高中数学必修5公式

合集下载

高中数学必修5《数列的递推公式》PPT

高中数学必修5《数列的递推公式》PPT

3n1
3n2
...
32
31
3n 1 2
(n 2),此式对n 1也成立.
探究与归纳
{ { a1=1 an+1= an+3n
累加法
an
3n 1 2
构造法
a1=1 an+1=3an+1
令an+1+m=3(an+m),则m=
1 2
.
即{an+
12}是以a1+
1 2
为首项,3为公比的等比数列.
总结提升
情境探究一
按这种规律,第100个图中三角形总个数为多少?
(1)
(2)
(3)
(4)
1
4
13
40
记第n个图中三角形的个数为an,则 an+1与an有什么 样的等量关系?
an+1=3an+1
你能否尝试着给出数列{an }的一个通项公式呢?
情境探究二
能否换个角度想一想an+1与an有怎样的等量关系?
(1)
课后阅读与探究
1. 汉诺塔问题 目的:所有圆盘移到另一根针上; 要求:一次移一个圆盘,小盘始终在上; 关注:移动64个圆盘到另一针上,最少搬几次 圆盘?
2. 铺路问题 一条路宽2米长n米,用1m*2m 的砖来铺,有多少种不同铺法?
备用(拔高)
试由递推公式
,求数列{a } a1 1, a2 4
an1 4an 3an1(n 2)
n
的通项公式.
你能在sierpinski三角形中找到它的几何背景吗?
●谢谢
一般地,对于数列{an}:
{ (一)
a1=a
( f (n)可求和)

高中数学必修5优质课件:数列的通项公式与递推公式

高中数学必修5优质课件:数列的通项公式与递推公式
第七页,编辑于星期日:二十三点 三十九分。
[类题通法] 根据递推公式写出数列的前几项,要弄清楚公式中各部 分的关系,依次代入计算即可.另外,解答这类问题时还需 注意:若知道的是首项,通常将所给公式整理成用前面的项 表示后面的项的形式;若知道的是末项,通常将所给公式整 理成用后面的项表示前面的项的形式.
第十二页,编辑于星期日:二十三点 三十九分。
[类题通法] 根据递推公式写出数列的前几项,然后由前几项分析其 特点、规律,归纳总结出数列的一个通项公式.
第十三页,编辑于星期日:二十三点 三十九分。
[对点训练] 3.已知数列{an}满足 a1=1,an=an-1+nn1-1(n≥2), 写出该数列前 5 项,并归纳出它的一个通项公式. 解:a1=1, a2=a1+2×1 1=1+12=32, a3=a2+3×1 2=32+16=53, a4=a3+4×1 3=53+112=74,
[类题通法] 通项公式法、列表法与图象法表示数列优点
(1)用通项公式表示数列,简洁明了,便于计算.公 式法是常用的数学方法.
(2)列表法的优点是不经过计算,就可以直接看出项 数与项的对应关系.
(3)图象能直观形象地表示出随着序号的变化,相应 项变化的趋势.
第四页,编辑于星期日:二十三点 三十九分。
第十七页,编辑于星期日:二十三点 三十九分。
3.已知 a1=1,an=1+an1-1(n≥2),则 a5=________. 解析:由 a1=1,an=1+an1-1得 a2=2,a3=32,a4=53, a5=85. 答案:85
第十八页,编辑于星期日:二十三点 三十九分。
4.已知数列{an}满足 a1>0,aan+n 1=13(n∈N*),则数列{an}是 ________数列(填“递增”或“递减”).

高中数学必修5数列的递推公式

高中数学必修5数列的递推公式

典型例题解析
例题1
已知等差数列{an}中, a1=2,d=3,求a10。
解析
根据等差数列的通项公 式an=a1+(n-1)d,代 入n=10,a1=2,d=3 ,可得a10=2+(101)×3=29。
例题2
已知等差数列{an}中, a3=7,a7=15,求a5 。
解析
根据等差数列的性质, a5=(a3+a7)/2=(7+15 )/2=11。
递推关系性质
递推关系具有确定性,即对于给 定的初始条件和递推公式,数列 的每一项都是唯一确定的。
递推关系建立
01
等差数列递推关系
等差数列的递推关系为an=a1+(n-1)d,其中a1为首项 ,d为公差,n为项数。
02
等比数列递推关系
等比数列的递推关系为an=a1×qn-1,其中a1为首项, q为公比,n为项数。
,r是公比。
调和数列
调和数列是每一项都是其前一项 的倒数与1的和的数列。递推公 式为1/a_n = 1/a_(n-1) + 1/b,
其中a_1 = b。
05 递推公式在实际问题中应用
数学问题应用举例
等差数列求和
数列通项公式求解
利用递推公式可以快速求解等差数列 的前n项和,如求1+2+3+...+n的和 。
03
其他类型数列递推关系
对于非等差非等比数列,需要根据具体题目条件建立相 应的递推关系。
初始条件确定
初始条件定义
初始条件是数列中已知的第一项或前 几项,用于启动递推过程。
初始条件确定方法
根据题目给出的条件或已知信息,确 定数列的初始条件。例如,题目中可 能会直接给出首项a1和公差d或公比q 等参数。

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修五知识点汇总第一章 解三角形 一、知识点总结 正弦定理:1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径).步骤1.证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。

作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA得到b ba a sin sin =同理,在△ABC 中, bbc c sin sin =步骤2.证明:2sin sin sin a b cR A B C===如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b c R A B C ===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a bii A B C R R==2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ∆中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角. 面积公式:已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=; (2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p b h b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C ==代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == 注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和 故得:pr cr br ar S =++=212121(3)根据三角形面积公式12a S a h =⨯⨯所以,2a S h a =a h =同理b h c h 【三角形中的常见结论】(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于 60,最小角小于等于 60(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是 60=B .(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) (3) 若B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2:解三角形及求面积一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a ,b(Ⅱ)若A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3:证明等式成立证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4:解三角形在实际中的应用考察:(仰角、俯角、方向角、方位角、视角)例5.如图所示,货轮在海上以40km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时到达C 点观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?三、解三角形的应用 1.坡角和坡度:坡面与水平面的锐二面角叫做坡角,坡面的垂直高度h 和水平宽度l 的比叫做坡度,用i 表示,根据定义可知:坡度是坡角的正切,即tan i α=.lhα2.俯角和仰角:如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.3. 方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 .注:仰角、俯角、方位角的区别是:三者的参照不同。

人教版高中数学必修1至必修5公式

人教版高中数学必修1至必修5公式

必修二:
直线与方程
1)直线的倾斜角
3
人教版高中数学必修一至必修五公式(必会)
定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与 x 轴平行或重合时,我们规定它的倾
斜角为 0 度。因此,倾斜角的取值范围是 0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是 90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用 k 表示。即 k tan 。斜
log a m n log am b n
n log a m
n m
log a
b
(a、b、m
0,n
R, 且a
1)
,
log a
b
log c log c
b a
(a、b、c
0, 且a、c
1)
(换底公式)
函数图像(必须熟)
表1
y ax a 0, a 1
指数函数
定义域 值域
xR
y 0,
对数数函数 y log a x a 0, a 1
○1 在任一直线上任取一点,再转化为点到直线的距离进行求解。
d C1 C2 ( A、B都相等)
○2 设直线 l1 Ax By C1 0, l2 Ax By C2 ; 则两点间的距离为
A2 B2
二、圆的方程
1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
(a b c)2 a 2 b2 c 2 2ab 2bc 2ac ; (a b c)2 a 2 b2 c 2 2ab 2bc 2ac (a b c)2 a 2 b2 c 2 2ab 2bc 2ac ; (a b c)2 a 2 b2 c 2 2ab 2bc 2ac

高中数学必修5用构造法求数列的通项公式

高中数学必修5用构造法求数列的通项公式

用结构法求数列的通项公式在高中数学教材中,有好多已知等差数列的首项、公比或公差 (或许经过计算能够求出数列的首项 ,公比 ),来求数列的通项公式。

但实质上有些数列其实不是等差、等比数列,给出数列的首项和递推公式 ,要求出数列的通项公式。

而这些题目常常能够用结构法,依据递推公式结构出一个新数列,进而间接地求出原数列的通项公式。

关于不一样的递推公式,我们自然能够采纳不一样的方法结构不一样的种类的新数列。

下边给出几种我们常有的结构新数列的方法:一.利用倒数关系结构数列。

比如:数列 { a n } 中,若 a12,114(n N ), 求a n an 1an设b n 1 , 则b n 1b n+4,a n即 b n 1b n=4,{b n}是等差数列。

能够经过等差数列的通项公式求出b n,然再求后数列{ a n}的通项。

练习: 1)数列 { a n } 中, a n≠0,且知足a111N ), 求a n , a n11, (n23a nn}中, a11, a n 2a n n通项公式。

2)数列 { a1a n, 求a 2n}中 , a11, a n0,且a n2a n a n 1a n1 0(nn3)数列 { a2, n N ), 求 a .二.结构形如 b n a n2的数列。

例:正数数列 { a n } 中,若 a15, a n 12a n24(n N ), 求a n解:设 b n a n 2 , 则b n1bn4,即b n1b n4数列 { b n } 是等差数列,公差是4, b1225 a1b n25(n 1)( 4)294n即 a n 24n29a n294n , (1n7, n N )练习:已知正数数列 { a n } 中, a1 2, a n 2 a n 1 (n2, n N ) ,求数列 { a n } 的通项公式。

三.结构形如 b n lg a n的数列。

例:正数数列 { a} 中,若 a =10,且lg a n lg a n 1 , (n2, n N ), 求a .n11n2解:由题意得:lg a n1,可设 b n lg a n,lg a n 12即b n1,bn 12b n是等比数列,公比为1, b1 lg 10 12b n 1 (1) n 1(1)n 1 ,(n N) .22(1) n 1 , a n( 1 )n 1即 lg a n10 22练习:(选自 2002 年高考上海卷)数列 { a n } 中,若 a1=3, a n 1a n2 ,n 是正整数,求数列 { a n } 的通项公式。

高中数学必修5全册知识点总结(理科)

高中数学必修5全册知识点总结(理科)

高中数学必修5知识点第一章解三角形(一)解三角形:1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有2sin sin sin a b c RC ===A B (R 为C ∆AB 的外接圆的半径)2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2b R B =,sin 2c C R=;③::sin :sin :sin a b c C =A B ;3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆A B =A ==B .4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,推论:222cos 2b c abc+-A =第二章数列1、数列中n a 与n S 之间的关系:11,(1),(2).n n n S n a S S n -=⎧=⎨-≥⎩注意通项能否合并。

2、等差数列:⑴定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即n a -1-n a =d ,(n≥2,n∈N +),那么这个数列就叫做等差数列。

⑵等差中项:若三数a A b 、、成等差数列2a bA +⇔=⑶通项公式:1(1)()n m a a n d a n m d=+-=+-或(n a pn q p q =+、是常数).⑷前n 项和公式:()()11122n n n n n a a S na d -+=+=⑸常用性质:①若()+∈ +=+N q p n m q p n m ,,,,则q p n m a a a a +=+;②下标为等差数列的项() ,,,2m k m k k a a a ++,仍组成等差数列;③数列{}b a n +λ(b ,λ为常数)仍为等差数列;④若{}n a 、{}n b 是等差数列,则{}n ka 、{}n n ka pb +(k 、p 是非零常数)、*{}(,)p nq a p q N +∈、,…也成等差数列。

高中数学必修5全部公式

高中数学必修5全部公式

高中数学必修5全部公式高中学生学习数学必修5课本内容牢记公式很重要。

那么数学必修5公式有哪些呢?下面店铺为大家整理高中数学必修5公式,希望对大家有所帮助!高中数学必修5公式高中数学提分技巧循序渐进,防止急躁由于学生年龄较小,阅历有限,为数不少的高中学生容易急躁,有的同学贪多求快,有的同学想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振.学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一朝一夕可以完成,为什么高中要上三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度.学习上要学会积极归因,树立自信心,如:取得一点成绩及时体会成功,强化学习能力;遇到挫折及时调整学习方法、策略,更加努力改变挫折。

学习是一项循序渐进,长期积累的过程,要有恒心、决心,有一颗拼搏的心,要防止急躁心里,这样才能取得最后的成功。

研究学科特点,寻找最佳学习方法数学学科担负着培养学生运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任.它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高.学习数学一定要讲究“活”,只看书不做题不行,埋头做题不总结积累不行,对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法.华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理.方法因人而异,但学习的五个环节:预习、上课、复习、作业、总结是少不了的.多交流,多反思解疑,化解分化点高中数学中易分化的地方多,这些地方一般都有方法新、难度大、灵活性强等特点.对易分化的地方要采用多次反复解疑,认真反思,总结规律,多阅读参考书等方法,多和同学交流,多向老师请教,多开展变式练习,化解分化点,以达到灵活掌握知识、运用知识的目的。

只要学习科学得法,有恒心,有信心,有拼搏心,克服急躁心里,克服“小聪明”,多交流,多反思,养成良好的学习习惯,就能顺利度过高中数学学习适应期,就能在今后的数学成绩图飞猛进。

高一数学必修五知识点总结归纳

高一数学必修五知识点总结归纳

必修五知识点总结归纳(一)解三角形1、正弦定理:在 C 中,a、 b 、c分别为角、、C的对边, R为 C 的外接圆的半径,则有a b c2R .sin sin sin C正弦定理的变形公式:①a2R sin, b2R sin, c2Rsin C ;② sin a, sin b, sin C c;2R2R2R③a : b : c sin: sin: sin C ;④a b c a b c.sin sin sin C sin sin sin C2、三角形面积公式:S C 1bc sin1ab sin C1ac sin.2223C中,有a b c2bc cos b a c2ac cos,、余弦定理:在222,222 c2a2b22ab cosC .4、余弦定理的推论:cos b2c2a2,cosa2c2b2a2b2c2 2bc2ac,cosC2ab.5、射影定理:a b cosC c cos B,b a cosC c cos A, c a cosB b cos A6、设a、b、c是 C 的角、、 C 的对边,则:①若a2b2c2,则 C90;②若 a2b2c2,则 C90 ;③若 a2b2c2,则 C 90 .(二 )数列1、数列:按照一定顺序排列着的一列数.2、数列的项:数列中的每一个数.3、有穷数列:项数有限的数列.4、无穷数列:项数无限的数列.5、递增数列:从第 2 项起,每一项都不小于它的前一项的数列.a n 1a n06、递减数列:从第 2 项起,每一项都不大于它的前一项的数列.a n 1a n07、常数列:各项相等的数列.8、摆动数列:从第 2 项起,有些项大于它的前一项,有些项小于它的前一项的数列.9、数列的通项公式:表示数列a n的第 n 项与序号 n 之间的关系的公式.10、数列的递推公式:表示任一项a n与它的前一项a n 1(或前几项)间的关系的公式.11、如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.12、由三个数a,, b 组成的等差数列可以看成最简单的等差数列,则称为 a 与b的等差中项.若 b a c,则称 b 为a与c的等差中项.213、若等差数列a n的首项是 a1,公差是d,则 a n a1n 1 d .14、通项公式的变形:①a n a m n m d ;② a1a n n 1 d ;③d a n a1 ;a n a1a n am .n1④ n1;⑤ dd n m15、若a n是等差数列,且 m n p q(m、n、 p 、q*),则 a m a n a p a q;若 a n是等差数列,且2n p q (n、 p 、q*),则 2a n a p a q.16、等差数列的前n 项和的公式:①S n n a1a n;② S n na1n n 1d .2217、等差数列的前n 项和的性质:①若项数为*,则 S2 n n a n a n 12n n,且S偶S奇nd ,S奇a n.S偶a n1②若项数为2n 1 n*,则 S2 n 12n 1 a n,且 S奇S偶 a n,S奇nS偶n1(其中 S奇na n, S偶n 1 a n).18、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.19、在a与b中间插入一个数G ,使a, G , b 成等比数列,则G 称为a与 b 的等比项.若 G2ab ,则称 G 为a与 b 的等比中项.注意: a 与b的等比中项可能是G 20、若等比数列a n的首项是a1,公比是q,则a n a1q n 1.21、通项公式的变形:①a n a m q n m;② a1 a n q n 1;③ q n 1an ;④q n man.a1a m22、若a n m n p q (m、n、 p 、q *a n a p a q;是等比数列,且),则 a m 若 a n是等比数列,且2n p q (n、 p 、q*),则 a n2a p a q.23、等比数列a n的前 n 项和的公式:S n24、等比数列的前n 项和的性质:①若项数为na1q1a11q n a a q.1n q 11q1q2n n*,则S偶q .S奇② S n m S n q n S m.③ S n, S2 n S n, S3n S2n成等比数列(S n0 ).(三)不等式1、a b 0 a b ; a b 0a b ; a b 0 a b .2① a b b a ;②a b,b c a c;③ a b a c b c ;、不等式的性质:④ a b,c 0ac bc , a b, c0ac bc ;⑤ a b, c d a c b d ;⑥ a b 0, c d 0ac bd ;⑦a b0a n b n n, n 1 ;⑧ a b 0n a n b n, n 1 .3、一元二次不等式:只含有一个未知数,并且未知数的最高次数是 2 的不等式.4、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式b24ac000二次函数y ax2bx ca0 的图象一元二次方程 ax 2bx 有两个相异实数根有两个相等实数根x b x1x2b没有实数根12c 0a0 的根1,22a x x2aax2bx c0x x x1或 x x2x x bR一元二次a02a 不等式的解集ax2bx c0x x1x x2a0若二次项系数为负,先变为正5、设a、b是两个正数,则ab称为正数 a 、b的算术平均数,ab 称为正数 a 、b的2几何平均数.6若 a0, b0,则a b2ab,即abab.、均值不等式定理:27、常用的基本不等式:①a2b22ab a, b R;② ab a2b2a, b R ;220;④ a2b22③ ab a b a0,b a b a,b R .2228x、y 都为正数,则有、极值定理:设⑴若 x y s (和为定值),则当 x y 时,积 xy 取得最大值s2.4⑵若 xy p (积为定值),则当 x y 时,和 x y 取得最小值2p .。

高中数学必修五-正弦定理与余弦定理

高中数学必修五-正弦定理与余弦定理

正弦定理与余弦定理知识集结知识元正弦定理公式知识讲解1.正弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC中,已知a,b和角A时,解的情况A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b一解两解一解一解解的个数由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.2、三角形常用面积公式1.S=a•h a(h a表示边a上的高);2.S=ab sin C=ac sin B=bc sin A.3.S=r(a+b+c)(r为内切圆半径).【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识(1)测距离问题:测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决.解题关键在于明确:①测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决;②测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题.(2)测量高度问题:解题思路:①测量底部不可到达的建筑物的高度问题,由于底部不可到达,因此不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.②对于顶部不可到达的建筑物高度的测量问题,我们可选择另一建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、俯角等构成三角形,在此三角形中利用正弦定理或余弦定理求解即可.点拨:在测量高度时,要理解仰角、俯角的概念.仰角和俯角都是在同一铅锤面内,视线与水平线的夹角.当视线在水平线之上时,成为仰角;当视线在水平线之下时,称为俯角.例题精讲正弦定理公式例1.已知△ABC中,角A,B,C所对的边分别是a,b,c.若A=45°,B=30°,a=,则b=()A.B.1 C.2 D.例2.在△ABC中,角A,B,C的对边分别为a,b,c,若,则B=()A.B.C.D.或例3.在△ABC中,已知三个内角为A,B,C满足sin A:sin B:sin C=3:5:7,则C=()A.90°B.120°C.135°D.150°利用正弦定理解三角形知识讲解【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识例题精讲利用正弦定理解三角形例1.在△ABC中,a,b,c是内角A,B,C所对的边.若a>b,则下列结论不一定成立的()A.A>B B.sin A>sin BC.cos A<cos B D.sin2A>sin2B例2.在△ABC中,角A,B,C的对边分别是a,b,c,且,则角A的大小为()A.B.C.D.例3.在△ABC中,三内角A,B,C的对边分别为a,b,c,若sin B =b sin A,则a=()A .B .C.1 D.三角形面积公式的简单应用知识讲解1.余弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b 解的个数一解两解一解一解由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.例题精讲三角形面积公式的简单应用例1.已知△ABC的内角A,B,C的对边分别为a,b,c,且(a+b)2=c2+ab,B=30°,a=4,则△ABC的面积为()A.4 B.3C.4D.6例2.设△ABC的三个内角A,B,C成等差数列,其外接圆半径为2,且有,则三角形的面积为()A.B.C.或D.或例3.在△ABC中角ABC的对边分别为a、b、c,cos C=,且a cos B+b cos A=2,则△ABC面积的最大值为()A.B.C.D.利用余弦定理解三角形当堂练习填空题练习1.如图,O在△ABC的内部,且++3=,则△ABC的面积与△AOC的面积的比值为_____.练习2.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知c2-8=(a-b)2,a=2c sin A,则△ABC的面积为____.练习3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,则的最大值是____.解答题练习1.'在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;(2)若D为AC的中点,且BD=1,求S△ABC的最大值.'练习2.'在△ABC中,角A、B、C的对边分别是a、b、c,若(a+c)sin B-b sin C=b cos A.(1)求角A;(2)若△ABC的面积为4,a=6,求△ABC的周长.'练习3.'△ABC内角A,B,C所对的边分别为a,b,c.若。

高中数学必修1-5公式

高中数学必修1-5公式

必修1:集合的运算:并集A B (全部) 交集A B (共有)2、复合函数的单调性: 同增异减 1、顶点坐标公式:⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22, 对称轴:a b x 2-=,最大(小)值:ab ac 442-1、幂的运算法则:(1)a m • a n = a m + n (2)nm nmaa a -=÷(3)( a m ) n = a m n (4)( ab ) n = a n • b n(5) n n nb a b a =⎪⎭⎫ ⎝⎛(6)a 0 = 1 ( a ≠0)(7)n n a a 1=- (8)m nm na a =(9)mnmn a a1=-5.指数式与对数式的互化: log b a N b a N =⇔=(0,1,0)a a N >≠>.1对数的运算法则:(1)a b = N <=> b = log a N (2)log a 1 = 0(3)log a a = 1(4)log a a b = b (5)a log a N= N (6)log a (MN) = log a M + log a N (7)log a (NM) = log a M -- log a N (8)log a N b = b log a N (9)换底公式:log a N =aNb b log log(10)推论 log log m na a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). (11)log a N =aN log 12、对数函数y = log a x (a > 0且a ≠1)的性质:必修2:一、直线与圆 1、斜率的计算公式:k = tanα=1212x x y y --(α ≠ 90°,x 1≠x 2)2、直线的方程(1)斜截式 y = k x + b,k 存在 ;(2)点斜式 y – y 0 = k ( x – x 0 ) ,k 存在;(3)两点式 121121x x x x y y y y --=--(1212,x x y y ≠≠) ;4)截距式 1=+bya x (0,0ab ≠≠)(5)一般式0(,0Ax By c A B ++=不同时为) 3、两条直线的位置关系:垂直k 1 k 2 = – 14、两点间距离公式:设P 1 ( x 1 , y 1 ) 、P 2 ( x 2 , y 2 ),则 | P 1 P 2 | =()()221221y y x x -+-5、点P ( x 0 , y 0 )到直线l :A x + B y + C = 0的距离:2200BAC By Ax d +++=7、圆的方程x 2+ y 2= r 2(0,0)r (x – a ) 2 + ( y – b ) 2 = r 2(a ,b )r8.点与圆的位置关系 点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d = d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.10.两圆位置关系的判定方法4、球:S 球面 = 4πR 2 V 球 =4πR 3 (其中R 为球的半径)第一章 算法初步(1)、平均值:n x x x x n +++= 21(2)、s =8、两个变量的线性相关(1)、概念:(1)回归直线方程:y a b x ∧∧∧=+(2)回归系数:1221ni i i ni i x y nx yb x nx∧==∑-=∑-,a y b x ∧∧=-一、概念 ⑶概率计算公式:一次试验的等可能基本事件共有n 个,事件A 包含了其中的m 个基本事件,则事件A 发生的概率()m p A n=必修4 1, 三角函数:sinx 增区间[-2π+2k π,2π+2k π]减区间[2π+2k π,23π +2k π]cosx 增区间[-π+2k π, 2k π]减区间[2k π,π+2k π]( k ∈Z ) tanx 增区间(-2π+k π,2π+k π)( k ∈Z ) 2、同角三角函数公式 sin 2α+ cos 2α= 1 αααcos sin tan =tan αcot α=1 3二倍角的三角函数公式sin2α= 2sin αcos αcos2α=2cos 2α-1 = 1-2 sin 2α= cos 2α- sin 2αααα2t a n 1t a n 22t a n -=4、降幂公式 22cos 1cos 2αα+=22c o s 1s i n 2αα-= 5、升幂公式 1±sin2α= (sin α±cos α) 2 1 + cos2α=2 cos 2α 1- cos2α= 2 sin 2α6、两角和差的三角函数公式sin (α±β) = sin αcos β土cos αsin β cos (α±β) = cos αcos β干sin αsin β()βαβαβαtan tan 1tan tan tan ±=±7、两角和差正切公式的变形:tan α±tan β= tan (α±β) (1干tan αtan β)ααtan 1tan 1-+=ααtan 45tan 1tan 45tan ︒-+︒= tan (4π+α) ααtan 1tan 1+-=ααtan 45tan 1tan 45tan ︒+-︒= tan (4π-α)sin (π-α) = sin α, cos (π-α) = -cos α, tan (π-α) = -tan α; sin (π+α) = -sin α cos (π+α) = -cos α tan (π+α) = tan α sin (2π-α) = -sin α cos (2π-α) = cos α tan (2π-α) = -tan αsin (-α) = -sin α cos (-α) = cos α tan (-α) = -tan αsin (2π-α) = cos α cos (2π-α) = sin α tan (2π-α) = cot α sin (2π+α) = cos α cos (2π+α) = -sin α tan (2π+α) = -cot α4、垂直向量设=(x 1,y 1),=(x 2,y 2)向量法:⊥<=> ·= 0 坐标法:⊥<=> x 1 x 2 + y 1 y 2 = 0 5.平面两点间的距离公式,A B d =||AB = =11(,)x y ,B 22(,)x y ).(二)、向量的加法:首尾相接首尾连(2)坐标法:设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+ x 2 ,y 1+ y 2) (三)、向量的减法:首首相接尾尾连(2)坐标法:设a =(x 1,y 1),b =(x 2,y 2),则a -b =(x 1 - x 2 ,y 1- y 2) ((四)、两个向量的夹角计算公式:(1)向量法:cos θ =||||b a(2)坐标法:设=(x 1,y 1),=(x 2,y 2),则cos θ =222221212121yx yx y y x x +++必修5 4、边角关系:R CcB b A a 2sin sin sin === (R 为ΔABC 外接圆半径) 余弦定理a 2 = b 2 + c 2 – 2bc •cosA , b 2 = a 2 + c 2 – 2a c •cosB , c 2 = a 2 + b 2 – 2 a b •cosCbc a c b A 2cos 222-+=, ac b c a B 2cos 222-+= , abc b a C 2cos 222-+=5、面积公式:S =21a h = 21a b sinC = 21bc sinA = 21a c sinB 等差数列{ a n }1、通项公式:a n = a 1 + ( n – 1 ) d 2、前n 项和公式:S n = n a 1 +21n ( n – 1 ) d = 2)(1n a a n + 等比数列{ a n }a n = a 1 q n – 12、等比数列的前n 项和公式:当q ≠1,S n = qq a n --1)1(1=q qa a n --11, 当q = 1,S n = n a 1(三)、一般数列{ an}的通项公式:记Sn= a1+ a2+ … + an,⎩⎨⎧-=-11n nn S S S a ()()N n n n ∈≥=,21。

高中数学必修五数列通项公式常见求法

高中数学必修五数列通项公式常见求法

求数列通项公式的方法1. 叠加法a n 1 a n f (n) ,且 f (1) f (2)f (n) 比较好求 .【例题】数列a n 的首项为 3 ,b n 为等差数列且 b n a n 1 a n (nN *) .若则 b 32 ,b1012 ,则 a 8.★练习 已知数列a n 知足 a 11 a n1a n 的通项公式 ., a n 1n 2 ,求数列2n2. 叠乘法a n 1 f (n)a n ,且 f (1) f (2) f (n) 比较好求 .【例题】在数列{ a n }中, a 1 =1, (n+1) ·a n 1 =n ·a n ,则 a n 的通项公式为.★练习 在数列{ a n }中, a 1 =1,a n 1 = 2n ·a n ,则 a n 的通项公式为.3. 待定系数法(1) a n =qa n-1 +p(q 、 p 为常数 ,q ≠1且 p ≠0),可化为 a n +λ=q(a n-1+λ).结构出一个以 q 为公比的等比数列 { a n +λ},而后化简用待定系数法求 λ,进而求出 a n .(2) 关于 a n 1qa n f (n)(此中 q 为常数 ) 这类形式 ,一般我们议论两种状况:①当 f(n)为多项式时,可化为 an 1g n1 q a n +g n的形式来求通项,此中g(n)是f(n)的齐次式 .【例题】设数列 a n 中, a 1 1,a n 1 3a n 2n 1 ,求 a n 的通项公式 . ★练习 设数列a 中, a 1 1,a n 1 2a n n 2 n ,求 a的通项公式 .nn②当 f( n)为指数幂即递推公式为 a n 1qa n r p n (q 、 r 、 p 为常数 ) ,可两边同时除以 p n 1 化为a n 1q a nra n的通项公式,进而求出 a n .p n 1p p n的形式,能够求出数列p np【例题】设数列 a n 中, a 1 1,a n 1 4a n 2n ,求 a n 的通项公式 .★练习 设数列a n 中, a 11,a n 1 3a n 2 3n ,求 a n 的通项公式 .4. 倒数法a n1,能够两边取倒数; a n a n 1a n 1 a n,能够两边同时除以 a n a n 1.a nka n 1ba n 1【例题】已知数列a n知足: a11,a n3a n 1,求a n的通项公式. 1★练习在数列 { a n } 中,a11a nan 1a n 1 a n,求数列{ a n}的通项公式.,35. 对数法a n 1qa n p (q、 p为常数 ) ,两边分别取对数,进行降次.【例题】已知数列a n知足:a13, a n1a n2,求 a n的通项公式 .★练习已知数列a n知足:a12, a n1a n22a n,求a n的通项公式 .6. 特点方程法(1) a n+2=A a n+1 +B a n (A 、 B 是常数),特点方程为 x2-A x-B=0,①当方程有两个相异的实根p、q 时,有:a n c1 p n c2 q n,此中c1与 c2由 a1和 a2确立;②当方程有两个同样的实根p 时,有a n(c1n c2 ) p n,此中c1与 c2由 a1和 a2确立.【例题】已知数列 { a n } 知足 a12, a23,a n23a n 12a n (n N * ) ,求 { a n } 的通项公式.★练习已知数列 { a n } 知足a1=2,a2=3, a n22a n1a n,求 { a n} 的通项公式.(2) a n 1 a a n b( a、 b、 c、 d 为常数),特点方程为x ax b ,c a nd cx d①当方程有两个相异的实根a n p a1p a cpp、q 时,数列是以a1为首项,为公比的a n q q a cq等比数列;②当方程有两个同样的实根p 时,数列1p 是以a11为首项,2c为公差的等差a n p a d数列 .【例题】已知数列{ a n} 知足 a12, a n an 12( n2) ,求数列 { a n} 的通项 a n.2a n11。

高中数学必修五公式大全

高中数学必修五公式大全

高中数学必修五公式第一章 三角函数一.正弦定理:2(sin sin sin a b cR R A B C===为三角形外接圆半径)变形:2sin (sin )22sin (sin )22sin (sin )2a a R A A R b b R B B R c c R C C R ⎧==⎪⎪⎪==⎨⎪⎪==⎪⎩推论:::sin :sin :sin a b c A B C =二.余弦定理:三.三角形面积公式:111sin sin sin ,222ABC S bc A ac B ab C ∆===第二章 数列一.等差数列: 1.定义:a n+1-a n =d (常数)2.通项公式:()d n a a n •-+=11或()d m n a a m n •-+=3.求和公式:()()d n n n n a a a S n n 21211-+=+=4.重要性质(1)a a a a q p n m q p n m +=+⇒+=+ (2) m,2m,32m m m S S S S S --仍成等差数列二.等比数列:1.定义:)0(1≠=+q q a a nn 2.通项公式:q a a n n 11-•=或q a a mn m n -•=3.求和公式: )(1q ,1==na S n)(1q 11)1(11≠--=--=qq a a q q a S n n n2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C =+-=+-=+-222222222cos 2cos 2cos 2b c a A bca cb B aca b c C ab+-=+-=+-=4.重要性质(1)a a a a q p n m q p n m =⇒+=+(2)()m,2m,32q 1m m m m S S S S S --≠-仍成等比数列或为奇数三.数列求和方法总结:1.等差等比数列求和可采用求和公式(公式法).2.非等差等比数列可考虑(分组求和法) ,(错位相减法)等转化为等差或等比数列再求和, 若不能转化为等差或等比数列则采用(拆项相消法)求和.注意(1):若数列的通项可分成两项之和(或三项之和)则可用(分组求和法)。

高中数学必修5知识点总结归纳

高中数学必修5知识点总结归纳

高中数学必修 5 知识点1、正弦定理:在 C 中,a、 b 、c分别为角、、C 的对边, R 为 C 的外接圆的半径,则有a b c2R .sin sin sin C2、正弦定理的变形公式:①a 2 R sin, b 2 R sin, c 2 R sin C ;② sin a, sin b, sin C c;2 R 2 R 2 R③ a : b : c sin: sin: sin C ;④a b c a b c.sin sin sin C sin sin sin C3、三角形面积公式:111S C2bc sin ab sin C ac sin.224、余弦定理:在 C 中,有 a 2 b 2 c 22bc cos, b 2 a 2 c 2 2 ac cos,c2 a 2 b 2 2 ab cos C .222222222 5、余弦定理的推论:cos b c a, cos a c b, cos C a b c.2bc 2 ac2ab6、设 a 、b、 c 是 C 的角、、 C 的对边,则:①若 a 2 b 2c2,则 C90;②若 a2b2c2 ,则C90;③若 a2b2c2,则 C90.7、数列:按照一定顺序排列着的一列数.8、数列的项:数列中的每一个数.9、有穷数列:项数有限的数列.10、无穷数列:项数无限的数列.11、递增数列:从第 2 项起,每一项都不小于它的前一项的数列.12、递减数列:从第 2 项起,每一项都不大于它的前一项的数列.13、常数列:各项相等的数列.14、摆动数列:从第 2 项起,有些项大于它的前一项,有些项小于它的前一项的数列.15、数列的通项公式:表示数列a n的第 n 项与序号 n 之间的关系的公式.16、数列的递推公式:表示任一项a n与它的前一项 a n 1(或前几项)间的关系的公式.17、如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.18、由三个数 a ,, b 组成的等差数列可以看成最简单的等差数列,则称为 a 与b的a c等差中项.若 b,则称 b 为a与c的等差中项.219、若等差数列a n 的首项是 a 1 ,公差是 d ,则 a na 1 n 1 d .20、通项公式的变形:①aa n m d ;② a an1 d ;③ d a na 1;nm1nn1④ na na 1a n a m .d 1 ;⑤ dnm21、若 a n 是等差数列,且 m npq ( m 、 n 、 p 、 q*),则 a m a n a p a q ;若 a n 是等差数列,且2 n pq ( n 、 p 、 q*),则2ana pa q .22、等差数列的前 n 项和的公式:①Sn a 1 a nnann 1 d .;② S1n2n223、等差数列的前n 项和的性质:①若项数为2 n n *,则Sn aa,且2 nnn 1S 偶 S 奇 S 奇a nnd ,a n.S 偶1②若项数为 2 n1 n*,则 S 2 n2n 1 a n ,且 S 奇S 偶 a n ,S 奇 n1S 偶n(其中1S 奇 n a n , S 偶 n 1 a n ).24、如果一个数列从第 2 项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.25、在 a 与 b 中间插入一个数 G ,使 a , ,b 成等比数列, 则G 称为 a 与 b 的等比中项. 若GG 2ab ,则称 G 为 a 与 b 的等比中项.26、若等比数列 a n 的首项是 a 1 ,公比是 q ,则 a na 1 q n 1 .27 、通项公式的变形:①ana mqn mn 1n 1a;② a 1 a n q;③ qan;④1n ma nq .a m28、若 a n 是等比数列,且mn p q ( m 、 n 、 p 、 q*),则 a m a n a p a q ;若 a n 是等比数列,且 2 npq ( n 、 p 、 q*),则 a n 2a p a q .na1q 129、等比数列a n的前 n 项和的公式: S nn.a11q a1 a n qq1 1q1q30、等比数列的前n 项和的性质:①若项数为 2 n n*,则S偶q .S 奇② S n m S n q n S m.③ S n, S2 n S n, S 3n S2 n成等比数列.31、a b 0 a b ; a b 0 a b ; a b 0 a b .32、不等式的性质:①a b b a ;② a b, b c a c ;③ a b a c b c ;④ a b, c 0ac bc , a b , c 0ac bc ;⑤ a b , c d a c b d ;⑥ a b 0, c d0ac bd ;⑦a b0n n, n1;a b n⑧ a b 0n nb n, n 1 .a33、一元二次不等式:只含有一个未知数,并且未知数的最高次数是 2 的不等式.34、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式b 20004 ac二次函数y ax 2bx ca0 的图象有两个相异实数根一元二次方程2bx c0b有两个相等实数根axx1,2没有实数根2 aba 0 的根x1x 22 ax1x2ax 2bx c0x x x1或 x x2b一元二次Rx x不等式的a02a解集2bx c0x x1 x x2axa035、二元一次不等式:含有两个未知数,并且未知数的次数是1的不等式.36、二元一次不等式组:由几个二元一次不等式组成的不等式组.37、二元一次不等式(组)的解集:满足二元一次不等式组的x 和y的取值构成有序数对x , y,所有这样的有序数对x, y 构成的集合.38、在平面直角坐标系中,已知直线x y C0 ,坐标平面内的点x0 , y0.①若0 ,x0y 0C0,则点x0 , y0在直线x y C0 的上方.②若0,x0y 0C0 ,则点x0 , y0在直线x y C0 的下方.39、在平面直角坐标系中,已知直线x y C0 .①若0,则x y C0表示直线x y C0 上方的区域;x y C0 表示直线x y C0下方的区域.②若0,则x y C0 表示直线x y C0 下方的区域;x y C0 表示直线x y C0 上方的区域.40、线性约束条件:由x ,y的不等式(或方程)组成的不等式组,是x ,y的线性约束条件.目标函数:欲达到最大值或最小值所涉及的变量x ,y的解析式.线性目标函数:目标函数为x ,y的一次解析式.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题.可行解:满足线性约束条件的解x, y.可行域:所有可行解组成的集合.最优解:使目标函数取得最大值或最小值的可行解.41、设 a 、b是两个正数,则ab称为正数 a 、b的算术平均数,ab 称为正数a、 b 的2几何平均数.42、均值不等式定理:若 a0, b0 ,则 a b2a bab.ab ,即243、常用的基本不等式:①a 222 ab a , b Ra 2b 2a ,b R;b;② ab22a 0,b 0 ;④a2b 22③ aba b a b a , b R.22244、极值定理:设 x 、 y 都为正数,则有⑴若 xy s (和为定值),则当 xy 时,积 xy 取得最大值 s 2 .4⑵若 xy p (积为定值) ,则当 x y 时,和 x y 取得最小值 2p .。

高中数学必修1-5公式总结 (1)

高中数学必修1-5公式总结 (1)

高中数学必修课本常用公式及结论1.集合12{,,,}n a a a 的子集个数共有2n个;真子集有21n-个;非空子集有21n-个;非空的真子集有22n-个2、二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠;(2)顶点式2()()(0)h f x a a k x =-+≠;(当已知抛物线的顶点坐标(,)h k 时,设为此式) (3)零点式12()()()(0)f x a x x x a x =--≠;(当已知抛物线与x 轴的交点坐标为12(,0),(,0)x x 时,设为此式)30)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <;4、则复合函数)]([x g f y =满足同则增异则减5、奇偶函数的图象特征:奇函数()()f x f x -=-;偶函数()()f x f x -=奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数6、若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象7、几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2))0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,则)(x f 的周期T=2a ; 8、分数指数幂(1)m na =0,,a m n N *>∈,且1n >)(2)1mnm naa-=(0,,a m n N *>∈,且1n >)9、根式的性质(1)n =(2)当n a =;当n ,0||,a a a a a ≥⎧==⎨-<⎩10、有理指数幂的运算性质(1) (0,,)rsr s a a aa r s Q +⋅=>∈(2) ()(0,,r s rsa a a r s Q =>∈(3)()(0,0,r r rab a b a b r Q =>>∈11、指数式与对数式的互化式: log b a N b a N =⇔=(0,1,a a N >≠>12、对数的换底公式 :log log log m a m NN a= (0a >,且1a ≠,0m >,且1m ≠, 0N >) 对数恒等式:log a Na N =(0a >,且1a ≠, 0N >)推论 log log m na a nb b m=(0a >,且1a ≠, 0N >) 13、对数的四则运算法则:若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+; (2) log log log aa a MM N N=-;(3)log log ()n a a M n M n R =∈; (4) log log (,m na a nN N n m R m=∈14、平均增长率的问题(负增长时0p <)如果原来产值的基础数为N ,平均增长率为p ,则对于 时间x 的总产值y ,有 (1)y N p =+15、数列的通项公式与前n 项的和的关系:11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ )16、等差数列的通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为:1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d =+-17、等比数列的通项公式:1*11()n n n a a a q q n N q-==⋅∈;其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩18、同角三角函数的基本关系式 :22sin cos 1θθ+=,tan θ=θθcos sin ,19、正弦、余弦的诱导公式(奇变偶不变,符号看象限)212(1)sin ,()sin()2(1)s ,()n n n n co n απαα-⎧-⎪+=⎨⎪-⎩为偶数为奇数,212(1)s ,()s()2(1)sin ,()n n co n n co n απαα+⎧-⎪+=⎨⎪-⎩为偶数为奇数 20、和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±=sin cos a b αα+)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan b aϕ=)21、二倍角公式及降幂公式sin 2sin cos ααα=21tan α=+2222cos 2cos sin 2cos 112sin ααααα=-=-=-221tan α=+2tan 21tan αα=-221cos 21cos 2sin ,cos 22αααα-+==22、三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0)的周期2||T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0)的周期||T ω=23、正弦定理 :2sin sin sin a b cR A B C===(R 为ABC ∆外接圆的半径) 2sin ,2sin ,2sin a R A b R B c R C ⇔===::sin :sin :sin a b c A B C ⇔=24、余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-25、面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高) (2)111sin sin sin 222S ab C bc A ca B ===26、实数与向量的积的运算律:设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ) a;(2)第一分配律:(λ+μ) a =λa +μa;(3)第二分配律:λ(a +b )=λa+λb不共线的向量1e 、2e叫做表示这一平面内所有向量的一组基底.27、向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0 ,则a b (b ≠0)1221x y x y ⇔-=28、a 与b 的数量积(或内积):a ·b =|a ||b |cos θ 29、a ·b的几何意义:数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b |cos θ的乘积.30、平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a +b=1212(,x x y y ++(2)设a =11(,)x y ,b =22(,)x y ,则a -b=1212(,x x y y --(3)设A 11(,)x y ,B22(,)x y ,则2121(,AB OB OA x x y y =-=--(4)设a =(,),x y R λ∈,则λa=(,x y λλ(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212(x x y y+31、两向量的夹角公式cos ||||a ba b θ⋅==⋅ (a=11(,)x y ,b =22(,)x y)32、平面两点间的距离公式,A B d=||AB = =11(,)x y ,B 22(,)x y ) 33、向量的平行与垂直 :设a=11(,)x y ,b =22(,)x y ,且b ≠0 ,则a ||b ⇔b =λa1221x y x y ⇔-=a ⊥b (a ≠0 )⇔ a ·b=01212x x y y ⇔+=34、设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔==(2)O 为ABC ∆的重心OA OB OC ⇔++=(3)O 为ABC ∆的垂心OA OB OB OC OC ⇔⋅=⋅=⋅(4)O 为ABC ∆的内心aOA bOB cOC ⇔++=35、常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥当且仅当a =b 时取“=”号). 36、斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y )37、直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距)(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (1212,x x y y ≠≠))两点式的推广:211211()()()()0x x y y y y x x -----=(无任何限制条件!)(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,00a b ≠≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0)38、两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠; ②1212l l k k ⊥⇔=-(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+=; 39、点到直线的距离 :d =(点00(,)P x y ,直线l :0Ax By C ++=)40、 圆的四种方程(1)圆的标准方程 22()()x a y b r -+-=(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0) 41、直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种(22BA C Bb Aa d +++=):0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d42、空间两点间的距离公式若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB ==43、球的半径是R ,则其体积343V R π=,其表面积24S R π=. 44、柱体、锥体的体积V Sh =柱体(S 是柱体底面积、h 是柱体高)13V Sh =锥体(S 是锥体底面积、h 是锥体高)。

高中数学必修1-5公式大全_

高中数学必修1-5公式大全_

必修2:一、直线与圆 1、斜率的计算公式:k = tanα=1212x x y y --(α ≠ 90°,x 1≠x 2)2、直线的方程(1)斜截式 y = k x + b,k 存在 ;(2)点斜式 y – y 0 = k ( x – x 0 ) ,k 存在; (3)两点式121121x x x x y y y y --=--(1212,x x y y ≠≠) ;4)截距式 1=+bya x (0,0ab ≠≠)(5)一般式0(,0Ax By c A B ++=不同时为) 3、两条直线的 位置关系:4、两点间距离公式:设P 1 ( x 1 , y 1 ) 、P 2 ( x 2 , y 2 ),则 | P 1 P 2 | =()()221221y y x x -+-5、点P ( x 0 , y 0 )到直线l :A x + B y + C = 0的距离:2200BA CBy Ax d +++=8.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =则 d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.9.直线与圆的位置关系(圆心到直线的距离为d)直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .10.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .11.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线. (2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±二、立体几何 (一)、线线平行判定定理:1、平行于同一条直线的两条直线互相平行。

高中数学必修1-5常用公式

高中数学必修1-5常用公式

高中数学必修 1-5 常用公式(定理)1.会合的交集、并集、补集.A IB (取 A 、 B 的公共元素); A U B (取 A 、B 的全部元素但不重复) ;e U A 全集 U 中除了 A 中元素以外的元素2.子集与真子集:若会合 A 中有 n 个元素,则会合 A 有 2n 个子集, 2n 1个真子集.是任何会合的子集.3.二次函数 y ax 2bx c (a0) . 可化为 ya( xb )2 4ac b 2 (a 0)2a 4a它的图象是抛物线,对称轴为xb ,极点坐标为 (b, 4ac b 2) ;2a2a4a二次函数的 3 种分析式:( 1)一般式: f ( x)ax 2 bx c ( a 0) ;( 2)极点式: f ( x)a(xh)2k (a0) ;( 3)零点式: f ( x) a(x x 1 )( x x 2 ) (a 0) .4.函数的单一性.( 1)设 x 1 x 2a, b , x 1x 2 ,则( x 1 x 2 ) f (x 1)f (x 2 )0 f ( x 1 ) f ( x 2 ) 0f (x)在 a,b上是增函数;x 1x 2( x 1 x 2 ) f (x 1 )f (x 2 )f ( x 1 ) f ( x 2 )f ( x) 在 a,b 上是减函数.x 1x 2( 2)函数 y f ( x) 在某个区间内可导, 若 f ( x) 0 ,则 f ( x) 为增函数; 若 f( x) 0 ,则 f ( x) 为减函数.5.函数 yf (x) 的图象的奇偶性.( 1)函数的定义域一定对于原点对称;( 2)若 f ( x) 是奇函数,那么 f ( x) f ( x) ,若 f ( x) 是偶函数,那么 f ( x)f ( x)f ( x )( 3)定义域含零的奇函数必过原点,即f (0)0 .( 4)奇函数的图象对于原点对称,偶函数的图象对于 y 轴对称.6.函数 yf (x) 的图象的对称性.函数 yf ( x) 的图象对于直线 x a 对称f (a x) f (a x)f (2 a x)f ( x) .7.两个函数图象的对称性.( 1)函数 y f ( x) 与函数 y f ( x) 的图象对于直线x0 (即 y 轴)对称;2yf ( x)与函数 yf ( x)的图象对于直线 y 0 (即 x 轴)对称;( )函数( 3)函数 y f ( x) 与函数 y f ( x) 的图象对于原点对称;* ( 4)函数 y f ( x) 和 y f 1( x) 的图象对于直线 yx 对称( f 1(x) 是 f ( x) 的反函数).8.函数 yf (x) 的周期性:若f (x T ) f ( x) , T0 ,则 f ( x) 是以 T 为周期的函数.mnmm19.分数指数幂: ana ( a0, m, nN ,且 n1 ) . aN ,且 n 1 ).nm ( a 0, m,nan10.指数的运算公式: a m a nam na m m n(a m na mn; ( ab) mm m;ana;)a b11.对数的运算公式:log a N ba b N (a0且 a 1, N 0) .alogaNN (a0且 a 1, N 0) .log a (MN ) log a M log a N ; log a ( M) log a M log a N .N换底公式: log a Nlog mN.log a m bnnlog a b .log m am12.零点:函数 yf (x) 的图象与 x 轴交点的横坐标(当y0 时, x 的值).零点存在定理: 若函数 y f ( x) 在区间 [a,b] 上的图象是连续的, 且有 f (a) f (b)0 ,则 f ( x) 在 (a,b)内起码有一个零点.13.棱柱、棱锥、棱台的侧面积和体积:S圆柱侧2 rl ;S圆锥侧rl ;S圆台侧( r 1 r 2 )l ;S直棱柱侧ch; S正棱锥侧1ch ' ;2正棱台侧1 '' ; V柱体Sh ;锥体1 ;台体1 下上下.(c c )hSh( 上S2 VV3S SS S )h34 14.球的表面积和体积:设球的半径是R ,则其表面积 S 4R 2 ,体积 VR 3 .315.线面平行判断定理:若平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.线面平行性质定理:若一条直线与一个平面平行,过该直线的平面和此平面订交,则该直线和交线平行.16.面面平行判断定理:若一个平面内有两条订交的直线都平行于另一个平面,则这两个平面平行.面面平行性质定理:若两个平行平面同时与第三个平面订交,则它们的交线平行.17.线面垂直判断定理:若平面外的一条直线垂直于平面内的两条订交直线,则该直线垂直于这个平面.线面垂直性质定理:若一条直线垂直于一个平面,则该直线垂直于此平面内的随意一条直线.垂直于同一个平面的两条直线平行;垂直于同一条直线的两个平面平行.18.面面垂直判断定理:若一个平面过另一平面的垂线,则这两个平面相互垂直.面面垂直性质定理:若两个平面相互垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面.19.三垂线定理:在平面内的一条直线,假如和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.在平面内的一条直线,假如和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直.20.斜率公式: k tany 2y1 ( 90o , x 1 x2 ).x 2 x 121.直线的方程:( 1)点斜式:( 2)斜截式: y y 0 k( x x 0 ) ;y kx b ( b 为直线 l 在 y 轴上的截距);( 3)截距式:xy 1(注意:① 截距不是距离;②过原点的直线也拥有横、纵截距相等的特点);ab( 4)两点式:y y 1 x x 1 ( x 1 x 2 , y 1 y 2 );y 2 y 1 x 2 x 1( 5)一般式: Ax By C0 (此中 A 、 B 不一样时为 0).22.两条直线的平行与垂直.( 1)若 l 1 : y k 1x b 1 , l 2 : y k 2 x b 2 , ① l 1 // l 2 k 1 k 2 , b 1 b 2 ; ② l 1 l 2 k 1k 21 .( 2)若 l 1 : A 1xB 1 yC 1 0 , l 2 : A 2 x B 2 y C 20 ,且 A 1、 A 2 、 B 1、 B 2 都不为零,①l 1 // l 2A 1B 1C 1; ② l 1 l 2 A 1 A 2 B 1B 2 0 .A 2B 2C 223.平面两点间的距离公式:若A ( x 1 , y 1 ) ,B ( x 2 , y 2 ) ,则 AB (x 2x )2 ( y 2y )2 .1124.空间两点间的距离公式:若 A ( x 1, y 1, z 1) ,B ( x 2 , y 2 , z 2 ) ,则 AB(x 2 x 1) 2 ( y 2 y 1) 2 (z 2 z 1) 2 .25.点到直线的距离:d | Ax 0By 0 C |(点 P( x 0 , y 0 ) ,直线 l : Ax ByC 0 );A 2B 2平行线间的距离:d| C 1C 2 |(直线 l 1 : Ax By C 1 0 ,直线 l 2 : Ax By C 20 ).A 2B 226.圆的方程: ( 1)圆的标准方程: ( x a) 2( y b) 2 r 2 ,圆心为 (a,b) ,半径为 r ;( 2)圆的一般方程 : x 2y 2 DxEy F0 ( D 2E 2 4F0 ).27.直线 Ax By C 0 与圆 ( xa) 2 ( y b)2 r 2 的地点关系的判断方法:( 1) d r 相离0 ; ( 2) d r相切=0 ; ( 3) d r 订交 0 . 28.两圆地点关系的判断方法:设两圆圆心分别为O 1 , O 2 ,半径分别为: r 1 , r 2 , OO2 d .1( 1) d r 1 r 2外离; (2) d =r 1 r 2 外切;(3) r 1 r 2dr 1 r 2 订交;( 4) d = r 1r 2 内切;(5) 0d r 1 r 2内含.29.直线与圆锥曲线订交的弦长公式: AB(x 1 x 2)2 ( y 1 y 2 )2 x 1 x 2 1 k 2 (1 k 2 )[(x 1 x 2 )2 4x 1x 2 ] .30.方差: S21[( x 1 x)2( x 2 x)2( x n x)2] ;标准差: S1[( x 1 x)2 (x 2 x)2(x n x)2 ] .nn31.古典概型的概率32.几何概型的概率P( A)mn 表示试验的全部基本领件数) .( m 表示随机事件 A 包括的基本领件数,nP( A)A (A 表示事件 A 发生地区的几何胸怀,表示试验中总地区的几何胸怀,如长度、面积、体积等) .33.随意角(逆时针旋转 正角,顺时针旋转负角):与终边同样的角的会合: { |2k , k Z} .34.弧度制:(1)l,lr ;( 2)180orad ;57.3 o;( 3)扇形面积 S1 lr 1 r2 .r1 rad2 235.随意角的三角函数:一般地,设角终边上随意一点的坐标为( x, y) ,它与原点的距离为r (r0) ,则 siny cosx tany( x 0) .rrx= sin36.同角三角函数的基本关系式:sin 2cos 21, tan , tancot1.cos37.引诱公式(口诀:纵变横不变,符号看象限):如 sin()sin, sin()cos 等.238.两角和与差的正弦、余弦、正切公式及倍角、降幂公式:sin( ) sincoscos sin ;cos() coscos msinsin ;tan() tan tan1mtan tansin 22sincoscos 2cos 2sin 22cos 21 12sin 2tan 21 2 tantan 2 cos 21+cos221 cos2* ( sin 22 tan; cos 21 tan2 ).2, sin21 tan2 1 tan 2b).39.协助角公式(合一思想) : a sinb cos = a2b 2sin() (此中 tana40.正余弦 “三兄妹 ”sin x cosx 、 sinx cosx 的内在联系: (sin xcos x)2 1 2sin x cos x1 sin2 x .41.正弦定理:abc 2R ( R 为外接圆的半径) .sin Csin A sin B别忘了 AB C42.余弦定理: a 22 c2b 2c 2 a 2b2bc cos A ; cos A.2bc43.三角形的面积公式:S1ab sin C1ah a1r (a b c) (此中 r 为三角形内切圆半径) .22244.中点的坐标公式与△ ABC 的重心坐标公式:若 A ( x 1 , y 1 ) , B ( x 2 , y 2 ) , C ( x 3 , y 3 ) ,则 AB 的中点为 P ( x 1 x 2 , y 1 y 2 ) , △ ABC 的重心坐标为 G ( x 1x 2x 3 , y 1y 2 y3 ).22uuur3345.已知两点求向量坐标:若A ( x 1 , y 1 ) ,B (x 2 , y 2 ) ,则 AB ( x 2 x 1 , y 2y 1) .46.向量的模公式:已知a ( x 1, y 1 ) , aa 2 x 12 y 1 2 , a 2 a2.47.向量的数目积与夹角公式:已知a ( x 1, y 1 ) ,b ( x 2 , y 2 ) ,a ba b cos x 1x 2 y 1 y 2 ; cosa, bcosa bx 1x 2 y 1y 2.a bx 2yx 2 y2 2112248.向量的平行与垂直: ( 1)平行: a ∥ bba x 1 y 2 x 2 y 1 0 ( a0 );( 2)垂直: aba ·b 0x 1 x 2 y 1 y 20 .49.已知前 n 项和 S n 求通项公式: a nS 1 , n 1.S nS n 1,n250.等差数列的通项公式: a n a 1( n 1)d ;a m a n a p a q (此中 m np q ).等差数列的前n 项和公式: S nn(a 1 a n ) na 1 n(n 1) dd n 2 (a 1 d)n .22 2 251.等比数列的通项公式:a n a 1q n 1 ;a m a n a pa q (此中 m n p q ).a 1 (1 q n )a 1 a n q 1 等比数列的前n 项和公式: S n1 q1 q ,qna 1 , q 1.52.等差中项与等比中项:若 a,b, c 成等差数列,则 2b a c ;若 a,b,c 成等比数列,则 b 2ac .53.解一元二次不等式ax 2 bx c 0 (或 0) ,此中 a 0 ,b 24ac 0 .若 x 1x 2 ,则 a( x x 1)( x x 2 ) 0x x 1 或 xx 2 ; a( x x 1 )(x x 2 ) 0 x 1x x 2 .54.解含有绝对值的不等式:若a 0 ,则 xax 2 a 2a x a ;x ax 2a 2xa 或 x a .55.基本不等式(均值不等式) .( 1) a, b Ra 2b 2 2ab (当且仅当 ab 时等号建立) ,变形: ab a 2 2 b 2 ;( 2) a, b Rab ab (当且仅当 ab 时等号建立) ,变形: ab (ab ) 2 ;22*( 3) a 3 b 3 c 3 3abc (a 0, b0, c 0) ; * ( 4) a b a ba b .56.几种常有函数的导数. ( 1) C0 ( C 为常数); (2) (x n ) ' nx n 1 (nQ ) ; ( 3) (sin x) cosx ;( 4) (cos x)sin x ; ( 5) (ln x)1 ; (log a x) 1; ( 6) (e x ) e x ; (a x) a x ln a .xx ln a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学 必修5 公式
一、解三角形
ΔABC 的六个元素A, B, C, a , b, c 满足下列关系:
1、角的关系:A + B + C = π,
特殊地,若ΔABC 的三内角A, B, C 成等差数列,则∠B = 60º,∠A +∠C = 120º
2、诱导公式的应用:sin ( A + B ) = sinC , cos ( A + B ) = –cosC ,
sin (22B A +) = cos 2C , cos (22B A +) = sin 2
C 3、边的关系:a + b > c , a – b < c (两边之和大于第三边,两边之差小于第三边。


4、边角关系:
(1)正弦定理:R C
c B b A a 2sin sin sin === (R 为ΔABC 外接圆半径) a : b : c = sinA : sinB : sinC 分体型a = 2R sinA , b = 2R sinB , c = 2R sinC ,
(2)余弦定理:a 2 = b 2 + c 2 – 2bc •cosA , b 2 = a 2 + c 2 – 2a c •cosB ,
c 2 = a 2 + b 2 – 2 a b •cosC
bc a c b A 2cos 222-+=, ac b c a B 2cos 222-+= , ab
c b a C 2cos 2
22-+= 5、面积公式:S = 21a h = 21a b sinC = 21bc sinA = 2
1a c sinB 二、数列
(一)、等差数列{ a n }
1、通项公式:a n = a 1 + ( n – 1 ) d ,推广:a n = a m + ( n – m ) d ( m , n ∈N )
2、前n 项和公式:S n = n a 1 +21n ( n – 1 ) d = 2
)(1n a a n + 3、等差数列的主要性质
① 若m + n = 2 p ,则 a m + a n = 2 a p (等差中项)( m , n ∈N )
② 若m + n = p + q ,则 a m + a n = a p + a q ( m , n , p , q ∈N )
③S n , S 2 n – S n , S 3 n – S 2 n 组成等差数列,公差为n d 。

(二)、等比数列{ a n }1、通项公式:a n = a 1 q n – 1 ,推广:a n = a m q n – m ( m , n ∈N )
2、等比数列的前n 项和公式:
当q ≠1时,S n = q
q a n --1)1(1=q q a a n --11, 当q = 1时,S n = n a 1 3、等比数列的主要性质
① 若m + n = 2 p ,则a p 2 = a m • a n (等比中项)( m , n ∈N )
② 若m + n = p + q ,则 a m • a n = a p • a q ( m , n , p , q ∈N )
③S n , S 2 n –S n , S 3 n – S 2 n 组成等比数列,公比为q n 。

(三)、一般数列{ a n }的通项公式:记S n = a 1 + a 2 + … + a n ,
则恒有⎩⎨

-=-11n n n S S S a ()()N n n n ∈≥=,21
三、不等式
(一)、均值定理及其变式(1)a , b ∈ R , a 2 + b 2 ≥ 2 a b
(2)a , b ∈ R + , a + b ≥ 2ab (3)a , b ∈ R + , a b ≤ 2
2⎪⎭
⎫ ⎝⎛+b a (4)2211222b a b a ab b a +≤+≤≤+ ,以上当且仅当 a = b 时取“ = ”号。

(二)、一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间. 设12x x <
1212()()0x x x x x x x --<⇔<<; 1212()()0,x x x x x x x x -->⇔<>或
(三)、含有绝对值的不等式:当a> 0时,有
2
2x a x a a x a <⇔<⇔-<<. 22x a x a x a >⇔>⇔>或x a <-. (四)、指数不等式与对数不等式
(1)当1a >时, ()()()()f x g x a a f x g x >⇔>;
()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩
.
(2)当01a <<时, ()()()()f x g x a a f x g x >⇔<;
()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩
(五)、 0Ax By C ++>或0<所表示的平面区域: 直线定界,特殊点定域。

相关文档
最新文档