高中数学必修一 第一章集合与函数概念课后提升练习及答案
高中数学必修1第一章集合与函数概念专项练习题(附答案)
高中数学必修1第一章集合与函数概念专项练习题一、单选题1.若函数f(x)= |x +2| 的单调递增区间是( )A. (0,+∞)B. (−∞,+∞)C. [2,+∞)D. [−2,+∞)2.设全集 U ={-2,-1,0,1,2} , A ={−2,−1,0} , B ={0,1,2} ,则图中阴影部分所表示的集合为( )A. {0}B. {−2,−1}C. {1,2}D. {0,1,2} 3.函数 f(x)=2xe x +e −x 的大致图像是( )A. B. C. D.4.已知集合A={x|y= √(1−x)(x +3) },B={x|log 2x≤1},则A∩B=( ) A. {x|﹣3≤x≤1} B. {x|0<x≤1} C. {x|﹣3≤x≤2} D. {x|x≤2}5.设函数 f(x)={|x +1|,x ≤0,|log 4x|,x〉0, 若关于 x 的方程 f(x)=a 有四个不同的解 x 1,x 2,x 3,x 4, 且 x 1<x 2<x 3<x 4, 则 x 3(x 1+x 2)+1x32x 4 的取值范围是( )A. (−1,72] B. (−1,72) C. (−1,+∞) D. (−∞,72]6.已知全集U=N ,集合P ={1,2,3,4,6},P ={1,2,3,5,9}则P ∩(C U Q )=( )A. {1,2,3}B. {5,9}C. {4,6}D. {1,2,3,4,6} 7.函数 y =√−x 2−3x+4的定义域为( )A. (−4,−1)B. (−4,1)C. (−1,1)D. (−1,1]8.已知实数 a >0 , a ≠1 ,函数 f(x)=log a |x| 在 (−∞,0) 上是减函数,又 g(x)=a x +1a x ,则下列选项正确的是( )A. g(−2)<g(1)<g(3)B. g(1)<g(−2)<g(3)C. g(3)<g(−2)<g(1)D. g(−2)<g(3)<g(1)9.已知奇函数 y =f(x) 在 (−∞,0) 上单调递减,且 f(1)=0 ,若 a =f(log 318) , b =f(log 214) , c =f(log 23) ,则 a,b,c 的大小关系是( )A. c <b <aB. a <b <cC. a <c <bD. c <a <b10.设a=√2+√3 , M={x|x≤√10},给出下列关系:①a ⊂M ; ②M ⊇{a}; ③{a}∈M ; ④{Ф}⊆{a}; ⑤2a ∉M ; 其中正确的关系式共有( )A. 2个B. 3个C. 4个D. 5个 11.集合 A ={−1,0,1,2,3} , B ={x|log 2(x +1)<2} ,则 A ∩B 等于( )A. {−1,0,1,2}B. {0,1,2}C. {−1,0,1,2,3}D. {0,1,2,3} 12.函数 y =xe cosx (−π≤x ≤π) 的大致图象为( )A. B. C. D.13.若定义在R 上的偶函数f (x )在[0,+∞)上是减函数,则有( )A. f (3)<f (﹣2)<f (1)B. f (1)<f (﹣2)<f (3)C. f (﹣2)<f (1)<f (3)D. f (3)<f (1)<f (﹣2) 14.设f (x )的定义域为D ,若f (x )满足下面两个条件,则称f (x )为闭函数.①f (x )在D 内是单调函数;②存在[a,b ]⊆D , 使f (x )在[a,b ]上的值域为[a,b ] , 如果f (x )=√2x +1+k 为闭函数,那么k 的取值范围是( )A. −1<k ≤−12 B. 12≤k <1 C. k >−1 D. k <1 15.如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数:①f (x )=sinxcosx ; ②f (x )=2sin (x+π4);③f (x )=sinx+√3cosx ; ④f (x )=√2sin2x+1. 其中“同簇函数”的是( )A. ①②B. ①④C. ②③D. ③④ 16.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( )A. y =−x 2+1B. y =lg |x |C. y =1x D. y =e −x 17.下列函数中,是偶函数且在区间 (0,+∞) 上为增函数的是( ) A. y =2ln x B. y =|x 3| C. y =x −1x D. y =cosx18.已知 f(12x −1)=2x +3,f(m)=6 ,则 m 等于( ) A. −14 B. 14 C. 32 D. −32 19.若函数y=x 2﹣3x ﹣4的定义域为[0,m],值域为 [−254,−4] ,则m 的取值范围是( )A. (0,4]B. [−254,−4] C. [32,3] D. [32,+∞)20.下列函数中,既是偶函数又存在零点的是( )A. y=x 2+1B. y=|lgx|C. y=cosxD. y=e x ﹣1二、填空题21.已知集合A={1,m+2,m 2+4},且5∈A ,则m=________.22.已知函数 f(x)={x +1,x ≤1f(log 2x),x >1 ,则 f(4)= ________; f(x) 的零点为________.23.函数f (x )=lg (2sinx ﹣1)的定义域为________.24.已知函数 f(x) 是定义在R 上的奇函数,当 x ≥0 时, f(x)=2x −c ,则 f(−2)= ________ 25.已知集合 A ={x|x 2−3x +2=0,x ∈R},B ={x|0<x <5,x ∈N} ,则满足条件 A ⊆C ⊆B 的集合 C 的个数为________.26.若函数 f(x)=lnx −kx 在区间 [1,+∞) 上单调递减,则实数 k 的取值范围是________ 27.设集合A={x|x 2﹣2ax+a=0,x ∈R},B={x|x 2﹣4x+a+5=0,x ∈R},若A 和B 中有且仅有一个是∅,则实数a 的取值范围是________.28.已知函数f (x )满足f (x ﹣1)=x 2﹣x+1,则f (3)=________. 29.函数 f(x)=lg(x −3)+(x−2)0x+1的定义域是________30.函数 y =√5+4x −x 2 的值域是________.31.已知函数f (x )= {log 2(1−x),x ≤0f(x −1)−f(x −2),x >0,则f (2016)=________32.已知定义在R 上的奇函数f (x ),当x≥0时,f (x )=x 2﹣3x .则关于x 的方程f (x )=x+3的解集为________. 33.如果对定义在R 上的函数f (x ),对任意两个不相等的实数x 1 , x 2 , 都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),则称函数f (x )为“H 函数”.给出下列函数①y=x 2;②y=e x +1;③y=2x ﹣sinx ;④f (x )={ln |x |,x ≠00,x =0.以上函数是“H 函数”的所有序号为 ________. 34.已知函数f (x )= {(2−a)x +1(x <1)a x (x ≥1) 在(﹣∞,+∞)上单调递增,则实数a 的取值范围是________.35.函数 y =√3−xlog2(x+1)的定义域是________ .三、解答题36.设f (x )=x 2﹣2|x|+3(﹣3≤x≤3) (1)证明f (x )是偶函数; (2)指出函数f (x )的单调增区间; (3)求函数f (x )的值域.37.已知函数f(x)=(x+1)(x+a)x为奇函数. (1)求实数a的值;(2)当x∈[1m ,1n](m>0,n>0)时,若函数f(x)的值域为[3−3m,3−3n],求m,n的值.38.某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?39.设函数f(x)=x2−2|x−a|+3,x∈R.(1)王鹏同学认为,无论a取何值,f(x)都不可能是奇函数,你同意他的观点吗?请说明你的理由;(2)若f(x)是偶函数,求a的值;(3)在(2)的情况下,画出y=f(x)的图象并指出其单独递增区间.40.已知集合A={a,b,2},B={2,b2,2a},若A=B,求实数a,b的值.41.设f(x)=14x+2,先分别求f(0)+f(1),f(﹣1)+f(2),f(﹣2)+f(3),然后归纳猜想一般性结论,并给出证明.42.已知函数f(x)=log a(x+1),g(x)=log a(4−2x)(a>0,且a≠1),设F(x)=f(x)−g(x).(1)求函数F(x)的定义域;(2)求使函数F(x)的值为正数的x的取值范围.43.求函数y=2x﹣3+ √13−4x的值域.44.某通讯公司需要在三角形地带OAC 区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域BOC 内,乙中转站建在区域AOB 内.分界线OB 固定,且OB=(1+ √3 )百米,边界线AC 始终过点B ,边界线OA 、OC 满足∠AOC=75°,∠AOB=30°,∠BOC=45°.设OA=x (3≤x≤6)百米,OC=y 百米.(1)试将y 表示成x 的函数,并求出函数y 的解析式;(2)当x 取何值时?整个中转站的占地面积S △OAC 最小,并求出其面积的最小值.45.已知由方程kx 2-8x +16=0的根组成的集合A 只有一个元素,试求实数k 的值.46.已知 y =f(x) 为二次函数,其图象顶点为 (1,−3) ,且过坐标原点. (1)求 y =f(x) 的解析式;(2)求 y =f(x) 在区间 [0,m] 上的最大值.47.设全集U=R ,集合A={x|﹣2<x <2},集合B={x|x 2﹣4x+3>0} 求A∩B ,A ∪B ,A∩∁U B .48.已知函数 f(x)=√x , g(x)=|x −2| . (1)求方程 f(x)=g(x) 的解集;(2)定义: max{a,b}={a,a ≥bb,a <b .已知定义在 [0,+∞) 上的函数 ℎ(x)=max{f(x),g(x)} . ①求 ℎ(x) 的单调区间;②若关于 x 的方程 ℎ(x)=m 有两个实数解,求 m 的取值范围.49.已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.(1)现已画出函数f(x)在y轴左侧的图象,如图所示,请补全函数f(x)的图象,并根据图象写出函数f(x)(x∈R)的递增区间;(2)写出函数f(x)(x∈R)的值域;(3)写出函数f(x)(x∈R)的解析式.50.已知函数f(x)=|x+1|−|x|.(1)解关于x的不等式f(x)+f(x−1)<1;(2)若关于x的不等式f(x)−f(x−1)<m−2|x|有解,求m的取值范围.答案解析部分一、单选题1.【答案】D2.【答案】C3.【答案】D4.【答案】B5.【答案】A6.【答案】C7.【答案】C8.【答案】B9.【答案】D10.【答案】A11.【答案】B12.【答案】A13.【答案】A14.【答案】A15.【答案】C16.【答案】A17.【答案】B18.【答案】A19.【答案】C20.【答案】C二、填空题21.【答案】3或122.【答案】2;-123.【答案】(π6+2kπ,5π6+2kπ),k∈Z24.【答案】25.【答案】426.【答案】[1,+∞)27.【答案】(﹣1,0]∪[1,+∞)28.【答案】1329.【答案】(3,+∞)30.【答案】[0,3]31.【答案】032.【答案】{2+ √7,﹣1,﹣3}33.【答案】②③34.【答案】 [ 32 ,2) 35.【答案】 (−1,0)∪(0,3] 三、解答题36.【答案】 (1)证明:f (x )的定义域为{x|﹣3≤x≤3},关于原点对称 又f (﹣x )=(﹣x )2﹣2|﹣x|+3=x 2﹣2|x|+3=f (x ),∴f (x )是偶函数;(2)解: f(x)={x 2+2x +3=(x +1)2+2(−3≤x ≤0)x 2−2x +3=(x −1)2+2(0<x ≤3) 作出函数的图象,如图,可知:f (x )的单调增区间为[﹣1,0]和[1,3](3)解:由(2)知,x=±1时,函数取得最小值;x=±3时,函数取得最大值 ∴函数f (x )的值域为[2,6].37.【答案】 (1)解:函数f (x )的定义域为: {x ∈R|x ≠0} , f(x)=(x+1)(x+a)x=x +ax+1+a ,∴ f(−x)+f(x)=−x −ax +1+a +x +ax +1+a =0 , ∴ a =−1 ;(2)解:由(1)可知: f(x)=x −1x , 显然 f(x)=x −1x 在 [1m ,1n ] 上单调递增,∴{1m −m =3−3m 1n−n =3−3n,∴ m , n 是方程 2x 2−3x +1=0 的两个实根,且 m >n , ∴ m =1,n =12 .38.【答案】 解:(Ⅰ)当每辆车的月租金定为3600元时, 未租出的车辆数为 ,所以这时租出了88辆车.(Ⅱ)设每辆车的月租金定为x 元, 则租赁公司的月收益为,整理得.所以,当x=4050时,f (x )最大,最大值为f (4050)=307050,即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大月收益为307050元 39.【答案】 (1)解:我同意王鹏同学的看法,理由如下: f(a)=a 2+3,f(−a)=a 2−4|a|+3若 f(x) 为奇函数,则有 f(a)+f(−a)=0 , ∴a 2−2|a|+3=0显然 a 2−2|a|+3=0 无解, 所以 f(x) 不可能是奇函数(2)解:若 f(x) 为偶函数,则有 f(x)=f(−x) ∴2|a|=0 , 解得 a =0 ,此时 f(x)=x 2−2|x|+3 ,是偶函数.(3)解:由(2)知 f(x)=x 2−2|x|+3 ,其图象如图所示其单调递增区间是 (−1,0) 和 (1,+∞) .40.【答案】 解:由已知 A =B ,得 {a =2a b =b 2 (1)或 {a =b 2b =2a .(2) 解(1)得 {a =0b =0 或 {a =0b =1 , 解(2)得 {a =0b =0 或 {a =14b =12,又由集合中元素的互异性 得 {a =0b =1 或 {a =14b =12 . 41.【答案】解:f (0)+f (1)= , 同理可得:f (﹣1)+f (2)= ,f (﹣2)+f (3)=.一般性结论:或写成“若x 1+x 2=1,则f (x 1)+f (x 2)=.”证明: ==42.【答案】 (1)解:∵函数 f(x)=log a (x +1) , g(x)=log a (4−2x) ∴ F(x)=f(x)−g(x)=log a (x +1)−log a (4−2x) ∴其定义域满足: {x +1>04−2x >0 ,解得 −1<x <2∴函数 F(x) 的定义域为 (−1,2)(2)解:要使函数 F(x) 的值为正数,等价于 f(x)>g(x) ,即 log a (x +1)>log a (4−2x) . ①当 a >1 时,可得 x +1>4−2x ,解得 x >1 . ∵定义域为 (−1,2)∴实数 x 的取值范围是 (1,2)②当 0<a <1 时,可得 x +1<4−2x ,解得 x <1 . ∵定义域为 (−1,2)∴实数 x 的取值范围是 (−1,1)综上,当 a >1 时,解集为 (1,2) ;当 0<a <1 ,解集为 (−1,1) 43.【答案】解:令则,t≥0 ∴y=﹣3+t=﹣t 2+t+=﹣ (t ﹣1)2+4(t≥0)根据二次函数的性质可知,当t=1即x=3时,函数有最大值4 故答案为:(﹣∞,4]44.【答案】 (1)解:结合图形可知,S △BOC +S △AOB =S △AOC .于是, 12 x (1+ √3 )sin30°+ 12 y (1+ √3 )sin45°= 12 xysin75°,解得:y= √2xx−2 ,(其中3≤x≤6)(2)解:由(1)知,y= √2x x−2 (3≤x≤6),因此,S △AOC = 12 xysin75°= 1+√34 • x 2x−2= 1+√34[(x ﹣2)+ 4x−2 +4] ≥2+2 √3 (当且仅当x ﹣2= 4x−2 ,即x=4时,等号成立).∴当x=400米时,整个中转站的占地面积S △OAC 最小,最小面积是(2+2 √3 )×104平方米. 45.【答案】解:当k =0时,原方程变为-8x +16=0,所以x =2,此时集合A 中只有一个元素2.当k≠0时,要使一元二次方程kx 2-8x +16=0有一个实根,需Δ=64-64k =0,即k =1.此时方程的解为x 1=x 2=4,集合A 中只有一个元素4.综上可知k =0或146.【答案】 (1)解:设 f(x) 解析式为: f(x)=a(x −1)2−3 ∵f(x) 过坐标原点 ∴f(0)=a −3=0 ,解得: a =3∴f(x)=3(x −1)2−3=3x 2−6x(2)解:由(1)知: f(x) 为开口方向向上,对称轴为 x =1 的二次函数 ①当 0<m <2 时, f(x)max =f(0)=0 ,当 m =2 时, f(x)max =f(0)=f(m)=0 , ②当 m >2 时, f(x)max =f(m)=3m 2−6m47.【答案】解:全集U=R ,集合A={x|﹣2<x <2},集合B={x|x 2﹣4x+3>0}={x|x <1或x >3},所以A∩B={x|﹣2<x <1},A ∪B={x|x <2或x >3},∁U B={x|1≤x≤3},所以A∩∁U B={x|1≤x <2}48.【答案】 (1)解:当 x ≥2 时,方程 f(x)=g(x) 为 √x =x −2 ,即 (√x −2)(√x +1)=0 ,解得 x =4 ,当 0≤x <2 时,方程 f(x)=g(x) 为 √x =2−x ,即 (√x +2)(√x −1)=0 ,解得 x =1 , 综上,方程 f(x)=g(x) 的解集为 {1,4} .(2)解:① f(x)≥g(x)⇒1≤x ≤4 , f(x)<g(x)⇒0≤x <1 或 x >4所以 ℎ(x)=max{f(x),g(x)}={2−x,0≤x <1√x,1≤x ≤4x −2,x >4 ,所以, ℎ(x) 的单调递增区间为 [1,+∞) ,单调递减区间为 [0,1) .②由①知 ℎ(x)min =ℎ(1)=1 , ℎ(0)=2 ,当 1<m ≤2 时,方程 ℎ(x)=m 有两个实数解, 综上,实数 m 的取值范围为 (1,2] .49.【答案】 (1)解:根据偶函数的图象关于y 轴对称,作出函数在R 上的图象, 结合图象可得函数的增区间为(﹣1,0)、减区间为(1,+∞)(2)解:结合函数的图象可得,当x=1,或 x=﹣1时,函数取得最小值为﹣1, 函数没有最大值,故函数的值域为[﹣1,+∞)(3)解:当x >0时,﹣x <0,再根据x≤0时,f (x )=x 2+2x ,可得f (﹣x )=(﹣x )2+2(﹣x )=x 2﹣2x .再根据函数f (x )为偶函数,可得f (x )=x 2﹣2x .综上可得,f (x )= {x 2+2x,x ≤0x 2−2x,x >050.【答案】 (1)解: f(x)+f(x −1)<1⇔|x +1|−|x −1|<1⇔{x ⩽−1−x −1−1+x <1 或 {−1<x <1x +1−1+x <1 或 {x ⩾1x +1−x +1<1⇔x ⩽−1 或 −1<x <12⇔x <12所以,原不等式的解集为 (−∞,12)(2)解: f(x)−f(x −1)<m −2|x| 有解即 |x +1|+|x −1|<m 有解则 m >(|x +1|+|x −1|)min 即可.由于 |x +1|+|x −1|⩾|(x +1)−(x −1)|=2 ,当且仅当 (x +1)(x −1)≤0 ,即当 −1≤x ≤1 时等号成立,故 m >2 . 所以, m 的取值范围是 (2,+∞) .。
高中数学必修1课后习题答案完整版
高中数学必修1课后习题答案第一章集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号或填空:(1)设A为所有亚洲国家组成的集合,则:中国_______A,美国_______A,印度_______A,英国_______A;(2)若,则;(3)若,则3_______B;(4)若,则8_______C,9.1_______C.1.(1)中国,美国,印度,英国;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.22 .1} (2),2 (3).}(4),.2.试选择适当的方法表示下列集合:(1)由方程的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;(3)一次函数与的图象的交点组成的集合;(4)不等式的解集.22.解:(1)因为方程的实数根为,222所以由方程的所有实数根组成的集合为;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7}; 2(3)由,得,即一次函数与的图象的交点为(1,4),所以一次函数与的图象的交点组成的集合为{(1,4)};(4)由,得,所以不等式的解集为.1.1.2集合间的基本关系练习(第7页)1.写出集合{a,b,c}的所有子集.1.解:按子集元素个数来分类,不取任何元素,得;取一个元素,得{a},{b},{c};取两个元素,得{a,b},{a,c},{b,c};取三个元素,得{a,b,c},即集合{a,b,c}的所有子集为.2.用适当的符号填空:(1)a______{a,b,c};(2);(3);(4){0,1}______N;(5);(6).2.(1)是集合{a,b,c}中的一个元素;2222} (2)222{;0} 22(3)方程无实数根,;(4){0,1}(5){0}是自然数集合N的子集,也是真子集;N (或)(或);1}22(6)方程两根为.3.判断下列两个集合之间的关系:(1),是8的约数};(2)A,;(3)是4与10的公倍数,.3.解:(1)因为是8的约数,所以AB;(2)当时,;当时,,即B是A的真子集,BA;(3)因为4与10的最小公倍数是20,所以.1.1.3集合的基本运算练习(第11页)1.设,求.1.解:,.2.设,求.22.解:方程的两根为,2 方程的两根为,22得,即.3.已知是等腰三角形},是直角三角形},求.3.解:是等腰直角三角形},是等腰三角形或直角三角形}.4.已知全集,,求痧.4.解:显然,,则,(痧.1.1集合习题1.1 (第11页)A组1.用符号或填空:(1)327_______Q;(2)32______N;(3);2(4_______R;(5Z;(6)_______N.1.(1)是有理数;(2)是个自然数;77是实数;2(3)是个无理数,不是有理数;(4R(5Z是个整数;(6)是个自然数.2.已知,用或符号填空:(1)5_______A;(2)7_______A;(3).2.(1);(2);(3).当时,;当时,;3.用列举法表示下列给定的集合:(1)大于1且小于6的整数;(2);(3).3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程的两个实根为,即为所求;(3)由不等式,得,且,即{0,1,2}为所求.4.试选择适当的方法表示下列集合:(1)二次函数的函数值组成的集合;(2)反比例函数x(3)不等式的解集.22的自变量的值组成的集合;4.解:(1)显然有,得,即,得二次函数的函数值组成的集合为;(2)显然有,得反比例函数(3)由不等式,得5.选用适当的符号填空:(1)已知集合,则有:22x的自变量的值组成的集合为;45,即不等式的解集为.454_______B;;{2}_______B;B_______A;(2)已知集合,则有:1_______A;;;;,1}(3){x|x是菱形}_______{x|x是平行四边形};{x|x是等腰三角形}_______{x|x是等边三角形}.5.(1);;{2}B;B2A;,即;(2);;2=A;,1}A;;(3){x|x是菱形}{x|x是平行四边形};菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{x|x是等边三角形}{x|x是等腰三角形}.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合,求.6.解:,即,得,则,.7.设集合是小于9的正整数},,求,,,.7.解:是小于9的正整数,则,,而5,6},,则,.8.学校里开运动会,设是参加一百米跑的同学},是参加二百米跑的同学},是参加四百米跑的同学},学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定,并解释以下集合运算的含义:(1);(2).8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为.(1)是参加一百米跑或参加二百米跑的同学};(2)是既参加一百米跑又参加四百米跑的同学}.9.设是平行四边形或梯形},是平行四边形},是菱形},是矩形,求,ðAB,ðSA.x}9.解:同时满足菱形和矩形特征的是正方形,即是正方形},平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形,即是邻边不相等的平行四边形},ðSA是梯形}.10.已知集合,求,,,.10.解:,,或,或,得或,或,或,或或}.B组1.已知集合,集合B满足,则集合B有1.4 集合B满足,则,即集合B是集合A的子集,得4个子集.2.在平面直角坐标系中,集合表示直线,从这个角度看,集合表示什么?集合C,D之间有什么关系?表示两条直线的交点的集合,.解:集合即,点D(1,1)显然在直线上,得DC.3.设集合,,求.3.解:显然有集合,当时,集合,则;当时,集合,则;当时,集合,则;当,且,且时,集合,则.4.已知全集,,试求集合B.4.解:显然,由,得,即痧,而,U得,而痧U(即,10}.B),第一章集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1);(2).1.解:(1)要使原式有意义,则,即得该函数的定义域为;74,74(2)要使原式有意义,则,即,得该函数的定义域为.2.已知函数,(1)求的值;(2)求的值.2.解:(1)由,得,同理得,则,即;(2)由,得,同理得,则,即.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h与时间t关系的函数和二次函数;(2)和.3.解:(1)不相等,因为定义域不同,时间;(2)不相等,因为定义域不同,.0022222222222222222 1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm的圆形木头锯成矩形木料,如果矩形的一边长为xcm,面积为ycm,把y表示为x的函数.1,,且,即.2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事.(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2(A)(B)(C)(D)2.解:图象(A)对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化;图象(B)对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速;图象(D)对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C)我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.画出函数的图象..解:,图象如下所示.4.设与是锐角,从A到B的映射是“求正弦”,中元素60相对应的么?B中的元素是什么?与B中的元素2相对应的A中元素是什.解:因为2,所以与A中元素60相对应的B中的元素是;因为,所以与B中的元素2相对应的A中元素是45.1.2函数及其表示习题1.2(第23页)1.求下列函数的定义域:(1)2;(2)(3);(4 )1.解:(1)要使原式有意义,则,即,得该函数的定义域为;(2)R,即该函数的定义域为R;(3)要使原式有意义,则,即且,得该函数的定义域为且; 2(4)要使原式有意义,则,即且,得该函数的定义域为且.2.下列哪一组中的函数f(x)与g(x)相等?(1);(2);(3).2.解:(1)的定义域为R,而的定义域为,即两函数的定义域不同,得函数f(x)与g(x)不相等;(2)的定义域为R,而的定义域为,24即两函数的定义域不同,得函数f(x)与g(x)不相等;(3,即这两函数的定义域相同,切对应法则相同,得函数f(x)与g(x)相等.3.画出下列函数的图象,并说出函数的定义域和值域.(1);(2)3.解:(1)定义域是,值域是;(2)定义域是,值域是;(3)28x;(3);(4).2定义域是,值域是;(4)定义域是,值域是.4.已知函数f(2,求f(,,,.4.解:因为2,所以即同理,,即;,即;,即.5.已知函数(1)点(3,14)在f(x)的图象上吗?(2)当时,求f(x)的值;(3)当时,求x的值.5.解:(1)当时,,即点(3,14)不在f(x)的图象上;(2)当时,,即当时,求f(x)的值为;(3)即.,得,6.若,且,求的值.6.解:由,得1,3是方程的两个实数根,即,得,即,得,即的值为8.7.画出下列函数的图象:222(1);(2).7.图象如下:8.如图,矩形的面积为10,如果矩形的长为x,宽为y,对角线为d,周长为l,那么你能获得关于这些量的哪些函数?8.解:由矩形的面积为10,即,得,由对角线为d,即,由周长为l,即,得,另外,而,得,即.9.一个圆柱形容器的底部直径是dcm,高是hcm,现在以vcm/s的速度向容器显然,即,得,得函数的定义域为4v]和值域为[0,h].10.设集合,试问:从A到B的映射共有几个?并将它们分别表示出来.10.解:从A到B的映射共有8个.分别是,,,,,,,.B组1.函数的图象如图所示.(1)函数的定义域是什么?(2)函数的值域是什么?(3)r取何值时,只有唯一的p值与之对应?1.解:(1)函数的定义域是;(2)函数的值域是;(3)当,或时,只有唯一的p值与之对应.2.画出定义域为且,值域为的一个函数的图象.(1)如果平面直角坐标系中点P(x,y)的坐标满足,,那么其中哪些点不能在图象上?(2)将你的图象和其他同学的相比较,有什么差别吗?2.解:图象如下,(1)点(x,0)和点(5,y)不能在图象上;(2)省略.3.函数的函数值表示不超过x的最大整数,例如,,.当时,写出函数f(x)的解析式,并作出函数的图象..解:图象如下4.如图所示,一座小岛距离海岸线上最近的点P的距离是2km,从点P沿海岸正东12km 处有一个城镇.(1)假设一个人驾驶的小船的平均速度为3km/h,步行的速度是5km/h,t(单位:h)表示他从小岛到城镇的时间,x(单位:km)表示此人将船停在海岸处距P点的距离.请将t 表示为x的函数.(2)如果将船停在距点P4km处,那么从小岛到城镇要多长时间(精确到1h)?4.解:(,得,,即5,.(2)当时,.第一章集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.整个上午天气越来越暖,中午时分一场暴风雨使天气骤然凉爽了许多.暴风雨过后,天气转暖,直到太阳落山(18:00)才又开始转凉.画出这一天期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间.2.解:图象如下[8,12是递增区间,][12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.根据下图说出函数的单调区间,以及在每一单调区间上,函数是增函数还是减函数.3.解:该函数在上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明函数在R上是减函数.4.证明:设,且,因为,即,所以函数在R上是减函数.5.设f(x)是定义在区间上的函数.如果f(x)在区间上递减,在区间上递增,画出f(x)的一个大致的图象,从图象上可以发现是函数f(x)的一个. 5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.判断下列函数的奇偶性:(1);(2)(3)x;(4)4221.解:(1)对于函数,其定义域为,因为对定义域内每一个x都有,所以函数为偶函数;(2)对于函数,其定义域为,因为对定义域内每一个x都有,所以函数为奇函数;3333424242(3)对于函数x,其定义域为,因为对定义域内每一个x都有,所以函数x为奇函数;(4)对于函数,其定义域为,因为对定义域内每一个x都有,所以函数为偶函数.2.已知f(x)是偶函数,g(x)是奇函数,试将下图补充完整.2.解:f(x)是偶函数,其图象是关于y轴对称的;g(x)是奇函数,其图象是关于原点对称的.2222习题1.3A组1.画出下列函数的图象,并根据图象说出函数的单调区间,以及在各单调区间上函数是增函数还是减函数.(1);1.解:(1)2(2)函数在上递减;函数在上递增;5522(2)函2.证明:(1)函数在上是减函数;(2)函数数在上递增;函数在上递减.1x在上是增函数.222.证明:(1)设,而,由,得,即,所以函数在上是减函数;(2)设,而21x21x1,由,得,即,所以函数1x在上是增函数.3.探究一次函数的单调性,并证明你的结论. 3.解:当时,一次函数在上是增函数;当时,一次函数在上是减函数,令,设,而,当时,,即,得一次函数在上是增函数;当时,,即,得一次函数在上是减函数.4.一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高.画出自服药那一刻起,心率关于时间的一个可能的图象(示意图).4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.某汽车租赁公司的月收益y元与每辆车的月租金x元间的关系为少?,那么,每辆车的月租金多少元时,租赁公司的月收益最大?最大月收益是多5.解:对于函数当,,时,(元)162即每辆车的月租金为4050元时,租赁公司最大月收益为307050元.6.已知函数f(x)是定义在R上的奇函数,当时,画出函数f(x) 的图象,并求出函数的解析式.6.解:当时,,而当时,,即,而由已知函数是奇函数,得,得,即,所以函数的解析式为B组1.已知函数,(1)求f(x),g(x)的单调区间;(2)求f(x),g(x)的最小值.1.解:(1)二次函数的对称轴为,则函数f(x)的单调区间为,且函数f(x)在上为减函数,在上为增函数,函数g(x)的单调区间为[2,4],且函数g(x)在[2,4]上为增函数;(2)当时,,因为函数g(x)在[2,4]上为增函数,所以.2.如图所示,动物园要建造一面靠墙的2间面积相同的矩形熊猫居室,如果可供建造围墙的材料总长是30m,那么宽x(单位:m)为多少才能使建造的每间熊猫居室面积最大?每间熊猫居室的最大面积是多少?2.解:由矩形的宽为xm,得矩形的长为2m,设矩形的面积为S,则22,当时,,即宽才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是18.75m .3.已知函数f(x)是偶函数,而且在上是减函数,判断f(x)在上是增函数还是减函数,并证明你的判断.3.判断f(x)在上是增函数,证明如下:设,则,因为函数f(x)在上是减函数,得,又因为函数f(x)是偶函数,得,所以f(x)在上是增函数.复习参考题A组1.用列举法表示下列集合:(1);(2);(3)21.解:(1)方程的解为,即集合;22 (2),且,则,即集合;2(3)方程的解为,即集合.2.设P表示平面内的动点,属于下列集合的点组成什么图形?(1)是两个定点);(2)是定点).2.解:(1)由,得点P到线段AB的两个端点的距离相等,即表示的点组成线段AB的垂直平分线;(2){表示的点组成以定点O为圆心,半径为3cm的圆.3.设平面内有,且P表示这个平面内的动点,指出属于集合的点是什么.3.解:集合表示的点组成线段AB的垂直平分线,集合表示的点组成线段AC的垂直平分线,得的点是线段AB的垂直平分线与线段AC的垂直平分线的交点,即的外心.4.已知集合,若,求实数a的值.4.解:显然集合,对于集合,当时,集合,满足,即;当时,集合,而,则21,或1,得,或,综上得:实数a的值为,或1.5.已知集合,,,求,,.解:集合},即;集合,即;集合;则556.求下列函数的定义域:(1);(2)6.解:(1)要使原式有意义,则0,即,得函数的定义域为;(2)要使原式有意义,则,即,且,得函数的定义域为.7.已知函数,求:(1);(2)7.解:(1)因为所以,,得2 即;(2)因为,所以,a 即.8.设,,求证:50(1);(2)x8.证明:(1)因为,所以,即;(2)因为f(,所以,x1 即9.已知函数在[5,20]上具有单调性,求实数k的取值范围. 2 9.解:该二次函数的对称轴为2k8,函数在[5,20]上具有单调性,则k,或k,得,或,即实数k的取值范围为,或.10.已知函数,(1)它是奇函数还是偶函数?(2)它的图象具有怎样的对称性?(3)它在上是增函数还是减函数?(4)它在上是增函数还是减函数?10.解:(1)令,而即函数(2)函数(3)函数(4)函数,是偶函数;的图象关于y轴对称;在上是减函数;在上是增函数.B组1.学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛.问同时参加田径和球类比赛的有多少人?只参加游泳一项比赛的有多少人?1.解:设同时参加田径和球类比赛的有x人,则,得,只参加游泳一项比赛的有(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2.已知非空集合,试求实数a的取值范围.2.解:因为集合,且,所以.3.设全集,,,求集合B.3.解:由,得,集合里除去,得集合B,22所以集合4.已知函数.求f(1),,的值.4.解:当时,,得;当时,,得;证明:.(1)若,则f(22(2)若,则g(222;.5.证明:(1)因为,得f(222所以f(1;22(2)因为,得g(22a2,,24222b,2212121222因为,424121222即,42所以226.(1)已知奇函数f(x)在[a,b]上是减函数,试问:它在上是增函数还是减函数?(2)已知偶函数g(x)在[a,b]上是增函数,试问:它在上是增函数还是减函数?6.解:(1)函数f(x)在上也是减函数,证明如下:设,则,1,因为函数f(x)在[a,b]上是减函数,则,又因为函数f(x)是奇函数,则,即,所以函数f(x)在上也是减函数;(2)函数g(x)在上是减函数,证明如下:设,则,因为函数g(x)在[a,b]上是增函数,则,又因为函数g(x)是偶函数,则,即,所以函数g(x)在上是减函数.7.《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额.此项税款按下表分段累计计算:某人一月份应交纳此项税款为26.78元,那么他当月的工资、薪金所得是多少?7.解:设某人的全月工资、薪金所得为x元,应纳此项税款为y元,则由该人一月份应交纳此项税款为26.78元,得,,得,所以该人当月的工资、薪金所得是2517.8元.第三章函数的应用3.1函数与方程练习(P88)1.(1)令f(x)=-x2+3x+5,作出函数f(x)的图象(图3-1-2-7(1)),它与x轴有两个交点,所以方程-x2+3x+5=0有两个不相等的实数根.(2)2x(x-2)=-3可化为2x2-4x+3=0,令f(x)=2x2-4x+3,作出函数f(x)的图象(图3-1-2-7(2)),它与x轴没有交点,所以方程2x(x-2)=-3无实数根.(3)x2=4x-4可化为x2-4x+4=0,令f(x)=x2-4x+4,作出函数f(x)的图象(图3-1-2-7(3)),它与x轴只有一个交点(相切),所以方程x2=4x-4有两个相等的实数根.(4)5x2+2x=3x2+5可化为2x2+2x-5=0,令f(x)=2x2+2x-5,作出函数f(x)的图象(图3-1-2-7(4)),它与x轴有两个交点,所以方程5x2+2x=3x2+5有两个不相等的实数根.图3-1-2-72.(1)作出函数图象(图3-1-2-8(1)),因为f(1)=1>0,f(1.5)=-2.875<0,所以f(x)=-x3-3x+5在区间(1,1.5)上有一个零点.又因为f(x)是(-∞,+∞)上的减函数,所以f(x)=-x3-3x+5在区间(1,1.5)上有且只有一个零点.(2)作出函数图象(图3-1-2-8(2)),因为f(3)<0,f(4)>0,所以f(x)=2x·ln(x-2)-3在区间(3,4)上有一个零点.又因为f(x)=2x·ln(x-2)-3在(2,+∞)上是增函数,所以f(x)在(3,4)上有且仅有一个零点.(3)作出函数图象(图3-1-2-8(3)),因为f(0)<0,f(1)>0,所以f(x)=ex-1+4x-4在区间(0,1)上有一个零点.又因为f(x)=ex-1+4x-4在(-∞,+∞)上是增函数,所以f(x)在(0,1)上有且仅有一个零点.(4)作出函数图象(图3-1-2-8(4)),因为f(-4)<0,f(-3)>0,f(-2)<0,f(2)<0,f(3)>0,所以f(x)=3(x+2)(x-3)(x+4)+x在(-4,-3),(-3,-2),(2,3)上各有一个零点.图3-1-2-8练习(P91)1.由题设可知f(0)=-1.4<0,f(1)=1.6>0,于是f(0)·f(1)<0,所以函数f(x)在区间(0,1)A组(P92)1.A,C 点评:需了解二分法求函数的近似零点的条件.2.由x,f(x)的对应值表可得f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,又根据“如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.”可知函数f(x)分别在区间(2,3),(3,4),(4,5)内有零点.3.原方程即(x+1)(x-2)(x-3)-1=0,令f(x)=(x+1)(x-2)(x-3)-1,可算得f(-1)=-1,f(0)=5.于是f(-1)·f(0)<0,所以这个方程在区间(-1,0)内有一个解. 下面用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)=3.375.因为f(-1)·f(-0.5)<0,所以x0∈(-1,-0.5).再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)≈1.58.因为f(-1)·f(-0.75)<0,所以x0∈(-1,-0.75).同理,可得x0∈(-1,-0.875),x0∈(-0.937 5,-0.875).由于|(-0.875)-(-0.937 5)|=0.062 5<0.1,所以原方程的近似解可取为-0.937 5.4.原方程即0.8x-1-lnx=0,令f(x)=0.8x-1-lnx,f(0)没有意义,用计算器算得f(0.5)≈0.59,f(1)=-0.2.于是f(0.5)·f(1)<0,所以这个方程在区间(0.5,1)内有一个解.下面用二分法求方程0.8x-1=lnx在区间(0,1)内的近似解.取区间(0.5,1)的中点x1=0.75,用计算器可算得f(0.75)≈0.13.因为f(0.75)·f(1)<0,所以x0∈(0.75,1).再取(0.75,1)的中点x2=0.875,用计算器可算得f(0.875)≈-0.04.因为f(0.875)·f(0.75)<0,所以x0∈(0.75,0.875).同理,可得x0∈(0.812 5,0.875),x0∈(0.812 5,0.843 75).由于|0.812 5-0.843 75|=0.031 25<0.1,所以原方程的近似解可取为0.843 75.5.由题设有f(2)≈-0.31<0,f(3)≈0.43>0,于是f(2)·f(3)<0,所以函数f(x)在区间(2,3)内有一个零点.下面用二分法求函数f(xx在区间(2,3)内的近似解.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)≈0.12.因为f(2)·f(2.5)<0,所以x0∈(2,2.5).再取(2,2.5)的中点x2=2.25,用计算器可算得f(2.25)≈-0.08.因为f(2.25)·f(2.5)<0,所以x0∈(2.25,2.5).同理,可得x0∈(2.25,2.375),x0∈(2.312 5,2.375),x0∈(2.343 75,2.375), x0∈(2.343 75,2.359 375),x0∈(2.343 75,2.351 562 5),x0∈(2.343 75,2.347 656 25). 由于|2.343 75-2.347 656 25|=0.003 906 25<0.01,所以原方程的近似解可取为2.347 656 25.B组1.将系数代入求根公式x4得所以方程的两个解分别为4下面用二分法求方程的近似解.取区间(1.775,1.8)和(-0.3,-0.275),令f(x)=2x2-3x-1.在区间(1.775,1.8)内用计算器可算得f(1.775)=-0.023 75,f(1.8)=0.08.于是f(1.775)·f(1.8)<0.所以这个方程在区间(1.775,1.8)内有一个解.由于|1.8-1.775|=0.025<0.1,所以原方程在区间(1.775,1.8)内的近似解可取为1.8.同理,可得方程在区间(-0.3,-0.275)内的近似解可取为-0.275.所以方程精确到0.1的近似解分别是1.8和-0.3.2.原方程即x3-6x2-3x+5=0,令f(x)=x3-6x2-3x+5,函数图象如下图所示.图3-1-2-9所以这个方程在区间(-2,0),(0,1),(6,7)内各有一个解.取区间(-2,0)的中点x1=-1,用计算器可算得f(-1)=1.因为f(-2)·f(-1)<0,所以x0∈(-2,-1).再取(-2,-1)的中点x2=-1.5,用计算器可算得f(-1.5)=-7.375.因为f(-1.5)·f(-1)<0,所以x0∈(-1.5,-1).同理,可得x0∈(-1.25,-1),x0∈(-1.125,-1),x0∈(-1.125,-1.062 5).由于|(-1.062 5)-(-1.125)|=0.062 5<0.1,所以原方程在区间(-2,0)内的近似解可取为-1.062 5.同理,可得原方程在区间(0,1)内的近似解可取为0.7,在区间(6,7)内的近似解可取为6.3.3.(1)由题设有g(x)=2-[f(x)]2=2-(x2+3x+2)2=-x4-6x3-13x2-12x-2.(2)函数图象如下图所示.图3-1-2-10(3)由图象可知,函数g(x)分别在区间(-3,-2)和区间(-1,0)内各有一个零点.取区间(-3,-2)的中点x1=-2.5,用计算器可算得g(-2.5)=0.187 5.因为g(-3)·g(-2.5)<0,所以x0∈(-3,-2.5).再取(-3,-2.5)的中点x2=-2.75,用计算器可算得g(-2.75)≈0.28.因为g(-3)·g(-2.75)<0,所以x0∈(-3,-2.75).同理,可得x0∈(-2.875,-2.75),x0∈(-2.812 5,-2.75).由于|-2.75-(-2.812 5)|=0.062 5<0.1,所以原方程在区间(-3,-2)内的近似解可取为-2.812 5.同样可求得函数在区间(-1,0)内的零点约为-0.2.所以函数g(x)精确到0.1的零点约为-2.8或-0.2.点评:第2、3题采用信息技术画出函数图象,并据此明确函数零点所在的区间.在教学中,如果没有信息技术条件,建议教师直接给出函数图象或零点所在区间.第三章复习参考题A组(P112)1.C2.C3.设经过时间t后列车离C地的距离为y,则图3-24.(1)圆柱形; (2)上底小、下底大的圆台形;(3)上底大、下底小的圆台形; (4)呈下大上小的两节圆柱形. 图略.图3-35.令f(x)=2x-4x-3x+1,函数图象如图3-3所示:函数分别在区间(-1,0)、(0,1)和区间(2,3)内各有一个零点,所以方程2x3-4x2-3x+1=0的最大的根应在区间(2,3)内.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)=-0.25.因为f(2.5)·f(3)<0,所以x0∈(2.5,3). 再取(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈4.09.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x0∈(2.5,2.625),x0∈(2.5,2.5625),x0∈(2.5,2.53125),x0∈(2.515625,2.53125),x0∈(2.515625,2.5234375).由于|2.523 437 5-2.515 625|=0.007 812 5<0.01,所以原方程的最大根约为2.523 437 5.6.令lgx=321x,即得方程x=0,再令x,用二分法求得交点的横坐标约为2.5.图3-47.如图,作DE⊥AB,垂足为E.由已知可得∠ADB=90°.因为AD=x,AB=4,于是AD=AE×AB,即AE=2AD2AB=x24.所以CD=AB-2AE=4-2×x22.于是2x2由于AD>0,AE>0,CD>0,所以解得0<x<22.所以所求的函数为8.(1)由已知可得N=N0(x22+2x+8,0<x<22. 1因为λ是正常数,e>1,所以eλ>1,即又N0是正常数,所以N=N0((2)N=N0e-λt,因为e-是在于t的减函数. NN0,所以-λt=lnNN0,即(3)当N=N02时9.因为f(1)=-3+12+8=17>0,f(2)=-3×8+12×2+8=8>0,f(3)<0,所以,下次生产应在两个月后开始.B组1.厂商希望的是甲曲线;客户希望的是乙曲线.函数的解析式为y=f(t函数的图象为图3-5备课资料[备选例题]【例】对于函数f(x)=ax2+(b+1)x+b-2(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的不动点.(1)当a=2,b=-2时,求f(x)的不动点;(2)若对于任何实数b,函数f(x)恒有两个相异的不动点,求实数a的取值范围. 解:(1)f(x)=ax2+(b+1)x+b-2(a≠0),当a=2,b=-2时,f(x)=2x2-x-4,设x为其不动点,即2x2-x-4=x,则2x2-2x-4=0,解得x1=-1,x2=2,即f(x)的不动点为-1,2.(2)由f(x)=x,得ax2+bx+b-2=0.关于x的方程有相异实根,则b2-4a(b-2)>0,即b2-4ab+8a>0. 又对所有的b∈R,b2-4ab+8a>0恒成立,故有(4a)2-4·8a<0,得0<a<2.。
必修一第一章集合全章练习题(含答案)
》第一章集合与函数概念§集合1.集合的含义与表示第1课时集合的含义课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.1.元素与集合的概念·(1)把________统称为元素,通常用__________________表示.(2)把________________________叫做集合(简称为集),通常用____________________表示.2.集合中元素的特性:________、________、________.3.集合相等:只有构成两个集合的元素是______的,才说这两个集合是相等的.4—5.____一、选择题1.下列语句能确定是一个集合的是( )!A.著名的科学家B.留长发的女生C.2010年广州亚运会比赛项目D.视力差的男生2.集合A只含有元素a,则下列各式正确的是( )A.0∈A B.a∉AC.a∈A D.a=A3.已知M中有三个元素可以作为某一个三角形的边长,则此三角形一定不是( )#A.直角三角形 B.锐角三角形C.钝角三角形 D.等腰三角形4.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是( ) A.1 B.-2 C.6 D.25.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为( ) A.2 B.3C.0或3 D.0,2,3均可6.由实数x、-x、|x|、x2及-3x3所组成的集合,最多含有( )#A .2个元素B .3个元素C .4个元素D .5个元素二、填空题7.由下列对象组成的集体属于集合的是______.(填序号) ①不超过π的正整数; ②本班中成绩好的同学;③高一数学课本中所有的简单题; ④平方后等于自身的数.@8.集合A 中含有三个元素0,1,x ,且x 2∈A ,则实数x 的值为________. 9.用符号“∈”或“∉”填空-2_______R ,-3_______Q ,-1_______N ,π_______Z . 三、解答题10.判断下列说法是否正确并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合; (2)未来世界的高科技产品构成一个集合;(3)1,,32,12组成的集合含有四个元素;^(4)高一(三)班个子高的同学构成一个集合.`11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .'。
高中数学必修1课后习题答案完整版
高中数学必修1课后习题答案 第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A ,印度_______A ,英国_______A ;(2)若2{|}A x x x ==,则1-_______A ; (3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C . 1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉.2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合; (2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (4)不等式453x -<的解集.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-; (2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ; 取两个元素,得{,},{,},{,}a b a c b c ; 取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =; (3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=. 2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集;(5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以AB ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,BA ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,A B A B .1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==, {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}AB ==.2.设22{|450},{|1}A x x x B x x =--===,求,AB A B .2.解:方程2450x x --=的两根为121,5x x =-=, 方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-, 即{1},{1,1,5}AB A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,A B A B .3.解:{|}A B x x =是等腰直角三角形,{|}AB x x =是等腰三角形或直角三角形.4.已知全集{1,2,3,4,5,6,7}U =,{2,4,5},{1,3,5,7}A B ==, 求(),()()U U U AB A B 痧?.4.解:显然{2,4,6}U B =ð,{1,3,6,7}U A =ð, 则(){2,4}U AB =ð,()(){6}U U A B =痧. 1.1集合习题1.1 (第11页) A 组1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R 是实数;(5Z3=是个整数; (6)2N ∈ 2)5=是个自然数.2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空: (1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-; 3.用列举法表示下列给定的集合: (1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=; (3){|3213}B x Z x =∈-<-≤.3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求; (3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求. 4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合;(2)反比例函数2y x=的自变量的值组成的集合; (3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥.5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ; (2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ;(3){|}x x 是菱形_______{|}x x 是平行四边形; {|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; BA ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,AB A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}AB x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B ,AC ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数, 则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}B C =,{3}B C =, 则(){1,2,3,4,5,6}AB C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定, 并解释以下集合运算的含义:(1)A B ;(2)A C . 8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项, 即为()AB C =∅.(1){|}A B x x =是参加一百米跑或参加二百米跑的同学; (2){|}AC x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形,{|}C x x =是矩形,求BC ,A B ð,S A ð.9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形ð, {|}S A x x =是梯形ð.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()R AB ð,()R A B ð,()R A B ð,()R A B ð.10.解:{|210}AB x x =<<,{|37}A B x x =≤<,{|3,7}R A x x x =<≥或ð,{|2,10}R B x x x =≤≥或ð, 得(){|2,10}R A B x x x =≤≥或ð, (){|3,7}R A B x x x =<≥或ð, (){|23,710}R A B x x x =<<≤<或ð,(){|2,3710}R AB x x x x =≤≤<≥或或ð.B 组1.已知集合{1,2}A =,集合B 满足{1,2}A B =,则集合B 有 个.1.4 集合B 满足AB A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看, 集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系?2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合,即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得DC .3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==, 当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅; 当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}AB A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},AB a A B ==∅.4.已知全集{|010}U AB x N x ==∈≤≤,(){1,3,5,7}U A B =ð,试求集合B .4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =,得U B A ⊆ð,即()U UAB B =痧,而(){1,3,5,7}U A B =ð, 得{1,3,5,7}U B =ð,而()U UB B =痧,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1)1()47f x x =+; (2)()1f x =+.1.解:(1)要使原式有意义,则470x +≠,即74x ≠-,得该函数的定义域为7{|}4x x ≠-;(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.已知函数2()32f x x x =+,(1)求(2),(2),(2)(2)f f f f -+-的值; (2)求(),(),()()f a f a f a f a -+-的值.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=, 同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+, 同理得22()3()2()32f a a a a a -=⨯-+⨯-=-, 则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h 与时间t 关系的函数21305h t t =-和二次函数21305y x x =-; (2)()1f x =和0()g x x =.3.解:(1)不相等,因为定义域不同,时间0t >; (2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形的一边长为xcm , 面积为2ycm ,把y 表示为x 的函数.1,y ==,且050x <<,即(050)y x =<<.2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事. (1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进. 3.画出函数|2|y x =-的图象. 3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.{|},{0,1}A x x B ==是锐角,从A 到B 的映射是“求正弦”,4.设中元素60相对应与AB 中的元素是什么?与B相对应的A 中元素是什的么?4.解:因为3sin 602=,所以与A 中元素60相对应的B中的元素是2; 因为2sin 452=,所以与B 中的元素2相对应的A 中元素是45. 1.2函数及其表示 习题1.2(第23页)1.求下列函数的定义域:(A )(B )(C )(D )(1)3()4xf x x =-; (2)()f x =(3)26()32f x x x =-+; (4)()f x = 1.解:(1)要使原式有意义,则40x -≠,即4x ≠, 得该函数的定义域为{|4}x x ≠;(2)x R ∈,()f x =即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠, 得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠,得该函数的定义域为{|41}x x x ≤≠且. 2.下列哪一组中的函数()f x 与()g x 相等?(1)2()1,()1x f x x g x x=-=-; (2)24(),()f x x g x ==;(3)2(),()f x x g x =.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()g x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(32x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.画出下列函数的图象,并说出函数的定义域和值域.3y x =; (2)8y x=; (3)45y x =-+; (4) (1)267y x x =-+.3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)域是(,)-∞+∞,值域是(,)-∞+∞; 定义(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.已知函数2()352f x x x =-+,求(f ,()f a -,(3)f a +,()(3)f a f +.4.解:因为2()352f x x x =-+,所以2(3(5(28f =⨯-⨯+=+即(8f =+同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++,即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++,即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+,即2()(3)3516f a f a a +=-+.5.已知函数2()6x f x x +=-, (1)点(3,14)在()f x 的图象上吗?(2)当4x =时,求()f x 的值;(3)当()2f x =时,求x 的值.5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上;(2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.若2()f x x bx c =++,且(1)0,(3)0f f ==,求(1)f -的值.6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根,即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=,即(1)f -的值为8.7.画出下列函数的图象: (1)0,0()1,0x F x x ≤⎧=⎨>⎩; (2)()31,{1,2,3}G n n n =+∈.7.图象如下:8.如图,矩形的面积为10,如果矩形的长为x ,宽为y ,对角线为d ,周长为l ,那么你能获得关于这些量的哪些函数?8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d,即d =,得(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x =+>, 另外2()l x y =+,而22210,xy d x y ==+,得(0)l d ===>,即(0)l d =>.9.一个圆柱形容器的底部直径是dcm ,高是hcm ,现在以3/vcm s 的速度向容器内注入某种溶液.求溶液内溶液的高度xcm 关于注入溶液的时间ts 的函数解析式,并写出函数的定义域和值域.9.解:依题意,有2()2dx vt π=,即24v x t d π=, 显然0x h ≤≤,即240v t h d π≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.设集合{,,},{0,1}A a b c B ==,试问:从A 到B 的映射共有几个?并将它们分别表示出来.10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.函数()r f p =的图象如图所示.(1)函数()r f p =的定义域是什么?(2)函数()r f p =的值域是什么?(3)r 取何值时,只有唯一的p 值与之对应?1.解:(1)函数()r f p =的定义域是[5,0][2,6)-;(2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.画出定义域为{|38,5}x x x -≤≤≠且,值域为{|12,0}y y y -≤≤≠的一个函数的图象.(1)如果平面直角坐标系中点(,)P x y 的坐标满足38x -≤≤,12y -≤≤,那么其中哪些点不能在图象上?(2)将你的图象和其他同学的相比较,有什么差别吗?2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.函数()[]f x x =的函数值表示不超过x 的最大整数,例如,[ 3.5]4-=-,[2.1]2=.当( 2.5,3]x ∈-时,写出函数()f x 的解析式,并作出函数的图象.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.如图所示,一座小岛距离海岸线上最近的点P 的距离是2km ,从点P 沿海岸正东12km 处有一个城镇.(1)假设一个人驾驶的小船的平均速度为3/km h ,步行的速度是5/km h ,t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.请将t 表示为x 的函数.(2)如果将船停在距点P 4km 处,那么从小岛到城镇要多长时间(精确到1h )?4.解:(112x -,得125x t -=+,(012)x ≤≤,即1235x t -=+,(012)x ≤≤.(2)当4x =时,12483()3535t h -=+=+≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.整个上午(8:0012:00)天气越来越暖,中午时分(12:0013:00)一场暴风雨使天气骤然凉爽了许多.暴风雨过后,天气转暖,直到太阳落山(18:00)才又开始转凉.画出这一天8:0020:00期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.根据下图说出函数的单调区间,以及在每一单调区间上,函数是增函数还是减函数.3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明函数()21f x x =-+在R 上是减函数.4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->,即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数.5.设()f x 是定义在区间[6,11]-上的函数.如果()f x 在区间[6,2]--上递减,在区间[2,11]-上递增,画出()f x 的一个大致的图象,从图象上可以发现(2)f -是函数()f x 的一个 .5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.判断下列函数的奇偶性:(1)42()23f x x x =+; (2)3()2f x x x =- (3)21()x f x x+=; (4)2()1f x x =+. 1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x =-为奇函数; (3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内 每一个x 都有22()11()()x x f x f x x x-++-==-=--, 所以函数21()x f x x+=为奇函数; (4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.已知()f x 是偶函数,()g x 是奇函数,试将下图补充完整.2.解:()f x 是偶函数,其图象是关于y 轴对称的;()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.画出下列函数的图象,并根据图象说出函数()y f x =的单调区间,以及在各单调区间 上函数()y f x =是增函数还是减函数.(1)256y x x =--; (2)29y x =-.1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增;(2)函数在(,0)-∞上递增;函数在[0,)+∞上递减. 2.证明:(1)函数2()1f x x =+在(,0)-∞上是减函数; (2)函数1()1f x x=-在(,0)-∞上是增函数. 2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.探究一次函数()y mx b x R =+∈的单调性,并证明你的结论. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数; 当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数, 令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数.4.一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次 慢慢升高.画出自服药那一刻起,心率关于时间的一个可能的图象(示意图). 4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.某汽车租赁公司的月收益y 元与每辆车的月租金x 元间的关系为21622100050x y x =-+-,那么,每辆车的月租金多少元时,租赁公司的月收益最大?最大月收益是多少?5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元.6.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()(1)f x x x =+.画出函数()f x 的图象,并求出函数的解析式.6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-, 得()(1)f x x x -=--,即()(1)f x x x =-, 所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.已知函数2()2f x x x =-,2()2([2,4])g x x x x =-∈.(1)求()f x ,()g x 的单调区间; (2)求()f x ,()g x 的最小值. 1.解:(1)二次函数2()2f x x x =-的对称轴为1x =, 则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数, 函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数;(2)当1x =时,min ()1f x =-, 因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.如图所示,动物园要建造一面靠墙的2间面积相同的矩形熊猫居室,如果可供建造围墙的材料总长是30m ,那么宽x (单位:m )为多少才能使建造的每间熊猫居室面积最大?每间熊猫居室的最大面积是多少?2.解:由矩形的宽为x m ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是18.75m^2.3.已知函数()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并证明你的判断.3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <, 所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.用列举法表示下列集合: (1)2{|9}A x x ==;(2){|12}B x N x =∈≤≤; (3)2{|320}C x x x =-+=.1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-;(2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =.2.设P 表示平面内的动点,属于下列集合的点组成什么图形? (1){|}P PA PB =(,)A B 是两个定点; (2){|3}P PO cm =()O 是定点.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等, 即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.设平面内有ABC ∆,且P 表示这个平面内的动点,指出属于集合{|}{|}P PA PB P PA PC ==的点是什么.3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.已知集合2{|1}A x x ==,{|1}B x ax ==.若B A ⊆,求实数a 的值. 4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==, 当0a =时,集合B =∅,满足B A ⊆,即0a =; 当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=, 得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1.5.已知集合{(,)|20}A x y x y =-=,{(,)|30}B x y x y =+=,{(,)|23}C x y x y =-=,求AB ,A C ,()()AB BC .5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y AC x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭; 则39()(){(0,0),(,)}55AB BC =-.6.求下列函数的定义域:(1)y =(2)||5y x =-.6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞.7.已知函数1()1xf x x-=+,求: (1)()1(1)f a a +≠-; (2)(1)(2)f a a +≠-.7.解:(1)因为1()1xf x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++,即(1)2af a a +=-+.8.设221()1x f x x +=-,求证:50(1)()()f x f x -=; (2)1()()f f x x=-.8.证明:(1)因为221()1x f x x +=-,所以22221()1()()1()1x x f x f x x x +-+-===---, 即()()f x f x -=;(2)因为221()1x f x x +=-,所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-.9.已知函数2()48f x x kx =--在[5,20]上具有单调性,求实数k 的取值范围. 9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.已知函数2y x -=,(1)它是奇函数还是偶函数? (2)它的图象具有怎样的对称性? (3)它在(0,)+∞上是增函数还是减函数? (4)它在(,0)-∞上是增函数还是减函数? 10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛.问同时参加田径和球类比赛的有多少人?只参加游泳一项比赛的有多少人? 1.解:设同时参加田径和球类比赛的有x 人, 则158143328x ++---=,得3x =, 只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人. 2.已知非空集合2{|}A x R x a =∈=,试求实数a 的取值范围. 2.解:因为集合A ≠∅,且20x ≥,所以0a ≥. 3.设全集{1,2,3,4,5,6,7,8,9}U =,(){1,3}U A B =ð,(){2,4}U A B =ð,求集合B .3.解:由(){1,3}U A B =ð,得{2,4,5,6,7,8,9}A B =,集合AB 里除去()U A B ð,得集合B ,所以集合{5,6,7,8,9}B =. 4.已知函数(4),0()(4),0x x x f x x x x +≥⎧=⎨-<⎩.求(1)f ,(3)f -,(1)f a +的值.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=; (1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)若()f x ax b =+,则1212()()()22x x f x f x f ++=; (2)若2()g x x ax b =++,则1212()()()22x x g x g x g ++≤. 5.证明:(1)因为()f x ax b =+,得121212()()222x x x x af a b x x b ++=+=++,121212()()()222f x f x ax b ax b ax x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++2212121()()22x x x x a b +=+++,因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. (1)已知奇函数()f x 在[,]a b 上是减函数,试问:6.[,]b a --上是增函数还是减函数?它在(2)已知偶函数()g x 在[,]a b 上是增函数,试问:它在[,]b a --上是增函数还是减函数?6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数; (2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额.此项税款按下表分段累计计算: 某人一月份应交纳此项税款为26.78元,那么他当月的工资、薪金所得是多少?7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.第三章 函数的应用 3.1函数与方程练习(P88)1.(1)令f (x )=-x 2+3x +5,作出函数f (x )的图象(图3-1-2-7(1)),它与x 轴有两个交点,所以方程-x 2+3x +5=0有两个不相等的实数根.(2)2x (x -2)=-3可化为2x 2-4x +3=0,令f (x )=2x 2-4x +3,作出函数f (x )的图象(图3-1-2-7(2)),它与x 轴没有交点,所以方程2x (x -2)=-3无实数根. (3)x 2=4x -4可化为x 2-4x +4=0,令f (x )=x 2-4x +4,作出函数f (x )的图象(图3-1-2-7(3)), 它与x 轴只有一个交点(相切),所以方程x 2=4x -4有两个相等的实数根. (4)5x 2+2x =3x 2+5可化为2x 2+2x -5=0,令f (x )=2x 2+2x -5,作出函数f (x )的图象(图3-1-2-7(4)), 它与x 轴有两个交点,所以方程5x 2+2x =3x 2+5有两个不相等的实数根.图3-1-2-72.(1)作出函数图象(图3-1-2-8(1)),因为f(1)=1>0,f(1.5)=-2.875<0,所以f(x)=-x3-3x+5在区间(1,1.5)上有一个零点.又因为f(x)是(-∞,+∞)上的减函数,所以f(x)=-x3-3x+5在区间(1,1.5)上有且只有一个零点.(2)作出函数图象(图3-1-2-8(2)),因为f(3)<0,f(4)>0,所以f(x)=2x·ln(x-2)-3在区间(3,4)上有一个零点.又因为f(x)=2x·ln(x-2)-3在(2,+∞)上是增函数,所以f(x)在(3,4)上有且仅有一个零点. (3)作出函数图象(图3-1-2-8(3)),因为f(0)<0,f(1)>0,所以f(x)=e x-1+4x-4在区间(0,1)上有一个零点.又因为f(x)=e x-1+4x-4在(-∞,+∞)上是增函数,所以f(x)在(0,1)上有且仅有一个零点.(4)作出函数图象(图3-1-2-8(4)),因为f(-4)<0,f(-3)>0,f(-2)<0,f(2)<0,f(3)>0,所以f(x)=3(x+2)(x-3)(x+4)+x在(-4,-3),(-3,-2),(2,3)上各有一个零点.练习(P91)1.由题设可知f(0)=-1.4<0,f(1)=1.6>0,于是f(0)·f(1)<0,所以函数f(x)在区间(0,1)内有一个零点x0.下面用二分法求函数f(x)=x3+1.1x2+0.9x-1.4在区间(0,1)内的零点.取区间(0,1)的中点x1=0.5,用计算器可算得f(0.5)=-0.55.因为f(0.5)·f(1)<0,所以x0∈(0.5,1).再取区间(0.5,1)的中点x2=0.75,用计算器可算得f(0.75)≈0.32.因为f(0.5)·f(0.75)<0,所以x0∈(0.5,0.75).同理,可得x0∈(0.625,0.75),x0∈(0.625,0.687 5),x0∈(0.656 25,0.687 5).由于|0.687 5-0.656 25|=0.031 25<0.1,所以原方程的近似解可取为0.656 25.2.原方程可化为x+lgx-3=0,令f(x)=x+lgx-3,用计算器可算得f(2)≈-0.70,f(3)≈0.48.于是f(2)·f(3)<0,所以这个方程在区间(2,3)内有一个解x0.下面用二分法求方程x=3-lgx在区间(2,3)的近似解.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)≈-0.10.因为f(2.5)·f(3)<0,所以x0∈(2.5,3).再取区间(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈0.19.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x0∈(2.5,2.625),x0∈(2.562 5,2.625),x0∈(2.562 5,2.593 75),x0∈(2.578 125,2.593 75),x0∈(2.585 937 5,2.59 375).由于|2.585 937 5-2.593 75|=0.007 812 5<0.01,所以原方程的近似解可取为2.593 75.习题3.1 A组(P92)1.A,C 点评:需了解二分法求函数的近似零点的条件.2.由x,f(x)的对应值表可得f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,又根据“如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.”可知函数f(x)分别在区间(2,3),(3,4),(4,5)内有零点.3.原方程即(x+1)(x-2)(x-3)-1=0,令f(x)=(x+1)(x-2)(x-3)-1,可算得f(-1)=-1,f(0)=5.于是f(-1)·f(0)<0,所以这个方程在区间(-1,0)内有一个解. 下面用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)=3.375.因为f(-1)·f(-0.5)<0,所以x0∈(-1,-0.5).再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)≈1.58.因为f(-1)·f(-0.75)<0,所以x0∈(-1,-0.75).同理,可得x0∈(-1,-0.875),x0∈(-0.937 5,-0.875).由于|(-0.875)-(-0.937 5)|=0.062 5<0.1,所以原方程的近似解可取为-0.937 5.4.原方程即0.8x-1-lnx=0,令f(x)=0.8x-1-lnx,f(0)没有意义,用计算器算得f(0.5)≈0.59,f(1)=-0.2.于是f(0.5)·f(1)<0,所以这个方程在区间(0.5,1)内有一个解.下面用二分法求方程0.8x-1=lnx在区间(0,1)内的近似解.取区间(0.5,1)的中点x1=0.75,用计算器可算得f(0.75)≈0.13.因为f(0.75)·f(1)<0,所以x0∈(0.75,1).再取(0.75,1)的中点x2=0.875,用计算器可算得f(0.875)≈-0.04.因为f(0.875)·f(0.75)<0,所以x0∈(0.75,0.875).同理,可得x 0∈(0.812 5,0.875),x 0∈(0.812 5,0.843 75).由于|0.812 5-0.843 75|=0.031 25<0.1,所以原方程的近似解可取为0.843 75.5.由题设有f (2)≈-0.31<0,f (3)≈0.43>0,于是f (2)·f (3)<0,所以函数f (x )在区间(2,3)内有一个零点.下面用二分法求函数f (x )=lnx x2-在区间(2,3)内的近似解. 取区间(2,3)的中点x 1=2.5,用计算器可算得f (2.5)≈0.12.因为f (2)·f (2.5)<0,所以x 0∈(2,2.5).再取(2,2.5)的中点x 2=2.25,用计算器可算得f (2.25)≈-0.08.因为f (2.25)·f (2.5)<0,所以x 0∈(2.25,2.5).同理,可得x 0∈(2.25,2.375),x 0∈(2.312 5,2.375),x 0∈(2.343 75,2.375),x 0∈(2.343 75,2.359 375),x 0∈(2.343 75,2.351 562 5),x 0∈(2.343 75,2.347 656 25).由于|2.343 75-2.347 656 25|=0.003 906 25<0.01,所以原方程的近似解可取为2.347 656 25.B 组1.将系数代入求根公式x =2b a -±得x =223(3)42(1)22±--⨯⨯-⨯=4173+, 所以方程的两个解分别为x 1=4173+,x 2=4173-.下面用二分法求方程的近似解.取区间(1.775,1.8)和(-0.3,-0.275),令f (x )=2x 2-3x -1.在区间(1.775,1.8)内用计算器可算得f (1.775)=-0.023 75,f (1.8)=0.08.于是f (1.775)·f (1.8)<0.所以这个方程在区间(1.775,1.8)内有一个解.由于|1.8-1.775|=0.025<0.1,所以原方程在区间(1.775,1.8)内的近似解可取为1.8.同理,可得方程在区间(-0.3,-0.275)内的近似解可取为-0.275.所以方程精确到0.1的近似解分别是1.8和-0.3.2.原方程即x 3-6x 2-3x +5=0,令f (x )=x 3-6x 2-3x +5,函数图象如下图所示.图3-1-2-9所以这个方程在区间(-2,0),(0,1),(6,7)内各有一个解.取区间(-2,0)的中点x 1=-1,用计算器可算得f (-1)=1.因为f (-2)·f (-1)<0,所以x 0∈(-2,-1).再取(-2,-1)的中点x 2=-1.5,用计算器可算得f (-1.5)=-7.375.因为f (-1.5)·f (-1)<0,所以x 0∈(-1.5,-1).同理,可得x 0∈(-1.25,-1),x 0∈(-1.125,-1),x 0∈(-1.125,-1.062 5).由于|(-1.062 5)-(-1.125)|=0.062 5<0.1,所以原方程在区间(-2,0)内的近似解可取为-1.062 5.同理,可得原方程在区间(0,1)内的近似解可取为0.7,在区间(6,7)内的近似解可取为6.3.3.(1)由题设有g(x)=2-[f(x)]2=2-(x2+3x+2)2=-x4-6x3-13x2-12x-2.(2)函数图象如下图所示.图3-1-2-10(3)由图象可知,函数g(x)分别在区间(-3,-2)和区间(-1,0)内各有一个零点.取区间(-3,-2)的中点x1=-2.5,用计算器可算得g(-2.5)=0.187 5.因为g(-3)·g(-2.5)<0,所以x0∈(-3,-2.5).再取(-3,-2.5)的中点x2=-2.75,用计算器可算得g(-2.75)≈0.28.因为g(-3)·g(-2.75)<0,所以x0∈(-3,-2.75).同理,可得x0∈(-2.875,-2.75),x0∈(-2.812 5,-2.75).由于|-2.75-(-2.812 5)|=0.062 5<0.1,所以原方程在区间(-3,-2)内的近似解可取为-2.812 5.同样可求得函数在区间(-1,0)内的零点约为-0.2.所以函数g(x)精确到0.1的零点约为-2.8或-0.2.点评:第2、3题采用信息技术画出函数图象,并据此明确函数零点所在的区间.在教学中,如果没有信息技术条件,建议教师直接给出函数图象或零点所在区间.第三章复习参考题A组(P112)1.C2.C3.设经过时间t后列车离C地的距离为y,则y=200100,02,100200,2 5.t tt t-≤≤⎧⎨-<≤⎩图3-24.(1)圆柱形; (2)上底小、下底大的圆台形;(3)上底大、下底小的圆台形; (4)呈下大上小的两节圆柱形. 图略.图3-35.令f(x)=2x3-4x2-3x+1,函数图象如图3-3所示:函数分别在区间(-1,0)、(0,1)和区间(2,3)内各有一个零点,所以方程2x 3-4x 2-3x +1=0的最大的根应在区间(2,3)内.取区间(2,3)的中点x 1=2.5,用计算器可算得f (2.5)=-0.25.因为f (2.5)·f (3)<0,所以x 0∈(2.5,3). 再取(2.5,3)的中点x 2=2.75,用计算器可算得f (2.75)≈4.09.因为f (2.5)·f (2.75)<0,所以x 0∈(2.5,2.75).同理,可得x 0∈(2.5,2.625),x 0∈(2.5,2.5625),x 0∈(2.5,2.53125),x 0∈(2.515625,2.53125),x 0∈(2.515625,2.5234375).由于|2.523 437 5-2.515 625|=0.007 812 5<0.01,所以原方程的最大根约为2.523 437 5.6.令lgx =x 1,即得方程lgx x 1-=0,再令g (x )=lgx x1-,用二分法求得交点的横坐标约为2.5.图3-47.如图,作DE ⊥AB,垂足为E.由已知可得∠ADB=90°.因为AD=x ,AB=4,于是AD 2=AE×AB,即AE=AB AD 2=42x . 所以CD=AB-2AE=4-2×42x =422x -.于是y =AB+BC+CD+AD=4+x +422x -+x =22x -+2x +8.由于AD>0,AE>0,CD>0,所以x >0,42x >0,422x ->0,解得0<x <22. 所以所求的函数为y =22x -+2x +8,0<x <22. 8.(1)由已知可得N=N 0(λe 1)t .因为λ是正常数,e >1,所以e λ>1,即0<λe 1<1.又N 0是正常数,所以N=N 0(λe 1)t 是在于t 的减函数.(2)N=N 0e -λt ,因为e -λt =0N N ,所以-λt =ln 0N N ,即t =λ1-ln 0N N .(3)当N=20N 时,t =λ1-002N N =λ1-ln 2. 9.因为f (1)=-3+12+8=17>0,f (2)=-3×8+12×2+8=8>0,f (3)<0,所以,下次生产应在两个月后开始.B 组1.厂商希望的是甲曲线;客户希望的是乙曲线.2.函数的解析式为y =f (t)=22,01,2)12,2.t t t t <≤⎪⎪⎪-+<≤⎨>⎪⎩函数的图象为图3-5备课资料[备选例题]【例】对于函数f (x )=ax 2+(b +1)x +b -2(a ≠0),若存在实数x 0,使f (x 0)=x 0成立,则称x 0为f (x )的不动点.(1)当a =2,b =-2时,求f (x )的不动点;(2)若对于任何实数b ,函数f (x )恒有两个相异的不动点,求实数a 的取值范围. 解:(1)f (x )=ax 2+(b +1)x +b -2(a ≠0),当a =2,b =-2时,f (x )=2x 2-x -4,设x 为其不动点,即2x 2-x -4=x ,则2x 2-2x -4=0,解得x 1=-1,x 2=2,即f (x )的不动点为-1,2.(2)由f (x )=x ,得ax 2+bx +b -2=0.关于x 的方程有相异实根,则b 2-4a (b -2)>0,即b 2-4ab +8a >0. 又对所有的b ∈R,b 2-4ab +8a >0恒成立,故有(4a )2-4·8a <0,得0<a <2.。
人教版高中数学必修1课后习题答案(第一章集合与函数概念)人教A版
高中数学必修1课后习题答案 第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A ,印度_______A ,英国_______A ;(2)若2{|}A x x x ==,则1-_______A ; (3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C . 1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉.2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合; (2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (4)不等式453x -<的解集.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-; (2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ; 取两个元素,得{,},{,},{,}a b a c b c ; 取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =; (3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=. 2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集;(5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以AB ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,BA ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,A B A B .1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==, {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}AB ==.2.设22{|450},{|1}A x x x B x x =--===,求,AB A B .2.解:方程2450x x --=的两根为121,5x x =-=, 方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-, 即{1},{1,1,5}AB A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,A B A B .3.解:{|}A B x x =是等腰直角三角形,{|}AB x x =是等腰三角形或直角三角形.4.已知全集{1,2,3,4,5,6,7}U =,{2,4,5},{1,3,5,7}A B ==, 求(),()()U U U AB A B 痧?.4.解:显然{2,4,6}U B =ð,{1,3,6,7}U A =ð, 则(){2,4}U AB =ð,()(){6}U U A B =痧. 1.1集合习题1.1 (第11页) A 组1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R 是实数;(5Z3=是个整数; (6)2N ∈ 2)5=是个自然数.2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空: (1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-; 3.用列举法表示下列给定的集合: (1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=; (3){|3213}B x Z x =∈-<-≤.3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求; (3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求. 4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合;(2)反比例函数2y x=的自变量的值组成的集合; (3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥.5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ;(2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ; (3){|}x x 是菱形_______{|}x x 是平行四边形; {|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; BA ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,AB A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}AB x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B ,AC ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数, 则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}B C =,{3}B C =, 则(){1,2,3,4,5,6}AB C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定, 并解释以下集合运算的含义:(1)A B ;(2)A C . 8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项, 即为()A B C =∅.(1){|}A B x x =是参加一百米跑或参加二百米跑的同学; (2){|}AC x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形,{|}C x x =是矩形,求BC ,A B ð,S A ð.9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形ð, {|}S A x x =是梯形ð.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()R AB ð,()R A B ð,()R A B ð,()R A B ð.10.解:{|210}AB x x =<<,{|37}A B x x =≤<,{|3,7}R A x x x =<≥或ð,{|2,10}R B x x x =≤≥或ð, 得(){|2,10}R A B x x x =≤≥或ð, (){|3,7}R A B x x x =<≥或ð, (){|23,710}R A B x x x =<<≤<或ð,(){|2,3710}R AB x x x x =≤≤<≥或或ð.B 组1.已知集合{1,2}A =,集合B 满足{1,2}A B =,则集合B 有 个.1.4 集合B 满足AB A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看, 集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系?2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合,即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==, 当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅; 当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}AB A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},AB a A B ==∅.4.已知全集{|010}U AB x N x ==∈≤≤,(){1,3,5,7}U A B =ð,试求集合B .4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =,得U B A ⊆ð,即()U UAB B =痧,而(){1,3,5,7}U A B =ð, 得{1,3,5,7}U B =ð,而()U UB B =痧,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1)1()47f x x =+; (2)()1f x =+.1.解:(1)要使原式有意义,则470x +≠,即74x ≠-,得该函数的定义域为7{|}4x x ≠-;(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.已知函数2()32f x x x =+,(1)求(2),(2),(2)(2)f f f f -+-的值; (2)求(),(),()()f a f a f a f a -+-的值.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-, 则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h 与时间t 关系的函数21305h t t =-和二次函数21305y x x =-; (2)()1f x =和0()g x x =.3.解:(1)不相等,因为定义域不同,时间0t >; (2)不相等,因为定义域不同,0()(0)g x x x =≠. 1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形的一边长为xcm , 面积为2ycm ,把y 表示为x 的函数.1,y ==,且050x <<,即(050)y x =<<.2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事. (1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进. 3.画出函数|2|y x =-的图象. 3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.{|},{0,1}A x x B ==是锐角,从A 到B 的映射是“求正弦”,4.设中元素60相对应与AB 中的元素是什么?与B相对应的A 中元素是什的么?4.解:因为3sin 602=,所以与A 中元素60相对应的B中的元素是2; 因为2sin 452=,所以与B 中的元素2相对应的A 中元素是45.(A )(B )(C )(D )。
高中数学必修1第一章 集合与函数概 1-3 函数的基本性质习题及答案
第一章集合与函数概1.3函数的基本性质1.3.1单调性与最大(小)值班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.若函数在区间上是增函数,在区间上也是增函数,则函数在区间上A.必是增函数B.必是减函数C.先增后减D.无法确定单调性2.下列函数在(0,1)上是增函数的是A. B. C. D.3.函数,在上是A.减函数B.增函数C.先减后增D.无单调性4.下面说法错误的是A.函数的单调区间一定是函数的定义域B.函数的多个单调增区间的并集不一定是其单调增区间C.具有奇偶性的函数的定义域关于原点对称D.关于原点对称的图象一定是奇函数的图象5.已知函数在区间上为减函数,则的取值范围是_____________.6.设奇函数f(x)的定义域为[-5,5],且当x∈[0,5]时,f(x)的图象如图所示,则不等式f(x)<0的解集是.7..已知函数,若.(l)求的值.(2)利用单调性定义证明函数在区间的单调性.8.首届世界低碳经济大会在南昌召开,大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似地表示为,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?【能力提升】函数f(x)的图象如图所示.(1)说出f(x)的单调区间,以及在每一个单调区间上它是增函数还是减函数;(2)依据图象说明函数的最值情况.答案【基础过关】1.D【解析】因为(a,b),(c,d)不是两个连续的区间,所以无法确定其单调性.2.B【解析】选项A中y=1-2x为减函数,C中y=5为常数函数,D中的定义域为[1,+∞).3.B【解析】解答本题可先画出函数图象,由图象分析.函数f(x)的图象如图所示,由图结合单调性的定义可知,此函数在R上是增函数.4.A【解析】单调区间是定义域的子集,不一定是定义域,当多个单调区间并起来时,由单调性定义知,不再是单调区间.具有奇偶性的函数的定义域关于原点对称,是函数奇偶性判定的要求.奇函数的图象关于原点对称,反之,关于原点对称的图象一定是奇函数的图象.5.(-∞,1]6.(-2,0)∪(2,5]【解析】由图可知在区间(2,5]上f(x)<0,因为奇函数的图象关于原点对称,所以在(-2,0)上也有f(x)<0.7.(1)由2f(2)=f(3)+5,得,解得a=2.(2)由(1)知.任取x1,x2∈(1,+∞)且x1<x2,,因为1<x1<x2,所以x1-1>0,x2-1>0,x2-x1>0.所以f(x1)-f(x2)>0,即f(x1)>f(x2).所以f(x)在(1,+∞)上是减函数.8.(1)由题意可知,二氧化碳的每吨平均处理成本为令,可以证明t(x)在(0,400)为减函数,在[400,+∞)上是增函数,故每月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.(2)设该单位每月获利为S,则.因为400≤x≤600,所以当x=400时,S有最大值-40 000.故该单位不获利,需要国家每月至少补贴40 000元,才能不亏损.【能力提升】(1)由题图可知:函数f(x)的单调增区间为[0,];单调减区间为(-∞,0)和(,+∞).(2)观察图象可知,函数没有最大值和最小值.1.3.2奇偶性班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.设在[-2,-1]上为减函数,最小值为3,且为偶函数,则在[1,2]上A.为减函数,最大值为3B.为减函数,最小值为-3C.为增函数,最大值为-3D.为增函数,最小值为32.已知函数是偶函数,其图象与轴有四个交点,则方程的所有实根之和是A.4B.2C.1D.03.函数是奇函数,图象上有一点为,则图象必过点A. B.C. D.4.设,其中为常数,若,则的值为A.-7B.7C.17D.-175.已知定义在上的奇函数,当时,,那么时,.6.若函数为区间[-1,1]上的奇函数,则;.7.作出函数的图象,并根据函数的图象找出函数的单调区间.8.已知函数是定义在R上的偶函数,且当时,该函数的值域为,求函数的解析式.【能力提升】已知函数f(x)=-x2+x,是否存在实数m,n(m<n),使得当x∈[m,n]时,函数的值域恰为[2m,2n]?若存在,求出m,n的值;若不存在,说明理由.答案【基础过关】1.D2.D3.C【解析】奇函数f(x)满足f(-x)=-f(x),故有f(-a)=-f(a).因为函数f(x)是奇函数,故点(a,f(a))关于原点的对称点(-a,-f(a))也在y=f(x)上,故选C.4.D【解析】∵,∴27a+3b=-12,∴f(3)=27a+3b-5=-17.5.-x2-|x|+16.0 07.当x-2≥0,即x≥2时,;当x-2<0,即x<2时,=.所以这是分段函数,每段函数图象可根据二次函数图象作出(如图),其中,[2,+∞)是函数的单调增区间;是函数的单调减区间.8.由f(x)为偶函数可知f(x)=f(-x),即,可得恒成立,所以a=c=0,故.当b=0时,由题意知不合题意;当b>0,x∈[1,2]时f(x)单调递增,又f(x)值域为[-2,1],所以当b<0时,同理可得所以或.【能力提升】假设存在实数m,n,使得当x∈[m,n]时,y∈[2m,2n],则在[m,n]上函数的最大值为2n.而f(x)=-x2+x=-(x-1)2+在x∈R上的最大值为,∴2n≤,∴n≤.而f(x)在(-∞,1)上是增函数,∴f(x)在[m,n]上是增函数,∴,即.结合m<n≤,解得m=-2,n=0.∴存在实数m=-2,n=0,使得当x∈[-2,0]时,f(x)的值域为[-4,0].。
人教版 高中数学必修一课后习题配套参考答案(解析版)
人教版高中数学必修1课后习题答案(第一章集合与函数概念)人教A版习题1.2(第24页)练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数. 4.证明:设12,x x R∈,且12x x <, 因为121221()()2()2()0f x f x x x x x -=--=->,即12()()f x f x >, 所以函数()21f x x =-+在R 上是减函数.5.最小值.练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞U ,因为对定义域内每一个x 都有22()11()()x x f x f x x x-++-==-=--,所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的;()g x 是奇函数,其图象是关于原点对称的.习题1.3(第39页)1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增; (2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-, 由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=,由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数,令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >, 得一次函数y mx b =+在(,)-∞+∞上是减函数.4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050x y x =-+-, 当162405012()50x=-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元. 6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-,所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩. B 组1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数,函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-,因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.解:由矩形的宽为xm ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m .3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <,所以()f x 在(,0)-∞上是增函数.复习参考题(第44页)A 组1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-;(2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320xx -+=的解为121,2x x ==,即集合{1,2}C =.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等,即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P POcm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==I 的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==,当0a=时,集合B =∅,满足B A ⊆,即0a =;当0a ≠时,集合1{}B a=,而B A ⊆,则11a =-,或11a =,得1a =-,或1a =,综上得:实数a 的值为1,0-,或1.5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭I ,即{(0,0)}A B =I ;集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭I,即A C =∅I ;集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭I; 则39()(){(0,0),(,)}55A B B C =-IU I .6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞U .7.解:(1)因为1()1x f x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++, 即(1)2af a a +=-+.8.证明:(1)因为221()1x f x x +=-,所以22221()1()()1()1x x f x f x x x +-+-===---,即()()f x f x -=;(2)因为221()1x f x x+=-, 所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-.9.解:该二次函数的对称轴为8k x=, 函数2()48f x x kx =--在[5,20]上具有单调性, 则208k ≥,或58k ≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数; (2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.解:设同时参加田径和球类比赛的有x 人, 则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2.解:因为集合A ≠∅,且20x ≥,所以0a ≥.3.解:由(){1,3}U A B =U ð,得{2,4,5,6,7,8,9}A B =U ,集合A B U 里除去()U A B I ð,得集合B , 所以集合{5,6,7,8,9}B =.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩. .5.证明:(1)因为()f x ax b =+,得121212()()222x x x x a f a b x x b ++=+=++, 121212()()()222f x f x ax b ax b a x x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++ 2212121()()22x x x x a b +=+++, 因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤, 即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<, 因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则 0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩ 由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.。
人教版高中数学必修一《集合与函数概念》全章练习及答案
7 个.
2. C 解析:②③正确.
3. B 解析:根式 x- 1+ x- 2有意义,必须 x- 1与 x- 2同时有意义才可. 4. A 解析: M= { x|y= x2- 2} = R, N= { y|y= x2- 2} = { y|y≥- 2} ,故 M∩N= N.
A .①③ C.①④
B .②③ D .②④
3 9.已知 0≤x≤2,则函数
f(x)= x2+ x+ 1(
)
()
A .有最小值- 34,无最大值
B .有最小值
3 ,最大值 4
1
19 C.有最小值 1,最大值 4
D .无最小值和最大值
10.已知函数 f(x)的定义域为 [a,b],函数 y= f(x)的图象如图所示, 则函数 f(|x|)的图象是 ( )
c
11.若偶函数 f(x) 在区间 (- ∞,- 1] 上是增函数,则 ( ) 3
A . f(- 2)<f(- 1)< f(2) 3
B . f(- 1)<f(- 2)< f(2) 3
C. f(2)< f(- 1)<f (- 2) 3
D . f(2)< f(- 2)<f(- 1) 12.(2009 ·四川高考 )已知函数 f(x)是定义在实数集 R 上的不恒为零的偶函数, 且对任意实数
A . 20- 2x(0< x≤ 10)
B . 20- 2x(0< x<10)
C. 20- 2x(5 ≤x≤ 10)
D . 20- 2x(5< x<10)
7.用固定的速度向如图所示形状的瓶中注水,则水面的高度
h 和时间 t 之间的关系
是( )
高中数学必修1课后习题答案全部
高中数学必修1课后习题答案 第一章 集合与函数概念1.1集合1.1.1集合的含义与表示1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲. (2)1-∉A 2{|}{0,1}A x x x ===. (3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-; (2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ; 取两个元素,得{,},{,},{,}a b a c b c ; 取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素; (2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集;(5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+, 即B 是A 的真子集,BA ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==, {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}AB ==.2.解:方程2450x x --=的两根为121,5x x =-=, 方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-, 即{1},{1,1,5}A B A B =-=-. 3.解:{|}A B x x =是等腰直角三角形, {|}A B x x =是等腰三角形或直角三角形4.解:显然{2,4,6}UB =,{1,3,6,7}UA =,则(){2,4}U AB =,()(){6}U U A B =.1.1集合习题1.1 (第11页) A 组1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数; (3)Q π∉ π是个无理数,不是有理数; (4)2R ∈ 2是实数;(5)9Z ∈93=是个整数; (6)2(5)N ∈ 2(5)5=是个自然数.2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-; 3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求; (3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求. 4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x=的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥; (2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ;2{|10}{1,1}A x x =-==-; (3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形. 6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}AB x x =≥,{|34}A B x x =≤<.7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数, 则{1,2,3}AB =,{3,4,5,6}AC =,而{1,2,3,4,5,6}B C =,{3}B C =, 则(){1,2,3,4,5,6}AB C =,(){1,2,3,4,5,6,7,8}A B C =.8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项, 即为()A B C =∅.(1){|}A B x x =是参加一百米跑或参加二百米跑的同学; (2){|}AC x x =是既参加一百米跑又参加四百米跑的同学9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}AB x x =是邻边不相等的平行四边形,{|}SA x x =是梯形.10.解:{|210}A B x x =<<,{|37}A B x x =≤<,{|3,7}RA x x x =<≥或,{|2,10}RB x x x =≤≥或,得(){|2,10}RA B x x x =≤≥或,(){|3,7}RA B x x x =<≥或,(){|23,710}R A B x x x =<<≤<或,(){|2,3710}R AB x x x x =≤≤<≥或或.B 组.1.4 集合B 满足A B A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合,即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==,当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅; 当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}AB A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},AB a A B ==∅.4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =,得UB A ⊆,即()U UA B B =,而(){1,3,5,7}U A B =,得{1,3,5,7}UB =,而()UU B B =,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.解:(1)要使原式有意义,则470x +≠,即74x ≠-, 得该函数的定义域为7{|}4x x ≠-;(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=, 同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-, 则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.解:(1)不相等,因为定义域不同,时间0t >; (2)不相等,因为定义域不同,0()(0)g x x x =≠. 1.2.2函数的表示法练习(第23页)1.解:显然矩形的另一边长为2250x cm -,222502500y x x x x =-=-,且050x <<, 即22500(050)y x x x =-<<.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进. 3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.因为3sin 602=,所以与A 中元素60相对应4.解:中的元素是32; 的B因为2sin 452=,所以与B 中的元素22相对应的A 中元素是45. 1.2函数及其表示习题1.2(第23页)1.解:(1)要使原式有意义,则40x -≠,即4x ≠,得该函数的定义域为{|4}x x ≠; (2)x R ∈,2()f x x =都有意义,即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠, 得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠,得该函数的定义域为{|41}x x x ≤≠且.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()()g x x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(3)对于任何实数,都有362x x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞; (2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.解:因为2()352f x x x =-+,所以2(2)3(2)5(2)2852f -=⨯--⨯-+=+,即(2)852f -=+;同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++,即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++, 即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+, 即2()(3)3516f a f a a +=-+. 5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上; (2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根, 即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=, 即(1)f -的值为8.7.图象如下:8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d,即d =,得(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x=+>, 另外2()l x y =+,而22210,xy d x y ==+,得(0)l d ===>,即(0)l d =>.9.解:依题意,有2()2d x vt π=,即24vx t dπ=, 显然0x h ≤≤,即240vt h d π≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.解:(1)函数()r f p =的定义域是[5,0][2,6)-; (2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应 2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.解:(1)驾驶小船的路程为222x +,步行的路程为12x -,得2221235x xt +-=+,(012)x ≤≤, 即241235x xt +-=+,(012)x ≤≤. (2)当4x =时,2441242583()3535t h +-=+=+≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->, 即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数. 5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=, 所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-, 所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内每一个x 都有22()11()()x x f x f x x x -++-==-=--, 所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=, 所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的;()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增; (2)(,0)-∞上递增;函数在[0,)+∞上递函数在减.2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=,由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数; 当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数, 令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数. 4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元. 6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-, 得()(1)f x x x -=--,即()(1)f x x x =-, 所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.解:(1)二次函数2()2f x x x =-的对称轴为1x =, 则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数, 函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-, 因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.解:由矩形的宽为x m ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m . 3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <, 所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-;(2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等, 即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==, 当0a =时,集合B =∅,满足B A ⊆,即0a =; 当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=, 得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1.5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y AC x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y BC x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭; 则39()(){(0,0),(,)}55AB BC =-.6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞.7.解:(1)因为1()1xf x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++, 即(1)2af a a +=-+.8.证明:(1)因为221()1x f x x+=-, 所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=;(2)因为221()1x f x x +=-,所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-.9.解:该二次函数的对称轴为8kx =,函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数;(4)函数2y x -=在(,0)-∞上是增函数.B 组1.解:设同时参加田径和球类比赛的有x 人, 则158143328x ++---=,得3x =, 只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人. 2.解:因为集合A ≠∅,且20x ≥,所以0a ≥ 3.解:由(){1,3}UA B =,得{2,4,5,6,7,8,9}A B =,集合AB 里除去()U A B ,得集合B ,所以集合{5,6,7,8,9}B =4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=; (1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)因为()f x ax b =+,得121212()()222x x x x af a b x x b ++=+=++, 121212()()()222f x f x ax b ax b ax x b ++++==++,所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++2212121()()22x x x x a b +=+++, 因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数; (2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.。
高中数学必修一集合与函数的概念知识点+练习题含答案解析(非常详细)
第一部分集合与函数的概念知识点整理第一章集合与函数概念一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。
2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。
a、列举法:将集合中的元素一一列举出来 {a,b,c……}b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x R| x-3>2} ,{x| x-3>2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合。
4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A(2)元素不在集合里,则元素不属于集合,即:a¢A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集Z有理数集Q实数集R6、集合间的基本关系(1).“包含”关系(1)—子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。
记作:BA⊆(或B⊇A)注意:BA⊆有两种可能(1)A是B的一部分;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/ B或B⊇/A(2).“包含”关系(2)—真子集如果集合BA⊆,但存在元素x∈B且x¢A,则集合A是集合B的真子集如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)读作A真含与B(3).“相等”关系:A=B“元素相同则两集合相等”如果A⊆B 同时 B⊆A 那么A=B(4). 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
高中数学必修一第一章 集合与函数概念1-1集合课时提升作业及解析
综上可知 k=0 或 1. 【误区警示】解答本题时易不考虑二次项系数 k 是否为 0 而直接利用根与系数 的关系求解致错. 6.某研究性学习小组共有 8 位同学,记他们的学号分别为 1,2,3,„,8.现指导老 师决定派某些同学去市图书馆查询有关数据,分派的原则为:若 x 号同学去,则 8-x 号同学也去.请你根据老师的要求回答下列问题: (1)若只有一个名额,请问应该派谁去? (2)若有两个名额,则有多少种分派方法? 【解析】本题实质是考查集合中元素的特性,只有一个名额等价于 x=8-x,有两个 名额则为 x 和 8-x. 分派去图书馆查数据的所有同学组成一个集合,记作 M,则有 x∈M,8-x∈M. (1)若只有一个名额,即 M 中只有一个元素,必须满足 x=8-x,故 x=4,所以应该派 学号为 4 的同学去. (2)若有两个名额,即 M 中有且仅有两个不同的元素 x 和 8-x,从而全部含有两个 元素的集合 M 含有元素的情况为:1,7 或 2,6 或 3,5,也就是有两个名额的分派方 法有 3 种.
高中数学必修一 1-1 集合课时提升作业(一) 集合
的含义
(25 分钟 60 分) 一、选择题(每小题 5 分,共 25 分) 1.下列指定的对象,不能组成集合的是 ( ) A.一年中有 31 天的月份 B.平面上到点 O 距离是 1 的点 C.满足方程 x2-2x-3=0 的 x D.某校高一(1)班性格开朗的女生 【解析】选 D.因为 A,B,C 所给的对象都是确定的,从而可以组成集合,而 D 中所 给的对象没有具体的标准来衡量一名女生怎样才能算性格开朗,故不能组成集 合. 【补偿训练】(2015·昆明高一检测)下列对象能组成集合的是 ( ) A.中国大的城市 B.方程 x2-9=0 在实数范围内的解 C.直角坐标平面内第一象限的一些点 D. 的近似值的全体 【解析】选 B.A 中的城市大到什么程度不明确,所以不能组成集合;B 能组成集 合;C 中“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因 此“直角坐标平面内第一象限的一些点”不能组成集合;D 中“ 的近似值”不 明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似值,所以不能 组成集合. 2.(2015·黄山高一检测)若 a 是 R 中的元素,但不是 Q 中的元素,则 a 可以
高中数学必修1课后习题答案完整版
高中数学必修1课后习题答案 第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A ,印度_______A ,英国_______A ;(2)若2{|}A x x x ==,则1-_______A ; (3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C . 1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉. 2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合; (2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (4)不等式453x -<的解集.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-; (2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ; 取两个元素,得{,},{,},{,}a b a c b c ; 取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =; (3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集;(5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以AB ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,BA ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,A B A B .1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==, {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}AB ==.2.设22{|450},{|1}A x x x B x x =--===,求,AB A B .2.解:方程2450x x --=的两根为121,5x x =-=, 方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-, 即{1},{1,1,5}AB A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,A B A B .3.解:{|}A B x x =是等腰直角三角形,{|}AB x x =是等腰三角形或直角三角形.4.已知全集{1,2,3,4,5,6,7}U =,{2,4,5},{1,3,5,7}A B ==, 求(),()()U U U AB A B 痧?.4.解:显然{2,4,6}U B =ð,{1,3,6,7}U A =ð, 则(){2,4}U AB =ð,()(){6}U U A B =痧. 1.1集合习题1.1 (第11页) A 组1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R(5Z3=是个整数; (6)2N ∈ 2)5=是个自然数.2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空: (1)5_______A ; (2)7_______A ; (3)10-_______A . 2.(1)5A ∈; (2)7A ∉; (3)10A -∈. 当2k =时,315k -=;当3k =-时,3110k -=-; 3.用列举法表示下列给定的集合: (1)大于1且小于6的整数; (2){|(1)(2)0}A x x x =-+=; (3){|3213}B x Z x =∈-<-≤.3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求; (3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求. 4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合; (2)反比例函数2y x=的自变量的值组成的集合;(3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥.5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ; (2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ; (3){|}x x 是菱形_______{|}x x 是平行四边形; {|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; BA ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,AB A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}AB x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B ,AC ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数, 则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}B C =,{3}B C =, 则(){1,2,3,4,5,6}AB C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定, 并解释以下集合运算的含义:(1)AB ;(2)A C . 8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项, 即为()A B C =∅.(1){|}A B x x =是参加一百米跑或参加二百米跑的同学; (2){|}AC x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形,{|}C x x =是矩形,求BC ,A B ð,S A ð.9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形ð, {|}S A x x =是梯形ð.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()R AB ð,()R A B ð,()R A B ð,()R A B ð.10.解:{|210}A B x x =<<,{|37}A B x x =≤<,{|3,7}R A x x x =<≥或ð,{|2,10}R B x x x =≤≥或ð, 得(){|2,10}R A B x x x =≤≥或ð, (){|3,7}R A B x x x =<≥或ð, (){|23,710}R A B x x x =<<≤<或ð,(){|2,3710}R AB x x x x =≤≤<≥或或ð.B 组1.已知集合{1,2}A =,集合B 满足{1,2}A B =,则集合B 有 个.1.4 集合B 满足AB A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看,集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系?2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合,即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==, 当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅; 当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}AB A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},AB a A B ==∅.4.已知全集{|010}U AB x N x ==∈≤≤,(){1,3,5,7}U A B =ð,试求集合B .4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =,得U B A ⊆ð,即()U UAB B =痧,而(){1,3,5,7}U A B =ð,得{1,3,5,7}U B =ð,而()U UB B =痧,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1)1()47f x x =+; (2)()1f x =.1.解:(1)要使原式有意义,则470x +≠,即74x ≠-,得该函数的定义域为7{|}4x x ≠-;(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.已知函数2()32f x x x =+,(1)求(2),(2),(2)(2)f f f f -+-的值; (2)求(),(),()()f a f a f a f a -+-的值.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-, 则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h 与时间t 关系的函数21305h t t =-和二次函数21305y x x =-; (2)()1f x =和0()g x x =.3.解:(1)不相等,因为定义域不同,时间0t >; (2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形的一边长为xcm , 面积为2ycm ,把y 表示为x 的函数. 1,y ==,且050x <<,即(050)y x =<<.2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事.(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化;(A )(B )(C )(D )图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进. 3.画出函数|2|y x =-的图象.3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.{|},{0,1}A x x B ==是锐角,从A 到B 的映射是“求正弦”,4.设与A 中元素60相对应的B 中的元素是什么?与B 中的元素2相对应的A 中元素是什么?4.解:因为3sin 60=,所以与A 中元素60相对应的B ;因为2sin 452=,所以与B 中的元素2相对应的A 中元素是45. 1.2函数及其表示 习题1.2(第23页)1.求下列函数的定义域:(1)3()4xf x x =-; (2)()f x =(3)26()32f x x x =-+; (4)()1f x x =-.1.解:(1)要使原式有意义,则40x -≠,即4x ≠, 得该函数的定义域为{|4}x x ≠;(2)x R ∈,()f x =即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且; (4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠, 得该函数的定义域为{|41}x x x ≤≠且.2.下列哪一组中的函数()f x 与()g x 相等?(1)2()1,()1x f x x g x x=-=-; (2)24(),()f x x g x ==;(3)2(),()f x x g x ==2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()g x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(32x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.画出下列函数的图象,并说出函数的定义域和值域.(1)3y x =; (2)8y x=; (3)45y x =-+; (4)267y x x =-+. 3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.已知函数2()352f x x x =-+,求(f ,()f a -,(3)f a +,()(3)f a f +.4.解:因为2()352f x x x =-+,所以2(3(5(28f =⨯-⨯+=+即(8f =+同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++,即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++,即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+,即2()(3)3516f a f a a +=-+.5.已知函数2()6x f x x +=-, (1)点(3,14)在()f x 的图象上吗?(2)当4x =时,求()f x 的值;(3)当()2f x =时,求x 的值.5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上;(2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.若2()f x x bx c =++,且(1)0,(3)0f f ==,求(1)f -的值.6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根,即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=, 即(1)f -的值为8.7.画出下列函数的图象:(1)0,0()1,0x F x x ≤⎧=⎨>⎩; (2)()31,{1,2,3}G n n n =+∈.7.图象如下:8.如图,矩形的面积为10,如果矩形的长为x ,宽为y ,对角线为d ,周长为l ,那么你能获得关于这些量的哪些函数?8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d ,即d =,得(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x =+>, 另外2()l x y =+,而22210,xy d x y ==+,得(0)l d ===>,即(0)l d =>.9.一个圆柱形容器的底部直径是dcm ,高是hcm ,现在以3/vcm s 的速度向容器内注入某种溶液.求溶液内溶液的高度xcm 关于注入溶液的时间ts 的函数解析式,并写出函数的定义域和值域.9.解:依题意,有2()2dx vt π=,即24v x t d π=,显然0x h ≤≤,即240v t h dπ≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.设集合{,,},{0,1}A a b c B ==,试问:从A 到B 的映射共有几个?并将它们分别表示出来.10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.函数()r f p =的图象如图所示.(1)函数()r f p =的定义域是什么?(2)函数()r f p =的值域是什么?(3)r 取何值时,只有唯一的p 值与之对应?1.解:(1)函数()r f p =的定义域是[5,0][2,6)-;(2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.画出定义域为{|38,5}x x x -≤≤≠且,值域为{|12,0}y y y -≤≤≠的一个函数的图象.(1)如果平面直角坐标系中点(,)P x y 的坐标满足38x -≤≤,12y -≤≤,那么其中哪些点不能在图象上?(2)将你的图象和其他同学的相比较,有什么差别吗?2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.函数()[]f x x =的函数值表示不超过x 的最大整数,例如,[ 3.5]4-=-,[2.1]2=.当( 2.5,3]x ∈-时,写出函数()f x 的解析式,并作出函数的图象.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.如图所示,一座小岛距离海岸线上最近的点P的距离是2km,从点P沿海岸正东12km处有一个城镇.(1)假设一个人驾驶的小船的平均速度为3/km h ,步行的速度是5/km h ,t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.请将t 表示为x 的函数.(2)如果将船停在距点P 4km 处,那么从小岛到城镇要多长时间(精确到1h )?4.解:(112x -,得1235x t -=+,(012)x ≤≤,即1235x t -=+,(012)x ≤≤.(2)当4x =时,12483()355t h -=+=≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.整个上午(8:0012:00)天气越来越暖,中午时分(12:0013:00)一场暴风雨使天气骤然凉爽了许多.暴风雨过后,天气转暖,直到太阳落山(18:00)才又开始转凉.画出这一天8:0020:00期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.根据下图说出函数的单调区间,以及在每一单调区间上,函数是增函数还是减函数.3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明函数()21f x x =-+在R 上是减函数.4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->,即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数.5.设()f x 是定义在区间[6,11]-上的函数.如果()f x 在区间[6,2]--上递减,在区间[2,11]-上递增,画出()f x 的一个大致的图象,从图象上可以发现(2)f -是函数()f x 的一个 .5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.判断下列函数的奇偶性:(1)42()23f x x x =+; (2)3()2f x x x =- (3)21()x f x x+=; (4)2()1f x x =+. 1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内 每一个x 都有22()11()()x x f x f x x x-++-==-=--, 所以函数21()x f x x+=为奇函数; (4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.已知()f x 是偶函数,()g x 是奇函数,试将下图补充完整.2.解:()f x 是偶函数,其图象是关于y 轴对称的;()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.画出下列函数的图象,并根据图象说出函数()y f x =的单调区间,以及在各单调区间上函数()y f x =是增函数还是减函数.(1)256y x x =--; (2)29y x =-. 1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增;(2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)函数2()1f x x =+在(,0)-∞上是减函数;(2)函数1()1f x x=-在(,0)-∞上是增函数. 2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.探究一次函数()y mx b x R =+∈的单调性,并证明你的结论.3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数,令()f x mx b =+,设12x x <,而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <,得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数.4.一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高.画出自服药那一刻起,心率关于时间的一个可能的图象(示意图).4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.某汽车租赁公司的月收益y 元与每辆车的月租金x 元间的关系为21622100050x y x =-+-,那么,每辆车的月租金多少元时,租赁公司的月收益最大?最大月收益是多少?5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元.6.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()(1)f x x x =+.画出函数()f x的图象,并求出函数的解析式.6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-,所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.已知函数2()2f x x x =-,2()2([2,4])g x x x x =-∈.(1)求()f x ,()g x 的单调区间; (2)求()f x ,()g x 的最小值.1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数,函数()g x 的单调区间为[2,4],且函数()g x 在[2,4]上为增函数;(2)当1x =时,min ()1f x =-,因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.如图所示,动物园要建造一面靠墙的2间面积相同的矩形熊猫居室,如果可供建造围墙的材料总长是30m ,那么宽x (单位:m )为多少才能使建造的每间熊猫居室面积最大?每间熊猫居室的最大面积是多少?2.解:由矩形的宽为x m ,得矩形的长为3032x m -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是18.75m^2.3.已知函数()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并证明你的判断.3.判断()f x 在(,0)-∞上是增函数,证明如下:设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-,又因为函数()f x 是偶函数,得12()()f x f x <,所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.用列举法表示下列集合:(1)2{|9}A x x ==;(2){|12}B x N x =∈≤≤;(3)2{|320}C x x x =-+=.1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-; (2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =.2.设P 表示平面内的动点,属于下列集合的点组成什么图形?(1){|}P PA PB =(,)A B 是两个定点;(2){|3}P PO cm =()O 是定点.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等,即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆.3.设平面内有ABC ∆,且P 表示这个平面内的动点,指出属于集合{|}{|}P PA PB P PA PC ==的点是什么.3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线,集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.已知集合2{|1}A x x ==,{|1}B x ax ==.若B A ⊆,求实数a 的值.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==,当0a =时,集合B =∅,满足B A ⊆,即0a =;当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a =, 得1a =-,或1a =,综上得:实数a 的值为1,0-,或1.5.已知集合{(,)|20}A x y x y =-=,{(,)|30}B x y x y =+=,{(,)|23}C x y x y =-=,求A B ,A C ,()()A B B C .5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y AC x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅; 集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭; 则39()(){(0,0),(,)}55A B B C =-. 6.求下列函数的定义域:(1)y =(2)||5y x =-. 6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥, 得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞. 7.已知函数1()1x f x x-=+,求:(1)()1(1)f a a +≠-; (2)(1)(2)f a a +≠-.7.解:(1)因为1()1x f x x-=+, 所以1()1a f a a -=+,得12()1111a f a a a-+=+=++, 即2()11f a a+=+; (2)因为1()1x f x x-=+, 所以1(1)(1)112a a f a a a -++==-+++, 即(1)2a f a a +=-+. 8.设221()1x f x x+=-,求证:50 (1)()()f x f x -=; (2)1()()f f x x=-. 8.证明:(1)因为221()1x f x x+=-, 所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=;(2)因为221()1x f x x+=-, 所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-. 9.已知函数2()48f x x kx =--在[5,20]上具有单调性,求实数k 的取值范围.9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性, 则208k ≥,或58k ≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.已知函数2y x -=,(1)它是奇函数还是偶函数?(2)它的图象具有怎样的对称性?(3)它在(0,)+∞上是增函数还是减函数?(4)它在(,0)-∞上是增函数还是减函数?10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称;(3)函数2y x -=在(0,)+∞上是减函数;(4)函数2y x -=在(,0)-∞上是增函数.B 组1.学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛.问同时参加田径和球类比赛的有多少人?只参加游泳一项比赛的有多少人?1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2.已知非空集合2{|}A x R x a =∈=,试求实数a 的取值范围.2.解:因为集合A ≠∅,且20x ≥,所以0a ≥.3.设全集{1,2,3,4,5,6,7,8,9}U =,(){1,3}U AB =ð,(){2,4}U A B =ð,求集合B . 3.解:由(){1,3}U AB =ð,得{2,4,5,6,7,8,9}A B =, 集合A B 里除去()U A B ð,得集合B ,所以集合{5,6,7,8,9}B =.4.已知函数(4),0()(4),0x x x f x x x x +≥⎧=⎨-<⎩.求(1)f ,(3)f -,(1)f a +的值. 4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=;当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩. 5.证明:(1)若()f x ax b =+,则1212()()()22x x f x f x f ++=; (2)若2()g x x ax b =++,则1212()()()22x x g x g x g ++≤. 5.证明:(1)因为()f x ax b =+,得121212()()222x x x x a f a b x x b ++=+=++, 121212()()()222f x f x ax b ax b a x x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++, 得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++ 2212121()()22x x x x a b +=+++, 因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤, 即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.(1)已知奇函数()f x 在[,]a b 上是减函数,试问:它在[,]b a --上是增函数还是减函数?(2)已知偶函数()g x 在[,]a b 上是增函数,试问:它在[,]b a --上是增函数还是减函数?6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >,所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-,又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >,所以函数()g x 在[,]b a --上是减函数. 7.《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额.此项税款按下表分段累计计算:某人一月份应交纳此项税款为26.78元,那么他当月的工资、薪金所得是多少?7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤,25(2500)10%26.78x +-⨯=,得2517.8x =,所以该人当月的工资、薪金所得是2517.8元.第三章函数的应用3.1函数与方程练习(P88)1.(1)令f(x)=-x2+3x+5,作出函数f(x)的图象(图3-1-2-7(1)),它与x轴有两个交点,所以方程-x2+3x+5=0有两个不相等的实数根.(2)2x(x-2)=-3可化为2x2-4x+3=0,令f(x)=2x2-4x+3,作出函数f(x)的图象(图3-1-2-7(2)),它与x轴没有交点,所以方程2x(x-2)=-3无实数根.(3)x2=4x-4可化为x2-4x+4=0,令f(x)=x2-4x+4,作出函数f(x)的图象(图3-1-2-7(3)),它与x轴只有一个交点(相切),所以方程x2=4x-4有两个相等的实数根.(4)5x2+2x=3x2+5可化为2x2+2x-5=0,令f(x)=2x2+2x-5,作出函数f(x)的图象(图3-1-2-7(4)),它与x轴有两个交点,所以方程5x2+2x=3x2+5有两个不相等的实数根.图3-1-2-72.(1)作出函数图象(图3-1-2-8(1)),因为f(1)=1>0,f(1.5)=-2.875<0,所以f(x)=-x3-3x+5在区间(1,1.5)上有一个零点.又因为f(x)是(-∞,+∞)上的减函数,所以f(x)=-x3-3x+5在区间(1,1.5)上有且只有一个零点.(2)作出函数图象(图3-1-2-8(2)),因为f(3)<0,f(4)>0,所以f(x)=2x·ln(x-2)-3在区间(3,4)上有一个零点.又因为f(x)=2x·ln(x-2)-3在(2,+∞)上是增函数,所以f(x)在(3,4)上有且仅有一个零点.(3)作出函数图象(图3-1-2-8(3)),因为f(0)<0,f(1)>0,所以f(x)=e x-1+4x-4在区间(0,1)上有一个零点.又因为f(x)=e x-1+4x-4在(-∞,+∞)上是增函数,所以f(x)在(0,1)上有且仅有一个零点.(4)作出函数图象(图3-1-2-8(4)),因为f(-4)<0,f(-3)>0,f(-2)<0,f(2)<0,f(3)>0,所以f(x)=3(x+2)(x-3)(x+4)+x在(-4,-3),(-3,-2),(2,3)上各有一个零点.图3-1-2-8练习(P91)1.由题设可知f(0)=-1.4<0,f(1)=1.6>0,于是f(0)·f(1)<0,所以函数f(x)在区间(0,1)内有一个零点x0.下面用二分法求函数f(x)=x3+1.1x2+0.9x-1.4在区间(0,1)内的零点.取区间(0,1)的中点x1=0.5,用计算器可算得f(0.5)=-0.55.因为f(0.5)·f(1)<0,所以x0∈(0.5,1).再取区间(0.5,1)的中点x2=0.75,用计算器可算得f(0.75)≈0.32.因为f(0.5)·f(0.75)<0,所以x0∈(0.5,0.75).同理,可得x0∈(0.625,0.75),x0∈(0.625,0.687 5),x0∈(0.656 25,0.687 5).由于|0.687 5-0.656 25|=0.031 25<0.1,所以原方程的近似解可取为0.656 25.2.原方程可化为x+lgx-3=0,令f(x)=x+lgx-3,用计算器可算得f(2)≈-0.70,f(3)≈0.48.于是f(2)·f(3)<0,所以这个方程在区间(2,3)内有一个解x0.下面用二分法求方程x=3-lgx在区间(2,3)的近似解.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)≈-0.10.因为f(2.5)·f(3)<0,所以x0∈(2.5,3).再取区间(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈0.19.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x0∈(2.5,2.625),x0∈(2.562 5,2.625),x0∈(2.562 5,2.593 75),x0∈(2.578 125,2.593 75),x0∈(2.585 937 5,2.59 375).由于|2.585 937 5-2.593 75|=0.007 812 5<0.01,所以原方程的近似解可取为2.593 75.习题3.1 A组(P92)1.A,C 点评:需了解二分法求函数的近似零点的条件.2.由x,f(x)的对应值表可得f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,又根据“如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.”可知函数f(x)分别在区间(2,3),(3,4),(4,5)内有零点.3.原方程即(x+1)(x-2)(x-3)-1=0,令f(x)=(x+1)(x-2)(x-3)-1,可算得f(-1)=-1,f(0)=5.于是f(-1)·f(0)<0,所以这个方程在区间(-1,0)内有一个解. 下面用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)=3.375.因为f(-1)·f(-0.5)<0,所以x0∈(-1,-0.5).再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)≈1.58.因为f(-1)·f(-0.75)<0,所以x0∈(-1,-0.75).同理,可得x0∈(-1,-0.875),x0∈(-0.937 5,-0.875).由于|(-0.875)-(-0.937 5)|=0.062 5<0.1,所以原方程的近似解可取为-0.937 5.4.原方程即0.8x-1-lnx=0,令f(x)=0.8x-1-lnx,f(0)没有意义,用计算器算得f(0.5)≈0.59,f(1)=-0.2.于是f(0.5)·f(1)<0,所以这个方程在区间(0.5,1)内有一个解.下面用二分法求方程0.8x-1=lnx在区间(0,1)内的近似解.取区间(0.5,1)的中点x1=0.75,用计算器可算得f(0.75)≈0.13.因为f (0.75)·f (1)<0,所以x 0∈(0.75,1).再取(0.75,1)的中点x 2=0.875,用计算器可算得f (0.875)≈-0.04.因为f (0.875)·f (0.75)<0,所以x 0∈(0.75,0.875).同理,可得x 0∈(0.812 5,0.875),x 0∈(0.812 5,0.843 75).由于|0.812 5-0.843 75|=0.031 25<0.1,所以原方程的近似解可取为0.843 75.5.由题设有f (2)≈-0.31<0,f (3)≈0.43>0,于是f (2)·f (3)<0,所以函数f (x )在区间(2,3)内有一个零点.下面用二分法求函数f (x )=lnx x2-在区间(2,3)内的近似解. 取区间(2,3)的中点x 1=2.5,用计算器可算得f (2.5)≈0.12.因为f (2)·f (2.5)<0,所以x 0∈(2,2.5).再取(2,2.5)的中点x 2=2.25,用计算器可算得f (2.25)≈-0.08.因为f (2.25)·f (2.5)<0,所以x 0∈(2.25,2.5).同理,可得x 0∈(2.25,2.375),x 0∈(2.312 5,2.375),x 0∈(2.343 75,2.375),x 0∈(2.343 75,2.359 375),x 0∈(2.343 75,2.351 562 5),x 0∈(2.343 75,2.347 656 25).由于|2.343 75-2.347 656 25|=0.003 906 25<0.01,所以原方程的近似解可取为2.347 656 25.B 组1.将系数代入求根公式x 得x =223(3)42(1)22±--⨯⨯-⨯=4173+, 所以方程的两个解分别为x 1=4173+,x 2=4173-.下面用二分法求方程的近似解.取区间(1.775,1.8)和(-0.3,-0.275),令f (x )=2x 2-3x -1.在区间(1.775,1.8)内用计算器可算得f (1.775)=-0.023 75,f (1.8)=0.08.于是f (1.775)·f (1.8)<0.所以这个方程在区间(1.775,1.8)内有一个解.由于|1.8-1.775|=0.025<0.1,所以原方程在区间(1.775,1.8)内的近似解可取为1.8.同理,可得方程在区间(-0.3,-0.275)内的近似解可取为-0.275.所以方程精确到0.1的近似解分别是1.8和-0.3.2.原方程即x3-6x2-3x+5=0,令f(x)=x3-6x2-3x+5,函数图象如下图所示.图3-1-2-9所以这个方程在区间(-2,0),(0,1),(6,7)内各有一个解.取区间(-2,0)的中点x1=-1,用计算器可算得f(-1)=1.因为f(-2)·f(-1)<0,所以x0∈(-2,-1).再取(-2,-1)的中点x2=-1.5,用计算器可算得f(-1.5)=-7.375.因为f(-1.5)·f(-1)<0,所以x0∈(-1.5,-1).同理,可得x0∈(-1.25,-1),x0∈(-1.125,-1),x0∈(-1.125,-1.062 5).由于|(-1.062 5)-(-1.125)|=0.062 5<0.1,所以原方程在区间(-2,0)内的近似解可取为-1.062 5.同理,可得原方程在区间(0,1)内的近似解可取为0.7,在区间(6,7)内的近似解可取为6.3.3.(1)由题设有g(x)=2-[f(x)]2=2-(x2+3x+2)2=-x4-6x3-13x2-12x-2.(2)函数图象如下图所示.图3-1-2-10(3)由图象可知,函数g(x)分别在区间(-3,-2)和区间(-1,0)内各有一个零点.取区间(-3,-2)的中点x1=-2.5,用计算器可算得g(-2.5)=0.187 5.因为g(-3)·g(-2.5)<0,所以x0∈(-3,-2.5).再取(-3,-2.5)的中点x2=-2.75,用计算器可算得g(-2.75)≈0.28.因为g(-3)·g(-2.75)<0,所以x0∈(-3,-2.75).同理,可得x0∈(-2.875,-2.75),x0∈(-2.812 5,-2.75).由于|-2.75-(-2.812 5)|=0.062 5<0.1,所以原方程在区间(-3,-2)内的近似解可取为-2.812 5.同样可求得函数在区间(-1,0)内的零点约为-0.2.所以函数g(x)精确到0.1的零点约为-2.8或-0.2.点评:第2、3题采用信息技术画出函数图象,并据此明确函数零点所在的区间.在教学中,如果没有信息技术条件,建议教师直接给出函数图象或零点所在区间.第三章复习参考题A组(P112)1.C2.C3.设经过时间t后列车离C地的距离为y,则y=200100,02,100200,2 5.t tt t-≤≤⎧⎨-<≤⎩图3-24.(1)圆柱形; (2)上底小、下底大的圆台形;(3)上底大、下底小的圆台形; (4)呈下大上小的两节圆柱形. 图略.图3-35.令f(x)=2x3-4x2-3x+1,函数图象如图3-3所示:函数分别在区间(-1,0)、(0,1)和区间(2,3)内各有一个零点,所以方程2x3-4x2-3x+1=0的最大的根应在区间(2,3)内.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)=-0.25.因为f(2.5)·f(3)<0,所以x0∈(2.5,3). 再取(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈4.09.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x0∈(2.5,2.625),x0∈(2.5,2.5625),x0∈(2.5,2.53125),x0∈(2.515625,2.53125),x0∈(2.515625,2.5234375).由于|2.523 437 5-2.515 625|=0.007 812 5<0.01,所以原方程的最大根约为2.523 437 5.6.令lgx =x 1,即得方程lgx x 1-=0,再令g (x )=lgx x1-,用二分法求得交点的横坐标约为2.5.图3-47.如图,作DE ⊥AB,垂足为E.由已知可得∠ADB=90°.因为AD=x ,AB=4,于是AD 2=AE×AB,即AE=AB AD 2=42x . 所以CD=AB-2AE=4-2×42x =422x -. 于是y =AB+BC+CD+AD=4+x +422x -+x =22x -+2x +8. 由于AD>0,AE>0,CD>0,所以x >0,42x >0,422x ->0,解得0<x <22. 所以所求的函数为y =22x -+2x +8,0<x <22. 8.(1)由已知可得N=N 0(λe 1)t .因为λ是正常数,e >1,所以e λ>1,即0<λe1<1. 又N 0是正常数,所以N=N 0(λe1)t 是在于t 的减函数. (2)N=N 0e -λt ,因为e -λt =0N N ,所以-λt =ln 0N N ,即t =λ1-ln 0N N . (3)当N=20N 时,t =λ1-002N N =λ1-ln 2. 9.因为f (1)=-3+12+8=17>0,f (2)=-3×8+12×2+8=8>0,f (3)<0,所以,下次生产应在两个月后开始.B 组1.厂商希望的是甲曲线;客户希望的是乙曲线.2.函数的解析式为y=f(t)=22,01, 2(2)12,22.tt tt<≤⎪⎪⎪⎪--+<≤⎨>⎪⎩函数的图象为图3-5备课资料[备选例题]【例】对于函数f(x)=ax2+(b+1)x+b-2(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的不动点.(1)当a=2,b=-2时,求f(x)的不动点;(2)若对于任何实数b,函数f(x)恒有两个相异的不动点,求实数a的取值范围.解:(1)f(x)=ax2+(b+1)x+b-2(a≠0),当a=2,b=-2时,f(x)=2x2-x-4,设x为其不动点,即2x2-x-4=x,则2x2-2x-4=0,解得x1=-1,x2=2,即f(x)的不动点为-1,2.(2)由f(x)=x,得ax2+bx+b-2=0.关于x的方程有相异实根,则b2-4a(b-2)>0,即b2-4ab+8a>0.又对所有的b∈R,b2-4ab+8a>0恒成立,故有(4a)2-4·8a<0,得0<a<2.。
人教A版高中数学必修1课后习题及答案(全部三章)
高中数学必修1课后习题答案 第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A ,印度_______A ,英国_______A ; (2)若2{|}A x x x ==,则1-_______A ; (3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C . 1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉.2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合; (2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (4)不等式453x -<的解集.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-; (2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ; 取两个元素,得{,},{,},{,}a b a c b c ; 取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =; (3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=. 2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅; (4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈. 3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以AB ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,A B A B .1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==,{3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}AB ==.2.设22{|450},{|1}A x x x B x x =--===,求,A B A B .2.解:方程2450x x --=的两根为121,5x x =-=, 方程210x -=的两根为121,1x x =-=, 得{1,5},{1,1}A B =-=-, 即{1},{1,1,5}AB A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,A B A B .3.解:{|}A B x x =是等腰直角三角形,{|}AB x x =是等腰三角形或直角三角形.4.已知全集{1,2,3,4,5,6,7}U =,{2,4,5},{1,3,5,7}A B ==, 求(),()()U U U AB A B 痧?. 4.解:显然{2,4,6}U B =ð,{1,3,6,7}U A =ð, 则(){2,4}U AB =ð,()(){6}U U A B =痧. 1.1集合习题1.1 (第11页) A 组1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R 是实数;(5Z3=是个整数; (6)2N ∈ 2)5=是个自然数.2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空: (1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-; 3.用列举法表示下列给定的集合: (1)大于1且小于6的整数; (2){|(1)(2)0}A x x x =-+=; (3){|3213}B x Z x =∈-<-≤.3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求; (3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求. 4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合;(2)反比例函数2y x=的自变量的值组成的集合; (3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥.5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ; (2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ; (3){|}x x 是菱形_______{|}x x 是平行四边形;{|}x x 是等腰三角形_______{|}x x 是等边三角形. 5.(1)4B -∉; 3A -∉; {2}B ; BA ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥; (2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-; (3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,AB A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}AB x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B ,AC ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数, 则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}B C =,{3}B C =, 则(){1,2,3,4,5,6}AB C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定, 并解释以下集合运算的含义:(1)A B ;(2)A C . 8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项, 即为()A B C =∅.(1){|}AB x x =是参加一百米跑或参加二百米跑的同学;(2){|}A C x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形,{|}C x x =是矩形,求BC ,A B ð,S A ð.9.解:同时满足菱形和矩形特征的是正方形,即{|}B C x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形ð, {|}S A x x =是梯形ð.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()R AB ð,()R A B ð,()R A B ð,()R A B ð.10.解:{|210}AB x x =<<,{|37}A B x x =≤<,{|3,7}R A x x x =<≥或ð,{|2,10}R B x x x =≤≥或ð, 得(){|2,10}R A B x x x =≤≥或ð, (){|3,7}R A B x x x =<≥或ð, (){|23,710}R A B x x x =<<≤<或ð,(){|2,3710}R AB x x x x =≤≤<≥或或ð.B 组1.已知集合{1,2}A =,集合B 满足{1,2}A B =,则集合B 有 个.1.4 集合B 满足AB A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看, 集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系?2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合,即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==, 当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅; 当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}AB A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},AB a A B ==∅.4.已知全集{|010}U AB x N x ==∈≤≤,(){1,3,5,7}U A B =ð,试求集合B . 4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =,得U B A ⊆ð,即()U UAB B =痧,而(){1,3,5,7}U A B =ð, 得{1,3,5,7}U B =ð,而()U UB B =痧,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1)1()47f x x =+; (2)()1f x =.1.解:(1)要使原式有意义,则470x +≠,即74x ≠-,得该函数的定义域为7{|}4x x ≠-;(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.已知函数2()32f x x x =+,(1)求(2),(2),(2)(2)f f f f -+-的值;(2)求(),(),()()f a f a f a f a -+-的值.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=, 同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+, 同理得22()3()2()32f a a a a a -=⨯-+⨯-=-, 则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h 与时间t 关系的函数21305h t t =-和二次函数21305y x x =-; (2)()1f x =和0()g x x =.3.解:(1)不相等,因为定义域不同,时间0t >; (2)不相等,因为定义域不同,0()(0)g x x x =≠. 1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形的一边长为xcm , 面积为2ycm ,把y 表示为x 的函数.1,y ==050x <<,即(050)y x =<<.2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事. (1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进. 3.画出函数|2|y x =-的图象.3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.4.设{|},{0,1}A x x B ==是锐角,从A 到B 的映射是“求正弦”,与A 中元素60相对应的B 中的元素是什么?与B中的元素2相对应的A 中元素是什么? 4.解:因为3sin 60=,所以与A 中元素60相对应的B因为2sin 45=,所以与B相对应的A 中元素是45. 1.2函数及其表示 习题1.2(第23页)1.求下列函数的定义域: (1)3()4xf x x =-; (2)()f x = (3)26()32f x x x =-+; (4)()1f x x =-. 1.解:(1)要使原式有意义,则40x -≠,即4x ≠, 得该函数的定义域为{|4}x x ≠; (2)x R∈,()f x =即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且;(A )(B )(C )(D )(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠,得该函数的定义域为{|41}x x x ≤≠且. 2.下列哪一组中的函数()f x 与()g x 相等?(1)2()1,()1x f x x g x x=-=-; (2)24(),()f x x g x ==;(3)2(),()f x x g x =.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()g x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(32x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.画出下列函数的图象,并说出函数的定义域和值域. (1)3y x =; (2)8y x=; (3)45y x =-+; (4)267y x x =-+. 3.解:(1)义域是(,)-∞+∞,值域是(,)-∞+∞;定 (2)义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;定(3)义域是(,)-∞+∞,值域是(,)-∞+∞; 定(4)义域是(,)-∞+∞,值域是[2,)-+∞.定2()352f x x x =-+,求(f ,()f a -,(3)f a +,4.已知函数()(3)f a f +.2()352f x x x =-+,所以4.解:因为2(3(5(28f =⨯-⨯+=+即(8f =+同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++,即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++,即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+,即2()(3)3516f a f a a +=-+.5.已知函数2()6x f x x +=-, (1)点(3,14)在()f x 的图象上吗?(2)当4x =时,求()f x 的值;(3)当()2f x =时,求x 的值.5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上;(2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =. 6.若2()f x x bx c =++,且(1)0,(3)0f f ==,求(1)f -的值.6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根, 即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=,即(1)f -的值为8.7.画出下列函数的图象:(1)0,0()1,0x F x x ≤⎧=⎨>⎩; (2)()31,{1,2,3}G n n n =+∈. 7.图象如下:8.如图,矩形的面积为10,如果矩形的长为x ,宽为y ,对角线为d ,周长为l ,那么你能获得关于这些量的哪些函数? 8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>, 由对角线为d,即d =(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x =+>, 另外2()l x y =+,而22210,xy d x y ==+,得(0)l d ===>,即(0)l d =>.9.一个圆柱形容器的底部直径是dcm ,高是hcm ,现在以3/vcm s 的速度向容器内注入某种溶液.求溶液内溶液的高度xcm 关于注入溶液的时间ts 的函数解析式,并写出函数的定义域和值域.9.解:依题意,有2()2dx vt π=,即24v x t dπ=, 显然0x h ≤≤,即240v t h dπ≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.设集合{,,},{0,1}A a b c B ==,试问:从A 到B 的映射共有几个?并将它们分别表示出来.10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.函数()r f p =的图象如图所示.(1)函数()r f p =的定义域是什么?(2)函数()r f p =的值域是什么?(3)r 取何值时,只有唯一的p 值与之对应?1.解:(1)函数()r f p =的定义域是[5,0][2,6)-;(2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.画出定义域为{|38,5}x x x -≤≤≠且,值域为{|12,0}y y y -≤≤≠的一个函数的图象.(1)如果平面直角坐标系中点(,)P x y 的坐标满足38x -≤≤,12y -≤≤,那么其中哪些点不能在图象上?(2)将你的图象和其他同学的相比较,有什么差别吗?2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.函数()[]f x x =的函数值表示不超过x 的最大整数,例如,[ 3.5]4-=-,[2.1]2=.当( 2.5,3]x ∈-时,写出函数()f x 的解析式,并作出函数的图象.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.如图所示,一座小岛距离海岸线上最近的点P 的距离是2km ,从点P 沿海岸正东12km 处有一个城镇.(1)假设一个人驾驶的小船的平均速度为3/km h ,步行的速度是5/km h ,t (单位:h)表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.请将t 表示为x 的函数.(2)如果将船停在距点P 4km 处,那么从小岛到城镇要多长时间(精确到1h )?4.解:(112x -,得1235x t -=+,(012)x ≤≤,即125x t -=+,(012)x ≤≤.(2)当4x =时,12483()55t h -==+≈. 第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.整个上午(8:0012:00)天气越来越暖,中午时分(12:0013:00)一场暴风雨使天气骤然凉爽了许多.暴风雨过后,天气转暖,直到太阳落山(18:00)才又开始转凉.画出这一天8:0020:00期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间.2.解:图象如下 [8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.根据下图说出函数的单调区间,以及在每一单调区间上,函数是增函数还是减函数.3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明函数()21f x x =-+在R 上是减函数.4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->,即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数.5.设()f x 是定义在区间[6,11]-上的函数.如果()f x 在区间[6,2]--上递减,在区间[2,11]-上递增,画出()f x 的一个大致的图象,从图象上可以发现(2)f -是函数()f x 的一个 .5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.判断下列函数的奇偶性:(1)42()23f x x x =+; (2)3()2f x x x =- (3)21()x f x x+=; (4)2()1f x x =+. 1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x =-为奇函数; (3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内 每一个x 都有22()11()()x x f x f x x x-++-==-=--, 所以函数21()x f x x+=为奇函数; (4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.已知()f x 是偶函数,()g x 是奇函数,试将下图补充完整.2.解:()f x 是偶函数,其图象是关于y 轴对称的;()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.画出下列函数的图象,并根据图象说出函数()y f x =的单调区间,以及在各单调区间上函数()y f x =是增函数还是减函数.(1)256y x x =--; (2)29y x =-.1.解:(1)5(,)2-∞上递减;函数在5[,)2+∞上递 函数在增;(2)(,0)-∞上递增;函数在[0,)+∞上递 函数在减.2.证明:(1)函数2()1f x x =+在(,0)-∞上是减函数; (2)函数1()1f x x =-在(,0)-∞上是增函数.2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.探究一次函数()y mx b x R =+∈的单调性,并证明你的结论.3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数,令()f x mx b =+,设12x x <,而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <,得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数.4.一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高.画出自服药那一刻起,心率关于时间的一个可能的图象(示意图).4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.某汽车租赁公司的月收益y 元与每辆车的月租金x 元间的关系为21622100050x y x =-+-,那么,每辆车的月租金多少元时,租赁公司的月收益最大?最大月收益是多少?5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元.6.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()(1)f x x x =+.画出函数()f x的图象,并求出函数的解析式.6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-,所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.已知函数2()2f x x x =-,2()2([2,4])g x x x x =-∈.(1)求()f x ,()g x 的单调区间; (2)求()f x ,()g x 的最小值.1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数,函数()g x 的单调区间为[2,4],且函数()g x 在[2,4]上为增函数;(2)当1x =时,min ()1f x =-,因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.如图所示,动物园要建造一面靠墙的2间面积相同的矩形熊猫居室,如果可供建造围墙的材料总长是30m ,那么宽x (单位:m )为多少才能使建造的每间熊猫居室面积最大?每间熊猫居室的最大面积是多少?2.解:由矩形的宽为x m ,得矩形的长为3032x m -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m .3.已知函数()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并证明你的判断.3.判断()f x 在(,0)-∞上是增函数,证明如下:设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-,又因为函数()f x 是偶函数,得12()()f x f x <,所以()f x 在(,0)-∞上是增函数. 复习参考题A 组1.用列举法表示下列集合:(1)2{|9}A x x ==;(2){|12}B x N x =∈≤≤;(3)2{|320}C x x x =-+=.1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-;(2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =.2.设P 表示平面内的动点,属于下列集合的点组成什么图形?(1){|}P PA PB =(,)A B 是两个定点;(2){|3}P PO cm =()O 是定点.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等,即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆.3.设平面内有ABC ∆,且P 表示这个平面内的动点,指出属于集合 {|}{|}P PA PB P PA PC ==的点是什么.3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线,集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.已知集合2{|1}A x x ==,{|1}B x ax ==.若B A ⊆,求实数a 的值.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==,当0a =时,集合B =∅,满足B A ⊆,即0a =;当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a =, 得1a =-,或1a =,综上得:实数a 的值为1,0-,或1.5.已知集合{(,)|20}A x y x y =-=,{(,)|30}B x y x y =+=,{(,)|23}C x y x y =-=,求A B ,A C ,()()A B B C .5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =; 集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭; 则39()(){(0,0),(,)}55A B B C =-. 6.求下列函数的定义域:(1)y =(2)||5y x =-. 6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞. 7.已知函数1()1x f x x-=+,求: (1)()1(1)f a a +≠-; (2)(1)(2)f a a +≠-.7.解:(1)因为1()1x f x x-=+, 所以1()1a f a a -=+,得12()1111a f a a a-+=+=++, 即2()11f a a+=+; (2)因为1()1x f x x-=+, 所以1(1)(1)112a a f a a a -++==-+++, 即(1)2a f a a +=-+. 8.设221()1x f x x +=-,求证:(1)()()f x f x -=; (2)1()()f f x x=-.8.证明:(1)因为221()1x f x x +=-,所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=;(2)因为221()1x f x x +=-,所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-.9.已知函数2()48f x x kx =--在[5,20]上具有单调性,求实数k 的取值范围. 9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.已知函数2y x -=,(1)它是奇函数还是偶函数? (2)它的图象具有怎样的对称性? (3)它在(0,)+∞上是增函数还是减函数? (4)它在(,0)-∞上是增函数还是减函数? 10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛.问同时参加田径和球类比赛的有多少人?只参加游泳一项比赛的有多少人? 1.解:设同时参加田径和球类比赛的有x 人, 则158143328x ++---=,得3x =, 只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人. 2.已知非空集合2{|}A x R x a =∈=,试求实数a 的取值范围. 2.解:因为集合A ≠∅,且20x ≥,所以0a ≥. 3.设全集{1,2,3,4,5,6,7,8,9}U =,(){1,3}U A B =ð,(){2,4}U A B =ð,求集合B .3.解:由(){1,3}U A B =ð,得{2,4,5,6,7,8,9}A B =,集合AB 里除去()U A B ð,得集合B ,所以集合{5,6,7,8,9}B =.4.已知函数(4),0()(4),0x x x f x x x x +≥⎧=⎨-<⎩.求(1)f ,(3)f -,(1)f a +的值.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=; (1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)若()f x ax b =+,则1212()()()22x x f x f x f ++=; (2)若2()g x x ax b =++,则1212()()()22x x g x g x g ++≤. 5.证明:(1)因为()f x ax b =+,得121212()()222x x x x af a b x x b ++=+=++,121212()()()222f x f x ax b ax b ax x b ++++==++,所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++,2212121()()22x x x x a b +=+++, 因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.(1)已知奇函数()f x 在[,]a b 上是减函数,试问:它在[,]b a --上是增函数还是减函数?(2)已知偶函数()g x 在[,]a b 上是增函数,试问:[,]b a --上是增函数还是减函数?它在(1)函数()f x 在[,]b a --上也是减函数,证明如6.下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数; (2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额.此项税款按下表分段累计计算: 某人一月份应交纳此项税款为26.78元,那么他当月的工资、薪金所得是多少? 7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则 由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I )2.1指数函数 练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32, (2)43)(b a +=(a +b )43, (3)32n)-(m =(m -n )32,(4)4n)-(m =(m -n )2,(5)56q p =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121++=2×3=6;(3)a 21a 41a 81-=a814121-+=a 85; (4)2x31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-. 练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.3.y =2x (x ∈N *)习题2.1 A 组(P59)1.(1)100;(2)-0.1;(3)4-π;(4)x -y .2解:(1)623ba ab=212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1. (2)a aa2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(mm m m m ∙∙∙=4165413121mm m m m ∙∙=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行. 3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0; 对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0; 对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案:8.825 0.4.解:(1)a 31a 43a127=a 1274331++=a 35; (2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx =x 4y -9;(4)4a 32b 31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ;(5))2516(462rts -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts=6393652----rt s =36964125s r r ; (6)(-2x 41y31-)(3x21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y41-)=(2x 21)2-(3y 41-)2=4x -9y21-;(8)4x 41 (-3x 41y31-)÷(-6x21-y32-)=3231214141643+-++-⨯-y x =2xy 31. 点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∈R ,即x ∈R ,所以函数y =23-x 的定义域为R . (2)要使函数有意义,需2x +1∈R ,即x ∈R ,所以函数y =32x +1的定义域为R . (3)要使函数有意义,需5x ∈R,即x ∈R,所以函数y =(21)5x的定义域为R . (4)要使函数有意义,需x ≠0,所以函数y =0.7x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∈N *,x ≤m ). 点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y =3x ,当x =0.8和0.7时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y =0.75x ,当x =-0.1和0.1时的函数值; 因为1>0.75,所以函数y =0.75x 在R 上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y =1.01x ,当x =2.7和3.5时的函数值; 因为1.01>1,所以函数y =1.01x 在R 上是增函数.而2.7<3.5,所以1.012.7<1.013.5. (4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y =0.99x ,当x =3.3和4.5时的函数值; 因为0.99<1,所以函数y =0.99x 在R 上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m ,2n 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n . (2)0.2m ,0.2n 可以看成函数y =0.2x ,当x =m 和n 时的函数值;因为0.2<1, 所以函数y =0.2x 在R 上是减函数.因为0.2m <0.2n ,所以m >n . (3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1, 所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n . (4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1, 所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n . 点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈0.002. 答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰, 因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <0.001,解得t >5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的. B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3. 综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用. 解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35.点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口. 3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ), 2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2, 3期后的本利和为y 3=a (1+r )3, …x 期后的本利和为y =a (1+r )x .将a =1 000,r =0.022 5,x =5代入上式得y =a (1+r )x =1 000×(1+0.022 5)5=1 000×1.02255≈1118.答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元. 4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-. (2)因为y 1>y 2,所以a 3x +1>a -2x . 所以当a >1时,3x +1>-2x .所以x >51-. 当0<a <1时,3x +1<-2x .所以x <51-.2.2对数函数 练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=-2.(1)239=; (2)35125=; (3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =; (2)设21log 16x =,则412216x -==,所以4x =-; (3)设lg1000x =,则310100010x ==,所以3x =; (4)设lg 0.001x =,则3100.00110x -==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z=-=++=++;(3)33311lg()lg lg lg lg 3lg lg22xy x y z x y z =-=+-=+-;(4)2211lg()lg (lg lg )lg 2lg lg 22y z x y z x y z ==-+=--. 2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=;(2)22lg1002lg1002lg104lg104====;(3)5lg 0.00001lg105lg105-==-=-; (4)11ln 22e ==3. (1)22226log 6log 3log log 213-===; (2)lg5lg 2lg101+==; (3)555511log 3log log (3)log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-. 4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0) 不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞; (3)1(,)3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题2.2 A 组(P74) 1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x = (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x = (4)173x =(5) 100.3x = (6) xe =3. (1)0; (2) 2; (3) 2-; (4)2; (5) 14-; (6) 2. 4. (1)lg6lg 2lg3a b =+=+; (2) 3lg 42lg 22log 4lg3lg3ab===; (3) 2lg122lg 2lg3lg3log 1222lg 2lg 2lg 2b a +===+=+; (4)3lg lg3lg 22b a =-=-5. (1)x ab =; (2) mx n=; (3) 3n x m =; (4)x =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x+=解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4.8. (1)m n <; (2) m n <; (3) m n >; (4)m n >. 9. 若火箭的最大速度12000v =,那么62000ln 112000ln(1)61402M M M M e mm m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s.10. (1)当底数全大于1时,在1x =的右侧,底数越大的图象越在下方.所以,①对应函数lg y x =,②对应函数5log y x =,③对应函数2log y x =. (2)略. (3)与原函数关于x 轴对称. 11. (1)235lg 25lg 4lg92lg52lg 22lg3log 25log 4log 98lg 2lg3lg5lg 2lg3lg5⋅⋅=⨯⨯=⨯⨯= (2)lg lg lg log log log 1lg lg lg a b c b c a b c a a b c⋅⋅=⨯⨯= 12. (1)令2700O =,则312700log 2100v =,解得 1.5v =. 答:鲑鱼的游速为1.5米/秒. (2)令0v =,则31log 02100O=,解得100O =. 答:一条鱼静止时的耗氧量为100个单位.B 组1. 由3log 41x =得:143,43x x -==,于是11044333x x -+=+= 2. ①当1a >时,3log 14a<恒成立; ②当01a <<时,由3log 1log 4a a a <=,得34a <,所以304a <<.综上所述:实数a 的取值范围是3{04a a <<或1}a >3. (1)当1I = W/m 2时,112110lg 12010L -==;(2)当1210I -= W/m 2时,121121010lg 010L --==答:常人听觉的声强级范围为0120dB .4. (1)由10x +>,10x ->得11x -<<,∴函数()()f x g x +的定义域为(1,1)- (2)根据(1)知:函数()()f x g x +的定义域为(1,1)-∴ 函数()()f x g x +的定义域关于原点对称又∵ ()()l o g (1)l o g (1)()a a f x g x x x f x g x -+-=-++=+ ∴()()f x g x +是(1,1)-上的偶函数.5. (1)2log y x =,0.3log y x =; (2)3xy =,0.1x y =.习题2.3 A 组(P79)。
必修一第一章集合全章练习题(含答案)
第一章集合与函数概念§1.1集合1.1.1集合的含义与表示第1课时集合的含义课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.1.元素与集合的概念(1)把________统称为元素,通常用__________________表示.(2)把________________________叫做集合(简称为集),通常用____________________表示.2.集合中元素的特性:________、________、________.3.集合相等:只有构成两个集合的元素是______的,才说这两个集合是相等的.45.符号________________________一、选择题1.下列语句能确定是一个集合的是()A.著名的科学家B.留长发的女生C.2010年广州亚运会比赛项目D.视力差的男生2.集合A只含有元素a,则下列各式正确的是()A.0∈A B.a∉AC.a∈A D.a=A3.已知M中有三个元素可以作为某一个三角形的边长,则此三角形一定不是() A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形4.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是() A.1 B.-2 C.6 D.25.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为() A.2 B.3C.0或3 D.0,2,3均可6.由实数x、-x、|x|、x2及-3x3所组成的集合,最多含有()A.2个元素B.3个元素C.4个元素D.5个元素二、填空题7.由下列对象组成的集体属于集合的是______.(填序号)①不超过π的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.8.集合A 中含有三个元素0,1,x ,且x 2∈A ,则实数x 的值为________.9.用符号“∈”或“∉”填空-2_______R ,-3_______Q ,-1_______N ,π_______Z .三、解答题10.判断下列说法是否正确?并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合;(2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素; (4)高一(三)班个子高的同学构成一个集合.11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .能力提升12.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?13.设A为实数集,且满足条件:若a∈A,则11-a∈A (a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.1.考查对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),能确定一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.集合中元素的三个性质(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.第一章集合与函数概念§1.1集合1.1.1集合的含义与表示第1课时集合的含义知识梳理1.(1)研究对象小写拉丁字母a,b,c,…(2)一些元素组成的总体大写拉丁字母A,B,C,… 2.确定性互异性无序性3.一样 4.a是集合A a不是集合A 5.N N*或N+Z Q R作业设计1.C[选项A、B、D都因无法确定其构成集合的标准而不能构成集合.]2.C[由题意知A中只有一个元素a,∴0∉A,a∈A,元素a与集合A的关系不应用“=”,故选C.]3.D[集合M的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互不相等的,故选D.]4.C [因A 中含有3个元素,即a 2,2-a,4互不相等,将选项中的数值代入验证知答案选C.]5.B [由2∈A 可知:若m =2,则m 2-3m +2=0,这与m 2-3m +2≠0相矛盾; 若m 2-3m +2=2,则m =0或m =3,当m =0时,与m ≠0相矛盾,当m =3时,此时集合A ={0,3,2},符合题意.]6.A [方法一 因为|x |=±x ,x 2=|x |,-3x 3=-x ,所以不论x 取何值,最多只能写成两种形式:x 、-x ,故集合中最多含有2个元素.方法二 令x =2,则以上实数分别为:2,-2,2,2,-2,由元素互异性知集合最多含2个元素.]7.①④解析 ①④中的标准明确,②③中的标准不明确.故答案为①④.8.-1解析 当x =0,1,-1时,都有x 2∈A ,但考虑到集合元素的互异性,x ≠0,x ≠1,故答案为-1.9.∈ ∈ ∉ ∉10.解 (1)正确.因为参加2010年广州亚运会的国家是确定的,明确的.(2)不正确.因为高科技产品的标准不确定.(3)不正确.对一个集合,它的元素必须是互异的,由于0.5=12,在这个集合中只能作为一元素,故这个集合含有三个元素.(4)不正确.因为个子高没有明确的标准.11.解 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32. 则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a 2+5a =-3, ∴a =-32. 12.解 ∵当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6;当a =2时,b 依次取1,2,6,得a +b 的值分别为3,4,8;当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11共8个.13.证明 (1)若a ∈A ,则11-a∈A . 又∵2∈A ,∴11-2=-1∈A . ∵-1∈A ,∴11-(-1)=12∈A . ∵12∈A ,∴11-12=2∈A . ∴A 中另外两个元素为-1,12. (2)若A 为单元素集,则a =11-a, 即a 2-a +1=0,方程无解.∴a≠11-a,∴A不可能为单元素集.第2课时集合的表示课时目标 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.1.列举法把集合的元素____________出来,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法用集合所含元素的共同特征表示集合的方法称为__________.不等式x-7<3的解集为__________.所有偶数的集合可表示为________________.一、选择题1.集合{x∈N+|x-3<2}用列举法可表示为()A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}2.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合3.将集合表示成列举法,正确的是()A.{2,3} B.{(2,3)}C.{x=2,y=3} D.(2,3)4.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1} B.{1}C.{x=1} D.{x2-2x+1=0}5.已知集合A={x∈N|-3≤x≤3},则有()A.-1∈A B.0∈AC.3∈A D.2∈A6.方程组的解集不可表示为()A.B.C.{1,2} D.{(1,2)}二、填空题7.用列举法表示集合A={x|x∈Z,86-x∈N}=______________.8.下列各组集合中,满足P=Q的有________.(填序号)①P={(1,2)},Q={(2,1)};②P={1,2,3},Q={3,1,2};③P={(x,y)|y=x-1,x∈R},Q={y|y=x-1,x∈R}.9.下列各组中的两个集合M和N,表示同一集合的是________.(填序号)①M={π},N={3.141 59};②M={2,3},N={(2,3)};③M={x|-1<x≤1,x∈N},N={1};④M={1,3,π},N={π,1,|-3|}.三、解答题10.用适当的方法表示下列集合①方程x(x2+2x+1)=0的解集;②在自然数集内,小于1 000的奇数构成的集合;③不等式x-2>6的解的集合;④大于0.5且不大于6的自然数的全体构成的集合.11.已知集合A={x|y=x2+3},B={y|y=x2+3},C={(x,y)|y=x2+3},它们三个集合相等吗?试说明理由.能力提升12.下列集合中,不同于另外三个集合的是()A.{x|x=1} B.{y|(y-1)2=0}C.{x=1} D.{1}13.已知集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},若x0∈M,则x0与N的关系是() A.x0∈NB.x0∉NC.x0∈N或x0∉N D.不能确定1.在用列举法表示集合时应注意:①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合、还是其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑. 第2课时 集合的表示知识梳理1.一一列举 2.描述法 {x |x <10} {x ∈Z |x =2k ,k ∈Z }作业设计1.B [{x ∈N +|x -3<2}={x ∈N +|x <5}={1,2,3,4}.]2.D [集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D.]3.B [解方程组⎩⎪⎨⎪⎧ x +y =5,2x -y =1.得⎩⎪⎨⎪⎧x =2,y =3. 所以答案为{(2,3)}.]4.B [方程x 2-2x +1=0可化简为(x -1)2=0,∴x 1=x 2=1,故方程x 2-2x +1=0的解集为{1}.]5.B6.C [方程组的集合中最多含有一个元素,且元素是一对有序实数对,故C 不符合.]7.{5,4,2,-2}解析 ∵x ∈Z ,86-x∈N , ∴6-x =1,2,4,8.此时x =5,4,2,-2,即A ={5,4,2,-2}.8.②解析 ①中P 、Q 表示的是不同的两点坐标;②中P =Q ;③中P 表示的是点集,Q 表示的是数集.9.④解析 只有④中M 和N 的元素相等,故答案为④.10.解 ①∵方程x (x 2+2x +1)=0的解为0和-1,∴解集为{0,-1};②{x |x =2n +1,且x <1 000,n ∈N };③{x |x >8};④{1,2,3,4,5,6}.11.解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下:集合A 中代表的元素是x ,满足条件y =x 2+3中的x ∈R ,所以A =R ;集合B 中代表的元素是y ,满足条件y =x 2+3中y 的取值范围是y ≥3,所以B ={y |y ≥3}. 集合C 中代表的元素是(x ,y ),这是个点集,这些点在抛物线y =x 2+3上,所以C ={P |P 是抛物线y =x 2+3上的点}.12.C [由集合的含义知{x |x =1}={y |(y -1)2=0}={1},而集合{x =1}表示由方程x =1组成的集合,故选C.]13.A[M={x|x=2k+14,k∈Z},N={x|x=k+24,k∈Z},∵2k+1(k∈Z)是一个奇数,k+2(k∈Z)是一个整数,∴x0∈M时,一定有x0∈N,故选A.]1.1.2集合间的基本关系课时目标 1.理解集合之间包含与相等的含义.2.能识别给定集合的子集、真子集,并能判断给定集合间的关系.3.在具体情境中,了解空集的含义.1.子集的概念一般地,对于两个集合A、B,如果集合A中________元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作______(或______),读作“__________”(或“__________”).2.Venn图:用平面上______曲线的内部代表集合,这种图称为Venn图.3.集合相等与真子集的概念图形表示A B(或B A)(1)定义:______________的集合叫做空集.(2)用符号表示为:____.(3)规定:空集是任何集合的______.5.子集的有关性质(1)任何一个集合是它本身的子集,即________.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么___________________________.一、选择题1.集合P={x|y=x+1},集合Q={y|y=x-1},则P与Q的关系是()A.P=Q B.P QC.P Q D.P∩Q=∅2.满足条件{1,2}M⊆{1,2,3,4,5}的集合M的个数是()A.3 B.6 C.7 D.83.对于集合A、B,“A⊆B不成立”的含义是()A.B是A的子集B.A中的元素都不是B中的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A4.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若∅A,则A≠∅.其中正确的个数是()A.0 B.1 C.2 D.35.下列正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是()6.集合M={x|x=3k-2,k∈Z},P={y|y=3n+1,n∈Z},S={z|z=6m+1,m∈Z}之间的关系是()A.S P M B.S=P MC.S P=M二、填空题7.已知M={x|x≥22,x∈R},给定下列关系:①π∈M;②{π}M;③πM;④{π}∈M.其中正确的有________.(填序号)8.已知集合A={x|1<x<2},B={x|x<a},若A B,则实数a的取值范围是________.9.已知集合A{2,3,7},且A中至多有1个奇数,则这样的集合共有________个.三、解答题10.若集合A={x|x2+x-6=0},B={x|x2+x+a=0},且B⊆A,求实数a的取值范围.11.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.若B⊆A,求实数m的取值范围.能力提升12.已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.13.已知集合A{1,2,3},且A中至少含有一个奇数,则这样的集合有________个.1.子集概念的多角度理解(1)“A是B的子集”的含义是:集合A中的任何一个元素都是集合B的元素,即由任意x∈A能推出x∈B.(2)不能把“A⊆B”理解成“A是B中部分元素组成的集合”,因为当A=∅时,A⊆B,但A中不含任何元素;又当A=B时,也有A⊆B,但A中含有B中的所有元素,这两种情况都有A⊆B.拓展当A不是B的子集时,我们记作“A B”(或B A).2.对元素与集合、集合与集合关系的分析与拓展(1)元素与集合之间的关系是从属关系,这种关系用符号“∈”或“∉”表示.(2)集合与集合之间的关系有包含关系,相等关系,其中包含关系有:含于(⊆)、包含(⊇)、真包含于()、真包含()等,用这些符号时要注意方向,如A⊆B与B⊇A是相同的.1.1.2集合间的基本关系知识梳理1.任意一个A⊆B B⊇A A含于B B包含A 2.封闭3.A⊆B且B⊆A x∈B,且x∉A 4.(1)不含任何元素(2)∅(3)子集 5.(1)A⊆A(2)A⊆C作业设计1.B[∵P={x|y=x+1}={x|x≥-1},Q={y|y≥0}∴P Q,∴选B.]2.C[M中含三个元素的个数为3,M中含四个元素的个数也是3,M中含5个元素的个数只有1个,因此符合题意的共7个.]3.C4.B[只有④正确.]5.B[由N={-1,0},知N M,故选B.]6.C[运用整数的性质方便求解.集合M、P表示成被3整除余1的整数集,集合S 表示成被6整除余1的整数集.]7.①②解析①、②显然正确;③中π与M的关系为元素与集合的关系,不应该用“”符号;④中{π}与M的关系是集合与集合的关系,不应该用“∈”符号.8.a≥2解析在数轴上表示出两个集合,可得a≥2.9.6解析 (1)若A 中有且只有1个奇数, 则A ={2,3}或{2,7}或{3}或{7}; (2)若A 中没有奇数,则A ={2}或∅.10.解 A ={-3,2}.对于x 2+x +a =0,(1)当Δ=1-4a <0,即a >14时,B =∅,B ⊆A 成立;(2)当Δ=1-4a =0,即a =14时,B ={-12},B ⊆A 不成立;(3)当Δ=1-4a >0,即a <14时,若B ⊆A 成立,则B ={-3,2}, ∴a =-3×2=-6.综上:a 的取值范围为a >14或a =-6.11.解 ∵B ⊆A ,∴①若B =∅, 则m +1>2m -1,∴m <2.②若B ≠∅,将两集合在数轴上表示,如图所示. 要使B ⊆A ,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,解得⎩⎪⎨⎪⎧m ≥2,m ≥-3,m ≤3,∴2≤m ≤3.由①、②,可知m ≤3.∴实数m 的取值范围是m ≤3.12.解 (1)当a =0时,A =∅,满足A ⊆B .(2)当a >0时,A ={x |1a <x <2a}.又∵B ={x |-1<x <1},A ⊆B ,∴⎩⎨⎧1a ≥-1,2a≤1,∴a ≥2.(3)当a <0时,A ={x |2a <x <1a }.∵A ⊆B ,∴⎩⎨⎧2a≥-1,1a≤1,∴a ≤-2.综上所述,a =0或a ≥2或a ≤-2. 13.5解析 若A 中有一个奇数,则A 可能为{1},{3},{1,2},{3,2}, 若A 中有2个奇数,则A ={1,3}.1.1.3集合的基本运算第1课时并集与交集课时目标 1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集. 2.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.1.并集(1)定义:一般地,________________________的元素组成的集合,称为集合A与B的并集,记作________.(2)并集的符号语言表示为A∪B=_____________________________________________ ___________________________.(3)并集的图形语言(即V enn图)表示为下图中的阴影部分:(4)性质:A∪B=________,A∪A=____,A∪∅=____,A∪B=A⇔________,A____A ∪B.2.交集(1)定义:一般地,由________________________元素组成的集合,称为集合A与B的交集,记作________.(2)交集的符号语言表示为A∩B=___________________________________________ _____________________________.(3)交集的图形语言表示为下图中的阴影部分:(4)性质:A∩B=______,A∩A=____,A∩∅=____,A∩B=A⇔________,A∩B____A ∪B,A∩B⊆A,A∩B⊆B.一、选择题1.若集合A={0,1,2,3},B={1,2,4},则集合A∪B等于()A.{0,1,2,3,4} B.{1,2,3,4}C.{1,2} D.{0}2.集合A={x|-1≤x≤2},B={x|x<1},则A∩B等于()A.{x|x<1} B.{x|-1≤x≤2}C.{x|-1≤x≤1} D.{x|-1≤x<1}3.若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是() A.A⊆B B.B⊆CC.A∩B=C D.B∪C=A4.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N为() A.x=3,y=-1 B.(3,-1)C.{3,-1} D.{(3,-1)}5.设集合A={5,2a},集合B={a,b},若A∩B={2},则a+b等于()A.1 B.2C.3 D.46.集合M={1,2,3,4,5},集合N={1,3,5},则()A.N∈M B.M∪N=MC.M∩N=M D.M>N二、填空题7.设集合A={-3,0,1},B={t2-t+1}.若A∪B=A,则t=________.8.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________.9.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2}且集合A∩(B∪C)={x|a≤x≤b},则a=______,b=______.三、解答题10.已知方程x2+px+q=0的两个不相等实根分别为α,β,集合A={α,β},B={2,4,5,6},C={1,2,3,4},A∩C=A,A∩B=∅.求p,q的值.11.设集合A={-2},B={x|ax+1=0,a∈R},若A∩B=B,求a的值.能力提升12.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B 的所有元素之和为()A.0 B.2C.3 D.613.设U={1,2,3},M,N是U的子集,若M∩N={1,3},则称(M,N)为一个“理想配集”,求符合此条件的“理想配集”的个数(规定(M,N)与(N,M)不同).1.对并集、交集概念全方面的感悟(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x∈A,或x∈B”这一条件,包括下列三种情况:x∈A但x∉B;x∈B但x∉A;x∈A且x∈B.因此,A∪B是由所有至少属于A、B两者之一的元素组成的集合.(2)A∩B中的元素是“所有”属于集合A且属于集合B的元素,而不是部分.特别地,当集合A和集合B没有公共元素时,不能说A与B没有交集,而是A∩B=∅.2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”、“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值取到与否.拓展交集与并集的运算性质,除了教材中介绍的以外,还有A⊆B⇔A∪B=B,A⊆B ⇔A∩B=A.这种转化在做题时体现了化归与转化的思想方法,十分有效.1.1.3 集合的基本运算 第1课时 并集与交集知识梳理 一、1.由所有属于集合A 或属于集合B A ∪B 2.{x |x ∈A ,或x ∈B } 4.B ∪A A A B ⊆A ⊆二、1.属于集合A 且属于集合B 的所有 A ∩B 2.{x |x ∈A ,且x ∈B } 4.B ∩A A ∅ A ⊆B ⊆ 作业设计 1.A2.D [由交集定义得{x |-1≤x ≤2}∩{x |x <1}={x |-1≤x <1}.]3.D [参加北京奥运会比赛的男运动员与参加北京奥运会比赛的女运动员构成了参加北京奥运会比赛的所有运动员,因此A =B ∪C .]4.D [M 、N 中的元素是平面上的点,M ∩N 是集合,并且其中元素也是点,解⎩⎪⎨⎪⎧ x +y =2,x -y =4,得⎩⎪⎨⎪⎧x =3,y =-1.] 5.C [依题意,由A ∩B ={2}知2a =2, 所以,a =1,b =2,a +b =3,故选C.] 6.B [∵N M ,∴M ∪N =M .] 7.0或1解析 由A ∪B =A 知B ⊆A , ∴t 2-t +1=-3① 或t 2-t +1=0② 或t 2-t +1=1③①无解;②无解;③t =0或t =1. 8.1解析 ∵3∈B ,由于a 2+4≥4,∴a +2=3,即a =1. 9.-1 2解析 ∵B ∪C ={x |-3<x ≤4},∴A (B ∪C ) ∴A ∩(B ∪C )=A ,由题意{x |a ≤x ≤b }={x |-1≤x ≤2}, ∴a =-1,b =2.10.解 由A ∩C =A ,A ∩B =∅,可得:A ={1,3}, 即方程x 2+px +q =0的两个实根为1,3. ∴⎩⎪⎨⎪⎧ 1+3=-p 1×3=q ,∴⎩⎪⎨⎪⎧p =-4q =3. 11.解 ∵A ∩B =B ,∴B ⊆A . ∵A ={-2}≠∅,∴B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,则B ={-1a},∴-1a ∈A ,即有-1a =-2,得a =12.综上,得a =0或a =12.12.D [x 的取值为1,2,y 的取值为0,2,∵z =xy ,∴z 的取值为0,2,4,所以2+4=6,故选D.] 13.解 符合条件的理想配集有 ①M ={1,3},N ={1,3}. ②M ={1,3},N ={1,2,3}.③M={1,2,3},N={1,3}.共3个.第2课时补集及综合应用课时目标 1.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.2.熟练掌握集合的基本运算.1.全集:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为________,通常记作________.2.补集补集与全集的性质(1)∁U U=____;(2)∁U∅=____;(3)∁U(∁U A)=____;(4)A∪(∁U A)=____;(5)A∩(∁U A)=____.一、选择题1.已知集合U={1,3,5,7,9},A={1,5,7},则∁U A等于()A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}2.已知全集U=R,集合M={x|x2-4≤0},则∁U M等于()A.{x|-2<x<2} B.{x|-2≤x≤2}C.{x|x<-2或x>2} D.{x|x≤-2或x≥2}3.设全集U={1,2,3,4,5},A={1,3,5},B={2,5},则A∩(∁U B)等于()A.{2} B.{2,3}C.{3} D.{1,3}4.设全集U和集合A、B、P满足A=∁U B,B=∁U P,则A与P的关系是()A.A=∁U P B.A=PC.A P D.A P5.如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩∁I S D.(M∩P)∪∁I S6.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},那么集合{2,7}是() A.A∪B B.A∩BC.∁U(A∩B) D.∁U(A∪B)二、填空题7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.8.设全集U={x|x<9且x∈N},A={2,4,6},B={0,1,2,3,4,5,6},则∁U A=____________________,∁U B=________________,∁B A=____________.9.已知全集U,A B,则∁U A与∁U B的关系是____________________.三、解答题10.设全集是数集U={2,3,a2+2a-3},已知A={b,2},∁U A={5},求实数a,b的值.11.已知集合A={1,3,x},B={1,x2},设全集为U,若B∪(∁U B)=A,求∁U B.能力提升12.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A 等于()A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}13.学校开运动会,某班有30名学生,其中20人报名参加赛跑项目,11人报名参加跳跃项目,两项都没有报名的有4人,问两项都参加的有几人?1.全集与补集的互相依存关系(1)全集并非是包罗万象、含有任何元素的集合,它是对于研究问题而言的一个相对概念,它仅含有所研究问题中涉及的所有元素,如研究整数,Z就是全集,研究方程的实数解,R就是全集.因此,全集因研究问题而异.(2)补集是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(3)∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x∈U,且x∉A},补集是集合间的运算关系.2.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A求A.第2课时补集及综合应用知识梳理1.全集U 2.不属于集合A∁U A{x|x∈U,且x∉A}3.(1)∅(2)U(3)A(4)U(5)∅作业设计1.D[在集合U中,去掉1,5,7,剩下的元素构成∁U A.]2.C[∵M={x|-2≤x≤2},∴∁U M={x|x<-2或x>2}.]3.D[由B={2,5},知∁U B={1,3,4}.A∩(∁U B)={1,3,5}∩{1,3,4}={1,3}.]4.B[由A=∁U B,得∁U A=B.又∵B=∁U P,∴∁U P=∁U A.即P=A,故选B.]5.C[依题意,由图知,阴影部分对应的元素a具有性质a∈M,a∈P,a∈∁I S,所以阴影部分所表示的集合是(M∩P)∩∁I S,故选C.]6.D [由A ∪B ={1,3,4,5,6}, 得∁U (A ∪B )={2,7},故选D.] 7.-3解析 ∵∁U A ={1,2},∴A ={0,3},故m =-3. 8.{0,1,3,5,7,8} {7,8} {0,1,3,5}解析 由题意得U ={0,1,2,3,4,5,6,7,8},用Venn 图表示出U ,A ,B ,易得∁U A ={0,1,3,5,7,8},∁U B ={7,8},∁B A ={0,1,3,5}. 9.∁U B ∁U A解析 画Venn 图,观察可知∁U B ∁U A .10.解 ∵∁U A ={5},∴5∈U 且5∉A .又b ∈A ,∴b ∈U ,由此得⎩⎪⎨⎪⎧a 2+2a -3=5,b =3.解得⎩⎪⎨⎪⎧ a =2,b =3或⎩⎪⎨⎪⎧a =-4,b =3经检验都符合题意. 11.解 因为B ∪(∁U B )=A ,所以B ⊆A ,U =A ,因而x 2=3或x 2=x . ①若x 2=3,则x =± 3.当x =3时,A ={1,3,3},B ={1,3},U =A ={1,3,3},此时∁U B ={3};当x =-3时,A ={1,3,-3},B ={1,3},U =A ={1,3,-3},此时∁U B ={-3}. ②若x 2=x ,则x =0或x =1.当x =1时,A 中元素x 与1相同,B 中元素x 2与1也相同,不符合元素的互异性,故x ≠1;当x =0时,A ={1,3,0},B ={1,0}, U =A ={1,3,0},从而∁U B ={3}.综上所述,∁U B ={3}或{-3}或{3}.12.D [借助于Venn 图解,因为A ∩B ={3},所以3∈A ,又因为(∁U B )∩A ={9},所以9∈A ,所以选D.]13.解 如图所示,设只参加赛跑、只参加跳跃、两项都参加的人数分别为a ,b ,x . 根据题意有⎩⎪⎨⎪⎧a +x =20,b +x =11,a +b +x =30-4.解得x =5,即两项都参加的有5人.§1.1习题课课时目标1.巩固和深化对基础知识的理解与掌握.2.重点掌握好集合间的关系与集合的基本运算.1.若A={x|x+1>0},B={x|x-3<0},则A∩B等于()A.{x|x>-1} B.{x|x<3}C.{x|-1<x<3} D.{x|1<x<3}2.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于()A.{x|x<-5或x>-3} B.{x|-5<x<5}C.{x|-3<x<5} D.{x|x<-3或x>5}3.设集合A={x|x≤13},a=11,那么()A.a A B.a∉AC.{a}∉A D.{a}A4.设全集I={a,b,c,d,e},集合M={a,b,c},N={b,d,e},那么(∁I M)∩(∁I N)等于()A.∅B.{d}C.{b,e} D.{a,c}5.设A={x|x=4k+1,k∈Z},B={x|x=4k-3,k∈Z},则集合A与B的关系为____________.6.设A={x∈Z|-6≤x≤6},B={1,2,3},C={3,4,5,6},求:(1)A∪(B∩C);(2)A∩(∁A(B∪C)).一、选择题1.设P={x|x<4},Q={x|x2<4},则()A.P⊆Q B.Q⊆PC.P⊆∁R Q D.Q⊆∁R P2.符合条件{a}P⊆{a,b,c}的集合P的个数是()A.2 B.3C.4 D.53.设M={x|x=a2+1,a∈N*},P={y|y=b2-4b+5,b∈N*},则下列关系正确的是() A.M=P B.M PC.P M D.M与P没有公共元素4.如图所示,M,P,S是V的三个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪SC.(M∩S)∩(∁S P) D.(M∩P)∪(∁V S)5.已知集合A={x|a-1≤x≤a+2},B={x|3<x<5},则能使A⊇B成立的实数a的范围是()A.{a|3<a≤4} B.{a|3≤a≤4}C.{a|3<a<4} D.∅二、填空题6.已知集合A={x|x≤2},B={x|x>a},如果A∪B=R,那么a的取值范围是________.7.集合A={1,2,3,5},当x∈A时,若x-1∉A,x+1∉A,则称x为A的一个“孤立元素”,则A中孤立元素的个数为____.8.已知全集U={3,7,a2-2a-3},A={7,|a-7|},∁U A={5},则a=________. 9.设U=R,M={x|x≥1},N={x|0≤x<5},则(∁U M)∪(∁U N)=________________.三、解答题10.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求A∩B;(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.11.某班50名同学参加一次智力竞猜活动,对其中A,B,C三道知识题作答情况如下:答错A者17人,答错B者15人,答错C者11人,答错A,B者5人,答错A,C者3人,答错B,C者4人,A,B,C都答错的有1人,问A,B,C都答对的有多少人?能力提升12.对于k∈A,如果k-1∉A且k+1∉A,那么k是A的一个“孤立元”,给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有几个?13.设数集M={x|m≤x≤m+34},N={x|n-13≤x≤n},且M,N都是集合U={x|0≤x≤1}的子集,定义b-a为集合{x|a≤x≤b}的“长度”,求集合M∩N的长度的最小值.1.在解决有关集合运算题目时,关键是准确理解交、并、补集的意义,并能将题目中符号语言准确转化为文字语言.2.集合运算的法则可借助于V enn图理解,无限集的交集、并集和补集运算可结合数轴,运用数形结合思想.3.熟记一些常用结论和性质,可以加快集合运算的速度.4.在有的集合题目中,如果直接去解可能比较麻烦,若用补集的思想解集合问题可变得更简单.§1.1 习题课双基演练1.C [∵A ={x |x >-1},B ={x |x <3}, ∴A ∩B ={x |-1<x <3},故选C.]2.A [画出数轴,将不等式-3<x ≤5,x <-5,x >5在数轴上表示出来,不难看出M ∪N ={x |x <-5或x >-3}.] 3.D4.A [∵∁I M ={d ,e },∁I N ={a ,c }, ∴(∁I M )∩(∁I N )={d ,e }∩{a ,c }=∅.] 5.A =B解析 4k -3=4(k -1)+1,k ∈Z ,可见A =B .6.解 ∵A ={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6} (1)又∵B ∩C ={3},∴A ∪(B ∩C )={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}. (2)又∵B ∪C ={1,2,3,4,5,6},∴∁A (B ∪C )={-6,-5,-4,-3,-2,-1,0}∴A ∩(∁A (B ∪C ))={-6,-5,-4,-3,-2,-1,0}. 作业设计1.B [Q ={x |-2<x <2},可知B 正确.]2.B [集合P 内除了含有元素a 外,还必须含b ,c 中至少一个,故P ={a ,b },{a ,c },{a ,b ,c }共3个.]3.B [∵a ∈N *,∴x =a 2+1=2,5,10,….∵b ∈N *,∴y =b 2-4b +5=(b -2)2+1=1,2,5,10,…. ∴M P .]4.C [阴影部分是M ∩S 的部分再去掉属于集合P 的一小部分,因此为(M ∩S )∩(∁S P ).] 5.B [根据题意可画出下图.∵a +2>a -1,∴A ≠∅.有⎩⎪⎨⎪⎧a -1≤3,a +2≥5.解得3≤a ≤4.]6.a ≤2解析 如图中的数轴所示,要使A ∪B =R ,a ≤2. 7.1解析 当x =1时,x -1=0∉A ,x +1=2∈A ; 当x =2时,x -1=1∈A ,x +1=3∈A ; 当x =3时,x -1=2∈A ,x +1=4∉A ; 当x =5时,x -1=4∉A ,x +1=6∉A ; 综上可知,A 中只有一个孤立元素5. 8.4解析 ∵A ∪(∁U A )=U ,由∁U A ={5}知,a 2-2a -3=5, ∴a =-2,或a =4.当a =-2时,|a -7|=9,9∉U ,∴a ≠-2. a =4经验证,符合题意. 9.{x |x <1或x ≥5}解析 ∁U M ={x |x <1},∁U N ={x |x <0或x ≥5}, 故(∁U M )∪(∁U N )={x |x <1或x ≥5}或由M ∩N ={x |1≤x <5},(∁U M )∪(∁U N )=∁U (M ∩N ) ={x |x <1或x ≥5}.10.解 (1)∵B ={x |x ≥2}, ∴A ∩B ={x |2≤x <3}.(2)∵C ={x |x >-a2},B ∪C =C ⇔B ⊆C ,∴-a2<2,∴a >-4.11.解 由题意,设全班同学为全集U ,画出Venn 图,A 表示答错A 的集合,B 表示答错B 的集合,C 表示答错C 的集合,将其集合中元素数目填入图中,自中心区域向四周的各区域数目分别为1,2,3,4,10,7,5,因此A ∪B ∪C 中元素数目为32,从而至少错一题的共32人,因此A ,B ,C 全对的有50-32=18人.12.解 依题意可知,“孤立元”必须是没有与k 相邻的元素,因而无“孤立元”是指在集合中有与k 相邻的元素.因此,符合题意的集合是:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8}共6个.13.解 在数轴上表示出集合M 与N ,可知当m =0且n =1或n -13=0且m +34=1时,M ∩N 的“长度”最小.当m =0且n =1时,M ∩N ={x |23≤x ≤34},长度为34-23=112;当n =13且m =14时,M ∩N ={x |14≤x ≤13},长度为13-14=112.综上,M ∩N 的长度的最小值为112.§1.2 函数及其表示 1.2.1 函数的概念课时目标 1.理解函数的概念,明确函数的三要素.2.能正确使用区间表示数集,表示简单函数的定义域、值域.3.会求一些简单函数的定义域、值域.1.函数(1)设A 、B 是非空的数集,如果按照某种确定的__________,使对于集合A 中的____________,在集合B 中都有________________和它对应,那么就称f :________为从集合A 到集合B 的一个函数,记作__________________.其中x 叫做________,x 的取值范围A 叫做函数的________,与x 的值相对应的y 值叫做________,函数值的集合{f (x )|x ∈A }叫做函数的________. (2)值域是集合B 的________. 2.区间(1)设a ,b 是两个实数,且a <b ,规定:①满足不等式__________的实数x 的集合叫做闭区间,表示为________; ②满足不等式__________的实数x 的集合叫做开区间,表示为________;③满足不等式________或________的实数x 的集合叫做半开半闭区间,分别表示为______________.(2)实数集R 可以用区间表示为__________,“∞”读作“无穷大”,“+∞”读作“__________”,“-∞”读作“________”.我们把满足x ≥a ,x >a ,x ≤b ,x <b 的实数x 的集合分别表示为________,________,________,______.一、选择题1.对于函数y =f (x ),以下说法正确的有( ) ①y 是x 的函数②对于不同的x ,y 的值也不同③f (a )表示当x =a 时函数f (x )的值,是一个常量 ④f (x )一定可以用一个具体的式子表示出来 A .1个 B .2个 C .3个 D .4个2.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的有( )A .①②③④B .①②③C .②③D .②3.下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x(x )24.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y =2x 2-1,值域为{1,7}的“孪生函数”共有( ) A .10个 B .9个 C .8个 D .4个 5.函数y =1-x +x 的定义域为( )A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1} 6.函数y =x +1的值域为( )A .[-1,+∞)B .[0,+∞)C .(-∞,0]D .(-∞,-1]二、填空题7.已知两个函数f (x )和g (x )的定义域和值域都是{1,2,3},其定义如下表:8.如果函数f (x )满足:对任意实数a ,b 都有f (a +b )=f (a )f (b ),且f (1)=1,则f (2)f (1)+f (3)f (2)+f (4)f (3)+f (5)f (4)+…+f (2 011)f (2 010)=________. 9.已知函数f (x )=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为______________.10.若函数f (x )的定义域是[0,1],则函数f (2x )+f (x +23)的定义域为________.三、解答题11.已知函数f (1-x1+x)=x ,求f (2)的值.能力提升12.如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:(1)最初到达离家最远的地方是什么时间?离家多远? (2)何时开始第一次休息?休息多长时间? (3)第一次休息时,离家多远?(4)11∶00到12∶00他骑了多少千米?(5)他在9∶00~10∶00和10∶00~10∶30的平均速度分别是多少? (6)他在哪段时间里停止前进并休息用午餐?13.如图,某灌溉渠的横断面是等腰梯形,底宽为2 m ,渠深为1.8 m ,斜坡的倾斜角是45°.(临界状态不考虑)(1)试将横断面中水的面积A (m 2)表示成水深h (m)的函数;(2)确定函数的定义域和值域;(3)画出函数的图象.1.函数的判定判定一个对应关系是否为函数,关键是看对于数集A中的任一个值,按照对应关系所对应数集B中的值是否唯一确定,如果唯一确定,就是一个函数,否则就不是一个函数.2.由函数式求函数值,及由函数值求x,只要认清楚对应关系,然后对号入座就可以解决问题.3.求函数定义域的原则:①当f(x)以表格形式给出时,其定义域指表格中的x的集合;②当f(x)以图象形式给出时,由图象范围决定;③当f(x)以解析式给出时,其定义域由使解析式有意义的x的集合构成;④在实际问题中,函数的定义域由实际问题的意义确定.§1.2函数及其表示1.2.1函数的概念知识梳理1.(1)对应关系f任意一个数x唯一确定的数f(x)A→B y=f(x),x∈A自变量定义域函数值值域(2)子集2.(1)①a≤x≤b[a,b]②a<x<b(a,b)③a≤x<b a<x≤b[a,b),(a,b](2)(-∞,+∞)正无穷大负无穷大[a,+∞)(a,+∞)(-∞,b](-∞,b)作业设计1.B [①、③正确;②不对,如f (x )=x 2,当x =±1时y =1;④不对,f (x )不一定可以用一个具体的式子表示出来,如南极上空臭氧空洞的面积随时间的变化情况就不能用一个具体的式子来表示.]2.C [①的定义域不是集合M ;②能;③能;④与函数的定义矛盾.故选C.] 3.D [A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D.]4.B [由2x 2-1=1,2x 2-1=7得x 的值为1,-1,2,-2,定义域为两个元素的集合有4个,定义域为3个元素的集合有4个,定义域为4个元素的集合有1个,因此共有9个“孪生函数”.]5.D [由题意可知⎩⎪⎨⎪⎧1-x ≥0,x ≥0,解得0≤x ≤1.]6.B7.3 2 1解析 g [f (1)]=g (2)=3,g [f (2)]=g (3)=2, g [f (3)]=g (1)=1. 8.2 010解析 由f (a +b )=f (a )f (b ),令b =1,∵f (1)=1,∴f (a +1)=f (a ),即f (a +1)f (a )=1,由a 是任意实数,所以当a 取1,2,3,…,2 010时,得f (2)f (1)=f (3)f (2)=…=f (2 011)f (2 010)=1.故答案为2 010.9.{-1,1,3,5,7}解析 ∵x =1,2,3,4,5,∴f (x )=2x -3=-1,1,3,5,7.10.[0,13]解析 由⎩⎪⎨⎪⎧0≤2x ≤1,0≤x +23≤1, 得⎩⎨⎧0≤x ≤12,-23≤x ≤13,即x ∈[0,13].11.解 由1-x 1+x=2,解得x =-13,所以f (2)=-13.12.解 (1)最初到达离家最远的地方的时间是12时,离家30千米. (2)10∶30开始第一次休息,休息了半小时. (3)第一次休息时,离家17千米. (4)11∶00至12∶00他骑了13千米.(5)9∶00~10∶00的平均速度是10千米/时;10∶00~10∶30的平均速度是14千米/时.(6)从12时到13时停止前进,并休息用午餐较为符合实际情形.13.解 (1)由已知,横断面为等腰梯形,下底为2 m ,上底为(2+2h )m ,高为h m ,∴水的面积A =[2+(2+2h )]h 2=h 2+2h (m 2).。
高中数学必修1课后习题答案完整版
高中数学必修1课后习题答案第一章集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号或填空:(1)设A为所有亚洲国家组成的集合,则:中国_______A,美国_______A,印度_______A,英国_______A;(2)若,则;(3)若,则3_______B;(4)若,则8_______C,9.1_______C.1.(1)中国,美国,印度,英国;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.22 .1} (2),2 (3).}(4),.2.试选择适当的方法表示下列集合:(1)由方程的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;(3)一次函数与的图象的交点组成的集合;(4)不等式的解集.22.解:(1)因为方程的实数根为,222所以由方程的所有实数根组成的集合为;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7}; 2(3)由,得,即一次函数与的图象的交点为(1,4),所以一次函数与的图象的交点组成的集合为{(1,4)};(4)由,得,所以不等式的解集为.1.1.2集合间的基本关系练习(第7页)1.写出集合{a,b,c}的所有子集.1.解:按子集元素个数来分类,不取任何元素,得;取一个元素,得{a},{b},{c};取两个元素,得{a,b},{a,c},{b,c};取三个元素,得{a,b,c},即集合{a,b,c}的所有子集为.2.用适当的符号填空:(1)a______{a,b,c};(2);(3);(4){0,1}______N;(5);(6).2.(1)是集合{a,b,c}中的一个元素;2222} (2)222{;0} 22(3)方程无实数根,;(4){0,1}(5){0}是自然数集合N的子集,也是真子集;N (或)(或);1}22(6)方程两根为.3.判断下列两个集合之间的关系:(1),是8的约数};(2)A,;(3)是4与10的公倍数,.3.解:(1)因为是8的约数,所以AB;(2)当时,;当时,,即B是A的真子集,BA;(3)因为4与10的最小公倍数是20,所以.1.1.3集合的基本运算练习(第11页)1.设,求.1.解:,.2.设,求.22.解:方程的两根为,2 方程的两根为,22得,即.3.已知是等腰三角形},是直角三角形},求.3.解:是等腰直角三角形},是等腰三角形或直角三角形}.4.已知全集,,求痧.4.解:显然,,则,(痧.1.1集合习题1.1 (第11页)A组1.用符号或填空:(1)327_______Q;(2)32______N;(3);2(4_______R;(5Z;(6)_______N.1.(1)是有理数;(2)是个自然数;77是实数;2(3)是个无理数,不是有理数;(4R(5Z是个整数;(6)是个自然数.2.已知,用或符号填空:(1)5_______A;(2)7_______A;(3).2.(1);(2);(3).当时,;当时,;3.用列举法表示下列给定的集合:(1)大于1且小于6的整数;(2);(3).3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程的两个实根为,即为所求;(3)由不等式,得,且,即{0,1,2}为所求.4.试选择适当的方法表示下列集合:(1)二次函数的函数值组成的集合;(2)反比例函数x(3)不等式的解集.22的自变量的值组成的集合;4.解:(1)显然有,得,即,得二次函数的函数值组成的集合为;(2)显然有,得反比例函数(3)由不等式,得5.选用适当的符号填空:(1)已知集合,则有:22x的自变量的值组成的集合为;45,即不等式的解集为.454_______B;;{2}_______B;B_______A;(2)已知集合,则有:1_______A;;;;,1}(3){x|x是菱形}_______{x|x是平行四边形};{x|x是等腰三角形}_______{x|x是等边三角形}.5.(1);;{2}B;B2A;,即;(2);;2=A;,1}A;;(3){x|x是菱形}{x|x是平行四边形};菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{x|x是等边三角形}{x|x是等腰三角形}.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合,求.6.解:,即,得,则,.7.设集合是小于9的正整数},,求,,,.7.解:是小于9的正整数,则,,而5,6},,则,.8.学校里开运动会,设是参加一百米跑的同学},是参加二百米跑的同学},是参加四百米跑的同学},学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定,并解释以下集合运算的含义:(1);(2).8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为.(1)是参加一百米跑或参加二百米跑的同学};(2)是既参加一百米跑又参加四百米跑的同学}.9.设是平行四边形或梯形},是平行四边形},是菱形},是矩形,求,ðAB,ðSA.x}9.解:同时满足菱形和矩形特征的是正方形,即是正方形},平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形,即是邻边不相等的平行四边形},ðSA是梯形}.10.已知集合,求,,,.10.解:,,或,或,得或,或,或,或或}.B组1.已知集合,集合B满足,则集合B有1.4 集合B满足,则,即集合B是集合A的子集,得4个子集.2.在平面直角坐标系中,集合表示直线,从这个角度看,集合表示什么?集合C,D之间有什么关系?表示两条直线的交点的集合,.解:集合即,点D(1,1)显然在直线上,得DC.3.设集合,,求.3.解:显然有集合,当时,集合,则;当时,集合,则;当时,集合,则;当,且,且时,集合,则.4.已知全集,,试求集合B.4.解:显然,由,得,即痧,而,U得,而痧U(即,10}.B),第一章集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1);(2).1.解:(1)要使原式有意义,则,即得该函数的定义域为;74,74(2)要使原式有意义,则,即,得该函数的定义域为.2.已知函数,(1)求的值;(2)求的值.2.解:(1)由,得,同理得,则,即;(2)由,得,同理得,则,即.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h与时间t关系的函数和二次函数;(2)和.3.解:(1)不相等,因为定义域不同,时间;(2)不相等,因为定义域不同,.0022222222222222222 1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm的圆形木头锯成矩形木料,如果矩形的一边长为xcm,面积为ycm,把y表示为x的函数.1,,且,即.2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事.(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2(A)(B)(C)(D)2.解:图象(A)对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化;图象(B)对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速;图象(D)对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C)我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.画出函数的图象..解:,图象如下所示.4.设与是锐角,从A到B的映射是“求正弦”,中元素60相对应的么?B中的元素是什么?与B中的元素2相对应的A中元素是什.解:因为2,所以与A中元素60相对应的B中的元素是;因为,所以与B中的元素2相对应的A中元素是45.1.2函数及其表示习题1.2(第23页)1.求下列函数的定义域:(1)2;(2)(3);(4 )1.解:(1)要使原式有意义,则,即,得该函数的定义域为;(2)R,即该函数的定义域为R;(3)要使原式有意义,则,即且,得该函数的定义域为且; 2(4)要使原式有意义,则,即且,得该函数的定义域为且.2.下列哪一组中的函数f(x)与g(x)相等?(1);(2);(3).2.解:(1)的定义域为R,而的定义域为,即两函数的定义域不同,得函数f(x)与g(x)不相等;(2)的定义域为R,而的定义域为,24即两函数的定义域不同,得函数f(x)与g(x)不相等;(3,即这两函数的定义域相同,切对应法则相同,得函数f(x)与g(x)相等.3.画出下列函数的图象,并说出函数的定义域和值域.(1);(2)3.解:(1)定义域是,值域是;(2)定义域是,值域是;(3)28x;(3);(4).2定义域是,值域是;(4)定义域是,值域是.4.已知函数f(2,求f(,,,.4.解:因为2,所以即同理,,即;,即;,即.5.已知函数(1)点(3,14)在f(x)的图象上吗?(2)当时,求f(x)的值;(3)当时,求x的值.5.解:(1)当时,,即点(3,14)不在f(x)的图象上;(2)当时,,即当时,求f(x)的值为;(3)即.,得,6.若,且,求的值.6.解:由,得1,3是方程的两个实数根,即,得,即,得,即的值为8.7.画出下列函数的图象:222(1);(2).7.图象如下:8.如图,矩形的面积为10,如果矩形的长为x,宽为y,对角线为d,周长为l,那么你能获得关于这些量的哪些函数?8.解:由矩形的面积为10,即,得,由对角线为d,即,由周长为l,即,得,另外,而,得,即.9.一个圆柱形容器的底部直径是dcm,高是hcm,现在以vcm/s的速度向容器显然,即,得,得函数的定义域为4v]和值域为[0,h].10.设集合,试问:从A到B的映射共有几个?并将它们分别表示出来.10.解:从A到B的映射共有8个.分别是,,,,,,,.B组1.函数的图象如图所示.(1)函数的定义域是什么?(2)函数的值域是什么?(3)r取何值时,只有唯一的p值与之对应?1.解:(1)函数的定义域是;(2)函数的值域是;(3)当,或时,只有唯一的p值与之对应.2.画出定义域为且,值域为的一个函数的图象.(1)如果平面直角坐标系中点P(x,y)的坐标满足,,那么其中哪些点不能在图象上?(2)将你的图象和其他同学的相比较,有什么差别吗?2.解:图象如下,(1)点(x,0)和点(5,y)不能在图象上;(2)省略.3.函数的函数值表示不超过x的最大整数,例如,,.当时,写出函数f(x)的解析式,并作出函数的图象..解:图象如下4.如图所示,一座小岛距离海岸线上最近的点P的距离是2km,从点P沿海岸正东12km 处有一个城镇.(1)假设一个人驾驶的小船的平均速度为3km/h,步行的速度是5km/h,t(单位:h)表示他从小岛到城镇的时间,x(单位:km)表示此人将船停在海岸处距P点的距离.请将t 表示为x的函数.(2)如果将船停在距点P4km处,那么从小岛到城镇要多长时间(精确到1h)?4.解:(,得,,即5,.(2)当时,.第一章集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.整个上午天气越来越暖,中午时分一场暴风雨使天气骤然凉爽了许多.暴风雨过后,天气转暖,直到太阳落山(18:00)才又开始转凉.画出这一天期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间.2.解:图象如下[8,12是递增区间,][12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.根据下图说出函数的单调区间,以及在每一单调区间上,函数是增函数还是减函数.3.解:该函数在上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明函数在R上是减函数.4.证明:设,且,因为,即,所以函数在R上是减函数.5.设f(x)是定义在区间上的函数.如果f(x)在区间上递减,在区间上递增,画出f(x)的一个大致的图象,从图象上可以发现是函数f(x)的一个. 5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.判断下列函数的奇偶性:(1);(2)(3)x;(4)4221.解:(1)对于函数,其定义域为,因为对定义域内每一个x都有,所以函数为偶函数;(2)对于函数,其定义域为,因为对定义域内每一个x都有,所以函数为奇函数;3333424242(3)对于函数x,其定义域为,因为对定义域内每一个x都有,所以函数x为奇函数;(4)对于函数,其定义域为,因为对定义域内每一个x都有,所以函数为偶函数.2.已知f(x)是偶函数,g(x)是奇函数,试将下图补充完整.2.解:f(x)是偶函数,其图象是关于y轴对称的;g(x)是奇函数,其图象是关于原点对称的.2222习题1.3A组1.画出下列函数的图象,并根据图象说出函数的单调区间,以及在各单调区间上函数是增函数还是减函数.(1);1.解:(1)2(2)函数在上递减;函数在上递增;5522(2)函2.证明:(1)函数在上是减函数;(2)函数数在上递增;函数在上递减.1x在上是增函数.222.证明:(1)设,而,由,得,即,所以函数在上是减函数;(2)设,而21x21x1,由,得,即,所以函数1x在上是增函数.3.探究一次函数的单调性,并证明你的结论. 3.解:当时,一次函数在上是增函数;当时,一次函数在上是减函数,令,设,而,当时,,即,得一次函数在上是增函数;当时,,即,得一次函数在上是减函数.4.一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高.画出自服药那一刻起,心率关于时间的一个可能的图象(示意图).4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.某汽车租赁公司的月收益y元与每辆车的月租金x元间的关系为少?,那么,每辆车的月租金多少元时,租赁公司的月收益最大?最大月收益是多5.解:对于函数当,,时,(元)162即每辆车的月租金为4050元时,租赁公司最大月收益为307050元.6.已知函数f(x)是定义在R上的奇函数,当时,画出函数f(x) 的图象,并求出函数的解析式.6.解:当时,,而当时,,即,而由已知函数是奇函数,得,得,即,所以函数的解析式为B组1.已知函数,(1)求f(x),g(x)的单调区间;(2)求f(x),g(x)的最小值.1.解:(1)二次函数的对称轴为,则函数f(x)的单调区间为,且函数f(x)在上为减函数,在上为增函数,函数g(x)的单调区间为[2,4],且函数g(x)在[2,4]上为增函数;(2)当时,,因为函数g(x)在[2,4]上为增函数,所以.2.如图所示,动物园要建造一面靠墙的2间面积相同的矩形熊猫居室,如果可供建造围墙的材料总长是30m,那么宽x(单位:m)为多少才能使建造的每间熊猫居室面积最大?每间熊猫居室的最大面积是多少?2.解:由矩形的宽为xm,得矩形的长为2m,设矩形的面积为S,则22,当时,,即宽才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是18.75m .3.已知函数f(x)是偶函数,而且在上是减函数,判断f(x)在上是增函数还是减函数,并证明你的判断.3.判断f(x)在上是增函数,证明如下:设,则,因为函数f(x)在上是减函数,得,又因为函数f(x)是偶函数,得,所以f(x)在上是增函数.复习参考题A组1.用列举法表示下列集合:(1);(2);(3)21.解:(1)方程的解为,即集合;22 (2),且,则,即集合;2(3)方程的解为,即集合.2.设P表示平面内的动点,属于下列集合的点组成什么图形?(1)是两个定点);(2)是定点).2.解:(1)由,得点P到线段AB的两个端点的距离相等,即表示的点组成线段AB的垂直平分线;(2){表示的点组成以定点O为圆心,半径为3cm的圆.3.设平面内有,且P表示这个平面内的动点,指出属于集合的点是什么.3.解:集合表示的点组成线段AB的垂直平分线,集合表示的点组成线段AC的垂直平分线,得的点是线段AB的垂直平分线与线段AC的垂直平分线的交点,即的外心.4.已知集合,若,求实数a的值.4.解:显然集合,对于集合,当时,集合,满足,即;当时,集合,而,则21,或1,得,或,综上得:实数a的值为,或1.5.已知集合,,,求,,.解:集合},即;集合,即;集合;则556.求下列函数的定义域:(1);(2)6.解:(1)要使原式有意义,则0,即,得函数的定义域为;(2)要使原式有意义,则,即,且,得函数的定义域为.7.已知函数,求:(1);(2)7.解:(1)因为所以,,得2 即;(2)因为,所以,a 即.8.设,,求证:50(1);(2)x8.证明:(1)因为,所以,即;(2)因为f(,所以,x1 即9.已知函数在[5,20]上具有单调性,求实数k的取值范围. 2 9.解:该二次函数的对称轴为2k8,函数在[5,20]上具有单调性,则k,或k,得,或,即实数k的取值范围为,或.10.已知函数,(1)它是奇函数还是偶函数?(2)它的图象具有怎样的对称性?(3)它在上是增函数还是减函数?(4)它在上是增函数还是减函数?10.解:(1)令,而即函数(2)函数(3)函数(4)函数,是偶函数;的图象关于y轴对称;在上是减函数;在上是增函数.B组1.学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛.问同时参加田径和球类比赛的有多少人?只参加游泳一项比赛的有多少人?1.解:设同时参加田径和球类比赛的有x人,则,得,只参加游泳一项比赛的有(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2.已知非空集合,试求实数a的取值范围.2.解:因为集合,且,所以.3.设全集,,,求集合B.3.解:由,得,集合里除去,得集合B,22所以集合4.已知函数.求f(1),,的值.4.解:当时,,得;当时,,得;证明:.(1)若,则f(22(2)若,则g(222;.5.证明:(1)因为,得f(222所以f(1;22(2)因为,得g(22a2,,24222b,2212121222因为,424121222即,42所以226.(1)已知奇函数f(x)在[a,b]上是减函数,试问:它在上是增函数还是减函数?(2)已知偶函数g(x)在[a,b]上是增函数,试问:它在上是增函数还是减函数?6.解:(1)函数f(x)在上也是减函数,证明如下:设,则,1,因为函数f(x)在[a,b]上是减函数,则,又因为函数f(x)是奇函数,则,即,所以函数f(x)在上也是减函数;(2)函数g(x)在上是减函数,证明如下:设,则,因为函数g(x)在[a,b]上是增函数,则,又因为函数g(x)是偶函数,则,即,所以函数g(x)在上是减函数.7.《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额.此项税款按下表分段累计计算:某人一月份应交纳此项税款为26.78元,那么他当月的工资、薪金所得是多少?7.解:设某人的全月工资、薪金所得为x元,应纳此项税款为y元,则由该人一月份应交纳此项税款为26.78元,得,,得,所以该人当月的工资、薪金所得是2517.8元.第三章函数的应用3.1函数与方程练习(P88)1.(1)令f(x)=-x2+3x+5,作出函数f(x)的图象(图3-1-2-7(1)),它与x轴有两个交点,所以方程-x2+3x+5=0有两个不相等的实数根.(2)2x(x-2)=-3可化为2x2-4x+3=0,令f(x)=2x2-4x+3,作出函数f(x)的图象(图3-1-2-7(2)),它与x轴没有交点,所以方程2x(x-2)=-3无实数根.(3)x2=4x-4可化为x2-4x+4=0,令f(x)=x2-4x+4,作出函数f(x)的图象(图3-1-2-7(3)),它与x轴只有一个交点(相切),所以方程x2=4x-4有两个相等的实数根.(4)5x2+2x=3x2+5可化为2x2+2x-5=0,令f(x)=2x2+2x-5,作出函数f(x)的图象(图3-1-2-7(4)),它与x轴有两个交点,所以方程5x2+2x=3x2+5有两个不相等的实数根.图3-1-2-72.(1)作出函数图象(图3-1-2-8(1)),因为f(1)=1>0,f(1.5)=-2.875<0,所以f(x)=-x3-3x+5在区间(1,1.5)上有一个零点.又因为f(x)是(-∞,+∞)上的减函数,所以f(x)=-x3-3x+5在区间(1,1.5)上有且只有一个零点.(2)作出函数图象(图3-1-2-8(2)),因为f(3)<0,f(4)>0,所以f(x)=2x·ln(x-2)-3在区间(3,4)上有一个零点.又因为f(x)=2x·ln(x-2)-3在(2,+∞)上是增函数,所以f(x)在(3,4)上有且仅有一个零点.(3)作出函数图象(图3-1-2-8(3)),因为f(0)<0,f(1)>0,所以f(x)=ex-1+4x-4在区间(0,1)上有一个零点.又因为f(x)=ex-1+4x-4在(-∞,+∞)上是增函数,所以f(x)在(0,1)上有且仅有一个零点.(4)作出函数图象(图3-1-2-8(4)),因为f(-4)<0,f(-3)>0,f(-2)<0,f(2)<0,f(3)>0,所以f(x)=3(x+2)(x-3)(x+4)+x在(-4,-3),(-3,-2),(2,3)上各有一个零点.图3-1-2-8练习(P91)1.由题设可知f(0)=-1.4<0,f(1)=1.6>0,于是f(0)·f(1)<0,所以函数f(x)在区间(0,1)A组(P92)1.A,C 点评:需了解二分法求函数的近似零点的条件.2.由x,f(x)的对应值表可得f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,又根据“如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.”可知函数f(x)分别在区间(2,3),(3,4),(4,5)内有零点.3.原方程即(x+1)(x-2)(x-3)-1=0,令f(x)=(x+1)(x-2)(x-3)-1,可算得f(-1)=-1,f(0)=5.于是f(-1)·f(0)<0,所以这个方程在区间(-1,0)内有一个解. 下面用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)=3.375.因为f(-1)·f(-0.5)<0,所以x0∈(-1,-0.5).再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)≈1.58.因为f(-1)·f(-0.75)<0,所以x0∈(-1,-0.75).同理,可得x0∈(-1,-0.875),x0∈(-0.937 5,-0.875).由于|(-0.875)-(-0.937 5)|=0.062 5<0.1,所以原方程的近似解可取为-0.937 5.4.原方程即0.8x-1-lnx=0,令f(x)=0.8x-1-lnx,f(0)没有意义,用计算器算得f(0.5)≈0.59,f(1)=-0.2.于是f(0.5)·f(1)<0,所以这个方程在区间(0.5,1)内有一个解.下面用二分法求方程0.8x-1=lnx在区间(0,1)内的近似解.取区间(0.5,1)的中点x1=0.75,用计算器可算得f(0.75)≈0.13.因为f(0.75)·f(1)<0,所以x0∈(0.75,1).再取(0.75,1)的中点x2=0.875,用计算器可算得f(0.875)≈-0.04.因为f(0.875)·f(0.75)<0,所以x0∈(0.75,0.875).同理,可得x0∈(0.812 5,0.875),x0∈(0.812 5,0.843 75).由于|0.812 5-0.843 75|=0.031 25<0.1,所以原方程的近似解可取为0.843 75.5.由题设有f(2)≈-0.31<0,f(3)≈0.43>0,于是f(2)·f(3)<0,所以函数f(x)在区间(2,3)内有一个零点.下面用二分法求函数f(xx在区间(2,3)内的近似解.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)≈0.12.因为f(2)·f(2.5)<0,所以x0∈(2,2.5).再取(2,2.5)的中点x2=2.25,用计算器可算得f(2.25)≈-0.08.因为f(2.25)·f(2.5)<0,所以x0∈(2.25,2.5).同理,可得x0∈(2.25,2.375),x0∈(2.312 5,2.375),x0∈(2.343 75,2.375), x0∈(2.343 75,2.359 375),x0∈(2.343 75,2.351 562 5),x0∈(2.343 75,2.347 656 25). 由于|2.343 75-2.347 656 25|=0.003 906 25<0.01,所以原方程的近似解可取为2.347 656 25.B组1.将系数代入求根公式x4得所以方程的两个解分别为4下面用二分法求方程的近似解.取区间(1.775,1.8)和(-0.3,-0.275),令f(x)=2x2-3x-1.在区间(1.775,1.8)内用计算器可算得f(1.775)=-0.023 75,f(1.8)=0.08.于是f(1.775)·f(1.8)<0.所以这个方程在区间(1.775,1.8)内有一个解.由于|1.8-1.775|=0.025<0.1,所以原方程在区间(1.775,1.8)内的近似解可取为1.8.同理,可得方程在区间(-0.3,-0.275)内的近似解可取为-0.275.所以方程精确到0.1的近似解分别是1.8和-0.3.2.原方程即x3-6x2-3x+5=0,令f(x)=x3-6x2-3x+5,函数图象如下图所示.图3-1-2-9所以这个方程在区间(-2,0),(0,1),(6,7)内各有一个解.取区间(-2,0)的中点x1=-1,用计算器可算得f(-1)=1.因为f(-2)·f(-1)<0,所以x0∈(-2,-1).再取(-2,-1)的中点x2=-1.5,用计算器可算得f(-1.5)=-7.375.因为f(-1.5)·f(-1)<0,所以x0∈(-1.5,-1).同理,可得x0∈(-1.25,-1),x0∈(-1.125,-1),x0∈(-1.125,-1.062 5).由于|(-1.062 5)-(-1.125)|=0.062 5<0.1,所以原方程在区间(-2,0)内的近似解可取为-1.062 5.同理,可得原方程在区间(0,1)内的近似解可取为0.7,在区间(6,7)内的近似解可取为6.3.3.(1)由题设有g(x)=2-[f(x)]2=2-(x2+3x+2)2=-x4-6x3-13x2-12x-2.(2)函数图象如下图所示.图3-1-2-10(3)由图象可知,函数g(x)分别在区间(-3,-2)和区间(-1,0)内各有一个零点.取区间(-3,-2)的中点x1=-2.5,用计算器可算得g(-2.5)=0.187 5.因为g(-3)·g(-2.5)<0,所以x0∈(-3,-2.5).再取(-3,-2.5)的中点x2=-2.75,用计算器可算得g(-2.75)≈0.28.因为g(-3)·g(-2.75)<0,所以x0∈(-3,-2.75).同理,可得x0∈(-2.875,-2.75),x0∈(-2.812 5,-2.75).由于|-2.75-(-2.812 5)|=0.062 5<0.1,所以原方程在区间(-3,-2)内的近似解可取为-2.812 5.同样可求得函数在区间(-1,0)内的零点约为-0.2.所以函数g(x)精确到0.1的零点约为-2.8或-0.2.点评:第2、3题采用信息技术画出函数图象,并据此明确函数零点所在的区间.在教学中,如果没有信息技术条件,建议教师直接给出函数图象或零点所在区间.第三章复习参考题A组(P112)1.C2.C3.设经过时间t后列车离C地的距离为y,则图3-24.(1)圆柱形; (2)上底小、下底大的圆台形;(3)上底大、下底小的圆台形; (4)呈下大上小的两节圆柱形. 图略.图3-35.令f(x)=2x-4x-3x+1,函数图象如图3-3所示:函数分别在区间(-1,0)、(0,1)和区间(2,3)内各有一个零点,所以方程2x3-4x2-3x+1=0的最大的根应在区间(2,3)内.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)=-0.25.因为f(2.5)·f(3)<0,所以x0∈(2.5,3). 再取(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈4.09.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x0∈(2.5,2.625),x0∈(2.5,2.5625),x0∈(2.5,2.53125),x0∈(2.515625,2.53125),x0∈(2.515625,2.5234375).由于|2.523 437 5-2.515 625|=0.007 812 5<0.01,所以原方程的最大根约为2.523 437 5.6.令lgx=321x,即得方程x=0,再令x,用二分法求得交点的横坐标约为2.5.图3-47.如图,作DE⊥AB,垂足为E.由已知可得∠ADB=90°.因为AD=x,AB=4,于是AD=AE×AB,即AE=2AD2AB=x24.所以CD=AB-2AE=4-2×x22.于是2x2由于AD>0,AE>0,CD>0,所以解得0<x<22.所以所求的函数为8.(1)由已知可得N=N0(x22+2x+8,0<x<22. 1因为λ是正常数,e>1,所以eλ>1,即又N0是正常数,所以N=N0((2)N=N0e-λt,因为e-是在于t的减函数. NN0,所以-λt=lnNN0,即(3)当N=N02时9.因为f(1)=-3+12+8=17>0,f(2)=-3×8+12×2+8=8>0,f(3)<0,所以,下次生产应在两个月后开始.B组1.厂商希望的是甲曲线;客户希望的是乙曲线.函数的解析式为y=f(t函数的图象为图3-5备课资料[备选例题]【例】对于函数f(x)=ax2+(b+1)x+b-2(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的不动点.(1)当a=2,b=-2时,求f(x)的不动点;(2)若对于任何实数b,函数f(x)恒有两个相异的不动点,求实数a的取值范围. 解:(1)f(x)=ax2+(b+1)x+b-2(a≠0),当a=2,b=-2时,f(x)=2x2-x-4,设x为其不动点,即2x2-x-4=x,则2x2-2x-4=0,解得x1=-1,x2=2,即f(x)的不动点为-1,2.(2)由f(x)=x,得ax2+bx+b-2=0.关于x的方程有相异实根,则b2-4a(b-2)>0,即b2-4ab+8a>0. 又对所有的b∈R,b2-4ab+8a>0恒成立,故有(4a)2-4·8a<0,得0<a<2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 集合与函数概念 1.1 集合1.1.1 集合的含义与表示1.下列集合的表示方法正确的是( ) A .{1,2,3,3,} B .{全体有理数} C .0={0}D .不等式x -3>2的解集是{x |x >5}2.下列元素与集合的关系中,表示正确的有( ) ①2∈R ; ②3∉Q ; ③|-5|∉N *; ④|-2|∈Q ; ⑤0∈{0}.A .1个B .2个C .3个D .4个3.(2014年广东广州一模改编)已知集合A =⎩⎨⎧⎭⎬⎫|x x ∈Z ,且32-x ∈Z ,用列举法表示集合A 中的元素( )A.{}-1,1B.{}-1,1,3C.{}-1,1,3,5D.{}-1,1,2,3,5 4.已知集合M ={1,2,x 2},则x 满足( ) A .x ≠1且x ≠ 2 B .x ≠±1 C .x ≠±2 D .x ≠±1且x ≠±25.下列说法正确的是( )A .若a ∈N ,b ∈N ,则a -b ∈NB .若x ∈N *,则x ∈RC .若x ∈R ,则x ∈N *D .若x ≤0,则x ∉N6.已知集合S ={a ,b ,c }中的三个元素可构成△ABC 的三条边,那么△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形7.已知集合A ={1,3,a 2},若3a -2∈A ,求实数a 的取值集合.8.设P ,Q 为两个非空实数集合,定义集合P +Q ={a +b |a ∈P ,b ∈Q },若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数是( )A .9个B .8个C .7个D .6个9.已知集合M =⎩⎨⎧⎭⎬⎫x ,y x ,1与集合N ={0,x 2,x +y }表示同一个集合,则实数x 2015+y 2014=________.10.用列举法表示下列集合:(1)C={x∈N|y=-x2+6,y∈N};(2)D={y∈N|y=-x2+6,x∈N};(3)E={(x,y),x∈N,y∈N|y=-x2+6}.1.1.2集合间的基本关系1.用适当的符号填空:(1)a________{a,b};(2){-0.1,0.1}________{x|x2=0.01};(3){围棋,武术}________{2010年广州亚运会新增设中国传统项目};(4)∅________{∅}.2.(2014年福建漳州二模)下面四个集合中,表示空集的是()A.{0}B.{x|x2+1=0,x∈R}C.{x|x2-1>0,x∈R}D.{(x,y)|x2+y2=0,x∈R,y∈R}3.已知集合A,B之间的关系用Venn图可以表示为图K1-1-1,则下列说法正确的是()图K1-1-1A.A={2} B.B={-1,2}C.A⊆B D.B=A4.以下五个式子中,①{1}∈{0,1,2};②{1,-3}={-3,1};③{0,1,2}⊆{1,0,2};④∅∈{0,1,2};⑤∅∈{0}.错误的个数为()A.5个B.2个C.3个D.4个5.(2012年广东广州二模)已知集合A满足A⊆{1,2},则集合A的个数为()A.4个B.3 个C.2个D.1个6.设A={x|-1<x≤3},B={x|x>a},若A B,则实数a的取值范围是()A.{a|a≥3} B.{a|a≤-1}C.{a|a>3} D.{a|a<-1}7.已知集合A={-1,3,2m-1},集合B={3,m2}.若B⊆A,则实数m=________. 8.判断下列各组中集合A与B的关系:(1)A={x|0<x<5},B={x|-1<x<5};(2)A={(x,y)|xy>0},B={(x,y)|x>0,y>0}.9.若集合M={x|x2+x-6=0},N={x|(x-2)(x-a)=0},且N⊆M,求实数a的值.10.已知A={x|-2≤x≤5},B={x|a+1≤x≤2a-1},B⊆A,求实数a的取值范围.1.1.3集合的基本运算(1)1.(2013年福建)若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为()A.2个B.3个C.4个D.16个2.设集合M={m∈Z|-3<m<2},N={n∈Z|-1≤n≤3},则M∩N=()A.{0,1} B.{-1,0,1}C.{0,1,2} D.{-1,0,1,2}3.已知A={(x,y)|x+y=3},B={(x,y)|x-y=1},则A∩B=()A.{2,1} B.{x=2,y=1}C.{(2,1)} D.(2,1)4.若集合A={x|-2<x<1},B={x|0<x<2},则A∪B=()A.{x|-1<x<1} B.{x|-2<x<1}C.{x|-2<x<2} D.{x|0<x<1}5.(2012年福建)已知集合M={1,2,3,4},N={-2,2},下列结论成立的是()A.N⊆M B.M∪N=MC.M∩N=N D.M∩N={2}6.设A={x|x=5k+1,k∈N},B={x|x≤6,x∈Q},则A∩B=()A.{1,4} B.{1,6}C.{4,6} D.{1,4,6}7.设集合A={-1,1,3},B={a+2,a2+4}.若A∩B={3},求实数a的值.8.设集合A={1,2,3,4,5,6},B={4,5,6,7},则满足S⊆A且S∩B≠∅的集合S的个数为()A.57个B.56个C.49个D.8个9.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分别求适合下列条件的a的值.(1)9∈A∩B;(2){9}=A∩B.10.已知A={x|-3≤x≤5},B={x|x>a}.(1)若A∩B≠A,求实数a的取值范围;(2)若A∩B≠∅,且A∩B≠A,求实数a的取值范围.1.1.4集合的基本运算(2)1.已知全集U={0,1,2,3,4,5},集合M={0,3,5},N={1,4,5},则M∩(∁U N)=() A.{5} B.{0,3}C.{0,2,5} D.{0,1,3,4,5}2.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},∁U B∩A={9},则A=() A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}3.已知全集U=R,则能正确表示集合M={-1,0,1}和集合N={x|x2+x=0}间的关系的韦恩(Venn)图是()4.已知U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.M∪N=U B.M∩N={4,6}C.(∁U N)∪M=U D.(∁U M)∩N=N5.(2011年全国)设集合U={1,2,3,4},M={1,2,3},N={2,3,4},则∁U(M∩N)=() A.{1,2} B.{2,3} C.{2,4} D.{1,4}6.设集合U={x∈N|0<x≤8},S={1,2,4,5},T={3,5,7},则S∩(∁U T)=()A.{1,2,4} B.{1,2,3,4,5,7}C.{1,2} D.{1,2,4,5,6,8}7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2}.求实数m的值.8.若U={n|n是小于9的正整数},A={n∈U|n是奇数},B={n∈U|n是3的倍数}.则∁U(A∪B)=________.9.已知集合M={x|y=3-x2},N={x||x+1|≤2},且M,N都是全集I的子集,则图1-1-2的韦恩图中阴影部分表示的集合为()图1-1-2A.{x|-3≤x≤1} B.{x|-3≤x≤1}C.{x|-3≤x<-3} D.{x|1<x≤3}10.向50名学生调查对事件A,B的态度,有如下结果:赞成事件A的人数是全体的五分之三,其余的不赞成,赞成事件B的比赞成事件A的多3人,其余的不赞成;另外,对事件A,B都不赞成的学生人数比对事件A,B都赞成的学生人数的三分之一多1人.问对事件A,B都赞成的学生和都不赞成的学生各有多少人?1.2 函数及其表示 1.2.1 函数的概念(1)1.下列选项中,可作为函数y =f (x )的图象的是( )2.下列两个函数完全相同的是( ) A .y =x 0与y =1 B .y =(x )2与y =x C .y =|x |与y =x D .y 33y =x 3.下列式子中:①y =x ,x ∈{1,2,3};②y =±x ;③f (x )=1;④y =2±x 2;⑤y =1x 2-x. 其中表示y 是x 的函数的有( )A .1个B .2个C .3个D .4个4.设f (x )=x 2-1x 2+1,则f (2)=( )A .1B .-1 C.35 D .-355.已知f (x )=x 2+1,则f [f (-2)]=( ) A .2 B .5 C .10 D .266.下列函数中,与函数y 3x定义域相同的函数为( )A .y =|x |B .y =1xC .y =x 0D .y =x7.下列各组函数是否表示同一个函数? (1)f (x )=|x |,φ(b )=b 2; (2)y =x 2,y =(x )2;(3)y =1+x ·1-x ,y =1-x 2.8.如果f(x)=ax2-2,a>0,且f[f(2)]=-2,那么a的值为________.9.建造一个容积为8000立方米,深为6米的长方体蓄水池,池壁每平方米的造价为a 元,池底每平方米的造价为2a元,把总造价y(单位:元)表示为池底的一边长x(单位:米)的函数,则函数表达式为____________________.10.某商人如果将进货单价为8元的商品按每件10元出售时,每天可销售100件,现他采用提高售价,减少进货量的办法增加利润,已知这种商品每件销售价提高1元,销售量就减少5件,问他将销售价每件定为多少元时,才能使得每天所赚的利润最大?最大利润是多少?1.2.2 函数的概念(2)1.函数y =x +-x 的值域是( ) A .{y |y ≥0} B .{y |y >0} C .{0} D .R2.函数y =x 2-2x 的定义域为{0,1,2,3}, 则其值域为( ) A .{-1,0,3} B .{0,1,2,3}C .{y |-1≤y ≤3}D .{y |0≤y ≤3}3.函数y =1-x +x 的定义域为( ) A .{x |x ≤1} B .{x |x ≥0}C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1}4.定义域为R 的函数y =f (x )的值域为[a ,b ],则函数y =f (x +a )的值域为( ) A .[2a ,a +b ] B .[0,b -a ] C .[a ,b ] D .[-a ,a +b ]5.函数y =2--x 2+4x 的值域是( ) A .[-2,2] B .[1,2]C .[0,2]D .[-2,2]6.设f (x )=x +1x 2-3x +2的定义域为T ,全集U =R ,则∁U T =( )A .{x |x ≤1或x ≥2}B .{1,2}C .{-1,1,2}D .{x |x <1或1<x <2或x >2}7.若函数y =f (x )的定义域是[0,2],求函数g (x )=f (2x )x -1的定义域.8.函数f (x )=4-x 2-x 2-4的定义域是________.9.若函数y =x 2-3x -4的定义域为[0,m ],值域为⎣⎡⎦⎤-254,-4,则实数m 的取值范围是____________.10.求下列函数的值域:(1)y =3x +2x -2; (2)y =5+4x -x 2.1.2.3 函数的表示法1.函数y =1-1x -1的图象是( )2.某学生从家里到学校,因为怕迟到,所以一开始就跑步,等跑累了再走余下的路程,以纵轴表示离校的距离,横轴表示出发后的时间,则图中符合此学生走法的是( )3.已知函数f (x -1)=x 2-3,则f (2)的值为( ) A .-2 B .6 C .1 D .04.设f (x +2)=2x +3,则f (x )=( ) A .2x +1 B .2x -1 C .2x -3 D .2x +75.已知f (x )=x +1x -1(x ≠±1),则f (x )·f (-x )=______.6.已知f (x )与g (x )那么f [g (3)]=7.已知f (x +1)=x 2-1,求f (x )的表达式.8.设函数f (x )=41-x,若f (a )=2,则实数a =________.9.已知函数f (x ),g (x )分别由下表给出:则f []g ()1的值为________;满足f >g 的x 的值为________.10.(1)已知二次函数f (x )满足f (0)=1,f (x +1)-f (x )=2x ,求函数f (x )的解析式; (2)定义在R 上的函数f (x )满足2f (x )-f (-x )=3x +1,求函数f (x )的解析式.1.2.4 分段函数及映射1.已知集合A ={x |0≤x ≤2},B ={y |0≤y ≤4},下列对应关系不能构成从集合A 到集合B 的映射的是( )A .y =2xB .y =32xC .y =x 2D .y =2x -12.设函数f (x )=⎩⎪⎨⎪⎧1-x 2(x ≤1),x 2+x -2 (x >1),则f (2)的值为( )A .4B .-3 C.14D .03.下列各个对应中,构成映射的是( )A BC D4.设f (x )=⎩⎪⎨⎪⎧|x -1|-2,|x |≤1,11+x 2,|x |>1,则f ⎣⎡⎦⎤f ⎝⎛⎭⎫12=( ) A.12 B.413 C .-95 D.25415.在函数f (x )=⎩⎪⎨⎪⎧x +2 (x ≤-1),x 2(-1<x <2),2x (x ≥2)中,若f (x )=3,则x 的值为( )A. 3 B .±3C .3 3D .3- 36.设集合A ={(x ,y )|x ∈R ,y ∈R },B ={(x ,y )|x ∈R ,y ∈R },f :(x ,y )→(x +y ,xy ),则:(1)(-2,3)在f 作用下的象是__________; (2)(2,-3)的原象是__________. 7.如图K1-2-1,根据函数f (x )的图象写出它的解析式.图K1-2-18.若定义运算a ⊙b =⎩⎪⎨⎪⎧b (a ≥b ),a (a <b ),则函数f (x )=x ⊙(2-x )的值域是__________.9.某商场饮料促销,规定:一次购买一箱在原价48元的基础上打9折,一次购买两箱可打8.5折,一次购买三箱可打8折,一次购买三箱以上均可享受7.5折的优惠.若此饮料只能整箱销售且每人每次限购10箱,试用解析法写出顾客购买的箱数x 与所支付的费用y 之间的函数关系式.10.如图K1-2-2,等腰梯形ABCD 的两底分别为AD =2a ,BC =a ,∠BAD =45°,作直线MN ⊥AD 交AD 于点M ,交折线ABCD 于点N ,设AM =x ,试将梯形ABCD 位于直线MN 左侧的面积y 表示为x 的函数,并写出函数的定义域.图K1-2-21.3 函数的基本性质 1.3.1 函数的单调性1.若一次函数y =kx +b (k ≠0)在(1,+∞)上是增函数,则点(k ,b )在直角坐标平面的( ) A .上半平面 B .下半平面 C .左半平面 D .右半平面2.已知函数f (x )=8+2x -x 2,下列表述正确的是( ) A .f (x )在(-∞,1]上是减函数 B .f (x )在(-∞,1]上是增函数 C .f (x )在[-1,+∞)上是减函数 D .f (x )在[-1,+∞)上是增函数3.下列函数在(0,2)上是增函数的是( )A .y =1xB .y =x 2-2x +1C .y =-xD .y =2x4.下列说法正确的有( )①若x 1,x 2∈I ,当x 1<x 2时,有f (x 1)<f (x 2),则y =f (x )在I 上是增函数; ②函数y =x 2在R 上是增函数;③函数y =-1x在定义域上是增函数;④y =1x的单调区间是(-∞,0)∪(0,+∞).A .0个B .1个C .2个D .3个5.函数f (x )=-x 2+2(a -1)x +2在(-∞,4)上是增函数,则实数a 的取值范围是( ) A .a ≥5 B .a ≥3 C .a ≤3 D .a ≤-56.设定义在[-1,7]上的函数y =f (x )的图象如图K1-3-1,则关于函数y =1f (x )的单调区间表述正确的是( )图K1-3-1A .在[-1,1]上单调递减B .在(0,1]上单调递减,在[1,3)上单调递增C .在[5,7]上单调递减D .在[3,5]上单调递增7.用定义证明:函数f (x )=ax +b (a <0,a ,b 为常数)在R 上是减函数.8.函数y =ax 和y =bx在(0,+∞)上都是减函数,则y =ax 2+bx +c 在(-∞,0)上的单调性为__________.9.f (x )是定义在(0,+∞)上的增函数,则不等式f (x )>f [8(x -2)]的解集是__________.10.若函数f (x )=(a +1)x 2+1bx ,且f (1)=3,f (2)=92.(1)求a ,b 的值,并写出f (x )的表达式; (2)求证:f (x )在[)1,+∞上是增函数.1.3.2 函数的最值1.y =2x 在区间[2,4]上的最大值、最小值分别是( )A .1,12 B.12,1C.12,14D.14,122.函数f (x )的图象如图K1-3-2,则其最大值、最小值分别为( )图K1-3-2A .f ⎝⎛⎭⎫23,f ⎝⎛⎭⎫-32B .f (0),f ⎝⎛⎭⎫32 C .f ⎝⎛⎭⎫-32,f (0) D .f (0),f (3) 3.函数f (x )=⎩⎪⎨⎪⎧2x +6, x ∈[1,2],x +7, x ∈[-1,1),则f (x )的最大值、最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对4.函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则a 的取值范围是( ) A .a <1 B .a ≤1 C .a >1 D .a ≥15.某公司在甲、乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x ,其中x 为销售量(单位:辆).若该公司在两地共销售15辆车,则能获得的最大利润为( )A .90万元B .60万元C .120万元D .120.25万元6.函数f (x )=11+x 2(x ∈R )的值域是( )A .(0,1)B .(0,1]C .[0,1)D .[0,1]7.函数y =|x 2-2x -3|的增区间为_________________________.8.已知函数f (x )=x 2-6x +8,x ∈[1,a ],并且f (x )的最小值为f (a ),则实数a 的取值范围是__________.9.已知函数f (x )=ax 2-2ax +3-b (a >0)在[1,3]有最大值5和最小值2,求a ,b 的值.10.求函数y =11-x在区间[2,4]上的最大值和最小值.1.3.3 函数的奇偶性(1)1.下列说法正确的是( )A .如果一个函数的定义域关于坐标原点对称,那么这个函数为奇函数B .如果一个函数为偶函数,那么它的定义域关于坐标原点对称C .如果一个函数的定义域关于坐标原点对称,那么这个函数为偶函数D .如果一个函数的图象关于y 轴对称,那么这个函数为奇函数 2.下列函数是偶函数的是( ) A .y =-|x | B .y =xC .y =(x -1)2D .y =|x -1|3.f (x )是定义在R 上的奇函数,下列结论中,不正确的是( ) A .f (-x )+f (x )=0B .f (-x )-f (x )=-2f (x )C .f (x )·f (-x )≤0 D.f (x )f (-x )=-1 4.函数f (x )=1x-x (x ≠0)的图象关于( )A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称5.若函数y =(x +1)(x -a )为偶函数,则a =( ) A .-2 B .-1 C .1 D .26.(2011年安徽)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( ) A .-3 B .-1 C .1 D .37.判断下列函数的奇偶性: (1)f (x )=6,x ∈R ;(2)f (x )=2x 2+7,x ∈[-5,4]; (3)f (x )=|2x -1|-|2x +1|,x ∈R ; (4)f (x )=⎩⎪⎨⎪⎧1-x 2,x >0,0,x =0,x 2-1,x <0.8.(2014年浙江模拟)若函数f (x )=x +ax 2+1(a ∈R )是奇函数,则a 的值为( )A .1B .0C .-1D .±19.已知函数f (x )是定义在(-∞,+∞)上的偶函数.当x ∈(-∞,0)时,f (x )=x -x 4,则当x ∈(0,+∞)时,求f (x )的解析式.10.已知函数f (x )=x 2+1ax +b是奇函数,且f (1)=2.(1)求a ,b 的值;(2)判断函数f (x )在(-∞,0)上的单调性.1.3.4 函数的奇偶性(2)1.下列函数中是偶函数的是( ) A .f (x )=x 2+1,x ∈[-2,2) B .f (x )=|3x -1|-|3x +1|C .f (x )=-x 2+1,x ∈(-2,+∞)D .f (x )=x 42.已知f (x )在R 上是奇函数,当x ∈(0,2)时,f (x )=2x 2,则f (-1)=( ) A .-2 B .2 C .-98 D .983.f (x )是偶函数,g (x )是奇函数,它们有相同的定义域,且f (x )+g (x )=1x -1,则( )A .f (x )=2x 2-1B .f (x )=1x 2-1C .f (x )=2x x 2-1D .f (x )=xx 2-14.(2011年广东)设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是( )A .f (x )+|g (x )|是偶函数B .f (x )-|g (x )|是奇函数C .|f (x )|+g (x )是偶函数D .|f (x )|-g (x )是奇函数5.若函数f (x )=x(2x +1)(x -a )为奇函数,则a =( )A.12B.23C.34D .1 6.已知定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),则f (6)的值为________.7.设函数f (x )在R 上是偶函数,在区间(-∞,0)上单调递增,且f (2a 2+a +1)<f (2a 2-2a +3),求实数a 的取值范围.8.y =f (x )为奇函数,当x <0时,f (x )=x 2+ax ,且f (2)=6,则当x ≥0时,f (x )的解析式为________________________________________________________________________.9.若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],求此函数的解析式f (x ).10.已知函数f (x )=ax +b 1+x2是定义在(-1,1)上的奇函数,且f ⎝⎛⎭⎫12=25. (1)确定函数f (x )的解析式;(2)用定义证明f (x )在(-1,1)上是增函数; (3)解不等式f (t -1)+f (t )<0.1.3.5 二次函数性质的再研究1.二次函数y =2(x -1)2+3的图象的顶点坐标是__________,最小值是__________,单调递增区间是______________,单调递减区间是______________.2.设二次函数f (x )=ax 2+bx +c (a ≠0),若f (x 1)=f (x 2)(其中x 1≠x 2),则f ⎝⎛⎭⎫x 1+x 22=( )A .-b 2aB .-ba C .c D.4ac -b 24a3.二次函数y =2x 2+4x -1的定义域为[0,2],最小值记作m ,最大值记作M ,则有( ) A .m =-3,M =15 B .m =-1,M =15 C .m =-3,M 不存在 D .m =-1,M =174.二次函数y =x 2-2(a +b )x +c 2+2ab 的图象的顶点在x 轴上,且a ,b ,c 为△ABC 的三边长,则△ABC 为( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形5.抛物线的顶点为(0,-1),在x 轴上截取的线段长为4,对称轴为y 轴,则抛物线的解析式是( )A .y =-14x 2+1B .y =14x 2-1C .y =4x 2-16 D .y =-4x 2+166.如果函数f (x )=x 2+bx +c 对任意实数t 都有f (2+t )=f (2-t ),那么( ) A .f (-2)<f (3)<f (5) B .f (5)<f (-2)<f (3) C .f (3)<f (-2)<f (5) D .f (3)<f (5)<f (-2)7.已知函数f (x )=ax 2+2(a +4)x +2 (a <0)在[1,+∞)上单调递减,求实数a 的取值范围.8.若函数y =x 2-2x +3在闭区间[0,m ]上的最大值为3,最小值为2,则实数m 的取值范围是__________.9.设函数y =x 2+(a +2)x +3,x ∈[a ,b ]的图象关于直线x =1对称,则b =__________.10.已知函数f ( x )=4x 2-4ax +a 2-2a +2在闭区间[0,2]上的最小值为3,求实数a 的取值范围.1.3.6 一元二次不等式1.已知集合P ={0,m },Q ={x |2x 2-5x <0,x ∈Z },若P ∩Q ≠∅,则m =( ) A .1 B .2C .1或52D .1或22.已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则M ∩N =( ) A .{x |x <-2} B .{x |x >3}C .{x |-1<x <2}D .{x |2<x <3} 3.不等式||x +1<3的解集为( ) A .(0,2) B .(-4,2)C .(-4,0)D .(-4,-2)4.函数y =1x 2+4x +2的值域是( )A.⎝⎛⎦⎤-∞,-12∪[)0,+∞ B.⎝⎛⎦⎤-∞,-12∪()0,+∞ C.⎝⎛⎦⎤-∞,-12 D.⎣⎡⎭⎫-12,+∞ 5.函数y =x 2-4x -5x 2-3x -4的值域是( )A .y ∈RB .{y |y ≠1,y ∈R } C.⎩⎨⎧⎭⎬⎫y ⎪⎪y ≠1,y ≠65,y ∈R D .{y |y ≠0,y ∈R } 6.如果函数f (x )=(a -3)x 2+(a -3)x +1的图象在x 轴的上方(不含在x 轴上),那么实数a 的取值范围是( )A .(3,7)B .[3,7]C .[3, 7) D.[)7,+∞7.已知函数f (x )=⎩⎪⎨⎪⎧x +2, x ≤0,-x +2, x >0,求不等式f (x )≥x 2的解集.8.已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则实数a 的取值范围是__________.9.不等式x +1x≤3的解集为________________________.10.已知二次函数f (x )的二次项系数为a ,且不等式f (x )>-2x 的解集为(1,3). (1)若方程f (x )=0的两实根一个大于-3,另一个小于-3,求实数a 的取值范围; (2)若方程f (x )+6a =0有两个相等的实根,求函数f (x )的解析式.参考答案课时作业部分第一章 集合与函数概念 1.1 集合1.1.1 集合的含义与表示 1.D2.C 解析:由R ,Q ,N *的含义,可知:①②正确,③④不正确;又{0}表示元素为0的集合,故⑤正确.故选C.3.C 解析:要使32-x为整数,故2-x 必是3的约数.∴2-x =-3,-1,1,3,∴x =5,3,1,-1.故选C.4.D 5.B6.D 解析:∵集合中的元素具有互异性,∴a ,b ,c 互不相等.7.解:由3a -2=1,解得a =1,此时a 2=1,集合A 中有两个相同的元素,故a ≠1;由3a -2=3,解得a =53,满足条件;由3a -2=a 2,解得a =1(舍去)或a =2,满足条件.故所求实数a 的取值集合为⎩⎨⎧⎭⎬⎫2,53.8.B9.-1 解析:由⎩⎪⎨⎪⎧x =x 2,yx =0,x +y =1或⎩⎪⎨⎪⎧x =x +y ,yx =0,x 2=1,解得⎩⎪⎨⎪⎧ x =1,y =0或⎩⎪⎨⎪⎧x =-1,y =0.经检验,⎩⎪⎨⎪⎧ x =-1,y =0符合题意,⎩⎪⎨⎪⎧x =1,y =0不合题意,舍去.∴x 2015+y 2014=-1.10.解:(1)由y =-x 2+6,x ∈N ,y ∈N 知,当x =0,1,2时,y =6,5,2符合题意. ∴C ={0,1,2}.(2)由y =-x 2+6,x ∈N ,y ∈N 知,y ≤6,当x =0,1,2时,y =6,5,2符合题意. ∴D ={2,5,6}.(3)点(x ,y )满足条件y =-x 2+6,x ∈N ,y ∈N ,则有⎩⎪⎨⎪⎧ x =0,y =6;⎩⎪⎨⎪⎧ x =1,y =5;⎩⎪⎨⎪⎧x =2,y =2. ∴E ={(0,6),(1,5),(2,2)}.1.1.2 集合间的基本关系1.(1)∈ (2)= (3) (4)∈或 2.B3.B 解析:由V enn 图,可知:B ⊆A ,A ={-1,2,2},B ={-1,2}.故选B.4.C 解析:①④⑤是集合与集合之间的关系,而使用了元素与集合间的关系符号,故错误;②符合集合相等的定义,故正确;③任何集合是自身的子集,故正确.故选C.5.A6.B 解析:在数轴上表示出集合A ,则根据题意易知,B 正确. 7.18.解:(1)将集合A ,B 在数轴上表示出来,如图D28.∴A B .图D28(2)A ={(x ,y )|xy >0}={(x ,y )|x >0,y >0或x <0,y <0},即集合A 表示直角坐标系第一象限和第三象限的点,集合B 表示直角坐标系第一象限的点,所以B A .9.解:由x 2+x -6=0⇒x =2或x =-3, 因此,M ={2,-3}.①当a =2时,得N ={2},此时,N M ;②当a =-3时,得N ={2,-3},此时,N =M ; ③当a ≠2且a ≠-3时,得N ={2,a }, 此时,N 不是M 的子集. 故所求实数a 的值为2或-3.10.解:若B =∅,有a +1>2a -1,即a <2;若B ≠∅,有⎩⎪⎨⎪⎧2a -1≥a +1,a +1≥-2,2a -1≤5,解得2≤a ≤3.综上所述,实数a 的取值范围是a ≤3.1.1.3 集合的基本运算(1) 1.C 2.B3.C 解析:解方程组⎩⎪⎨⎪⎧ x +y =3,x -y =1,得⎩⎪⎨⎪⎧x =2,y =1,因为集合为点集,所以选C. 4.C 解析:∵A ={x |-2<x <1},B ={x |0<x <2},∴A ∪B ={x |-2<x <2}. 5.D 6.D7.解:∵A ∩B ={3},∴3∈B ,∴a +2=3或a 2+4=3(舍去),∴a =1.8.B 解析:集合A 的所有子集共有26=64个,其中不含4,5,6的子集有23=8个,所以集合S 共有56个.故选B.9.解:(1)∵9∈A ∩B ,∴9∈B 且9∈A . ∴2a -1=9或a 2=9,∴a =5或a =±3.当a =-3时,A ={-4,-7,9},B ={-8,4,9},符合题意; 当a =3时,B ={-2,-2,9},不合题意;当a =5时,A ={-4,9,25},B ={0,-4,9},符合题意. 综上所述,a =-3或a =5. (2)∵{9}=A ∩B ,∴9∈A ∩B .由(1),得a =-3或a =5.但当a =5时,A ∩B ={-4,9}≠{9},故a =5舍去,∴a =-3.10.解:(1)如图D29,在数轴上,实数a 在-3的右边,可得a ≥-3.图D29(2)由于A ∩B ≠∅,且A ∩B ≠A ,所以在数轴上,实数a 在-3的右边且在5的左边, 所以-3≤a <5.1.1.4 集合的基本运算(2)1.B 解析:∵U ={0,1,2,3,4,5},∴∁U N ={0,2,3}.∴M ∩(∁U N )={0,3}. 2.D 解析:∵A ∩B ={3},∴3∈A .∵∁U B ∩A ={9},∴9∈A .故选D. 3.B 解析:由N ={x |x 2+x =0}={-1,0},得N M .故选B. 4.A 解析:∵M ∪N ={2,3,4,5,6,7}=U ,M ∩N ={4,5},(∁U N )∪M ={3,4,5,7},(∁U M )∩N={2,6}.故选A.5.D 解析:∵M ∩N ={2,3},∴∁U (M ∩N )={1,4}. 6.A7.解:∵∁U A ={1,2},∴A ={0,3}, 代入方程x 2+mx =0.∴m =-3.8.{2,4,8} 解析:U ={n |n 是小于9的正整数}={1,2,3,4,5,6,7,8},则A ={1,3,5,7},B ={3,6},∴A ∪B ={1,3,5,6,7}.∴∁U (A ∪B )={2,4,8}. 9.C10.解:赞成事件A 的人数为50×35=30(人),赞成事件B 的人数为30+3=33(人),如图D30.记50名学生组成的集合为U ,赞成事件A 的学生全体为集合A ;赞成事件B 的学生全体为集合B .设对事件A ,B 都赞成的学生人数为x ,则对事件A ,B 都不赞成的学生人数为x3+1,赞成事件A 而不赞成事件B 的人数为30-x ,赞成事件B 而不赞成事件A 的人数为33-x .依题意(30-x )+(33-x )+x +⎝⎛⎭⎫x3+1=50,解得x =21. 所以对事件A ,B 都赞成的学生有21人,都不赞成的有8人.图D301.2 函数及其表示 1.2.1 函数的概念(1)1.D 解析:对于A ,B 两图,可以找到一个x 与两个y 对应的情形;对于C 图,当x =0时,有两个y 的值相对应;对于D 图,每个x 都有唯一的y 值与之对应.故选D.2.D 解析:A ,B 中定义域不同,C 中对应关系不同. 3.C 解析:根据函数的定义知①③⑤均表示y 是x 的函数,②④不表示y 是x 的函数.故选C.4.C5.D 解析:f (-2)=5, f [f (-2)]=f (5)=26. 6.C7.解:(1)因为φ(b )=|b |,f (x )=|x |,虽然自变量用不同的字母表示,但函数的定义域和对应关系都相同,所以它们表示同一个函数.(2)y =x 2的定义域是全体实数,而y =(x )2的定义域是非负数,所以它们不表示同一个函数.(3)因为y =1+x ·1-x =1-x 2,所以它们表示同一个函数. 8.22 解析:因为f (2)=2a -2,f [f (2)]=a (2a -2)2-2=-2,所以a =0或a =22.又因为a >0,所以a =22. 9.y =12ax +16 000a x +80003a (x >0) 解析:根据题意,得池底的另一边长为80006x米,则y =80006x ·6·2a +6x ·2a +80006x ·x ·2a =12ax +16 000a x +80003a (x >0).10.解:设每件x 元出售,利润是y 元.y =(x -8)[100-(x -10)×5]=-5x 2+190x -1200=-5(x -19)2+605(x >10),故当x =19,即每件定为19元时,最大利润为605元.1.2.2 函数的概念(2)1.C 解析:∵x ≥0,-x ≥0,∴x =0,y =0. 2.A 3.D 4.C 5.C 6.B7.解:因为f (x )的定义域为[0,2],所以对g (x ),0≤2x ≤2,但x ≠1,故x ∈[0,1).8.{-2,2} 解析:由⎩⎪⎨⎪⎧x 2-4≥0,4-x 2≥0,得x 2=4,即x =±2,∴函数定义域为{-2,2}. 9.32≤m ≤3 解析:∵y =⎝⎛⎭⎫x -322-254, 又∵值域为⎣⎡⎦⎤-254,-4, ∴f ⎝⎛⎭⎫32=-254,∴32∈[0,m ],即m ≥32. ∴f (x )max =f (0)或f (x )max =f (m ), 即⎩⎪⎨⎪⎧f (0)≤-4,f (m )≤-4,解得0≤m ≤3,∴32≤m ≤3.10.解:(1)方法一:∵y =3x +2x -2=(3x -6)+8x -2=3+8x -2,由于8x -2≠0,∴y ≠3.∴函数y =3x +2x -2的值域是{y |y ∈R 且y ≠3}.方法二:由y =3x +2x -2,得x =2(y +1)y -3,∴y ≠3.(2)∵y =5+4x -x 2=-(x -2)2+9, 显然,y =5+4x -x 2的最大值是9,故函数y =5+4x -x 2的最大值是3,且y ≥0,∴函数的值域是[0,3].1.2.3 函数的表示法 1.B 2.D3.B 解析:方法一:令x -1=t ,则x =t +1, ∴f (t )=(t +1)2-3,∴f (2)=(2+1)2-3=6. 方法二:∵f (x -1)=(x -1)2+2(x -1)-2, ∴f (x )=x 2+2x -2,∴f (2)=22+2×2-2=6. 方法三:令x -1=2,∴x =3.∴f (2)=32-3=6. 4.B 5.16.1 解析:由表,可知:g (3)=4,∴f [g (3)]=f (4)=1. 7.解:方法一:f (x +1)=x 2-1=(x +1)2-2x -2=(x +1)2-2(x +1).可令t =x +1,则有f (t )=t 2-2t ,故f (x )=x 2-2x . (f 对x 实施的运算和对t 实施的运算是完全一样的) 方法二:令x +1=t ,则x =t -1.代入原式,有f (t )=(t -1)2-1=t 2-2t . ∴f (x )=x 2-2x .8.-1 解析:∵f (a )=41-a=2,∴a =-1.9.1 210.解:(1)设f (x )=ax 2+bx +c ,则f (0)=c =1,∴f (x +1)=a (x +1)2+b (x +1)+1=(ax 2+bx +1)+(2ax +a +b ). ∴f (x +1)-f (x )=2ax +a +b =2x ,∴⎩⎪⎨⎪⎧ 2a =2,a +b =0,即⎩⎪⎨⎪⎧a =1,b =-1.∴f (x )=x 2-x +1. (2)由⎩⎪⎨⎪⎧2f (x )-f (-x )=3x +1,2f (-x )-f (x )=-3x +1,解得f (x )=x +1.1.2.4 分段函数及映射 1.D 2.A 3.B 4.B5.A 解析:当x ≤-1时,x +2≤1;当-1<x <2时, 0≤x 2<4;当x ≥2时,2x ≥4. ∴f (x )=3,即x 2=3,x =±3. 又∵-1<x <2,∴x = 3.6.(1,-6) (-1,3)或(3,-1)解析:(1)由题意,对应法则f 应将(-2,3)变为(-2+3,-2×3),即(1,-6).(2)设(2,-3)的原象为(a ,b ),则它在f 作用下的象是(a +b ,ab ),故有a +b =2,且ab =-3,解得a =-1,b =3或a =3,b =-1,故(2,-3)的原象是(-1,3)或(3,-1).7.解:当0≤x ≤1时,f (x )=2x .当1<x <2时,f (x )=2.当x ≥2时,f (x )=3.∴f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,2,1<x <2,3,x ≥2.8.(-∞,1] 解析:由题意知,当x ≥2-x ,即x ≥1时,f (x )=2-x ≤1;当x <2-x ,即x <1时,f (x )=x <1.所以f (x )的值域为(-∞,1].9.解:由题意,可得y =⎩⎪⎨⎪⎧48×0.9x , x =1,48×0.85x , x =2,48×0.8x , x =3,48×0.75x , 3<x ≤10,x ∈N .10.解:作BH ⊥AD ,点H 为垂足,CG ⊥AD ,点G 为垂足,依题意,则有AH =a2,AG =3a 2,①如图D31,当点M 位于点H 的左侧时,N ∈AB ,由于AM =x ,∠A =45°,图D31∴MN =x .∴y =S △AMN =12x 2⎝⎛⎭⎫0≤x ≤a 2. ②如图D32,当点M 位于HG 之间时,由于AM =x ,MN =a 2,BN =x -a2.图D32∴y =S 直角梯形AMNB =12·a 2⎣⎡⎦⎤x +⎝⎛⎭⎫x -a 2=a 2x -a 28⎝⎛⎭⎫a2<x ≤3a 2.③如图D33,当点M 位于点G 的右侧时,由于AM =x ,MN =MD =2a -x ,图D33 ∴y =S 梯形ABCD -S △MDN =12·a 2(2a +a )-12(2a -x )2=3a 24-12(4a 2-4ax +x 2) =-12x 2+2ax -5a 24⎝⎛⎭⎫3a 2<x ≤2a . 综上所述,y =⎩⎪⎨⎪⎧ 12x 2,x ∈⎣⎡⎦⎤0,a 2,a 2x -a 28,x ∈⎝⎛⎦⎤a 2,3a 2,-12x 2+2ax -5a 24,x ∈⎝⎛⎦⎤3a 2,2a .1.3 函数的基本性质1.3.1 函数的单调性1.D 2.B 3.D4.A 解析:①没有体现任意性;②是先减后增;③在整个定义域内并不是增函数;④不能用并集符号,应改为和.5.A 解析:本题作出函数f (x )=-x 2+2(a -1)x +2的图象,可知:此函数图象的对称轴是x =a -1,由图象,可知:当a -1≥4,即当a ≥5时,函数f (x )=-x 2+2(a -1)x +2在(-∞,4)上是增函数.6.B7.证明:设任意的x 1,x 2∈R ,且x 1<x 2,则f (x 1)-f (x 2)=(ax 1+b )-(ax 2+b )=a (x 1-x 2).∵x 1<x 2及a <0,得a (x 1-x 2)>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).∴f (x )=ax +b (a <0)在R 上为减函数.8.单调递增 解析:由函数y =ax 和y =b x在(0,+∞)上都是减函数,得a <0,b >0,故-b 2a>0,二次函数y =ax 2+bx +c 开口向下,在(-∞,0)上单调递增. 9.⎝⎛⎭⎫2,167 10.(1)解:∵f (1)=3,∴a +2b=3. ① 又∵f (2)=92,∴4(a +1)+12b =92. ② 由①,②解得a =1,b =1.∴f (x )=2x 2+1x. (2)证明:设任意x 2>x 1≥1,则f (x 2)-f (x 1)=2x 22+1x 2-2x 21+1x 1 =(2x 22+1)x 1-(2x 21+1)x 2x 2·x 1=(x 2-x 1)(2x 1x 2-1)x 2·x 1. ∵x 1≥1,x 2>1,∴2x 1x 2-1>0, x 1x 2>0.又∵x 1<x 2,∴x 2-x 1>0.∴f (x 2)-f (x 1)>0,即f (x 2)>f (x 1).故函数f (x )在区间[1,+∞)上是增函数.1.3.2 函数的最值1.A 2.B3.A 解析:本题为分段函数的最值问题,其最大值为各段上最大值中的最大者,最小值为各段上最小值中的最小者.当1≤x ≤2时,8≤2x +6≤10;当-1≤x <1时,6≤x +7<8.∴f (x )min =f (-1)=6,f (x )max =f (2)=10.4.A5.C 解析:设公司在甲地销售x 辆(0≤x ≤15,x 为正整数),则在乙地销售(15-x )辆,则公司获得利润L =-x 2+21x +2(15-x )=-x 2+19x +30.∴当x =9或10时,L 最大为120万元.故选C.6.B 解析:∵1+x 2≥1,∴0<11+x 2≤1.故选B. 7.[-1,1]和[3,+∞)8.(1,3] 解析:由题意知,f (x )在[1,a ]内是单调递减的,又∵f (x )的单调减区间为(-∞,3],∴1<a ≤3.9.解:∵f (x )=ax 2-2ax +3-b (a >0)的对称轴为x =1,[1,3]是f (x )的递增区间,∴f (x )max =f (3)=5,即3a -b +3=5.∴f (x )min =f (1)=2,即-a -b +3=2.∴⎩⎪⎨⎪⎧ 3a -b =2,-a -b =-1.得⎩⎨⎧a =34,b =14. 故a =34,b =14. 10.解:设任意的x 1,x 2∈[2,4],且x 1<x 2,f (x 1)-f (x 2)=11-x 1-11-x 2=1-x 2-1+x 1(1-x 1)·(1-x 2)=x 1-x 2(1-x 1)·(1-x 2), 因为x 1,x 2∈[2,4],所以(1-x 1)·(1-x 2)>0.又因为x 1<x 2,所以x 1-x 2<0,所以f (x 1)-f (x 2)=x 1-x 2(1-x 1)·(1-x 2)<0, 所以f (x 1)<f (x 2).所以函数y =11-x在区间[2,4]上单调递增, 则y min =11-2=-1,y max =11-4=-13.1.3.3 函数的奇偶性(1)1.B 2.A 3.D4.C 解析:∵f (-x )=-1x+x =-f (x )(x ≠0),∴f (x )为奇函数.∴f (x )关于原点对称. 5.C6.A 解析:f (1)=-f (-1)=-[2×(-1)2-(-1)]=-3.故选A.7.解:(1)∵f (-x )=6=f (x ),x ∈R ,∴f (x )是偶函数.(2)定义域x ∈[-5,4],则定义域不关于原点对称,则f (x )是非奇非偶函数. (3)∵f (-x )=|-2x -1|-|-2x +1| =-(|2x -1|-|2x +1|)=-f (x ), ∴f (x )是奇函数. (4)当x >0时,f (x )=1-x 2, 此时-x <0,∴f (-x )=(-x )2-1=x 2-1, ∴f (-x )=-f (x ); 当x <0时,f (x )=x 2-1,此时-x >0, f (-x )=1-(-x )2=1-x 2, ∴f (-x )=-f (x ); 当x =0时,f (-0)=f (0)=0. 综上所述,对x ∈R ,总有f (-x )=-f (x ). ∴f (x )为R 上的奇函数. 8.B 解析:f (0)=0. 9.-x -x 4 10.解:(1)函数f (x )是奇函数,有f (-x )=-f (x ), 即(-x )2+1a (-x )+b =-x 2+1ax +b ,有-ax +b =-ax -b ,∴b =0. 又∵f (1)=2,∴2a +b =2.∴a +b =1.∴a =1. (2)f (x )=x 2+1x =x +1x , 设任意x 1<x 2<0,则f (x 1)-f (x 2) =⎝⎛⎭⎫x 1+1x 1-⎝⎛⎭⎫x 2+1x 2=(x 1-x 2)(x 1x 2-1)x 1x 2, 当x 1<x 2≤-1时,x 1-x 2<0,x 1x 2>1,x 1x 2-1>0,从而f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2), ∴函数f (x )在(-∞,-1]上为增函数; 同理,当-1<x 1<x 2<0时,f (x 1)>f (x 2), ∴函数f (x )在()-1,0上为减函数. 1.3.4 函数的奇偶性(2) 1.D 2.A 3.B 解析:分别将x ,-x 代入方程,得到关于f (x ),g (x )的二元方程组⎩⎨⎧f (x )+g (x )=1x -1,f (x )-g (x )=-1x +1⇒f (x )=1x 2-1. 4.A 解析:因为g (x )是R 上的奇函数,所以|g (x )|是R 上的偶函数,从而f (x )+|g (x )|是偶函数.故选A.5.A 解析:方法一:由已知,得f (x )=x (2x +1)(x -a )的定义域关于原点对称,由于该函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-12且x ≠a ,知a =12.故选A. 方法二:∵f (x )是奇函数,∴f (-x )=-f (x ),又f (x )=x 2x 2+(1-2a )x -a, 则-x 2x 2-(1-2a )x -a =-x 2x 2+(1-2a )x -a在函数的定义域内恒成立,可得a =12. 6.0 解析:f (x +2)=-f (x ),f (x +4)=-f (x +2)=f (x ),f (6)=f (2)=-f (0)=0.7.解:由f (x )在R 上是偶函数,在区间(-∞,0)上单调递增,可知f (x )在(0,+∞)上单调递减.∵2a 2+a +1=2⎝⎛⎭⎫a +142+78>0, 2a 2-2a +3=2⎝⎛⎭⎫a -122+52>0, 且f (2a 2+a +1)<f (2a 2-2a +3),∴2a 2+a +1>2a 2-2a +3,即3a -2>0,解得a >23. 8.-x 2+5x9.解:∵f (x )=(x +a )(bx +2a )=bx 2+(2a +ab )x +2a 2是偶函数,则其图象关于y 轴对称,∴2a +ab =0明显a ≠0⇒b =-2,∴f (x )=-2x 2+2a 2,且值域为(-∞,4],∴2a 2=4.∴f (x )=-2x 2+4.10.(1)解:依题意有⎩⎪⎨⎪⎧ f ⎝⎛⎭⎫12=25,f (0)=0,解得⎩⎪⎨⎪⎧a =1,b =0. ∴f (x )=x 1+x 2. (2)证明:设任意-1<x 1<x 2<1,则f (x 1)-f (x 2)=⎝⎛⎭⎫x 11+x 21-⎝⎛⎭⎫x 21+x 22=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22), ∵-1<x 1<x 2<1,x 1-x 2<0,1-x 1x 2>0,从而f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴函数f (x )在(-1,1)上为增函数.(3)解:f (t -1)+f (t )<0⇔f (t -1)<-f (t )=f (-t ),∵函数f (x )在(-1,1)上为增函数,∴-1<t -1<-t <1,解得0<t <12.1.3.5 二次函数性质的再研究1.(1,3) 3 [1,+∞) (-∞,1)2.D 解析:f ⎝⎛⎭⎫x 1+x 22=f ⎝⎛⎭⎫-b 2a =4ac -b 24a .3.B 4.B 5.B6.D 解析:由已知⇒f (x )开口向上,对称轴x =2.画出示意图⇒f (3)<f (5)<f (-2).注意f (-2)=f (6).f (x )在[2,+∞)上单调递增⇒f (3)<f (5)<f (6).即f (3)<f (5)<f (-2).7.解:∵函数f (x )=ax 2+2(a +4)x +2(a <0)在[1,+∞)上单调递减,∴其对称轴x =-2(a +4)2a =-a +4a≤1. 解得a >0(舍去),a ≤-2,即a ≤-2.8.[1,2] 解析:y =(x -1)2+2是以直线x =1为对称轴,开口向上,其最小值为2的抛物线,又∵f (0)=3,结合图象,易得2≥m ≥1.∴m 的取值范围是[1,2].9.6 解析:由对称轴-a +22=1,得a =-4,又[a ,b ]关于直线x =1对称,则b =6. 10.解:f (x )=4⎝⎛⎭⎫x -a 22-2a +2 (0≤x ≤2). 当a 2<0,即a < 0时,f ( x ) 在 [0,2]上为增函数,此时 f ( x )的最小值为 f ( 0 )=a 2-2a +2.由⎩⎪⎨⎪⎧a <0,a 2-2a +2=3,解得a =1-2; 当0≤a 2≤2,即0≤a ≤4时,f (x )的最小值为f ⎝⎛⎭⎫a 2=-2a +2.由⎩⎪⎨⎪⎧0≤a ≤4,-2a +2=3,得无解; 当a 2>2,即a >4时,f (x )在[ 0,2 ]上为减函数,此时f (x )的最小值为f (2)=a 2-10a +18; 由⎩⎪⎨⎪⎧a >4,a 2-10a +18=3,解得a =5+10. 综上所述,a 的取值集合为{1-2,5+10}.1.3.6 一元二次不等式1.D 2.C 3.B 4.B 5.C 6.C7.解:依题意,得⎩⎪⎨⎪⎧ x ≤0,x +2≥x 2或⎩⎪⎨⎪⎧ x >0,-x +2≥x 2⇒-1≤x ≤0或0<x ≤1⇒-1≤x ≤1. 8.[-1,1] 解析:P ={x |x 2≤1}={x |-1≤x ≤1},P ∪M =P ⇒a ∈[-1,1].9.⎩⎨⎧⎭⎬⎫x ⎪⎪x <0或x ≥12 10.解:(1)设函数f (x )+2x =a (x -1)(x -3),且a <0,则f (x )=a (x -1)(x -3)-2x .若方程f (x )=0的两实根一个大于-3,另一个小于-3,只需f (-3)>0,即-14<a <0. (2)∵f (x )=ax 2-(4a +2)x +3a ,∴f (x )+6a =ax 2-(4a +2)x +9a =0.∵f (x )+6a =0有两个相等实根,∴Δ=(4a +2)2-36a 2=0,解得a =1或a =-15. 又∵a <0,∴a =-15. ∴函数f (x )的解析式为f (x )=-15x 2-65x -35.。