【浙教版】2018年七上数学第4章代数式4.3代数式的值同步测试卷

合集下载

代数式的值 浙教版七年级上册练习题(含答案)

代数式的值 浙教版七年级上册练习题(含答案)

4.3代数式的值一、选择题1.已知|x|=3,|y|=2,且xy>0,则x−y的值等于()A. 5或−5B. 1或−1C. 5或1D. −5或−12.若|a|=8,|b|=5,且ab<0,那么a−b的值为()A. 3或13B. 13或−13C. 8或−8D. −3或−133.已知m是√15的整数部分,n是√10的小数部分,则m2−n的值是()A. 6−√10B. 6C. 12−√10D. 134.已知|2m+n+1|+(3y+1)2=0,则3y+2m+n的值是()A. 1B. 0C. −2D. 25.已知代数式x−5y的值是100,则代数式−2x+10y+5的值是()A. 205B. −200C. −195D. 2006.已知a+b=12,则代数式2a+2b−3的值是()A. 2B. −2C. −4D. −3127.若a,b互为相反数,c,d互为倒数,则代数式(a+b−1)(cd+1)的值是()A. 1B. 0C. −1D. −28.已知a2+3a=1,则代数式2a2+6a−1的值为()A. 0B. 1C. 2D. 39.已知a+b=4,则代数式1+a2+b2的值为()A. 3B. 1C. 0D. −110.若x2−3x−5=0,则6x−2x2+5的值为()A. 0B. 5C. −5D. −10二、填空题11.如果m−n=3,那么2m−2n−3的值是______.12.在一次智力竞赛中,主持人问了这样的一道题目:“a是最小的正整数,b是最大的负整数的相反数,c是绝对值最小的有理数,请问:a、b、c三数之和为多少?”你能回答主持人的问题吗?其和应为______.13.若|x−5|+(y+1)2=0,则xy的值是_______14.有理数2,+7.5,−0.03,−300%,0,中,非负整数有a个,负数有b个,正分数有c个,则a−b+c=__________.三、解答题15.已知a,b互为相反数,m,n互为倒数,c的绝对值为2,求代数式a+b+mn−c的值.16.某班为了开展乒乓球比赛活动,准备购买一些乒乓球和乒乓球拍,通过去商店了解情况,甲乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价48元,乒乓球每盒定价12元,经商谈,甲乙两家商店给出了如下优惠措施:甲店每买一副乒乓球拍赠送一盒乒乓球,乙店全部按定价的9折优惠.现该班急需乒乓球拍5副,乒乓球x盒(不少于5盒).(1)请用含x的代数式分别表示去甲、乙两店购买所需的费用;(2)当需要购买40盒乒乓球时,通过计算,说明此时去哪家商店购买较为合算;(3)当需要购买40盒乒乓球时,你能给出一种更为省钱的方法吗?试写出你的购买方法和所需费用.17.分别用a,b,c,d表示有理数,a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是数轴上到原点距离为5的点表示的数,求|3a−b+2c−d|的倒数.答案和解析1.【答案】B【解析】解:∵|x|=3,|y|=2,∴x=±3,y=±2.又xy>0,∴x=3,y=2或x=−3,y=−2.∴x−y=±1.故选:B.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.有理数的乘法法则:同号得正,异号得负.本题考查了代数式求值、绝对值的性质:互为相反数的绝对值相等.能够根据两个数的乘积的符号判断两个数的符号的关系.2.【答案】B【解析】【分析】本题主要考查的是绝对值,有理数的乘法,有理数的减法,代数式求值的有关知识,先根据ab<0可以得到a,b异号,然后求出a,b,再代入代数式求值即可.【解答】解:∵ab<0,∴a,b异号,∵|a|=8,|b|=5,∴a=8,b=−5或a=−8,b=5,∴a−b=8−(−5)=13或a−b=−8−5=−13.故选B.3.【答案】C【解析】略4.【答案】C【解析】【分析】本题主要考查了绝对值,完全平方的非负性,令2m+n+1=0,3y+1=0,运用整体代入可以求出2m+n=−1,3y=−1的值代入即可求出结果.【解答】解:∵|2m+n+1|+(3y+1)2=0∴2m+n+1=0,3y+1=0∴2m+n=−1,3y=−1∴3y+2m+n=−2.故选C.5.【答案】C【解析】【分析】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.原式前两项提取−2变形后,把已知x−5y=100代入计算即可求出值.【解答】解:∵x−5y=100,∴原式=−2(x−5y)+5=−200+5=−195故选C.6.【答案】B【解析】【分析】本题主要考查的是代数式求值,运用了整体代入法的有关知识,将给出的代数式进行变形,然后整体代入求值即可.【解答】解:∵a+b=12,∴原式=2(a+b)−3=2×12−3=1−3=−2,故选B.7.【答案】D【解析】【分析】本题主要考查的是代数式求值,相反数,倒数的有关知识,先利用相反数,倒数的定义得到a+b=0,cd=1,然后代入代数式求值即可.解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴原式=(−1)×(1+1)=−2,故选D.8.【答案】B【解析】【分析】此题主要考查了代数式求值,正确将原式变形是解题关键.直接利用已知将原式变形,然后整体代入计算即可求出答案.【解答】解:∵a2+3a=1,∴2a2+6a=2(a2+3a)=2∴2a2+6a−1=2−1=1.故选B.9.【答案】A【解析】解:当a+b=4时,原式=1+12(a+b)=1+12×4=1+2=3,故选:A.将a+b的值代入原式=1+12(a+b)计算可得.本题主要考查代数式求值,解题的关键是得出待求代数式与已知等式间的特点,利用整体代入的办法进行计算.10.【答案】C【解析】本题考查了代数式求值,整体代入法,关键是由x2−3x−5=0,得x2−3x=5把x2−3x看作一个整体,代入计算的值即可.【解答】解:6x−2x2+5,=−2x2+6x+5=−2(x2−3x)+5=−2×5+5=−5.故选C.11.【答案】3【解析】解:∵m−n=3,∴原式=2(m−n)−3=2×3−3=6−3=3.故答案为:3.原式前两项提取公因式变形后,把已知等式代入计算即可求出值.此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.12.【答案】2【解析】解:∵a是最小的正整数,b是最大的负整数的相反数,c是绝对值最小的有理数,∴a=1,b=1,c=0,∴a+b+c=1+1+0=2.故答案是2.先根据已知条件求出a、b、c的值,再代入代数式求值即可.解题的关键是先求出a、b、c的值,然后再求代数式的值.13.【答案】−514.【答案】2【解析】【分析】本题考查了有理数的分类,解题的关键是分类的标准要不重不漏的找到符合条件的a,b,c的值.根据有理数的分类标准把给出的非负整数有a个,负数有b个,正分数有c 个,,即可求出a−b+c的值.【解答】解:有理数2,+7.5,−0.03,−300%,0中,非负整数有3个,负数有2个,正分数有1个,则a−b+c=3−2+1=2.故答案为2.15.【答案】解:∵a,b互为相反数,m,n互为倒数,c的绝对值为2,∴a+b=0,mn=1,c=±2,当c=2时,a+b+mn−c=0+1−2=−1;当c=−2时,a+b+mn−c=0+1−(−2)=0+1+2=3;由上可得,代数式a+b+mn−c的值是−1或3.【解析】本题考查的是相反数定义,倒数定义和绝对值的性质以及代数式的值,根据a,b互为相反数,m,n互为倒数,c的绝对值为2,可以求得a+b,mn、c的值,从而可以求得所求式子的值.16.【答案】解:(1)甲店购买需付款48×5+(x−5)×12=(12x+180)元;乙店购买需付款48×90%×5+12×90%×x=(10.8x+216)元;(2)当x=40时,甲店需12×40+180=660元;乙店需10.8×40+216=648元;所以乙店购买合算;(3)先甲店购买5副球拍,送5盒乒乓球240元,另外35盒乒乓球再乙店购买需378元,共需618元.【解析】(1)按照对应的方案的计算方法分别列出代数式即可;(2)把x=40代入求得的代数式求得数值,进一步比较得出答案即可;(3)根据两种方案的优惠方式,可得出先甲店购买5副球拍,送5盒乒乓球,另外35盒乒乓球再乙店购买即可.此题考查列代数式,理解两种方案的优惠方案,得出运算的方法是解决问题的关键.17.【答案】解:∵a是最小的正整数,∴a=1,∵b是最大的负整数,∴b=−1,∵c是绝对值最小的有理数,∴c=0,∵d是数轴上到原点距离为5的点表示的数,∴d=±5,∴|3a−b+2c−d|=|3+1+0−5|=1或|3a−b+2c−d|=|3+1+0+5|=9∴|3a−b+2c−d|的倒数为1或19【解析】本题主要考查了有理数的加减混合运算,有理数、绝对值,数轴及倒数,熟练掌握各自的定义是解决本题的关键.根据最小的正整数为1,最大的负整数为−1,绝对值最小的有理数为0,以及数轴上到原点距离的定义,确定出a,b,c,d的值,即可求出|3a−b+2c−d|的值,再求出其倒数即可.。

初中数学浙教版七年级上册第4章 代数式4.4 整式-章节测试习题(5)

初中数学浙教版七年级上册第4章 代数式4.4 整式-章节测试习题(5)

章节测试题1.【答题】若2x2+x m+4x3﹣nx2﹣2x+5是关于x的五次四项式,则﹣n m的值为()A. ﹣25B. 25C. ﹣32D. 32【答案】C【分析】根据多项式的项、项的次数和系数的定义解答.多项式的次数是多项式中最高次项的次数,多项式的项数为组成多项式的单项式的个数.【解答】由于2x2+x m+4x3-nx2-2x+5是关于x的五次四项式,∴多项式中最高次项x m的次数是5次,故m=5;又二次项2x2-nx2的系数2-n的值是0,则2-n=0,解得n=2.则-n m=-32.选C.2.【答题】下列说法正确的是()A. 数2既不是单项式也不是多项式B. 是单项式C. ﹣mn5是5次单项式D. ﹣x2y﹣2x3y是四次二项式【答案】D【分析】根据多项式和单项式定义即可判断A、B;根据单项式次数定义即可判断C;根据多项式次数定义即可判断D.【解答】试题解析:A、2是单项式,故本选项错误;B、是多项式,故本选项错误;C、是6次单项式,故本选项错误;D、是4次2项式,故本选项正确;选D.点睛:数与字母的乘积组成的式子就是单项式.单独的一个数或者一个字母也是单项式.单项式中所有字母的指数的和就是单项式的次数.3.【答题】多项式的一次项是()A. 1B. ﹣1C.D.【答案】D【分析】根据多项式的一次项的意义求出即可.【解答】多项式的一次项是,选D.4.【答题】下列说法中,正确的是()A. 是单项式B. ﹣5不是单项式C. ﹣πx2的系数为﹣1D. ﹣πx2的次数为2【答案】D【分析】分别根据单项式的定义、单项式系数及次数的定义对各选项进行分析即可.【解答】A. 是多项式,故错误;B. ﹣5是单项式,故错误;C. ﹣πx2的系数为﹣π,故错误;D. ﹣πx2的次数为2,故正确,选D.5.【答题】多项式是()A. 六次三项式B. 八次三项式C. 五次二项式D. 五次三项式【答案】D【分析】多项式中的每个单项式叫做多项式的项;多项式中不含字母的项叫常数项;多项式里次数最高项的次数,叫做这个多项式的次数.根据定义即可判断多项式23x2-x+6是几次几项式.【解答】多项式的次数是5,且是3个单项式的和,所以这个多项式是五次三项式.选D.6.【答题】下列代数式中,多项式共有().,,,,,,.A. 个B. 个C. 个D. 个【答案】C【分析】若干个单项式的和组成的式子叫做多项式,据此可解此题.【解答】几个单项式的和叫做多项式,则多项式有,,,共个,故选.点睛:本题主要考查了多项式的定义,①几个单项式的和叫做多项式;②在多项式中,每个单项式叫做多项式的项;③多项式中,次数最高的项的次数是这个多项式的次数;④一个多项式可根据次数和项数将其叫做“几次几项式”.7.【答题】下列说法错误的是()A. 的系数是B. 是多项式C. ﹣25m 的次数是1D. ﹣x2y﹣35xy3是四次二项式【答案】A【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,几个单项式的和叫做多项式;多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式进行分析即可.【解答】A、的系数是,故原题说法错误;选A.8.【答题】下列概念表述正确的有()个①数轴上的点都表示有理数②﹣4a2b,3ab,5是多项式﹣4a2b+3ab﹣5的项③单项式﹣23a2b3的系数是﹣2,次数是5④是二次二项式⑤互为相反数的两数之积一定为负数⑥整数包括正整数和负整数.A. 1B. 2C. 3D. 4【答案】A【分析】根据数轴、单项式、多项式、有理数的乘法、互为相反数整数的分类判断.【解答】数轴上的点都表示实数,①错误;﹣4a2b,3ab,﹣5是多项式﹣4a2b+3ab﹣5的项,②错误;单项式﹣23a2b3的系数是﹣23,次数是5,③错误;是二次二项式,④正确;互为相反数的两数之积不一定为负数,如0和0的积是0,⑤错误;整数包括正整数、负整数和零,⑥错误,所以正确的说法只有1种,选A.9.【答题】下列判断中错误的是()A. 1﹣a﹣ab是二次三项式B. ﹣a2b2c的次数是5C. 是单项式D. πa2的系数是π【答案】C【分析】根据单项式和多项式的概念即可求出答案.【解答】A. ∵1﹣a﹣ab是二次三项式,故正确;B. ∵ ﹣a2b2c的次数是2+2+1=5,故正确;C. ∵的分母中含字母,∴是分式,不是单项式,故不正确;D. ∵π是常数,∴πa2的系数是π,故正确;选C.10.【答题】m,n都是正数,多项式x m+x n+3x m+n的次数是()A. 2m+2nB. m或nC. m+nD. m,n中的较大数【答案】C【分析】先找出m,n,m+n的最大的,即可得出结论;【解答】∵m,n都是正数,∴m+n>m,m+n>n,∴m+n最大,∴多项式x m+x n+3x m+n的次数是m+n,选C.11.【答题】如果多项式是关于的三次三项式,则的值是().A.B.C.D.【答案】B【分析】直接利用多项式的次数与系数确定方法得出a,b的值进而得出答案.【解答】由题意得:,,,∴.故选:.12.【答题】多项式x3﹣2xy+4y+y3的次数是()A. 2B. 3C. 6D. 9【答案】B【分析】根据多项式中次数最高的项的次数叫做多项式的次数可得答案.【解答】试题解析:多项式x3﹣2xy+4y+y3的次数是3,选B.13.【答题】下列说法正确的是()A. 是单项式B. 是五次单项式C. ab2﹣2a+3是四次三项式D. 2πr的系数是2π,次数是1次【答案】D【分析】分别根据单项式以及多项式的定义判断得出即可.【解答】A、是分式,不是单项式,故此选项错误;B、是六次单项式,故此选项错误;C、是三次三项式,故此选项错误;D、2πr的系数是2π,次数是1次,故此选项正确.选D.点睛:单项式中所有字母的指数的和就是单项式的次数.多项式中次数最高项的次数就是多项式的次数.14.【答题】若3x n-(m-1)x+1为关于x的三次二项式,则m-n2的值是______.【答案】-8【分析】根据多项式的概念可知求出该多项式最高次数项为3,项数为2,从而求出m与n的值.【解答】由3x n-(m-1)x+1为三次二项式,得n=3,m-1=0.解得m=1,n=3.m-n2=1-32=1-9=-8.15.【答题】式子,-4,-xy,-2,,中单项式有______,多项式有______.【答案】-4,-xy【分析】根据单项式、多项式的定义进行判断并作出解答【解答】由单项式,多项式的定义得,单项式有-4,-xy;多项式有故答案为:-4,-xy;16.【答题】a2-ab2+b2有______项,次数为______.【答案】三,3【分析】根据多项式的次数、数项的定义求解.【解答】a2-ab2+b2是两次三项式,所以有3项,次数是3次.17.【答题】多项式4x-5有______项,次数为______.【答案】两,1【分析】多项式中次数最高的项的次数叫做多项式的次数,多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,进而可得出答案.【解答】多项式4x-5是一次两项式,有两项,次数是1.18.【答题】整式3x,-ab,t+1,0.12h+b中,单项式有______,多项式有______.【答案】 3x,;t+1,0.12h+b【分析】根据单项式、多项式的定义进行判断并作出解答【解答】满足单项式定义的有:3x,;满足多项式定义的有:t+1,0.12h+b19.【答题】多项式x2﹣4x﹣8是______次______项式.【答案】二,三【分析】要确定多项式是几次几项式,就要确定多项式的次数和项数,根据多项式次数和项数的概念可知,该多项式是二次三项式.【解答】多项式x2﹣4x﹣8次数是2,项数是3,所以该多项式是二次三项式,故答案为:二,三.20.【答题】在代数式,,,,,中,单项式有______个,多项式有______个。

初中数学浙教版七年级上册第4章 代数式4.4 整式-章节测试习题(3)

初中数学浙教版七年级上册第4章 代数式4.4 整式-章节测试习题(3)

章节测试题1.【答题】在代数式:中,单项式的个数有()A. 1个B. 2个C. 3个D. 4个【答案】C【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】此题考查单项式的定义,单项式是指字母与数字的积叫单项式,一个数字也是单项式;此题中是单项式,所以选C. ;2.【答题】下列各式中,不是整式的是()A. 6xyB.C. x+9D. 4【答案】B【分析】根据多项式与单项式统称为整式,判断即可.【解答】A. 6xy,单项式,是整式,不符合题意;B. ,不是整式,符合题意;.x+9,多项式,是整式,不符合题意;D. 4,单项式,是整式,不符合题意,选B.3.【答题】下列说法中,正确的有()①的系数是;②-22ab2的次数是5;③多项式mn2+2mn-3n-1的次数是3;④a-b和都是整式.A. 1个B. 2个C. 3个D. 4个【答案】C【分析】本题考查了单项式和多项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】(1)因为的系数是,所以①正确;(2)因为的次数是3,所以②错误;(3)因为的次数是3,所以③正确;(4)因为是多项式,是单项式,而单项式和多项式统称为整式,所以④正确;即正确的说法有3个.选C.4.【答题】下列关于单项式﹣3x5y2的说法中,正确的是()A. 它的系数是3B. 它的次数是7C. 它的次数是5D. 它的次数是2【答案】B【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】单项式﹣3x5y2的系数是-3,次数是7,只有B选项是正确的,选B.5.【答题】已知一列数......请写出第5个数是()A. 5x5B. 5x6C.D.【答案】D【分析】根据题意列出代数式即可.【解答】解:奇数位置为负,偶数为正,并且x的指数比系数的绝对值大1,由此得第5个数为:选D.6.【答题】单项式的系数和次数分别是()A. ,3B. ,3C. ,3D. -2,2【答案】C【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】单项式的系数是,单项式的字母为x、y,x的指数为1,y的指数为2,故单项式的次数为1+2=3.选C.7.【答题】单项式的系数和次数分别是()A. B.C. D.【答案】D【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】单项式的系数和次数分别是 ,5.选D.8.【答题】在代数式,2πx2y,,﹣5,a中,单项式的个数是()A. 2个B. 3个C. 4个D. 5个【答案】B【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】2πx2y,﹣5,a是单项式;是多项式;是分式;选B.9.【答题】单项式的()A. 系数是,次数是2次B. 系数是,次数是3次C. 系数是,次数是2次D. 系数是,次数是3次【答案】D【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式的系数是:次数是:选D.方法总结:单项式中的数字因数就是单项式的系数,单项式中所有字母的指数的和就是单项式的次数.10.【答题】如图,用火柴棒搭三角形,搭1个三角形需要3根火柴棒,搭2个三角形需要5根火柴棒,搭3个三角形需要7根火柴,……,那么搭2014个这样的三角形需要火柴棒()A. 6042根B. 6043根C. 4028根D. 4029根【答案】D【分析】根据题意先列出代数式,再代入数值计算即可.【解答】解:∵一个三角形需要3根火柴,2个三角形需要3+2=5根火柴,3个三角形需要3+2×2=7根火柴,…n个三角形需要3+2(n-1)=(2n+1)根火柴.当n=2014时,2n+1=2×2014+1=4029根,选D.11.【答题】多项式的项分别是()A. -x2,,1B. -x2,,-1C. x2,,1D. x2,,-1【答案】B【分析】利用多项式的相关定义进而分析得出答案.【解答】解:利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,得:多项式-x2-x-1的各项分别是:-x2,-x,-1.选B.12.【答题】在整式2xy2,-x,3,x+1,ab-x2,2x2-x+3中,单项式有()A. 1个B. 2个C. 3个D. 4个【答案】C【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】解:数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式.可以做出选择.2xy2,-x,3是单项式.选C.13.【答题】单项式的系数和次数分别是()A. ,3B. ,3C. ,2D. ,2【答案】B【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】根据单项式系数和次数的概念可得:单项式-x2y的系数是-,次数是3.选B.方法总结:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.14.【答题】已知代数式的值为7,则的值为()A. B. C. 8 D. 10【答案】C【分析】本题考查了代数式求值,先对已知条件和原式化简,找出相同点,再整体代入计算即可.【解答】解:∵2x2-3x+9=7,∴x2-x=-1,则原式=-1+9=8.选C.15.【答题】如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A. y=2n+1B. y=2n+1+nC. y=2n+nD. y=2n+n+1【答案】C【分析】根据题意列出代数式即可.【解答】分析:由题意可得下边三角形的数字规律为:n+2n,继而求得答案.本题解析:观察可知左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为2,22,…,2n,下边三角形的数字规律为1+2,2+22,…,n+2n,∴y=2n+n.选C.16.【答题】单项式的系数和次数分别是()A. ,3B. ,3C. ,2D. ,2【答案】B【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】根据单项式系数和次数的概念可得:单项式-x2y的系数是-,次数是3.选B.17.【答题】下列代数式中,是4次单项式的为()A. 4abcB. ﹣2πx2yC. xyz2D. x4+y4+z4【答案】C【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】A.4abc,3次单项式;B.﹣2πx2y,3次单项式;C.xyz2,4次单项式;D.x4+y4+z4,4次多项式,故符合题意的只有C,选C.18.【答题】如果单项式3a n b2c是5次单项式,那么n=()A. 2B. 3C. 4D. 5【答案】A【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】根据单项式的次数的概念可得:n+2+1=5,解得,n=2,选A.19.【答题】单项式4xy2z3的次数是()A. 3B. 4C. 5D. 6【答案】D【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】单项式的次数是指单项式中所有字母指数的和,1+2+3=6,选D.20.【答题】如图,正方形ABCD的边长为1,电子蚂蚁P从点A分别以1个单位/秒的速度顺时针绕正方形运动,电子蚂蚁Q从点A以3个单位/秒的速度逆时针绕正方形运动,则第2017次相遇在()A. 点AB. 点BC. 点CD. 点D【答案】D【分析】本题主要考查规律性问题,通过分析先确定前几次相遇点是解题的关键.【解答】由题意可知,点P的运动速度是1个单位/秒,点Q的速度是3个单位/秒,第一次相遇在点D,依此类推,可知第二次相遇在点C,第三次相遇在点B,第四次相遇在点A,第五次相遇在点D……,由此可知四次一循环,2017÷4=504……1,所以第2017次相遇在点D,选D.。

浙教版初中数学七年级上册第四单元《代数式》单元测试卷(较易)(含答案解析)

浙教版初中数学七年级上册第四单元《代数式》单元测试卷(较易)(含答案解析)

浙教版初中数学七年级上册第四单元《代数式》单元测试卷考试范围:第四章;考试时间:120分钟;总分:120分第I 卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列各式中,书写规范的是( )A. −216PB. a ×14C. 73x 2D. 2y ÷z2. 一个两位数的个位数字是b ,十位数字是a ,那么能正确表示这个两位数的式子是.( )A. abB. baC. 10a +bD. 10b +a3. 对x 2−1y 的解释正确的是( )A. x 与y 的倒数的差的平方B. x 的平方与y 的倒数的差C. x 的平方与y 的差的倒数D. x 的平方与y 的倒数的和4. 在1,x 2−2,S =12ab ,nm 中,代数式的个数是( )A. 1B. 2C. 3D. 45. 当m = −1时,代数式2m +3的值是( )A. −1B. 0C. 1D. 26. 当a =2,b =13时,下列代数式的求值中,错误的是( )A. a(a +b)=2×(2+13)=423B. a 2+b =22+13=413C. a +ab =2+2×13=223D. (a +b)(a −b)=(2+13)×(2−13)=3137. 若x 是2的相反数,|y|=3,则x −y 的值为( )A. −5B. 1C. 5或−1D. −5或18. 下列说法中,正确的是( )A. x 2−3x 的项是x 2,3xB. a+b3是单项式C. 12,πa ,a 2+1都是整式 D. 3a 2bc −2是二次多项式9.下列单项式按一定规律排列:x3,−x5,x7,−x9,x11,⋯,其中第n个单项式为( )A. (−1)n+1x2n−1B. (−1)n x2n−1C. (−1)n+1x2n+1D. (−1)n x2n+110.下列各式中,与2a2b为同类项的是( )A. −2a 2bB. −2abC. 2ab 2D. 2a 211.下列算式中正确的是( )A. 4x−3x=1B. 2x+3y=3xyC. 3x2+2x3=5x5D. x2−3x2=−2x212.下列去括号的过程中,正确的是( )A. −(a+b−c)=−a+b−cB. −2(a+b−3c)=−2a−2b+6cC. −(−a−b−c)=−a+b+cD. −(a−b−c)=−a+b−c第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.如图,用20m长的铝合金做一个长方形的窗框.设长方形窗框的三根横条长为a(m),则长方形窗框的竖条长为m(用含a的代数式表示).14.已知x−2y=2,则−x+2y+6的值为.15.若a3b m与−2a n b是同类项,则n m=______.16.七年级某班有(3a−b)名男生和(2a+b)名女生,则男生比女生多___________名.三、解答题(本大题共9小题,共72.0分。

浙教版数学7上第四单元代数式知识梳理+习题+答案

浙教版数学7上第四单元代数式知识梳理+习题+答案

浙教版数学七上第四单元代数式知识梳理及综合练习、检测[解析] 一.用字母表示数1.用字母表示数就是将基本的数量关系的语言文字转化为数学语言。

二、代数式1.定义:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

2.注意:(1)单个数字与字母也是代数式;(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;(3)代数式可按运算关系和运算结果两种情况理解。

3.书写要求(1).代数式中出现的乘号通常用“·”表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用“×”号;(2)数字与字母相乘、单项式与多项式相乘时,一般按照先写数字,再写单项式,最后写多项式的书写顺序.如式子(a+b)·2·a应写成2a(a+b);(3)带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;(4)在代数式中出现除法运算时,按分数的写法来写;(5).在一些实际问题中,有时表示数量的代数式有单位名称,如果代数式是积或商的形式,则单位直接写在式子后面;如果代数式是和或差的形式,则必须先把代数式用括号括起来,再将单位名称写在式子的后面,如2a米,(2a-b)kg。

三.代数式求值:一般地,用数值代替代数式中的字母,按照代数式中指明的运算计算的结果叫做代数式求值。

代数式求值的三种方法:1.直接代入求值;2.化简代入求值;3.整体代入求值。

注意事项:1.代数式的值有一般式到特殊数的问题,代数式字母的取值要使代数值有意义。

比如分母不为0.求代数值的步骤1.代入时的注意1.如果代数式中省略乘号,带入后必须添上称号。

2.如果字母给出的是负数或者分数,并作乘方并作乘法运算,代入时都必须添上括号。

3.带入数值时,要对号入座,谨防混乱。

4.当题目按照常规方法不能求解时,要用整体思想。

2.计算时,注意运算符号,同时考虑简便运算。

代数式一、用字母表示数(共18题)1.下列式子中,符合代数式的书写格式的是( ) A. (a -b )×7 B. 3a ÷5b C. 1 12ab D. ab 2.设n 为整数,下列式子中表示偶数的是( ) A. 2nB. 2n+1C. 2n-1D. n+23.某商品标价x 元,进价为400元,在商场开展的促销活动中,该商品按8折销售获利( )A. (8x ﹣400)元B. (400×8﹣x )元C. (0.8x ﹣400)元D. (400×0.8﹣x )元 4.一个数除以9的商为x ,余数为2,则这个数为( )A. 9x +2B. 9x -2C. -29x D. 29 x 5.“减去一个数,等于加上这个数的相反数”用字母可以表示为________. 6.用代数式表示a 、b 两数的平方和与a ,b 乘积的差________.7.全校学生总数为a , 其中女生占总数的 48% ,则男生人数是( ) A. 48a B. 0.48aC. 0.52aD. a −488.某企业今年1月份产值为x 万元,2月份的产值比1月份减少了10%,则2月份的产值是( )A. (1﹣10%)x 万元B. (1﹣10%x )万元C. (x ﹣10%)万元D. (1+10%)x 万元9.x 是一个两位数, y 是一个一位数,如果把 y 放在 x 的左边,那么所成的三位数表示为( ).A. yxB. y +xC. 100y +xD. 100y +10x10.某种牌子的书包,进价为m 元,加价n 元后作为定位出售,如果元旦期间按定价的八折销售,那么元旦期间的售价为 ( ) 元. A. m +0.8nB. 0.8nC. 0.8(m+n) D. m+n÷0.811.某商店举办促销活动,促销的方法是将原价x元的衣服以(4x−10)元出售,5则下列说法中,能正确表达该商店促销方法的是( )A. 原价减去10元后再打8折 B. 原价打8折后再减去10元C. 原价减去10元后再打2折 D. 原价打2折后再减去10元12.某种水果的售价为每千克a元,用面值为50元的人民币购买了3千克这种水果,应找回________元(用含a的代数式表示).13.一个两位数,个位数是a,十位数是b,这个两位数为________;14.为了帮助一名白血病儿童治疗疾病,某班全体师生积极捐款,捐款金额共2 800元,已知该班共有5名教师,每名教师捐款a元,则该班学生共捐款________元(用含a的代数式表示).15.代数式的书写有一些规范,比如教材上指出:“在含有字母的式子中如果出现乘号“×”,通常将乘号写作“·”或者省略不写”其实还有一些书写规范,比如,在代数式中如果出现“÷”,通常用分数线“——”来取代;数字与字母相乘时,一般数字写在前面.根据以上书写要求,将代数式(ac×4-b2)÷(4a)简写成________16.夜间温度是t ∘C,白天温度比夜间高16 ∘C,则白天的温度是________ ∘C。

七年级数学上册第4章代数式4.3代数式的值说课稿(新版浙教版)

七年级数学上册第4章代数式4.3代数式的值说课稿(新版浙教版)

七年级数学上册第4章代数式4.3代数式的值说课稿(新版浙教版)一. 教材分析《浙教版七年级数学上册》第4章介绍了代数式,而4.3节着重讲解了代数式的值。

这部分内容是学生在掌握了代数式的基本概念和运算法则后,进一步深化对代数式理解的重要环节。

通过本节课的学习,学生将能够求解各种代数式的值,从而为后续的方程和不等式学习打下基础。

二. 学情分析七年级的学生已经具备了一定的数学基础,对代数式有一定的认识。

但是,他们在处理复杂的代数式求值问题时,可能会感到困惑,特别是对于含有多个未知数的代数式。

因此,在教学过程中,我需要关注学生的认知水平,针对性地进行教学。

三. 说教学目标1.知识与技能目标:学生会求解简单代数式的值,并能运用所学知识解决实际问题。

2.过程与方法目标:学生通过自主学习、合作交流,培养观察、分析和解决问题的能力。

3.情感态度与价值观目标:学生体会数学与生活的联系,增强学习数学的兴趣和自信心。

四. 说教学重难点1.教学重点:求解代数式的值,熟练运用代数式的运算法则。

2.教学难点:对于含有多个未知数的代数式,如何正确求解其值。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和合作学习法。

2.教学手段:利用多媒体课件、黑板和教学卡片等辅助教学。

六. 说教学过程1.导入新课:通过一个实际问题,引入代数式的值的概念。

2.自主学习:学生根据导学案,独立探索代数式的值求解方法。

3.合作交流:学生分组讨论,分享解题心得,互相答疑。

4.课堂讲解:教师针对学生遇到的问题,进行讲解和示范。

5.练习巩固:学生完成课后练习,巩固所学知识。

6.课堂小结:教师引导学生总结本节课的主要内容和收获。

7.课后作业:布置适量的课后作业,巩固所学知识。

七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点内容。

主要包括以下几个部分:1.代数式的值的概念;2.代数式的运算法则;3.求解代数式的值的步骤;4.实例分析。

浙教版七年级数学上册第四章代数式单元测试题(含解析)

浙教版七年级数学上册第四章代数式单元测试题(含解析)

第四章代数式单元测试题一、单选题(共10题;共30分)1、某厂去年产值是x万元,今年比去年增产40%,今年的产值是()A、40%x万元B、(1+40%)x万元C、万元D、1+40%x万元2、下列各式符合代数式书写规范的是( )A、 B、a×3 C、3x-1个 D、2n3、下列语句中错误的是()A、数字0也是单项式B、xy是二次单项式C、单项式-a的系数与次数都是1D、- 的系数是—4、下列各式中,不是代数式的是()A、x—yB、xC、2x﹣1=6D、05、若代数式2x2+3x的值是5,则代数式4x2+6x﹣9的值是(A、10B、1C、—4D、—86、已知代数式m2+m+1=0,那么代数式2018﹣2m2﹣2m的值是()A、2016B、-2016C、2020D、—20207、已知﹣2x m+1y3与x2y n﹣1是同类项,则m,n的值分别为()A、m=1,n=4B、m=1,n=3C、m=2,n=4D、m=2,n=38、为了解决老百姓看病难的问题,卫生部门决定大幅度降低药品的价格,某种常用药品降价40%后的价格为a元,则降价前此药品价格为()A、元B、元C、40%元D、60%元9、如果A和B都是5次多项式,则下面说法正确的是()A、A﹣B一定是多项式B、A﹣B是次数不低于5的整式C、A+B一定是单项式D、A+B是次数不高于5的整式10、下列各式中运算错误的是()A、5x﹣2x=3xB、5ab﹣5ba=0C、4x2y﹣5xy2=﹣x2yD、3x2+2x2=5x2二、填空题(共10题;共36分)11、若a﹣2b=3,则9﹣2a+4b的值为 ________12、一个三位数,个位上的数为,十位上的数比个位上的数大2,百位上的数是个位上数的5倍,则这个三位数是________,当时,它是________13、若已知x+y=3,xy=﹣4,则(1+3x)﹣(4xy﹣3y)的值为________14、单项式﹣的系数是________ ,次数是________15、若3a3b n c2﹣5a m b4c2所得的差是单项式,则这个单项式为________16、若a x﹣3b3与﹣3ab2y﹣1是同类项,则x y=________.17、观察下列单项式:x,﹣3x2, 5x3,﹣7x4, 9x5,…按此规律,可以得到第2016个单项式是________.18、按照如图所示的操作步骤,若输入的值为3,则输出的值为________.19、当x=2017时,代数式(x﹣1)(3x+2)﹣3x(x+3)+10x的值为________.20、﹣的系数为________.三、解答题(共5题;共35分)21、某商店积压了100件某种商品,为使这批货物尽快脱手,该商店采取了如下销售方案,将价格提高到原来的2。

七年级上册数学单元测试卷-第4章 代数式-浙教版(含答案)

七年级上册数学单元测试卷-第4章 代数式-浙教版(含答案)

七年级上册数学单元测试卷-第4章代数式-浙教版(含答案)一、单选题(共15题,共计45分)1、下列式子,符合代数式书写格式的是()A.a÷3B.2 xC.a×3D.2、下列运算正确的是()A. B. C. D.3、对于单项式的系数、次数分别是()A.-2,2B.-2,3C.-2 ,2D.-2 ,34、下列说法正确的是()A. 不是代数式B. 是整式C.多项式的常数项是-5D.单项式的次数是25、一个三角形的三边长分别为1、k、4,则化简|2k-5|-的结果是()A.3k-11B.k+1C.1D.11-3k6、下列说法正确的是().A.a的系数是0B. 是一次单项式C.-5x的系数是5D.0是单项式7、下列计算错误的是()A. B. C.D.8、下列说法正确的是()A.x的系数为0B. 是单项式C.1是单项式D.﹣4x系数是49、若a是最大的负整数,b是最小的正整数,c的相反数等于它本身,则 a+b+c 的值是().A.-2B.-1C.1D.010、用代数式表示:“x的5倍与y的和的一半”可以表示为()A.5x+ yB. (5x+y)C. x+yD.5x+y11、阜阳某企业今年1月份产值为a万元,2月份比1月份减少了10%,预计3月份比2月份增加15%.则3月份的产值将达到()A.(a﹣10%)(a+15%)万元B.(a﹣10%+15%)万元C.a(1﹣10%)(1+15%)万元D.a(1﹣10%+15%)万元12、若α、β为方程的两个实数根,则的值为()。

A. B.12 C.14 D.1513、下列计算正确的是( ).A.7a+a=7a 2B.5y-3y=2C.3x 2y-2yx 2=x 2yD.5a+3b=8ab14、下列运算正确的是()A.3a 2+5a 2=8a 4B.5a+7b=12abC.2m 2n﹣5nm 2=﹣3m 2nD.2a ﹣2a=a15、多项式3x3﹣2x2y2+x+3是()A.三次四项式B.四次四项式C.三次三项式D.四次三项式二、填空题(共10题,共计30分)16、|a﹣11|+(b+12)2=0,则(a+b)2017=________.17、若-3x m+4y2-m与2x n-1-y n+1是同类项,则m-n=________18、已知1<x<a,写一个符合条件的x (用含a的代数式表示):________19、若,则________.20、单项式-的系数是________.21、体育课上,甲、乙两班学生进行“引体向上”身体素质测试,测试统计结果如下:甲班:全班同学“引体向上”总次数为;乙班:全班同学“引体向上”总次数为.(注:两班人数均超过30人)请比较一下两班学生“引体向上”总次数,________班的次数多,多________次.22、已知代数式2a3b n+1与-3a m-2b2是同类项,则2m+3n=________.23、小刚学习了有理数运算法则后,编了一个计算程序,当他输入任意一个有理数时,显示屏上出现的结果总等于所输入的有理数的平方与1的和,当他第一次输入-1,然后又将所得的结果再次输入后,显示屏上出现的结果应是________.24、当x=________时,和-2a4是同类项.25、教材练一练第3题变式多项式x2+2xy-2y-3有________项,次数是________,其中一次项的系数为________.三、解答题(共5题,共计25分)26、先化简,再求值:,其中.27、三个队植树,第一队植a棵,第二队植树数比第一队的2倍还多8棵,第三队植树数比第二队数的一半少6棵,三队一共植了多少棵树?当a=100时,求三队一共植的棵数.28、代数式3(a+2)用数学语言表示29、已知16m=4×22n﹣2, 27n=9×3m+3,求(n﹣m)2010的值.30、王老师让同学们计算“当,时,代数式的值”,小颖说,不用条件就可以求出结果,你认为她的说法有道理吗?参考答案一、单选题(共15题,共计45分)1、D2、D3、C4、B5、A6、D7、D8、C9、D10、B11、C12、B13、C14、15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

浙教版数学七年级上册第4章《代数式》测试卷含答案解析和双向细目表-七上4

浙教版数学七年级上册第4章《代数式》测试卷含答案解析和双向细目表-七上4

浙教版数学七年级上册第4章《代数式》测试考生须知:●本试卷满分120分,考试时间100分钟。

●必须使用黑色字迹的钢笔或签字笔书写,字迹工整,笔迹清楚。

●请在试卷上各题目的答题区域内作答,选择题答案写在题中的括号内,填空题答案写在题中的横线上,解答题写在题后的空白处。

●保持清洁,不要折叠,不要弄破。

一.选择题:本大题有10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知买a 斤大米,花费了b 元,则大米的单价是每斤( ) A.ba B.ab C.a D.b2. 下列用字母表示数的写法中,规范的是( )A.23xy B.(x+y)23C.121xyD.3x × y × 213. 当x = 3,y = 2时,代数式3xy3x 22+的值为( )A.312B.4C. 12D.34. 单项式2xy 3的系数为( )A.2B.3C.23 D.21 5. 在代数式2b a 22+,0, - 3m 2 - n ,3a ,3a 中,单项式的个数是( ) A.1B.2C.3D.46. 某人从A 城出发,以20km/h 的速度骑行到B 城。

已知A 、B 两城相距s 千米,如果他的骑行速度增加v (km/h ),那么他从A 城到B 城需要的时间为( ) A.20s B.vs C.v20s+D.t7. 下列选项中,属于整式的是( )A .2t+ sB .t s + stC .y2x 3+ + x D .ab 2 - c8. 如果x 2y 5和x 2y m + 2是同类项,那么2m 的值是( ) A.2B.3C.4D.89. 某商店举办促销活动,促销的方法是将原价x 元的衣服以(54x - 20)元出售,则下列说法中,能正确表达该商店促销方法的是为( ) A.原价打八折,再减去20元 B.原价减去20元,再打八折 C.原价打四折,再减去20元 D.原价减去20元,再打四折10.字母x 表示一个两位数,字母y 也表示一个两位数,若用x ,y 组成一个四位数,且把x 放在y 的右边,则这个四位数用代数式表示为( ) A.yxB.y + xC.100x + yD.x + 100y二.填空题:本大题有6个小题,每小题4分,共24分。

浙教版七年级上册数学第4章 4.3代数式的值 基础知识、课后巩固练习(包含答案)

浙教版七年级上册数学第4章 4.3代数式的值 基础知识、课后巩固练习(包含答案)

4.3 代数式的值学习指要知识要点1.代数式的值:一般地,用数值代替代数式里的字母,计算后所得的结果叫做代数式的值2.利用代数式求值推断代数式所反映的规律3.解释代数式的值的实际意义重要提示1.求代数式的值是由一般的式子到特殊的数的问题,代数式里的字母取值要使代数式有意义如:代数式中要保证分母x-2≠0,即x不能取22.求代数式的值的步骤:(1)代人:代入时要注意:①如果代数式中省略乘号,代入后必须添上乘号.②如果字母给出的值是负数或分数,并作乘方或乘法运算,代入时都必须添上括号.③代人数值时,要“对号入座”,谨防混淆.④当题目按常规方法不能求解时,要充分利用“整体思想”将某一代数式作为一个整体,用“整体代入法”求解,解答此类问题的关键是确定合适的整体.(2)计算:计算时要注意运算顺序,同时考虑运用运算律简化运算.课后巩固之夯实基础一、选择题1.(2018·湖州长兴县期中)当x =-1时,代数式3x +1的值是( ) A .-1B .-2C .4D .-42.当x =-1时,下列代数式:①1-x ,②1-x 2,③-12x ,④1+x 3中,值为零的有( )A .1个B .2个C .3个D .4个3.(2018·杭州萧山区戴村片期中)当a =3,b =-1时,代数式0.5(a -2b)的值是( ) A .1B .0.5C .-2.5D .2.54.(2018·温州龙港镇期中)若2x -y =-3,则代数式1-4x +2y 的值等于( ) A .7B .-5C .5D .-45.若x =y =-1,a ,b 互为倒数,则代数式12(x +y)+3ab 的值是( )A .2B .3C .4D .3.56.下列代数式中,值一定为正数的是( ) A .(x +2)2 B .|x +1| C .(-x)2+2D .1-x 27.(2017·杭州大江东期中)如图K -23-1是一个数值运算程序,当输入x 的值为-2时,输出的结果为( )图K -23-1A .3B .8C .64D .638.图K-23-2中的图形都是由若干个灰色和白色的正方形按一定规律组成的,图①中有2个灰色正方形,图②中有5个灰色正方形,图③中有8个灰色正方形,图④中有11个灰色正方形……按此规律,图⑩中灰色正方形的个数是()图K-23-2A.32 B.29 C.28 D.26二、填空题9.当a=1,b=2时,代数式a2-ab的值是________.10.同一时刻北京的时间为7:00时,悉尼的时间是9:00.若北京时间用a表示,则悉尼时间为________,当北京时间为23:00时,悉尼时间为__________.11.(2017·湖州长兴县期末)已知实数x,y满足|x-4|+y+11=0,则代数式x-y 的值为________.12.(2018·绍兴嵊州期末)若a-b=2,则代数式5-2a+2b的值是________.13.某市出租车收费标准为起步价10元,3千米后每千米加收2元,那么乘坐出租车x(x>3)千米的收费y(元)的计算公式是y=__________,如果某人乘坐出租车5千米,那么应收费______元.14.(2018·杭州开发区期末)如图K-23-3是一种数值转换机的运算程序.若第一次输入的数为7,则第2018次输出的数是________;若第一次输入的数为x,使第2次输出的数也是x,则x=__________.图K-23-3三、解答题15.(2018·湖州长兴县期中)当a=2,b=-1时,求下列代数式的值:(1)2a+5b;(2)a2-2ab+b2.16.(2018·宁波余姚期末)已知2x-y=5,求-2(y-2x)2+3y-6x的值.17.若将一个棱长为8 cm的立方体的体积减小V cm3,而保持立方体形状不变,则棱长应减小多少厘米?若V=504,则棱长应减小多少厘米?18.(2018·衢州期中)“囧”(jiǒng)是一个风靡网络的流行词,像一个人脸郁闷的神情.如图K-23-4所示,一张边长为20 cm的正方形纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形的长和宽分别为x cm,y cm,剪去的两个小直角三角形的两直角边长也分别为x cm,y cm.(1)用含有x,y的代数式表示图中“囧”字图案(阴影部分)的面积;(2)当x=8,y=6时,求此时“囧”字图案(阴影部分)的面积.图K-23-419.(2018·湖州长兴县期中)某农户承包果树若干亩,收获水果总产量为20000千克,此水果可以在果园直接销售,也可以运去市场销售.已知在果园直接销售每千克售a元;在市场上每千克售b元,农户将水果运到市场销售平均每天售出1000千克,且在运到市场的过程中,需每天开支400元.(1)分别用含a,b的代数式表示两种方式销售水果的收入;(2)若a=4,b=4.5,且两种销售水果的方式都在规定的时间内售完全部水果,请你通过计算说明选择哪种销售方式较好.课后巩固之能力提升20.探索发现(2018·温州龙港镇期中)填写下表,观察下列两个代数式的值的变化情况:用代入检验的方法说明哪个代数式的值先超过100.21.新学期,两摞规格相同的数学课本整齐地叠放在课桌上,请根据图K-23-5(示意图)中所给出的数据信息,解答下列问题:(1)每本课本的厚度为________cm,课桌的高度为________cm;(2)若将x本同样规格的数学课本整齐地叠放在课桌上,则桌面上的课本距地面的高度为________cm(用含x的代数式表示);(3)桌面上有55本与(1)中规格相同的数学课本,它们整齐地叠放成一摞,若18名同学每人从中取走1本,则余下的数学课本距地面的高度是多少?图K-23-5详解详析1.[答案] B2.[答案] B3.[答案] D4.[答案] A5.[答案] A6.[答案] C7.[解析] D当x=-2时,输出(-2)2-1=3,再把x=3代入x2-1中,得x2-1=32-1=8,再把x=8代入x2-1中,得x2-1=82-1=63.∵63>50,∴输出的结果是63.故选D.8.[解析] B因为图①中有2个灰色正方形,2=3-1=3×1-1,图②中有5个灰色正方形,5=6-1=3×2-1,图③中有8个灰色正方形,8=9-1=3×3-1(3n -1)个灰色正方形,所以图⑩中灰色正方形的个数是3×10-1=29.故选B.9.[答案] -1[解析] a2-ab=12-1×2=-1.10.[答案] a+2次日1:00[解析] 悉尼与北京的时间差为2小时,所以当北京时间为a时,悉尼时间为a+2,当a=23时,a+2=25,即次日1:00.11.[答案] 15[解析] 因为|x-4|+y+11=0,所以x-4=0,y+11=0,所以x=4,y=-11,所以x-y=15.12.[答案] 113.[答案] 10+2(x -3) 14 14.[答案] 2 6或0或3 15.[答案] (1)-1 (2)9 16.[答案] -6517.解:棱长应减小⎝⎛⎭⎫8-383-V cm. 当V =504时, 棱长应减小8-383-504=6(cm).18.[解析] (1)直接利用正方形面积-2×三角形面积-长方形面积即可得出答案;(2)利用(1)中所求,将x ,y 的值代入,得出答案.解:(1)“囧”字图案阴影部分的面积=20×20-12xy×2-xy =(400-2xy)cm 2.(2)当x =8,y =6时,原式=400-2×8×6=304.故当x =8,y =6时,“囧”字图案(阴影部分)的面积为304 cm 2. 19.解:(1)在果园直接销售收入为20000a 元; 将这批水果运到市场上销售收入为(20000b -8000)元. (2)当a =4时,在果园直接销售收入为20000×4=80000(元);当b =4.5时,将这批水果运到市场上销售收入为20000×4.5-8000=82000(元). 因为82000>80000,所以选择运到市场上销售较好. [素养提升] 20.解:填表如下:因为当x =15时,12x 2=2252>100,6x -8=82,所以12x 2的值先超过100.21解:(1)每本课本的厚度为(88-86.5)÷(6-3)=0.5(cm); 课桌的高度为86.5-3×0.5=85(cm).故答案为0.5,85. (2)因为x 本课本的高度为0.5x cm ,课桌的高度为85 cm , 所以这些课本距地面的高度为(85+0.5x )cm. 故答案为(85+0.5x ).(3)当x =55-18=37时,85+0.5x =103.5. 故余下的数学课本距地面的高度为103.5 cm.。

浙教版七上数学第4章《代数式》单元培优测试题

浙教版七上数学第4章《代数式》单元培优测试题

七上数学第4章《代数式》单元培优测试题一、选择题(本大题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.1.在式子a 2+2, ,ab 2 , ,﹣8x ,0中,整式有( )A. 3个B. 4个C. 5个D. 6个 2.计算2a-3a ,结果正确的是( )A. -1B. 1C. -aD. a3.某企业今年1月份产值为x 万元,2月份的产值比1月份减少了15%,则2月份的产值是( )A. (1+15%)x 万元B. (1-15%x)万元C. (x-15%)万元D. (1-15%)x 万元 4.当a=-1 时,(-a 2)3 的结果是( )A. -1B. 1C. a 6D. 以上答案都不对 5.小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x 杯饮料,y 份沙拉,则他们点了几份A 餐?( )A. B. C.D. 6.下列结论中,正确的是( )A. 单项式 的系数是3,次数是2.B. 单项式m 的次数是1,没有系数.C. 单项式﹣xy 2z 的系数是﹣1,次数是4.D. 多项式5x 2-xy+3是三次三项式.7.如果2x 3y n +(m-2)x 是关于x ,y 的五次二项式,则m ,n 的值为 ( )A. m=3.N=2B. m ≠ 2,n=2C. m 为任意数,n=2D. m#2,n=3 8.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( )A. 8x 2+13x ﹣1B. ﹣2x 2+5x+1C. 8x 2﹣5x+1D. 2x 2﹣5x ﹣1 9.已知代数式x 2+ax -2y +7-(bx 2-2x +9y -1)的值与x 的取值无关,则a +b 的值为( )A. -1B. 1C. -2D. 210.已知a 是两位数,b 是一位数,把a 接写在b 的后面,就成为一个三位数.这个三位数可表示成( )A. B. ba C. D. 11.当x=1时,代数式x 3+x+m 的值是7,则当x=-1时,这个代数式的值是( )A. 7B. 3C. 1D. -712.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为mcm ,宽为ncm)的盒子底部(如图②)盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A. 4mcmB. 4ncmC. 2(m+n)cmD. 4(m-n)cm二、填空题(本大题有6小题,每小题3分,共18分)13.写出一个含字母x ,y 的三次单项式________(只写出一个即可)14.当x=1,y=31 时,代数式x 2+2xy+y2的值是________.15.单项式3x m+2n y8与-2x2y3m+4n的和仍是单项式,则m+n= ________ .16.若+|n+3|=0,则m+n的值为________ .17.某城市3年前人均收入为x元,预计今年人均收入是3年前的2倍多500元,那么今年人均收入将达________元.18.若x2+2x=1,则2x2+4x+3的值是________.三、解答题(本大题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤19.(8分)先化简,再求值:(1),其中x=3,y=﹣.(2)已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a﹣3ab)﹣(4ab﹣3b)的值.20.(6分)已知的平方根是±3,的立方根是2,求的平方根.21.(8分)填写下表,观察下列两个代数式的值的变化情况:用代入检验的方法说明取哪个整数时,哪个代数式的值先超过100?22.(10分)学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费。

【七年级数学】2018年七年级数学上第4章代数式单元测试题(浙教版带答案)

【七年级数学】2018年七年级数学上第4章代数式单元测试题(浙教版带答案)
(2)旅游团有47个成人,12个学生,即x-=47,=12,
所以[20(x-)+10]×80%=(20×47+10×12)×80%=848(元).
答如果旅游团有47个成人,12个学生,那么他们应付门票费848元.
20.解(1)30%a×n=03na(元).
答n个星期能节省03na元.
(2)当a=70,n=10时,03na=03×10×70=210(元) 199元,
三、解答题(共52分)
15 (10分)计算
(1)5(a2b-ab2)-(ab2+3a2b);
(2)-2a+(3a-1)-(a-5).
16.(6分)先化简,再求值6x-3x2+x-2x2+3,其中x=-2,=-3
17.(8分)已知三角形的三边长分别是(2a+1)c,(a2-2)c,(a2-2a+1)c
(1)用代数式表示该旅游团应付的门票费;
(2)如果旅游团有47个成人,12个学生,那么他们应付门票费多少元?
20.(10分)某电子产品在春节后调整了价格,单价调为199元显得更有吸引力.林林想攒够了钱去买一个,已知林林每星期有a元零用钱.
(1)林林计划每星期节省零用钱的30%,则n个星期能节省多少元钱?
3.下表表示对x的每个取值某个代数式所对应的值,则满足表中所列条的代数式是( )
x123
代数式的值-1-4-7
Ax+2 B.2x-3
c.3x-10 D.-3x+2
4.化简(2x-3)-3(4x-2)的结果为( )
A.-10x-3 B.-10x+3
c.10x-9 D.10x+9
5.一批电脑进价为a元/台,加上20%的利润后优惠8%出售,则售价为( )
10.-ab2c(答案不唯一) [解析]由题设知单项式的系数为-1,又由单项式的意义知a,b,c是乘积关系且指数之和为4,故在-a2bc或-ab2c或-abc2中任写一个即可(注意系数-1中的“1”省略不写).

初中数学浙教版七年级上册第4章 代数式4.6 整式的加减-章节测试习题(16)

初中数学浙教版七年级上册第4章 代数式4.6 整式的加减-章节测试习题(16)

章节测试题1.【答题】下列等式中成立的是( )A. a﹣(b+c)=a﹣b+cB. a+(b+c)=a﹣b+cC. a+b﹣c=a+(b﹣c)D. a﹣b+c=a﹣(b+c)【答案】C【分析】根据括号前面是“+”号的去添括号,符号不变,括号前面是“-”号的去添括号,括号里面的各项都要改变.【解答】解: A. a−(b+c)=a−b−c,故此选项错误;B. 故此选项错误;C. a+b−c=a+(b−c),故此选项正确;D. a−b+c=a−(b−c),故此选项错误;选C.2.【答题】把4﹣(﹣5)+(﹣3)写成代数和的形式正确的是( )A. 4+5+3B. 4﹣5+3C. 4+5﹣3D. 4﹣5﹣3【答案】C【分析】根据括号前面是“+”号的去添括号,符号不变,括号前面是“-”号的去添括号,括号里面的各项都要改变.【解答】解:原式选C.3.【答题】不改变代数式a2﹣(2a+b+c)的值,把它括号前的符号变为相反的符号,应为( )A. a2+(﹣2a+b+c)B. a2+(﹣2a﹣b﹣c)C. a2+(﹣2a)+b+cD. a2﹣(﹣2a﹣b﹣c)【答案】B【分析】根据括号前面是“+”号的去添括号,符号不变,括号前面是“-”号的去添括号,括号里面的各项都要改变.【解答】解:原式选B.4.【答题】下列去括号的结果中,正确的是( )A. ﹣3(x﹣1)=﹣3x+3B. ﹣3(x﹣1)=﹣3x﹣1C. ﹣3(x﹣1)=﹣3x﹣3D. ﹣3(x﹣1)=﹣3x+1【答案】A【分析】根据括号前面是“+”号的去添括号,符号不变,括号前面是“-”号的去添括号,括号里面的各项都要改变.【解答】解:A.正确.选A.方法总结:根据去括号法则进行运算即可.5.【答题】下面的计算正确的是( )A. 6a-5a=1B. a+2a2=3a3C. 2(a+b)=2a+bD. -(a-b)=-a+b【答案】D【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进行计算,即可选出答案.【解答】A、6a-5a=a,故此选项错误;B、a与2a2不是同类项不能合并,故此选项错误;C、2(a+b)=2a+2b,故此选项错误;D、-(a-b)=-a+b,故此选项正确.选D.6.【答题】下列各式中运算或变形正确的是( )A. 3m-2m=1B. 2(b-3)=2b-3C. 2b3-3b2=-bD. 2xy-3xy=-xy【答案】D【分析】根据括号前面是“+”号的去添括号,符号不变,括号前面是“-”号的去添括号,括号里面的各项都要改变.【解答】解: A. 3m-2m=m,故A错误;B. 2(b-3)=2b-6,故B错误;C. 不是同类项,不能合并;D. 2xy-3xy=-xy,正确.选D.7.【答题】下列添括号错误的是( )A.B.C.D.【答案】D【分析】根据括号前面是“+”号的去添括号,符号不变,括号前面是“-”号的去添括号,括号里面的各项都要改变.【解答】解: A. ,故A正确;B. ,故B正确;C. ,故C正确;D. ,故D错误;选D.方法总结:本题考查添括号的方法:添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号.8.【答题】下列式子去括号正确的是( )A. -(2a+3b-5c)=-2a-3b+5cB. 5a+2(3b-3)=5a+6b-3C. 3a-(b-5)=3a-b-5D. -3(3x-y+1)=-9x+3y-1【答案】A【分析】根据括号前面是“+”号的去添括号,符号不变,括号前面是“-”号的去添括号,括号里面的各项都要改变.【解答】解: A.正确;B. 5a+2(3b-3)=5a+6b-6,故B错误;C. 3a-(b-5)=3a-b+5,故C错误;D. -3(3x-y+1)=-9x+3y-3,故D错误.选A.9.【答题】将(3x+2)﹣2(2x﹣1)去括号正确的是( )A. 3x+2﹣2x+1B. 3x+2﹣4x+1C. 3x+2﹣4x﹣2D. 3x+2﹣4x+2【答案】D【分析】根据括号前面是“+”号的去添括号,符号不变,括号前面是“-”号的去添括号,括号里面的各项都要改变.【解答】(3x+2)﹣2(2x﹣1)=3x+2-4x+2,选D.10.【答题】下面去括号中错误的是 ( )A. a+(b-c) =a+b-cB. a-(b+c-d)=a-b-c-dC. m+2(p-q)=m+2p-2qD. x-3(y+z)=x-3y-3z【答案】B【分析】根据括号前面是“+”号的去添括号,符号不变,括号前面是“-”号的去添括号,括号里面的各项都要改变.【解答】A选项:原式=a+b-c,故本选项正确,与题意不符;B选项:原式=a-b-c+d,故本选项错误,与题意相符;C选项:原式=m+2p-2q,故本选项正确,与题意不符;D选项:原式=x-3y-3z,故本选项正,与题意不符;选B.【方法总结】去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.11.【答题】将﹣3﹣(+6)﹣(﹣5)+(﹣2)写成省略括号的和的形式是( )A. ﹣3+6﹣5﹣2B. ﹣3﹣6+5﹣2C. ﹣3﹣6﹣5﹣2D. ﹣3﹣6+5+2【答案】B【分析】这个题目考查的是去括号法则:当括号前面是时,把括号和它前面的去掉,括号里的各项都不改变正负号,当括号前面是时,把括号和它前面的去掉,括号里的各项都改变正负号.【解答】解:原式选B.12.【答题】把写成省略括号的和的形式是( )A.B.C.D.【答案】C【分析】这个题目考查的是去括号法则:当括号前面是时,把括号和它前面的去掉,括号了的各项都不改变正负号,当括号前面是时,把括号和它前面的去掉,括号了的各项都改变正负号.【解答】解:原式故选C. .13.【答题】下列计算中,正确的是( )A. ﹣2(a+b)=﹣2a+bB. ﹣2(a+b)=﹣2a﹣b2C. ﹣2(a+b)=﹣2a﹣2bD. ﹣2(a+b)=﹣2a+2b【答案】C【分析】本题考查了去括号法则,熟练掌握去括号法则是解题的关键.【解答】A、﹣2(a+b)=﹣2a﹣2b,故错误;B、﹣2(a+b)=﹣2a﹣2b,故错误;C、﹣2(a+b)=﹣2a﹣2b,正确;D、﹣2(a+b)=﹣2a﹣2b,故错误,选C.14.【答题】下列各式中,正确的是( )A. 2a+3b=5abB. ﹣2xy﹣3xy=﹣xyC. ﹣2(a﹣6)=﹣2a+6D. 5a﹣7=﹣(7﹣5a)【答案】D【分析】本题考查了整式的加减,整式的加减的实质就是去括号、合并同类项.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“﹣”时,去括号后括号内的各项都要改变符号.也考查了添括号.【解答】解:A、2a与3b不是同类项,不能合并成一项,故本选项错误;B、﹣2xy﹣3xy=﹣5xy,故本选项错误;C、﹣2(a﹣6)=﹣2a+12,故本选项错误;D、5a﹣7=﹣(7﹣5a),故本选项正确;选D.15.【答题】若多项式3x2-2xy-y2减去多项式M,所得的差是-5x2+xy-2y2,则多项式M是( )A. 8x2-3xy+y2B. 2x2+xy+3y2C. -8x2+3xy-y2D. -2x2-xy-3y2【答案】A【分析】根据题意列出关系式,计算即可得到M.【解答】解:根据题意得:M=3x2-2xy-y2-[-5x2+xy-2y2]=3x2-2xy-y2+5x2-xy+2y2=8x2-3xy+y2.选A.16.【答题】已知某学校有(5a2+4a+1)名学生正在参加植树活动,为了支援兄弟学校,决定从该校抽调(5a2+7a)名学生去支援兄弟学校,则剩余的学生人数是( )A. -3a-1B. -3a+1C. -11a+1D. 11a-1【答案】B【分析】由整式加减运算列式即可得出剩余的学生人数.【解答】解:根据题意得:(5a2+4a+1)- (5a2+7a)= 5a2+4a+1-5a2-7a=-3a+1,选B.17.【答题】去括号1-(a-b)=( )A. 1-a+bB. 1+a-bC. 1-a-bD. 1+a+b【答案】A【分析】根据括号前面是“+”号的去添括号,符号不变,括号前面是“-”号的去添括号,括号里面的各项都要改变.【解答】去括号1-(a-b)=1-a+b,选A.18.【答题】已知a-7b=-2,则4-2a+14b的值是( ).A. 0B. 2C. 4D. 8【答案】D【分析】运用添括号法则,将式子-2a+14b放入带的负号的括号中,即可得到-2(a-7b),再运用整体思想代入求值即可.【解答】解:4-2a+14b=4-2(a-7b)=4-2×(-2)=4+4=8.选D.19.【答题】下列运算中,正确的是( )A.4-=3B.-(-)=+C.D.【答案】C【分析】本题主要考查了合并同类项.合并同类项的法则是把同类项的系数相加作为结果的系数,字母与字母的指数不变.【解答】解:解:A选项:根据合并同类项的法则可得:4m-m=3m,故A选项错误;B选项:根据去括号的法则可得:-(m-n)=-m+n,故B选项错误;C选项:根据合并同类项的法则可得:,故C选项正确;D选项:因为2ab与3c不是同类项,所以不能合并同类项,故D选项错误.故应选C.20.【答题】﹣(a﹣b+c)去括号的结果是( )A. ﹣a+b﹣cB. ﹣a﹣b+cC. ﹣a+b+cD. a+b﹣c【答案】A【分析】根据括号前面是“+”号的去添括号,符号不变,括号前面是“-”号的去添括号,括号里面的各项都要改变.【解答】﹣(a﹣b+c)=a-b+c.选A.。

第四单元《代数式》单元测试卷(标准难度)(含解析)

第四单元《代数式》单元测试卷(标准难度)(含解析)

浙教版初中数学七年级上册第四单元《代数式》单元测试卷考试范围:第四章;考试时间:120分钟;总分:120分第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1.如图,A,B两地之间有一条东西走向的道路.在A地的东边5km处设置第一个广告牌,之后每往东12km就设置一个广告牌.一辆汽车从A地的东边3km处出发,沿此道路向东行驶.当经过第n个广告牌时,此车所行驶的路程为( )A. (12n+5)kmB. (12n+2)kmC. (12n−7)kmD. (12n−10)km2.为了贯彻“房住不炒”要求,加快回笼资金,我市甲、乙、丙三家原售价相同的楼盘在年终前搞促销活动,甲楼盘售楼处打出在原价基础上先降价15%,再降价15%;乙楼盘打出一次性降价30%;丙楼盘打出先九折,再降价20%,如果此时小容的父亲想在上述三家楼盘中选择每平米实际售价最低的一处购买,他应选择的楼盘是( )A. 甲B. 乙C. 丙D. 都一样3.某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A. 先打九五折,再打九五折B. 先提价50%,再打六折C. 先提价30%,再降价30%D. 先提价25%,再降价25%4.如图,A,B两地之间有一条东西走向的道路.在A地的东边5km处设置第一个广告牌,之后每往东12km就设置一个广告牌.一辆汽车从A地的东边3km处出发,沿此道路向东行驶.当经过第n个广告牌时,此车所行驶的路程为( )A. (12n+5)kmB. (12n+2)kmC. (12n−7)kmD. (12n−10)km5.按如图所示的运算程序,能使输出y的值为1的是( )A. m=1,n=1B. m=1,n=0C. m=1,n=2D. m=2,n=16.当x=1时,代数式4−3x的值是( )A. 1B. 2C. 3D. 47.多项式12x|m|−(m−4)x+7是关于x的四次三项式,则m的值是( )A. 4B. −2C. −4D. 4或−48.在代数式:34x2,3ab,x+5,y5x,−1,y3,a2−b2,a中,整式有( )A. 5个B. 6个C. 7个D. 8个9.合并同类项m−3m+5m−7m+⋯+2013m的结果为( )A. 0B. 1007mC. mD. 以上答案都不对10.单项式−12a2n−1b4与3ab8m是同类项,则(1+n)5(m−1)7=( )A. 14B. −14C. 4D. −411.如图①,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”的图案,如图②所示,再将剪下的两个小长方形拼成一个新的长方形,如图③所示,则新长方形的周长可表示为( )A. 2a−3bB. 4a−8bC. 3a−4bD. 4a−10b12.对多项式x−y−z−m−n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x−y)−(z−m−n)=x−y−z+m+n,x−y−(z−m)−n=x−y−z+m−n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果. 以上说法中正确的个数为( )A. 0B. 1C. 2D. 3第II 卷(非选择题)二、填空题(本大题共4小题,共12分)13. 为了表述方便,本题取0.ba 表示小数.其中a 、b 只在1、2、3、…、9这9个数字中选取,例如当a 取2,b 取3时,0.ba 就表示0.32.我们知道无限循环小数可以化为分数,一般地,0.a ⋅=a9,那么0.32⋅=______,0.ba ⋅=______. 14. 已知非零实数x ,y 满足y =xx+1,则x−y+3xyxy的值等于______ . 15. 写出两个多项式,使它们的和为4ab ,这两个多项式分别为________、________. 16. 小宇在计算A −B 时,误将A −B 看成A +B ,得到的结果为4x 2−2x +1,已知B =2x 2+1,则A −B 的正确结果为 .三、解答题(本大题共9小题,共72分。

七年级数学试题-浙教版七年级数学上册第4章《代数式》水平测试题 最新

七年级数学试题-浙教版七年级数学上册第4章《代数式》水平测试题 最新

浙教版浙江省雁荡中学2018年七年级上册第四章代数式单元测试卷一、填空题(共10小题,每小题3分,满分30分)1、买10枝铅笔共用a元钱,则铅笔的单价是元.2、若a=﹣2,b=8,则a3+b2=;a2+错误!未找到引用源。

b=.3、﹣a﹣b与a﹣b的差是;4﹣a2+2ab﹣b2=4﹣().4、多项式4a3﹣a2b2﹣错误!未找到引用源。

ab是次项式,次数最高项的系数是.5、单项式﹣a3的系数是,次数是;单项式错误!未找到引用源。

的系数是,次数是.6、当a=3,b=﹣2时,代数式(a﹣b)2﹣(a+b)2的值为.7、用火柴棒按下图的方式搭三角形.照这样搭下去:(1)搭5个这样的三角形要用根火柴棒;(2)搭n个这样的三角形要用根火柴棒(用含有n的代数式表示)8、已知a2﹣ab=15,ab﹣b2=﹣10,则代数式a2﹣b2=.9、已知代数式a2﹣2a﹣3的值为0,那么代数式2a2﹣4a﹣5=.10、已知数据:错误!未找到引用源。

,错误!未找到引用源。

,错误!未找到引用源。

,错误!未找到引用源。

,…试猜想第n个数是(用含n的代数式表示).二、选择题(共10小题,每小题3分,满分30分)11、若5a2b m+3与﹣错误!未找到引用源。

a n﹣1b5是同类项,则mn的值为()A、5B、6C、4D、312、下列各式不是代数式的是()A、3+x=yB、3C、πr2D、错误!未找到引用源。

13、下列等式正确的是()A、3a+2a=5B、3a﹣2a=1C、﹣3a﹣2a=5aD、﹣3a+2a=﹣a14、将整式﹣[a﹣(b+c)]去括号,得()A、﹣a+b+cB、﹣a+b﹣cC、﹣a﹣b+cD、﹣a﹣b﹣c15、下列说法正确的是()A、错误!未找到引用源。

a不是整式B、错误!未找到引用源。

a是整式C、2+a是单项式D、3不是整式16、实数a,b,c在数轴上的对应点如图,化简a+|a+b|﹣错误!未找到引用源。

的值是()A、﹣b﹣cB、c﹣bC、2(a﹣b+c)D、2a+b+c17、下列各对单项式中,是同类项的是()A、3a2b与3ab2B、3a2b与9abC、2a2b2与4abD、﹣ab2与b2a18、已知a,b互为相反数,c,d互为倒数,x的绝对值为2,则cd+x2﹣错误!未找到引用源。

浙教版七年级数学上册《第四章代数式》测试题(含答案)

浙教版七年级数学上册《第四章代数式》测试题(含答案)

第4章代数式测试题 第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.下列式子中符合代数式的一般书写要求的是( )A .a ×bB .3x 2C .2÷abD .223a2.如果单项式12x a y 2与13x 3y b是同类项,那么a ,b 的值分别为( )A .2,2B .-3,2C .2,3D .3,23.下列说法正确的是( )A .0不是代数式B .2πa2b5的系数是2,次数是4 C .x 2-2x +6的项分别是x 2 , 2x ,6 D .25(xy -5x 2y +y -7)的三次项系数是-24.下列计算正确的是( ) A .3x 2y -2y 2x =x 2y B .5y -3y =2y C .7a +a =7a 2 D .3a +2b =5ab5.若a ,b 互为相反数,c ,d 互为倒数,则代数式a +b -cd 的值等于( )A .1B .-1C .0D .-26.已知一个三位数,百位上的数字为a ,十位上的数字为b ,个位上的数字为c ,则这个三位数可表示成( )A .abcB .a +b +cC .100a +10b +cD .100c +10b +a7.某超市销售一批商品,若零售价为每件a 元,获利25%,则每件商品的进价应为( )A .25%a 元B .(1-25%)a 元C .(1+25%)a 元D .a1+25%元 8.已知|a +1|+(3-b)2=0,则a 2b 等于( )A .1B .-1C .3D .-39.多项式5a 3-6a 3b +3a 2b -3a 3+6a 3b -5-2a 3-3ba 2的值( )A .只与a 的取值有关B .只与b 的取值有关C .与a ,b 的取值都有关D .与a ,b 的取值都无关10.对a ,b 定义运算“*”如下:a*b =⎩⎪⎨⎪⎧2a +b (a ≥b ),2a -b (a <b ).已知x*3=-1,则实数x 等于( )A .1B .-2C .1或-2D .不确定第Ⅱ卷 (非选择题 共90分)二、填空题(每小题4分,共24分)11.“x 的2倍与5的和”用代数式可以表示为__________. 12.-πx3y7的系数是________,次数是________.13.如图是一个数值转换器,若输入的a 的值为2,则输出的值为________.14.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3相加后不含x 的二次项,则m 的值为________.15.已知x 2+3x +5=7,那么多项式3x 2+9x -2的值是________.16.实数a ,b ,c 在数轴上对应的点的位置如图Z 4-2所示,则|a -c|-|a -b|-|b -c|=________.三、解答题(共66分) 17.(6分)化简:(1)3a +7a -5a; (2)4x -3xy -6x +2xy ;(3)32a 2-2a -4+3a -12a 2;(4)5+7(x -1)-(2x +3);(5)3x -7y -2(x -4y)+x; (6)3(a +b -c)-5(a -b +c).18.(6分)先化简,再求值:3(2x +1)+2(3-x),其中x =-1.19.(6分)先化简,再求值:5(3x 2y -xy 2)-3(xy 2+5x 2y),其中x =12,y =-1.20.(8分)某超市今年第一季度的营业额为m万元,预计本年度每季度比上一季度的营业额增长p%.请你完成下列问题:(1)用代数式分别表示第二季度、第三季度、第四季度的预计营业额;(2)当m=10,p=15时,求出本年度预计营业总额(结果精确到0.1万元).21. (8分)2016年9月15日太空实验室“天宫二号”顺利升空,同学们备受鼓舞,开展了火箭模型制作比赛.如图为火箭模型的截面图,下面是梯形,中间是长方形,上面是三角形.(1)用含a,b的代数式表示该截面的面积S;(2)当a=2.2 cm,b=2.8 cm时,求这个截面的面积.22.(10分)七年级(1)班李娥同学做一道题:“已知两个代数式A,B,A=x2+2x-1,计算A+2B.”他误将A+2B写成了2A+B,结果得到答案x2+5x-6,请你帮助他求出正确的答案.23.(10分)用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形中有多少颗黑色棋子?(2)第几个图形中有2019颗黑色棋子?请说明理由.24.(12分)为了加强公民的节水意识,合理利用水资源,某市采取价格调控手段以达到节水的目的,下表是该市自来水收费价格的价目表.(1)若某户居民2月份用水4立方米,则应交水费________元;(2)若某户居民3月份用水a立方米(其中6<a<10),则该用户3月份应交水费多少元(用含a的整式表示,结果要化成最简形式)?(3)若某户居民4,5月份共用水15立方米(5月份用水量多于4月份),设4月份用水x 立方米,求该户居民4,5月份共交水费多少元(用含x的整式表示,结果要化成最简形式).答案1.B 2.D 3.D 4.B 5.B 6.C 7.D 8.C 9.D 10.A 11.2x +5 12.-17π 4 13.0 14.4 15. 4 16.2a -2b 17.解:(1)原式=5a. (2)原式=-xy -2x. (3)原式=a 2+a -4. (4)原式=5x -5. (5)原式=2x +y. (6)原式=-2a +8b -8c.18.解:原式=6x +3+6-2x =4x +9.当x =-1时,原式=5. 19.解:原式=(15x 2y -5xy 2)-(3xy 2+15x 2y)=-8xy 2. 当x =12,y =-1时,原式=-4.20.解:(1)第二季度预计营业额:m(1+p%)万元; 第三季度预计营业额:m(1+p%)2万元; 第四季度预计营业额:m(1+p%)3万元. (2)49.9万元.21.解:(1)S =12ab +2a ·a +12(a +2a)b =2ab +2a 2.(2)当a =2.2 cm ,b =2.8 cm 时,S =2a(a +b)=2×2.2×(2.2+2.8)=22(cm 2). 22.解:因为2A +B =x 2+5x -6,A =x 2+2x -1, 所以B =(x 2+5x -6)-2(x 2+2x -1)=-x 2+x -4, 所以A +2B =x 2+2x -1+2(-x 2+x -4)=-x 2+4x -9. 23.解:(1)第5个图形中有18颗黑色棋子.(2)第672个图形中有2019颗黑色棋子.理由:由规律可知,第n个图形有(3n+3)颗黑色棋子,令3n+3=2019,解得n=672.所以第672个图形中有2019颗黑色棋子.24.解:(1)根据题意,得2×4=8(元).(2)根据题意,得4(a-6)+6×2=(4a-12)元.(3)由5月份用水量多于4月份,得4月份用水量少于7.5立方米,当4月份的用水量少于5立方米时,5月份用水量超过10立方米,则4,5月份共交水费2x+8(15-x-10)+4×4+6×2=(-6x+68)元;当4月份用水量大于或等于5立方米,但不超过6立方米时,5月份用水量不少于9立方米,但不超过10立方米,则4,5月份共交水费2x+4(15-x-6)+6×2=(-2x+48)元;当4月份用水量超过6立方米,但少于7.5立方米时,5月份用水量超过7.5立方米,但少于9立方米,则4,5月份共交水费4(x-6)+6×2+4(15-x-6)+6×2=36(元).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.3 代数式的值(见A 本29页)
A 练就好基础 基础达标
1.当x =1时,代数式4-3x 的值是( A ) A .1 B .2
C .3
D .4
2.若x =-1
3,y =4,则代数式3x +y -3的值为( B )
A .-6
B .0
C .2
D .6
3.当x =3,y =2时,代数式2x -y
3的值是( A )
A.43
B .2
C .0
D .3
4.当a =3,b =2时,代数式a 2+2ab +b 2的值是( D ) A .5 B .13 C .21 D .25 5.当a =-2,b =3时,a 2-2b +3的值为( B ) A .-7 B .1 C .4 D .6 6.若x 是5的相反数,|y |=6,则x -y 的值是( D ) A .-11 B .11 C .-1或11 D .1或-11
7.如图是一数值转换机的示意图,若输入的x 值为32,则输出的结果为( D )
第7题图
A .50
B .80
C .110
D .130
【解析】当x =32时,53(x -2)=5
3×(32-2)=50<90,
当x =50时,53(x -2)=5
3×(50-2)=80<90,
当x =80时,53(x -2)=5
3×(80-2)=130>90,
即输入的x 值为32,则输出的结果为130.故选D.
8.某人做零件a 只,原计划每天做80只,需要__a
80__天完成,实际每天多做7只,因
此实际需要__a 87__天完成,实际比原计划提前__a 80-a
87__天完成,若a =6960,则实际比原
计划提前__7__天完成.
9
(1)写出用时间t 表示余油量Q 的代数式:__36-6t __. (2)当t =3
2
时,则余油量Q 的值为__27__.
(3)根据所列代数式回答,汽车行驶之前油箱中有油多少千克? 解:(3)36
10.当x =3,y =-2时,求下列代数式的值. ①x 2-y 2; ②x +y
x -y ;
③x 2-2xy +y 2; ④1x +1
y .
解:当x =3,y =-2时, ①x 2-y 2=9-4=5; ②
x +y x -y =3-23+2=1
5
; ③x 2-2xy +y 2=9+12+4=25; ④1x +1y =13-12=-16
. 11.探索代数式a 2-b 2与代数式(a +b )(a -b )的关系. (1)当a =5,b =2时分别计算两个代数式的值. (2)当a =7,b =-13时分别计算两个代数式的值. (3)你发现了什么规律?
(4)利用你发现的规律计算:8892-1112. 解:(1)当a =5,b =2时, a 2-b 2=25-4=21, (a +b )(a -b )=7×3=21. (2)当a =7,b =-13时, a 2-b 2=49-169=-120, (a +b )(a -b )=-6×20=-120. (3)a 2-b 2=(a +b )(a -b ). (4)8892-1112=778 000.
12.如图,一张长3x 的正方形纸片,剪去两个一样的小直角三角形和一个长方形.设剪去的小长方形的长和宽分别为x ,y ,剪去的两个小直角三角形直角边的长也分别为x ,y .
(1)用含有x ,y 的式子表示图中阴影部分的面积. (2)当x =8,y =2时,求此阴影部分的面积.
第12题图
解:(1)3x ·3x -xy -1
2xy ×2
=9x 2-2xy .
(2)当x =8,y =2时,
9x 2-2xy
=9×82-2×8×2 =576-32=544.
B 更上一层楼 能力提升
13.定义一种新运算法则是⎪⎪⎪⎪⎪⎪a c b d =ad -b C ,则⎪⎪⎪⎪

⎪-1 32 4=__-10__.
14.如图所示,将面积为a 2的小正方形和面积为b 2的大正方形放在同一水平面上(b >a >0).
(1)用a 、b 表示阴影部分的面积.
(2)计算当a =3,b =4时,阴影部分的面积.
第14题图
解:(1)阴影部分的面积为12b 2+1
2
a (a +
b ).
(2)当a =3,b =4时,12b 2+12a (a +b )=12×16+12×3×(3+4)=37
2,则阴影部分的面积为
37
2
. 15.在某地,人们发现在一定温度下,某种蟋蟀叫的次数与温度之间有如下的近似关系:用蟋蟀1 min 叫的次数n 除以7,然后再加上3,就可以近似地得到该地当时的温度(℃).
(1)用代数式表示该地当时的温度.
(2)当蟋蟀1 min 叫的次数为100时,该地当时的温度约为多少(精确到个位)?
解:(1)根据题意可知该地当时的温度为⎝⎛⎭⎫
n 7+3℃. (2)当n =100时,n 7+3=100
7
+3≈17(℃).
答:该地当时的温度约为17 ℃.
C 开拓新思路 拓展创新
16.有一种放铅笔的V 形槽,如图所示,第一层放1支,第二层放2支,依次每层增放1支,只要数一数顶层的支数n 就可用公式算出槽内铅笔的支数.
(1)根据图示你能推出这个公式吗? (2)你还有没有其他方法推出这个公式?
(3)利用公式分别计算当n =6,n =11时,槽内铅笔的支数.
第16题图
解:(1)由题意和图可知:
铅笔总数1+2+…+n =n (n +1)
2
.
(2)可以看作上底为1,下底为n ,高为n 的梯形,照梯形的面积公式计算. (3)当n =6时,槽内铅笔的总数为6×(6+1)
2=21(支);
当n =11时,槽内铅笔的总数为11×(11+1)
2=66(支).。

相关文档
最新文档