=05.已知x 1、x 2是方程2x 2+3x-4=0的两根,那么x 1+ x 2= 23- ;x 1·x 2= 2 ;11x +21x = 43- ;x 12+ x 22=47-;21x x -= 423-. 6.已知关于x 的方程x 2+ax+b+1=0的解为x 1=x 2=2,则a+b 的值为 -1 .7.以3+2和3-28.已知方程5x 2+mx-10=0的一根是-5,求方程的另一根及m 的值. 解:设方程的另一个根为k , 则-5k=-2,解得52k =,又k-5=5m -,得m=23.9.已知关于x 的一元二次方程kx 2+x-2=0有两个不相等的实数根. (1)求实数k 的取值范围;(2)设方程两个实数根分别为x 1,x 2,且满足x 12+x 22+3x 1•x 2=3,求k 的值.12(1)求实数m 的取值范围;(2)若x 1+x 2=6-x 1x 2,求(x 1-x 2)2+3x 1x 2-5的值. 解:(1)△=(2m-3)2-4m 2=4m 2-12m+9-4m 2=-12m+9,∵△≥0,∴-12m+9≥0,∴m ≤43; (2)由题意可得x 1+x 2=-(2m-3)=3-2m ,x 1x 2=m 2,又∵x 1+x 2=6-x 1x 2,∴3-2m=6-m 2,∴m 2-2m-3=0,∴m 1=3,m 2=-1,又∵m ≤43,∴m=-1,∴x 1+x 2=5,x 1x 2=1,∴(x 1-x 2)2+3x 1x 2-5=(x 1+x 2)2-4x 1x 2+3x 1x 2-5=(x 1+x 2)2-x 1x 2-5=52-1-5=19.能力提升11.(2017仙桃)若α、β为方程2x 2-5x-1=0的两个实数根,则2α2+3αβ+5β的值为( B ) A .-13 B .12 C .14 D .1512.若非零实数a ,b (a ≠0)满足a 2-a-2018=0,b 2-b-2018=0,则ba 11+= 20181-. 13.已知关于x 的方程x 2-(k+1)x+41k 2+1=0的两根是一个矩形两邻边的长,且矩形的对角线长为5,求k= 2 .14.已知关于x 的一元二次方程x 2+(2k+1)x+k 2-2=0的两根为x 1和x 2,且(x 1-2)(x 1-x 2)=0,则k 的值是 -2或-4.15.(2017黄石)已知关于x 的一元二次方程x 2-4x-m 2=0. (1)求证:该方程有两个不等的实根;(2)若该方程的两实根x 1、x 2满足x 1+2x 2=9,求m 的值.。
一元二次方程根与系数的关系
(2)解:当a=5为底边长时,b=c 当a=5为腰长时,不妨设a=b=5, 由根与系数的关系:5+c=2k-3 2 ∴Δ = (2K-5) =0,k=2.5, 5c=2k-4 2 原方程为:x -2x+1=0 解得:c=1,k=4.5 ∴b=c=1 ∵b+c<a ∴此三角形的周长为a+b+c=11 ∴此时不构成三角形,舍去。
_年 _月 _日
星期_______
天气_____ 自我评价:___________ 悄悄话:老师我想对你说______ _______________________ _______________________ ________________________
学习课题:_____________ 知识归纳与整理:________ _____________________ 有那些数学思想方法_____ 我的收获与困惑_________
分析解答
2、已知关于的方程。x2-(2k-3)x +2k-4=0 (1)求证:无论取什么实数值,方程总有实数根。 (2)若等腰三角形的一边长a=5,另两边长b、c恰好是这个方程的两个实数根, 求这个三角形的周长?
(1)证明: ∵Δ =[-(2k-3)]2-4(2k-4) =(2K-5)2 ∴不论k取何值,(2K-5)2 ≥0, 即Δ ≥0,原方程总有实数根。
2、方程2x2-3x+1=0的两根记作x1,x2, 不解方程,求:
(1) x1 x2 x2 x1 ;
分析解答
由根与系数的关系得:x1+x2=3/2 x1x2=1/2
x x ( x1 x2 ) 2 2 x1 x2 x1 x2 x1 x2 x1 x2 x2 x1
九年级数学一元二次方程根与系数的关系
1 2 k x x y 0 2 y k ( 2 x 1 ) x x 1 x x 2
.
【例5】 已知,关于x的方程(n-1)x2+mx+1=0①有两个 相等的实数根. (1)求证:关于 y的方程m2y2-2my-m2-2n2+3=0②必有两 个不相等的实数根; (2)若方程①的一根的相反数恰好是方程②的一个根,求 代数式m2n+12n的值. 14
【例3】 已知:关于x的方程x2-3x+2k-1=0的两个实数根 的平方和不小于这两个根的积,且反比例函数y=(1+2k)/x 的图像的两个分支在各自的象限内, y 随 x 的增大而减小, 求满足上述条件的k的整数值. k=0,1.
典型例题解析
【例4】 已知方程组 (x,y为未知数),有两个不同的实数解 y y 1 , y y 2 (1)求实数k的取值范围; (1)k>-1/2,且k≠0. 1 1 (2)若 y 1 y 2 3 , 求实数k的值. (2) k=1. x1 x2
课前热身
1.(2004年· 黄冈)下列说法中不正确的是 A.方程x2+2x-7=0的两实数根之和为2 B.方程x2-3x-5=0的两实数根之积为-5 C.方程x2-2x-7=0的两实数根的平方和为18 D.方程x2-3x-5=0的两实数根的倒数和为3/5 (A )
2.(2004 年 · 河北省 ) 若 x1,x2 是一元二次方程 2x2-3x+1=0 的两个根,则x12+x22 的值是 ( A ) A.5/4 B.9/4 C.11/4 D.7 3.(2004 年 · 沈阳市 )请写出一个二次项系数为 1,两实根 之和为3的一元二次方程: x2-3x-4=0 。
一元二次方程的根与系数的关系
一元二次方程根与系数的关系一、课堂目标理解根与系数关系,会用根系关系求参数的值或快速求解含参方程二、知识讲解1. 根与系数的关系(韦达定理)在实数范围内,一元二次方程的根由其系数、、确定,它的根的情况(是否有实数根)由确定.设一元二次方程为,其根的判别式为:则①方程有两个不相等的实数根.②方程有两个相等的实数根.③方程没有实数根.一元二次方程的求根公式,不仅表示可以由方程的系数、、决定根的值,而且反应了根与系数间的关系.那么一元二次方程的根与系数之间的联系还有其他表现方式吗?探究1从因式分解法可知,方程(、为已知数)的两根为和,将方程化为一般式后,你能说一说两个根和系数之间的关系吗?探究2探究1是二次项系数为1时,根和系数的关系,现在扩展到一般式()中,探究根和系数的关系.当,即方程有实数根,由可知,,.因此,方程的两个根,和系数,,有如下关系:,.韦达定理:任何一个一元二次方程的根与系数的关系为:两个根的和等于一次项系数与二次项系数的比的相反数,两个根的积等于常数项与二次项系数的比.例题1.若关于的一元二次方程的两根为,,则 .练习2.方程的解为、,则 ; .3.已知,是方程的两个实数根,则 .2. 根与系数关系的应用.不解方程,求与方程的根有关的代数式的值;.已知方程的一个根,求方程的另一个根;.与根的判别式相结合,解决一些综合题.【总结】几个重要变形:①;②;③;④.例题4.已知方程的一个根是,则它的另一个根是 .5.关于的方程有两个不相等的实数根,,且有,则的值是( ).A.B.C.或D.练习6.已知关于的一元二次方程的一根为,求的值以及方程的另一根.7.一元二次方程的两根为和,则的值是( ).A.B.C.D.8.设关于的一元二次方程的两个实数根分别为、,若,则的值为 .例题(1)(2)(3)(4)(5)(6)(7)(8)9.已知、是方程的两个实数根.则:........(9).练习(1)(2)10.已知关于的一元二次方程有两个不相等的实数根,.求的取值范围;若,求的值.11.己知、是一元二次方程的两个实数根,则的值是 .(1)(2)12.已知方程的两根是,.不解方程,求:..13.已知一元二次方程(其中为大于的常数)的两个实根为,,求的值.例题14.已知,且, ,那么.练习15.已知、是方程的两个根,那么.16.已知,是不相等的实数,且,,求的值.三、出门测17.已知、是一元二次方程的两个实数根,则的值是 .18.方程的所有实数根之和是 .19.已知关于的方程的两根为和,则 ,.一元二次方程的根与系数的关系 题集【A】20.已知一元二次方程的两个实数根分别是、,则.21.如果,是方程的两个根,那么;.22.若关于的方程的一个根是.则另一根 ;.23.若方程的一根为另一根的倍,求,所满足的关系式.24.已知关于的方程,若方程的一个根为,求的值以及方程的另一根.25.已知关于的方程的两个根为、,若,则.26.求一个一元二次方程,使得它的两根,满足:,.27.若关于的一元二次方程的两个实根互为倒数,则.(1)(2)(3)(4)28.已知、是方程的两根,不解方程求下列代数式的值.(结果用、、表示)....29.已知一元二次方程的两个根为、,则 ,, ,.30.已知,是方程的两个根,那么 , .31.已知、是方程的两根,求的值.32.已知,,求的值.33.若,且及,则,.34.设,是方程的两个实数根(),求的值.(1)(2)35.已知关于的一元二次方程.若方程有实数根,求实数的取值范围.若方程两实数根分别为,,且满足,求实数的值.(1)(2)36.已知关于的一元二次方程.求证:方程总有实数根.设这个方程的两个实数根分别为,,且,求的值.(1)(2)37.关于的一元二次方程的两个实数根分别为,.求的取值范围.若,求的值.一元二次方程的根与系数的关系 题集【B】38.已知一元二次方程的两根为、,则( ).A.B.C.D.39.一元二次方程的两根为和,则的值是( ).A.B.C.(1)(2)40.已知:关于 的方程.若方程总有两个实数根,求 的取值范围.若两实数根、满足,求的值.41.若关于的二次方程的两实根互为倒数,则.42.若方程的一个根是另一个根的倍,则、、的关系是( ).A.B.C.D.43.已知关于的方程的两根分别是,,且满足,则的值是 .44.已知关于的方程有两个实数根,,那么的取值范围是 ,若,则的值 .(1)(2)(3)(4)(5)(6)45.已知,是方程的两个实数根,求下列代数式的值:......46.已知实数,且满足,,则的值为( ).A.C.D.(1)(2)47.已知关于的一元二次方程有两个实数根,.求实数的取值范围.是否存在实数使得成立?若存在,请求出的值.若不存在,请说明理由.48.已知,是方程的两个根,求的值为 .49.设的两实数根为、,那么以、为两根的一元二次方程是 .。
专题:一元二次方程的根与系数的关系
九年级数学专题一:一元二次方程的根与系数的关系一、知识要点:一元二次方程20 (0)ax bx c a ++=≠的两个根为:12,22b b x x a a-+--==所以:12b x x a+=+=-,12244ac c x x a a⋅====定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么: 12x x +=______________, 12x x =______________.说明:一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现,所以通常把此定理称为韦达定理.上述定理成立的前提是0∆≥.二、例题讲解类型一、一元二次方程的两个根的有关计算例1.设x 1,x 2是方程x 2+2x ﹣3=0的两个实数根,求x 12+x 22的值. 解:∵x 1,x 2是方程x 2+2x ﹣3=0的两个实数根,∴x 1+x 2=﹣2,x 1•x 2=﹣3,∴x 12+x 22=(x 1+x 2)2﹣2x 1x 2=(﹣2)2﹣2×(﹣3)=10;例2.设x 1与x 2为一元二次方程x 2+3x +2=0的两根,求(x 1﹣x 2)2的值. 解:由题意可知:x 1+x 2=﹣6,x 1x 2=4,∴(x 1﹣x 2)2=(x 1+x 2)2﹣4x 1x 2 =(﹣6)2﹣4×4=36﹣16=20,练习1:(1)设a ,b 是方程x 2﹣x ﹣2021=0的两个实数根,则a +b ﹣ab 的值为( )A .2022B .﹣2022C .2020D .﹣2020(2)已知方程x 2+2x +6=10x +2的两实数根分别为x 1,x 2,则的值为( ) A .﹣2 B .2 C . D .﹣(3)设x 1,x 2是方程x 2﹣3x ﹣3=0的两个实数根,则x 12x 2+x 1x 22的值为( )A .9B .﹣9C .1D .﹣1(4)已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 .(5)已知a 、b 是方程x 2+5x +3=0的两个根,则的值是( )A .B .C .D . 练习2:若12,x x 是方程2220090x x +-=的两个根,试求下列各式的值:(1) 2212x x +; (2) 1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.类型二、由已知一元二次方程的一个根求出它的另一个根及未知系数例3.关于x的方程x2+mx+3=0的一个根为1,则方程的另一个根与m的值.解:设方程的另一根为x=p.∵关于x的方程x2+mx+3=0的一个根为1,∴x=1满足关于x的一元二次方程x2+mx+3=0,∴1+m+3=0,解得m=﹣4;又由根与系数的关系知:1•p=3,解得p=3.故方程的另一根是3.练习3:(1)关于x的一元二次方程2x2﹣kx+12=0的一个根x1=2,则方程的另一个根x2和k的值为()A.x2=3,k=10B.x2=﹣3,k=﹣10C.x2=3,k=﹣10D.x2=﹣3,k=10(2)已知方程x2+bx+3=0的一根为+,则方程的另一根为.(3)若x=﹣1是方程x2+x+m=0的一个根,则此方程的另一个根是()A.﹣1B.0C.1D.2(4)已知关于x的方程x2+mx+3=0的一个根为x=1,则实数m的值为()A.4B.﹣4C.3D.﹣3(5)已知关于x的一元二次方程x2﹣4x﹣m2=0,若该方程的两实根x1、x2满足x1+2x2=9,求m的值.三、构造一元二次方程例4.已知实数x1,x2满足x1+x2=3,x1x2=﹣4,则以x1,x2为根的一元二次方程是()A.x2﹣3x﹣4=0B.x2﹣3x+4=0C.x2+3x﹣4=0D.x2+3x+4=0解:∵实数x1,x2满足x1+x2=3,x1x2=﹣4,∴以x1,x2为根的一元二次方程是x2﹣3x﹣4=0.故选:A.练习4:(1)在解一元二次方程x2+px+q=0时,小明看错了常数项,得到方程的两个根是﹣3、﹣1,胖何看错了一次项系数p,得到方程的两个根是5、﹣4,则原来的方程是()A.x2+4x﹣3=0B.x2+4x﹣20=0C.x2﹣4x﹣20=0D.x2﹣4x﹣3=0(2)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;例5.已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求a bb a的值;解:∵a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,∴a,b是x2﹣15x﹣5=0的解,当a≠b时,a+b=15,ab=﹣5,====﹣47.当a=b时,原式=2;练习5:若实数a、b分别满足a2﹣4a+3=0,b2﹣4b+3=0,且a≠b,则+的值为.练习6:已知实数a,b满足:2a4﹣7a2+1=0,2b4﹣7b2+1=0且a≠b,求a4+b4的值.练习7:已知实数a≠b,且满足(a+1)2=3﹣3(a+1),(b+1)2=3﹣3(b+1),则的值为()A.23B.﹣23C.﹣2D.﹣13练习8:已知实数s、t满足2s2﹣3s﹣1=0,2t2﹣3t﹣1=0,且s≠t,求①4s2﹣5s+t;②的值.例6.已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为.解:由n2+2n﹣1=0可知n≠0.∴1+﹣=0.∴﹣﹣1=0,又m2﹣2m﹣1=0,且mn≠1,即m≠.∴m,是方程x2﹣2x﹣1=0的两根.∴m+=2.∴=m+1+=2+1=3,四、利用一元二次方程中的根降次例7.设a,b是方程x2+x﹣2023=0的两个实数根,则a2+2a+b的值为()A.2024B.2021C.2023D.2022解:∵a是方程x2+x﹣2023=0的实数根,∴a2+a﹣2023=0,∴a2=﹣a+2023,∴a2+2a+b=﹣a+2023+2a+b=2023+a+b,∵a,b是方程x2+x﹣2023=0的两个实数根,∴a+b=﹣1,∴a2+2a+b=2023+(﹣1)=2022.故选:D.练习9:(1)设a,b是方程x2+x﹣2022=0的两个实数根,则a+b﹣ab的值为()A.2023B.﹣2021C.2021D.﹣2023(2)已知m,n是方程x2+2016x+7=0的两个根,则(m2+2015m+6)(n2+2017n+8)=()A.2008B.8002C.2009D.2020(3)已知x1,x2是一元二次方程x2﹣x﹣1=0的两根,则的值为()A.0B.2C.1D.﹣1(4)若m,n是一元二次方程x2+2x﹣1=0的两个实数根,则m2+4m+2n的值是.(5)已知α、β是方程x2﹣3x﹣1=0的两个根,则α2﹣5α﹣2β+7=.例8.如果m、n是一元二次方程x2+x=3的两个实数根,那么多项式m3+2n2﹣mn﹣6m+2022的值是()A.2022B.2023C.2029D.2030解:∵m、n是一元二次方程x2+x=3的两个实数根,∴m2+m﹣3=0,n2+n﹣3=0,∴m2=﹣m+3,n2=﹣n+3,∴m3=m(﹣m+3)=﹣m2+3m=﹣(﹣m+3)+3m =4m﹣3,∴m3+2n2﹣mn﹣6m+2022=4m﹣3+2(﹣n+3)﹣mn﹣6m+2022=﹣2(m+n)﹣mn+2025,∵m、n是一元二次方程x2+x﹣3=0的两个实数根,∴m+n=﹣1,mn=﹣3,∴原式=﹣2×(﹣1)﹣(﹣3)+2025=2030.故选:D.练习10:(1)若a,b为一元二次方程x2﹣7x﹣1=0的两个实数根,则a3+3ab+8b﹣42a值是()A.﹣52B.﹣46C.60D.66(2)已知x1,x2是方程x2﹣x﹣2022=0的两个实数根,则代数式x13﹣2022x1+x22的值是()A.4045B.4044C.2022D.1(3)已知方程x2﹣2021x+1=0的两根分别为x1,x2,则x12﹣的值为()A.1B.﹣1C.2021D.﹣2021五、利用两根的性质解决有关的问题例9.已知关于x的一元二次方程x2+(2m﹣3)x+m2=0有两个不相等的实数根x1,x2.(1)求实数m的取值范围;(2)若x1+x2=6﹣x1x2,求m的值.解:(1)Δ=(2m﹣3)2﹣4m2=4m2﹣12m+9﹣4m2=﹣12m+9,∵△≥0,∴﹣12m+9≥0,∴m≤,∴实数m的取值范围是m≤;(2)由题意可得,x1+x2=﹣(2m﹣3)=3﹣2m,x1x2=m2,又∵x1+x2=6﹣x1x2,∴3﹣2m=6﹣m2,∴m2﹣2m﹣3=0,解得m1=3,m2=﹣1,又∵m≤,∴m=﹣1,即m的值为﹣1.练习11.已知关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实数根x1,x2.(1)求k的取值范围;(2)若x1x2=5,求k的值.练习12.已知关于x 的一元二次方程x 2+2mx +m 2+m =0有实数根.(1)求m 的取值范围;(2)若该方程的两个实数根分别为x 1、x 2,且x 12+x 22=12,求m 的值.练习13.若方程22(1)30x k x k -+++=的两根之差为1,求k 的值.练习14.已知关于x 的一元二次方程x 2+(2m +1)x +m 2﹣2=0.(1)若该方程有两个实数根,求m 的最小整数值;(2)若方程的两个实数根为x 1,x 2,且(x 1﹣x 2)2+m 2=21,求m 的值.例10.关于x 的方程x 2﹣(2k ﹣1)x +k 2﹣2k +3=0有两个不相等的实数根.(1)求实数k 的取值范围;(2)设方程的两个实数根分别为x 1、x 2,存不存在这样的实数k , 使得|x 1|﹣|x 2|=?若存在,求出这样的k 值;若不存在,说明理由. 解:(1)∵方程有两个不相等的实数根,∴Δ=[﹣(2k ﹣1)]2﹣4(k 2﹣2k +3)=4k ﹣11>0,解得:k >;(2)存在,∵x 1+x 2=2k ﹣1,x 1x 2=k 2﹣2k +3=(k ﹣1)2+2>0,∴将|x 1|﹣|x 2|=两边平方可得x 12﹣2x 1x 2+x 22=5,即(x 1+x 2)2﹣4x 1x 2=5, 代入得:(2k ﹣1)2﹣4(k 2﹣2k +3)=5,解得:4k ﹣11=5,解得:k =4.练习15.已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.练习16.已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2﹣1,求k的值.例11.已知关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.解:∵该一元二次方程有两个实数根,∴Δ=(﹣2)2﹣4×1×a=4﹣4a≥0,解得:a≤1,由韦达定理可得x1x2=a,x1+x2=2,∵x1x2+x1+x2>0,∴a+2>0,解得:a>﹣2,∴﹣2<a≤1.练习17.已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.。
一元二次方程的根与系数的关系【十大题型】(解析版)--九年级数学
一元二次方程的根与系数的关系【十大题型】【题型1 利用根与系数的关系直接求代数式的值】 (1)【题型2 利用根与系数的关系求方程的根】 (3)【题型3 利用根与系数的关系和一元二次方程的解求代数式的值】 (4)【题型4 利用根与系数的关系降次求代数式的值】 (6)【题型5 由一元二次方程的两根求值】 (8)【题型6 构造一元二次方程求代数式的值】 (10)【题型7 由一元二次方程的根判断另一个一元二次方程的根】 (12)【题型8 根与系数的关系与三角形、四边形的综合运用】 (15)【题型9 由一元二次方程根的取值范围求字母的取值范围】 (18)【题型10 一元二次方程中的新定义问题】 (20)知识点1:一元二次方程的根与系数的关系若一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)的两根为x1,x2,则x1+x2=−b a,x1⋅x2=c a.注意它的使用条件为,a≠0,Δ≥0.【题型1 利用根与系数的关系直接求代数式的值】【例1】(23-24九年级·黑龙江绥化·开学考试)已知一元二次方程xx2+xx=5xx+6的两根分别为m、n,则1mm+1nn=.【答案】−23.【分析】本题主要考查了一元二次方程根与系数的关系,对于一元二次方程aaxx2+bbxx+cc=0(aa≠0),,若xx1,xx2是该方程的两个实数根,则xx1+xx2=−bb aa,xx1xx2=cc aa.直接根据一元二次方程根与系数的关系得到mm+nn=4,mmnn=−6,再根据1mm+1nn=mm+nn mmnn进行求解即可.【详解】解:∵一元二次方程xx2+xx=5xx+6可化为xx2−4xx−6=0,这个方程的两根分别为m,n,∴mm+nn=4,mmnn=−6,故答案为:−23.【变式1-1】(23-24九年级·广西来宾·期中)若a,b是方程xx2−2xx−5=0的两个实数根,则(aa−2)(bb−2)的值为.【答案】−5【分析】本题考查了一元二次方程根于系数的关系,根据一元二次方程根于系数的关系可得aa+bb=2,aabb=−7,代入即可求解,熟练掌握一元二次方程根于系数的关系是解题的关键.【详解】解:∵a,b是方程xx2−2xx−5=0的两个实数根,∴aa+bb=2,aabb=−7,∴(aa−2)(bb−2)=aabb−8(aa+bb)+4=-5−7×2+4=−5.故答案为:−5.【变式1-2】(23-24九年级·四川成都·阶段练习)设方程2xx2+3xx+1=0的根为xx1、xx2,则xx12+xx22=.【答案】54【分析】利用根与系数的关系求出两根之和与两根之积,原式利用完全平方公式变形后代入计算即可求出值.【详解】解:∵方程2xx2+3xx+1=0的根为xx1、xx2,∴xx1+xx2=−32,xx1xx2=12,则xx12+xx22=(xx1+xx2)2−2xx1xx2=(−32)2−2×12=94−1=54.故答案为:54.【点睛】本题考查了根与系数的关系,解一元二次方程−因式分解法,以及完全平方公式,解题的关键是熟练掌握根与系数的关系.(23-24九年级·浙江宁波·期末)已知xx1,xx2是方程2xx2+3xx−7=0的两个根,则xx13xx2+xx1xx23【变式1-3】的值为()A.214B.−2598C.−638D.−1338【答案】B【分析】本题主要考查了根与系数的关系等知识点,根据一元二次方程根与系数的关系得出xx1+xx2和xx1xx2,再利用整体思想即可解决问题,熟知一元二次方程根与系数的关系是解题的关键.【详解】∵xx1,xx2是方程2xx2+3xx−7=0的两个根,∴xx13xx2+xx1xx23=xx1xx2(xx12+xx22)=xx1xx2[(xx1+xx2)2−2xx1xx2]=−72×��−32�2−2×�−72��=−2598,故选:B.【题型2 利用根与系数的关系求方程的根】【例2】(23-24九年级·全国·单元测试)若关于xx的方程3(xx−1)(xx−2mm)=(mm−12)xx的两根之和与两根之积相等,则方程的根为.【答案】xx=9±3√7【分析】将已知方程化简成一般形式,再根据一元二次方程根与系数的关系和已知条件,列出关于m的方程,解出方程,求出m的值,再将m代入原来方程,解出方程.【详解】解:将已知方程化简可得:3x2+(9-7m)x+6m=0,根据一元二次方程根与系数的关系可得x1+x2=-9-7m3,x1x2=2m,根据已知条件可得∶-9-7m3=2m,解出:m=9,将m=9代入化简后的方程可得:x2-18x+18=0,化成完全平方得:(x-9)2=63,解得x=9±3√7.故答案为∶xx=9±3√7.【点睛】本题主要考查了一元二次方程的根与一元二次系数的关系,解此题的关键是掌握一元二次方程的根与一元二次系数的关系.【变式2-1】(23-24·山东济南·二模)若关于xx的一元二次方程xx2+mmxx−6=0有一个根为xx=2,则该方程的另一个根为xx=.【答案】−3【分析】本题考查的是一元二次方程根与系数的关系,直接利用:一元二次方程aaxx2+bbxx+cc=0(aa≠0)两根分别是xx1,xx2,则xx1+xx2=−bb aa,xx1xx2=cc aa,进行解题即可.【详解】解:设关于x的一元二次方程xx2+mmxx−6=0的另一个根为t,则2tt=−6,解得tt=−3,故答案为−3【变式2-2】(23-24九年级·河北保定·阶段练习)若关于xx的一元二次方程aaxx2=bb(aabb>0)的两个根分别是mm 与2mm−6,则mm的值为,方程的根为.【答案】2xx1=2,xx2=−2【分析】若一元二次方程aaxx2+bbxx+cc=0(aa≠0)的两个根为xx1,xx2,则xx1+xx2=−bb aa,xx1·xx2=cc aa.【详解】解:整理方程得:aaxx2−bb=0由题意得:mm+2mm−6=0∴mm=2故两个根为:xx1=mm=2,xx2=2mm−6=−2故答案为:2;xx1=2,xx2=−2【点睛】本题考查一元二次方程根与系数的关系,理解这两个根和为0是解题的关键.【变式2-3】(23-24九年级·浙江台州·阶段练习)若关于x的一元二次方程aaxx2=cc(aa≠0)的一根为2,则另一根为.【答案】−2【分析】本题主要考查了一元二次方程根与系数的关系,根据根与系数的关系得到2+mm=0是解题的关键.【详解】解:设方程的另一个根为mm,则2+mm=0,解得:mm=−2,故答案为:−2.【题型3 利用根与系数的关系和一元二次方程的解求代数式的值】【例3】(23-24九年级·山东枣庄·期中)已知mm、n是关于xx的方程xx2−2xx−2021=0的根,则代数式mm2−4mm−2nn+2023的值为()A.2022 B.2023 C.4039 D.4040【答案】D【分析】根据一元二次方程解的定义及根与系数的关系得出mm2−2mm=2021,mm+nn=−bb aa=2,将原式化简求值即可.【详解】解:∵mm、n是关于xx的方程xx2−2xx−2021=0的根,∴mm2−2mm=2021,mm+nn=−bb aa=2,mm2−4mm−2nn+2023=mm2−2mm−2(mm+nn)+2023=2021−2×2+2023=4040,故选:D.【点睛】题目主要考查一元二次方程的根及根与系数的关系,求代数式的值,熟练掌握一元二次方程根与系数的关系是解题关键.【变式3-1】(23-24·江苏南京·模拟预测)设xx1、xx2是方程xx2−3xx−2020=0的两个根,则xx12−2xx1+ xx2=.【答案】2023【分析】本题主要考查一元二次方程根与系数关系,方程解的定义,掌握一元二次方程根与系数关系,方程解的定义是解题的关键.首先根据根与系数关系得到xx1+xx2=3,之后将xx1代入方程中得到xx12−3xx1−2020=0,变形为xx12−3xx1=2020,两式相加即可得到答案.【详解】解:∵xx1、xx2是方程xx2−3xx−2020=0的两个根,∴xx1+xx2=3,xx12−3xx1−2020=0∴xx12−3xx1=2020∴xx12−2xx1+xx2=(xx12−3xx1)+(xx1+xx2)=2020+3=2023.故答案为:2023.【变式3-2】(23-24九年级·辽宁大连·期中)设αα,ββ是xx2+xx+18=0的两个实数根,则αα2+3αα+2ββ的值是.【答案】−20【分析】本题考查了根与系数的关系:若xx1,xx2是一元二次方程aaxx2+bbxx+cc=0(aa≠0)的两根时,则xx1+xx2=−bb aa,xx1xx2=cc aa.利用整体代入法是本题的关键.【详解】解:∵αα,ββ是xx2+xx+18=0的两个实数根,∴αα2+αα=−18,αα+ββ=−1,∴αα2+3αα+2ββ=(αα2+αα)+2(αα+ββ)=−18+2×(−1)=−20,故答案为:−20.【变式3-3】(23-24九年级·河南新乡·期末)已知aa,bb是方程xx2−5xx+7=0的两个根,则aa2−4aa+bb−3=.【答案】−5【分析】本题考查一元二次方程根与系数的关系,掌握aaxx2+bbxx+cc=0的两根xx1,xx2满足xx1+xx2=−bb aa,xx1xx2=cc aa是解题的关键.【详解】解:∵aa,bb是方程xx2−5xx+7=0的两个根,∴aa2−5aa=−7,aa+bb=5,∴(aa2−5aa)+(aa+bb)−3=−7+5−3=−5,故答案为:−5.【题型4 利用根与系数的关系降次求代数式的值】【例4】(23-24九年级·湖北武汉·阶段练习)已知a、b是一元二次方程xx2−3xx+1=0的根,则代数式1aa2+1+ 1bb2+1的值是()A.3 B.1 C.−3D.−1【答案】B【分析】根据一元二次方程的根与系数的关系可得aa+bb=3,aabb=1,再整体代入求解即可.【详解】解:∵a、b是一元二次方程xx2−3xx+1=0的根,∴aa+bb=3,aabb=1,∴1aa2+1+1bb2+1=1aa2+aabb+1bb2+aabb=1aa(aa+bb)+1bb(aa+bb)=13aa+13bb=aa+bb3aabb=33×1=1,故选:B.【点睛】本题考查一元二次方程的根与系数的关系、分式的化简求值,熟练掌握一元二次方程的根与系数的关系是解题的关键.【变式4-1】(23-24九年级·云南·期末)已知mm,nn是方程xx2+xx−3=0的两个实数根,则mm3−3mm+nn+2024的值是.【答案】2020【分析】本题考查了根与系数的关系、一元二次方程的解,正确理解一元二次方程的解的定义是解题的关键.由一元二次方程根与系数关系得mm+nn=−1,mm2−3=−mm,再代入求值即可.【详解】解:∵mm,nn是方程xx2+xx−3=0的两个实数根,∴mm+nn=−1,将xx=mm代入方程xx2+xx−3=0,得mm2+mm−3=0,即mm2−3=−mm,mm2=3−mm∴mm3−3mm+nn+2024=mm(mm2−3)+nn+2024=−mm2+nn+2024,∵mm2=3−mm,∴−mm2+nn+2024=−3+mm+nn+2024=mm+nn+2021,∵mm+nn=−1,∴mm+nn+2021=−1+2021=2020.故答案为:2020.【变式4-2】(23-24九年级·山东淄博·期中)已知xx1,xx2是方程xx2−xx−2024=0的两个实数根,则代数式xx13−2024xx1+xx22的值为()A.4049 B.4048 C.2024 D.1【答案】A【分析】本题考查了一元二次方程根与系数的关系,一元二次方程根的定义,根据一元二次方程的解,以及一元二次方程根与系数的关系即可求解.【详解】解:解:∵xx1,xx2是方程xx2−xx−2024=0的两个实数根,∴xx12−2024=xx1,xx1xx2=−2024,xx1+xx2=1xx13−2024xx1+xx22=xx1(xx12−2024)+xx22=xx12+xx22=(xx1+xx2)2−2xx1xx2=1−2×(−2024)=4049故选A【变式4-3】(23-24九年级·江苏苏州·阶段练习)已知:mm、nn是方程xx2+3xx−1=0的两根,则mm3−5mm+ 5nn=.【答案】−18【分析】先根据一元二次方程的解的定义得到mm2+3mm−1=0,即mm2=−3mm+1,mm3=−3mm2+mm,再把mm3−5mm+5nn化简为用mm和nn的一次式表示得到5(mm+nn)−3,再根据根与系数的关系得到mm+nn=−3,然后利用整体代入的方法计算即可.【详解】解:∵mm、nn是方程xx2+3xx−1=0的两根,∴mm2+3mm−1=0,且mm≠0,mm+nn=−3,∴mm2=−3mm+1,∴mm3=−3mm2+mm,∴mm3−5mm+5nn=−3mm2+mm−5mm+5nn=−3(−3mm+1)−4mm+5nn=5mm+5nn−3=5(mm+nn)−3,∴原式=5×(−3)−3=−18,故答案为:−18.【点睛】本题考查根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,则x1+x2=−b a,x1x2=c a.掌握一元二次方程根与系数的关键是解题的关键,也考查一元二次方程的解的定义,运用了整体代入和恒等变换的思想.【题型5 由一元二次方程的两根求值】【例5】(23-24九年级·河北保定·阶段练习)若关于xx的一元二次方程aaxx2=bb(aabb>0)的两个根分别是mm与2mm−6,则mm的值为,方程的根为.【答案】2xx1=2,xx2=−2【分析】若一元二次方程aaxx2+bbxx+cc=0(aa≠0)的两个根为xx1,xx2,则xx1+xx2=−bb aa,xx1·xx2=cc aa.【详解】解:整理方程得:aaxx2−bb=0由题意得:mm+2mm−6=0∴mm=2故两个根为:xx1=mm=2,xx2=2mm−6=−2故答案为:2;xx1=2,xx2=−2【点睛】本题考查一元二次方程根与系数的关系,理解这两个根和为0是解题的关键.【变式5-1】(23-24九年级·四川成都·期末)已知关于x的方程2xx2+bbxx+cc=0的根为xx1=−2,xx2=3,则b+c的值是()A.-10 B.-7 C.-14 D.-2【答案】C【分析】根据一元二次方程根与系数的关系分别求出b,c的值即可得到结论.【详解】解:∵关于x的方程2xx2+bbxx+cc=0的根为xx1=−2,xx2=3,∴xx1+xx2=−bb2,xx1xx2=cc2∴−2+3=−bb2,−2×3=cc2,即b=-2,c=-12∴bb+cc=−2−12=−14.故选:C.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-bb aa,x1•x2=cc aa.【变式5-2】(23-24九年级·江苏连云港·阶段练习)在解一元二次方程x2+px+q=0时,小明看错了系数p,解得方程的根为1和﹣3;小红看错了系数q,解得方程的根为4和﹣2,则p=.【答案】﹣2【分析】根据根与系数的关系及两同学得出的结论,即可求出p,q的值.【详解】解:由小明看错了系数p,解得方程的根为1和﹣3;可得q=1×(﹣3)=﹣3,小红看错了系数q,解得方程的根为4和﹣2,可得﹣p=4﹣2,解得p=﹣2,故答案为:﹣2.【点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记“两根之和等于﹣bb aa,两根之积等于cc aa.”是解题的关键.【变式5-3】(23-24九年级·四川广安·阶段练习)已知关于x的一元二次方程x2﹣2kx+12k2﹣2=0.设x1,x2是方程的根,且x12﹣2kx1+2x1x2=5,则k的值为.【答案】±√14【分析】先计算出一元二次方程判别式,即△=2k2+8,从而得到△>0,于是可判断不论k为何值,方程总有两个不相等实数根;再利用方程的解的定义得到x12-2kx1=-12k2+2,根据根与系数的关系可得x1x2=12k2-2,则-12k2+2+2·(12k2-2)=5,然后解关于k的方程即可.【详解】(1)证明:△=(-2k)2-4(12k2-2)=2k2+8>0,所以不论k为何值,方程总有两个不相等实数根;(2)∵x1是方程的根,∴x12-2kx1+12k2-2=0,∴x12-2kx1=-12k2+2,∵x12-2kx1+2x1x2=5,x1x2=12k2-2,∴-12k2+2+2·(12k2-2)=5,整理得k2-14=0,∴k=±√14.故答案为±√14.【点睛】本题考查一元二次方程的根与系数的关系,一元二次方程根的判别式,关键是熟练掌握一元二次方程根的判别式和根与系数的关系.【题型6 构造一元二次方程求代数式的值】【例6】(23-24九年级·江苏无锡·阶段练习)已知ss满足2ss2−3ss−1=0,tt满足2tt2−3tt−1=0,且ss≠tt,则ss+tt=.【答案】32【分析】本题主要考查了一元二次方程根与系数的关系,正确得到ss+tt=32,sstt=−12是解题的关键.由题意可知实数ss、tt是关于xx的方程2xx2−3xx−1=0的两个不相等的实数根,由此可得答案.【详解】解:∵实数ss、tt满足2ss2−3ss−1=0,2tt2−3tt−1=0,且ss≠tt,∴实数ss、tt是关于xx的方程2xx2−3xx−1=0的两个不相等的实数根,∴ss+tt=32.故答案为:32.【变式6-1】(23-24·湖南常德·一模)若两个不同的实数m、n满足mm2=mm+1,nn2−nn=1,则mm2+nn2=.【答案】3【分析】本题考查了一元二次方程根与系数的关系,完全平方公式的应用,先根据已知条件得到m、n是关于x的一元二次方程的两个不等实数根,然后根据根和系数的关系得到结果,再根据完全平方公式计算即可,理解m、n是关于x的一元二次方程的两个不等实数根是解题的关键.【详解】解:由题可得:mm2−mm−1=0,nn2−nn−1=0,∴m、n是关于x的一元二次方程xx2−xx−1=0的两个不等实数根,∴mm+nn=1,mmnn=−1,∴mm2+nn2=(mm+nn)2−2mmnn=122×(−1)=3,故答案为:3.【变式6-2】(23-24九年级·全国·竞赛)已知实数aa、bb分别满足aa=16aa2+13和12bb2=3bb−1,那么bb aa+aa bb的值是.【答案】2或16【分析】本题考查一元二次方程的根,一元二次方程根与系数的关系等,分情况讨论,当aa=bb时,bb aa+aa bb=2;当aa≠bb时,a和b是方程xx2−6xx+2=0的两个根,再由根与系数的关系求出aa+bb和aabb,再将bb aa+aa bb变形为(aa+bb)2−2aabbaabb,即可求解.【详解】解:分两种情况:当aa=bb时,bb aa+aa bb=1+1=2;当aa≠bb时,∵12bb2=3bb−1,∴bb=16bb2+13,∴bb2−6bb+2=0,又∵aa=16aa2+13,∴aa2−6aa+2=0,∴a和b是方程xx2−6xx+2=0的两个根,∴aa+bb=−−61=6,aabb=2,∴bb aa+aa bb=bb2+aa2aabb=(aa+bb)2−2aabb aabb=62−2×22=16,故答案为:2或16.【变式6-3】(23-24九年级·浙江宁波·期末)若aa4−3aa2=1,bb2−3bb=1,且aa2bb≠1,则bb aa2的值是.【答案】−1【分析】本题考查一元二次方程根与系数的关系,根据题意先化为1aa4−3aa2−1=0,bb2−3bb−1=0,可以得到1aa2和b是方程xx2−3xx−1=0的两根,然后根据两根之积为cc aa解题即可.【详解】解:∵aa4−3aa2=1,∴1aa4−3aa2−1=0,∵aa2bb≠1,又∵bb2−3bb−1=0,∴1aa2和b是方程xx2−3xx−1=0的两根,∴bb aa2=−1,故答案为:−1.【题型7 由一元二次方程的根判断另一个一元二次方程的根】【例7】(23-24九年级·浙江台州·期末)若关于x的一元二次方程aaxx2+2aaxx+cc=0(aa≠0)的一个根为m,则方程aa(xx−1)2+2aa(xx−1)+cc=0的两根分别是().A.mm+1,−mm−1B.mm+1,−mm+1C.mm+1,mm+2 D.mm−1,−mm+1【答案】A【分析】根据一元二次方程的根与系数的关系求出方程aaxx2+2aaxx+cc=0的另一个根,设xx−1=tt,根据方程aaxx2+2aaxx+cc=0的根代入求值即可得到答案;【详解】解:∵一元二次方程aaxx2+2aaxx+cc=0(aa≠0)的一个根为m,设方程另一根为n,∴nn+mm=−2aa aa=−2,解得:nn=−2−mm,设xx−1=tt,方程aa(xx−1)2+2aa(xx−1)+cc=0变形为aatt2+2aatt+cc=0,由一元二次方程aaxx2+2aaxx+cc=0(aa≠0)的根可得,tt1=mm,tt2=−2−mm,∴xx−1=−2−mm,xx−1=mm,∴xx1=−mm−1,xx2=1+mm,故答案为:A.【点睛】本题考查一元二次方程的根与系数的关系及换元法解一元二次方程,解题的关键是用换元法变形方程代入求解.【变式7-1】(23-24九年级·安徽合肥·期中)已知关于x的一元二次方程xx2+ccxx+aa=0的两个整数根恰好比方程xx2+aaxx+bb=0的两个根都大1,则aa+bb+cc的值是.【答案】-3或29【分析】设方程xx2+aaxx+bb=0的两个根为αα,ββ,其中αα,ββ为整数,且αα≤ββ,则方程xx2+ccxx+aa=0的两根为αα+1,ββ+1,根据题意列出式子,再进行变形即可求出.【详解】解:设方程xx2+aaxx+bb=0的两个根为αα,ββ,其中αα,ββ为整数,且αα≤ββ,则方程xx2+ccxx+aa=0的两根为αα+1,ββ+1,由题意得αα+ββ=−aa,(αα+1)(ββ+1)=aa,两式相加得ααββ+2αα+2ββ+1=0,即(αα+2)(ββ+2)=3,所以{αα+2=1,ββ+2=−1.ββ+2=3;或{αα+2=−3,解得{αα=−1,ββ=−3.ββ=1;或{αα=−5,又因为aa=−(αα+ββ),bb=ααββ,cc=−[(αα+1)+(ββ+1)]所以aa=0,bb=−1,cc=−2;或者aa=8,bb=15,cc=6,故aa+bb+cc=−3或29.故答案为-3或29【点睛】主要考查一元二次方程的整数根与有理根,一元二次方程根与系数关系的应用;利用根与系数的关系得到两根之间的关系是解决本题的关键;(23-24九年级·浙江·自主招生)设a、b、c、d是4个两两不同的实数,若a、b是方程xx2−8ccxx−9dd=0【变式7-2】的解,c、d是方程xx2−8aaxx−9bb=0的解,则aa+bb+cc+dd的值为.【答案】648【分析】由根与系数的关系得aa+bb,cc+dd的值,两式相加得的值,根据一元二次方程根的定义可得aa2−8aacc−9dd=0,代入可得aa2−72aa+9cc−8aacc=0,同理可得cc2−72cc+9aa−8aacc=0,两式相减即可得aa+cc的值,进而可得aa+bb+cc+dd的值.【详解】解:由根与系数的关系得aa+bb=8cc,cc+dd=8aa,两式相加得aa+bb+cc+dd=8(aa+cc).因为aa是方程xx2−8ccxx−9dd=0的根,所以aa2−8aacc−9dd=0,又dd=8aa−cc,所以aa2−72aa+9cc−8aacc=0①同理可得cc2−72cc+9aa−8aacc=0②①-②得(aa−cc)(aa+cc−81)=0.因为aa≠cc,所以aa+cc=81+bb+cc+dd=8(aa+cc)=648.故答案为648【点睛】本题考查了一元二次方程根与系数的关系,一元二次方程根的定义,根据等式的性质变形是解题的关键.【变式7-3】(23-24九年级·安徽合肥·期末)关于x的一元二次方程xx2+ppxx+qq=0有两个同号非零整数根,关于y的一元二次方程yy2+qqyy+pp=0也有两个同号非零整数根,则下列说法正确的是()A.p是正数,q是负数B.(pp−2)2+(qq−2)2<8C.q是正数,p是负数D.(pp−2)2+(qq−2)2>8【答案】D【分析】设方程x2+px+q=0的两根为x1、x2,方程y2+qy+p=0的两根为y1、y2.根据方程解的情况,结合根与系数的关系可得出x1•x2=q>0,y1•y2=p>0,即可判断A与C;②由方程有两个实数根结合根的判别式得出p2﹣4q≥0,q2﹣4p≥0,利用不等式的性质以及完全平方公式得出(p﹣2)2+(q﹣2)2>8,即可判断B【详解】解:设方程x2+px+q=0的两根为x1、x2,方程y2+qy+p=0的两根为y1、y2.∵关于x的一元二次方程x2+px+q=0有两个同号非零整数根,关于y的一元二次方程y2+qy+p=0也有两个同号非零整数根,∴x1•x2=q>0,y1•y2=p>0,故选项A与C说法均错误,不符合题意;∵关于x的一元二次方程x2+px+q=0有两个同号非零整数根,关于y的一元二次方程y2+qy+p=0也有两个同号非零整数根,∴p2﹣4q≥0,q2﹣4p≥0,∴(p﹣2)2+(q﹣2)2=p2﹣4q+4+q2﹣4p+4>8(p、q不能同时为2,否则两个方程均无实数根),故选项B说法错误,不符合题意;选项D说法正确,符合题意;故选:D.【点睛】本题考查了根与系数的关系以及根的判别式,逐一分析四个选项说法的正误是解题的关键.【题型8 根与系数的关系与三角形、四边形的综合运用】【例8】(23-24九年级·山东·课后作业)已知菱形ABCD的边长为5,两条对角线交于O点,且OA、OB 的长分别是关于xx的方程xx2+(2mm−1)xx+mm2+3=0的根,则mm等于()A.−3B.5C.5或−3D.−5或3【答案】A【分析】由题意可知:菱形ABCD的边长是5,则AAOO2+BBOO2=25,则再根据根与系数的关系可得:AAOO+BBOO=−2mm+1,AAOO×BBOO=mm2+3;代入AAOO2+BBOO2中,得到关于m的方程后,求得m的值.【详解】由直角三角形的三边关系可得:AAOO2+BBOO2=25,又有根与系数的关系可得:AAOO+BBOO=−2mm+1,AAOO×BBOO=mm2+3,∴AAOO2+BBOO2=(AAOO+BBOO)2−2AAOO×BBOO=(−2mm+1)2−2(mm2+3)=25,整理得:mm2−2mm−15=0,解得:m=−3或5.又∵Δ>0,∴(2mm−1)2−4(mm2+3)>0,解得mm<−114,∴mm=−3.【点睛】考查一元二次方程根与系数的关系以及菱形的性质,注意掌握勾股定理在解题中的应用. 【变式8-1】(23-24九年级·黑龙江齐齐哈尔·期末)已知三角形的两边长分别是方程xx2−11xx+30=0的两个根,则该三角形第三边mm的取值范围是.【答案】1<mm<11【分析】先根据一元二次方程的根与系数的关系求得两根和与两根积,经过变形得到两根差的值,即可求得第三边的范围.【详解】解:∵三角形两边长是方程x2−11x+30=0的两个根,∴x1+x2=11,x1x2=30,∵(x1−x2)2=(x1+x2)2−4x1x2=121−120=1,∴x1−x2=1,又∵x1−x2<m<x1+x2,∴1<m<11.故答案为:1<m<11.【点睛】本题主要考查了三角形的三边关系和一元二次方程的根与系数的关系,要知道第三边大于两边差,小于两边和.【变式8-2】(23-24九年级·安徽六安·阶段练习)已知正方形AABBAAAA的两邻边AABB,AAAA的长度恰为方程xx2−mmxx+ 1=0的两个实数根,则正方形AABBAAAA的周长为()A.2 B.4 C.6 D.8【答案】B【分析】此题考查了正方形的性质,一元二次方程根与系数的关系.首先根据正方形的性质得到AABB=AAAA,然后根据一元二次方程根与系数的关系得到AABB⋅AAAA=1,进而求出AABB=AAAA=1,即可得到正方形AABBAAAA的周长.【详解】∵四边形AABBAAAA是正方形∴AABB=AAAA∵正方形AABBAAAA的两邻边AABB,AAAA的长度恰为方程xx2−mmxx+1=0的两个实数根,∴AABB⋅AAAA=1,∴AABB=AAAA=1∴正方形AABBAAAA的周长为4.故选:B.【变式8-3】(23-24九年级·浙江杭州·期中)已知关于xx的一元二次方程xx2−3xx+kk=0有两个实根xx1和xx2.(1)求实数kk的取值范围;(2)是否存在矩形,xx1和xx2是这个矩形两邻边的长,且矩形的对角线长为√2?若存在,求kk的值;若不存在,请说明理由.【答案】(1)kk≤94(2)不存在,理由见解析【分析】本题考查了根与系数的关系和根的判别式,勾股定理,能熟记根与系数的关系和根的判别式的内容是解此题的关键.(1)求出Δ的值,根据已知得出不等式,求出即可;(2)根据根与系数的关系得出xx1+xx2=3,xx1xx2=kk,根据已知得出xx12+xx22=�√2�2,变形后代入求出kk的值,进行判断即可.【详解】(1)解:∵关于xx的一元二次方程xx2−3xx+kk=0有两个实根xx1和xx2,∴Δ=(−3)2−4×1×kk≥0,解得:kk≤94;(2)xx1和xx2一元二次方程xx2−3xx+kk=0的两根,∴xx1+xx2=3,xx1xx2=kk,∵xx1和xx2是这个矩形两邻边的长,且矩形的对角线长为√2,∴xx12+xx22=�√2�2,∴(xx1+xx2)2−2xx1xx2=2,∴9−2kk=2,解得:kk=72,∵kk≤94,72>94,∴kk=72不符合题意,∴不存在矩形,xx1和xx2是这个矩形两邻边的长,且矩形的对角线长为√2.【题型9 由一元二次方程根的取值范围求字母的取值范围】【例9】(23-24·浙江宁波·模拟预测)已知关于xx的一元二次方程xx2+aaxx+bb=0有两个根xx1,xx2,且满足1< xx1<xx2<2.记tt=aa+bb,则tt的取值范围是.【答案】−1<tt<0【分析】本题考查了一元二次方程根和系数的关系,不等式的性质,由根和系数的关系可得,xx1+xx2=−aa,xx1xx2=bb,得到tt=(xx1−1)(xx2−1)−1,由1<xx1<xx2<2可得0<(xx1−1)(xx2−1)<1,即得到−1< (xx1−1)(xx2−1)−1<0,即可求解,掌握一元二次方程根和系数的关系是解题的关键.【详解】解:由根和系数的关系可得,xx1+xx2=−aa,xx1xx2=bb,∴aa=−(xx1+xx2),bb=xx1xx2,∴tt=aa+bb=−(xx1+xx2)+xx1xx2=(xx1−1)(xx2−1)−1,∵1<xx1<xx2<2,∴0<xx1−1<1,0<xx2−1<1,∴0<(xx1−1)(xx2−1)<1,∴−1<(xx1−1)(xx2−1)−1<0,即−1<tt<0,故答案为:−1<t<0.【变式9-1】(23-24九年级·浙江金华·阶段练习)若关于x的方程4xx2−5xx−(mm+5)=0的解中,仅有一个正数解,则m的取值范围是.【答案】mm≥−5【分析】根据一元二次方程根的分布,根的判别式以及根与系数的关系列出不等式组,并解答求得mm的取值范围.本题主要考查了一元二次方程根的分布,根的判别式和根与系数的关系等知识点,解此题的关键是得到�Δ=(−5)2−4×4×[−(mm+5)]≥0−mm+54≤0.【详解】解:∵关于xx的方程4xx2−5xx−(mm+5)=0的解中,仅有一个正数解,∴�Δ=(−5)2−4×4×[−(mm+5)]≥0−mm+54≤0,解得mm≥−5.故答案为:m≥−5.【变式9-2】(23-24九年级·山东青岛·阶段练习)若关于xx的方程xx2+ppxx+qq=0的两根同为负数,其中pp2−4qq≥0,则()A.pp>0且qq>0B.pp>0且qq<0C.pp<0且qq>0D.pp<0且qq<0【答案】A【分析】据pp2-4q≥0,得出方程有两个实数根,再根据已知条件得出两根之积>零、两根之和<零时,由此得到关于p,q的不等式,然后确定它们的取值范围即可.【详解】∵pp2-4q≥0,∴方程有两个实数根.设xx1,xx2是该方程的两个负数根,则有xx1+xx2<0,xx1xx2>0,xx1+xx2=-p,xx1xx2=q,∴-p<0,,q>0.∴p>0,,q>0.故选A.【点睛】本题考查一元二次方程根的符号的确定,应利用一元二次方程根与系数的关系与根的判别式. 【变式9-3】(23-24九年级··期中)若关于xx的一元二次方程xx2+2xx+1−2mm=0的两个实数根之积为负数,则实数mm的取值范围是()A.mm>0B.mm>12C.mm<12D.mm<0【答案】B【分析】利用根的判别式Δ>0及两根之积为负数,即可得出关于mm的一元一次不等式组,解之即可得出实数mm的取值范围.【详解】解:∵关于xx的一元二次方程xx2+2xx+1−2mm=0的两个实数根之积为负数,∴�Δ=22−4×1×(1−2mm)>01−2mm<0解得:mm>12,∴实数m的取值范围是mm>12.故选:B.【点睛】本题考查了根与系数的关系以及根的判别式,牢记“当Δ>0时,方程有两个不相等的实数根”及“两根之积等于c a”是解题的关键.【题型10 一元二次方程中的新定义问题】【例10】(23-24九年级·黑龙江哈尔滨·期中)定义:若x₁、x₂是方程aaxx²+bbxx+cc=0(aa≠0)的两个实数根,若满足|xx1−xx2|=|xx1⋅xx2|,则称此类方程为“差积方程”.例如:�xx−12�(xx−1)=0是差积方程.(1)判断方程6xx2−5xx+1=0是否为“差积方程”?并验证;(2)若方程xx2−(mm+2)xx+2mm=0是“差积方程”,直接写出m的值;(3)当方程(aaxx²+bbxx+cc=0(aa≠0)为“差积方程”时,求a、b、c满足的数量关系.【答案】(1)是,证明见解析(2)mm=23或−2(3)bb2−4aacc=cc2【分析】本题考查了根与系数的关系,解一元二次方程,理解新定义是解题的关键.(1)分别根据因式分解法解一元二次方程,然后根据定义判断即可;(2)先根据因式分解法解一元二次方程,然后根据定义列出绝对值方程,解方程即可求解;(3)根据求根公式求得xx1,xx2【详解】(1)方程6xx2−5xx+1=0是“差积方程”,证明:6xx2−5xx+1=0,即(2xx−1)(3xx−1)=0,解得xx1=12,xx2=13,∵|12−13|=|12×13|,∴6xx2−5xx+1=0是差积方程;(2)解:xx2−(mm+2)xx+2mm=0,(xx−mm)(xx−2)=0解得方程的解为:xx1=2,xx2=mm,∵xx2−(mm+2)xx+2mm=0是差积方程,∴|2−mm|=|2mm|,即:2−mm=2mm或2−mm=−2mm.解得:mm=23或−2,(3)解:∵aaxx2+bbxx+cc=0(aa≠0),解得xx1=−bb+√bb2−4aacc2aa,xx2=−bb−√bb2−4aacc2aa,∵aaxx2+bbxx+cc=0(aa≠0)是差积方程,∴|xx1−xx2|=|xx1⋅xx2|,即|√bb2−4aacc aa|=|cc aa|,即bb2−4aacc=cc2.(23-24九年级·上海青浦·期中)如果一元二次方程的两根相差1,那么该方程称为“差1方程”.例【变式10-1】如xx2+xx=0是“差1方程”.已知关于xx的方程xx2−(mm−1)xx−mm=0(mm是常数)是“差1方程”,则mm的值为【答案】−2或0/0或−2【分析】本题考查根与系数的关系.设方程的两个根为xx1,xx2(xx1<xx2),由题意,得:xx1+xx2=mm−1,xx1xx2=−mm,xx2−xx1=1,利用完全平方公式的变形式进行计算即可.【详解】解:设方程的两个根为xx1,xx2(xx1<xx2),由题意,得:xx1+xx2=mm−1,xx1xx2=−mm,xx2−xx1=1,∴(xx2−xx1)2=(xx1+xx2)2−4xx1xx2=(mm−1)2+4mm=1,解得:mm=−2或mm=0,故答案为:−2或0.【变式10-2】(23-24九年级·四川·阶段练习)已知对于两个不相等的实数aa、bb,定义一种新的运算:aa@bb=√aabb aa+bb,如6@15=√6×156+15=3√1021=√107,已知mm,nn是一元二次方程xx2−21xx+7=0的两个不相等的实数根,则[(mm+ nn)@mmnn]@√3=.【答案】25【分析】首先根据根与系数的关系求解两根之和与两根之积,然后代入原式根据定义进行求解.【详解】由mm,nn是xx2−21xx+7=0的两个不相等的实数根可得:mm+nn=21,mmnn=7故[(mm+nn)@mmnn]@√3=(21@7)@√3=�√21×721+7�@√3=�√14728�@√3=7√328@√3=√34@√3=�√34×√3√34+√3=√32×45√3=25【点睛】本题考查了一元二次方程的根与系数关系,实数的定义新运算,此类题型一定要严格按照题目中的定义来求解,注意过程的正确性.【变式10-3】(23-24九年级·江苏盐城·阶段练习)定义:已知xx1,xx2是关于x的一元二次方程aaxx2+bbxx+cc= 0(aa≠0)的两个实数根,若xx1<xx2<0,且3<xx1xx2<4,则称这个方程为“限根方程”.如:一元二次方程xx2+ 13xx+30=0的两根为xx1=−10,xx2=−3,因为−10<−3<0,3<−10−3<4,所以一元二次方程xx2+13xx+ 30=0为“限根方程”.请阅读以上材料,回答下列问题:(1)判断一元二次方程xx2+9xx+14=0是否为“限根方程”,并说明理由;(2)若关于x的一元二次方程xx2+(kk+9)xx+kk2+8=0是“限根方程”,且方程的两根xx1、xx2满足11xx1+ 11xx2+xx1xx2=−121,求k的值.【答案】(1)此方程为“限根方程”,理由见解析(2)5【分析】本题考查了因式分解法解一元二次方程,一元二次方程的根与系数的关系.理解题意,熟练掌握因式分解法解一元二次方程,一元二次方程的根与系数的关系是解题的关键.(1)因式分解法解一元二次方程得xx1=−7,xx2=−2,根据定义,求解作答即可;(2)由xx2+(kk+9)xx+kk2+8=0,可得xx1+xx2=−kk−9,xx1xx2=kk2+8,代入11xx1+11xx2+xx1xx2=−121,整理得,kk2−11kk+30=0,解得,kk=5或kk=6,分当kk=5时,当kk=6时,两种情况求解,然后判断作答即可.。
九年级数学一元二次方程的根与系数的关系
九年级数学一元二次方程的根与系数的关系嘿,小伙伴们,今天我们来聊聊一个很有趣的数学话题——九年级数学一元二次方程的根与系数的关系。
你们知道吗,这个知识点可是解决很多实际问题的关键哦!好了,不多说了,让我们开始吧!我们来看一下什么是一元二次方程。
简单来说,就是形如这样的方程:ax^2 + bx+ c = 0。
其中,a、b、c是已知的常数,x是未知数。
这个方程的解,就是我们要找的那个“根”。
那么,怎么求解这个方程呢?我们先来看一个例子。
假设我们有这样一个方程:3x^2 5x + 2 = 0。
我们可以先把这个方程变形一下,变成更容易求解的形式:(3x 2)(x 1) = 0。
这时候,我们就发现了一个秘密:这个方程的根是3/2和1!这是因为,当我们把方程左边的每一项都除以(3x 2)时,得到x = 1;而当我们把方程左边的每一项都除以(x 1)时,得到x = 3/2。
所以,这个方程的解就是3/2和1!那么,为什么我们要找到这些根呢?这是因为,一元二次方程的解有很多个,但是有时候我们只需要其中的一些。
比如说,我们在做一个实验的时候,发现一个物体在受到一定力的作用下会发生位移。
这时候,我们就可以用一元二次方程来表示这个现象。
假设物体受到的力是F(x),位移是s(x),那么我们可以得到一个方程:F(x) = kx^2 + b。
这里的k、b和c就是我们需要求解的参数。
通过解这个方程,我们就可以知道物体在不同位置时的受力情况,从而更好地了解这个实验。
除了实验之外,一元二次方程还有很多其他的应用场景。
比如说,我们在做一个游戏的时候,可能会遇到一些障碍物挡住了我们的路。
这时候,我们就可以用一元二次方程来描述这个问题。
假设障碍物的高度是h(x),宽度是w(x),那么我们可以得到一个方程:h(x) = Ax^2 + Bx + C。
通过解这个方程,我们就可以知道障碍物在不同位置时的高度和宽度,从而规划出一条避开障碍物的最佳路径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m 1 x1 x 2 0 m
即
{
m>0 m-1<0
∴0<m<1
一正根,一负根
两个正根
两个负根
{
△>0 X1X2<0
{
△≥ 0 X1X2>0 X1+X2>0
{
△≥ 0 X1X2>0 X1+X2<0
x1 x 2 m 1 0
应用:一求值
题3
设x1,x 2 为�� x 2 4 x 1 0�两个� ,
x1 x 2
2 1 2 2
2
则:
4
x1 x 2
2
1
x x ( x1 x 2 ) 2 x1 x 2 = 14
( x1 x 2 ) ( x1 x 2 ) 4 x1 x 2 = 12
x1 , x 2 则: x1 x 2 3, x1 x 2 5
求作新的一元二次方程时: 1.先求原方程的两根和与两根积. 2.利用新方程的两根与原方程的两根之 间的关系,求新方程的两根和与两根积. (或由已知求新方程的两根和与两根积) 3.利用新方程的两根和与两根积, 求作新的一元二次方程.
小结: 1、熟练掌握根与系数的关系; 2、灵活运用根与系数关系解决问题; 3、探索解题思路,归纳解题思想方法。
作业:试卷《课后练习》
题9 方程 有一个正根,一个负根,求m的取值范围。 解:由已知,
mx 2 2mx m 1 0(m 0)
{
△= 4m 2 4m(m 1) 0
微商货源 嵃冚莒
练习: 1.以2和 -3为根的一元二次方程
2
x x6 0 (二次项系数为1)为:
三 已知两个数的和与积,求两数 题6 已知两个数的和是1,积是-2,则两 2和-1 。 个数是 解法(一):设两数分别为x,y则: x=2 或 解得: { y=-1
2
另外几种常见的求值
x1 x 2 1 1 1. x1 x 2 x1 x 2
x1 x 2 x x 2. x1 x 2 x 2 x1
2 1
2 2
( x1 x 2 ) 2 2 x1 x 2 x1 x 2
3.( x1 1)( x 2 1) x1 x 2 ( x1 x 2 ) 1
2Байду номын сангаас
题4. 点p(m,n)既在反比例函数 图象上, 又在一次函数
2 y ( x 0) 的 x
y x 2 的图象上,
则以m,n为根的一元二次方程为(二次项系数为1): 2 解:由已知得, n m·n= -2 即 m m+n= - 2 n m 2
{
{
∴所求一元二次方程为:
2 x1 x 2 3
x1 x 2 0
4.x1 x 2 0
1 x1 x 2 3
在使用根与系数的关系时,应注意: ⑴不是一般式的要先化成一般式;
b ⑵在使用X1+X2=- 时, a
注意“- ”不要漏写。
题2 已知两圆的半径是一元二次方程
2 x 14 x m 0
练习2 (1)设 为 A. 1
x x 1 0 的两个实数根 1 1 x1 , x 2 则: x x 的值为( A )
2
1 2
B. -1
C.
5
D.
5 5
二 已知两根求作新的方程
以 x 1 , x 2 为两根的一元二次方程 (二次项系数为1)为:
x ( x1 x 2 ) x x1 x 2 0
4. x1 x 2
( x1 x 2 )
2
( x1 x 2 ) 4 x1 x 2
2
求与方程的根有关的代数式的值时, 一般先将所求的代数式化成含两根之和, 两根之积的形式,再整体代入.
PPT文档是经常使用的一种演示文稿,公司的很多活动都会使用到,其格式较为特殊,由于其中往往插入很多图形以及添加一些动画效果,因此要比较两篇演示文稿的不同,的确有点麻烦,而利用PowerPoint的比较合并演示文稿功能 ,不仅仅能够比较出两个文稿文字、图形的改动情况,而且能够将动画的改变情况查找出来,从而能够对自己演示文稿的变化情况 了如指掌。在操作上,PowerPoint的比较合并演示文稿功能与Word的操作有较大不同 。在打开的源演示文稿中的右侧会显示一个“修订”任务窗格,在其中会将对每张幻灯片的修改情况列举出来,单击“幻灯片更改”列表框中的某个修改操作,即可在幻灯片中直接看到其更改具体操作,如果需要接受更改操作的某 个具体步骤,只要选中相应操作前面的复选框即可
(还有其他解法吗?)
题8 已知方程 的两个实数根 x 2 kx k 2 0 2 2 x x 是 且 x1 x 2 求 4 k的值。 1, 2 解:由根与系数的关系得 X1+X2=-k, X1×X2=k+2 又
2
X12+ X2 2 = 4
2
解得:k=4 或k=-2 2 ∵ △= K -4k-8 当k=4时, △<0 当k=-2时,△>0 ∴ k=-2
2
的两个根,两圆的圆心距等于7, C 则这两圆的位置关系是( ) A、外离 C、外切 B、相交 D、内切
练习1 已知关于x的方程 x ( m 1) x 2m 1 0 当m= -1 时,此方程的两根互为相反数.
2
当m= 分析:1. 2.
1
时,此方程的两根互为倒数.
x1 x 2 2m 1 1
2
x y 1 {
x=-1 { y=2
x y 2
解法(二):设两数分别为一个一元二次方程
的两根则: a a 2 0 求得 a1 2, a 2 1 ∴两数为2,-1
四 求方程中的待定系数
题7 如果-1是方程 2 x
2
xm0
-3
的一个根,则另一个根是___m=____。
一元二次方程
根与系数的关系
授课人
陈震
长沙市第一中学
基本知识
题1 口答
1.下列方程的两根和与两根积各是多少? ⑴.X2-3X+1=0 ⑶.2X2+3X=0
1.x1 x 2 3 2 2.x1 x 2 3
⑵.3X2-2X=2 ⑷.3X2=1
x1 x 2 1
3 3.x1 x 2 2
即(X1+ X2) -2X1X2=4 K - 2(k+2)=4 2 K -2k-8=0
五 综合
题9 在△ABC中a,b,c分别为∠A, ∠B,∠C 的对边,且c= 5 3 ,若关于x的方程
(5 3 b ) x 2 ax (5 3 b ) 0
2
有两个相等的实数根,又方程
2
2 x (10 sin A) x 5 sin A 0
x 2x 2 0
2
题5 以方程X2+3X-5=0的两个根的相反数为根的方程
是( ) B A、y2+3y-5=0 C、y2+3y+5=0 B、 y2-3y-5=0 D、 y2-3y+5=0
分析:设原方程两根为
新方程的两根之和为 ( x1 ) ( x 2 )
3 新方程的两根之积为( x1 ) ( x 2 ) 5