2017-2018学年八年级数学上册 13.3 等腰三角形 13.3.1 等腰三角形 第1课时 等腰三角形的性质学案新人教版
八年级数学上册 13.3 等腰三角形 13.3.2 等边三角形 第1课时 等边三角形的性质与判定说课
八年级数学上册 13.3 等腰三角形 13.3.2 等边三角形第1课时等边三角形的性质与判定说课稿(新版)新人教版一. 教材分析等腰三角形和等边三角形是八年级数学上册第13.3节的内容。
这部分内容是学生学习了三角形的基本性质之后,进一步研究三角形的特殊形态。
等腰三角形和等边三角形具有很多独特的性质,例如等腰三角形的两底角相等,等边三角形的三个角都相等,三条边都相等。
这些性质在解决实际问题中有着广泛的应用。
二. 学情分析学生在学习这部分内容时,已经掌握了三角形的基本性质,具备了一定的观察、分析和推理能力。
但等边三角形的性质和判定较为复杂,学生可能难以理解和掌握。
因此,在教学过程中,需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。
三. 说教学目标1.知识与技能目标:让学生了解等腰三角形的性质和判定方法,掌握等边三角形的性质和判定方法。
2.过程与方法目标:通过观察、分析和推理,培养学生解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识。
四. 说教学重难点1.教学重点:等腰三角形的性质和判定方法,等边三角形的性质和判定方法。
2.教学难点:等边三角形的性质和判定方法的灵活运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等。
2.教学手段:利用多媒体课件、实物模型、黑板等。
六. 说教学过程1.导入新课:通过回顾三角形的基本性质,引导学生发现等腰三角形和等边三角形的特殊性质。
2.讲解等腰三角形的性质和判定方法:利用多媒体课件和实物模型,展示等腰三角形的性质,引导学生通过观察、分析和推理得出判定方法。
3.讲解等边三角形的性质和判定方法:同样利用多媒体课件和实物模型,展示等边三角形的性质,引导学生通过观察、分析和推理得出判定方法。
4.练习巩固:设计一些具有代表性的练习题,让学生运用所学的性质和判定方法进行解答。
5.课堂小结:让学生总结等腰三角形和等边三角形的性质和判定方法。
人教版八上数学13.3.1等腰三角形(第1课时)教学设计
13.3.1等腰三角形(第1课时)教学设计一、教材分析1.地位作用:等腰三角形对于学生学习和研究图形的轴对称性具有重要意义,由等腰三角形揭示的“等边对等角”和“等角对等边”的几何事实,是边与角相互联系和转化的基本依据,是平面几何体系中重要定理之一;本节内容起到了重要的承上启下作用,既用它作为运用全等三角形的判定和性质进行推理论证的载体,又由此对三角形的研究呈现出从特殊到一般的过程,随着等腰三角形性质的学习和研究的深入,学生的逻辑推理的能力将有所增强;实验与论证相辅相成,帮助学生从实验几何向论证几何过渡.2、教学目标:1、知识技能:①掌握等腰三角形的性质;②运用等腰三角形的性质进行有关计算和证明.2、数学思考:①观察等腰三角形的对称性,发展形象思维;②通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力.3、解决问题:①通过观察等腰三角形的对称性,培养学生观察、分析、归纳问题的能力.②通过运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力,发展运用意识.4、情感态度:引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心.3、教学重、难点教学重点:①探究等腰三角形的性质;②运用等腰三角形的性质解决简单问题.教学难点:等腰三角形性质的证明.突破难点的方法:通过折叠纸片突破难点.二、教学准备:多媒体课件、导学案、长方形纸片三、教学过程2.等腰三角形一个角为120°,它的另外两个角为------------------------------。
3.等腰三角形有一个外角为100°,它的三个内角分别为---------------------------。
活动3:再探性质证明、渐进升华思考:添加辅助线后,在这两个全等三角形中,1.当作底边BC边上的中线AD 时,由全等,AD是顶角的平分线吗?AD是底边上的高吗?引导学生利用现成的结论继续证明,归纳小结。
人教版八年级数学上册 13.3等腰三角形(无答案)
13.3等腰三角形知识点一等腰三角形1.等腰三角形的性质(1)性质1:等腰三角形的两个底角相等(简写成“等边对等角”).(2)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).(3)等腰三角形的其他性质:①等腰三角形两腰上的中线、高分别相等.②等腰三角形两底角的平分线相等.③等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.④当等腰三角形的顶角为90°时,此等腰三角形为等腰直角三角形,它的两条直角边相等,两个锐角都是45°.2.等腰三角形的判定(1)定义法:有两边相等的三角形是等腰三角形;(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).数学语言:在△ABC中,∵∠B=∠C,∴AB=AC(等角对等边).(3)注意:①“等角对等边”不能叙述为:如果一个三角形有两个底角相等,那么它的两腰也相等.因为在没有判定出它是等腰三角形之前,不能用“底角”“腰”这些名词,只有等腰三角形才有“底角”“腰”.②“等角对等边”与“等边对等角”的区别:由两边相等得出它们所对的角相等,是等腰三角形的性质;由三角形有两角相等得出它是等腰三角形,是等腰三角形的判定.典例1 如图,AD⊥BC,D是BC的中点,那么下列结论错误的是A.△ABD≌△ACD B.∠B=∠CC.△ABC是等腰三角形D.△ABC是等边三角形典例2已知等腰三角形一腰上的高与另一腰的夹角为60︒,则这个等腰三角形的顶角是A.30︒B.60︒C.150︒D.30︒或150︒典例3 如图,在△ABC中,AB=AC,AD⊥BC于D,E是AB上的一点,EF∥AD交CA的延长线于F.求证:△AEF是等腰三角形.知识点二等边三角形1.等边三角形的概念:三边都相等的三角形是__________三角形.2.等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于__________.注意:(1)等边三角形是轴对称图形,它有三条对称轴;(2)等边三角形是特殊的等腰三角形,它具有等腰三角形的一切性质.3.等边三角形的判定(1)定义法:三边都相等的三角形是等边三角形.(2)三个角都相等的三角形是等边三角形.(3)有一个角是60°的等腰三角形是等边三角形.典例4 下列推理中,错误的是A.∵∠A=∠B=∠C,∴△ABC是等边三角形B.∵AB=AC,且∠B=∠C,∴△ABC是等边三角形C.∵∠A=60°,∠B=60°,∴△ABC是等边三角形D.∵AB=AC,∠B=60°,∴△ABC是等边三角形典例5 如图,已知OA=5,P是射线ON上的一个动点,∠AON=60°.当OP=__________时,△AOP为等边三角形.知识点三含30°角的直角三角形的性质1.一在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.2.注意:(1)该性质是含30°角的特殊直角三角形的性质,一般的直角三角形或非直角三角形没这个性质,更不能应用.(2)这个性质主要应用于计算或证明线段的倍分关系.(3)在有些题目中,若给出的角是15°时,往往运用一个外角等于和它不相邻的两个内角的和将15°的角转化后,再利用这个性质解决问题.典例6 在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6 cm,那么CE等于A.4 cm B.2 cmC.3 cm D.1 cm课堂练习:1.等腰三角形的一个内角是80︒,则它顶角的度数是A.80︒B.80︒或20︒C.80︒或50︒D.20︒2.一个等边三角形的对称轴共有A.1条B.2条C.3条D.6条3.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于A .30°B .40°C .45°D .36°4.如图,在△ABC 中,∠B =30°,ED 垂直平分BC ,ED =3.则CE 长为A .6B .9C .3D .85.如图,△ABC 是等边三角形,P 为BC 上一点,在AC 上取一点D ,使AD =AP ,且∠APD =70°,则∠PAB 的度数是A .10°B .15°C .20°D .25°6.如图,四边形ABCD 是正方形,△PAD 是等边三角形,则∠BPC 等于A .20°B .30°C .35°D .40°7.如图,在等腰Rt ABC △中,90BAC ∠=︒,在BC 上截取BD BA =,作ABC ∠的平分线与AD 相交于点P ,连接PC ,若ABC △的面积为28cm ,则BPC △的面积为A .24cmB .25cmC .26cmD .27cm 8.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB =AC ,∠CAD =20°,则∠ACE 的度数是A .20°B .35°C .40°D .70°9.若实数m 、n 满足|2|0m -=,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是A .12B .10C .8D .610.已知等腰三角形的一个外角为130︒,则它的顶角的度数为__________.11.如图,将Rt ABC △绕直角顶点C 顺时针旋转90°,得到DEC △,连接AD ,若25BAC ∠=︒,则BAD ∠=__________.12.如图,△ABC 中,AB =14,AM 平分∠BAC ,∠BAM =15°,点D 、E 分别为AM 、AB 的动点,则BD +DE 的最小值是__________.13.如图,在ABC △中,90ACB ∠=︒,D 是AB 上的点,过点D 作DE AB ⊥交BC 于点F ,交AC 的延长线于点E ,连接CD ,DCA DAC ∠∠=,则下列结论正确的有__________(将所有正确答案的序号都填在横线上).①DCB B ∠=∠;②12CD AB =;③ADC △是等边三角形;④若30E ∠=︒,则DE EF CF =+.14.如图,在ABC △中,AB AC D =,为BC 的中点,35BAD ∠=︒,则C ∠=__________.15.等腰三角形的一腰的中线把三角形的周长分成16 cm 和12 cm ,则等腰三角形的底边长为______.16.如图,已知在△ABC 中,AB =AC ,O 是△ABC 内一点,且OB =OC ,试说明:AO ⊥BC .17.如图,在△ABC 中,AB AC =,AD 是BC 边上的中线,BE AE ⊥于E ,试说明CBE BAD ∠=∠.18.已知在△ABC中,AB=5,BC=2,且AC的长为奇数.(1)求△ABC的周长;(2)判断△ABC的形状.19.如图,在△ABC中,AB=AC,∠BAC=40°,分别以AB,AC为边作两个等腰三角形ABD和ACE,且AB=AD,AC=AE,∠BAD=∠CAE=90°.人教版八年级数学上册13.3等腰三角形(无答案)(1)求∠DBC的度数.(2)求证:BD=CE.20.如图,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分线.(1)求证:△BCD是等腰三角形;(2)△BCD的周长是a,BC=b,求△ACD的周长(用含a,b的代数式表示)11/ 11。
人教版初二数学上册13.3等腰三角形教案(共4课时)
人教版初二数学上册教学设计(共四课时)13.3.1 等腰三角形(1)教学目标①经历剪纸、折纸等活动,进一步认识等腰三角形,了解等腰三角形是轴对称图形.②能够探索、归纳、验证等腰三角形的性质,并学会应用等腰三角形的性质.③培养分类讨论、方程的思想和添加辅助线解决问题的能力.教学重点:等腰三角形的性质的探索和应用.教学难点:等腰三角形的性质的验证.教学准备长方形的纸片、剪刀.教学设计剪一剪师生拿出课前准备好的长方形的纸片,按教科书第140页的要求剪出△ABC.设问1:△ABC有什么特点?学生思考后发现,上述过程中,剪刀剪过的两边是相等的,即△ABC中AB=AC.像这样有两边相等的三角形叫等腰三角形.并结合△ABC介绍等腰三角形的“腰”“底边”“顶角”“底角”等概念.注:结合亲自剪出的等腰三角形学习相关概念,加深印象.折一折设问2:△ABC是轴对称图形吗?它的对称轴是什么?让学生认识到动手操作也是一种验证方式.猜一猜设问3:你还发现了什么现象,继而猜想等腰三角形ABC有哪些性质?学生讨论、汇报:①∠B=∠C →两个底角相等②BD=CD →AD为底边BC 上的中线③∠BAD=∠CAD →AD为顶角∠BAC的平分线④∠ADB=∠ADC=90°→AD 为底边BC上的高用语言叙述为:性质1等腰三角形的两个底角相等(简写成“等边对等角”);性质2等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.(可简记为“三线合一”性质)证一证设问4:你能用所学的知识验证等腰三角形的性质吗?1.证明等腰三角形底角的性质.教师要求学生根据猜想的结论画出相应的图形,写出已知和求证.已知:如图1,在△ABC中,AB=AC.求证:∠B=∠C.师生共同分析证明思路并证明.强调以下两点: (1)利用三角形全等来证明两角相等. (2)添加辅助线的方法可以多样.例如,常见的作顶角∠BAC的平分线,或作底边BC上的中线或作底边BC上的高等.让学生选择一种辅助线完成证明过程.2.证明等腰三角形的“三线合一”性质.(注:鼓励学生用多种方法证明.)用一用练习1(1)已知等腰三角形的一个底角是70°,则其余两角为_______________.(2)已知等腰三角形一个角是70°,则其余两角为_______________.(3)已知等腰三角形一个角是110°,则其余两角为_______________.出示课本142页例1如图2,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD.改编为:(1)图中共有几个等腰三角形?分别写出它们的顶角与底角.(2)你能求出各角的度数吗?议一议等腰三角形底边中点到两腰的距离相等吗? 由等腰三角形是轴对称图形,还可以得到等腰三角形中问题较复杂,引导学生合作探究,更深入地认识等腰三角形哪些线段相等?作业教科书第143页练习1、2、3.教学后记:学生对等腰三角形的“三线合一”性质不熟悉,而它的应用又很广泛.因此,设计了多个问题、多种形式以加深印象.此外应用性质计算、证明时,要注意引导学生对解题思路和方法进行总结,切实提高学生分析问题,解决问题的能力.13.3.1 等腰三角形(2)教学目标①会阐述、推证等腰三角形的判定定理.②学会比较等腰三角形性质定理和判定定理的联系与区别.③经历综合应用等腰三角形性质定理和判定定理的过程,体验数学的应用价值.教学重点:等腰三角形的判定定理的探索和应用.教学难点:等腰三角形的判定与性质的区别.教学准备师生准备作图工具.教案设计:创设情境,提出问题出示课本143页思考题.学生思考、回答后教师设问:在一般三角形中,如果有两个角相等,那么它们所对的边有什么关系?。
人教版数学八年级上册第十三章13.3.1-等腰三角形说课稿
《13.3.1等腰三角形的性质》说课稿教学内容:义务教育课程标准试验教科书八年级数学上册第十三章第三节等腰三角形的性质,下面我从六个方面对本课的教学设计进行说明:一、说教材本节课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。
通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。
它所倡导的“观察---发现---猜想---论证”的数学思想方法是今后研究数学的基本思想方法。
因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。
二.说教学目标1.探索并证明等腰三角形的两个性质。
2.能利用性质证明两个角相等或两条线段相等。
3.结合等腰三角形性质的探索与证明过程,体会轴对称在研究几何问题中的作用。
说重点:探索并证明等腰三角形的性质。
说难点:性质1证明中辅助线的添加和对性质2的理解。
三.说教法在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,“教必有法而教无定法”,只有方法得当,才会有效。
根据本课内容特点和初二学生思维活动的特点,我采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。
使学生全面参与、全员参与、全程参与,真正确立其主体地位。
而教师只是作为数学学习的组织者、引导者、合作者,及时地给以引导、点拨、纠正。
四.说学法只有好的学习方法才能培养能力,在学生探索知识的过程中培养他们掌握好的学习文教解题方法,并且通过自己动手操作、动脑思考,动口表述,培养学生的观察、猜想、概括、表述、论证的能力。
五.课标对本节课的要求探索并证明等腰三角形的性质定理:等腰三角形的两底角相等;等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。
六.如何利用学案是为了让学生在课前预习时有方向、有目标地进行自主预习,是辅助课堂学习的一种方式。
七.说教学过程(一)知识回顾,导入新课(多媒体出示)学生独立思考,然后回答。
初二数学上册(人教版)第十三章轴对称13.3知识点总结含同步练习及答案
描述:初二数学上册(人教版)知识点总结含同步练习题及答案第十三章 轴对称 13.3 等腰三角形一、学习任务1. 了解等腰三角形和等边三角形的概念.2. 掌握等腰三角形和等边三角形的性质定理和判定定理,掌握 角的直角三角形的性质.二、知识清单等腰三角形 等边三角形三、知识讲解1.等腰三角形等腰三角形有两条边相等的三角形叫做等腰三角形(isosceles triangle ).等腰三角形的性质① 等腰三角形的两个底角相等;② 等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).三角形的边角对应关系在同一个三角形内,大边对大角,大角对大边.构造等腰三角形的方法30∘都填上)∠ADE=∠AED=2∠BAD34DE△BDE接 ,试判断 的形状,并说明理由.∠DBC描述:例题:2.等边三角形等边三角形三边都相等的三角形叫做等边三角形(equilateral triangle ),也属于等腰三角形.等边三角形的性质三个内角都相等,并且每一个角都等于 .等边三角形性质的推论在直角三角形中,如果一个锐角等于 ,那么它所对的直角边等于斜边的一半.等边三角形的判定① 三个角都相等的三角形是等边三角形;② 有一个角是 的等腰三角形是等边三角形.构造等边三角形的方法,.即 是等腰三角形.2∴∠DBC =∠E ∴BD =DE △BDE 60∘30∘60∘如图所示,在等边三角形 中, 和 的平分线相交于点 ,, 的垂直平分线分别交 于点 ,,求证: 是等边三角形.分析:根据垂直平分线的性质可知,,,由于 , 是角平分线,所以 ,再由于外角和定理,,所以 是等边三角形.证明: , 分别是 , 垂直平分线上的点,ABC ∠ABC ∠ACB O BO OC BC E F △OEF OE =BE OF =F C OB OC ∠OBC =∠OCB =30∘∠OEF =∠OF E =60∘△OEF ∵EF BO OC值为( )32A△ABC。
人教版八年级数学上册13.3《等腰三角形的判定》教学设计
-结合实际题目,引导学生运用等腰三角形的性质解题,培养解决问题的能力。
4.合作探究:
-将学生分成小组,讨论等腰三角形在实际问题中的应用,培养学生的合作意识和沟通能力。
-引导学生从不同角度分析问题,培养学生的发散思维。
5.练习巩固:
-设计不同难度的练习题,让学生分层练习,巩固所学知识。
2.强调等腰三角形在实际问题中的应用,让学生体会数学与生活的紧密联系。
3.提醒学生注意等腰三角形与其他图形的结合与转化,提高解决问题的能力。
4.鼓励学生在课后继续探索等腰三角形的相关知识,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学知识,提高学生对等腰三角形性质的理解和应用能力,特布置以下作业:
2.练习题包括基本概念题、性质应用题、综合提高题等,涵盖本节课的教学内容。
3.学生独立完成练习题,教师对学生的答题情况进行实时反馈,指导学生正确解题。
4.对学生的作业进行批改,及时了解学生的学习情况,为下一步的教学提供参考。
(五)总结归纳
1.引导学生回顾本节课所学内容,总结等腰三角形的定义、判定定理和性质。
1.基础巩固题:
-请同学们完成课本第93页的习题1、2、3。
-选择两道具有代表性的题目,要求学生在课后独立完成,加强对等腰三角形判定定理和性质的理解。
2.实践应用题:
-结合生活实例,设计一道与等腰三角形相关的实际问题,要求学生运用所学知识解决问题。
-鼓励学生思考等腰三角形在建筑、艺术等方面的应用,提高学生的数学素养。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-等腰三角形Leabharlann 定义及其判定定理的掌握。-运用等腰三角形的性质解决实际问题的能力。
人教版八年级数学上册13.3.1等腰三角形(教案)
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《等腰三角形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否见过两边相等的三角形?”比如,红领巾的一个角就是等腰三角形。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索等腰三角形的奥秘。
3.培养学生的数据分析能力,能够运用等腰三角形的性质解决实际问题,如计算等腰三角形的面积,从而在实际情境中加深对等腰三角形特征的理解。
4.培养学生的数学抽象素养,让学生通过对等腰三角形的学习,抽象出一般性的几何性质,形成对几何图形的深入认识。
5.培养学生的团队合作意识,通过小组讨论、合作探究等腰三角形的性质和应用,提高沟通与协作能力。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了等腰三角形的定义、性质、判定和应用。同时,我们也通过实践活动和小组讨论加深了对等腰三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
今天我们在课堂上学习了等腰三角形这一章节,整体来看,学生们对等腰三角形的定义和性质掌握得还不错。但在教学过程中,我也发现了一些问题。
三、教学难点与重点
1.教学重点
-等腰三角形的定义:明确等腰三角形两条边相等的特征,理解其基本概念。
-等腰三角形的性质:掌握等腰三角形的底角相等、底边上的中线、高线、角平分线互相重合的性质。
-等腰三角形的判定:学会运用判定定理判断一个三角形是否为等腰三角形。
-等腰三角形的应用:掌握利用等腰三角形性质解决实际问题的方法,如计算面积等。
此外,小组讨论环节,有的小组在讨论过程中并未充分展开,部分学生参与度不高。为了提高学生的参与度,我打算在下次课堂中,对讨论主题进行更明确的分工,让每个学生都有任务和责任,以促使他们更积极地参与到讨论中来。
人教版-数学-八年级上册-13.3.1 等腰三角形(第2课时 )教案
13.3 等腰三角形(第2课时)教学目标1.理解并掌握等腰三角形的判定方法.2.运用等腰三角形的判定进行证明和计算.教学重点等腰三角形的判定方法.教学难点等腰三角形的判定方法的证明.教学过程一、导入新课思考:我们知道,如果一个三角形中有两条边相等,那么它们所对的角相等.反过来,如果一个三角形有两个角相等,那么它们所对的边有什么关系?二、探究新知1.等腰三角形的判定定理让学生思考如何证明刚才的猜想,并初步作答,教师及时点评,并规范作答步骤.证明:在△ABC中,∠B=∠C(如图).作∠BAC的平分线AD.在△BAD和△CAD中,∠1=∠2,∠B=∠C,AD=AD,∴△BAD≌△CAD(AAS).∴AB=AC.由此,我们可以得到等腰三角形的判定方法如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).2.判定定理的应用例2求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC(如图).求证:AB=AC.分析:要证明AB=AC,可先证明∠B=∠C.因为∠1=∠2,所以可以设法找出∠B,∠C与∠1,∠2的关系.证明:∵AD∥B C,∴∠1=∠B(两直线平行,同位角相等),∠2=∠C(两直线平行,内错角相等).而已知∠1=∠2,所以∠B=∠C.∴AB=AC(等角对等边).3.作等腰三角形例3 已知等腰三角形底边边长为a,底边上的高的长为h,求作这个等腰三角形.作法:(1)作线段A B=a.(2)作线段AB的垂直平分线MN,与AB相交于D.(3)在MN上取一点C,使DC=h.(4)连接AC,BC,则△ABC就是所求作的等腰三角形.三、课堂小结1.等腰三角形的判定方法是什么?2.等腰三角形的性质与判定既有区别又有联系,你能总结一下吗?四、布置作业教材习题13.3第2,8,10题.五、教学反思学生刚刚学过等腰三角形的性质,对等腰三角形已经有了一定的了解和认识.因此在课堂教学中先引出等腰三角形的判定定理及推论,并能够灵活应用它进行有关论证和计算.发展学生的动手、归纳猜想能力;发展学生证明用文字表述的几何命题的能力;使它们进一步掌握归纳思维方法,领会数学分类思想、转化思想.。
13.3.1等腰三角形(第二课时) 教案 人教版数学八年级上册
13.3.1等腰三角形(第二课时) 教案人教版数学八年级上册一、教材分析本节课位于人教版第十三章轴对称的第二课时。
等腰三角形是一类特殊的三角形,因而它比一般的三角形在理论和实际中的应用更为广泛。
等腰三角形的判定是初中数学一个重要定理,也是本章的重点内容。
本节内容是在学生已有的平行线性质判定、全等三角形判定以及等腰三角形性质等知识的基础上进一步研究的问题。
该判定的特点之一是揭示了同一个三角形的边、角关系;特点之二是它与等腰三角形的性质定理互为逆定理;特点之三是它为我们提供了证明线段相等的新方法,为以后学习提供了证明和计算的依据,有助于培养学生思维的灵活性和广阔性。
二、教学目标1.会阐述、推证等腰三角形的判定定理。
2.通过学习等腰三角形的判定,进一步发展学生的抽象概括能力。
3.经历综合应用等腰三角形性质定理和判定定理的过程,体验数学的应用价值。
三、教学重、难点1.重点:等腰三角形的判定定理的探索。
2.难点:“等角对等边”的证明四、教学方法“实验——发现——归纳——论证”法五、教学过程1、知识回顾:等腰三角形的相关知识师生共同回顾:(1)定义:有两条边相等的三角形叫做等腰三角形。
注意:等腰三角的定义既是性质又是判定(2)等腰三角形性质1:等腰三角形的两个底角相等,简称“等边对等角”。
(3)等腰三角形性质2:等腰三角形顶角平分线、底边上的中线和底边上的高互相重合,简称“三线合一”设计意图:复习等腰三角形的定义及性质为判定作铺垫。
2、欣赏生活中美丽的图片:教师提出问题:(1)图中有哪些你熟悉的图形吗?(2)如何证明一个三角形是等腰三角形?设计意图:结合生活中的图片,目的是为了唤起学生的好奇,激发学生兴趣和探究欲,体会生活中处处都有数学,并能自然地过渡到本节课的课题。
3、探索新知、发现猜想:教师提出问题:假设一个三角形有两条边相等,那么它们所对的角相等。
反过去,假设一个三角形有两个角相等,那么它们所对的边有什么关系?师生活动:教师提出问题,学生自由交流,大胆猜想。
人教版八年级数学 13.3等腰三角形(学习、上课课件)
等边对等角
感悟新知
知2-练
(3)若BC=3 cm,求BD 的长. 解:∵AB=AC,AD 平分∠ BAC,∴ AD 是BC 边上的
中线.∴ BD= 12BC= 12×3 =1.5(cm)
由角平分线得到中线
感悟新知
2-1. 如图,在△ ABC 中,AB=AC,AD, CE 分别是△ ABC 的中线和角平分 线,相交于点O.
知2-讲
感悟新知
知2-讲
3. 对称性:等腰三角形是轴对称图形,顶角平分线(或底边 上的高、底边上的中线)所在的直线是它的对称轴. 拓展延伸:等腰三角形的其他性质 (1)等腰三角形两腰上的中线、高分别相等; (2)等腰三角形两底角的平分线相等; (3)等腰三角形底边上的中点到两腰的距离相等;
Hale Waihona Puke 感悟新知感悟新知感悟新知
知2-讲
2. 性质2:等腰三角形的顶角平分线、底边上的中线、底边
上的高相互重合( 简写成“三线合一”).
特别解读 (1)必须是等腰三角形; (2) 必须是底边上的中线、底边上的高和顶角的平分
线才相互重合. 2.作用:是证明线段相等、角相等、线段垂直等关
系的重要方法. 3.知道其中“一线”,就可以说明是其他“两线”.
感悟新知
几何语言:如图13 .3 -3,在△ ABC 中, (1)∵ AB=AC,AD ⊥ BC, ∴ AD 平分∠ BAC(或BD=CD); (2)∵ AB=AC,BD=DC, ∴ AD ⊥ BC(或AD 平分∠ BAC); (3)∵ AB=AC,AD 平分∠ BAC, ∴ BD=DC(或AD ⊥ BC).
知2-练
感悟新知
知2-练
(1)若△ ABC 的面积是20, 且BC=4, 求AD 的长; 解:∵AD 是△ABC 的中线,AB=AC,∴AD⊥BC. ∵△ABC 的面积是 20,且 BC=4, ∴12BC·AD=20,即12×4·AD=20,解得 AD=10.
初中数学人教版八年级上册 等腰三角形(第1课时)
巩固练习
(1)解:∵AB=AC,AD是BC边上的中线,
∴∠BAD=∠CAD,∴∠BAC=2∠BAD=50°.
∵AB=AC,
∴ ∠C=∠ABC = ×(180°– ∠BAC)
1
2 = ×(180°– 50°)=65°.
(2)证明:∵AB=AC,AD是BC边上的中线,
1
∴ED⊥BC,
2
又∵BG平分∠ABC,EF⊥AB,
A
∴ ∠C= ∠B=30°,
∵BD = CD,∴AD⊥BC,
∴∠ADB=∠ADC = 90°.
B
D
C
∴∠ BAD =90°– ∠B = 60°.
课堂检测
2.如图,已知△ABC为等腰三角形,BD、CE为底角的平分线,
且∠DBC=∠F,求证:EC∥DF.
证明:∵△ABC为等腰三角形,AB=AC, ∴∠ABC=∠ACB.
人教版 数学 八年级 上册
13.3 等腰三角形
13.3.1 等腰三角形 (第1课时)
导入新知
导入新知
看到下面三角形了吗,它有何特点呢?
腰
顶 角
腰
底角 底角 底边
我们今天来探讨一下等腰三角形的性质.
素养目标
2.会运用等腰三角形的概念和性质解决有 关问题.
1. 探索并掌握等腰三角形的两个性质.
探究新知
知识点 等腰三角形的性质 把一张长方形的纸按图中的虚线对折,并剪去阴 影部分(一个直角三角形),再把得到的直角三角形
展开,得到的三角形ABC有什么特点?
探究新知
B
A
AB=AC
等腰三角形
C
探究新知 【思考】△ABC 是轴对称图形吗?它的对称轴是什么?
人教版八年级数学上册教学设计13.3 等腰三角形
人教版八年级数学上册教学设计13.3 等腰三角形一. 教材分析等腰三角形是八年级数学上册的教学内容,主要让学生了解等腰三角形的性质和判定方法。
通过学习等腰三角形,学生能够掌握三角形的基本概念,提高空间想象能力和逻辑思维能力。
本节课的内容为后续学习其他三角形的性质和判定方法打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,具备了一定的空间想象能力和逻辑思维能力。
但部分学生对于抽象的数学概念和判定方法的理解还需加强。
因此,在教学过程中,需要关注学生的学习差异,引导他们积极参与课堂讨论,提高他们的学习兴趣和自信心。
三. 教学目标1.知识与技能:使学生了解等腰三角形的性质和判定方法,能够运用所学知识解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极进取的精神。
四. 教学重难点1.教学重点:等腰三角形的性质和判定方法。
2.教学难点:等腰三角形性质的证明和应用。
五. 教学方法1.情境教学法:通过生活实例引入等腰三角形,激发学生学习兴趣。
2.启发式教学法:引导学生主动思考、探讨等腰三角形的性质和判定方法。
3.合作学习法:鼓励学生分组讨论,培养团队协作能力。
4.反馈评价法:及时了解学生学习情况,调整教学策略。
六. 教学准备1.教学课件:制作课件,展示等腰三角形的图片、性质和判定方法。
2.教学道具:准备一些三角形模型,方便学生观察和操作。
3.练习题:准备一些有关等腰三角形的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)–利用课件展示一些生活中的等腰三角形图片,如金字塔、自行车等,引导学生关注等腰三角形的特征。
–提问:同学们,你们知道这些物体为什么是等腰三角形吗?等腰三角形有什么特殊之处?2.呈现(10分钟)–介绍等腰三角形的定义:有两边相等的三角形称为等腰三角形。
人教版八年级上册13.3.1《等腰三角形》
《等腰三角形》◆教材分析本节课是在前面学习了三角形的有关概念及性质、轴对称变换、全等三角形、垂直平分线和尺规作图的基础上,研究等腰三角形的定义及其重要性质,它既是前面所学知识的延伸,也是后面直角三角形、等边三角形的知识的重要储备,我们常常利用它证明角相等、线段相等、两直线垂直,因此本节课具有承上启下的重要作用。
◆教学目标【知识与能力目标】1、理解并掌握等腰三角形的性质。
2、会运用等腰三角形的概念和性质解决有关问题。
3、观察等腰三角形的对称性、发展形象思维。
4、探索等腰三角形的判定定理【过程与方法目标】1、通过实践、观察、证明等腰三角形的性质,培养学生的推理能力。
2、通过运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力,发展应用意识。
3、探索等腰三角形的判定定理,进一步体验轴对称的特征,发展空间观念【情感态度价值观目标】1、引导学生对图形的观察、发现,激发学生的好奇心和求知欲。
2、在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。
3、感受图形中的动态美、和谐美、对称美,感受合作交流带来的成功感,树立自信心。
4、通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力【教学重点】1、等腰三角形的概念和性质及其应用。
2、等腰三角形的判定定理及其应用【教学难点】1、等腰三角形的性质的证明。
2、探索等腰三角形的判定定理◆教学过程一、情景导入:师:日常生活中,我们会经常看到一些美丽的图案,其中一些是平面几何图形,接下来我们观察几幅图片,说一说你们看到了什么图形?(课件向学生展示平常见到的有关等腰三角形的图片)学生观察一组图片,回答问题。
【设计意图】使学生能从实际生活中抽象出等腰三角形,初步感知等腰三角形在实际生活中的广泛应用,用美丽的画面激发学生的求知欲。
培养学生勤观察,肯思考的学习习惯。
2017_2018年八年级数学上册13_3等腰三角形教案新版新人教版
13.3.1 等腰三角形(一)教学目标1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.教学重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.教学难点:等腰三角形三线合一的性质的明白得及其应用.教学进程一、提出问题,创设情境在前面的学习中,咱们熟悉了轴对称图形,探讨了轴对称的性质,•而且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些漂亮的图案.这节课咱们确实是从轴对称的角度来熟悉一些咱们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?有的三角形是轴对称图形,有的三角形不是.问题:那什么样的三角形是轴对称图形?知足轴对称的条件的三角形确实是轴对称图形,•也确实是将三角形沿某一条直线对折后两部份能够完全重合的确实是轴对称图形.咱们这节课就来熟悉一种成轴对称图形的三角形──等腰三角形.二、导入新课:要求学生通过自己的试探来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,那么可取得一个等腰三角形.等腰三角形的概念:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同窗们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角. 试探:1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,因此把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线. 要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.沿等腰三角形的顶角的平分线对折,发觉它两旁的部份相互重合,由此可知那个等腰三角形的两个底角相等,•而且还能够明白顶角的平分线既是底边上的中线,也是底边上的高. 由此能够取得等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高相互重合(通常称作“三线合一”).由上面折叠的进程取得启发,咱们能够通过作出等腰三角形的对称轴,取得两个全等的三角形,从而利用三角形的全等来证明这些性质.同窗们此刻就动手来写出这些证明进程). 如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩因此△BAD ≌△CAD (SSS ). 因此∠B=∠C .]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩因此△BAD ≌△CAD . 因此BD=CD ,∠BDA=∠CDA=12∠BDC=90°. 例1 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD. 求:△ABC 各角的度数.分析:依照等边对等角的性质,我们能够取得∠A=∠ABD ,∠ABC=∠C=∠BDC ,•D CABD CABDCAB再由∠BDC=∠A+∠ABD,就可取得∠ABC=∠C=∠BDC=2∠A.再由三角形内角和为180°,•就可求出△ABC的三个内角.把∠A设为x的话,那么∠ABC、∠C都能够用x来表示,如此进程就更简捷.解:因为AB=AC,BD=BC=AD,因此∠ABC=∠C=∠BDC.∠A=∠ABD(等边对等角).设∠A=x,那么∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.[师]下面咱们通过练习来巩固这节课所学的知识.三、随堂练习:讲义P77练习一、二、3.四、课时小结这节课咱们要紧探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,而且它的顶角平分线既是底边上的中线,又是底边上的高.咱们通过这节课的学习,第一确实是要明白得并把握这些性质,而且能够灵活应用它们.五、作业:讲义P81习题13.3第一、二、3、4题.板书设计13.3.1 等腰三角形(1)一、设计方案作出一个等腰三角形二、等腰三角形性质: 1.等边对等角 2.三线合一13.3.1 等腰三角形(二)教学目标一、理解并把握等腰三角形的判定定理及推论二、能利用其性质与判定证明线段或角的相等关系.教学重点:等腰三角形的判定定理及推论的运用教学难点:正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系.教学进程:一、温习等腰三角形的性质二、提出问题,创设情境出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度.学生们很想明白,如此估测河流宽度的依照是什么?带着那个问题,引导学生学习“等腰三角形的判定”.三、引入新课1.由性质定理的题设和结论的转变,引出研究的内容——在△ABC中,苦∠B=∠C,那么AB= AC吗?作一个两个角相等的三角形,然后观看两等角所对的边有什么关系?2.引导学生依照图形,写出已知、求证.3、小结,通过论证,那个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.4.引导学生说出引例中地质专家的测量方式的依照.四、例题与练习1.如图2其中△ABC是等腰三角形的是 [ ]2.①如图3,已知△ABC中,AB=AC.∠A=36°,那么∠C______(依照什么?).②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(依照什么?).③假设已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判定图5中等腰三角形有______.④假设已知 AD=4cm,那么BC______cm.3.以问题形式引出推论l______.4.以问题形式引出推论2______.例:若是三角形一个外角的平分线平行于三角形的一边,求证那个三角形是等腰三角形.分析:引导学生依照题意作出图形,写出已知、求证,并分析证明.练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?(2)上题中,假设去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?练习:P79练习一、二、3、4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.3 等腰三角形
13.3.1等腰三角形
第1课时等腰三角形的性质
1.了解等腰三角形的概念,掌握等腰三角形的性质.
2.运用等腰三角形的概念及性质解决相关问题.
阅读教材P75~77“探究与例1”,完成预习内容.
知识探究
如图,在△ABC中,AB=AC,标出各部分名称.
(1)如图,把一张长方形纸片按图中的虚线对折,剪下阴影部分,再把它展开,得到△ABC,则AB________AC.
(2)把剪出的等腰三角形ABC沿折痕AD对折,找出其中重合的线段和角,填入下表:
根据轴对称的性质可得以上结论.
(3)等腰三角形的性质
①等腰三角形的两个________相等(简写成“________________”).
②等腰三角形的顶角的平分线、底边上的________、底边上的________互相重合.
③等腰三角形是轴对称图形,________是底边上的中线(顶角平分线、底边上的高)所在的直线.
自学反馈
1.在△ABC中,若AC=AB,则∠______=∠______.
2.如图,在△ABC中,AB=AC,点D在BC上.
①∵AD⊥BC,
∴∠1=∠______,______=______;
②∵AD是中线,
∴______⊥______,∠______=∠______;
③∵AD是角平分线,
∴____⊥____,____=____.
3.课本P77练习1、2、3题
根据等腰三角形的性质解决上述问题,注意模仿例题格式.
活动1小组讨论
例1已知△ABC是等腰三角形,且∠A+∠B=130°,求∠A的度数.
解:①当∠A为顶角时,∵∠A+∠B+∠C=180°,∠A+∠B=130°,∴∠C=50°.∴∠A=80°.
②当∠C为顶角时,则∠A=∠B,
∵∠A+∠B=130°,∴∠A=65°.
③当∠B为顶角时,则∠A=∠C,
∵∠A+∠B=130°,
∴∠A=∠C=50°.
利用等腰三角形的性质解题时易犯考虑不周全的错误,解题时应认真审题,分析已知条件,分清是顶角还是底角.
例2如图,已知AB=AC,BD⊥AC于点D.求证:∠BAD=2∠DBC.
证明:过点A作AE⊥BC于点E.
∵AB=AC,
∴∠BAD=2∠2.
∵BD⊥AC于点D,
∴∠BDC=90°.
∴∠2+∠C=∠C+∠DBC=90°.
∴∠DBC=∠2.
∴∠BAD=2∠DBC.
利用等腰三角形三线合一的性质求证.
活动2跟踪训练
1.等腰三角形有两条边长为4 cm和9 cm,则该三角形的周长是________.
等腰三角形在分类讨论的同时,还要注意三边关系.
2.等腰三角形的一个外角是80°,则其底角是________.
3.等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形的顶角为________________.
4.已知等腰三角形的腰长比底边多2 cm,并且它的周长为16 cm,则它的底边长为________.5.如图,在△ABC中,如果AB=AC,AE∥BC,求证:AE平分△ABC的外角∠DAC.
6.已知:如图,在△ABC中,AB=AC,O为△ABC内一点,且OB=OC.求证:AO⊥BC.
延长AO交BC于D,要证AO是等腰三角形ABC边BC上的高,根据“三线合一”,只要证AO是∠BAC的角平分线即可.
活动3课堂小结
在等腰三角形中,常常需要作底边上的高,运用等腰三角形“三线合一”的性质,对于解决所有相关的问题能起到事半功倍的效果.
【预习导学】
知识探究
(1)=(2)AB AC ∠B∠C BD CD ∠BAD∠CAD AD AD ∠ADB∠ADC(3)①底角等边对等角②中线高③对称轴
自学反馈
1.B C 2.①2BD CD ②AD BC 1 2 ③AD BC BD CD
【合作探究】
活动2跟踪训练
1.22 cm 2.40° 3.60°或120° 4.4 cm 5.证明:∵AE∥BC,∴∠DAE=∠B,∠EAC=∠C.又∵AB=AC,∴∠B=∠C.∴∠DAE=∠EAC,即AE平分△ABC的外角∠DAC.
6.证明:延长AO交于BC于点D,证△ABO≌△ACO,∴AO平分∠BAC.∵AB=AC,∴AD⊥BC.。