中考几何探究题目选(四)

合集下载

中考数学模拟试卷(4)含答案解析

中考数学模拟试卷(4)含答案解析

中考数学模拟试卷(四)一.选择题(共9小题,满分45分,每小题5分)1.(5分)在﹣0.1428中用数字3替换其中的一个非0数码后,使所得的数最大,则被替换的字是()A.1 B.2 C.4 D.82.(5分)一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.43.(5分)若分式的值为0,则x的值等于()A.0 B.±3 C.3 D.﹣34.(5分)下列事件是随机事件的是()A.购买一张福利彩票,中奖B.在一个标准大气压下,加热到100℃,水沸腾C.有一名运动员奔跑的速度是80米/秒D.在一个仅装着白球和黑球的袋中摸球,摸出红球5.(5分)下列运算正确的是()A.3a2+a=3a3B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2 6.(5分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④7.(5分)若α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,则α2﹣3β的值是()A.3 B.15 C.﹣3 D.﹣158.(5分)在今年抗震赈灾活动中,小明统计了自己所在的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多;(3)甲班比乙班多5人,设甲班有x人,根据以上信息列方程得()A.B.C.×(1+)=D.9.(5分)已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB的弦心距为()A.B.2 C.D.二.填空题(共6小题,满分30分,每小题5分)10.(5分)分解因式:16m2﹣4=.11.(5分)如果反比例函数y=(k≠0)的图象在每个象限内,y随着x的增大而减小,那么请你写出一个满足条件的反比例函数解析式(只需写一个).12.(5分)一个扇形统计图,某一部分所对应扇形的圆心角为120°,则该部分在总体中所占有的百分比是%.13.(5分)元旦到了,商店进行打折促销活动.妈妈以八折的优惠购买了一件运动服,节省30元,那么妈妈购买这件衣服实际花费了元.14.(5分)如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP 为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是.15.(5分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.三.解答题(共4小题,满分30分)16.(6分)计算:.17.(6分)解关于x的不等式组:,其中a为参数.18.(8分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.19.(10分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B 处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.四.解答题(共4小题,满分45分)20.(10分)小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).月均用水量频数百分比(单位:t)2≤x<324%3≤x<41224%4≤x<55≤x<61020%6≤x<712%7≤x<836%8≤x<924%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.21.(10分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?22.(12分)如图,⊙O半径为1,AB是⊙O的直径,C是⊙O上一点,连接AC,⊙O外的一点D 在直线AB上.(1)若AC=,OB=BD.①求证:CD是⊙O的切线.②阴影部分的面积是.(结果保留π)(2)当点C在⊙O上运动时,若CD是⊙O的切线,探究∠CDO与∠OAC的数量关系.23.(13分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M (1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.中考数学模拟试卷(四)参考答案与试题解析一.选择题(共9小题,满分45分,每小题5分)1.【解答】解:逐个代替后这四个数分别为﹣0.3428,﹣0.1328,﹣0.1438,﹣0.1423.﹣0.1328的绝对值最小,只有C符合.故选:C.2.【解答】解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,那么它的表面积=2π×2+π×1×1×2=6π,故选A.3.【解答】解:∵分式的值为0,∴x2﹣9=0且x﹣3≠0,解得:x=﹣3,故选:D.4.【解答】解:A、购买一张福利彩票,中奖是随机事件;B、在一个标准大气压下,加热到100℃,水沸腾是必然事件;C、有一名运动员奔跑的速度是80米/秒是不可能事件;D、在一个仅装着白球和黑球的袋中摸球,摸出红球是不可能事件;故选:A.5.【解答】解:A.3a2与a不是同类项,不能合并,所以A错误;B.2a3•(﹣a2)=2×(﹣1)a5=﹣2a5,所以B错误;C.4a6与2a2不是同类项,不能合并,所以C错误;D.(﹣3a)2﹣a2=9a2﹣a2=8a2,所以D正确,故选:D.6.【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.7.【解答】解:∵α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,∴α2+3α=6,由根系数的关系可知:α+β=﹣3,∴α2﹣3β=α2+3α﹣3α﹣3β=α2+3α﹣3(α+β)=6﹣3×(﹣3)=15故选:B.8.【解答】解:甲班每人的捐款额为:,乙班每人的捐款额为:.根据(2)中所给出的信息,方程可列为:×(1+)=.故选:C.9.【解答】解:如图,设AC与BD的交点为O,过点O作GH⊥CD于G,交AB于H;作MN⊥AB于M,交CD于点N.在Rt△COD中,∠COD=90°,O G⊥CD;∴∠DOG=∠DCO;∵∠GOD=∠BOH,∠DCO=∠ABO,∴∠ABO=∠BOH,即BH=OH,同理可证,AH=OH;即H是Rt△AOB斜边AB上的中点.同理可证得,M是Rt△COD斜边CD上的中点.设圆心为O′,连接O′M,O′H;则O′M⊥CD,O′H⊥AB;∵MN⊥AB,GH⊥CD;∴O′H∥MN,OM∥GH;即四边形O′HOM是平行四边形;因此OM=O′H.由于OM是Rt△OCD斜边CD上的中线,所以OM=O′H=CD=2.故选:B.二.填空题(共6小题,满分30分,每小题5分)10.【解答】解:原式=4(4m2﹣1)=4(2m+1)(2m﹣1),故答案为:4(2m+1)(2m﹣1)11.【解答】解:∵反比例函数y=(k≠0)的图象在每个象限内,y随着x的增大而减小,∴k>0,∴满足条件的反比例函数解析式可以是y=.故答案为:y=(答案不唯一).12.【解答】解:该部分在总体中所占有的百分比=120°÷360°=33.3%.13.【解答】解:设这件运动服的标价为x元,则:妈妈购买这件衣服实际花费了0.8x元,∵妈妈以八折的优惠购买了一件运动服,节省30元∴可列出关于x的一元一次方程:x﹣0.8x=30解得:x=1500.8x=120故妈妈购买这件衣服实际花费了120元,故答案为120.14.【解答】解:作MG⊥DC于G,如图所示:设MN=y,PC=x,根据题意得:GN=5,MG=|10﹣2x|,在Rt△MNG中,由勾股定理得:MN2=MG2+GN2,即y2=52+(10﹣2x)2.∵0<x<10,∴当10﹣2x=0,即x=5时,y2最小值=25,MN的最小值为5;∴y最小值=5.即故答案为:5.15.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.三.解答题(共4小题,满分30分)16.【解答】解:原式=1﹣2+4+﹣1=4﹣.17.【解答】解:,解不等式①得:﹣3a<5x≤1﹣3a,﹣a<x≤,解不等式②得:3a<5x≤1+3a,a<x≤,∵当﹣a=a时,a=0,当=时,a=0,当﹣a=时,a=﹣,当a=时,a=,∴当或时,原不等式组无解;当时,原不等式组的解集为:;当时,原不等式组的解集为:.18.【解答】证明:(1)∵DF∥BE,∴∠DFA=∠BEC,在△ADF和△CBE中,∴△AFD≌△CEB(SAS);(2)∵△AFD≌△CEB,∴AD=BC,∠DAF=∠BCE,∴AD∥BC,∴四边形ABCD是平行四边形.19.【解答】解:由题意得:BE=,AE=,∵AE﹣BE=AB=m米,∴﹣=m(米),∴CE=(米),∵DE=n米,∴CD=+n(米).∴该建筑物的高度为:(+n)米.四.解答题(共4小题,满分45分)20.【解答】解:(1)调查的总数是:2÷4%=50(户),则6≤x<7部分调查的户数是:50×12%=6(户),则4≤x<5的户数是:50﹣2﹣12﹣10﹣6﹣3﹣2=15(户),所占的百分比是:×100%=30%.故答案为:15,30%,6;补全频数分布表和频数分布直方图,如图所示:(2)中等用水量家庭大约有450×(30%+20%+12%)=279(户);(3)在2≤x<3范围的两户用a、b表示,8≤x<9这两个范围内的两户用1,2表示.画树状图:则抽取出的2个家庭来自不同范围的概率是:=.21.【解答】解:(1)由函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B 到甲地的距离与行驶时间的关系;(2)(330﹣240)÷60=1.5(千米/分);(3)设L1为s1=kt+b,把点(0,330),(60,240)代入得k=﹣1.5,b=330所以s1=﹣1.5t+330;设L2为s2=k′t,把点(60,60)代入得k′=1所以s2=t;(4)当t=120时,s1=150,s2=120 150﹣120=30(千米);所以2小时后,两车相距30千米;(5)当s1=s2时,﹣1.5t+330=t解得t=132即行驶132分钟,A、B两车相遇.22.【解答】(1)①证明:连接BC,OC,∵AB是直径,∴∠ACB=90°,在Rt△ANC中:BC==1,∴BC=OC=OB,∴△BOC为等边三角形,∴∠BOC=∠OBC=60°,∵OB=BD,OB=BC,∴BC=BD,∴∠ODC=∠BCD=∠OBC=30°,∴∠BOC+∠ODC=90°,∴∠OCD=180°﹣∠BOC﹣∠ODC=90°,∴CD是⊙O切线.②过C作CE⊥AB于E,∵S△ABC=•AC•BC=•AB•CE,∴CE=,∴S阴=S扇形OAC﹣S△A OC,=﹣•1•,=﹣.故答案为﹣.(2)①当AC>BC时,∵CD是⊙O的切线,∴∠OCD=90°,即∠1+∠2=90°,∵AB是O直径,∴∠ACB=90°即∠2+∠3=90°,∴∠1=∠3,∵OC=OA,∴∠OAC=∠3,∴∠OAC=∠1,∵∠4=∠1+∠ODC,∴∠4=∠DAC+∠ODC,∵OB=OC,∴∠2=∠4,∴∠2=∠OAC+∠ODC,∵∠1+∠2=90°,∴∠OAC+∠OAC+∠ODC=90°,即∠ODC+2∠OAC=90°.②当AC<BC时,同①∠OCD=90°,∴∠COD=90°﹣∠ODC,∵DA=OC,∴∠OCA=∠OAC,∵∠OAC+∠OCA+∠COD=180°,∴∠OAC+∠OAC+90°﹣∠ODC=180°,∴2∠OAC﹣∠ODC=90°,综上:2∠OAC﹣∠ODC=90°或∠ODC+2∠OAC=90°.23.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x=﹣=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6),设△DMN 的面积为S ,∴S=S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=, (3)当a=﹣1时,抛物线的解析式为:y=﹣x 2﹣x +2=﹣(x ﹣)2+, 有, ﹣x 2﹣x +2=﹣2x ,解得:x 1=2,x 2=﹣1,∴G (﹣1,2),∵点G 、H 关于原点对称,∴H (1,﹣2),设直线GH 平移后的解析式为:y=﹣2x +t ,﹣x 2﹣x +2=﹣2x +t ,x 2﹣x ﹣2+t=0,△=1﹣4(t ﹣2)=0, t=,当点H 平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x +t ,t=2,∴当线段GH 与抛物线有两个不同的公共点,t 的取值范围是2≤t <.。

2020年中考数学压轴题专题4 几何最值存在性问题学案(原版+解析)

2020年中考数学压轴题专题4 几何最值存在性问题学案(原版+解析)

专题四几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。

从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。

几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。

【解题攻略】最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,PA与PB的差的最大值就是AB,此时点P在AB 的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题.【解题类型及其思路】解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。

【典例指引】类型一【确定线段(或线段的和,差)的最值或确定点的坐标】【典例指引1】(2018·天津中考模拟)如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x轴、y轴的正半轴上.点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E.(I)证明:EO=EB;(Ⅱ)点P是直线OB上的任意一点,且△OPC是等腰三角形,求满足条件的点P的坐标;(Ⅲ)点M是OB上任意一点,点N是OA上任意一点,若存在这样的点M、N,使得AM+MN 最小,请直接写出这个最小值.【举一反三】(2020·云南初三)如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.类型二 【确定三角形、四边形的周长的最值或符合条件的点的坐标】【典例指引2】(2020·重庆初三期末)如图,抛物线2y ax bx =+(0a >)与双曲线k y x=相交于点A 、B ,已知点A 坐标()1,4,点B 在第三象限内,且AOB ∆的面积为3(O 为坐标原点).(1)求实数a 、b 、k 的值;(2)在该抛物线的对称轴上是否存在点P 使得POB ∆为等腰三角形?若存在请求出所有的P 点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M ,恰使得MA MB MO ==,现要求在y 轴上找出点Q 使得BQM ∆的周长最小,请求出M 的坐标和BQM ∆周长的最小值.【举一反三】(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C .(1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.类型三 【确定三角形、四边形的面积最值或符合条件的点的坐标】【典例指引3】(2019·甘肃中考真题)如图,已知二次函数y =x 2+bx +c 的图象与x 轴交于点A (1,0)、B (3,0),与y 轴交于点C .(1)求二次函数的解析式;(2)若点P 为抛物线上的一点,点F 为对称轴上的一点,且以点A 、B 、P 、F 为顶点的四边形为平行四边形,求点P 的坐标;(3)点E 是二次函数第四象限图象上一点,过点E 作x 轴的垂线,交直线BC 于点D ,求四边形AEBD 面积的最大值及此时点E 的坐标.【举一反三】(2019·内蒙古中考真题)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.B C M N为顶点(4)若点N为抛物线对称轴上一点,抛物线上是否存在点M,使得以,,,的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.【新题训练】1.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x +c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND 长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴,y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F、E的坐标.2.(2019·江苏中考真题)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为;(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.3.(2019·湖南中考真题)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为212时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.4.(2018·江苏中考真题)如图,在平面直角坐标系中,一次函数y=﹣23x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.5.(2020·江苏初三期末)已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积.(3)在P 点运动过程中,求APC ∆面积的最大值.6.(2020·江苏初三期末)如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标;(3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.7.(2019·石家庄市第四十一中学初三)如图,在平面直角坐标系中,抛物线y =x (x ﹣b )﹣与y轴相交于A点,与x轴相交于B、C两点,且点C在点B的右侧,设抛物线的顶点为P.(1)若点B与点C关于直线x=1对称,求b的值;(2)若OB=OA,求△BCP的面积;(3)当﹣1≤x≤1时,该抛物线上最高点与最低点纵坐标的差为h,求出h与b的关系;若h 有最大值或最小值,直接写出这个最大值或最小值.8.(2020·江西初三期中)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.9.(2020·山东初三期末)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q (2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ ∽△CDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P 点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.10.(2020·盘锦市双台子区第一中学初三月考)如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB 的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.11.(2020·四川初三)如图,一次函数122y x=-+的图像与坐标轴交于A、B两点,点C 的坐标为(1,0)-,二次函数2y ax bx c =++的图像经过A 、B 、C 三点.(1)求二次函数的解析式(2)如图1,已知点(1,)D n 在抛物线上,作射线BD ,点Q 为线段AB 上一点,过点Q 作QM y ⊥轴于点M ,作QN BD ⊥于点N ,过Q 作//QP y 轴交抛物线于点P ,当QM 与QN 的积最大时,求点P 的坐标;(3)在(2)的条件下,连接AP ,若点E 为抛物线上一点,且满足APE ABO ∠=∠,求点E 的坐标.12.(2019·广东初三)如图,已知抛物线y =﹣3x 2+bx +c 与x 轴交于原点O 和点A (6,0),抛物线的顶点为B .(1)求该抛物线的解析式和顶点B 的坐标;(2)若动点P 从原点O 出发,以每秒1个长度单位的速度沿线段OB 运动,设点P 运动的时间为t (s ).问当t 为何值时,△OPA 是直角三角形?(3)若同时有一动点M 从点A 出发,以2个长度单位的速度沿线段AO 运动,当P 、M 其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t (s ),连接MP ,当t 为何值时,四边形ABPM 的面积最小?并求此最小值.13.(2019·山东初三期中)如图,已知抛物线经过两点A (﹣3,0),B (0,3),且其对称轴为直线x =﹣1.(1)求此抛物线的解析式.(2)若点Q 是对称轴上一动点,当OQ +BQ 最小时,求点Q 的坐标.(3)若点P 是抛物线上点A 与点B 之间的动点(不包括点A ,点B ),求△PAB 面积的最大值,并求出此时点P 的坐标.14.(2019·四川中考真题)如图,抛物线212y x bx c =-++过点(3,2)A ,且与直线72y x =-+交于B 、C 两点,点B 的坐标为(4,)m .(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD PA +的最小值;(3)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ︒∠=?若存在,求点Q的坐标;若不存在,请说明理由.15.(2019·天津中考真题)已知抛物线2y x bx c =-+(b c ,为常数,0b >)经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点. (Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值; (Ⅲ)点1(,)2Q Q b y +在抛物线上,当22AM QM +的最小值为332时,求b 的值. 16.(2019·湖南中考真题)如图,抛物线y =ax 2+bx (a >0)过点E (8,0),矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左侧),点C 、D 在抛物线上,∠BAD 的平分线AM 交BC 于点M ,点N 是CD 的中点,已知OA =2,且OA :AD =1:3.(1)求抛物线的解析式;(2)F 、G 分别为x 轴,y 轴上的动点,顺次连接M 、N 、G 、F 构成四边形MNGF ,求四边形MNGF 周长的最小值;(3)在x 轴下方且在抛物线上是否存在点P ,使△ODP 中OD 610求出点P 的坐标;若不存在,请说明理由;(4)矩形ABCD 不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K 、L ,且直线KL 平分矩形的面积时,求抛物线平移的距离.17.(2019·辽宁中考真题)如图,在平面直角坐标系中,抛物线y =ax 2+bx +2(a ≠0)与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,抛物线经过点D (﹣2,﹣3)和点E (3,2),点P 是第一象限抛物线上的一个动点.(1)求直线DE 和抛物线的表达式;(2)在y 轴上取点F (0,1),连接PF ,PB ,当四边形OBPF 的面积是7时,求点P 的坐标; (3)在(2)的条件下,当点P 在抛物线对称轴的右侧时,直线DE 上存在两点M ,N (点M 在点N 的上方),且MN =22,动点Q 从点P 出发,沿P →M →N →A 的路线运动到终点A ,当点Q 的运动路程最短时,请直接写出此时点N 的坐标.18.(2019·湖南中考真题)已知抛物线2(0)y ax bx c a =++≠过点(1,0)A ,(3,0)B 两点,与y 轴交于点C ,=3OC .(1)求抛物线的解析式及顶点D 的坐标;(2)过点A 作AM BC ⊥,垂足为M ,求证:四边形ADBM 为正方形;(3)点P 为抛物线在直线BC 下方图形上的一动点,当PBC ∆面积最大时,求点P 的坐标; (4)若点Q 为线段OC 上的一动点,问:12AQ QC +是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.专题四 几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。

河南数学中考题型汇总 几何探究题题型练习含答案

河南数学中考题型汇总 几何探究题题型练习含答案

河南数学中考题型汇总几何探究题题型练习含答案类型 1 实践操作类探究题角度1 折叠类1.[2022河南]综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图(1)中一个30°的角:.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下.将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图(2),当点M在EF上时,∠MBQ= °,∠CBQ= °;②改变点P在AD上的位置(点P不与点A,D重合),如图(3),判断∠MBQ与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8 cm,当FQ=1 cm时,直接写出AP 的长.图(1)图(2)图(3)2.[2022河南省实验模拟]问题情境数学活动课上,同学们开展了以折叠为主题的探究活动,如图(1),已知矩形纸片ABCD(AD>AB),其中宽AB=8.动手实践(1)如图(1),威威同学将矩形纸片ABCD折叠,点A落在BC边上的点M处,折痕为BN,连接MN,然后将纸片展平,得到四边形ABMN,则折痕BN的长为;探究发现(2)如图(2),胜胜同学将图(1)中的四边形ABMN剪下,取AN边的中点E,将△ABE 沿BE折叠得到△A'BE,延长BA'交MN于点F.点Q为BM边的中点,点P是MN边上一动点,将△MQP沿PQ折叠,当点M的对应点M'落在线段BF上时,求此时tan∠PQM的值;反思提升(3)明明同学改变图(2)中点Q的位置,即点Q为BM边上一动点,点P仍是MN边上一动点,按照(2)中方式折叠△MQP,使点M'落在线段BF上,明明同学不断改变点Q 的位置,发现在某一位置∠QPM与(2)中的∠PQM相等,请直接写出此时BQ的长.图(1)图(2)备用图3.综合与实践——探究平行四边形折叠中的数学问题问题情境已知▱ABCD中,ÐA为锐角,AB<AD,点E,F分别是AB,CD边的中点,点G,H分别是AD,BC边上的点,分别沿EG和FH折叠▱ABCD,点A,C的对应点分别为点A',C'.操作分析(1)如图(1),点A'与点B重合,点C'与点D重合.①四边形BHDG 平行四边形(填“是”或“不是”).②当▱ABCD满足某个条件时,四边形BHDG能成为矩形.这个条件可以是.(2)点A',C'均落在▱ABCD内部(含边界),连接A'H,C'G,若AG=CH,则四边形A'HC'G是平行四边形吗?若是,请就图(2)进行证明;若不是,请说明理由.拓展探究(3)在(2)的条件下,若ÐA=60°,AD=2AB=8,且A'G与▱ABCD的一边平行,则此时四边形A'HC'G的面积为.图(1)图(2)备用图4.综合与实践数学活动课上,张老师找来若干张等宽的矩形纸条,让学生们进行折纸探究. (1)希望小组将如图(1)所示的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB边上的点D'处,折痕为AE.填空:图(1)中四边形ADED'的形状是.(2)智慧小组准备了一张如图(2)所示的长、宽之比为3∶2的矩形纸片ABCD,用希望小组的方法折叠纸片,得到四边形ADED',接着沿过点B的直线折叠纸片,使点C落在ED'上的点M处,折痕为BF.求∠MBC的度数.(3)勤奋小组拿着一张如图(3)所示长为4,宽为2的矩形纸片ABCD,利用希望小组的方法折叠纸片,得到四边形ADED',在CE上取一点F(不与点C,E重合),沿BF 折叠△BCF,点C的对应点为N,射线FN交直线AB于点H.①HF与HB的数量关系为.②当射线FN经过△AED'的直角边的中点时,直接写出FC的长.图(1)图(2)图(3)5.综合与实践问题情境数学活动课上,老师让同学们以“矩形纸片的折叠”为主题,开展数学活动,如图(1),在矩形ABCD中,AB=8,BC=4.观察发现(1)如图(2),智慧小组连接对角线BD,将矩形纸片ABCD沿直线BD折叠,使点A落在点P的位置,PB交CD于点Q,连接AP.直接写出图中所有的等腰三角形:.(不再添加字母)探究证明(2)求实小组在智慧小组的启发下,又对矩形纸片ABCD进行了如下操作,并对其中所产生的问题进行了探究:如图(3),沿过点A的直线折叠,使点B的对应点F 落在CD上,折痕交BC于点E,过点F作FG∥BC交AE于点G,连接BG.①小组成员发现四边形BEFG是特殊四边形.请你判断四边形BEFG的形状,并说明理由.②小组成员通过计算求得四边形BEFG的面积.请你直接写出这个面积:.探索拓广(3)参照上面的探究方式,对图(1)进行一次折叠操作,使点B的对应点B'落在BD 的三等分点上,设折痕与AB交于点N.请直接写出BN的长.图(1)图(2)图(3)角度2 旋转类6.综合与实践——图形变换中的数学问题问题情境数学活动课上,老师出示了一个问题:如图(1),已知正方形ABCD、矩形BCEF,点E,F分别在边CD,AB上,且BF=k(3<k<5),BC=5.将矩形BCEF绕点B顺时针旋转得到矩形BGHK,点G,H,K分别是点C,E,F的对应点,如图(2).图(1)图(2)图(3)图(4)同学们通过小组合作,提出下列数学问题,请你解答.(1)在图(2)中,连接BE,BH,EH,CG,得到图(3),可以发现在旋转过程中存在一个三角形始终与△BCG相似,这个三角形是,它与△BCG的相似比为(用含k的式子表示).(2)如图(4),矩形BGHK的顶点K恰好落在正方形ABCD的对角线AC上,KH交DC 的延长线于点T.求证:BK=KT.(3)在旋转过程中,连接CH,CK.若k=23,则当CH=CK时,直接写出CK的长.备用图(1)备用图(2)角度3 平移类7.综合与实践问题背景如图(1),在矩形ABCD中,AB=10,BC=8,点E为边BC上一点,沿直线DE将矩形折叠,使点C落在AB边上的点C'处.问题解决(1)填空:AC'的长为.(2)如图(2),展开后,将△DC'E沿线段AB向右平移,使点C'的对应点与点B重合,得到△D'BE',D'E'与BC交于点F,D'B与DE交于点G.求EF的长.拓展探究(3)如图(3),在△DC'E沿射线AB向右平移的过程中,设点C'的对应点为C″,则当△D'C″E'在线段BC上截得的线段PQ(D'E',折线D'C″E'分别与BC交于点P,Q)的长度为2时,直接写出平移的距离.图(1)图(2)图(3)角度4 尺规作图类8.[2022南阳宛城区一调]下面是某数学兴趣小组探究用不同方法作线段AB的垂直平分线的讨论片段,请仔细阅读,并完成相应的任务.任务:(1)小明的作图依据是.(2)小军作图得到的直线CP是线段AB的垂直平分线吗?请判断并说明理由.(3)如图(3),已知△ABC中,CA=CB,∠ACB=30°,点D,E分别是射线CA,CB上的动点,且CD=CE,连接BD,AE,交点为P.当AB=6,∠PAB=45°时,请直接写出线段CD 的长.图(3)9.[2022开封二模]中华文明源远流长,图(1)是汉代数学家赵爽在注解《周髀算经》时给出的图形,人们称它为“赵爽弦图”.2002年北京国际数学家大会依据赵爽弦图制作了会标,该图由4个全等的直角三角形围成一个大正方形和中间一个小正方形,巧妙地证明了勾股定理.问题发现如图(1),若直角三角形的直角边BC=3,斜边AB=5,则中间小正方形的边长CD= ,连接BD,△ABD的面积为.知识迁移如图(2),P是正方形ABCD内一点,连接PA,PB,PC,当∠BPC=90°,BP=10时,△PAB的面积为.拓展延伸如图(3),已知∠MBN=90°,以点B为圆心,适当长为半径画弧,分别交射线BM,BN 于点A,C.(1)已知D为线段AB上一动点,连接CD,过点B作BE⊥CD,垂足为点E,在线段CE 上取一点F,使EF=BE,过点F作GF⊥CD交BC于点G,试判断BE,DE,GF这三条线段之间的数量关系,并说明理由.(2)在(1)的条件下,若D为射线BM上一动点,F为射线EC上一点,当AB=10,CF=2时,直接写出线段DE的长.图(1)图(2)图(3)备用图类型 2 阅读理解类探究题10.[2022许昌二模]问题情境数学课上,王老师出示了这样一个问题:如图(1),在矩形ABCD中,AD=2AB,点E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示小明发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.又∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC,∴.(平行线分线段成比例)∵BE=AB,∴EM=1,∴EM=DM,DM即AM是△ADE的边DE上的中线.又∵AD=AE,∴.(等腰三角形的“三线合一”)∴AM垂直平分DE.反思交流(1)请将上述证明过程补充完整;(2)小颖受到小明的启发,继续进行探究,如图(2),连接CE,以CE为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;图(1)图(2)拓展应用(3)如图(3),连接CE,以CE为一边在CE的右上方作正方形CEFG,分别以点B,C 为圆心,m为半径作弧,两弧交于点M,连接MF.若MF=AB=1,请直接写出m的值.图(3)11.[2022商丘二模]如下是小明复习全等三角形时遇到的一个问题及由此引发的思考,请帮助小明完成以下学习任务.如图(1),OC平分∠AOB,点P在OC上,点M,N分别是OA,OB上的点,且OM=ON.求证:PM=PN.小明的思考:要证明PM=PN,只需证明△MOP≌△NOP即可.证明:如图(1),∵OC平分∠AOB,∴∠AOC=∠BOC.又∵OP=OP,OM=ON,∴△MOP≌△NOP,∴PM=PN.请仔细阅读并完成以下任务.(1)小明得出△MOP≌△NOP的依据是(填序号).①SSS ②SAS ③AAS ④ASA⑤HL(2)如图(2),在四边形ABCD中,AB=AD+BC,∠DAB的平分线和∠ABC的平分线交于CD边上的点P.求证:PC=PD.,当△PBC有一个内角是45°时,△PAD(3)在(2)的条件下,若AB=10,tan∠PAB=12的面积是.图(1)图(2)备用图(1)备用图(2)类型 3 类比、拓展探究题12.[2021湖北仙桃]已知△ABC和△DEC都为等腰三角形,AB=AC,DE=DC,∠BAC=∠EDC=n°.(1)当n=60时:①如图(1),当点D在AC上时,请直接写出BE与AD的数量关系:;②如图(2),当点D不在AC上时,判断线段BE与AD的数量关系,并说明理由.(2)当n=90时:①如图(3),探究线段BE 与AD 的数量关系,并说明理由; ②当BE ∥AC ,AB=3√2,AD=1时,请直接写出DC 的长.图(1) 图(2) 图(3)答案:1.(1)∠ABP ,∠PBM ,∠MBC 或∠BME (注:任意写出一个即可) (2)①15 15②∠MBQ=∠CBQ. 理由如下:∵四边形ABCD 是正方形,∴AB=BC ,∠A=∠C=90°. 由轴对称性质,得BM=AB ,∠BMP=∠A=90°,∴∠BMQ=90°=∠C ,BM=BC.又∵BQ 是公共边,∴Rt △MBQ ≌Rt △CBQ ,∴∠MBQ=∠CBQ.(3)4011 cm 或2413cm. 解法提示:由翻折的性质知AP=PM ,DF=CF=4. 由(2)可知,△MBQ ≌△CBQ ,∴MQ=CQ. 分两种情况讨论.①当点Q 在EF 下方时,如图(1),则MQ=CQ=4-1=3,DQ=4+1=5,PQ=AP+3,PD=8-AP. 由勾股定理,得PD 2+DQ 2=PQ 2,∴(8-AP )2+52=(AP+3)2,∴AP=4011.图(1)②当点Q 在EF 上方时,如图(2),则MQ=CQ=4+1=5,DQ=4-1=3,PQ=AP+5,PD=8-AP. 由勾股定理,得PD 2+DQ 2=PQ 2,∴(8-AP )2+32=(AP+5)2,∴AP=2413.图(2)综上所述,AP 的长为4011 cm 或2413cm. 2.(1)8√2(2)如图(1),连接MM'交PQ 于点O ,连接EF.图(1)由折叠的性质知,点O 为MM'的中点. 又∵点Q 为BM 边的中点,∴QO ∥BM',即QP ∥BF ,∴∠PQM=∠FBM.∵点E 是AN 边的中点,且将△ABE 沿BE 折叠得到△A'BE , ∴EN=EA',∠EA'F=∠N=90°. 又∵EF=EF ,∴Rt △NEF ≌Rt △A'EF. 设NF=x ,则A'F=x ,MF=8-x ,∴BF=BA'+A'F=BA+A'F=8+x.在Rt △BMF 中,由勾股定理,得BM 2+FM 2=BF 2, 即82+(8-x )2=(8+x )2,解得x=2,∴FM=6,∴tan ∠FBM=FM BM =68=34,∴tan ∠PQM=34. (3)BQ 的长为398. 解法提示:如图(2),连接MM'交PQ 于点G.图(2)由折叠的性质知,PQ 垂直平分MM',∴∠QPM+∠PMM'=90°.∵∠PMQ=90°,∴∠PMM'+∠M'MB=90°, ∴∠QPM=∠M'MB.由(2)知,(2)中∠PQM=∠M'BM. 又∵∠QPM 与(2)中的∠PQM 相等,∴∠M'BM=∠M'MB.过点M'作M'H ⊥BM 于点H ,则BH=MH=4,M'H BH =34, ∴M'H=3.设MQ=M'Q=a ,则HQ=4-a.在Rt △M'HQ 中,根据勾股定理,得M'H 2+HQ 2=M'Q 2, 即32+(4-a )2=a 2,解得a=258, ∴BQ=8-258=398. 3.(1)①是解法提示:∵四边形ABCD 是平行四边形,∴∠A=∠C ,∠ABC=∠ADC ,AD ∥BC. 如图(1),由折叠可知,∠A=∠1,∠C=∠2,图(1)∴∠1=∠2,∴∠ABC-∠1=∠ADC-∠2,即∠3=∠4. ∵AD ∥BC ,∴∠4+∠5=180°,∴∠3+∠5=180°, ∴BG ∥DH ,∴四边形BHDG 是平行四边形. ②∠A=45°(答案不唯一,正确即可) 解法提示:∵四边形BHDG 是矩形,∴∠BGD=90°,∴∠AGB=90°, 又由折叠可知,AG=A'G ,∴∠A=45°. (2)四边形A'HC'G 是平行四边形. 证明:如图(2),连接GH.图(2)∵四边形ABCD 是平行四边形, ∴∠A=∠C ,AB=CD ,AD ∥BC. ∵点E ,F 分别是AB ,CD 的中点,∴AE=12AB ,CF=12CD ,∴AE=CF. ∵AG=CH ,∴△AEG ≌△CFH , ∴∠1=∠3.由折叠可知,∠1=∠2,∠3=∠4,AG=A'G ,CH=C'H ,∴∠1=∠2=∠3=∠4,A'G=C'H. ∵AD ∥BC ,∴∠AGH=∠CHG ,∴∠5=∠6, ∴A'G ∥C'H ,∴四边形A'HC'G 是平行四边形. (3)2√3或4√3解法提示:当A'G ∥BC 时,如图(3),点A'落在AD 上,EG ⊥AD ,则A'G=AG=12AE=1,∴S 四边形A'HC'G =A'G ·AB sin 60°=1×4×√32=2√3.图(3)当A'G ∥AB 时,如图(4),则∠AGA'=120°,∴∠AGE=∠A'GE=60°,图(4)从而易得△AEG ,△A'EG ,△CHF ,△C'HF 均是等边三角形,EA'∥BC ,C'F ∥AD ,∴S 四边形A'HC'G =S ▱ABCD -4S △AEG -2S 四边形A'EBH=8×4×√32-4×√34×22-2×12×(2+6)×2×√32=4√3. 综上可知,四边形A'HC'G 的面积为2√3或4√3. 4.(1)正方形(2)由题意可知,AB∶AD=3∶2,∴设AD=2a ,AB=3a , ∴BM=BC=AD'=2a ,∴BD'=a ,∴sin ∠BMD'=a 2a =12,∴∠BMD'=30°.又ED'∥AD ∥BC ,∴∠MBC=∠BMD'=30°. (3)①HF=HB②FC 的长为3-√5或23. 解法提示:①∵DC ∥AB ,∴∠CFB=∠ABF. 由折叠可知∠CFB=∠NFB ,∴∠ABF=∠NFB ,∴HF=HB.②设FC=NF=x ,分两种情况讨论.a.当射线FN 经过AD'的中点时,点H 即为AD'的中点,如图(1),则HF=HB=3,∴HN=3-x.在Rt △HBN 中,由勾股定理,得HN 2+BN 2=HB 2,∴(3-x )2+22=32,解得x=3-√5(不合题意的值已舍去),∴FC=3-√5.图(1)b.当射线FN 经过ED'的中点P 时,如图(2), 易证△HD'P ≌△FEP ,∴HD'=EF=2-x ,∴HF=HB=2-x+2=4-x , ∴HN=4-x-x=4-2x.在Rt △HBN 中,由勾股定理,得BN 2+HN 2=HB 2,∴22+(4-2x )2=(4-x )2,解得x=23(不合题意的值已舍去),∴FC=23.图(2)综上可知,当射线FN 经过△AED'的直角边的中点时,FC 的长为3-√5或23. 5.(1)△ADP ,△ABP ,△BDQ (2)①四边形BEFG 是菱形. 理由如下:由折叠知∠BEG=∠FEG.∵FG ∥BC ,∴∠EGF=∠BEG , ∴∠EGF=∠FEG ,∴FG=FE. 又∵FE=BE ,∴FG=BE ,∴四边形BEFG 是平行四边形. 又∵FE=BE ,∴四边形BEFG 是菱形.②224-128√3解法提示:由折叠的性质知AF=AB=8.在Rt △ADF 中,由勾股定理得DF=√AF 2-AD 2=√82-42=4√3,∴CF=8-4√3. 设BE=y ,则EF=y ,CE=4-y.在Rt △CEF 中,由勾股定理得EF 2=CF 2+CE 2, 即y 2=(8-4√3)2+(4-y )2,解得y=16-8√3,∴S 四边形BEFG =BE ·CF=(16-8√3)×(8-4√3)=128-64√3-64√3+96=224-128√3.(3)BN 的长为103或53. 解法提示:分两种情况讨论.①当点B'落在离点D 较近的三等分点上时,如图(1),过点B'作B'H ⊥AB 于点H ,易知B'H=83,BH=163,B'N=BN ,∴HN=163-BN. 根据勾股定理,得B'H 2+HN 2=B'N 2,即(83)2+(163-BN )2=BN 2,∴BN=103.图(1) 图(2)②当点B'落在离点B 较近的三等分点上时,如图(2),同理可求得BN=53. 综上可知,BN 的长为103或53. 6.(1)△BEH√k 2+255(2)证明:如图(1),过点K 分别作KN ⊥BC 于点N ,KM ⊥CD 于点M , 则KN=KM ,∠MKN=90°=∠BKH ,∴∠TKM=∠BKN.又∠TMK=∠BNK=90°,∴△TMK ≌△BNK ,∴BK=KT.图(1)(3)CK 的长为√7或√67.解法提示:分如图(2)、图(3)所示的两种情况讨论,连接CG ,过点K 作KP ⊥BC ,垂足为点P.图(2)图(3)∵CK=CH ,∴∠CKH=∠CHK ,∴∠CKB=∠CHG. 又KB=HG ,∴△CKB ≌△CHG ,∴CG=CB=BG ,∴△CBG 是等边三角形, ∴∠CBG=60°. 图(2)中∠KBC=30°,∴KP=12KB=√3,BP=√32KB=3, ∴CP=2,∴CK=√(√3)2+22=√7. 图(3)中∠KBP=30°,∴KP=12KB=√3,BP=√32KB=3, ∴CP=8,∴CK=√(√3)2+82=√67. 综上可知,CK 的长为√7或√67. 7.(1)6(2)由(1)得AC'=6,∴BC'=AB -AC'=10-6=4.在Rt △BEC'中,设BE=x ,则EC'=EC=8-x ,根据勾股定理,得(8-x )2=x 2+42, 解得x=3,即BE=3,∴EC'=EC=5.连接EE',由平移可知,EE'=C'B=4,EE'∥AB ∥CD ,DE ∥D'E',∴△FEE'∽△FCD'∽△ECD , ∴EF∶EE'=EC∶DC=5∶10=1∶2, 又EE'=4,∴EF=2.(3)平移的距离为85或385. 解法提示:设平移的距离为x. 分两种情况讨论.①当点C″在BC 左侧时,如图(1),则BC″=4-x ,D'C=10-x ,∴CP=D'C ·tan ∠CD'P=D'C ·tan ∠CDE=510(10-x )=12(10-x ),BQ=BC″·tan ∠QC″B=BC″·tan ∠ADC'=68(4-x )=34(4-x ). 又CP+PQ+BQ=8,PQ=2,∴12(10-x )+2+34(4-x )=8,解得x=85.图(1) 图(2)②当点C″在BC 右侧时,如图(2),则BC″=x -4,D'C=10-x ,∴CP=D'C ·tan ∠CD'P=12(10-x ),BQ=BC″·tan ∠QC″B=BC″·tan ∠AC'D=43(x-4). 又CP+PQ+BQ=8,PQ=2,∴12(10-x )+2+43(x-4)=8,解得x=385.综上可知,平移的距离为85或385. 8.(1)等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合 (2)是. 理由如下:由作图可知,CA=CB ,CD=CE. 又∵∠ACE=∠BCD ,∴△ACE ≌△BCD , ∴∠CAE=∠CBD. ∵CA=CB ,∴∠CAB=∠CBA , ∴∠PAB=∠PBA ,∴AP=BP ,∴直线CP 是线段AB 的垂直平分线. (3)线段CD 的长为√3+1或3√3+3. 解法提示:∵CD=CE ,∠C=∠C ,CA=CB ,∴△CAE ≌△CBD ,∴∠CAE=∠CBD. ∵CA=CB ,∠ACB=30°, ∴∠CAB=∠CBA=75°,∴∠PBA=∠PAB=45°,∴∠APB=90°, ∴PA=PB=√22AB=√3. 分两种情况讨论.①当点P 在AB 上方时,如图(1),图(1)则∠DAP=∠EBP=30°,∠APD=90°,∴DB=DC ,DP=√33AP=1,∴CD=DB=√3+1. ②当点P 在AB 下方时,如图(2), 则∠DAP=∠EBP=60°,∠APD=90°,∴∠ADP=30°,∴BD=BC,DP=√3AP=3,AD=2AP=2√3,∴BC=BD=√3+3,∴CD=CA+AD=CB+AD=√3+3+2√3=3√3+3.综上可知,线段CD的长为√3+1或3√3+3.图(2) 9.问题发现192知识迁移 5拓展延伸(1)BE=DE+GF.理由:如图(1),过点G作GH⊥BE于点H.图(1)∵BE⊥CD,GF⊥CD,∴∠HEF=∠EFG=∠EHG=90°,∴四边形EFGH为矩形,∴EH=GF,EF=GH.∵EF=BE,∴GH=BE.∵∠MBN=90°,∠BHG=90°,∴∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3.又∵∠BED=∠GHB=90°,BE=GH,∴△BDE≌△GBH(ASA),∴DE=BH,∴BE=BH+EH=DE+GF.(2)92或323. 解法提示:分两种情况讨论.①当点F 在线段EC 上时,如图(2).图(2)由(1)可得BE=DE+GF. 设BE=EF=m ,则EC=m+2.在Rt △BEC 中,根据勾股定理,得BE 2+CE 2=BC 2, 即m 2+(m+2)2=102,解得m=6(负值已舍),∴BE=EF=6.易证△CFG ∽△CEB ,∴CF CE =GF BE ,即22+6=GF 6, ∴GF=32,∴DE=BE -GF=6-32=92. ②当点F 在线段EC 的延长线上时,如图(3).图(3)同(1)中方法可得BE=DE-GF. 设BE=EF=n ,则EC=n-2.在Rt △BEC 中,根据勾股定理,得BE 2+CE 2=BC 2, 即n 2+(n-2)2=102,解得n=8(负值已舍),∴BE=EF=8.易证△CFG ∽△CEB ,∴CF CE =GF BE ,即28−2=GF 8, ∴GF=83,∴DE=BE+GF=8+83=323.10.(1)EM DM =EBAB AM ⊥DE(2)证明:如图(1),过点G 作GH ⊥BC 于点H.图(1)∵四边形ABCD 是矩形,点E 在AB 的延长线上, ∴∠CBE=∠GHC=90°,∴∠BCE+∠BEC=90°. ∵四边形CEFG 为正方形, ∴CG=CE ,∠GCE=90°,∴∠BCE+∠BCG=90°,∴∠BEC=∠BCG , ∴△GHC ≌△CBE ,∴HC=BE. ∵AD=BC=2AB ,BE=AB ,∴BC=2BE=2HC , ∴HC=BH ,∴GH 垂直平分BC , 即点G 在线段BC 的垂直平分线上. (3)√5或√17.解法提示:同(2)中思路可证得点F 在线段BC 的垂直平分线上.如图(2),过点F 作FN ⊥BC 于点N ,连接CF ,则CF=√2CE=√2×√22+12=√10,CN=1,∴NF=√(√10)2-12=3.图(2)由作图过程可知,点M 在线段BC 的垂直平分线上,故分两种情况讨论.①当点M 在点F 左侧时,如图(3),连接MC ,图(3)则NM=3-1=2,∴m=CM=√22+12=√5.②当点M在点F右侧时,如图(4),连接MC,图(4)则NM=3+1=4,∴m=CM=√42+12=√17.综上可知,m的值为√5或√17.11.(1)②(2)如图(1),在AB上取点E,使得AE=AD,连接PE.图(1)∵AP平分∠DAE,∴∠DAP=∠EAP.又∵AP=AP,AD=AE,∴△DAP≌△EAP,∴PD=PE.∵AD+BC=AB=AE+BE,AD=AE,∴BC=BE.∵BP平分∠CBE,∴∠CBP=∠EBP.又∵BP=BP,∴△EBP≌△CBP,∴PE=PC,∴PC=PD.(3)8或403解法提示:如图(1),由(2)可得△DAP ≌△EAP ,△EBP ≌△CBP ,∴∠DPA=∠EPA ,∠CPB=∠EPB ,∠D=∠AEP ,∠C=∠BEP. 又∵∠DPA+∠EPA+∠CPB+∠EPB=180°,∠AEP+∠BEP=180°,∴∠APB=∠EPA+∠EPB=90°,∠D+∠C=180°, ∴AD ∥BC.在Rt △PAB 中,tan ∠PAB=12,∠APB=90°, 故可设BP=x ,AP=2x ,∴AB=√x 2+(2x)2=√5x=10, 解得x=2√5,∴AP=4√5,sin ∠PAB=1√5. 易知∠PBC>45°,故分两种情况讨论.①当∠C=45°时,如图(2),图(2)过点P 作PM ⊥AD ,交AD 的延长线于点M ,则∠MDP=∠C=45°,∴MP=MD. 又∵tan ∠MAP=tan ∠PAB=12,∴AM=2MP , ∴AD=MD=MP=AP ·sin ∠MAP=4, ∴S △PAD =12×4×4=8. ②当∠BPC=45°时,如图(3),图(3)过点D 作DN ⊥AP 于点N ,则∠DPN=180°-45°-90°=45°,∴NP=ND.∵tan ∠DAP=tan ∠PAB=12,∴AN=2ND. 又∵AP=AN+NP ,∴4√5=2ND+ND ,∴ND=4√53,∴S △PAD =12×4√5×4√53=403. 综上可知,△PAD 的面积为8或403.12.(1)①BE=AD②BE=AD. 理由如下:当点D 不在AC 上时,∵∠ACB=∠ACD+∠DCB=60°,∠DCE=∠BCE+∠DCB=60°,∴∠ACD=∠BCE. 在△ACD 和△BCE中,{AC =BC,∠ACD =∠BCE,DC =EC,∴△ACD ≌△BCE ,∴AD=BE. (2)①BE=√2AD. 理由如下:当n=90时,在等腰直角三角形DEC 中,DC EC =sin 45°=√22, 在等腰直角三角形ABC 中,AC BC =sin 45°=√22.∵∠ACB=∠ACE+∠ECB=45°,∠DCE=∠ACE+∠DCA=45°,∴∠ECB=∠DCA. 在△DCA 和△ECB中,{DCEC=AC BC=√22,∠DCA =∠ECB,∴△DCA ∽△ECB ,∴AD BE =√22,∴BE=√2AD. ②5或√13.解法提示:当点D 在△ABC 外部时,设EC 与AB 交于点F ,如图(1)所示.图(1)∵AB=3√2,AD=1,由上可知:AC=AB=3√2,BE=√2AD=√2. 又∵BE ∥AC ,∴∠EBF=∠CAF=90°.而∠EFB=∠CFA ,∴△EFB ∽△CFA ,∴EF CF =BF AF =BE AC =√23√2=13,∴AF=3BF ,而AB=BF+AF=3√2,∴BF=14×3√2=3√24. 在Rt △EBF 中,EF=√EB 2+BF 2=(√2)2+(3√24)2=5√24. 又∵CF=3EF=3×5√24=15√24, ∴EC=EF+CF=5√24+15√24=5√2. 在等腰直角三角形DEC 中,DC=EC ·sin 45°=5√2×√22=5.当点D 在△ABC 内部时,设AB 延长线与CE 延长线交于点F ,如图(2),图(2)∵AB=3√2,AD=1,由上可知:AC=AB=3√2,BC=√2AB=6,BE=√2AD=√2. 又∵BE ∥AC ,∴△EFB ∽△CFA ,∴FB FA =BE AC =13, ∴BF=12AB=3√22,AF=AB+BF=3√2+3√22=9√22. 在Rt △ACF 中,CF=√AC 2+AF 2=3√262.CE=23CF=23×3√262=√26. 在等腰直角三角形DEC 中,DC=√22CE=√13. 综上所述,满足条件的CD 的值为5或√13.。

2023年九年级数学中考专题:几何探究压轴题

2023年九年级数学中考专题:几何探究压轴题

2023年九年级数学中考专题:几何探究压轴题一、解答题1.如图,在ABC 中,4AC =,3BC =,90ACB ∠=︒,D 是边AC 上一动点(不与点A 、C 重合),CE BD ⊥,垂足为E ,交边AB 于点F .(1)当点D 是边AC 中点时,求DE ,EC 的值;(2)设CD x =,AF y =,求y 关于x 的函数关系式,并写出定义域;(3)当EFD △与EFB △相似时,求线段CD 的长.2.【温故知新】黄金分割是一种最能引起美感的分割比例,具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值.我们知道:如图1,点C 把线段AB 分成两部分,如果BC AC AC AB=,那么称点C 为线段AB 的黄金分割点.(1)【问题发现】如图1,点C 为线段AB 的黄金分割点,且AC BC >,若2AB =,请直接写出CB 的值是__________.(2)【问题探究】如图2,在Rt ABC △中,90C ∠=︒,2AC =,1BC =,在BA 上截取BD BC =,再在AC 上截取AE AD =,则AE AC的值为__________. (3)【问题解决】如图3,用边长为6的正方形纸片进行如下操作:对折正方形ABDE 得折痕MN ,连接EN ,将AE 折叠到EN 上,点A 对应点H ,得折痕CE ,试说明:C 是AB 的黄金分割点.3.定义:若连接三角形一个顶点和对边上一点的线段能把该三角形分成一个等腰三角形和一个直角三角形,我们称这条线段为该三角形的智慧线,这个三角形叫做智慧三角形.(1)如图1,在智慧三角形ABC 中,AD BC ⊥,AD 为该三角形的智慧线,1CD =,则BD 长为_____,B ∠的度数为_____.(2)如图2,ABC 为等腰直角三角形,90BAC ∠︒=,2AB =,F 是斜边BC 延长线上一点,连接AF ,以AF为直角边作等腰直角三角形AFE (点A ,F ,E 按顺时针排列),90EAF ∠=︒, CF =AE 交BC 于点D ,连接EC ,EB .当2BDE BCE ∠=∠时,求线段ED 的长;(3)如图3,ABC 中,5AB AC ==,BC =BCD △是智慧三角形,且AC 为智慧线,求BCD △的面积.4.【问题提出】如图1,在等边三角形ABC 内部有一点P ,3PA=,4PB =,5PC =,求APB ∠的度数.(1)【尝试解决】将APC △绕点A 逆时针旋转60︒,得到AP B '△,连接PP ',则APP '为等边三角形. ∵3P P PA '==,4PB =,5P B PC '==,∴222=P P PB P B ''+∴BPP '为三角形∴APB ∠的度数为.(2)【类比探究】如图2,在等边三角形ABC 外部有一点P ,若∠BP A =30°,求证222PA PB PC +=.(3)【联想拓展】如图3,在ABC 中,90BAC ∠︒=,AB AC =.点P 在直线BC 上方且45APB ∠︒=,PC BC ==求PA 的长.5.已知正方形 ABCD 和正方形 CEFG ,连接 AF 交 BC 于点 O ,点 P 是 AF 的中点,过点 P 作 PH DG ⊥ 于 H ,2CD =,1CG =.(1)如图1,点 D ,C ,G 在同一直线上,点 E 在 BC 边上,求 PH 的长;(2)把正方形 CEFG 绕着点C 逆时针旋转 ()0180αα<<.①如图2,当点E 落在AF 上时,求CO 的长;②如图3,当DG =PH 的长.6.在ABC ∆中,点E 为AC 边上一动点,以CE 为边在CE 上方作等边CEN .(1)如图1,EN 与AB 交于点P ,连接PC ,若tan A =,1AE =,5CN =,求PC 的长: (2)如图2.当N 与B 重合时,在BC 上取一点D ,过点D 作DF AC ∥,连接BF ,EF ,过C 作CH EF ⊥交EF 于点H ,若30FBC DFE ︒∠-∠=,求证:CH BF +=;(3)如图3,若BC AB ⊥,且4AB BC ==,过点B 作BQ AC ∥,I 为射线.BQ 上一动点,取AC 中点M ,连接MI ,过点B 作BK MI ⊥交M 于点K ,连接NK ,直接写出NK 的最小值.7.问题情境:如图1,在Rt △ABC 和Rt △BEF 中,∠ACB =∠EFB =90°,AC =3,BC =4,且M ,N 分别为AE ,CF 的中点.(1)猜想证明:如图2,将Rt △BEF 绕点B 按逆时针方向旋转90°,其他条件不变.试判断54AM CN =是否成立?若成立,请写出证明过程;若不成立,请说明理由.(2)解决问题:如图3,将图2中的Rt △BEF 沿BF 所在直线折叠得到Rt BE F ',连接AE ',CF ,并分别取它们的中点P ,H ,连接CP ,FP ,PH .①试判断CP 与FP 之间的数量关系,并说明理由.②若AB =2BE ',BC =2BF ,请直接写出PH 的长.8.【方法尝试】(1)如图1,矩形ABFC 是矩形ADGE 以点A 为旋转中心,按逆时针方向旋转90︒所得的图形,CB ED 、分别是它们的对角线.则CB 与ED 数量关系________,位置关系________.【类比迁移】(2)如图2,在Rt ABC 和Rt ADE △中,90,9,6,3,2BAC DAE AC AB AE AD ∠=∠=︒====.将DAE 绕点A 在平面内逆时针旋转,设旋转角BAE ∠为()0360αα︒<︒,连接,CE BD .请判断线段CE 和BD 的数量关系和位置关系,并说明理由;【拓展延伸】(3)如图3,在Rt ABC 中,90,6ACB AB ∠=︒=,过点A 作AP BC ∥,在射线AP 上取一点D ,连结CD,使得3tan4ACD∠=,请求写出线段BD的最大值.9.如图①,在正方形ABCD中,点N、M分别在边BC、CD上,连接AM、AN、MN.∠MAN=45°,将△AMD 绕点A顺时针旋转90°,点D与点B重合,得到△ABE.易证:△ANM≌△ANE,从而得DM+BN=MN.【实践探究】(1)在图①条件下,若CN=6,CM=8,则正方形ABCD的边长是______.(2)如图②,点M、N分别在边CD、AB上,且BN=DM.点E、F分别在BM、DN上,∠EAF=45°,连接EF,猜想三条线段EF、BE、DF之间满足的数量关系,并说明理由.(3)【拓展应用】如图③,在矩形ABCD中,AB=6,AD=8,点M、N分别在边DC、BC上,连接AM,AN,已知∠MAN=45°,BN=2,求DM的长.10.小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(1)猜测探究:在△ABC中,AB=AC,M是平面内任意一点,将线段AM绕点A按顺时针方向旋转与∠BAC 相等的角度,得到线段AN,连接NB.①如图1,若M是线段BC上的任意一点,请直接写出∠NAB与∠MAC的数量关系是,NB与MC的数量关系是;②如图2,点E是AB延长线上点,若M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.(2)拓展应用:如图3,在△A 1B 1C 1中,A 1B 1=8,∠A 1B 1C 1=60°,∠B 1A 1C 1=75°,P 是B 1C 1上的任意点,连接A 1P ,将A 1P 绕点A 1按顺时针方向旋转75°,得到线段A 1Q ,连接B 1Q .求线段B 1Q 长度的最小值. 11.如图,在Rt ABC △中,90BAC ∠=︒,AB AC =,D 为AC 边上一点,连接BD ,作AP BD ⊥于点P ,过点C 作CE AC ⊥交AP 延长线于点E .(1)如图1,求证:AD CE =;(2)如图2,以AD ,BD 为邻边作ADBF ,连接EF 交BC 于点G ,连接AG ,①求证:AG EF ⊥;②若点D 为AC 中点,EF 、AB 交于点H ,求BH AB的值. 12.如图1,在ABC 中,90ACB ∠=︒,D 为AC 边上的一点,过点D 作DE AB ⊥,垂足为E ,连接BD ,P 为BD 中点,连接PC ,PE .(1)求证:PC PE =;(2)将图1中ADE 绕着点A 顺时针旋转如图2的位置,其他条件不变,(1)中的结论是否成立?若成立,请证明:若不成立,请说明理由;(3)若10AB =,6AD =,30BAC DAE ∠=∠=︒,在平面内,将Rt ADE △绕点A 旋转一周,当A ,C ,E 三点共线时,请直接写出PCE 的面积.13.如图1,在直角坐标系中,点()2,0A ,点()0,2C ,点D ,点E 分别为OA ,OC 的中点,ODE 绕原点O 顺时针旋转α角(090α︒<<︒)得11OD E ,射线1CD ,1AE 相交于点F .(1)求证:11OCD OAE △≌△;(2)如图2,在ODE 旋转过程中,当点1D 恰好落在线段CE 上时,求AF 的长;(3)如图3,在旋转α角从090α︒≤≤︒逐渐增大ODE 旋转过程中,求点F 的运动路线长.14.已知ABC 为等边三角形,边长为4,点D 、E 分别是BC 、AC 边上一点,连接AD 、BE .AE CD =.(1)如图1,若2AE =,求BE 的长度;(2)如图2,点F 为AD 延长线上一点,连接BF 、CF ,AD 、BE 相交于点G ,连接CG ,已知60,∠=︒=EBF CE CG ,求证:2+=BF GE CF ;(3)如图3,点P 是ABC 内部一动点,顺次连接PA PB PC 、、++的最小值.15.【问题提出】(1)如图1,在ABC 中,90C ∠=︒,BD 平分ABC ∠交AC 于点D ,设CD 的长为m ,点D 到边AB 的距离为n ,则m _______n ;(填“>”“<”或“=”)【问题探究】(2)如图2,在梯形ABCD 中,90A ∠=︒,AD BC ∥,(201AB =,BD 为对角线,且45BDC ∠=︒,求BCD △面积的最小值;【问题解决】(3)某景点有一个形状为菱形ABCD 的草坪,如图3,AB ==60B ∠︒,现欲将该草坪扩建为BEF △,使得点E 、F 分别在BA 、BC 的延长线上,且边EF 经过点D ,为了节省成本,要求扩建后的草坪面积(BEF △的面积)尽可能小,问BEF △的面积是否存在最小值?若存在,求出其最小值;若不存在,请说明理由.16.综合与实践:数学课外小组研究了两个问题,请你帮助解答.问题一:如图1,在矩形ABCD 中,6AB =,8AD =,E ,F 分别为AB ,AD 边的中点,四边形AEGF 为矩形,连接CG .问题二:数学小组对图形的旋转进行了拓展研究,如图4,在平行四边形ABCD 中,=60B ∠︒,6AB =,8AD =,E ,F 分别为AB ,AD 边的中点,四边形AEGF 为平行四边形,连接CG .数学小组发现DF 与CG 仍然存在着特定的数量关系.(1)请直接写出CG 的长是______.如图2,当矩形AEGF 绕点A 旋转(如顺时针旋转)至点G 落在边AB 上时,DF =______,CG =______,DF 与CG 之间的数量关系是______.(2)当矩形AEGF 绕点A 旋转至如图3的位置时,(1)中DF 与CG 之间的数量关系是否还成立?并说明理由.(3)如图5,当平行四边形ABCD 绕点A 旋转(如顺时针旋转),其它条件不变时,数学小组发现DF 与CG 仍然存在着这一特定的数量关系.请你直接写出这个特定的数量关系是______.17.如图,在四边形ABCD 中,AD ∥BC ,∠ABC =90°,AD =CD ,O 是对角线AC 的中点,连接BO 并延长交边AD 或边CD 于点E .(1)如图1,当点E 在AD 上时,连接CE ,求证:四边形ABCE 是矩形.(2)如图2,当点E 在CD 上时,当AC =4,BC =3时,求DAC S △与OBC S的比值.(3)若DE =2,OE =3,直接写出CD 的长.18.已知在正方形ABCD 中,E 是BC 边上一动点,作点B 关于AE 的对称点F ,BF 交AE 于点G ,连结DF .(1)如图1,求DFB ∠的度数;(2)如图2,过点D 作DM BF ⊥交BF 的延长线于点M ,连结,CM CF .若DF CM =,试探究四边形DFCM 的形状,并说明理由;(3)如图3,连结BD ,在AG 上截取=GT GB ,点P ,Q 分别是,AD BD 上的动点.若正方形ABCD 的面积为32,直接写出PTQ 周长的最小值.。

几何类比探究题型-2024年中考数学答题技巧与模板构建(解析版)

几何类比探究题型-2024年中考数学答题技巧与模板构建(解析版)

几何类比探究题型题型解读|模型构建|通关试练几何的类比探究题型是近年中招解答题的必考题型,该题型往往以压轴题的形式出现,有一定的难度。

探究型问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的一类问题.根据其特征大致可分为:条件探究型、结论探究型、规律探究型和存在性探究型等四类。

由于探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.模型01图形旋转模型模型一、A字形(手拉手)及其旋转模型二、K字型及其旋转手拉手模型是有两个等腰的三角形或者两个等边的三角形,他们有一个共同的顶点,且两个等腰三角形的顶角是相等的,那么就可以用角的和差求得共顶点的另外两个角相等等,然后利用等腰的边对应相等,可证明两个三角形全等(边角边)组成这样的图形模样的我们就说他是手拉手模型。

在类比探究题型中,往往会对等腰三角形或者等边三角形进行演变,变成一般三角形进行旋转,通常全等三角形变为相似三角形。

模型特征:双等腰;共顶点;顶点相等;绕着顶点作旋转解题依据:等腰共顶手拉手,旋转全等马上有;左手拉左手,右手拉右手,两根拉线抖一抖,它们相等不用愁;拉线夹角与顶角,相等互补答案有。

模型02图形平移模型探究1.四边形平移变换四边形的平移变换题型中主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平移几何性质、三角形内角和定理的应用,勾股定理,解题的关键是熟练掌握三角形全等或相似的判定方法,画出相应的图形,注意分类讨论.2.三角形平移变换三角形平移变换主要利用三角形全等和三角形相似的判定和性质,勾股定理,矩形的判定和性质,平移性质、平行线的判定和性质,解题的关键是作出辅助线,熟练掌握三角形相似的判定方法.3.其它图形平移类比探究问题综合考查了全等三角形的判定和性质,相似三角形的判定和性质,三角形内角和定理的应用,勾股定理,解题的关键是熟练掌握三角形相似的判定方法,画出相应的图形,注意分类讨论.模型03动点引起的题型探究动点型问题是指题设中的图形中存在一个或多个动点,它们在线段、射线、直线、抛物线、双曲线、弧线等上运动的一类非常具有开放性的题目。

2021年中考复习专题几何第02讲 平行四边形(解析版)A4

2021年中考复习专题几何第02讲 平行四边形(解析版)A4

第02讲平行四边形知识图谱平行四边形知识精讲一.新定义问题四边形有关的新定义一般更偏向于几何综合,结合题目中给出的新定义,探究题目中图形的角度、线段关系,但有时也经常放在坐标系中,注意坐标和线段长度的转化.二.拼接问题注意拼接过程中的相应的线段角度关系的转化,一般与全等三角形综合考查.三.与全等综合问题1.四边形是有三角形组合而成,这一节主要考察结合四边形的性质,证明三角形相等,进而得到对应边、对应角相等.2.熟记一些常见的模型如“弦图模型、手拉手模型”等是提升图形分析速度的基础.四.动点问题动点问题分析的一般方法:1.确定图形中的定点、动点;2.分析运动原因;3.分析运动过程,确定动点的运动轨迹;4.寻找临界情况并计算.三点剖析一.考点:1.新定义问题;2.拼接问题;3.与全等综合问题;4.动点问题.二.重难点:1.新定义问题;2.拼接问题;3.与全等综合问题;4.动点问题.三.易错点:题意理解错误,动点问题过程分析、临界位置寻找错误等.题模精讲题模一:新定义问题例1.1.1如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.猜想结论:(要求用文字语言叙述)写出证明过程(先画出图形,写出已知、求证).(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.例 1.1.2(1)定义:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形.如图1,四边形ABCD为凹四边形.(2)性质探究:请完成凹四边形一个性质的证明.已知:如图2,四边形ABCD是凹四边形.求证:∠BCD=∠B+∠A+∠D.(3)性质应用:如图3,在凹四边形ABCD中,∠BAD的角平分线与∠BCD的角平分线交于点E,若∠ADC=140°,∠AEC=102°,则∠B= °.(4)类比学习:如图4,在凹四边形ABCD中,点E,F,G,H分别是边AD,AB,BC,CD的中点,顺次连接各边中点得到四边形EFGH.若AB=AD,CB=CD,则四边形EFGH是.(填写序号即可)A.梯形 B.菱形 C.矩形 D.正方形.例 1.1.3类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.(2)在探究“等对角四边形”性质时:①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD 成立.请你证明此结论;②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.(3)已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC 的长.∠=∠=∠=∠,例1.1.4如图1,矩形MNPQ中,点E,F,G,H分别在NP,PQ,QM,MN上,若1234则称四边形EFGH为矩形MNPQ的反射四边形.图2,图3,图4中,四边形ABCD为矩形,且BC=.(其中矩形就是长方形)AB=,84(1)在图2、图3中,点E,F分别在BC,CD边上.试利用正方形网格在图上做出矩形ABCD的反射四边形EFGH.(2)求图2,图3中反射四边形EFGH的周长.(3)如图4,请你猜想矩形ABCD 的反射四边形的周长是否为定值?并给出证明. 题模二:拼接问题例1.2.1 将正方形纸片以适当的方式折叠一次,沿折痕剪开后得到两块小纸片,用这两块小纸片拼接成一个新的多边形(不重叠、无缝隙),给出以下结论: ①可以拼成等腰直角三角形; ②可以拼成对角互补的四边形; ③可以拼成五边形; ④可以拼成六边形.其中所有正确结论的序号是________________.例1.2.2 阅读下面材料:小明遇到这样一个问题:如图1,五个正方形的边长都为1,将这五个正方形分割为四部分,再拼接为一个大正方形.小明研究发现:如图2,拼接的大正方形的边长为5,“日”字形的对角线长都为5,五个正方形被两条互相垂直的线段AB ,CD 分割为四部分,将这四部分图形分别标号,以CD 为一边画大正方形,把这四部分图形分别移入正方形内,就解决问题. 请你参考小明的画法,完成下列问题:(1)如图3,边长分别为a ,b 的两个正方形被两条互相垂直的线段AB ,CD 分割为四部分图形,现将这四部分图形拼接成一个大正方形,请画出拼接示意图;(2)如图4,一个八角形纸板有个个角都是直角,所有的边都相等,将这个纸板沿虚线分割为八部分,再拼接成一个正方形,如图5所示,画出拼接示意图;若拼接后的正方形的面积为842 ,则八角形纸板的边长为__________.1 23 41 23 4图1图2图3图4A BCDA B CD M N P QG EFFEEHHGF例1.2.3 如图,在菱形纸片ABCD 中,4cm AB =,120ABC ∠=︒,按下列步骤进行裁剪和拼图: 第一步:如图1,在线段AD 上任意取一点E ,沿EB ,EC 剪下一个三角形纸片EBC (余下部分不再使用);第二步:如图2,沿三角形EBC 的中位线GH 将纸片剪成两部分,并在线段GH 上任意取一点M ,线段BC 上任意取一点N ,沿MN 将梯形纸片GBCH 剪成两部分;第三步:如图3,将MN 左侧纸片绕G 点按顺时针方向旋转180︒,使线段GB 与GE 重合,将MN 右侧纸片绕H 点按逆时针方向旋转180︒,使线段HC 与HE 重合,再与三角形纸片EGH 拼成一个与三角形纸片EBC 面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠) (1)请你在图3中画出拼接成的四边形(2)直接写出拼成的四边形纸片周长的最小值为________cm ,最大值为________cm.题模三:与全等综合问题图 1ACBDE③F① ②③② ①图2A③Ca D ① ②Bb图3图4图5ABCDEMNHG 图1EC图2BE MNHG C图3例1.3.1 在正方形ABCD 中,点E 是对角线AC 的中点,点F 在边CD 上,连接DE 、AF ,点G 在线段AF 上(1)如图①,若DG 是△ADFD 的中线,DG=2.5,DF=3,连接EG ,求EG 的长;(2)如图②,若DG ⊥AF 交AC 于点H ,点F 是CD 的中点,连接FH ,求证:∠CFH=∠AFD ;(3)如图③,若DG ⊥AF 交AC 于点H ,点F 是CD 上的动点,连接EG .当点F 在边CD 上(不含端点)运动时,∠EGH 的大小是否发生改变?若不改变,求出∠EGH 的度数;若发生改变,请说明理由.例1.3.2 在学习了正方形后,数学小组的同学对正方形进行了探究,发现:(1)如图1,在正方形ABCD 中,点E 为BC 边上任意一点(点E 不与B 、C 重合),点F 在线段AE 上,过点F 的直线MN ⊥AE ,分别交AB 、CD 于点M 、N .此时,有结论AE=MN ,请进行证明;(2)如图2:当点F 为AE 中点时,其他条件不变,连接正方形的对角线BD ,MN 与BD 交于点G ,连接BF ,此时有结论:BF=FG ,请利用图2做出证明.(3)如图3:当点E 为直线BC 上的动点时,如果(2)中的其他条件不变,直线MN 分别交直线AB 、CD 于点M 、N ,请你直接写出线段AE 与MN 之间的数量关系、线段BF 与FG 之间的数量关系.例1.3.3 如图,在菱形ABCD 中,,M N 分别是边,AB BC 的中点,MP AB ⊥交边CD 于点P ,连接,NM NP .(1)若60B ∠=,这时点P 与点C 重合,则NMP ∠=___度; (2)求证:NM NP =;(3)当NPC 为等腰三角形时,求B ∠的度数。

(宜宾专版)中考数学 第3编 创新分类突破篇 题型4 几何综合、探究题(精讲)试题-人教版初中九年级

(宜宾专版)中考数学 第3编 创新分类突破篇 题型4 几何综合、探究题(精讲)试题-人教版初中九年级

题型四几何综合、探究题某某市中考创新试题对几何的考查涉及平行线与相交线、三角形、四边形、圆、图形变化、视图与投影几部分,考题多以填空题、选择题、解答题、实践操作题、拓展探究题等形式出现.这部分内容的考题大多为容易题或中难题,但有的与其他知识点综合在一起出现高难度题.高难度题目在填空、选择、解答题中都有,主要综合了三角形、四边形、圆、图形变化等知识.题目涉及图形的面积、动态几何、比例线段、比例性质、圆的相关定理.考查学生的知识面、逻辑思维能力、分析问题和解决问题的能力.【例1】如图,P为⊙O外一点,PA,PB分别切⊙O于A,B两点,OP交⊙O于点C,连结BO并延长交⊙O于点D,交PA的延长线于点E,连结AD,BC.下列结论:①AD∥PO;②△ADE∽△PCB;③tan∠EAD=EDEA;④BD2=2AD·OP.其中一定正确的是(A)A.①③④B.②④C.①②③D.①②③④【解析】连结OA,如图,根据切线的性质得∠APO=∠BPO,OA⊥PA,OB⊥PB,根据等角的余角相等得∠2=∠4,再利用三角形外角性质可得∠3=∠4,于是可判断OP∥AD,则可对①进行判断;根据平行线的性质,由OP∥AD,得到∠ADE=∠POE,再利用邻补角定义得∠POE+∠COB=180°,∠PCB+∠OCB=180°,由于∠COB≠∠OCB,则∠PCB≠∠ADE,所以不能判断△ADE∽△PCB,则可对②进行判断;根据平行线分线段成比例定理,由OP∥AD 得EA AP =ED DO ,且∠EAD=∠EPO,则ED EA =DO AP ,再在Rt △AOP 中,利用正切定理得到tan ∠APO =OAAP =OD AP ,所以tan ∠EAD =ED EA ,则可对③进行判断;连结AB ,证明Rt △ABD ∽△BPO 得到AO OB =BD OP ,由OB =12BD 即可得到BD 2=2AD·OP,则可对④进行判断.【答案】A【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连结圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了相似三角形的判定与性质.【例2】如图为一个半径为4 m 的圆形广场,其中放有六个宽为1 m 的长方形临时摊位,这些摊位均有两个顶点在广场边上,另两个顶点紧靠相邻摊位的顶点,则每个长方形摊位的长为________m .【解析】设圆心是O ,连结OA ,OB ,作OC⊥BC 于C.设长方形的摊位长是2x m ,在直角△OAD 和直角△OBC 中,利用勾股定理和三角函数表示出OC 和OD 的长,根据OC -OD =1即可列方程求得.【答案】-3+372【点评】本题考查了正多边形的计算,解正多边形的问题最常用的方法是转化为直角三角形的计算问题,解方程是本题的关键.【例3】(2015某某中考模拟)在图①至图③中,点B 是线段AC 的中点,点D 是CE 的中点,△BCF 和△CDG 都是等边三角形,点M 为AE 的中点,连结FG.(1)如图①,若点E 在AC 的延长线上,点M 与点C 重合,则△FMG________(选填“是”或“不是”)等边三角形;(2)将图①中的CE 缩短,得到图②.求证:△FMG 为等边三角形;(3)将图②中的CE 绕点E 顺时针旋转一个锐角,得到图③.求证:△FMG 为等边三角形.【解析】(1)如图①,易证FM =BM =MD =MG ,∠FMG =60°,即可得到△FMG 是等边三角形;(2)如图②,易证BD =BC +CD =AM ,从而可得MD =AB.由△BCF 和△CDG 都是等边三角形,可得BF =BC ,CD =GD ,∠FBC =60°,∠GDC =60°,从而可证到MD =BF ,BM =GD ,进而可得到△FBM≌△MDG,则有MF =GM ,∠BFM =∠D MG ,从而可证到∠FMG=60°,即可得到△FMG 为等边三角形;(3)如图③,连结BM ,DM ,根据三角形中位线定理可得BM∥CE,BM =12CE =CD ,DM ∥AC ,DM =12AC =BC.再根据△BCF 和△CDG 都是等边三角形,可得BF =BC ,CD =GD ,∠FBC =60°,∠GDC =60°,从而得到BF =BC =DM ,BM =CD =GD ,∠FBC =∠GDC.由BM∥CE,DM ∥AC ,可得四边形BCDM 是平行四边形,从而得到∠BMD=∠DCB=120°,∠CDM =∠MBC=60°,即可得到∠FBM =∠GDM=120°,即可得到△FBM≌△MDG,则有MF =GM ,∠FMB =∠MGD,从而可得∠FMG=∠BMD-∠FMB-∠GMD=∠BMD-∠MGD-∠GMD =60°,即可得到△FMG 为等边三角形.【答案】解:(1)是;(2)如图②,∵点B 是线段AC 的中点,点D 是CE 的中点,点M 为AE 的中点, ∴AB =BC =12AC ,CD =DE =12CE ,AM =ME =12AE ,∴BD =BC +CD =12AC +12CE =12AE =AM ,即BM +MD =BM +AB ,∴MD =AB. ∵△BCF 和△CDG 都是等边三角形,∴BF =BC ,CD =GD ,∠FBC =60°,∠GDC =60°, ∴MD =AB =BC =BF ,BM =BC -MC =MD -MC =CD =GD.在△FBM 和△MDG 中,⎩⎪⎨⎪⎧BF =DM ,∠FBM =∠MDG,BM =DG ,∴△FBM ≌△MDG , ∴MF =GM ,∠BFM =∠DMG. ∵∠BFM +∠FMB+∠FBM =180°, ∠DMG +∠FMB+∠FMG=180°, ∴∠FMG =∠FBM=60°, ∴△FMG 为等边三角形; (3)如图,连结BM ,DM.∵点B 是线段AC 的中点,点D 是CE 的中点, 点M 为AE 的中点,∴BM ∥CE ,BM =12CE =CD ,DM ∥AC ,DM =12AC =BC.∵△BCF 和△CDG 都是等边三角形,∴BF =BC ,CD =GD ,∠FBC =60°,∠GDC =60°, ∴BF =BC =DM ,BM =CD =GD ,∠FBC =∠GDC. ∵BM ∥CE ,DM ∥AC ,∴四边形BCDM 是平行四边形,∴∠BMD =∠DCB=120°,∠CDM =∠MBC=60°, ∴∠FBM =∠GDM=120°.在△FBM 和△MDG 中,⎩⎪⎨⎪⎧BF =DM ,∠FBM =MDG ,BM =DG ,∴△FBM ≌△MDG , ∴MF =GM ,∠FMB =∠MGD,∴∠FMG =∠BMD-∠FMB-∠GMD=∠BMD-∠MGD-∠GMD=120°-(180°-120°)=60°,∴△FMG为等边三角形.【点评】本题主要考查了等边三角形的判定与性质、全等三角形的判定与性质、三角形的中位线定理、平行四边形的判定与性质等知识,借鉴解决第(2)小题的经验(通过证明△FBM≌△MDG来解决问题),是解决第(3)小题的关键.【针对练习】1.如图,直径AB为12的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是(B)A.12πB.24πC.6πD.36π,(第1题图)) ,(第2题图)) 2.如图,矩形纸片ABCD中,AB=2,AD=6,将其折叠,使点D与点B重合,tan∠BFE的值是(D)A.12B.1 C.2 D.33.如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BO C=(A)A.130°B.100°C.50°D.65°,(第3题图)) ,(第4题图)) 4.如图,BC是半径为1的⊙O的直径,点P在BC的延长线上,PA是⊙O的切线,A为切点,AD⊥BC于点D,且点D是OC中点,则PB· PC= __3__.5.(2014某某创新考试)如图,一组平行线l1,l2,l3分别与∠O的两边相交于点A1,A2,A3和点B1,B2,B3,且梯形A1B1B2A2,A2B2B3A3的面积相等.设线段OA1=1,OA2=2,则线段A2A3=__7-2__.,(第5题图)) ,(第6题图))6.如图,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,若BF =AC ,则∠ABC=__45__°. 7.(2015某某拔尖考试)如图,⊙O 是Rt △ABC 的外接圆,∠ACB =90°,E 为BC 上一点,连结AE 与OC 交于点D ,∠CAE =∠CBA.(1)求证:AE⊥OC;(2)若⊙O 的半径为5,AE 的长为6,求AD 的长. 解: (1)∵∠ACB=90°, ∴∠CBA +∠CAB=90°. ∵∠CAE =∠CBA, ∴∠CAE +∠CAB=90°. ∵OA =OC , ∴∠CAO =∠ACO, ∴∠CAE +∠ACO=90°, ∴∠ADC =90°, ∴AE ⊥OC ;(2)∵∠CAE=∠CBA,∠ACB =∠ACE, ∴△ACE ∽△BCA , ∴CE AC =AE AB =610=35, ∴设AC =5x ,CE =3x ,∴AE =(5x )2+(3x )2=34x =6, ∴x =33417,∴AC =153417,∵∠CAE =∠CAD,∠ACE =∠ADC,∴△ACD∽△AEC,∴ACAE=ADAC,∴AD=AC2AE=7517.8.如图,在梯形ABCD中,AB∥DC,∠ABC=90°,AB=2,BC=4,tan∠ADC=2.(1)求证:DC=BC;(2)E是梯形内一点,连结DE,CE,将△DCE绕点C顺时针旋转90°,得△BCF,,并证明你的结论;(3)在(2)的条件下,当CE=2BE,∠BEC=135°时,求cos∠BFE的值.解:(1)作AP⊥DC于点P.∵AB∥CD,∠ABC=90°,∴四边形APCB是矩形,∴PC=AB=2,AP=BC=4.在Rt△ADP中,tan∠ADC=APDP=2,∴DP=2,∴DC=DP+PC=4=BC;(2)EF=2CE.证明如下:由△DCE绕点C顺时针旋转90°得△BCF,∴CF=CE,∠ECF=90°,∴EF=CF2+CE2=2CE2=2CE;(3)由(2)得∠CEF=45°.∵∠BEC=135°,∴∠BEF=90°.设BE=a,则CE=2a,∴EF =2CE 2=22a.在Rt △BEF 中,由勾股定理得:BF =3a , ∴cos ∠BFE =EF BF =223.9.半径为2.5的⊙O 中,直径AB 的不同侧有定点C 和动点P.已知BC∶CA=4∶3,点P 在AB ︵上运动,过点C 作CP 的垂线,与PB 的延长线交于点Q.(1)当点P 与点C 关于AB 对称时,求CQ 的长; (2)当点P 运动到AB ︵的中点时,求CQ 的长;(3)当点P 运动到什么位置时,CQ 取到最大值?求此时CQ 的长. 解:(1)当点P 与点C 关于AB 对称时,CP ⊥AB ,设垂足为D. ∵AB 为O 的直径, ∴∠ACB =90°,AB =5. 又∵BC∶CA=4∶3, ∴BC =4,AC =3. 又∵AC·BC=AB·CD, ∴CD =125,∴PC =245.在Rt △ACB 和Rt △PCQ 中,∠ACB =∠PCQ=90°,∠CAB =∠CPQ, ∴Rt △ACB ∽Rt △PCQ , ∴AC BC =PC CQ, ∴CQ =BC ·PC AC =43PC =325;(2)当点P 运动到AB ︵的中点时,过点B 作BE⊥PC 于点E ,如答图.∵P 为AB ︵的中点, ∴∠PCB =45°, CE =BE =22BC =2 2. 又∠CPB=∠CAB,∴tan ∠CPB =tan ∠CAB =43,∴PE =BE tan ∠CPB =322,∴PC =PE +EC =722,∴CQ =tan ∠CPB ·PC =1423;(3)点P 在弧AB 上运动时,恒有 CQ =BC ·PC AC =43PC ;故PC 最大时,CQ 取到最大值.当PC 过圆心O ,即PC 取最大值5时,CQ 最大值为203.10.在矩形ABCD 中,AB =a ,AD =b ,点M 为BC 边上一动点(点M 与点B ,C 不重合),连结AM ,过点M 作MN⊥AM,垂足为M ,MN 交CD 或CD 的延长线于点N.(1)求证:△CMN∽△BAM;(2)设BM =x ,=y ,求y 关于x 的函数表达式.当x 取何值时,y 有最大值?并求出y 的最大值;(3)当点M 在BC 上运动时,求使得下列两个条件都成立的b 的取值X 围:①点N 始终在线段CD 上,②点M 在某一位置时,点N 恰好与点D 重合.解:(1)∵四边形ABCD 是矩形, ∴∠B =∠C=90°, ∴∠BAM +∠AMB=90°. ∵MN ⊥AM, 即∠AMN=90°, ∴∠CMN +∠AMB=90°, ∴∠BAM =∠CMN, ∴△CMN ∽△BAM ; (2)∵△CMN∽△BAM, ∴CMBA =BM. ∵BM =x ,=y ,AB =a ,BC =AD =b , ∴b -x a =yx, ∴y =1a (bx -x 2)=-1a(x 2-bx)=-1a ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -b 22-b 24=-1a ⎝ ⎛⎭⎪⎫x -b 22+b 24a∵-1a<0,∴当x =b 2时,y 取最大值,最大值为b24a ;(3)由题可知:当0<x<b 时,y 的最大值为a ,即b24a =a ,解得b =2a.∴要同时满足两个条件,b 的值为2a.11.如图,⊙O 的半径为1,直线CD 经过圆心O ,交 ⊙O 于C ,D 两点,直径AB⊥CD,点M 是直线CD 上异于点C,O,D的一个动点,AM所在的直线交⊙O于点N,点P是直线CD上另一点,且PM=PN.(1)当点M在⊙O内部,如图①,试判断PN与⊙O的关系,并写出证明过程;(2)当点M在⊙O外部,如图②,其他条件不变时,(1)的结论是否还成立?请说明理由;(3)当点M在⊙O外部,如图③,∠AMO=15°,求图中阴影部分的面积.解:(1)PN与⊙O相切.如图①,连结ON,则∠ONA=∠OAN,∵PM=PN,∴∠PNM=∠PMN.∵∠AMO=∠PMN,∴∠PNM=∠AMO,∴∠PNO=∠PNM+∠ONA=∠AMO+∠OAN=90°,即PN与⊙O相切;(2)成立.如图②,连结ON,则∠ONA=∠OAN.∵PM=PN,∴∠PNM=∠PMN.在Rt△AOM中,∵∠OMA+∠OAM=90°,∴∠PNM+∠ONA=90°,∴∠PNO=180°-90°=90°,即PN与⊙O相切;(3) 如图③,连结ON,由(2)可知∠ONP=90°.∵∠AMO=15°,PM=PN,∴∠PNM=15°,∠OPN=30°,∴∠PON=60°,∠AON=30°. 作NE⊥OD,垂足为点E,则NE=ON·sin60°=1×32=32,∴S阴影=S△AOC+S扇形AON-S△CON=12OC·OA+30360×π×12-12CO·NE=12+112π-34.。

中考综合题(四)----《探究性问题——动态几何》

中考综合题(四)----《探究性问题——动态几何》

中考综合题(四)----《探究性问题——动态几何》一、知识网络《动态几何》涉及的几种情况 ⎧⎪⎨⎪⎩动点问题动线问题动形问题二、【精典题型】1.【05重庆课改】如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动 点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 与△AOB 相似? (3) 当t 为何值时,△APQ 的面积为524个平方单位?2.【05青岛】如图,在矩形ABCD 中,AB =6米,BC =8米,动点P 以2米/秒的速度从点A 出发,沿AC 向点C 移动,同时动点Q 以1米/秒的速度从点C 出发,沿CB 向点B 移动,设P 、Q 两点移动t 秒(0<t<5)后,四边形ABQP 的面积为S 米2。

(1)求面积S 与时间t 的关系式;(2)在P 、Q 两点移动的过程中,四边形ABQP 与△CPQ 的面积能否相等?若能,求出此时点P 的位置;若不能,请说明理由。

xB3.【05乌鲁木齐】四边形OABC是等腰梯形,OA∥BC。

在建立如图的平面直角坐标系中,A (4,0),B(3,2),点M从O点以每秒2单位的速度向终点A运动;同时点N从B点出发以每秒1个单位的速度向终点C运动,过点N作NP垂直于x轴于P点连结AC交NP于Q,连结MQ。

(1)写出C点的坐标;(2)若动点N运动t秒,求Q点的坐标(用含t的式子表示(3)其△AMQ的面积S与时间t的函数关系式,并写出自变量t的取值范围。

(4)当t取何值时,△AMQ的面积最大;(5)当t为何值时,△AMQ为等腰三角形。

4.【05宜昌】如图1,已知△ABC的高AE=5,BC=403,∠ABC=45°,F是AE上的点,G是点E关于F的对称点,过点G作BC的平行线与AB交于H、与AC交于I,连接IF并延长交BC于J,连接HF并延长交BC于K.(1)请你探索并判断四边形HIKJ是怎样的四边形?并对你得到的结论予以证明;(2)当点F在AE上运动并使点H、I、K、J都在△ABC的三条边上时,求线段AF长的取值范围.(图2供思考用)CJ E CBA图2图15.【05漳州】如图1,在直角梯形ABCD 中,AD ∥BC ,顶点D ,C 分别在AM ,BN 上运动(点D 不与A 重合,点C 不与B 重合),E 是AB 上的动点(点E 不与A ,B 重合),在运动过程中始终保持DE ⊥CE ,且AD+DE=AB=a 。

专题04 几何初步与三角形中考1年模拟数学真题分项汇编

专题04 几何初步与三角形中考1年模拟数学真题分项汇编

专题04几何初步与三角形5年中考真题一、单选题1.【2018年】下列图形具有稳定性的是()A.B.C.D.2.【2021年】如图,已知四条线段a,b,c,d中的一条与挡板另一侧的线段m在同一直线上,请借助直尺判断该线段是()A.a B.bC.c D.d3.【2020年】如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条4.【2022年】平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是()A.1B.2C.7D.85.【2018年】如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°6.【2020年】如图,从笔直的公路l 旁一点P 出发,向西走6km 到达l ;从P 出发向北走6km 也到达l .下列说法错误..的是()A .从点P 向北偏西45°走3km 到达lB .公路l 的走向是南偏西45°C .公路l 的走向是北偏东45°D .从点P 向北走3km 后,再向西走3km 到达l7.【2022年】要得知作业纸上两相交直线AB ,CD 所夹锐角的大小,发现其交点不在作业纸内,无法直接测量.两同学提供了如下间接测量方案(如图1和图2):对于方案Ⅰ、Ⅱ,说法正确的是()A .Ⅰ可行、Ⅱ不可行B .Ⅰ不可行、Ⅱ可行C .Ⅰ、Ⅱ都可行D .Ⅰ、Ⅱ都不可行8.【2021年】定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,ACD ∠是ABC 的外角.求证:ACD A B ∠=∠+∠.下列说法正确的是()A.证法1还需证明其他形状的三角形,该定理的证明才完整B.证法1用严谨的推理证明了该定理C.证法2用特殊到一般法证明了该定理D.证法2只要测量够一百个三角形进行验证,就能证明该定理9.【2019年】下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()∠B.@代表同位角A.◎代表FEC∠D.※代表ABC.▲代表EFC10.【2022年】题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:2d≥,乙答:d=1.6,丙答:d=,则正确的是()A.只有甲答的对B.甲、丙答案合在一起才完整C.甲、乙答案合在一起才完整D.三人答案合在一起才完整11.【2018年】已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C12.【2020年】如图1,已知ABC∠,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在ABC∠内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.0a>,12b DE>的长C.a有最小限制,b无限制D.0a≥,12b DE<的长13.【2018年】尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ14.【2020年】如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大..的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,415.【2022年】如图,将△ABC折叠,使AC边落在AB边上,展开后得到折痕l,则l是△ABC的()A.中线B.中位线C.高线D.角平分线16.【2022年】如图,直线l ,m 相交于点O .P 为这两直线外一点,且 2.8OP =.若点P 关于直线l ,m 的对称点分别是点1P ,2P ,则1P ,2P 之间的距离可能..是()A .0B .5C .6D .717.【2021年】图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB =()A .1cmB .2cmC .3cmD .4cm二、填空题18.【2021年】下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B Ð,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应___________(填“增加”或“减少”)___________度.19.【2022年】如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A ,B 的连线与钉点C ,D 的连线交于点E ,则(1)AB 与CD 是否垂直?______(填“是”或“否”);(2)AE =______.20.【2019年】勘测队按实际需要构建了平面直角坐标系,并标示了A ,B ,C 三地的坐标,数据如图(单位:km ).笔直铁路经过A ,B 两地.(1)A ,B 间的距离为______km ;(2)计划修一条从C 到铁路AB l ,并在l 上建一个维修站D ,使D 到A ,C 的距离相等,则C ,D 间的距离为______km .三、解答题21.【2019年】已知:整式()()22212A n n -=+,整式0B >.尝试:化简整式A .发现:2A B =,求整式B .联想:由上可知,222212B n n +=(﹣)(),当n >1时2,1,2,n n B -为直角三角形的三边长,如图.填写下表中B 的值:直角三角形三边21n ﹣2n B 勾股数组Ⅰ/8勾股数组Ⅱ35/22.【2020年】如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN -匀速移动,到达点N 时停止;而点Q 在AC 边上随P 移动,且始终保持APQ B ∠=∠.(1)当点P 在BC 上时,求点P 与点A 的最短距离;(2)若点P 在MB 上,且PQ 将ABC ∆的面积分成上下4:5两部分时,求MP 的长;(3)设点P 移动的路程为x ,当03≤≤及39x ≤≤时,分别求点P 到直线AC 的距离(用含x 的式子表示);(4)在点P 处设计并安装一扫描器,按定角APQ ∠扫描APQ ∆区域(含边界),扫描器随点P 从M 到B 再到N 共用时36秒.若94AK =,请直接..写出点K 被扫描到的总时长.23.【2021年】在一平面内,线段20AB =,线段10BC CD DA ===,将这四条线段顺次首尾相接.把AB 固定,让AD 绕点A 从AB 开始逆时针旋转角()0αα>︒到某一位置时,BC ,CD 将会跟随出现到相应的位置.(1)论证如图1,当//AD BC 时,设AB 与CD 交于点O ,求证:10AO =;(2)发现当旋转角60α=︒时,ADC ∠的度数可能是多少?(3)尝试取线段CD 的中点M ,当点M 与点B 距离最大时,求点M 到AB 的距离;(4)拓展①如图2,设点D 与B 的距离为d ,若BCD ∠的平分线所在直线交AB 于点P ,直接..写出BP 的长(用含d 的式子表示);α的余弦值.②当点C在AB下方,且AD与CD垂直时,直接..写出1年模拟新题一、单选题1.(2022·河北邯郸·二模)用“垂线段最短”来解释的现象是()A.B.C.D.2.(2022·河北张家口·一模)如图,对于四条线段a,b,c,d,请借助直尺或圆规判断长度最大的为()A.a B.b C.c D.d∠的一边OB经过的点是()3.(2022·河北邯郸·一模)如图,AOBA .P 点B .Q 点C .M 点D .N 点4.(2022·河北石家庄·三模)如图是两条平行线,则表示这两条平行线间距离的线段有()A .0条B .1条C .2条D .无数条5.(2022·河北·石家庄市第四十一中学模拟预测)如图,在平整的桌面上画一条直线l ,将三边都不相等的三角形纸片ABC 平放在桌面上,使AC 边与l 对齐,此时ABC 的内心是点P ;将纸片绕点C 顺时针旋转,使点B 落在l 上的点B '处,点A 落在点A '处,得到A B C ''V 的内心点P '.下列结论正确的是()A .PP '与l 平行,PC 与PB ''平行B .PP '与l 平行,PC 与P B ''不平行C .PP '与l 不平行,PC 与P B ''平行D .PP '与l 不平行,PC 与P B ''不平行6.(2022·河北·模拟预测)如图,已知直线AE ∥BD ,且∠C =15°,∠1=110°,则∠2的度数是()A .45°B .55°C .65°D .75°7.(2022·河北唐山·三模)如图,点O 为ABC 的内心,60B ︒∠=,BC AB ≠,点M ,N 分别为AB ,BC 上的点,且OM ON =.甲、乙、丙三人有如下判断:甲:120MON ∠=︒;乙:四边形OMBN 的面积为定值;丙:当MN BC ⊥时,MON △的周长有最小值.则下列说法正确的是()A .只有甲正确B .只有乙错误C .乙、丙都正确D .只有丙错误8.(2022·河北邯郸·三模)下列尺规作图.能得到∠ADC =2∠B 的是()A .B .C .D .9.(2022·河北保定·模拟预测)如图,在ABC 中,AB AC =,以点A 为圆心,适当长为半径画弧,分别交AB ,AC 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点P ,作射线AP ,交BC 于点D ,连接PB ,PC .给出下列说法:①PB PC =;②AD 垂直平分BC ;③BC 平分ABP ∠;④PB AB =.其中正确的有()A .①②B .②③C .③④D .②④10.(2022·河北保定·三模)下列尺规作图,能确定AD 是ABC 的中线的是()A.B.C.D.11.(2022·河北石家庄·三模)已知点A和直线MN,过点A用尺规作出直线MN的垂线,下列作法中错误的是()A.B.C.D.二、填空题12.(2022·河北唐山·一模)A、B、C、D四个车站的位置如图所示.(1)C、D两站的距离为_____;(2)若a=3,C为AD的中点,b=______.13.(2022·河北邢台·一模)为增强学生体质,某学校将“抖空竹”引入阳光体育一小时活动.图1是一位同学抖空竹时的一个瞬间,数学老师把它抽象成图2的数学问题:已知AB∥CD,∠EAB=80°,∠ECD=110°.求∠AEC的度数.小明在解决过程中,过E点作EF∥CD,则可以得到EF∥AB,其理由是_____,根据这个思路可得∠AEC=_____°.14.(2022·河北张家口·一模)如图,Rt ABC 和Rt DCE 是一副含有30°、45︒角相互重叠的三角板,且直角顶点重合,若两直角重叠形成的角为63︒,则ACE ∠=__________︒,图中α∠的度数为__________︒;15.(2022·河北保定·一模)将一副三角尺如图所示叠放在一起,若8cm AB =,则(1)AC =________;(2)阴影部分的面积是________2cm .16.(2022·河北·石家庄市第四十一中学模拟预测)如图,ABC 中,AB AC =,30B ∠=︒,底边上的高1AD =,E 是AB 中点.P 是DC 上一点,连接PE ,将PE 绕点E 逆时针旋转60︒交DA 的延长线于点F .(1)若40AFE ∠=︒,则PED ∠=________︒;(2)若P 为DC 的中点,则AF =________.17.(2022·河北邯郸·二模)如图,在ABC 中,90,2,4ABC AB BC ∠=︒==,将ABC 绕点C 顺时针旋转90︒得到EDC △,连接AE .(1)CAE ∠=__________;(2)若F 点为AE 的中点,则BF =____________.18.(2022·河北承德·一模)一块直角三角板ABC 如图所示放置,90ACB ∠=︒,12cm BC =,8cm AC =,测得BC 边在平面的中心投影11B C 长为24cm ,则11A B 长为________cm ,111A B C △的面积是________2cm .19.(2022·河北承德·一模)如图,如果边长为1的正六边形ABCDEF 绕着顶点A 顺时针旋转60︒后与正六边形AGHMNP 重合.(1)则BD 的长是________;(2)点E 在整个旋转过程中,所经过的路径长为________(结果保留π).20.(2022·河北秦皇岛·一模)如图,在等边三角形ABC 中,点D 、点E 分别在BC ,AC 上,且∠ADE =60°,(1)写出和∠CDE 相等的角:______;(2)若AB =3,BD =1,则CE 长为______.21.(2022·河北·石家庄市第二十八中学一模)如图是数学兴趣小组研究某种在同一平面进行摆动的机械装置的示意图.支架ABC 是BC 在地面上的等边三角形,摆动臂AD 可绕点A 旋转,摆动臂DM 可绕点D 旋转.已知BC =5分米,AD =3分米,DM =1分米.(1)当A ,D ,M 三点在同一直线上时,AM 的长为________分米;(2)当AD ⊥AB 时,S △ACM 的最大值是________平方分米.三、解答题22.(2022·河北·平泉市教育局教研室二模)如图,BD BC =,点E 在BC 上,且BE AC =,DE AB =.(1)求证:ABC EDB ≌;(2)判断AC 和BD 的位置关系,并说明理由.23.(2022·河北保定·三模)如图,点D 在等边ABC 的外部,E 为BC 边上的一点,AD CD =,DE 交AC 于点F ,AB DE ∥.(1)判断CEF △的形状,并说明理由;(2)若10BC =,4CF =,求DE 的长.24.(2022·河北保定·模拟预测)将两个三角形纸板ABC 和DBE 按图所示的方式摆放,连接AD ,DC ,CE .已知DBA CBE ∠=∠,BDE BAC ∠=∠,且6AC DE ==.(1)求证:ABC DBE ≌;(2)若6DA DC ==,且EDB CDB ∠=∠.①求BED ∠的度数;②若EC //AB ,直接写出DEC S 的值.25.(2022·河北·石家庄市第四十一中学模拟预测)如图,在ABC 中,5AB AC ==,8BC =,点D 在BC 边上,以每秒2个单位的速度从点B 向点C 运动,ADE B ∠=∠,DE 交AC 于点E .设运动时间为t .(1)当DE AB ∥时,求证:DE EC =;(2)判断线段AD 和AE 的数量关系,并证明;(3)求AE 的最小值;(4)若DCE 为直角三角形,直接写出t 的值.26.(2022·河北唐山·二模)如图1,在等腰直角三角形ABC 中,∠BAC =90°,点E ,F 分别为AB ,AC 的中点,H 为线段EF 上一动点(不与点E ,F 重合),将线段AH 绕点A 逆时针方向旋转90°得到AG ,连接GC ,HB .(1)证明:△AHB ≌△AGC ;(2)如图2,连接GF ,HG ,HG 交AF 于点Q .①证明:在点H 的运动过程中,总有∠HFG =90°;②若AG =QG ,AB =AC =4,求EH 的长度.27.(2022·河北保定·二模)如图,AOB 中,6OA OB ==,将AOB 绕点O 逆时针旋转得到COD △.OC 与AB 交于点G ,CD 分别交OB 、AB 于点E 、F .(1)A ∠与D ∠的数量关系是:A ∠________D ∠;(2)求证:AOG DOE △≌△;(3)当A ,O ,D 三点共线时,恰好OB CD ⊥,求此时CD 的长.28.(2022·河北保定·二模)两个完全相同的直角三角板按如图1所示方式放置,30DFE ACB ∠=∠=︒,直角顶点A 和D 重合,4AB =,连接BE ,CF .(1)论证:求证:~ABE ACF .(2)探索:如图2,M 、N 为两个三角板斜边上的两动点,且NE BM =,120EAB ∠=︒,当MN 最小时,求AM 的长.(3)拓展:将两个三角板按图3所示方式放置,直角顶点D 在BC 上,两三角板的直角边分别交于P 、Q 两点,当DPQ V 与ABC 相似时,求CD 的长.29.(2022·河北邯郸·二模)如图,点E 是ABC 的边BC 上一点,DAB DEB CAE ∠∠∠==,AD AB =,AB DE 、相交于点F .(1)求证:ADE ABC ≌;(2)若70C ∠= .①当AE BE =时,求DAE ∠的度数;②当ABC 的外心在其内部时,直接写出B Ð的取值范围.30.(2022·河北·石家庄市第二十八中学二模)如图(1)和图(2),在同一平面内,线段10AB =+线段10BC CD DE EA ====,将这五条线段顺次首尾相接.把AB 固定,点D 在AB 上可以左右移动,让AE 绕点A 从AB 开始逆时针旋转角α到某一位置时,BC ,CD 将会跟随到AB 的上方或下方.(1)如图(2),当点C ,D ,E 在同一条直线上时,求证:AD BD =;(2)当α最大时,求cos α;(3)连接CE,则①CE长度的最小值为;α=︒时,求出CE长度的所有可能值.②当旋转角60。

2023年九年级中考数学复习:几何探究压轴题(角度问题)(附答案)

2023年九年级中考数学复习:几何探究压轴题(角度问题)(附答案)

2023年九年级中考数学复习:几何探究压轴题(角度问题)1.已知:正方形ABCD ,以A 为旋转中心,旋转AD 至AP ,连接BP DP 、.(1)若将AD 顺时针旋转30︒至AP ,如图1所示,求BPD ∠的度数? (2)若将AD 顺时针旋转α度()090α︒<<︒至AP ,求BPD ∠的度数?(3)若将AD 逆时针旋转α度()0180α︒<<︒至AP ,请分别求出090α︒<<︒、90α=︒、90180α︒<<︒三种情况下的BPD ∠的度数(图2、图3、图4).2.如图1所示,将一个长为6宽为4的长方形ABEF ,裁成一个边长为4的正方形ABCD 和一个长为4、宽为2的长方形CEFD 如图2.现将小长方形CEFD 绕点C 顺时针旋转至CE F D ''',旋转角为a .(1)当点D 恰好落在EF 边上时,求旋转角a 的值;(2)如图3,G 为BC 中点,且0°<a <90°,求证:GD E D ''=;(3)小军是一个爱动手研究数学问题的孩子,他发现在小长方形CEFD 绕点C 顺时针旋转一周的过程中,DCD '与CBD '△存在两次全等,请你帮助小军直接写出当DCD '与CBD '△全等时,旋转角a 的值.3.图1是边长分别为a 和()b a b >的两个等边三角形纸片ABC 和CDE 叠放在一起(C 与C '重合)的图形.(1)操作:固定ABC ,将CDE 绕点C 按顺时针方向旋转20°,连结AD ,BE ,如图2,则ECA ∠=___ ___度,并直接写出线段BE 与AD 的数量关系____ .(2)操作:若将图1中的CDE ,绕点C 按顺时针方向旋转120°,使点B 、C 、D 在同一条直线上,连结AD 、BE ,如图3.①线段BE 与AD 之间是否仍存在(1)中的结论?若是,请证明;若不是,请直接写出BE 与AD 之间的数量关系;②求APB ∠的度数.(3)若将图1中的CDE ,绕点C 按逆时针方向旋转一个角()0360αα<<︒,当α等于多少度时,BCD △的面积最大?请直接写出答案.4.我们定义:如图1,在△ABC 中,把AB 绕点A 顺时针旋转α(0°<α<180°)得到AB ',把AC 绕点A 逆时针旋转β得到AC ′,连接B 'C ',当a +β=180°时,我们称△AB 'C '是△ABC 的“旋补三角形”,△AB 'C 边B 'C '上的中线AD 叫做△ABC 的“旋补中线”.(1)[特例感知]在图2,图3中,△AB 'C ′是△ABC 的“旋补三角形”,AD 是△ABC 的“旋补中线”. ①如图2,当△ABC 为等边三角形,且BC =6时,则AD 长为 . ②如图3,当∠BAC =90°,且BC =7时,则AD 长为 .(2)[猜想论证]在图1中,当△ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明.(如果你没有找到证明思路,可以考虑延长AD 或延长B 'A ,…)(3)[拓展应用]如图4,在四边形ABCD 中,∠BCD =150°,AB =12,CD =6,以CD 为边在四边形ABCD 内部作等边△PCD ,连接AP ,BP .若△P AD 是△PBC 的“旋补三角形”,请直接写出△PBC 的“旋补中线”长及四边形ABCD 的边AD 长.5.如图,已知正方形ABCD ,点E 为AB 上的一点,EF AB ⊥,交BD 于点F .(1)如图1,直按写出DFAE的值____ ___; (2)将△EBF 绕点B 顺时针旋转到如图2所示的位置,连接AE 、DF ,猜想DF 与AE 的数量关系,并证明你的结论;(3)如图3,当BE =BA 时,其他条件不变,△EBF 绕点B 顺时针旋转,设旋转角为(0360)αα︒<<︒,当α为何值时EA =ED ?请在图3或备用图中画出图形并求出α的值.6.如图,已知正方形ABCD ,将AD 绕点A 逆时针方向旋转(090)n n ︒<<到AP 的位置,分别过点C D 、作,CE BP DF BP ⊥⊥,垂足分别为点E 、F .(1)求证:CE EF =;(2)联结CF ,如果13DP CF =,求ABP ∠的正切值;(3)联结AF ,如果AF AB =,求n 的值.7.把两个等腰直角△ABC 和△ADE 按如图1所示的位置摆放,将△ADE 绕点A 按逆时针方向旋转,如图2,连接BD ,EC ,设旋转角α(0°<α<360°).(Ⅰ)当DE ⊥AC 时,旋转角α= 度,AD 与BC 的位置关系是 ,AE 与BC 的位置关系是 ;(Ⅱ)当点D 在线段BE 上时,求∠BEC 的度数; (Ⅲ)当旋转角α= 时,△ABD 的面积最大.8.已知:在Rt ABC 中,90ABC ∠=︒,30BAC ∠=︒,将ABC 绕点A 顺时针旋转一定的角度α得到AED △,点B 、C 的对应点分别是E 、D .(1)如图1,若60α=︒时,连接BE ,求证:AB BE =; (2)如图2,当点E 恰好在AC 上时,求CDE ∠的度数;(3)如图3,点B 、C 的坐标分别是()0,0,()0,2,点Q 是线段AC 上的一个动点,点M 是线段AO 上的一个动点,是否存在这样的点Q 、M 使得CQM 为等腰三角形且AQM 为直角三角形?若存在,请求出满足条件的点M 的坐标;若不存在,请说明理由.9.把边长分别为4和6的矩形ABCO 如图放在平面直角坐标系中,将它绕点C 顺时针旋转a 角,旋转后的矩形记为矩形EDCF .在旋转过程中,(1)如图①,当点E 在射线CB 上时,E 点坐标为;(2)当△CBD 是等边三角形时,旋转角a 的度数是(a 为锐角时); (3)如图②,设EF 与BC 交于点G ,当EG=CG 时,求点G 的坐标;(4)如图③,当旋转角a=90°时,请判断矩形EDCF 的对称中心H 是否在以C 为顶点,且经过点A 的抛物线上.10.如图,ABC 是等边三角形,点D 是BC 边的中点,以D 为顶点作一个120︒的角,角的两边分别交直线AB AC 、于M 、N 两点,以点D 为中心旋转MDN ∠(MDN ∠的度数不变)(1)如图①,若DM AB ⊥,求证:BM CN BD +=;(2)如图②,若DM 与AB 不垂直,且点M 在边AB 上,点N 在边AC 上时,(1)中的结论是否成立?并说明理由;(3)如图③,若DM 与AB 不垂直,且点M 在边AB 上,点N 在边AC 的延长线上时,(1)中的结论是否成立?若不成立,写出BM CN BD 、、之间的数量关系,并说明理由.11.如图1,在Rt ABC △中,90,ACB AC BC ∠==,点D 为AB 边上的一点,将BCD △绕点C 逆时针旋转90得到ACE △,易得BCD ACE ≌,连接BE .(1)求BCE ACD ∠∠+的度数.(2)当5,BC BD ==BE CE 、的长.(3)如图2,在(2)的条件下,取AD 中点F ,连接CF 交BE 于H ,试探究线段BE CF 、的数量关系和位置关系,并说明理由.12.如图①,ABC 和ADE 是有公共顶点的等腰直角三角形,90BAC DAE ∠=∠=︒,点P 为射线,BD CE 的交点.(1)如图②,将ADE 绕点A 旋转,当C 、D 、E 在同一条直线上时,连接BD 、BE ,求证:BD CE =且BD CE ⊥.(2)若8,4AB AD ==,把ADE 绕点A 旋转, ①当90EAC ∠=︒时,求PB 的长;②旋转过程中线段BP 长的最小值是_____ __.13.如图1,ABC 中,90,30,ACB B AD ∠=︒∠=︒是角平分线,点E 、F 分别在边AC 、BC 上,45,CEF CF CD ∠=︒<、将CEF △绕点C 按逆时针方向旋转,使得EF 所在直线交线段AD 于点M ,交线段AB 于点N .(1)当旋转75°时,如图2,直线EF 与AD 的位置关系是____ __,ANM ∠=__ ____°; (2)在旋转一周过程中,试探究:当CE 旋转多少度时,AMN 中有两个角相等.14.菱形ABCD 的对角线AC ,BD 交于点O .(1)如图1,过菱形ABCD 的顶点A 作AE BC ⊥于点E ,交OB 于点H ,若6AB AC ==,求OH 的长; (2)如图2,过菱形ABCD 的顶点A 作AF AD ⊥,且AF AD =,线段AF 交OB 于点H ,交BC 于点E .当D ,C ,F 三点在同一直线上时,求证:2OH OA +=; (3)如图3,菱形ABCD 中,=45ABC ∠︒,点P 为直线AD 上的动点,连接BP ,将线段BP 绕点B 逆时针旋转60°得到线段BQ ,连接AQ ,当线段AQ 的长度最小时,直接写出BAQ ∠的度数.15.(1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图1,点P 是等边三角形ABC 内一点,P A =1,PB PC =2.求∠BPC 的度数.为利用已知条件,不妨把△BPC 绕点C 顺时针旋转60°得AP C '△,连接PP '.利用这种变换可以求∠BPC 的度数,请写出推理过程; (2)类比迁移如图2,点P 是等腰Rt △ABC 内一点,∠ACB =90°,P A =2,PB PC =1.求∠APC 的度数.16.ABC 为等边三角形,AB =8,AD ⊥BC 于点D ,E 为线段AD 上一点,AE =AE 为边在直线AD 右侧构造等边三角形AEF ,连接CE ,N 为CE 的中点.(1)如图1,EF 与AC 交于点G ,连接NG ,BE ,直接写出NG 与BE 的数量关系;(2)如图2,将AEF △绕点A 逆时针旋转,旋转角为α,M 为线段EF 的中点,连接DN ,MN .当30120α︒<<︒时,猜想∠DNM 的大小是否为定值,如果是定值,请写出∠DNM 的度数并证明,如果不是,请说明理由;(3)连接BN,在AEF△绕点A逆时针旋转过程中,请直接写出线段BN的最大值.17.如图1,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.D、E分别是AB、AC边的中点,连接DE.现将△ADE绕A点逆时针旋转,连接BD,CE并延长交于点F.(1)如图2,点E正好落在AB边上,CF与AD交于点P.①求证:AE•AB=AD•AC;②求BF的长;(2)如图3,若AF恰好平分∠DAE,直接写出CE的长.18.如图①,在ABC中,∠ACB=90°,∠ABC=30°,AC=1,D为ABC内部的一动点(不在边上),连接BD,将线段BD绕点D逆时针旋转60°,使点B到达点F的位置;将线段AB绕点B顺时针旋转60°,使点A到达点E的位置,连接AD,CD,AE,AF,BF,EF.(1)求证:BDA≌BFE;(2)当CD+DF+FE取得最小值时,求证:AD∥BF.(3)如图②,M,N,P分别是DF,AF,AE的中点,连接MP,NP,在点D运动的过程中,请判断∠MPN 的大小是否为定值.若是,求出其度数;若不是,请说明理由.参考答案:1.(1)135︒(2)135︒(3)45︒,45︒,45︒2.(1)30°(3)135°,315°3.(1)40,BE =AD(2)①存在,②60°(3)当α=150°或330°时,BCD △的面积最大4.(1)①3;②3.5(2)AD =12BC ,(3)339=AD5.2(2)2DF AE =,(3)α的值为30°或150°,6.(2)23;(3)307.(Ⅰ)45;垂直;平行;(Ⅱ)90BEC ∠=︒;(Ⅲ)90︒或270︒8.(2)15°;(3)存在,23,03M ⎫⎪⎭或()423,0- 9.(1)E (4,13;(2)60°;(3)13(4,)3G ; (4)点H 不在此抛物线上.10.(2)成立,(3)不成立,BM CN BD -=,11.(1)180BCE ACD ∠+∠=︒(2)BE =CE =(3)2BE CF =;BE CF ⊥,12.(2)①PB =;②413.(1)垂直,60(2)当CE 旋转45°,90°,270°,315°时,△AMN 中有两个角相等14.(3)75︒15.(2)90°16.(1)2BE NG =(2)∠DNM 的大小是定值,为120°(3)17.(1)②18.(3)∠MPN 的值为定值,30°.。

中考几何探究题精选(2)

中考几何探究题精选(2)

中考几何探究题精选(2)1.如图,已知Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE,连结EC,取EC中点M,连结DM和BM,若点D在边AC上,点E在边AB上且与点B不重合,求证:BM=DM且BM⊥DM;2.如图⑴,已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE 为边在直线MN的上方作正方形AEFG.⑴连接GD,求证:△ADG≌△ABE;⑵连接FC,观察并猜测∠FCN的度数,并说明理由;⑶如图⑵,将图⑴中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.3.已知:在△ABC中,BC>AC,动点D绕△ABC的顶点A逆时针旋转,且AD=BC,连结DC.过AB、DC的中点E、F作直线,直线EF与直线AD、BC分别相交于点M、N.⑴如图1,当点D旋转到BC的延长线上时,点N恰好与点F重合,取AC的中点H,连结HE、HF,根据三角形中位线定理和平行线的性质,可得结论∠AMF=∠BNE(不需证明).⑵当点D旋转到图2或图3中的位置时,∠AMF与∠BNE有何数量关系?请分别写出猜想,并任选一种情况证明.4.如图①,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.⑴求证:DE-BF = EF.⑵当点G为BC边中点时, 试探究线段EF与GF之间的数量关系,并说明理由.⑶若点G为CB延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).5.九年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:⑴如图1,正三角形ABC中,在AB、AC边上分别取点M、N,使BM=AN,连接BN、CM,发现BN=CM,且∠NOC=60°.请证明以上结论.⑵如图2,正方形ABCD中,在AB、BC边上分别取点M、N,使AM=BN,连接AN、DM,那么AN= ,且∠DON = 度.⑶如图12-3,正五边形ABCDE中,在AB、BC边上分别取点M、N,使AM=BN,连接AN、DM,那么AN= ,且∠EON= 度.⑷在正n边形中,对相邻的三边实施同样的操作过程,也会有类似的结论.请大胆猜测,用一句话概括你的发现:.6.在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC所在的直线上运动,作∠ADE=45°(A,D,E按逆时针方向).⑴如图1,若点D在线段BC上运动,DE交AC于E.①求证:△ABD∽△DCE;②当△ADE是等腰三角形时,求AE的长.⑵①如图2,若点D在BC的延长线上运动,DE的反向延长线与AC的延长线相交于点E',是否△是等腰三存在点D,使ADE'角形?若存在,写出所有点D的位置;若不存在,请简要说明理由;。

中考数学专题复习_几何探究题

中考数学专题复习_几何探究题

专题复习几何探究问题一、结论探究【例1】如图①,已知△ABC是等腰直角三角形,∠BAC=900,点D是BC中点,作正方形DEFG,使点A、C分别在DG和DE上,连接AE、BG(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论(2)将正方形DEFG绕点D逆时针旋转一定角度后(旋转角大于00,小于或等于3600),如图②,通过观察和测量等方法判断(1)中的结论是否仍然成立如果成立,请予以证明;如果不成立,请说明理由。

(3)若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,求AF的值。

'变式练习:已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)直接写出线段EG与CG的数量关系;(2)将图1中△BEF绕B点逆时针旋转45º,如图2所示,取DF中点G,连接EG,CG.你在(1)中得到的结论是否发生变化写出你的猜想并加以证明.(3)将图1中△BEF绕B点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立(不要求证明)| A D]G图1FA[EG图2、AE图3DFEC BAB'C'二、条件探究【例2】已知两个全等的直角三角形纸片ABC 、DEF ,如图(1)放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G ,∠C=∠EFB=900,∠E=∠ABC=300,AB=DE=4 (1)求证:△EGB 是等腰三角形(2)若纸片DEF 不动,问△ABC 绕点F 旋转最小 度时,四边形ACDE 成为以ED 为底的梯形(如图(2)),求此梯形的高。

,【例3】如图,Rt △AB C 是由Rt △ABC 绕点A 顺时针旋转得到的,连结CC 交斜边于点E ,CC 的延长线交BB 于点F . |(1)证明:△ACE ∽△FBE ;(2)设∠ABC =α,∠CAC =β,试探索α、β满足什么关系时,△ACE 与△FBE 是全等三角形,并说明理由.;E图1A:CD图2三、类比探究 【例4】(1)操作发现:如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在举行ABCD 内部.小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗说明理由. (2)问题解决:保持(1)中的条件不变,若DC =2DF ,求ABAD的值; /(3)类比探求:保持(1)中条件不变,若DC =nDF ,求ABAD的值.【例5】如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.如,平行四边形的一条对线所在的直线就是平行四边形的一条面积等分线.(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有________;((2)如图1,梯形ABCD 中,AB ∥DC ,如果延长DC 到E ,使CE =AB ,连接AE ,那么有S 梯形ABCD=S △ABE .请你给出这个结论成立的理由,并过点A 作出梯形ABCD 的面积等分线(不写作法,保留作图痕迹);(3)如图,四边形ABCD 中,AB 与CD 不平行,S △ADC >S △ABC ,过点A 能否作出四边形ABCD 的面积等分线若能,请画出面积等分线,并给出证明;若不能,说明理由.AB。

中考数学重难点题型:12道几何探究题解析

中考数学重难点题型:12道几何探究题解析

中考数学重难点题型---12道几何探究题解析考点1 三角形几何探究1.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC 是“准互余三角形”,∠C >90°,∠A =60°,则∠B =15°;(2)如图1,在Rt △ABC 中,∠ACB =90°,AC =4,BC =5.若AD 是∠BAC 的平分线,不难证明△ABD 是“准互余三角形”.试问在边BC 上是否存在点E(异于点D),使得△ABE 也是“准互余三角形”?若存在,请求出BE 的长;若不存在,请说明理由.(3)如图2,在四边形ABCD 中,AB =7,CD =12,BD ⊥CD ,∠ABD =2∠BCD ,且△ABC 是“准互余三角形”,求对角线AC 的长.解:(1)∵△ABC 是“准互余三角形”,∠C >90°,∠A =60°,∴2∠B +∠A =90°,解得∠B =15°. (2)如答图1,在Rt △ABC 中,∵∠B +∠BAC =90°,∠BAC =2∠BAD ,∴∠B +2∠BAD =90°, ∴△ABD 是“准互余三角形”. ∵△ABE 也是“准互余三角形”, ∴只有2∠B +∠BAE =90°.∵∠B +∠BAE +∠EAC =90°,∴∠CAE =∠B. ∵∠C =∠C =90°,∴△CAE ∽△CBA ,∴CA 2=CE·CB, ∴CE =165,∴BE =5-165=95.(3)如答图2,将△BCD沿BC翻折得到△BCF,∴CF=CD=12,∠BCF=∠BCD,∠CBF=∠CBD.∵∠ABD=2∠BCD,∠BCD+∠CBD=90°,∴∠ABD+∠DBC+∠CBF=180°,∴点A,B,F共线,∴∠A+∠ACF=90°,∴2∠ACB+∠CAB≠90°,∴只有2∠BAC+∠ACB=90°,∴∠FCB=∠FAC.∵∠F=∠F,∴△FCB∽△FAC,∴CF2=FB·FA,设FB=x,则有x(x+7)=122,∴x=9或x=-16(舍去),∴AF=7+9=16,在Rt△ACF中,AC=AF2+CF2=162+122=20.2.将一副三角尺按图1摆放,等腰直角三角尺的直角边DF恰好垂直平分AB,与AC相交于点G,BC=2 3 cm.(1)求GC的长;(2)如图2,将△DEF绕点D顺时针旋转,使直角边DF经过点C,另一直角边DE与AC相交于点H,分别过H,C作AB的垂线,垂足分别为M,N,通过观察,猜想MD与ND的数量关系,并验证你的猜想.(3)在(2)的条件下,将△DEF沿DB方向平移得到△D′E′F′,当D′E′恰好经过(1)中的点G时,请直接写出DD′的长度.解:(1)在Rt△ABC中,∵BC=23,∠B=60°,∴AC=BC·tan60°=6,AB=2BC=43,在Rt△ADG中,AG=ADcos30°=4,∴CG=AC-AG=6-4=2.(2)结论:DM+DN=2 3.理由:∵HM⊥AB,CN⊥AB,∴∠AMH=∠DMH=∠CNB=∠CND=90°.∵∠A+∠B=90°,∠B+∠BCN=90°,∴∠A=∠BCN,∴△AHM∽△CBN,∴AMCN=HMBN①,同理可证:△DHM∽△CDN,∴DNMH=CNDM②由①②可得AM·BN=DN·DM,∴DMAM=BNDN,∴DM+AMAM=BN+DNDN,∴ADAM=BDDN.∵AD=BD,∴AM=DN,∴DM+DN=AM+DM=AD=2 3.第2题答图(3)如答图,作GK∥DE交AB于K.在△AGK中,AG=GK=4,∠A=∠GKD=30°,作GH⊥AB于H.则AH=AG·cos30°=23,可得AK=2AH=43,此时K与B重合.∴DD′=DB=2 3.考点2四边形几何探究3.我们定义:有一组邻角相等且对角线相等的凸四边形叫做邻对等四边形.概念理解(1)我们所学过的特殊四边形中的邻对等四边形是矩形或正方形; 性质探究(2)如图1,在邻对等四边形ABCD 中,∠ABC =∠DCB ,AC =DB ,AB>CD ,求证:∠BAC 与∠CDB 互补;拓展应用(3)如图2,在四边形ABCD 中,∠BCD =2∠B ,AC =BC =5,AB =6,CD =4.在BC 的延长线上是否存在一点E ,使得四边形ABED 为邻对等四边形?如果存在,求出DE 的长;如果不存在,说明理由.(1)解:矩形或正方形.(2)证明:如答图1,延长CD 至E ,使CE =BA ,连接BE.在△ABC 和△ECB 中,⎩⎨⎧AB =EC ,∠ABC =∠ECB ,BC =CB ,∴△ABC ≌△ECB(SAS), ∴BE =CA ,∠BAC =∠E.∵AC =DB ,∴BD =BE ,∴∠BDE =∠E ,∴∠CDB +∠BDE =∠CDB +∠E =∠BAC +∠CDB =180°,即∠BAC 与∠CDB 互补.(3)解:存在这样一点E ,使得四边形ABED 为邻对等四边形,如答图2,在BC 的延长线上取一点E ,使得CE =CD =4,连接DE ,AE ,BD ,则四边形ABED 为邻对等四边形.理由如下:∵CE =CD ,∴∠CDE =∠CED. ∵∠BCD =2∠ABC ,∴∠ABC =∠DEB ,∴∠ACE =∠BCD.在△ACE 和△BCD 中,⎩⎨⎧AC =BC ,∠ACE =∠BCD ,CE =CD ,∴△ACE ≌△BCD(SAS),∴BD =AE ,四边形ABED 为邻对等四边形. ∵∠CBA =∠CAB =∠CDE =∠CED , ∴△ABC ∽△DEC , ∴AB BC =65=DE CE =DE 4,∴DE =245.4.将矩形ABCD 绕点A 顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E 在BD 上时.求证:FD =CD ;(2)当α为何值时,GC =GB ?画出图形,并说明理由.解:(1)由旋转可得,AE =AB ,∠AEF =∠ABC =∠DAB =90°,EF =BC =AD ,∴∠AEB =∠ABE. ∵∠ABE +∠EDA =90°=∠AEB +∠DEF , ∴∠EDA =∠DEF.∵DE =ED ,∴△AED ≌△FDE(SAS), ∴DF =AE ,∵AE =AB =CD ,∴CD =DF.(2)当GB =GC 时,点G 在BC 的垂直平分线上,分两种情况讨论: ①当点G 在AD 右侧时,如答图1,取BC 的中点H ,连接GH 交AD 于M , ∵GC =GB ,∴GH ⊥BC ,∴四边形ABHM 是矩形, ∴AM =BH =12AD =12AG ,∴GM 垂直平分AD ,∴GD =GA =DA , ∴△ADG 是等边三角形,∴∠DAG =60°, ∴旋转角α=60°;②当点G 在AD 左侧时,如答图2,同理可得△ADG 是等边三角形,∴∠DAG =60°, ∴旋转角α=360°-60°=300°. 综上,α为60°或300°时,GC =GB.5.如图1,边长为4的正方形ABCD 中,点E 在AB 边上(不与点A ,B 重合),点F 在BC 边上(不与点B ,C 重合).第一次操作:将线段EF 绕点F 顺时针旋转,当点E 落在正方形上时,记为点G ; 第二次操作:将线段FG 绕点G 顺时针旋转,当点F 落在正方形上时,记为点H ; 依此操作下去…(1)图2中的△EFD 是经过两次操作后得到的,其形状为等边三角形,求此时线段EF 的长; (2)若经过三次操作可得到四边形EFGH.①请判断四边形EFGH 的形状为正方形,此时AE 与BF 的数量关系是AE =BF ;②以①中的结论为前提,设AE 的长为x ,四边形EFGH 的面积为y ,求y 与x 的函数关系式及面积y 的取值范围.解:(1)如题图2,由旋转性质可知EF =DF =DE ,则△DEF 为等边三角形. 在Rt △ADE 和Rt △CDF 中,⎩⎨⎧AD =CD ,DE =DF ,∴Rt △ADE ≌Rt △CDF(HL).∴AE =CF. 设AE =CF =x ,则BE =BF =4-x ∴△BEF 为等腰直角三角形.∴DE =DF =EF =2(4-x).在Rt △ADE 中,由勾股定理得AE 2+AD 2=DE 2,即x 2+42=[2(4-x)]2, 解得x 1=8-43,x 2=8+43(舍去). ∴EF =2(4-x)=46-4 2.△DEF 的形状为等边三角形,EF 的长为46-4 2.第5题答图(2)①四边形EFGH 的形状为正方形,此时AE =BF.理由如下:依题意画出图形,如答图所示,连接EG ,FH ,作HN ⊥BC 于N ,GM ⊥AB 于M. 由旋转性质可知,EF =FG =GH =HE , ∴四边形EFGH 是菱形, 由△EGM ≌△FHN ,可知EG =FH ,∴四边形EFGH 的形状为正方形,∴∠HEF =90°. ∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3. ∵∠3+∠4=90°,∠2+∠3=90°,∴∠2=∠4.在△AEH 和△BFE 中,⎩⎨⎧∠1=∠3,EH =EF ,∠2=∠4,∴△AEH ≌△BFE(ASA),∴AE =BF.②利用①中结论,易证△AEH ,△BFE ,△CGF ,△DHG 均为全等三角形, ∴BF =CG =DH =AE =x ,AH =BE =CF =DG =4-x.∴y =S 正方形ABCD -4S △AEH =4×4-4×12·x·(4-x)=2x 2-8x +16,∴y =2x 2-8x +16(0<x <4).∵y =2x 2-8x +16=2(x -2)2+8,∴当x =2时,y 取得最小值8;当x =0或4时,y =16.∴y的取值范围为8≤y<16.6.提出问题如图,已知在矩形ABCD中,AB=2,BC=3,点P是线段AD边上的一动点(不与端点A,D重合),连接PC,过点P作PE⊥PC交AB于点E,在点P的运动过程中,图中各角和线段之间是否存在某种关系和规律?特殊求解当点E为AB的中点,且AP>AE时,求证:PE=PC.深入探究当点P在AD上运动时,对应的点E也随之在AB上运动,求整个运动过程中BE的取值范围.解:特殊求解∵PE⊥PC,∴∠APE+∠DPC=90°.∵∠D=90°,∴∠DPC+∠DCP=90°.∴∠APE=∠DCP.∵∠A=∠D=90°,∴△APE∽△DCP,∴APDC=AEDP.设AP=x,则有DP=3-x.而AE=BE=1,∴x(3-x)=2×1,解得x1=2,x2=1.∵AP>AE,∴AP=2,AE=PD=1,∴△APE≌△DCP,∴PE=PC.深入探究设AP=x,AE=y,由AP·DP=AE·DC,可得x(3-x)=2y.∴y=12x(3-x)=-12x2+32x=-12(x-32)2+98.∴在0<x<3范围内,当x =32时,y 最大=98.∵当AE =y 取得最大值时,BE 取得最小值为2-98=78,∴BE 的取值范围为78≤BE<2.7.已知Rt △OAB ,∠OAB =90°,∠ABO =30°,斜边OB =4,将Rt △OAB 绕点O 顺时针旋转60°,如图1,连接BC.(1)填空:∠OBC =60°;(2)如图1,连接AC ,作OP ⊥AC ,垂足为P ,求OP 的长度;(3)如图2,点M ,N 同时从点O 出发,在△OCB 边上运动,M 沿O→C→B 路径匀速运动,N 沿O→B→C 路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N 的运动速度为1单位/秒,设运动时间为x 秒,△OMN 的面积为y ,求当x 为何值时y 取得最大值.最大值为多少?解:(1)由旋转性质可知OB =OC ,∠BOC =60°, ∴△OBC 是等边三角形,∴∠OBC =60°.第7题答图1(2)如答图1中, ∵OB =4,∠ABO =30°, ∴OA =12OB =2,AB =3OA =23,∴S △AOC =12·OA·AB=12×2×23=2 3.∵△BOC 是等边三角形,∴∠OBC =60°,∠ABC =∠ABO +∠OBC =90°, ∴AC =AB 2+BC 2=2r(32+42)=27,∴OP =2S △AOC AC =4327=2217.第7题答图2(3)①当0<x≤83时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE ⊥OC 且交OC 于点E.如答图2,则NE =ON·sin60°=32x ,∴S △OMN =12·OM·NE=12×1.5x×32x ,∴y =338x 2,∴当x =83时,y 有最大值,最大值为833.第7题答图3②当83<x≤4时,M 在BC 上运动,N 在OB 上运动.如答图3,作MH ⊥OB 于H.则BM =8-1.5x ,MH =BM·sin60°=32(8-1.5x),∴y =12×ON×MH=-338x 2+23x.当x =83时,y 取得最大值,最大值为833.第7题答图4③当4<x≤4.8时,M,N都在BC上运动,作OG⊥BC于G.如答图4,MN=12-2.5x,OG=AB=23,∴y=12·MN·OG=123-532x,当x=4时,y有最大值,最大值为2 3.综上所述,y有最大值,最大值为83 3.8.在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E 的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是PB=EC,CE与AD 的位置关系是CE⊥AD;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE.若AB=23,BE=219,求四边形ADPE的面积.解:(1)结论:PB=EC,CE⊥AD.理由:如答图1中,连接AC.∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∠ABD=∠CBD=30°.∵△APE是等边三角形,∴AB=AC,AP=AE,∠BAC=∠PAE=60°,∴△BAP≌△CAE,∴BP=CE,∠ABP=∠ACE=30°,延长CE交AD于H,∵∠CAH=60°,∴∠CAH+∠ACH=90°,∴∠AHC=90°,即CE⊥AD.第8题答图2(2)结论仍然成立.理由:如答图2,连接AC交BD于O,设CE交AD于H.∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∠ABD=∠CBD=30°.∵△APE是等边三角形,∴AB=AC,AP=AE,∠BAC=∠PAE=60°,∴△BAP≌△CAE,∴BP=CE,∠ABP=∠ACE=30°,∵∠CAH=60°,∴∠CAH+∠ACH=90°,∴∠AHC=90°,即CE⊥AD.(3)如答图3,连接AC 交BD 于点O ,连接CE 交AD 于点H , 由(2)可知EC ⊥AD ,CE =BP , 在菱形ABCD 中,AD ∥BC , ∴EC ⊥BC.∵BC =AB =23,BE =219, ∴在Rt △BCE 中,EC =2r(192-2r(3)2)=8,∴BP =CE =8.∵AC 与BD 是菱形的对角线, ∴∠ABD =12∠ABC =30°,AC ⊥BD ,∴BD =2BO =2AB·cos30°=6,∴OA =12AB =3,DP =BP -BD =8-6=2,∴OP =OD +DP =5,在Rt △AOP 中,AP =AO 2+OP 2=27, ∴S 四边形ADPE =S △ADP +S △AEP =12DP·AO+34·AP 2=12×2×3+34×(27)2=8 3.考点3 三角形、四边形混合几何探究9.我们把两条中线互相垂直的三角形称为“中垂三角形”,例如图1,图2,图3中,AF ,BE 是△ABC 的中线,AF ⊥BE ,垂足为P ,像△ABC 这样的三角形均称为“中垂三角形”,设BC =a ,AC =b ,AB =c.特例探索(1)如图1,当∠ABE =45°,c =22时,a =____25____,b =____25____. 如图2,当∠ABE =30°,c =4时,a =____213____,b =____27____. 归纳证明(2)请你观察(1)中的计算结果,猜想a 2,b 2,c 2三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.拓展应用(3)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=25,AB=3,求AF的长.解:(1)∵AF⊥BE,∠ABE=45°,∴AP=BP=22AB=2.∵AF,BE是△ABC的中线,∴EF∥AB,EF=12AB=2,∴∠PFE=∠PEF=45°,∴PE=PF=1.在Rt△FPB和Rt△PEA中,AE=BF=12+22=5,∴AC=BC=25,∴a=b=2 5.如答图1,连接EF.同理可得EF=12×4=2.∵EF∥AB,∴△PEF∽△PBA,∴PFAP=PEPB=EFAB=12.在Rt△ABP中,AB=4,∠ABP=30°,∴AP=2,PB=23,∴PF=1,PE= 3.在Rt△APE和Rt△BPF中,AE=7,BF=13,∴a=213,b=27.(2)猜想:a2+b2=5c2,证明如下:如答图2,连接EF.设∠ABP=α,∴AP=csinα,PB=ccosα,由(1)同理可得PF=12PA=csinα2,PE=12PB=ccosα2, ∴AE 2=AP 2+PE 2=c 2sin 2α+c 2cos 2α4,BF 2=PB 2+PF 2=c 2cos 2α+c 2sin 2α4,∴(b 2)2=c 2sin 2α+c 2cos 2α4,(a 2)2=c 2sin 2α4+c 2cos 2α,∴a 24+b 24=c 2sin 2α4+c 2cos 2α+c 2sin 2α+c 2cos 2α4, ∴a 2+b 2=5c 2.(3)如答图3,连接AC ,EF 交于点H ,AC 与BE 交于点Q ,设BE 与AF 的交点为P. ∵点E ,G 分别是AD ,CD 的中点,∴EG ∥AC. ∵BE ⊥EG ,∴BE ⊥AC.∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC =25,∴∠EAH =∠FCH. ∵E ,F 分别是AD ,BC 的中点, ∴AE =12AD ,BF =12BC ,∴AE =BF =CF =12AD = 5.∵AE ∥BF ,∴四边形ABFE 是平行四边形, ∴EF =AB =3,AP =PF.在△AEH 和△CFH 中,⎩⎨⎧∠EAH =∠FCH ,∠AHE =∠FHC ,AE =CF ,∴△AEH ≌△CFH ,∴EH =FH ,∴EP ,AH 分别是△AFE 的中线,由(2)的结论得AF 2+EF 2=5AE 2,或连接F 与AB 的中点M ,证MF 垂直BP ,构造出“中垂三角形”,由AB =3,BC =12AD =5及(2)中的结论,直接可求AF.10.我们定义:如图1,在△ABC 中,把AB 绕点A 顺时针旋转α(0°<α<180°)得到AB′,把AC 绕点A 逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,我们称△AB′C′是△ABC 的“旋补三角形”,△AB′C′边B′C′上的中线AD 叫做△ABC 的“旋补中线”,点A 叫做“旋补中心”.特例感知(1)在图2,图3中,△AB′C′是△ABC 的“旋补三角形”,AD 是△ABC 的“旋补中线”. ①如图2,当△ABC 为等边三角形时,AD 与BC 的数量关系为AD =12BC ;②如图3,当∠BAC =90°,BC =8时,则AD 长为4. 猜想论证(2)在图1中,当△ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明. 拓展应用(3)如图4,在四边形ABCD ,∠C =90°,∠D =150°,BC =12,CD =23,DA =6.在四边形内部是否存在点P ,使△PDC 是△PAB 的“旋补三角形”?若存在,给予证明,并求△PAB 的“旋补中线”长;若不存在,说明理由.图1 图2 图3 图4解:(1)①∵△ABC 是等边三角形,∴AB =BC =AC =AB′=AC′.∵DB′=DC′, ∴AD ⊥B′C′.∵∠BAC =60°,∠BAC +∠B′AC′=180°, ∴∠B′AC′=120°,∴∠B′=∠C′=30°, ∴AD =12AB′=12BC.②∵∠BAC =90°,∠BAC +∠B′AC′=180°,∴∠B′AC′=∠BAC=90°.∵AB=AB′,AC=AC′,∴△BAC≌△B′AC′,∴BC=B′C′.∵B′D=DC′,∴AD=12B′C′=12BC=4.(2)结论:AD=12 BC.证明如下:如答图1,延长AD到M,使得AD=DM,连接B′M,C′M.∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC.第10题答图1∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠MB′A.∵AB=AB′,∴△BAC≌△AB′M,∴BC=AM,∴AD=12 BC.(3)存在.理由:如答图2,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA,PD,PC,作△PCD的中线PN,第10题答图2连接DF交PC于O.∵∠ADC=150°,∴∠MDC=30°.在Rt△DCM中,CD=23,∠DCM=90°,∠MDC=30°,∴CM=2,DM=4,∠M=60°.在Rt△BEM中,∠BEM=90°,BM=14,∠MBE=30°,∴EM=12BM=7,∴DE=EM-DM=3.∵AD=6,∴AE=DE.∵BE⊥AD,∴PA=PD,PB=PC.在Rt△CDF中,CD=23,CF=6,∴tan∠CDF=3,∴∠CDF=60°=∠CPF,易证△FCP≌△CFD,∴CD=PF.∵CD∥PF.∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC-∠CDP=60°,∴△ADP是等边三角形,∴∠ADP=60°.∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC是△PAB的“旋补三角形”.在Rt△PDN中,∠PDN=90°,PD=AD=6,DN=3,∴PN=DN2+PD2=r(32+62)=39.考点4 多边形几何探究11.【图形定义】如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”;【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形.(2)如图2,求证:∠OAB=∠OAE′;【归纳猜想】(3)图1、图2中的“叠弦角”的度数分别为15°,24°;(4)图n中,“叠弦三角形”是等边三角形(填“是”或“不是”);(5)图n中,“叠弦角”的度数为60°-180°n.(用含n的式子表示)解:(1)∵四边形ABCD是正方形,由旋转知,AD=AD′,∠D=∠D′=90°,∠DAD′=∠OAP=60°,∴∠DAP=∠D′AO,∴△APD≌△AOD′(ASA),∴AP=AO.∵∠OAP=60°,∴△AOP是等边三角形;第11题答图(2)如答图,作AM⊥DE于M,作AN⊥CB于N.∵五边形ABCDE是正五边形,由旋转知,AE=AE′,∠E=∠E′=108°,∠EAE′=∠OAP=60°,∴∠EAP=∠E′AO.在Rt△AEM和Rt△ABN中,∠AEM=∠ABN=72°,AE=AB,∴Rt△AEM≌Rt△ABN (AAS),∴∠EAM =∠BAN ,AM =AN.在Rt △APM 和Rt △AON 中,AP =AO ,AM =AN , ∴Rt △APM ≌Rt △AON (HL), ∴∠PAM =∠OAN ,∴∠PAE =∠OAB, ∴∠OAE′=∠OAB.(3)由(1)知,△APD ≌△AOD′, ∴∠DAP =∠D′AO.在Rt △AD′O 和Rt △ABO 中,⎩⎨⎧AD′=AB ,AO =AO ,∴Rt △AD′O≌Rt △ABO(HL), ∴∠D′AO=∠BAO.由旋转得,∠DAD′=60°.∵∠DAB =90°, ∴∠D′AB=∠DAB -∠DAD′=30°, ∴∠D′AO=12∠D′AB=15°,∵题图2的多边形是正五边形, ∴∠EAB =5-2×180°5=108°,∴∠E′AB=∠EAB -∠EAE′=108°-60°=48°, ∴同理可得,∠E′AO=12∠E′AB=24°.(4)是(5)同(3)的方法得,∠OAB =[(n -2)×180°÷n-60°]÷2=60°-180°n.考点5 圆形几何探究12.如图,在半径为3 cm 的⊙O 中,A ,B ,C 三点在圆上,∠BAC =75°.点P 从点B 开始以π5cm/s 的速度在劣弧BC 上运动,且运动时间为t s ,∠AOB =90°,∠BOP =n°.(1)求n与t之间的函数关系式,并求t的取值范围;(2)试探究:当点P运动多少秒时,①在BP,PC,CA,AB四条线段中有两条相互平行?②以P,B,A,C四点中的三点为顶点的三角形是等腰三角形?解:(1)∵∠BOP=n°,∴π5t=3πn180,n=12t.当n=150时,150=12t,t=12.5.∴t的取值范围为0≤t≤12.5.(2)①∠BOP=n°,n=12t.如答图1,当BP∥AC时,t=5.理由:∵∠PBA=180°-75°=105°,∠OBA=45°,∴∠OBP=60°.∵OB=OP,∴∠BOP=60°,∴60=12t,t=5.如答图2,当PC∥AB时,t=10.理由:易得∠PBA=∠BAC=75°,∴∠PBO=∠BPO=30°,∴∠BOP=120°,∴120=12t,t=10.综上所述,当点P的运动时间为5 s时,BP∥AC.当点P的运动时间为10 s时,PC∥AB.②在△ABP中,以AB为腰时(如答图3),∠BPA=∠BAP=45°,∠BOP=90°,∴t=7.5. 以AB为底边时(如答图4),∠BPA=45°,∠BAP=67.5°,∠BOP=2×67.5°=135°,∴t=11.25.如答图5,在△APC中,易得∠AOC=120°,∴∠APC=60°,△APC是等边三角形.∴∠AOP=120°,∴∠BOP=30°,t=2.5.如答图6,在△BPC中,∠BPC=105°,只有BP=PC这种情况.此时点P是弧BC的中心,∴∠BOP=75°,t=6.25.综上所述,当点P的运动时间为7.5 s或11.25 s时,△ABP为等腰三角形;当点P的运动时间为2.5 s时,△APC为等边三角形;当点P的运动时间为6.25 s时,△BPC为等腰三角形.。

《几何综合探究问题》(共48题)中考专项配套练习(重庆专用)

《几何综合探究问题》(共48题)中考专项配套练习(重庆专用)

5年(2016-2020)中考1年模拟数学试题分项详解(重庆专用)专题13 几何综合探究问题(共48题)一.解析题(共10小题)1.(2020•重庆)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.(1)求证:CF=√22AD;(2)如图2所示,在点D运动的过程中,当BD=2CD时,分别延长CF,BA,相交于点G,猜想AG 与BC存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使P A+PB+PC的值最小.当P A+PB+PC的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.2.(2020•重庆)△ABC为等边三角形,AB=8,AD⊥BC于点D,E为线段AD上一点,AE=2√3.以AE 为边在直线AD右侧构造等边三角形AEF,连接CE,N为CE的中点.(1)如图1,EF与AC交于点G,连接NG,求线段NG的长;(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接DN,MN.当30°<α<120°时,猜想∠DNM的大小是否为定值,并证明你的结论;(3)连接BN,在△AEF绕点A逆时针旋转过程中,当线段BN最大时,请直接写出△ADN的面五年中考真题积.3.(2019•重庆)如图,在平行四边形ABCD中,点E在边BC上,连接AE,EM⊥AE,垂足为E,交CD 于点M,AF⊥BC,垂足为F,BH⊥AE,垂足为H,交AF于点N,点P是AD上一点,连接CP.(1)若DP=2AP=4,CP=√17,CD=5,求△ACD的面积.(2)若AE=BN,AN=CE,求证:AD=√2CM+2CE.4.(2019•重庆)在▱ABCD中,BE平分∠ABC交AD于点E.(1)如图1,若∠D=30°,AB=√6,求△ABE的面积;(2)如图2,过点A作AF⊥DC,交DC的延长线于点F,分别交BE,BC于点G,H,且AB=AF.求证:ED﹣AG=FC.5.(2018•重庆)如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=√2CG.6.(2018•重庆)如图,在▱ABCD中,∠ACB=45°,点E在对角线AC上,BE=BA,BF⊥AC于点F,BF的延长线交AD于点G.点H在BC的延长线上,且CH=AG,连接EH.(1)若BC=12√2,AB=13,求AF的长;(2)求证:EB=EH.7.(2017•重庆)在△ABM中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AB=3√2,BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.8.(2017•重庆)如图,△ABC中,∠ACB=90°,AC=BC,点E是AC上一点,连接BE.(1)如图1,若AB=4√2,BE=5,求AE的长;(2)如图2,点D是线段BE延长线上一点,过点A作AF⊥BD于点F,连接CD、CF,当AF=DF时,求证:DC=BC.9.(2016•重庆)在△ABC中,∠B=45°,∠C=30°,点D是BC上一点,连接AD,过点A作AG⊥AD,在AG上取点F,连接DF.延长DA至E,使AE=AF,连接EG,DG,且GE=DF.(1)若AB =2√2,求BC 的长;(2)如图1,当点G 在AC 上时,求证:BD =12CG ;(3)如图2,当点G 在AC 的垂直平分线上时,直接写出ABCG 的值.10.(2016•重庆)已知△ABC 是等腰直角三角形,∠BAC =90°,CD =12BC ,DE ⊥CE ,DE =CE ,连接AE ,点M 是AE 的中点.(1)如图1,若点D 在BC 边上,连接CM ,当AB =4时,求CM 的长;(2)如图2,若点D 在△ABC 的内部,连接BD ,点N 是BD 中点,连接MN ,NE ,求证:MN ⊥AE ; (3)如图3,将图2中的△CDE 绕点C 逆时针旋转,使∠BCD =30°,连接BD ,点N 是BD 中点,连接MN ,探索MNAC 的值并直接写出结果.一.解答题(共38小题)1.(2020•渝中区校级二模)如图,CA =CB ,∠ACB =90°,点D 为AB 的中点,连接CD ;点E 为CD 的中点,EF =EG =EC ,且∠FEG =90°;点O 为CB 的中点,直线GO 与直线CF 交于点N .(1)如图1,若∠FCD =30°,OC =√2,求CF 的长;(2)连接BG 并延长至点M ,使BG =MG ,连接CM .①如图2,若NG ⊥MB ,求证:AB =√10CM ;②如图3,当点G 、F 、B 共线时,BM 交AC 于点H ,AH =14AC ,请直接写出FCMH 的值.一年模拟新题2.(2020•渝中区二模)如图,在△ABC中,∠ACB=90°,AC=BC,CD⊥AB于点D,E为线段CD上一点(不含端点),连接AE,设F为AE的中点,作CG⊥CF交直线AB于点G.(1)猜想:线段AG、BC、EC之间有何等量关系?并加以证明;(2)如果将题设中的条件“E为线段CD上一点(不含端点)”改变为“E为直线CD上任意一点”,试探究发现线段AG、BC、EC之间有怎样的等量关系,请直接写出你的结论,不用证明.3.(2020•沙坪坝区校级一模)在△ABC中,AE⊥CD且AE=CD,∠CAE+2∠BAE=90°.(1)如图1,若△ACE为等边三角形,CD=2√3,求AB的长;(2)如图2,作EG⊥AB,求证:AD=√2BE;(3)如图3,作EG⊥AB,当点D与点G重合时,连接BF,请直接写出BF与EC之间的数量关系.4.(2020•南岸区模拟)如图,在△ABC中,∠BAC=90°,AB=AC=6,AD⊥BC于点D.点G是射线AD上一点.(1)若GE⊥GF,点E,F分别在AB,AC上,当点G与点D重合时,如图①所示,容易证明AE+AF=√2AD.当点G在线段AD外时,如图②所示,点E与点B重合,猜想并证明AE,AF与AG存在的数量关系.(2)当点G在线段AD上时,AG+BG+CG的值是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.5.(2020•南岸区校级模拟)△ABC与△ADE都是等边三角形,DE与AC交于点P,点P恰为DE的中点,延长AD交BC于点F,连结BD、CD,取CD的中点Q,连结PQ.求证:PQ=12BD.(1)如图1,理清思路,完成解答:本题证明的思路可以用下列框图表示:根据上述思路,请你完整地书写本题的证明过程;(2)如图2,特殊位置,求线段长:若点P为AC的中点,连接PF,已知PQ=√3,求PF的长.(3)知识迁移,探索新知:若点P是线段AC上任意一点,直接写出PF与CD的数量关系.6.(2020•九龙坡区校级模拟)【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF =BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F 在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.7.(2019•渝中区校级一模)已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF,CF.(1)如图1,点D在AC上,请你判断此时线段DF,CF的关系,并证明你的判断;(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45时,若AD=DE=2,AB=6,求此时线段CF的长.8.(2019•重庆模拟)一节数学课后,老师布置了一道课后练习:△ABC是等边三角形,点D是线段BC上的点,点E为△ABC的外角平分线上一点,且∠ADE=60°,如图①,当点D是线段BC上(除B,C 外)任意一点时,求证:AD=DE(1)理清思路,完成解答本题证明思路可以用下列框图表:根据上述思路,请你完整地书写本题的证明过程;(2)特殊位置,计算求解当点D为BC的中点时,等边△ABC的边长为6,求出DE的长;(3)知识迁移,探索新知当点D在线段BC的延长线上,且满足CD=BC时,若AB=2,请直接写出△ADE的面积(不必写解答过程)9.(2020•南岸区校级模拟)如图1,直角三角形△ABC中,∠ACB=90°,AC=4,∠A=60°,O为BC中点,将△ABC 绕O 点旋转180°得到△DCB .一动点P 从A 出发,以每秒1的速度沿A →B →D 的路线匀速运动,过点P 作直线PM ⊥AC 交折线段A ﹣C ﹣D 于M .(1)如图2,当点P 运动2秒时,另一动点Q 也从A 出发沿A →B →D 的路线运动,且在AB 上以每秒1的速度匀速运动,在BD 上以每秒2的速度匀速运动,过Q 作直线QN ∥PM 交折线段A ﹣C ﹣D 于N ,设点Q 的运动时间为t 秒,(0<t <10)直线PM 与QN 截四边形ABDC 所得图形的面积为S ,求S 关于t 的函数关系式,并求出S 的最大值.(2)如图3,当点P 开始运动的同时,另一动点R 从B 处出发沿B →C →D 的路线运动,且在BC 上以每秒√32的速度匀速运动,在CD 上以每秒2的速度匀速运动,是否存在这样的P 、R .使△BPR 为等腰三角形?若存在,直接写出点P 运动的时间m 的值,若不存在请说明理由.10.(2019秋•沙坪坝区校级期末)如图,在菱形ABCD 中,∠ABC =60°,连接AC ,动点P 从A 点出发沿射线AB 方向运动,同时动点Q 从B 点出发以与P 点相同的速度沿射线BC 方向运动,连接AQ ,CP ,直线AQ 与直线CP 交于点H .(1)如图1,当P ,Q 两点分别在线段AB 和线段BC 上时,直接写出∠CHQ 的度数;(2)如图2,当P ,Q 两点分别运动到线段AB 和线段BC 的延长线上时,试问(1)问中的结论是否成立:若成立请说明理由,若不成立,请求出∠CHQ 的度数;(3)如图3,在(2)问的前提下,连接DH ,过点D 作DE ⊥PH 交PH 延长线于点E .求证:AH ﹣CE =12DH .11.(2020春•沙坪坝区校级月考)如图,正方形ABCD 中,对角线AC ,BD 交于点O ,点E ,点F 分别在线段OB ,线段AB 上,且AF =OE ,连接AE 交OF 于G ,连接DG 交AO 于H .(1)如图1,若点E为线段BO中点,AE=√5,求BF的长;(2)如图2,若AE平分∠BAC,求证:FG=HG;(3)如图3,点E在线段BO(含端点)上运动,连接HE,当线段HE长度取得最大值时,直接写出cos ∠HDO的值.12.(2020•沙坪坝区自主招生)在▱ABCD中,AF平分∠BAD交BC于点F,∠BAC=90°,点E是对角线AC上的点,连结BE.(1)如图1.若AB=AE,BF=3,求BE的长;(2)如图2,若AB=AE,点G是BE的中点,∠F AG=∠BFG,求证:AB=√10FG;(3)如图3,以点E为直角顶点,在BE的右下方作等腰直角△BEM,若点E从点A出发,沿AC运动到点C停止,设在点E运动过程中,BM的中点N经过的路径长为m,AC的长为n,请直接写出nm的值.13.(2020•巴南区自主招生)已知,在矩形ABCD中,AB=2,点E在边BC上,且AE⊥DE,AE=DE,点F是BC的延长线上一点,AF与DE相交于点G,DH⊥AF,垂足为H,DH的延长线与BC相交于点K.(1)如图1,求AD的长;(2)如图2,连接KG,求证:AG=DK+KG;(3)如图3,设△ADM与△ADH关于AD对称,点N、Q分别是MA、MD的中点,请直接写出BN+NQ 的最大值.14.(2020•南岸区自主招生)如图1,在正方形ABCD中,点E是边BC上一点,连接AE,过点E作EM ⊥AE,交对角线AC于点M,过点M作MN⊥AB,垂足为N,连接NE.(1)求证:AE=√2NE+ME;(2)如图2,延长EM至点F,使EF=EA,连接AF,过点F作FH⊥DC,垂足为H.猜想CH与FH存在的数量关系,并证明你的结论;(3)在(2)的条件下,若点G是AF的中点,连接GH.当GH=CH时,直接写出GH与AC之间存在的数量关系.15.(2020•北碚区自主招生)如图1,在正方形ABCD中,对角线AC、BD相交于点O,点E为线段BO上一点,连接CE,将CE绕点C顺时针旋转90°得到CF,连接EF交CD于点G.(1)若AB=4,BE=√2,求△CEF的面积.(2)如图2,线段FE的延长线交AB于点H,过点F作FM⊥CD于点M,求证:BH+MG=√22BE;(3)如图3,点E为射线OD上一点,线段FE的延长线交直线CD于点G,交直线AB于点H,过点F 作FM垂直直线CD于点M,请直接写出线段BH、MG、BE的数量关系.16.(2019秋•九龙坡区校级期末)已知,在平行四边形ABCD中,∠D=60°,点F,G在边BC上,且AF=AG.(1)如图1,若AG平分∠F AC,∠AFC=5∠BAF,且AF=4,求线段AC的长;(2)如图2,点E在边AB上,且BE=EF,证明:AE=BG;(3)在(2)的条件下,连接CE(如图3),若∠AEC=∠ACD,你能得到AD,FG,BE怎样的数量关系?试证明你的猜想.17.(2020春•沙坪坝区校级月考)如图,已知在矩形ABCD中,AD=8,CD=4,点E从点D出发,沿线段DA以每秒1个单位长的速度向点A方向移动,到达A点停止运动;同时点F从点C出发,沿射线CD方向以每秒2个单位长的速度移动,到达D点停止运动,设点E移动的时间为t(秒).(1)当t=1时,求四边形BCFE的面积;(2)设四边形BCFE的面积为S,求S与t之间的关系式,并写出t的取值范围;(3)若F点到达D点后立即返回,并在线段CD上往返运动,当E点到达A点时它们同时停止运动,求当t为何值时,以E,F,D三点为顶点的三角形是等腰三角形,并求出此的等腰三角形的面积S△EDF.18.(2020春•沙坪坝区校级月考)已知,在▱ABCD中,AB⊥BD,AB=BD,E为射线BC上一点,连接AE 交BD于点F.(1)如图1,若点E与点C重合,且AF=2√5,求AD的长;(2)如图2,当点E在BC边上时,过点D作DG⊥AE于G,延长DG交BC于H,连接FH.求证:AF=DH+FH;(3)如图3,当点E在射线BC上运动时,过点D作DG⊥AE于G,M为AG的中点,点N在BC边上且BN=1,已知AB=4√2,请直接写出MN的最小值.19.(2020春•沙坪坝区校级月考)已知:在△ABC中,∠C=90°,BC=AC.(1)如图1,若点D、E分别在BC、AC边上,且CD=CE,连接AD、BE,点O、M、N分别是AB、AD、BE的中点.求证:△OMN是等腰直⻆三角形;(2)将图1中△CDE绕着点C顺时针旋转90°如图2,O、M、N分别为AB、AD、BE中点,则(1)中的结论是否成⽴,并说明理由;(3)如图3,将图1中△CDE绕着点C顺时针旋转,记旋转⻆为α(0<α<360°),O、M、N分别为AB、AD、BE中点,当MN=√10,请求出四边形ABED的⽴积.20.(2019秋•九龙坡区期末)(1)如图1,四边形EFGH中,FE=EH,∠EFG+∠EHG=180°,点A,B分别在边FG,GH上,且∠AEB=12∠FEH,求证:AB=AF+BH.(2)如图2,四边形EFGH中,FE=EH,点M在边EH上,连接FM,EN平分∠FEH交FM于点N,∠ENM=α,∠FGH=180°﹣2α,连接GN,HN.①找出图中与NH相等的线段,并加以证明;②求∠NGH的度数(用含α的式子表示).21.(2019秋•吉州区期末)【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)直接写出AM、AD、MC三条线段的数量关系:;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.22.(2019春•江北区校级期中)如图,在平面直角坐标系中,平行四边形ABCD的边AB在x轴上,点A (﹣2,0),线段AB=8,线段AD=6,且∠BAD=60°,AD与y的交点记为E,连接BE.(1)求▱ABCD的面积.(2)如图2,在线段BE上有两个动点G、K(G在K点上方),且KG=√3,点F为BC中点,点P为线段CD上一动点,当FG+GK+KP的值最小时,求出此时P点的坐标;此时在y轴上找一点H,x轴上线一点M,使得PH+HM−√22AM取得最小值,请求出PH+HM−√22AM的最小值.(3)如图3,将△AOE沿射线EB平移到△A′O'E'的位置,线段E′A′的中点N落在x轴上,此时再将△A′O'E'绕平面内某点W旋转90°,旋转后的三角形记为△A''O''E'',若△A''O''E'恰好只有两个顶点同时落在直线BC和直线BE上,且△A''E''B''的边均不在直线BC或直线BE上,请求出满足条件的W的坐标.23.(2019秋•北碚区校级月考)已知平行四边形ABCD中,N是边BC上一点,延长DN、AB交于点Q,过A作AM⊥DN于点M,连接AN,则AD⊥AN.(1)如图①,若tan∠ADM=34,MN=3,求BC的长;(2)如图②,过点B作BH∥DQ交AN于点H,若AM=CN,求证:DM=BH+NH.24.(2019秋•沙坪坝区校级月考)如图,在平行四边形ABCD中,过A作AE⊥CD于点E,点G,F分别为AD,BC上一点,连接CG交AE于点H,连接AF,AF=AH,∠GCF=∠F AE=45°.(1)若tan∠DAE=23,GH=4,求AF的长;(2)求证:AG+√2GH=GC.25.(2020春•北碚区校级期末)已知在△ABC和△ADE中,∠ACB+∠AED=180°,CA=CB,EA=ED,AB=3.(1)如图1,若∠ACB=90°,B、A、D三点共线,连接CE:①若CE=5√22,求BD长度;②如图2,若点F是BD中点,连接CF,EF,求证:CE=√2EF;(2)如图3,若点D在线段BC上,且∠CAB=2∠EAD,试直接写出△AED面积的最小值.26.(2020春•重庆期末)已知三角形ABC中,∠ACB=90°,点D(0,﹣4),M(4,﹣4).(1)如图1,若点C与点O重合,A(﹣2,2)、B(4,4),求△ABC的面积;(2)如图2,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,若∠AOG=55°,求∠CEF的度数;(3)如图3,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,N为AC上一点,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,∠NEC+∠CEF=180°,求证:∠NEF=2∠AOG.27.(2020春•沙坪坝区校级月考)已知Rt△ABC中,∠ACB=90°,以AC为斜边作Rt△AEC,∠AEC=90°,AB与CE相交于点D.(1)如图1,AB平分∠CAE,BD=4,CD=5,求AC;(2)如图2,若AC=BC,点F在EA的延长线上,连接FB、FC,FB与CE相交于点G,且∠EAD=∠ACF,求证:AF=2GE;(3)如图3,在(2)的条件下,CE的中垂线与AB相交于点Q,连接EQ,若∠DEQ+2∠ACE=90°,请直接写出线段FC、ED、EQ的关系.28.(2020春•沙坪坝区校级月考)已知等腰直角△ABC中,AB=AC,∠BAC=90°,点D是AC边上一点,以BD为边作等腰直角△BDE,其中BD=BE,∠DBE=90°,边AB与DE交于点F,点G是BC上一点.(1)如图1,若DG⊥DE,连接FG.①若∠ABD=30°,DE=√6+√2,求BF的长度;②求证:DG=EF﹣FG;(2)如图2,若DG⊥BD,EP⊥BE交BA的延长线于点P,连接PG,请猜想线段PG,DG,PE之间的数量关系,并证明.29.(2020春•沙坪坝区校级月考)如图,在等边△ABC中,延长AB至点D,延长AC交BD的中垂线于点E,连接BE,DE.(1)如图1,若DE=3√10,BC=2√3,求CE的长;(2)如图2,连接CD交BE于点M,在CE上取一点F,连接DF交BE于点N,且DF=CD,求证:AB=12EF;(3)在(2)的条件下,若∠AED=45°,直接写出线段BD,EF,ED的等量关系.30.(2020春•沙坪坝区校级月考)在△ABC中,AC=BC,点G是直线BC上一点,CF⊥AG,垂足为点E,BF⊥CF于点F,点D为AB的中点,连接DF.(1)如图1,如果∠ACB=90°,且G在CB边上,设CF交AB于点R,且E为CR的中点,若CG=1,求线段BG的长;(2)如图2,如果∠ACB=90°,且G在CB边上,求证:EF=√2DF;(3)如图3,如果∠ACB=60°,且G在CB的延长线上,∠BAG=15°,请探究线段EF、BD之间的数量关系,并直接写出你的结论.31.(2020春•沙坪坝区校级月考)如图所示,△ABC为等边三角形,点D,点E分别在CA,CB的延长线上,连接BD,DE,DB=DE.(1)如图1,若CA:AD=3:7,BE=4,求EC的长;(2)如图2,点F在AC上,连接BE,∠DBF=60°,连接EF,①求证:BF+EF=BD;②如图3,若∠BDE=30°,直接写出EFBF的值.32.(2020春•沙坪坝区校级月考)在△ABC,△CDE中,∠BAC=∠DEC=90°,连接BD,F为BD中点,连接AF,EF.(1)如图1,若A,C,E三点在同一直线上,∠ABC=∠EDC=45°,已知AB=3,DE=5,求线段AF的长;(2)如图2,若∠ABC=∠EDC=45°,求证:△AEF为等腰直角三角形;(3)如图3,若∠ABC=∠EDC=30°,请判断△AEF的形状,并说明理由.33.(2019秋•渝中区校级期末)如图,在△ABC中,∠ABC=30°,以AC为边作等边△ACD,连接BD.(1)如图1,若∠ACB=90°,AB=4,求△BCD的面积;(2)如图2,若∠ACB<90°,点E为BD中点,连接AE、CE,且AE⊥CE,延长BC至点F,连接AF,使得∠F=30°,求证:AF=CE+√3AE.34.(2020春•南岸区期末)把△ABC绕着点A逆时针旋转α,得到△ADE.(1)如图1,当点B恰好在ED的延长线上时,若α=60°,求∠ABC的度数;(2)如图2,当点C恰好在ED的延长线上时,求证:CA平分∠BCE;(3)如图3,连接CD,如果DE=DC,连接EC与AB的延长线交于点F,直接写出∠F的度数(用含α的式子表示).35.(2020春•渝中区期末)如图,在正方形ABCD中,E为CD边上一点,以DE为边向外作正方形DEFG,将正方形DEFG绕点D顺时针旋转,连接AG.(1)如图1,若AD=2√3、DE=2,当∠ADG=150°时,求AG的长;(2)如图2,正方形DEFG绕点D旋转的过程中,取AG的中点M,连接DM、CE,猜想:DM和CE 之间有何等量关系?并利用图2加以证明.36.(2020春•沙坪坝区校级月考)在菱形ABCD中,∠ABC=60°,点M是对角线BD上一动点,将线段CM绕点C顺时针旋转120°到CN,连接DN,连接NM并延长,分别交AB、CD于点P、Q.(1)如图1,若CM⊥BD且PQ=4√3,求菱形ABCD的面积;(2)如图2,求证:PM=QN.37.(2019秋•江津区期末)如图,四边形ABCD是平行四边形,AC=CD,∠BAC=90°,点E为BC边上一点,将AE绕点A顺时针旋转90°后得到线段AF,连接FB,FB⊥BC.且FB的延长线与AE的延长线交于点G,点E是AG的中点.(1)若BG=2,BE=1,求FG的长;(2)求证:√2AB=BG+2BE.38.(2020春•渝北区期中)如图1,光线照射在光滑表面上时会发生反射现象,入射光线与镜面的夹角等于出射光线与镜面的夹角,即∠1=∠2.(1)如图1,AB、BC为两个平面镜,∠B=90°,一束光线l经两次反射后,经点D,由从点E射出,求证:DM∥EN;(2)如图2,AB、BC为两个平面镜,∠B=122°,一束光线l经两次反射后,经点D,且由从点E射出,且EN⊥AB,求∠ADM的度数;(3)如图3,已知FL∥GS,FG⊥GS,∠LPK=∠SQK=30°,∠PKQ绕点K顺时针旋转,旋转速度为5°/秒,记旋转角α(0<α≤360°),同时,射线FG绕点F顺时针旋转,旋转速度为3°/秒,记旋转角β(0<β≤360°),当FG所在直线平行于∠PKQ边所在直线时,直接写出对应时间t的所有值.。

江西省2020届中考数学单元专题练之几何探究题附全解全析

江西省2020届中考数学单元专题练之几何探究题附全解全析

江西省2020届中考数学单元专题练之几何探究题【题型解读】几何探究题为江西近10年的必考题型,题位在解答题最后两道题中的一道.考查类型有:(1)操作探究问题(3次);(2)旋转探究问题(3次);(3)新定义探究问题(2次);(4)动点探究问题(2次);主要设问有:(1)求线段长;(2)判断图形的形状;(3)求角度;(4)判断两条线段的数量和位置关系并证明.类型一操作探究问题1.如图,在正方形ABCD中,点E、F是正方形内两点,BE∥DF,EF⊥BE.为探索研究这个图形的特殊性质,某数学学习小组经历了如下过程:●初步体验如图①,连接BD,若BE=DF,求证:EF与BD互相平分.●规律探究(1)在图①中,(BE+DF)2+EF2=________AB2;(2)如图②,若BE≠DF,其他条件不变,(1)中的数量关系是否会发生变化?如果不会,请证明你的结论;如果会发生变化,请说明理由.●拓展应用如图③,若AB=4,∠DPB=135°,2BP+2PD=46,求PD的长.第1题图2. 如图①,将长为10的线段OA绕点O旋转90°得到OB,点A的运动轨迹为,P是半径OB上的一动点,Q是上的一动点,连接PQ.发现:当∠POQ=________时,PQ有最大值,最大值为________;思考:(1)如图②,若P是OB中点,且QP⊥OB于点P,求的长;(2)如图③,将扇形AOB沿折痕AP折叠,使点B的对应点恰好落在OA的延长线上,求阴影部分的面积;探究:如图④,将扇形OAB沿PQ折叠,使折叠后的恰好与半径OA相切,切点为C,若OP=6,求点O到折痕PQ的距离.第2题图3. 综合与实践 问题情境:数学研究课上,老师带领大家探究《折纸中的数学问题》时,出示如图①所示的长方形纸条ABCD ,其中AD =BC =1,AB =CD =5.然后在纸条上任意画一条截线段MN ,将纸片沿MN 折叠,MB 与DN 交于点K ,得到△MNK ,如图②所示:深入探究: (1)若∠1=70°,求∠MKN 的度数;(2)试判断△MNK 的形状;若改变折痕MN 的位置,△MNK 的形状是否发生变化,请说明理由;拓展应用:(3)爱动脑筋的小明在研究△MNK 的面积时,发现KN 边上的高始终是个不变的值.根据这一发现,他很快研究出△KMN 的面积最小值为12,求此时∠1的度数;(4)小明继续动手操作,发现了△MNK 面积的最大值.请你求出这个最大值.第3题图4. 如图,在矩形ABCD 中,将矩形折叠,使点B 落在边AD (含端点)上,落点记为点E ,这时折痕与边BC 或者边CD (含端点)交于点F ,然后展开铺平,连接BE 、EF .(1)操作发现:①在矩形ABCD 中,任意折叠所得的△BEF 是一个______三角形; ②当折痕经过点A 时,cos ∠BEF 的值为________; (2)深入探究:在矩形ABCD 中,AB =3,BC =23,①当△BEF是等边三角形时,求出BE的长度;②在任意折叠中,△BEF的面积是否存在最大值,若存在,求出EF的长;若不存在,请说明理由.第4题图5. 如图①,已知△ABC中,∠BAC=90°,AB=AC,在∠BAC内部作∠MAN=45°,AM、AN分别交BC于点M、N.【操作】(1)将△ABM绕点A逆时针旋转90°,使AB边与AC边重合,把旋转后点M的对应点记作点Q,得到△ACQ,请在图①中画出△ACQ;(不写画法)【探究】(2)在(1)中所作图的基础上,连接NQ,①求证:MN=NQ;②写出线段BM,MN和NC之间满足的数量关系,并简要说明理由;【拓展】如图②,在等腰△DEF中,∠EDF=45°,DE=DF,点P是EF边上任意一点(不与点E,F重合),连接DP,以DP为腰向两侧分别作顶角均为45°的等腰△DPG和等腰△DPH,分别交DE、DF于点K、L,连接GH,分别交DE、DF于点S、T,(3)线段GS,ST和TH之间满足的数量关系是________;(4)设DK=a,DE=b,求DP的值.(用a、b表示)第5题图6.现有三角形纸板ABC, AC=BC=6,∠ACB=90°,将该三角形纸板放在足够大的圆中移动,⊙O交直线AB于点D,连接DO并延长交⊙O于点E,连接AE.(1)操作发现:如图①,当⊙O经过A、C两点,且圆心O在△ABC内部时,连接CD、CE,①试判断CD与CE的数量关系,并说明理由;②求AE+AD的值;(2)数学思考:如图②,当⊙O 经过A 、C 两点,且圆心O 在△ABC 外部时,连接CD 、CE ,求AE -AD 的值;(3)问题解决:如图③,点F 为CA 延长线上一点,且AC =3AF .当⊙O 经过A ,F 两点,且圆心O 在△ABC 外部时,连接DF ,EF ,①猜想AE 、AD 之间的数量关系,并证明;②连接CE ,是否存在△AEC 为直角三角形?若存在,请直接写出⊙O 的半径;若不存在,请说明理由.第6题图类型二 旋转探究问题1. 在△ABC 中,∠ACB =90°,AC =3,BC =4,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0°<θ<180°),得到△A ′B ′C .(1)设△ACA ′和△BCB ′的面积分别为S 1和S 2.若θ=40°,请求出S 1S 2的值;(2)如图①,设A ′B ′与CB 相交于点D ,且AB ∥CB ′: ①求证:CD =B ′D ; ②求BD 的长;(3)如图②,设AC 中点为点M ,A ′B ′中点为点N ,连接MN ,MN 是否存在最大值,若存在,求出MN 的值,判断出此时AA ′与BB ′的位置关系;若不存在,请说明理由.第1题图2. 如图①,在△ABC中,AC=BC=22,∠ACB=90°,点D、E分别是AC、BC的中点,将△CDE绕点C逆时针旋转得到△CD′E′,旋转角为α,连接AD′、BE′.(1)如图①,若0°<α<90°.①求证:AD′=BE′;②当AD′∥CE′时,求BE′的长;(2)如图②,若90°<α<180°,当点D′落在线段BE′上时,求sin∠CBE′的值;(3)如图③,将△CDE绕点C旋转一周,在旋转过程中,若AD′与直线BE′相交于点P,M为AB的中点,那么在整个旋转过程中,求PM扫过的图形面积.第2题图3. 如图①,边长为6的等边△ABC中,点D在AB边上(不与点A,B重合),点E在BC 边上(不与点B,C重合).第一次操作:将线段DE绕点E顺时针旋转,当点D落在三角形上时,记为点F;第二次操作:将线段EF绕点F顺时针旋转,当点E落在三角形上时,记为点G;依次操作下去….(1)如图②中的四边形DEFG是经过三次操作后得到的,且DE⊥EC.①四边形DEFG的形状为________;②若BE=CF,求线段DE的长;(2)若经过两次操作可得到△DEF如图③.①请判断△DEF的形状为________,此时AD与BE的数量关系是________;②以①中的结论为前提,设AD的长为x,△DEF的面积为y,求y与x的函数关系式;(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由.第3题图4. 已知△ABC与△DEF均为透明的完全一样的等腰直角三角板,且AC=BC=2,∠C =∠E=90°.在数学活动课上,小颖同学用这两块三角板进行探究活动.操作:使点D落在线段AB的中点处并使DF过点B(如图①),然后将△DEF绕点D顺时针旋转,直至点E落在CB的延长线上时结束操作,在此过程中,射线ED与射线CA交于点N,射线CB与DF相交于点M,连接MN(如图②,图③).(1)如图②,若AB∥MN,求证:△ADN≌△BDM;(2)如图②,在以上操作过程中,求证:AN·BM的值不会发生变化;(3)①如图③,在以上操作过程中,ND始终平分∠ANM吗?若平分,请加以证明;若不平分,请说明理由;②设AN=m,请直接写出△DMN的面积(用含m的式子表示).第4题图5. 如图①,把边长为2的正方形纸片ABCD沿对角线BD剪开,将△BCD平移得到△DEF,使得BC边与AD边重合,如图②所示,固定△ABC,将△EFD绕点A顺时针旋转,当ED边与AB边重合时,旋转停止.不考虑旋转开始和结束时重合的情况,设ED、EF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图③所示.(1)图②四边形ABCF的形状是________,连接BF,则BF=________;(2)在旋转过程中,∠CEF+∠CHE的度数为________;(3)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图③所示的情况说明理由);(4)当x为何值时,△AGH是等腰三角形?(直接写出答案,不必说明理由)第5题图6.将两张完全相同的平行四边行纸片按如图①所示放置(其中点E在BC上,点A在BG 上,AB=BE=4,BC=BG=23+2,∠B=60°,▱ABCD固定不动,将▱GBEF绕点B顺时针旋转,旋转角为α(0°<α<360°).(1)如图①,连接AF,求AF的长.(2)如图②,当▱GBEF绕点B旋转到点F与点D重合时,AD与BG相交于点M,BC与ED相交于点N,求证:四边形BMDN是菱形.(3)如图③,在旋转过程中,当旋转角α为多少度时,以点C,G,D,F为顶点的四边形是正方形?是矩形?请给予证明.第6题图类型三 新定义探究问题1. 如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,若△PBC 与△CAB 相似,那么就称点P 为△ABC 的黄金点.(1)在下列三角形中,一定没有黄金点的是( ) A . 锐角三角形 B . 钝角三角形 C . 等腰三角形 D . 直角三角形(2)如图②,已知Rt △ABC 中,∠ACB =90°,∠ABC >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为点E ,试说明点E 是△ABC 的黄金点;(3)如图③,在Rt △ABC 中,∠ACB =90°,∠BAC =30°,BC =4. ①若点P 1是△ABC 的黄金点,求AP 1的长;②若点P 1是△ABC 的黄金点,点P 2是△P 1BC 的黄金点, 点P 3是△P 1P 2C 的黄金点,点P 4是△P 1P 2 P 3的黄金点,…,以此类推,请求出△P 2016P 2017P 2018的周长.第1题图2. 我们知道若线段上的一个点把这条线段分割为两部分,其中一部分与全长之比等于5-12时,则这个点称为黄金分割点.类比三角形中线的定义,我们规定:连接一个顶点和它对边的黄金分割点的线段叫做这个三角形的黄金线.(1)如图①,已知CD 是△ABC 的黄金线(AD >BD ),△ABC 的面积为4,则△BCD 的面积为________;(2)如图②,在△ABC 中,∠A =36°,AB =AC =1,过B 点作BD 平分∠ABC ,与AC 相交于点D ,求证:BD 是△ABC 的黄金线;(3)如图③, BE 、CD 是△ABC 的黄金线(AD >BD ,AE >CE ),BE 、CD 相交于点O . ①设△BOD 与△COE 的面积分别为S 1、S 2,试猜想S 1、S 2的数量关系,并说明理由;②求ODCD的值.第2题图3.如果在两个相似但不全等的三角形中,其中一个三角形的一边等于另一个三角形的一边,那么,我们称这两个三角形为梦幻三角形,例如:(如图①所示)△ABC 的三边长分别为a 、b 、c ,(如图②所示)△A 1B 1C 1的三边长分别为a 1、b 1、c 1,且△ABC ∽△A 1B 1C 1,c =a 1,那么我们将△ABC 与△A 1B 1C 1称为梦幻三角形.(1)若△ABC 与△A 1B 1C 1为梦幻三角形,且相似比为k (k >1),求证:a =kc ; (2)如图③,在△ABC 中,∠ACB =80°,∠B =60°,CD 平分∠ACB 交AB 于点D ,求证:△CBD 与△ABC 为梦幻三角形;(3)如图④,△ABC 内接于⊙O ,且AB 为⊙O 的直径,∠ACB 的平分线交⊙O 于点D ,过点D 作⊙O 的切线PD 交CA 的延长线于点P ,过点C 作CF ⊥PD 于点F ,与AD 相交于点E ,且△ACE 与△ADC 刚好构成梦幻三角形.①若AE ·AD =36,BC =8,求线段AD 的长;②若CDAB=m ,请直接写出PC 与PD 的数量关系(用含m 的式子表示,不必说明理由).第3题图4.阅读理解如图①,在正n边形A1A2A3…A n的边A2A3上任取一不与点A2重合的动点B2,并以线段A1B2为边在线段A1A2上方作一正n边形A1B2B3…B n,把正n边形A1B2B3…B n叫正n边形A1A2A3…A n的准位似图形,点A3称为准位似中心.特例论证(1)如图②,已知正三角形A1A2A3的准位似图形为正三角形A1B2B3,试证明:随着点B2的运动,∠B3A3A1的大小始终不变.数学思考(2)如图③,已知正方形A1A2A3A4的准位似图形为正方形A1B2B3B4,随着点B2的运动,∠B3A3A4的大小是否始终不变?若不变,请求出∠B3A3A4的大小;若改变,请说明理由.归纳猜想(3)在图①的情况下:①试猜想∠B3A3A4的大小是否会发生改变?若不改变,用含n的代数式表示出∠B3A3A4的大小(不要求证明);若会改变,请说明理由;②∠B3A3A4+∠B4A4A5+∠B5A5A6+…+∠B n A n A1=________.(用含n的代数式表示)第4题图类型四 动点探究问题1.在四边形OABC 中,AB ∥OC ,∠OAB =90°, ∠OCB =60°,AB =2,OA =2 3.(1)如图①,连接OB ,请直接写出OB 的长度;(2)如图②,过点O 作OH ⊥BC 于点H .动点P 从点H 出发,沿线段HO 向点O 运动,动点Q 从点O 出发,沿线段OA 向点A 运动,两点同时出发,速度都为每秒1个单位长度,设点P 运动的时间为t 秒,△OPQ 的面积为S (平方单位).①求S 与t 之间的函数关系式;②设PQ 与OB 交于点M ,当△OPM 为等腰三角形时,试求出△OPQ 的面积S 的值.第1题图2. 如图,点O 为正方形ABCD 的中心,AB =2,点E 为AB 上的一动点,DF ⊥DE 于点D ,DF 与BC 的延长线相交于点F . OM ⊥DE 于点M , ON ⊥DF 于点N .(1)求证:DE =DF ;(2)在点E 的运动过程中,OM 2+ON 2是否是一个定值,如果是,请求出 OM 2+ON 2的值,若不是,请说明理由;(3)如图②,若DE 与AC 相交于点P ,DF 的延长线与AC 的延长线相交于点Q ,求证: AP CQ =DP DQ.第2题图3. 如图①,在等腰△ABC中,∠BAC=90°,AB=AC,点D是BC边上的动点,P为AB边上的动点,连接DP,以DP为边构造△DEP,∠DPE=90°,PD=PE.(1)如图②,若点P与点A重合,①求证:CD=BE;②猜想BD、CD与PD之间的数量关系,并说明理由;(2)如图③,若BP=2AP时,AC=62,设DP2=y,BD=x.①求y关于x的函数关系式;②连接CP,请问是否存在△CDP为等腰三角形?若存在,请求出△DPE的面积;若不存在,请说明理由.第3题图4. 如图,在锐角△ABC中,AB=8,BC=6,CD⊥AB于点D,点E是AC的中点,连接DE.(1)如图①,①当DE∥BC时,则cos∠B的值为________;②当DE⊥AC时,求sin∠B的值;(2)设△ACD的面积为S,求S-AC2的最大值;(3)如图②,M、F为线段AB上的两动点,在运动的过程中,EF始终与CM平行,延长FE到点P,随着∠B的变化,是否存在∠DEP=k∠A(k为正整数)?若存在,请直接写出tan∠MCA的取值范围;若不存在,请说明理由.第4题图江西省2020届中考数学单元专题练之几何探究题答案全解全析类型一操作探究问题1.解:●初步体验证明:如解图①,连接BD交EF于点O,连接DE、BF,第1题解图∵BE=DF,BE∥DF,∴四边形BFDE是平行四边形,∴EF与BD互相平分.●规律探究(1) 2;(2)(1)中的数量关系不会发生变化.理由如下:如解图①,过点D作BE的垂线,与BE的延长线交于点M,连接BD,第1题解图①∵BE∥DF,EF⊥BE,DM⊥BM,∴EF∥DM,∴四边形EFDM是矩形,∴DF=EM,EF=DM,BM=BE+DF,∵在正方形ABCD中,∴BD=2AB,∵BD2=BM2+DM2,∴(BE+DF)2+EF2=2AB2.●拓展应用如解图②,过点P作EP⊥DP,过点B作BE⊥EP,第1题解图②∵∠DPB=135°,∴∠EPB=45°,即△EBP为等腰直角三角形,∴PB=2BE,∵2BP+2PD=46,∴2·2BE +2PD =46, ∴BE +PD =26,设PE =BE =x ,则有(BE +PD )2+x 2= 2AB 2,即(26)2+x 2=32, 解得x =±22(负值舍去), ∴PD =26-BE =26-2 2. 2. 解:发现:90°,102;【解法提示】∵点Q 在AB ︵上,点P 在OB 上,∴当PQ 取最大值时,点Q 与点A 重合,点P 与点B 重合, 此时∠POQ =90°,PQ =OA 2+OB 2=10 2.思考:(1)如解图①,连接OQ ,则OP =12OB =12OQ ,∵QP ⊥OB , ∴cos ∠QOP =OP OQ =12∴∠QOP =60°,∴l BQ ︵=60180π×10=103π ;第2题解图①(2)由折叠的性质可得,BP =B ′P ,AB ′=AB =102, 在Rt △B ′OP 中,OP 2+(102-10)2=(10-OP )2, 解得OP =102-10, S 阴影=S 扇形AOB -2S △AOP =90360π×102-2×12×10× (102-10)=25π-1002+100;探究:如解图②,找点O 关于PQ 的对称点O ′,连接OO ′、O ′B 、O ′C 、O ′P ,OO ′与PQ 交于点M ,则OM =O ′M ,OO ′⊥PQ ,O ′P =OP =6,第2题解图②∵点O ′是B ′Q ︵所在圆的圆心, ∴O ′C =OB =10,∵折叠后的B ′Q ︵恰好与半径OA 相切于C 点,∴O ′C ⊥AO , ∴O ′C ∥OB ,∴四边形OCO ′B 是矩形,在Rt △O ′BP 中,O ′B =62-42=2 5在Rt △OBO ′中,OO ′=102+(25)2=230, ∴OM =12OO ′=12×230=30,即点O 到折痕PQ 的距离为30.3. 解:深入探究:(1)∵折叠前的四边形ABCD 是矩形, ∴AM ∥DN ,∴∠KNM =∠KMN =∠1=70°, ∴∠MKN =40°;(2)△MNK 为等腰三角形;不发生变化; 理由如下:∵AM ∥DN , ∴∠1=∠MNK ,∵将纸片沿MN 折叠, ∴∠1=∠KMN , ∴∠MNK =∠KMN , ∴KM =KN ,∴△MNK 始终为等腰三角形;拓展应用:(3)如解图①,当△KMN 的面积最小值为12时,KN =KM =BC =1,∴KM ⊥KN ,第3题解图①∵∠NMB =∠KMN ,∠KMB =90°, ∴∠1=∠NMB =45°,同理将纸条向下折叠时,∠1=∠NMB =135°, ∴∠1=45°或∠1=135°; (4)分两种情况:情况一:如解图②,将矩形纸片对折,使点B 与D 重合,此时点K 也与D 重合,第3题解图②设MK =MB =x ,则AM =5-x ,在Rt △AMK 中,由勾股定理得12+(5-x )2=x 2, 解得x =2.6,∴MK =NK =2.6,(由(2)可得)∴S △MNK =12×1×2.6=1.3;情况二:如解图③,将矩形纸片沿对角线AC 对折,此时折痕即为AC ,第3题解图③设MK =AK =CK =x ,则DK =5-x . 同理可得MK =NK =2.6, ∵MD =1,∴S △MNK =12×1×2.6=1.3,∴△MNK 的面积最大值为1.3. 4. 解:(1)①等腰;【解法提示】由折叠的性质可知BF =EF ,∴△BEF 为等腰三角形. ②22; 【解法提示】由折叠的性质可知∠BEF =∠EBF =45°, ∴cos ∠BEF =22; (2)①当△BEF 是等边三角形时,则∠ABE =30°, ∵AB =3,∴cos ∠ABE =AB BE =32,∴BE =2;②根据题意可得矩形ABCD 的面积为6; 第一种情况:当点F 在边BC 上时,此时可得S △BEF ≤12S 矩形ABCD ,即当点F 与点C 重合时,S △BEF 存在最大值,最大值为3;由折叠可知CE =CB =23,即EF = 23; 第二种情况:当点F 在边CD 上时,如解图,过点F 作FH ∥BC 交AB 于点H ,交BE 于点K ,第4题解图∵S △EKF =12KF ·AH ≤12HF ·AH =12S 矩形AHFD ,S △BKF =12KF ·BH ≤12HF ·BH =12S 矩形BCFH ,∴S △BEF ≤12S 矩形ABCD =3,即当点F 为CD 中点时,△BEF 的面积最大,此时,点E 与点A 重合,△BEF 面积最大为3, ∴EF =AD 2+DF 2=(23)2+(32)2=512, 综上所述,当△BEF 的最大面积为3时,EF 的长为23或512. 5. (1) 解:如解图①,△ACQ 即为所求;第5题解图①(2)①证明:由旋转可得,△ABM ≌ △ACQ ,∴AM =AQ ,∠BAM =∠CAQ , ∵∠MAN =45°,∠BAC = 90°, ∴∠BAM +∠NAC =45°, ∴∠CAQ +∠NAC =45°,即∠NAQ =45°, 在△MAN 和△QAN 中, ⎩⎪⎨⎪⎧AM =AQ ∠MAN =∠QAN ,AN =AN∴△MAN ≌△QAN (SAS ), ∴MN =NQ ;② 解:MN 2=BM 2+NC 2; 理由如下:由①中可知,MN =NQ ,MB =CQ ,又∵∠NCQ =∠NCA +ACQ =∠NCA +∠ABM =45°+45°=90°, ∴在Rt △NCQ 中,NQ 2=CQ 2+NC 2,即MN 2=BM 2+NC 2; (3)解:ST 2=GS 2+TH 2;【解法提示】如解图③,连接SP 、PT ,用(2)中的方法可证△DGS ≌△DPT ,△GSP ≌△PTH ,∴GS =PT ,TH =SP ,由题意易知GH ⊥PD ,△SPT 为直角三角形, ∴ST 2=PT 2+SP 2=GS 2+TH 2.(4)解:如解图③,∵DE =DF ,DG =DP ,∠EDF =∠GDP =45°,第5题解图③∴∠DPK =∠DEP , 又∵∠PDK =∠EDP , ∴△DPK ∽△DEP ,∴DPDE=DKDP,即DP2=DK·DE,∵DK=a, DE=b,∴DP=ab.6.解:(1)①CD=CE,理由如下:∵AC=BC=6,∠ACB=90°,∴∠CAB=45°,∴∠CED=∠CAB=45°,又∵DE是⊙O的直径,∴∠ECD=90°,∴∠CDE=∠CED=45°,∴CD=CE;②由题意可得∠ECD=∠ACB=90°,∴∠ECA=∠BCD,又∵AC=BC=6,CD=CE,∴△ECA≌△DCB,∴AE=BD,∴AE+AD=BD+AD=AB,在Rt△ABC中,由勾股定理可得AB=62,即AE+AD的值为62;(2)∵DE是⊙O的直径,∴∠DAE=∠DCE=90°,又∵AC=BC,∠ACB=90°,∴∠CAB=∠B=45°,∠ECA=∠DCB,∠CEA=∠ADC∴∠EAC=∠B=45°,∴△ECA≌△DCB,∴AE=BD,∴AE-AD=BD-AD=AB,在Rt△ABC中,由勾股定理可得AB=62,即AE-AD的值为62;(3)①AD-AE=22,证明如下:第6题解图①∵DE是⊙O的直径,∴∠DFE=90°,如解图①,过点F作FM⊥AF于点F,交AD于点M,∴∠DFM=∠EF A,又∵∠MAF=∠CAB=45°,∴∠AMF=45°,∴AF=MF,又∵∠FDM=∠FEA,∴△FDM ≌△FEA (AAS), ∴AE =DM ,∴AD -AE =AD -DM =AM ,由AC =3AF ,AC =6可得AF =2,在Rt △AMF 中,由勾股定理可得AM =22,即AD -AE 的值为22; ②存在,⊙O 的半径为5.6或17. 【解法提示】由①可得CF =8, 如解图②,当∠ECA =90°时,△AEC 为直角三角形, 可证EC =AC =6,在Rt △ECF 中,由勾股定理可得EF =10,在Rt △EDF 中,由勾股定理可得DE =102,即⊙O 的半径为52, 如解图③,当∠AEC =90°时,△AEC 为直角三角形, 过点E 作EH ⊥AC 于点H ,可得EH =AH =3, ∴FH =5,第6题解图在Rt △EHF 中,由勾股定理可得EF =34,在Rt △EDF 中,由勾股定理可得DE =217,即⊙O 的半径为17.类型二 旋转探究问题1. (1)解: ∵△ABC 绕顶点C 顺时针旋转40°,得到△A ′B ′C , ∴CA =CA ′,CB =CB ′,∠ACA ′=∠BCB ′=θ, ∴△ACA ′∽△BCB ′,∴S △ACA ′∶S △BCB ′=AC 2∶BC 2=32∶42=9∶16; ∴S 1S 2=916; (2)①证明:∵AB ∥B ′C , ∴∠ABC =∠BCB ′;由旋转的性质得∠ABC =∠DB ′C , 即∠BCB ′ =∠DB ′C ; ∴CD =B ′D ;②解:根据勾股定理可得A ′B ′=AB =5,据题意可得∠BCB ′ +∠BCA ′ =∠DB ′C +∠CA ′B ′=90°, ∴∠BCA ′ =∠CA ′B ′,∴CD =A ′D =B ′D =12A ′B ′=52 ,∴ BD =BC -CD =32;(3)解:存在,∵∠A ′CB ′=90°,点M 为AC 的中点,∴CM =12AC =32,∵△A ′B ′C 是由△ABC 绕顶点C 顺时针旋转所得,∴A ′B ′=AB =5,第1题解图如解图,连接CN ,可得MN ≤CM +CN ,∴只有当点N 在MC 的延长线上时,MN =CM +CN ,此时MN 最大, ∵点N 为A ′B ′的中点,∴CN =12 A ′B ′=52,MN =CM +CN =4,即MN 的最大值为4.此时AA ′⊥BB ′.2. (1)证明:①∵AC =BC ,D , E 分别是 AC ,BC 的中点, ∴CD =CE ,由旋转可得∠D ′CE ′=∠DCE =90°,CD =CD ′,CE =CE ′, ∴∠ACD ′=∠BCE ′,CD ′=CE ′, ∴△ACD ′≌ △BCE ′, ∴AD ′=BE ′;②解:∵AD ′∥CE ′,∴∠AD ′C =∠E ′CD ′=90°, ∵AC =2CD ′,∴∠CAD ′=30°, ∴ AD ′=cos 30°×AC =32×22=6, 由①得BE ′=AD ′= 6 ;第2题解图①(2)解:根据题意可得CD ′=CE ′= 2 ,∵△CD ′E ′是等腰直角三角形,CD ′=CE ′= 2 , ∴D ′E ′=2,如解图①,作CK ⊥BE ′于点K .可得KD ′=E ′K , ∴CK =12D ′E ′=1,∴sin ∠CBE ′=CK BC =122=24;(3)解:如解图②,连接PM ,由(1)得△ACD ′≌ △BCE ′,第2题解图②∴∠P AC =∠E ′BC ,AD ′=BE ′, 又∠P AC +∠ACB =∠PBC +∠APB , ∴∠APB =∠ACB =90°, 设AD ′=x ,则BD ′=x -2,在△ABD ′中可得AD ′2+BD ′2=AB 2,即x 2+(x -2)2=42, 解得x 1=7+1,x 2=-7+1 (舍去), ∴BD ′=7-1,∴S △BD ′M =S △ABD′2=(7+1)(7-1)4=32,由轴对称性可得PM 扫过的图形面积为:180π×22360-32×2=2π-3.3. 解: (1)①正方形;【解法提示】由旋转性质可知DE =EF =FG =DG , ∴四边形DEFG 为菱形, ∴DG ∥BC . 又∵DE ⊥EC ,∴四边形DEFG 为正方形. ②∵四边形DEFG 为正方形, ∴DG ∥BC .∴∠ADG =∠B ,∠AGD =∠C . ∵△ABC 为等边三角形, ∴∠B =∠C =60°.∴△ADG 为等边三角形. ∴AD = DG =DE .又∵BD =DE sin ∠B =DE sin 60°=233DE ,∴BD +AD =233DE +DE =6.解得DE =1823+3=123-18.(2)①等边三角形,相等;②据题意可得△ADF ≌△BED ≌△CFE ,AD =x ,BD =6-x , 如解图①,过点D 作DG ⊥BC 于点G , 可得DG =sin ∠B ·BD =32(6-x ), y =S △ABC -3S △BDE =12×33×6-3×x 2×32(6-x ),化简得y =334x 2-932x +9 3.图①图② 第3题解图(3)如解图②,经过多次操作可得到首尾顺次相接的多边形,其最大边数是6,它可能为正多边形,边长为2.4. (1)证明:据题意可得∠CAB =∠CBA ,AD =BD , ∴∠NAB =∠MBA ,又∵AB ∥MN ,AC =BC ,∴AC AN =BC BM,即AN =BM , ∴△ADN ≌△BDM (SAS );(2)证明:据题意可得AD =BD =2, 由(1)得∠NAB =∠MBA =135°,∠EDM = 45°,∴∠AND +∠ADN =∠EDB +∠BDM =45°, ∴∠AND =∠BDM , ∴△ADN ∽△BMD , ∴AD BM =ANBD,即AN ·BM =AD ·BD =2·2=2, ∴AN ·BM 的值不会发生变化;(3)解:①平分.证明:由(2)可得∠ADN +∠BDM =45°, ∴∠MDN =∠DAN =135°, 又∵△ADN ∽△BMD , ∴AN BD =ND DM , 又∵AD =BD , ∴AN AD =ND DM, ∴△ADN ∽△DNM ,∴∠AND =∠DNM ,即ND 始终平分∠ANM ; ②S △DMN =m 2+2m +22m;【解法提示】由(2)可得:AN ·BM =2,AN =m , ∴BM =2m,如解图,分别过点D 作AC 、MN 、CM 的垂线,垂足分别为H 、H ′、H ″ ,第4题解图∵ND 平分∠ANM ,且DH ⊥CA ,DH ′⊥MN 在Rt △ABC 中,DH ∥BC ,AD =BD 可得DH ′=DH =BC2=1,同理DH ″=1,∴S △DMN =S △CMN -S △ADN -S △ABC -S △DMB =12·CN ·CM -12·AN ·DH -12·AC ·BC -12·BM ·DH ″ =12×(2+m )×(2+2m )-12×m ×1-12×2×2-12×2m ×1 =m 2+2m +22m.∴△DMN 的面积为m 2+2m +22m.5. 解:(1)平行四边形;25;【解法提示】依题意可知,正方形ABCD 沿对角线剪开后为第5题解图①两个等腰直角三角形,当ED 边与AB 边重合时,AB =DF ,BC =EF ,∴四边形ABCF 是平行四边形,设AD 与BF 交于点O ,如解图①,可知AO =DO =12AD =1,∴BO =AB 2+AO 2=5,∴BF =2 5. (2)45°或135°;【解法提示】当△EFD 转到如解图②所示的位置时,∠CEF +∠CHE =∠ACB =45°;当△EFD 旋转到如解图③所示的位置时,∠CEF +∠CHE =180°-∠C =135°,综上可知,∠CEF +∠CHE 的度数为45°或135°.第5题解图(3)由题意知∠DEF =∠ACB =∠B =45°,∴∠DAC +∠CAH =45°,∠AHB +∠CAH =∠ACB =45°, ∴∠DAC =∠AHB ,∴△AGC ∽△HAB , ∴AC HB =GCAB ,∴2y =x 2,∴y =4x(0≤x <22); (4)当x 为2或2时,△AGH 是等腰三角形. 【解法提示】由题意可得△AGC ∽△HGA .∴要使△AGH 是等腰三角形,只要△AGC 是等腰三角形即可.第5题解图分三种情况讨论,①如解图④,当CG =AG ,此时CG =2, ②如解图⑤,当CG =AC ,此时CG =2,③如解图⑥,当AG =AC ,此时ED 与AB 重合,不合题意,舍去. 综上所述,当x =2或2时,△AGH 是等腰三角形.6. (1)解:如解图①,连接DF ,过点F 作FH ⊥AD 于点H .第6题解图①∵四边形ABCD 和四边形BEFG 是平行四边形. ∴AK ∥BE ,AB ∥EK .∴四边形ABEK 是平行四边形. ∵AB =BE ,∴四边形ABEK 是菱形.∴DK =FK =23+2-4=23-2,∠FKD =∠AKE =∠B =60°, ∴△FKD 是等边三角形. ∵FH ⊥AD ,∴KH =12DK =3-1,FH =3-3,在Rt △AFH 中,AH =4+3-1=3+3, ∴AF =AH 2+FH 2=(3+3)2+(3-3)2=24=2 6.(2)证明:∵四边形ABCD 和四边形GBEF 是平行四边形,∴四边形BMDN 是平行四边形.∵∠A =∠G ,∠AMB =∠GMD ,AB =GD . ∴△ABM ≌△GDM (AAS ). ∴BM =DM .∴四边形BMDN 是菱形.(3)解:①如解图①,当旋转角α为30°时,四边形CGDF 是正方形(此时也是矩形).第6题解图② 证明:∵BG =BC ,∠ABG =∠α=30°, ∴∠GBC =60°-30°=30°, ∴∠BGC =∠BCG =75°, ∴∠GCO =∠CGO =45°, ∴OG =OC ,∠GOC =90°,如解图②,过点G 作GN ⊥BC 于点N , 在Rt △BNG 中,∠GBC =30°, ∴GN =12BG =3+1,BN =3GN =3+ 3.∴NC =BC -BN =23+2-(3+3)=3-1. ∴GC =GN 2+NC 2=(3+1)2+(3-1)2=8=22,∴OG =OC =CG 2=222=2,∴OD =OF =4-2=2, ∴OD =OC =OG =OF , ∴四边形CGDF 是矩形, ∵GF ⊥CD ,∴四边形CGDF 是正方形;②如解图③,当旋转角α为300°时,四边形CGFD 是矩形.第6题解图③证明:∵∠α=300°,∴点E 与点A 重合,∠CBG =120°. ∵BC =BG ,∴∠GCD =120°-30°=90°.∵四边形ABCD 和四边形GBEF 是平行四边形, ∴CD ∥AB ,AB ∥GF ,AB =CD ,AB =GF , ∴CD ∥GF ,CD =GF ,∴四边形CGFD 是平行四边形, ∵∠GCD =90°,∴四边形CGFD 是矩形.类型三 新定义探究问题1. 解: (1)C ;(2)∵在Rt △ABC 中,∠ACB =90°,CD 是AB 上的中线, ∴CD =12AB ,∴CD =BD ,∴∠BCE =∠ABC , ∵BE ⊥CD , ∴∠BEC =90°, ∴∠BEC =∠ACB , ∴△BCE ∽△ABC ,∴点E 是△ABC 的黄金点;(3)①据题意可得∠P 1CB =60°,∠BP 1C =90°,AC =43, ∴P 1C =cos ∠P 1CB ·BC =cos 60°·BC =2,如解图,过点P 1作P 1D ⊥AC 于点D ,连接AP 1,可得∠P 1CD =30°, ∴P 1D =12P 1C =1,CD = 3 ,∴ AD =AC -CD =33,在Rt △AP 1D 中,根据勾股定理可得AP 1=(33)2+12=27;第1题解图②据题意可得△P 1BC ∽△CAB , ∴C △P 1BC C △CAB=BC AB =12, 同理可得C △P 2CP 1C △P 1BC =P 1C BC =12,即 C △P 2CP 1C △CAB=P 1C AB =14, ∴C △P 2016P 2017P 2018C △CBA=P 2017P 2018AB =122016,可得△CAB 的周长为12+43,∴△P 2016P 2017P 2018的周长为3+3220142. (1)解: 6-25;【解法提示】∵CD 是△ABC 的黄金线(AD >BD ), ∴AD AB =5-12, ∵S △ABC =4, ∴S △ADC =5-12×4=25-2, ∴S △BCD =S △ABC -S △ADC =6-25; (2)证明:∵∠A =36°,AB =AC , ∴∠ABC =∠C =72°,∵过点B 作BD 平分∠ABC ,与AC 相交于点D , ∴∠CBD =∠A =36°,∠BDC =∠C =72°, ∴AD =BD =BC , ∴△BCD ∽△ABC , ∴CD BC =BDAC ,即1-AD BC =1-BC BC =BC 1, 解得BC =5-12, ∴AD =5-12, ∴AD AC =5-12, ∴D 点是AC 的黄金分割点, ∴BD 是△ABC 的黄金线; (3)解:①S 1=S 2.理由如下:如解图,连接ED ,第2题解图据题意得:AD AB =AEAC =5-12,∴S △ABE S △ABC =S △ACD S △ABC=5-12,∴S △ABE =S △ACD ,∴ S △COE =S △BOD ,即S 1=S 2; ②由①得AD AB =AE AC, 又∵∠A 为公共角, ∴△ADE ∽△ABC ,∴∠DEA =∠BCA ,DE BC =AEAC =5-12, ∴DE ∥BC ,∴△ODE ∽△OCB , ∴OD OC =DEBC =5-12, ∴OD CD =5-15+1=(5-1)24. 3. (1)证明:根据题意可得△ABC ∽△A 1B 1C 1,且相似比为k (k >1), ∴aa 1=k ,即a =ka 1, 又∵c =a 1, ∴a =kc ;(2)证明:根据题意得∠A =40°, ∵CD 平分∠ACB ,∴∠BCD =12∠ACB =40°,即∠BCD =∠A ,又∵∠B =∠B , ∴△CBD ∽△ABC , 又∵BC 是公共边,∴△CBD 与△ABC 为梦幻三角形;(3)解:①∵△ACE 与△ADC 刚好构成梦幻三角形, ∴△ACE ∽△ADC , ∴AC AD =AEAC,即AC 2=AE ·AD =36, ∴AC =6,∵AB 为⊙O 的直径, ∴∠ACB =90°, 又∵BC =8,∴由勾股定理可得AB =10, 如解图,连接OD ,又∵∠ACB 的平分线交⊙O 于点D , ∴∠ACD =45°, ∴∠AOD =90°,∴∠OAD =∠ADO =45°,∵OD =5, ∴AD =52; ②PCPD=2m ;第3题解图【解法提示】根据题意可得AD =22AB , ∴CD AD =CD 2AB2=2·CD AB =2m , ∵PD 是⊙O 的切线, ∴∠ODP =90°, ∴∠ADP =45°,即∠ADP =∠PCD , 又∵∠P =∠P ,∴△ADP ∽△DCP ,且DP 为两三角形的公共边, ∴PC PD =CDDA=2m . 4. (1)证明:∵△A 1A 2A 3与△A 1B 2B 3都是正三角形, ∴A 1A 2=A 1A 3,A 1B 2=A 1B 3,∠A 2A 1A 3=∠B 2A 1B 3=60°, ∴∠A 2A 1B 2=∠A 3A 1B 3,∴△A 2A 1B 2≌△A 3A 1B 3(SAS ), ∴∠B 3A 3A 1=∠A 2=60°;∴随着点B 2的运动,∠B 3A 3A 1的大小始终不变,为60°. (2)解:∠B 3A 3A 4的大小不变.如解图,在边A 1A 2上取点D ,使A 1D =A 3B 2,连接B 2D .第4题解图∵四边形A 1A 2A 3A 4与四边形A 1B 2B 3B 4都是正方形, ∴A 1B 2=B 2B 3,∠A 1B 2B 3=∠A 1A 2A 3=90°, ∴∠A 3B 2B 3+∠A 1B 2A 2=90°, ∠A 2A 1B 2+∠A 1B 2A 2=90°, ∴∠A 3B 2B 3=∠A 2A 1B 2, ∴△A 3B 2B 3≌△DA 1B 2, ∴∠B 2A 3B 3=∠A 1DB 2, ∵A 1A 2=A 2A 3,A 1D =A 3B 2, ∴A 2B 2=A 2D .又∵∠A 1A 2A 3=90°,∴△DA 2B 2为等腰直角三角形, ∴∠A 1DB 2=135°, ∴∠B 2A 3B 3=135°, ∵∠A 4A 3A 2=90°, ∴∠B 3A 3A 4=45°,∴∠B 3A 3A 4的大小始终不变,为45°; (3)解:①∠B 3A 3A 4的大小不会发生改变,始终为180°n;②90°(n -1)(n -2)n.【解法提示】∠B 3A 3A 4+∠B 4A 4A 5+B 5A 5A 6+…+∠B n A n A 1=180°n ×1+180°n×2+180°n ×3+…180°n ×(n -2)=180°n ×[1+2+3+…+(n -2)]=90°(n -1)(n -2)n. 类型四 动点探究问题1. 解:(1)OB =4;(2)①∵AB =2,OB =4,∠OAB =90°,∴∠ABO =60°,又∵∠OCB =60°,∴△BOC 为等边三角形,∴OH =OBcos 30°=4×32=23, ∴OP =OH -PH =23-t ,如解图①,过P 点作PE ⊥OA ,垂足为点E ,第1题解图①则EP =OPcos 30°=3-32t , ∴S =12·OQ ·EP =12·t ·(3-32t )=-34t 2+32t (0<t <23);②若△OPM 为等腰三角形:(ⅰ)若OM =PM ,如解图②,则∠MPO =∠MOP =∠POC ,第1题解图②∴PQ ∥OC ,过点P 作PK ⊥OC 于点K , ∴OQ =PK =OP 2,即t =3-t2,解得:t =233,此时S =-34×(233)2+32×233=233; (ⅱ)若OP =OM ,如解图③,则∠OPM =∠OMP =75°,第1题解图③∴∠OQP =∠OMP -∠QOM =75°-30°=45°,此时EQ =EP ,即t -(3-12t )=3-32t , 解得:t =2,此时S =-34×22+32×2=3-3; (ⅲ)若OP =PM ,∠POM =∠PMO =∠AOB ,则PQ ∥OA ,此时点Q 在AB 上,不满足题意,舍去.综上所述,当△OPM 为等腰三角形时,△OPM 的面积为233或2. 2. (1)证明:根据题意得AD =CD ,∠ADC =∠DCF =∠DAB =90°,又∵DF ⊥DE 于点D ,∴∠ADE =∠CDF ,∴△ADE ≌△CDF ,∴DE =DF ;(2)解: OM 2+ON 2 的值为定值;理由:∵OM ⊥DE 于点M , ON ⊥DF 于点N ,∴四边形DMON 为矩形,∴DN =OM ,如解图①,连接OD ,可得OM 2+DM 2=OD 2,即OM 2+ON 2=OD 2,第2题解图①∵点O 为正方形ABCD 的中心,AB =2,∴OD =2,即OM 2+ON 2=OD 2=2;(3)证明:由正方形的性质可得∠DAC =45°,如解图②,过点Q 作C ′Q ⊥AQ 于点Q ,QC ′与DC 的延长线相交于点C ′,第2题解图②可得∠C ′=45°,即∠DAC =∠C ′,CQ =C ′Q ,又∠ADE +∠EDC =∠QDC ′+∠EDC =90°,∴∠ADE =∠QDC ′,∴△ADP ∽△C ′DQ ,∴AP C ′Q =AP CQ =DP DQ. 3. (1)①证明:据题意可得∠EAB +∠BAD =∠CAD +∠BAD =90°,∴∠EAB =∠CAD ,又AB =AC ,AD =AE ,∴△ABE ≌△ACD ,∴CD =BE ;②解:猜想:CD 2+BD 2=2PD 2.理由:据题意可得∠ABC =∠C =45°,由①可得∠ABE =∠C =45°,即∠EBD =90°,∴BE 2+BD 2=PE 2+PD 2,即CD 2+BD 2=2PD 2;(2)解:①据题意可得BP =42,如解图,过点P 作PF ∥AC ,PF 与BC 相交于点F ,第3题解图可得BF =BP sin 45°=42×22=8, 由(1)可得△PBE ≌△PFD ,∴DF =BE ,∠ABE =∠PFD =45°,∴∠EBD =90°,∴BE 2+BD 2=PE 2+PD 2,∴DF 2+BD 2=2PD 2,即2y =x 2+(8-x )2,化简得y =x 2-8x +32;②存在;理由如下:据题意可得BC =12,CD =12-x ,AP =22, 在Rt △ACP 中,可得:CP =(62)2+(22)2=45, 当CD =DP 时,△CDP 为等腰三角形,此时,可得 y =12-x ,即x 2-8x +32=(12-x )2,解得x =7,∴y =x 2-8x +32=72-8×7+32=25,∴S △DPE =252; 当CP =CD 时,△CDP 为等腰三角形;此时,可得12-x =45,解得x =12-45,∴y =x 2-8x +32=(12-45)2-8×(12-45)+32=160-645,∴S △DPE =160-6452=80-325,综上,△DPE 的面积为252或(80-325). 4. 解:(1)① 23; 【解法提示】∵E 是AC 的中点,∴当DE ∥BC 时,D 为AB 的中点,即BD =12AB =4, 又∵CD ⊥AB ,∴cos ∠B =BD BC =46=23. ②∵点E 是AC 的中点,∴当DE ⊥AC 时,DE 为AC 的垂直平分线,∴CD =AD ,设CD =AD =x ,则BD =8-x ,在Rt △BCD 中,根据勾股定理得:(8-x )2+x 2=62,解得x 1=4+2,x 2=4-2,∴sin ∠B =CD BC =4+26或4-26; (2)∵CD ⊥AB ,∴ S -AC 2=AD ·CD 2-(AD 2+CD 2)=-(AD 2+CD 2-2AD ·CD )-3AD ·CD 2, ∴ S -AC 2=-(AD -CD )2-3AD ·CD 2, ∴当AD =CD 时,S -AC 2的值最大,最大值为-3AD ·CD 2, 由(1)可知:-3AD ·CD 2= -3×(4-2)22=122-27; (3)34<tan ∠MCA <377. 【解法提示】当∠ABC 为直角时,根据勾股定理可得AC =10,此时可得 tan ∠A =BC AB =68=34. 当∠ACB 为直角时,根据勾股定理可得AC =27 ,此时可得tan ∠A =BC AC =627=377. ∵△ABC 是锐角三角形,∴34<tan ∠A <377. 由题意可知∠DEP =∠DEC +∠CEP =2∠A +∠CEP ,又∵∠DEP =k ∠A ,且k 为正整数,∴k =3,即∠CEP =∠AEF =∠A ,又∵EF始终与CM平行,∴∠MCA=∠AEF=∠A,∴34<tan∠MCA<377.。

中考几何探究题目选(三)

中考几何探究题目选(三)

纯几何探究(三)1.如图11,已知四边形ABCD 是菱形,G 是线段CD 上的任意一点时,连接BG 交AC 于F ,过F 作FH CD ∥交BC 于H ,可以证明结论FH FG AB BG=成立(考生不必证明). (1)探究:如图12,上述条件中,若G 在CD 的延长线上,其它条件不变时,其结论是否成立?若成立,请给出证明;若不成立,请说明理由;(5分)(2)计算:若菱形ABCD 中660AB ADC ==,∠,G 在直线..CD 上,且16CG =,连接BG 交AC 所在的直线于F ,过F 作FH CD ∥交BC 所在的直线于H ,求BG 与FG 的长.(7分)(3)发现:通过上述过程,你发现G 在直线CD 上时,结论FH FG AB BG=还成立吗?(1分) 2.(07年佛山)在Rt ABC △中,902BAC AB AC ∠===,,点D 在BC 所在的直线上运动,作45ADE ∠=(A D E ,,按逆时针方向). (1)如图1,若点D 在线段BC 上运动,DE 交AC 于E . ①求证:ABD DCE △∽△;②当ADE △是等腰三角形时,求AE 的长.(2)①如图2,若点D 在BC 的延长线上运动,DE 的反向延长线与AC 的延长线相交于点E ',是否存在点D ,使ADE '△是等腰三角形?若存在,写出所有点D 的位置;若不存在,请简要说明理由;②如图3,若点D 在BC 的反向延长线上运动,是否存在点D ,使AD E △是等腰三角形?若存在,写出所有点D 的位置;若不存在,请简要说明理由.3.如图,直线AC ∥BD ,连结AB ,直线AC 、BD 及线段AB 把平面分成①、②、③、④四个图11 A BD FC H G图12A B C D F H G 45 A B D C E 第25题图1 45 45 CD B AE E ' C A B D E第25题图2 第25题图3部分,规定:线上各点不属于任何部分。

中考复习-几何探究题(含答案)

中考复习-几何探究题(含答案)

几何探究题1题(1)如图1,图2,图3,在ABC △中,分别以AB AC ,为边,向ABC △外作正三角形,正四边形,正五边形,BE CD ,相交于点O .①如图1,求证:ABE ADC △≌△;②探究:如图1,BOC ∠= ;如图2,BOC ∠=; 如图3,BOC ∠= .(2)如图4,已知:AB AD ,是以AB 为边向ABC △外所作正n 边形的一组邻边;AC AE ,是以AC 为边向ABC △外所作正n 边形的一组邻边.BE CD ,的延长相交于点O .①猜想:如图4,BOC ∠= (用含n 的式子表示);②根据图4证明你的猜想.2题.请阅读下列材料: 问题:如图1,在菱形ABCD 和菱形BEFG 中,点A B E ,,在同一条直线上,P 是线段()()a a b a b +-的中点,连结PG PC ,.若60ABC BEF ∠=∠=,探究PG 与PC 的位置关系及PGPC的值. 小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决.问题:(1)写出上面问题中线段PG 与PC 的位置关系及PGPC的值; (2)将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若图1中2(090)ABC BEF ∠=∠=<<αα,将菱形BEFG 绕点B 顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC的值(用含α的式子表示). D A BE F C P G 图1 D C G PA B F图23题。

如图,等腰梯形ABCD 中,AB =4,CD =9,∠C =60°,动点P 从点C 出发沿CD 方向向点D 运动,动点Q 同时以相同速度从点D 出发沿DA 方向向终点A 运动,其中一个动点到达端点时,另一个动点也随之停止运动. (1)求AD 的长;(2)设CP =x ,问当x 为何值时△PD Q 的面积达到最大,并求出最大值;(3)探究:在BC 边上是否存在点M 使得四边形PD Q M 是菱形?若存在,请找出点M ,并求出BM 的长;不存在,请说明理由.4题已知矩形ABCD 和点P ,当点P 在BC 上任一位置(如图(1)所示)时,易证得结论:2222PA PC PB PD +=+,请你探究:当点P 分别在图(2)、图(3)中的位置时,2222PA PB PC PD 、、和又有怎样的数量关系?请你写出对上述两种情况的探究结论,并利用图(2)证明你的结论.答:对图(2)的探究结论为____________________________________. 对图(3)的探究结论为_____________________________________. 证明:如图(2)(第25题图) (备用图)5题如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴...于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.6题如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中正方形改为矩形(如图4—6),且AB=a,BC=b,CE=ka,CG=kb(a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.(3)在第(2)题图5中,连结DG、BE,且a=3,b=2,k=12,求22BE DG+的值.7题正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F。

《几何综合探究题中考27题》(共55题)2022年中考专练附答案(北京专用)

《几何综合探究题中考27题》(共55题)2022年中考专练附答案(北京专用)

5年(2016-2020)中考1年模拟数学试题分项详解(北京专用)专题15几何综合探究题中考27题(共45题)一.解答题(共5小题)1.(2020•北京)在△ABC中,∠C=90°,AC>BC,D是AB的中点.E为直线AC上一动点,连接DE.过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当E是线段AC的中点时,设AE=a,BF=b,求EF的长(用含a,b的式子表示);(2)当点E在线段CA的延长线上时,依题意补全图2,用等式表示线段AE,EF,BF之间的数量关系,并证明.【分析】(1)由三角形的中位线定理得DE∥BC,DE=12BC,进而证明四边形CEDF是矩形得DE=CF,得出CF,再根据勾股定理得结果;(2)过点B作BM∥AC,与ED的延长线交于点M,连接MF,证明△ADE≌△BDM得AE=BM,DE =DM,由垂直平分线的判定定理得EF=MF,进而根据勾股定理得结论.【解答】解:(1)∵D是AB的中点,E是线段AC的中点,∴DE∥BC,DE=12BC,∵∠ACB=90°,∴∠DEC=90°,∵DF⊥DE,∴∠EDF=90°,∴四边形CEDF是矩形,∴DE=CF=12BC,五年中考真题∴CF =BF =b , ∵CE =AE =a ,∴EF =√CF 2+CE 2=√a 2+b 2;(2)AE 2+BF 2=EF 2.证明:过点B 作BM ∥AC ,与ED 的延长线交于点M ,连接MF , 则∠AED =∠BMD ,∠CBM =∠ACB =90°, ∵D 点是AB 的中点, ∴AD =BD ,在△ADE 和△BDM 中, {∠AED =∠BMD ∠ADE =∠BDM AD =BD, ∴△ADE ≌△BDM (AAS ), ∴AE =BM ,DE =DM , ∵DF ⊥DE , ∴EF =MF , ∵BM 2+BF 2=MF 2, ∴AE 2+BF 2=EF 2.2.(2019•北京)已知∠AOB =30°,H 为射线OA 上一定点,OH =√3+1,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足∠OMP 为钝角,以点P 为中心,将线段PM 顺时针旋转150°,得到线段PN ,连接ON . (1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.【分析】(1)根据题意画出图形.(2)由旋转可得∠MPN=150°,故∠OPN=150°﹣∠OPM;由∠AOB=30°和三角形内角和180°可得∠OMP=180°﹣30°﹣∠OPM=150°﹣∠OPM,得证.(3)根据题意画出图形,以ON=QP为已知条件反推OP的长度.由(2)的结论∠OMP=∠OPN联想到其补角相等,又因为旋转有PM=PN,已具备一边一角相等,过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,即可构造出△PDM≌△NCP,进而得PD=NC,DM=CP.此时加上ON=QP,则易证得△OCN≌△QDP,所以OC=QD.利用∠AOB=30°,设PD=NC=a,则OP=2a,OD=√3a.再设DM=CP=x,所以QD=OC=OP+PC=2a+x,MQ=DM+QD=2a+2x.由于点M、Q关于点H对称,即点H为MQ中点,故MH=12MQ=a+x,DH=MH﹣DM=a,所以OH=OD+DH=√3a+a=√3+1,求得a=1,故OP=2.证明过程则把推理过程反过来,以OP=2为条件,利用构造全等证得ON=QP.【解答】解:(1)如图1所示为所求.(2)设∠OPM=α,∵线段PM绕点P顺时针旋转150°得到线段PN∴∠MPN=150°,PM=PN∴∠OPN=∠MPN﹣∠OPM=150°﹣α∵∠AOB =30°∴∠OMP =180°﹣∠AOB ﹣∠OPM =180°﹣30°﹣α=150°﹣α ∴∠OMP =∠OPN(3)OP =2时,总有ON =QP ,证明如下:过点N 作NC ⊥OB 于点C ,过点P 作PD ⊥OA 于点D ,如图2 ∴∠NCP =∠PDM =∠PDQ =90° ∵∠AOB =30°,OP =2 ∴PD =12OP =1∴OD =√OP 2−PD 2=√3 ∵OH =√3+1 ∴DH =OH ﹣OD =1 ∵∠OMP =∠OPN∴180°﹣∠OMP =180°﹣∠OPN 即∠PMD =∠NPC 在△PDM 与△NCP 中 {∠PDM =∠NCP ∠PMD =∠NPC PM =NP∴△PDM ≌△NCP (AAS ) ∴PD =NC ,DM =CP设DM =CP =x ,则OC =OP +PC =2+x ,MH =MD +DH =x +1 ∵点M 关于点H 的对称点为Q ∴HQ =MH =x +1∴DQ =DH +HQ =1+x +1=2+x ∴OC =DQ在△OCN 与△QDP 中 {OC =QD∠OCN =∠QDP =90°NC =PD∴△OCN ≌△QDP (SAS )∴ON=QP3.(2018•北京)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A 关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.【分析】(1)如图1,连接DF,根据对称得:△ADE≌△FDE,再由HL证明Rt△DFG≌Rt△DCG,可得结论;(2)证法一:如图2,作辅助线,构建AM=AE,先证明∠EDG=45°,得DE=EH,证明△DME≌△EBH,则EM=BH,根据等腰直角△AEM得:EM=√2AE,得结论;证法二:如图3,作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HN,AD=EN,再说明△BNH是等腰直角三角形,可得结论.【解答】证明:(1)如图1,连接DF,∵四边形ABCD是正方形,∴DA=DC,∠A=∠C=90°,∵点A关于直线DE的对称点为F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵{DF =DC DG =DG, ∴Rt △DFG ≌Rt △DCG (HL ), ∴GF =GC ;(2)BH =√2AE ,理由是:证法一:如图2,在线段AD 上截取AM ,使AM =AE , ∵AD =AB , ∴DM =BE ,由(1)知:∠1=∠2,∠3=∠4, ∵∠ADC =90°,∴∠1+∠2+∠3+∠4=90°, ∴2∠2+2∠3=90°, ∴∠2+∠3=45°, 即∠EDG =45°, ∵EH ⊥DE ,∴∠DEH =90°,△DEH 是等腰直角三角形, ∴∠AED +∠BEH =∠AED +∠1=90°,DE =EH , ∴∠1=∠BEH , 在△DME 和△EBH 中, ∵{DM =BE∠1=∠BEH DE =EH, ∴△DME ≌△EBH (SAS ), ∴EM =BH ,Rt △AEM 中,∠A =90°,AM =AE , ∴EM =√2AE , ∴BH =√2AE ;证法二:如图3,过点H 作HN ⊥AB 于N , ∴∠ENH =90°,由方法一可知:DE =EH ,∠1=∠NEH , 在△DAE 和△ENH 中,∵{∠A=∠ENH ∠1=∠NEH DE=EH,∴△DAE≌△ENH(AAS),∴AE=HN,AD=EN,∵AD=AB,∴AB=EN=AE+BE=BE+BN,∴AE=BN=HN,∴△BNH是等腰直角三角形,∴BH=√2HN=√2AE.4.(2017•北京)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠P AC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB与PQ之间的数量关系,并证明.【分析】(1)由等腰直角三角形的性质得出∠BAC =∠B =45°,∠P AB =45°﹣α,由直角三角形的性质即可得出结论;(2)连接AQ ,作ME ⊥QB ,由AAS 证明△APC ≌△QME ,得出PC =ME ,△MEB 是等腰直角三角形,由等腰直角三角形的性质即可得出结论. 【解答】解:(1)∠AMQ =45°+α;理由如下: ∵∠P AC =α,△ACB 是等腰直角三角形, ∴∠BAC =∠B =45°,∠P AB =45°﹣α, ∵QH ⊥AP , ∴∠AHM =90°,∴∠AMQ =180°﹣∠AHM ﹣∠P AB =45°+α;(2)PQ =√2MB ;理由如下: 连接AQ ,作ME ⊥QB ,如图所示: ∵AC ⊥QP ,CQ =CP , ∴∠QAC =∠P AC =α, ∴∠QAM =45°+α=∠AMQ , ∴AP =AQ =QM , 在△APC 和△QME 中, {∠MQE =∠PAC ∠ACP =∠QEM AP =QM,∴△APC ≌△QME (AAS ), ∴PC =ME ,∵△MEB 是等腰直角三角形,∴12PQ =√22MB , ∴PQ =√2MB .方法二:也可以延长AC 到D ,使得CD =CQ . 则易证△ADP ≌△QBM .∴BM =PD =√2CD =√2QC =√22PQ , 即PQ =√2MB .5.(2016•北京)在等边△ABC 中,(1)如图1,P ,Q 是BC 边上的两点,AP =AQ ,∠BAP =20°,求∠AQB 的度数;(2)点P ,Q 是BC 边上的两个动点(不与点B ,C 重合),点P 在点Q 的左侧,且AP =AQ ,点Q 关于直线AC 的对称点为M ,连接AM ,PM . ①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P ,Q 运动的过程中,始终有P A =PM ,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法: 想法1:要证明P A =PM ,只需证△APM 是等边三角形;想法2:在BA 上取一点N ,使得BN =BP ,要证明P A =PM ,只需证△ANP ≌△PCM ;想法3:将线段BP 绕点B 顺时针旋转60°,得到线段BK ,要证P A =PM ,只需证P A =CK ,PM =CK … 请你参考上面的想法,帮助小茹证明P A =PM (一种方法即可).【分析】(1)根据等腰三角形的性质得到∠APQ =∠AQP ,由邻补角的定义得到∠APB =∠AQC ,根据三角形外角的性质即可得到结论;(2)如图2根据等腰三角形的性质得到∠APQ=∠AQP,由邻补角的定义得到∠APB=∠AQC,由点Q 关于直线AC的对称点为M,得到AQ=AM,∠OAC=∠MAC,等量代换得到∠MAC=∠BAP,推出△APM是等边三角形,根据等边三角形的性质即可得到结论.【解答】解:(1)∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ=20°,∴∠AQB=∠APQ=∠BAP+∠B=80°;(2)如图2,∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ,(将线段BP绕点B顺时针旋转60°,得到线段BK,要证P A=PM,只需证P A=CK,PM=CK…请你参考上面的想法,帮助小茹证明P A=PM)∵点Q关于直线AC的对称点为M,∴AQ=AM,∠QAC=∠MAC,∴∠MAC=∠BAP,∴∠BAP+∠P AC=∠MAC+∠CAP=60°,∴∠P AM=60°,∵AP=AQ,∴AP=AM,∴△APM是等边三角形,∴AP=PM.证明△ABP≌△ACM≌△BCK一年模拟新题一.解答题(共40小题)1.(2020•丰台区三模)如图,在△ABC中,∠BAC=30°,AB=AC,将线段AC绕点A逆时针旋转α°(0<α<180),得到线段AD,连接BD,交AC于点P.(1)当α=90°时,①依题意补全图形;②求证:PD=2PB;(2)写出一个α的值,使得PD=√3PB成立,并证明.【分析】(1)当α=90°时,①依题意即可补全图形;②根据30度角所对直角边等于斜边一半即可证明PD=2PB;(2)当α的值为60度时,根据等腰三角形的性质即可证明PD=√3PB成立.【解答】解:(1)当α=90°时,①如图即为补全的图形;②证明:∵∠BAC =30°,AB =AC , 根据题意可知:AC =AD , ∴AD =AB , ∴∠ABD =∠ADB , ∵∠CAD =90°, ∴∠DAB =120°,∴∠ABD =∠D =∠BAC =30°, ∴AP =BP ,在Rt △APD 中,∠ADB =30°, ∴PD =2AP , ∴PD =2PB ;(2)当α=60(或120°)时,PD =√3PB 成立, 情况1,如图所示:当α=60°时,过点D 作DF ⊥AC 于点F ,过点B 作BE ⊥AC 于点E ,∴DF ∥BE , ∴△DFP ∽△BEP , ∴DF BE=PD PB,在Rt △ABE 中,∠BAC =30°, ∴AC =AB =2BE ,在Rt △ADF 中,∠CAD =60°, ∴AD =2√33DF , ∵AD =AC =AB , ∴2BE =2√33DE , ∴√3BE =DF , ∴PD =√3PB . 情况2,如图所示:当α=120°时,过点D 作DF ⊥AC 于点F ,过点B 作BE ⊥AC 于点E ,∴DF ∥BE , ∴△DFP ∽△BEP , ∴DF BE=PD PB,在Rt △ABE 中,∠BAC =30°, ∴AC =AB =2BE ,在Rt △ADF 中,∠F AD =60°, ∴AD =2√33DF , ∵AD =AC =AB , ∴2BE =2√33DE ,∴√3BE=DF,∴PD=√3PB.2.(2020•石景山区二模)在△ABC中,AB=AC,D是边BC上的一点(不与点B重合),边BC上点E在点D的右边且∠DAE=12∠BAC,点D关于直线AE的对称点为F,连接CF.(1)如图1,①依题意补全图1;②求证:CF=BD.(2)如图2,∠BAC=90°,用等式表示线段DE,CE,CF之间的数量关系,并证明.【分析】(1)①根据题意补全图形即可;②连接AF,如图1,根据已知条件得到∠3=∠1+∠2.根据轴对称的性质得到AF=AD,∠F AE=∠3=∠1+∠2.根据全等三角形的性质得到结论;(2)连接F A,FE,如图2,根据等腰三角形的性质得到∠1=∠2=45°,求得∠FCE=90°,根据勾股定理即可得到结论.【解答】解:(1)①依题意补全图形,如图1;②证明:连接AF,如图1,∵∠3=12∠BAC,∴∠3=∠1+∠2.∵点F与点D关于直线AE对称,∴AF=AD,∠F AE=∠3=∠1+∠2.∴∠4=∠F AE﹣∠2=(∠1+∠2)﹣∠2=∠1.又∵AC=AB,∴△ACF≌△ABD(SAS),∴CF=BD;(2)线段DE,CE,CF之间的数量关系是DE2=CE2+CF2.证明:连接F A,FE,如图2,∵AB=AC,∠BAC=90°,∴∠1=∠2=45°,由(1)②,可得FE=DE,∠3=∠2=45°,∴∠FCE=90°,在Rt△FCE中,由勾股定理,得FE2=CE2+CF2,∴DE2=CE2+CF2.3.(2020•朝阳区三模)在△ABC中,∠C=90°,AC=BC,点P在线段BA的延长线上,作PD⊥AC,交AC的延长线于点D,点D关于直线AB的对称点为E,连接PE并延长PE到点F,使EF=AC,连接CF.(1)依题意补全图1;(2)求证:AD=CF;(3)若AC=2,点Q在直线AB上,写出一个AQ的值,使得对于任意的点P总有QD=QF,并证明.【分析】(1)依照题意,补全图形即可;(2)通过证明四边形DCFP是矩形,可得PD=CF,由等腰直角三角形的性质可得AD=PD=CF;(3)通过证明△DAQ≌△FCQ,可得QD=QF.【解答】解:(1)补全图形,如图所示:(2)∵∠C=90°,AC=BC,∴∠B=∠CAB=45°,∵PD⊥AC,∴∠PDA=90°,∴∠DP A=90°﹣∠P AD=45°=∠DAP,∴AD=DP,∵点D关于直线AB的对称点为E,∴∠FP A=∠DP A=45°,∴∠DPF=90°,又∵∠PDA=90°=∠ACF,∴四边形DCFP是矩形,∴PD=CF,∴AD=PD=CF;(3)AQ=√2,理由如下:如图2,连接CQ,∵∠C=90°,AC=BC=2,∴AB=2√2,∠B=∠CAB=45°,∵AQ=√2,∴AQ=BQ,又∵∠C=90°,AC=BC=2,∴CQ=AQ=BQ,∠QCA=∠CAQ=45°,∴∠DAQ=∠QCF=135°,又∵AD=CF,∴△DAQ≌△FCQ(SAS),∴FQ=DQ.4.(2020•北京二模)已知菱形ABCD中,∠A=60°,点E为边AD上一个动点(不与点A,D重合),点F在边DC上,且AE=DF,将线段DF绕着点D逆时针旋转120°得线段DG,连接GF,BF,EF.(1)依题意补全图形;(2)求证:△BEF为等边三角形;(3)用等式表示线段BG,GF,CF的数量关系,并证明.【分析】(1)根据题意补全图形即可;(2)易证△ABD为等边三角形,∠BDF=60°,由SAS证得△ABE≌△DBF,得出BE=BF,∠ABE=∠DBF,则∠EBF=∠EBD+∠DBF=∠EBD+∠ABE=60°,即可得出结论;(3)取FG中点H,连接DH,由等腰三角形的性质得出∠DFG=∠DGF=30°,DH⊥GF,由三角函数得出GF=√3DG,易证△BCD为等边三角形,B、D、G三点在同一条直线上,求出BG﹣CF=2DG,即可得出√3(BG﹣CF)=2GF.【解答】(1)解:补全图形,如图1所示:(2)证明:∵四边形ABCD是菱形,∴AB=AD,∵∠A=60°,∴△ABD为等边三角形,∠BDF=60°,∴∠ABD=∠BDC=60°,AB=BD,在△ABE和△DBF中,{AB=BD∠A=∠BDF=60°AE=DF,∴△ABE≌△DBF(SAS),∴BE=BF,∠ABE=∠DBF,∴∠EBF=∠EBD+∠DBF=∠EBD+∠ABE=∠ABD=60°,∴△BEF为等边三角形;(3)解:BG、GF、CF的数量关系为:√3(BG﹣CF)=2GF,理由如下:取FG中点H,连接DH,如图2所示:∵AE=DF=DG,∠FDG=120°,∴∠DFG=∠DGF=30°,DH⊥GF,∴GF=2GH=2DG•cos30°=2DG×√32=√3DG,∵四边形ABCD是菱形,∠A=60°,∴△BCD为等边三角形,∴BD=CD,∠BDC=60°,∵∠FDG=120°,∴∠BDC+∠FDG=180°,即B、D、G三点在同一条直线上,∴BG=BD+DG=CD+DG=CF+DF+DG=CF+2DG,∴BG﹣CF=2DG,∴√3(BG﹣CF)=2√3DG=2GF.5.(2020•朝阳区二模)已知∠AOB=40°,M为射线OB上一定点,OM=1,P为射线OA上一动点(不与点O重合),OP<1,连接PM,以点P为中心,将线段PM顺时针旋转40°,得到线段PN,连接MN.(1)依题意补全图1;(2)求证:∠APN=∠OMP;(3)H为射线OA上一点,连接NH.写出一个OH的值,使得对于任意的点P总有∠OHN为定值,并求出此定值.【分析】(1)根据要求画出图形即可.(2)利用三角形的外角的性质解决问题即可.(3)结论:OH=1时,∠OHN的值为定值.证明△OMP≌△GPN(SAS),推出OP=NG,∠AOB=∠NGP=40°,由OM=OH=PG=1,推出OP=HG,推出GH=GN,推出∠GNH=∠GHN=12(180°﹣40°)=70°可得结论.【解答】(1)解:图形如图所示:(2)证明:如图1中,∵∠MPN=∠AOB=40°,∠APM=∠APN+∠MPN=∠AOB+∠OMP,∴∠APN=∠OMP.(3)解:结论:OH=1时,∠OHN的值为定值.理由:在射线P A设取一点G,使得PG=OM,连接NG.∵PN=PM,∠GPN=∠OMP,∴△OMP≌△GPN(SAS),∴OP=NG,∠AOB=∠NGP=40°,∵OM=OH=PG=1,∴OP=HG,∴GH=GN,∴∠GNH=∠GHN=12(180°﹣40°)=70°,∴∠OHN=180°﹣70°=110°.6.(2020•海淀区二模)如图1,等边三角形ABC中,D为BC边上一点,满足BD<CD,连接AD,以点A 为中心,将射线AD顺时针旋转60°,与△ABC的外角平分线BM交于点E.(1)依题意补全图1;(2)求证:AD=AE;(3)若点B关于直线AD的对称点为F,连接CF.①求证:AE∥CF;②若BE+CF=AB成立,直接写出∠BAD的度数为20°.【分析】(1)由旋转即可补全图形;(2)先判断出∠BAE=∠CAD,再判断出∠ABE=60°=∠C,进而判断出△ABE≌△ACD,即可得出结论;(3)①先判断出AFC=∠ACF,设∠BAD=α,进而表示出∠F AD=α,∠CAF=60°﹣2α,进而得出∠ACF=60°+α再判断出∠CAE=120°﹣α,即可得出结论;②先判断出∠CBG=30°﹣α,进而判断出∠CDF=60°﹣2α,再判断出DF=CF,进而得出∠DCF=∠CDF=60°﹣2α,再判断出∠DCF=α,即可得出结论.【解答】解:(1)补全图形如图1所示;(2)由旋转知,∠DAE=60°,∵△ABC是等边三角形,∴AB=AC,∠ABC=∠C=∠BAC=60°,∴∠DAE=∠BAC,∴∠BAE=∠CAD,∵BE是△ABC的外角的平分线,∴∠ABM=12(180°﹣60°)=60°=∠C,在△ABE和△ACD中,{∠BAE=∠CADAB=AC∠ABE=∠ACD=60°,∴△ABE≌△ACD(SAS),∴AD=AE;(3)①如图2,连接AF,∵点F是点B关于AD的对称点,∴∠BAD=∠F AD,AF=AB,∴AF=AC,∴∠AFC=∠ACF,设∠BAD=α,则∠F AD=α,∴∠CAF=∠BAC﹣∠BAD﹣∠F AD=60°﹣2α,∴∠ACF=12(180°﹣∠CAF)=60°+α,由(2)知,∠BAE=∠CAD=60°﹣α,∴∠CAE=∠BAE+∠BAC=60°﹣α+60°=120°﹣α,∴∠ACF+∠CAE=60°+α+120°﹣α=180°,∴AE∥CF;②如图2,连接BF,设∠BAD=α,∵点F是点B关于AD的对称点,∴AD⊥BF,垂足记作点G,则∠AGB=90°,∴∠ABG=90°﹣α,∵∠ABC=60°,∴∠CBG=30°﹣α,连接DF,则BD=DF,∴∠CDF=2∠CBG=60°﹣2α,由(2)知,△ABE≌△ACD,∴BE=CD,∵BE+CF=AB,∴CD+CF=BC=BD+CD,∴BD=CF,∴DF=CF,∴∠DCF=∠CDF=60°﹣2α,由①知,∠ACF=60°+α,∴∠DCF=∠ACF﹣∠ACB=α,∴60°﹣2α=α,∴α=20°,即∠BAD=20°,故答案为:20.7.(2020•门头沟区二模)如图,在正方形ABCD中,点E,F分别是AB,BC上的两个动点(不与点A,B,C重合),且AE=CF,延长BC到G,使CG=CF,连接EG,DF.(1)依题意将图形补全;(2)小华通过观察、实验、提出猜想:在点E,F运动过程中,始终有EG=√2DF.经过与同学们充分讨论,形成了几种证明的想法:想法一:连接DE,DG,证明△DEG是等腰直角三角形;想法二:过点D作DF的垂线,交BA的延长线于H,可得△DFH是等腰直角三角形,证明HF=EG;…请参考以上想法,帮助小华证明EG=√2DF.(写出一种方法即可)【分析】(1)根据题意画出图形即可;(2)如图,连接DE,DG,根据正方形的性质得到AD=CD,∠A=∠DCF=90°,根据全等三角形的性质得到DE=DF,∠ADE=∠CDF,求得DF=DG,由等腰三角形的性质得到∠CDF=∠CDG,推出△EDG是等腰直角三角形,于是得到结论.【解答】解:(1)依题意补全图形如图所示;(2)如图,连接DE,DG,∵在正方形ABCD中,AD=CD,∠A=∠DCF=90°,∵AE=CF,∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF,∵∠DCF=90°,∴DC⊥FG,∵CF=CG,∴DF=DG,∴∠CDF=∠CDG,∴DE=DG,∠ADE=∠CDG,∵∠ADC=90°,∴∠EDG=90°,∴△EDG是等腰直角三角形,∴EG=√2DG=√2DF.8.(2020•东城区二模)在△ABC 中,AB =AC ,∠BAC =α,点D 是△ABC 外一点,点D 与点C 在直线AB 的异侧,且点D ,A ,C 不共线,连接AD ,BD ,CD .(1)如图1,当α=60°.∠ADB =30°时,画出图形,直接写出AD ,BD ,CD 之间的数量关系; (2)当α=90°,∠ADB =45°时,利用图2,继续探究AD ,BD ,CD 之间的数量关系并证明; (提示:尝试运用图形变换,将要研究的有关线段尽可能转移到一个三角形中)(3)当∠ADB =α2时,进一步探究AD ,BD ,CD 之间的数量关系,并用含α的等式直接表示出它们之间的关系.【分析】(1)先判断出∠BDE =90°,再根据勾股定理得出BD 2+DE 2=BE 2,即BD 2+AD 2=BE 2,再判断出△ABE ≌△ACD (SAS ),得出BE =CD ,即可得出结论;(2)同(1)方法得出DE 2+BD 2=BE 2,进而得出2AD 2+BD 2=BE 2,同(1)的方法判断出BE =CD ,即可得出结论;(3)同(1)的方法得出DE 2+BD 2=BE 2,再判断出DF =2AD •sin α2,即可得出结论.【解答】解:(1)AD 2+BD 2=CD 2,理由:如图1,过AD 为边在AD 上侧作等边三角形ADE ,连接BE , 则AD =DE =AE ,∠DAE =∠ADE =60°, ∵∠ADB =30°,∴∠BDE =∠DBA +∠ADE =90°,在Rt △BDE 中,根据勾股定理得,BD 2+DE 2=BE 2, ∴BD 2+AD 2=BE 2, ∵∠DAE =∠BAC =60°, ∴∠BAE =∠CAD , ∵AB =AC ,∴△ABE ≌△ACD (SAS ),∴BE=CD,∴AD2+BD2=CD2;(2)如图2,过点A作AE⊥AD,且AE=AD,连接BE,DE,∴∠ADE=45°,∵∠BDA=45°,∴∠BDE=90°,根据勾股定理得,DE2+BD2=BE2,∵DE2=2AD2,∴2AD2+BD2=BE2,∵∠DAE=∠BAC=90°,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴2AD2+BD2=CD2;(3)如图3,将线段AD绕点A顺时针旋转α得到AE,连接DE,BE,∴∠ADE=12(180°﹣∠DAE)=90°−12α,∵∠ADB=12α,∴∠BDE=90°,根据勾股定理得,DE2+BD2=BE2,∵∠DAE=∠BAC=α,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴DE 2+BD 2=CD 2,过点A 作AF ⊥DE 于F ,则DE =2DF , ∴∠DAF =90°﹣∠ADE =12α, 在Rt △ADF 中,sin ∠DAF =DF AD , ∴DF =AD •sin ∠DAF =AD •sin α2,∴DE =2DF =2AD •sin α2,即:(2AD •sin α2)2+BD 2=CD 2.9.(2020•平谷区二模)如图,在△ABM中,∠ABC=90°,延长BM使BC=BA,线段CM绕点C顺时针旋转90°得到线段CD,连结DM,AD.(1)依据题意补全图形;(2)当∠BAM=15°时,∠AMD的度数是60°;(3)小聪通过画图、测量发现,当∠AMB是一定度数时,AM=MD.小聪把这个猜想和同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:通过观察图形可以发现,如果把梯形ABCD补全成为正方形ABCE,就易证△ABM≌△AED,因此易得当∠AMD是特殊值时,问题得证;想法2:要证AM=MD,通过第(2)问,可知只需要证明△AMD是等边三角形,通过构造平行四边形CDAF,易证AD=CF,通过△ABM≌△CBF,易证AM=CF,从而解决问题;想法3:通过BC=BA,∠ABC=90°,连结AC,易证△ACM≌△ACD,易得△AMD是等腰三角形,因此当∠AMD是特殊值时,问题得证.请你参考上面的想法,帮助小聪证明当∠AMD是一定度数时,AM=MD.(一种方法即可)【分析】(1)由题意画出,图形;(2)由旋转的性质可得出△DCM为等腰直角三角形,则∠DMC=45°,∠AMB=75°,可求出答案;(3)根据三种想法证明△AMD为等边三角形即可得出结论.【解答】解:(1)由题意画出图形如图1,(2)如图1,∵∠BAM=15°,∠ABC=90°,∴∠AMB=90°﹣15°=75°,∵线段CM绕点C顺时针旋转90°得到线段CD,∴CM=CD,∠MCD=90°,∴∠CMD=∠MDC=45°,∴∠AMD=180°﹣∠AMB﹣∠DMC=180°﹣75°﹣45°=60°.故答案为:60°.(3)当∠AMB=75°时,AM=DM.想法1证明:如图2,过点A作AE⊥CD交CD的延长线于点E,∵∠AEC=∠C=∠ABC=90°,AB=BC,∴四边形ABCE正方形,∴AB=AE,BC=CE,由(2)可知CM=CD,∴BM=DE,∴△ABM≌△AED(SAS),∴AM=AD,由(2)可知∠AMD=60°,∴△AMD为等边三角形,∴AM=DM.想法2证明:如图3,过点C作CF∥AD交AB于点F,∵AF∥CD,∴四边形AFCD为平行四边形,∴AD=CF,AF=CD,∵AB=AF+BF,BC=BM+CM,AB=BC,∴CD+BF=BM+CM,∵CD=CM,∴BF=BM,又∵AB=BC,∠FBC=∠MBC=90°,∴△ABM≌△CBF(SAS),∴AM=CF,∴AM=AD,又∵∠AMD=60°,∴△AMD为等边三角形,∴AM=DM.想法3证明:如图4,连接AC,∵BC=AB,∠ABC=90°,∴∠ACB=45°,∴∠ACD=45°,又∵CM=CD,AC=AC,∴△ACM≌△ACD(SAS),∴AM=AD,∵∠AMD=60°,∴△AMD为等边三角形,∴AM=DM.10.(2020•西城区二模)在正方形ABCD中,E是CD边上一点(CE>DE),AE,BD交于点F.(1)如图1,过点F作GH⊥AE,分别交边AD,BC于点G,H.求证:∠EAB=∠GHC;(2)AE的垂直平分线分别与AD,AE,BD交于点P,M,N,连接CN.①依题意补全图形;②用等式表示线段AE与CN之间的数量关系,并证明.【分析】(1)由平行线的性质可得出∠AGH=∠GHC.证得∠EAB=∠AGH.则结论得证;(2)①依题意补全图形即可;②连接AN,连接EN并延长,交AB边于点Q.证得NA=NE.得出∠ANE=∠ANQ=90°.则可得出AE=√2CN.【解答】(1)证明:在正方形ABCD中,AD∥BC,∠BAD=90°,∴∠AGH=∠GHC.∵GH⊥AE,∴∠EAB=∠AGH.∴∠EAB=∠GHC.(2)①补全图形,如图所示.②证明:连接AN,连接EN并延长,交AB边于点Q.∵四边形ABCD是正方形,∴点A,点C关于BD对称.∴NA=NC,∠BAN=∠BCN.∵PN垂直平分AE,∴NA=NE.∴NC=NE.∴∠NEC=∠NCE.在正方形ABCD中,BA∥CE,∠BCD=90°,∴∠AQE=∠NEC.∴∠BAN+∠AQE=∠BCN+∠NCE=90°.∴∠ANE=∠ANQ=90°.在Rt△ANE中,∴AE=√2CN.11.(2020•丰台区二模)如图,在Rt△ABC中,∠ABC=90°,将CA绕点C顺时针旋转45°,得到CP,点A关于直线CP的对称点为D,连接AD交直线CP于点E,连接CD.(1)根据题意补全图形;(2)判断△ACD的形状,并证明;(3)连接BE,用等式表示线段AB,BC,BE之间的数量关系,并证明.温馨提示:在解决第(3)问的过程中,如果你遇到困难,可以参考下面几种解法的主要思路.解法1的主要思路:延长BC至点F,使CF=AB,连接EF,可证△ABE≌△CFE,再证△BEF是等腰直角三角形.解法2的主要思路:过点A作AM⊥BE于点M,可证△ABM是等腰直角三角形,再证△ABC∽△AME.解法3的主要思路:过点A作AM⊥BE于点M,过点C作CN⊥BE于点N,设BN=a,EN=b,用含a或b的式子表示AB,BC.…….【分析】(1)根据要求画出图形即可.(2)结论:△ACD是等腰直角三角形.根据等腰直角三角形的定义判断即可.(3)结论:BC+BA=√2BE.延长BC至点F,使CF=AB,连接EF.证明△EAB≌△ECF(SAS),推出BE=EF,∠AEB=∠CEF可得结论.【解答】解:(1)图形如图所示:(2)结论:△ACD是等腰直角三角形.理由:∵A,D关于CP对称,∴AD⊥CP,∠ACP=∠PCD=45°,CA=CD,∴∠ACD=90°,∴△ACD是等腰直角三角形.(3)结论:BC+BA=√2BE.理由:延长BC至点F,使CF=AB,连接EF.∵∠ABC=∠AEC=90°,∴∠BAE+∠BCE=180°,∵∠BCE+∠ECF=180°,∴∠BAE=∠ECF,∵△ACD是等腰直角三角形,CE⊥AD,∴AE=DE,∴CE=AE=ED,∵AB=CF,∴△EAB≌△ECF(SAS),∴BE=EF,∠AEB=∠CEF,∴∠BEF=∠AEC=90°,∴△BEF是等腰直角三角形,∴BF=√2BE,∵BF=BC+CF=BC+BA,∴BC+BA=√2BE.12.(2020•密云区二模)已知:MN是经过点A的一条直线,点C是直线MN左侧的一个动点,且满足60°<∠CAN<120°,连接AC,将线段AC绕点C顺时针旋转60°,得到线段CD,在直线MN上取一点B,使∠DBN=60°.(1)若点C位置如图1所示.①依据题意补全图1;②求证:∠CDB=∠MAC;(2)连接BC,写出一个BC的值,使得对于任意一点C,总有AB+BD=3,并证明.【分析】(1)①根据题意作出图形即可求解;②根据等量关系可证∠CDB=∠MAC;(2)如图2,连接BC,在直线MN上截取AH=BD,连接CH,根据SAS可证△ACH≌△DCB,再根据全等三角形的性质和等边三角形的判定与性质即可求解.【解答】.解:(1)①如图1所示:②证明:∵∠C=60°,∠DBN=60°,∴∠C=∠DBN,∵∠DBN+∠ABD=180°,∴∠C+∠ABD=180°,在四边形ACDB中,∠CDB+∠BAC=180°,∵∠BAC+∠MAC=180°,∴∠CDB=∠MAC;(2)BC=3时,对于任意一点C,总有AB+BD=3.证明:如图2,连接BC,在直线MN上截取AH=BD,连接CH,∵∠MAC=∠CDB,AC=CD,∴△ACH≌△DCB(SAS),∴∠ACH=∠DCB,CH=CB,∵∠DCB+∠ACB=∠ACD=60°,∴∠HCB=∠ACH+∠ACB=60°,∴△HCB是等边三角形,∴BC=BH=BA+BD=3.13.(2020•顺义区二模)已知:在△ABC中,∠ABC=90°,AB=BC,点D为线段BC上一动点(点D不与点B、C重合),点B关于直线AD的对称点为E,作射线DE,过点C作BC的垂线,交射线DE于点F,连接AE.(1)依题意补全图形;(2)AE与DF的位置关系是AE⊥DF;(3)连接AF,小昊通过观察、实验,提出猜想:发现点D在运动变化的过程中,∠DAF的度数始终保持不变,小昊把这个猜想与同学们进行了交流,经过测量,小昊猜想∠DAF=45°,通过讨论,形成了证明该猜想的两种想法:想法1:过点A作AG⊥CF于点G,构造正方形ABCG,然后可证△AFG≌△AFE…想法2:过点B作BG∥AF,交直线FC于点G,构造▱ABGF,然后可证△AFE≌△BGC…请你参考上面的想法,帮助小昊完成证明(一种方法即可).【分析】(1)根据题意正确画图;(2)证明△ABD≌△AED(SSS),可得∠AED=∠B=90°,从而得结论;(3)想法1:如图2,过点A做AG⊥CF于点G,先证明四边形ABCG是正方形,得AG=AB,∠BAG =90°,再证明Rt△AFG≌Rt△AFE(HL),得∠GAF=∠EAF,根据∠BAG=90°及角的和可得结论;想法2:如图3,过点B作BG∥AF,交直线FC于点G,证明四边形ABGF是平行四边形,得AF=BG,∠BGC=∠BAF,再证明Rt△AEF≌Rt△BCG(HL),同理根据∠BCG=90°及等量代换,角的和可得结论.【解答】解:(1)补全图形如图1:(2)AE与DF的位置关系是:AE⊥DF,理由是:∵点B关于直线AD的对称点为E,∴AB=AE,BD=DE,∵AD=AD,∴△ABD≌△AED(SSS),∴∠AED=∠B=90°,∴AE⊥DF;故答案为:AE⊥DF;(3)猜想∠DAF=45°;想法1:证明如下:如图2,过点A做AG⊥CF于点G,依题意可知:∠B=∠BCG=∠CGA=90°,∵AB=BC,∴四边形ABCG是正方形,∴AG=AB,∠BAG=90°,∵点B关于直线AD的对称点为E,∴AB=AE,∠B=∠AED=∠AEF=90°,∠BAD=∠EAD,∴AG=AE,∵AF=AF,∴Rt△AFG≌Rt△AFE(HL),∴∠GAF=∠EAF,∵∠BAG=90°,∴∠BAD+∠EAD+∠EAF+∠GAF=90°,∴∠EAD+∠EAF=45°.即∠DAF=45°.想法2:证明如下:如图3,过点B作BG∥AF,交直线FC于点G,依题意可知:∠ABC =∠BCF =90°, ∴AB ∥FG , ∵AF ∥BG ,∴四边形ABGF 是平行四边形, ∴AF =BG ,∠BGC =∠BAF , ∵点B 关于直线AD 的对称点为E ,∴AB =AE ,∠ABC =∠AED =90°,∠BAD =∠EAD , ∵AB =BC , ∴AE =BC ,∴Rt △AEF ≌Rt △BCG (HL ), ∴∠EAF =∠CBG , ∵∠BCG =90°, ∴∠BGC +∠CBG =90°, ∴∠BAF +∠EAF =90°,∴∠BAD +∠EAD +∠EAF +∠EAF =90°, ∵∠BAD =∠EAD , ∴∠EAD +∠EAF =45°, 即∠DAF =45°. 故答案为:45.14.(2020•武汉模拟)已知,在△ABC 和△EFC 中,∠ABC =∠EFC =90°,点E 在△ABC 内,且∠CAE +∠CBE =90°(1)如图1,当△ABC 和△EFC 均为等腰直角三角形时,连接BF , ①求证:△CAE ∽△CBF ; ②若BE =2,AE =4,求EF 的长;(2)如图2,当△ABC 和△EFC 均为一般直角三角形时,若AB BC=EF FC=k ,BE =1,AE =3,CE =4,求k 的值.【分析】(1)①先判断出∠BCF =∠ACE ,再判断出CE AC=CF BC,即可得出结论;②先判断出∠CBF =∠CAE ,进而判断出∠EBF =90°,再求出BF =2√2,最后用勾股定理求解即可得出结论;(2)先判断出∠BCF =∠ACE ,再判断出CEAC=CF BC,进而判断出△BCF ∽△ACE ,进而表示出BF =√k +1,再表示出EF =√k +1,最后用勾股定理得,BE 2+BF 2=EF 2,建立方程求解即可得出结论.【解答】解:(1)①∵△ABC 和△CEF 都是等腰直角三角形, ∴∠ECF =∠ACB =45°, ∴∠BCF =∠ACE ,∵△ABC 和△CEF 都是等腰直角三角形, ∴CE =√2CF ,AC =√2CB , ∴CE CF =AC CB =√2,∴CE AC=CF BC,∴△BCF ∽△ACE ;②由①知,△BCF ∽△ACE , ∴∠CBF =∠CAE ,AE BF=AC BC=√2,∴BF =√22AE =√22×4=2√2, ∵∠CAE +∠CBE =90°, ∴∠CBF +∠CBE =90°, 即:∠EBF =90°,根据勾股定理得,EF =√BE 2+BF 2=√(2√2)2+22=2√3;(2)如图(2),连接BF ,在Rt △ABC 中,tan ∠ACB =ABBC =k , 同理,tan ∠ECF =k , ∴tan ∠ACB =tan ∠ECF , ∴∠ACB =∠ECF , ∴∠BCF =∠ACE ,在Rt △ABC 中,设BC =m ,则AB =km , 根据勾股定理得,AC =√AB 2+BC 2=m √k 2+1;在Rt △CEF 中,设CF =n ,则EF =nk ,同理,CE =n √k 2+1 ∴CF BC =nm ,CEAC =n√k 2+1m√k 2+1=n m,∴CF BC=CE AC,∵∠BCF =∠ACE , ∴△BCF ∽△ACE , ∴∠CBF =∠CAE , ∵∠CAE +∠CBE =90°, ∴∠CBF +∠CBE =90°, 即:∠EBF =90°, ∵△BCF ∽△ACE , ∴AE BF=AC BC =√k 2+1,∴BF =1√k +1AE =3√k +1,∵CE =4, ∴n √k 2+1=4, ∴n =√k +1, ∴EF =4k√k +1,在Rt △EBF 中,根据勾股定理得,BE 2+BF 2=EF 2,∴12+(3√k 2+1)2=(4k√k 2+1)2,∴k =√63或k =−√63(舍),即:k 的值为√63.15.(2020•丰台区模拟)如图,在正方形ABCD 中,E 是边BC 上的一动点(不与点B 、C 重合),连接DE 、点C 关于直线DE 的对称点为C ′,连接AC ′并延长交直线DE 于点P ,F 是AC ′的中点,连接DF . (1)求∠FDP 的度数;(2)连接BP ,请用等式表示AP 、BP 、DP 三条线段之间的数量关系,并证明; (3)连接AC ,若正方形的边长为√2,请直接写出△ACC ′的面积最大值.【分析】(1)证明∠CDE =∠C 'DE 和∠ADF =∠C 'DF ,可得∠FDP '=12∠ADC =45°;(2)作辅助线,构建全等三角形,证明△BAP ≌△DAP '(SAS ),得BP =DP ',从而得△P AP '是等腰直角三角形,可得结论;(3)先作高线C 'G ,确定△ACC ′的面积中底边AC 为定值2,根据高的大小确定面积的大小,当C '在BD 上时,C 'G 最大,其△ACC ′的面积最大,并求此时的面积. 【解答】解:(1)由对称得:CD =C 'D ,∠CDE =∠C 'DE , 在正方形ABCD 中,AD =CD ,∠ADC =90°, ∴AD =C 'D , ∵F 是AC '的中点,∴DF ⊥AC ',∠ADF =∠C 'DF ,∴∠FDP=∠FDC'+∠EDC'=12∠ADC=45°;(2)结论:BP+DP=√2AP,理由是:如图,作AP'⊥AP交PD的延长线于P',∴∠P AP'=90°,在正方形ABCD中,DA=BA,∠BAD=90°,∴∠DAP'=∠BAP,由(1)可知:∠FDP=45°∵∠DFP=90°∴∠APD=45°,∴∠P'=45°,∴AP=AP',在△BAP和△DAP'中,∵{BA=DA∠BAP=∠DAP′AP=AP′,∴△BAP≌△DAP'(SAS),∴BP=DP',∴DP+BP=PP'=√2AP;(3)如图,过C'作C'G⊥AC于G,则S△AC'C=12AC•C'G,Rt△ABC中,AB=BC=√2,∴AC=√(√2)2+(√2)2=2,即AC为定值,当C'G最大值,△AC'C的面积最大,连接BD,交AC于O,当C'在BD上时,C'G最大,此时G与O重合,∵CD=C'D=√2,OD=12AC=1,∴C'G=√2−1,∴S△AC'C=12AC•C'G=12×2(√2−1)=√2−1.16.(2020•朝阳区模拟)在四边形ABCD中,AB=AD,CB=CD,∠ABC=∠ADC=90°,∠BAD=α,∠BCD=β,点E,F是四边形ABCD内的两个点,满足∠EAF=12α,∠ECF=12β,连接BE,EF,FD.(1)如图1,当α=β时,判断∠ABE和∠ADF之间的数量关系,并证明你的猜想;(2)如图2,当α≠β时,用等式表示线段BE,EF,FD之间的数量关系(直接写出即可).【分析】(1)结论:∠ABE+∠ADF=90°.将△ABE绕点A逆时针旋转90°得到△ADM,将△BCE绕点C顺时针旋转90°得到△CDT,连接FM,TF.证明M,D,T共线,再证明FM=FT.DM=DT即可解决问题.(2)结论:EF2=BE2+DF2.将△ABE绕点A逆时针旋转α度得到△ADM,将△BCE绕点C顺时针旋转β度得到△CDT,连接FM,TF.证明∠FDM=90°,利用勾股定理即可解决问题.【解答】解:(1)结论:∠ABE+∠ADF=90°.理由:∵AB=AD,CB=CD,∠ABC=∠ADC=90°,∠BAD=∠BCD,∴∠BAD=∠BCD=90°,∴四边形ABCD是正方形,∴AB=BC=CD=AD,将△ABE绕点A逆时针旋转90°得到△ADM,将△BCE绕点C顺时针旋转90°得到△CDT,连接FM,TF.∵∠EAF=12×90°=45°,∴∠MAD+∠DAF=∠BAE+∠DAF=45°,∴∠F AM=∠F AE,∵AM=AE,AF=AF,∴△AFM≌△AFE(SAS),∴EF=FM,同法可证:EF=FT,∴FM=FT,∵∠ADM+∠CDT=∠ABE+∠CBE=90°,∴∠MDT=90°+90°=180°,∴M,D,T共线,∵DM=BE,DT=BE,∴DM=DT,∴FD⊥MT,∴∠FDM=90°,∴∠ADM+∠ADF=90°,∵∠ADM=∠ABE,∴∠ABE+∠ADF=90°.(2)结论:EF2=BE2+DF2.理由:∵AD=AB,CD=CB,∴将△ABE绕点A逆时针旋转α度得到△ADM,将△BCE绕点C顺时针旋转β度得到△CDT,连接FM,TF.∵∠EAF=12×∠DAB=12α,∴∠MAD+∠DAF=∠BAE+∠DAF=12α,∴∠F AM=∠F AE,∵AM=AE,AF=AF,∴△AFM≌△AFE(SAS),∴EF=FM,同法可证:EF=FT,∴FM=FT,∵∠ADM+∠CDT=∠ABE+∠CBE=90°,∴∠MDT=90°+90°=180°,∴M,D,T共线,∵DM=BE,DT=BE,∴DM=DT,∴FD⊥MT,∴∠FDM=90°,∴FM2=DM2+DF2,∵FM=EF,DM=BE,∴EF2=BE2+DF2.17.(2020•丰台区模拟)已知C为线段AB中点,∠ACM=α.Q为线段BC上一动点(不与点B重合),点P在射线CM上,连接P A,PQ,记BQ=kCP.(1)若α=60°,k=1,①如图1,当Q为BC中点时,求∠P AC的度数;②直接写出P A、PQ的数量关系;(2)如图2,当α=45°时.探究是否存在常数k,使得②中的结论仍成立?若存在,写出k的值并证明;若不存在,请说明理由.【分析】(1)如图1,作辅助线,构建等边三角形,证明△ADC为等边三角形.根据等边三角形三线合一可得∠P AC=∠P AD=30°;②作辅助线,证明△PCD'≌△PCQ,可得P A=PQ;(2)存在k=√2,如图2,作辅助线,构建全等三角形,证明△P AD≌△PQC(SAS).可得结论.【解答】解:(1)①如图1,在CM上取点D,使得CD=CA,连接AD,∵∠ACM=60°,∴△ADC为等边三角形.∴∠DAC=60°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纯几何探究(四)
如图8-1,已知P 为正方形ABCD 的对角线AC 上一点(不与A 、C 重合),PE ⊥BC 于点E ,PF ⊥CD 于点F .
(1) 求证:BP =DP ;
(2) 如图8-2,若四边形PECF 绕点C 按逆时针方向旋转,在旋转过程中是否总有BP =DP ?若是,请给予证明;若不是,请用反例加以说明;
(3) 试选取正方形ABCD 的两个顶点,分别与四边形PECF 的两个顶点连结,使得到的两条线段在四边形
PECF 绕点C 按逆时针方向旋转的过程中长度始终相等,并证明你的结论 .
3、(北京课改B 卷)我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形.请解答下列问题:
(1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;
(2)探究:当等对角线四边形中两条对角线所夹锐角为60时,这对60角所对的两边之和与其中一条对角线的大小关系,并证明你的结论.
4、(福建漳州卷)如图,已知矩形33ABCD AB BC ==,,,在BC 上取两点E F ,(E 在F 左边),以EF 为边作等边三角形PEF ,使顶点P 在AD 上,PE PF ,分别交AC 于点G H ,.
(1)求PEF △的边长;
(2)在不添加辅助线的情况下,当F 与C 不重合时,从图中找出一对相似三角形,并说明理由;
(3)若PEF △的边EF 在线段BC 上移动.试猜想:PH 与BE 有何数量关系?并证明你猜想的结论.
5、(湖南常德卷)把两块全等的直角三角形ABC 和DEF 叠放在一起,使三角板DEF 的锐角顶点D 与三角板ABC 的斜边中点O 重合,其中90ABC DEF ∠=∠=,
45C F ∠=∠=,4AB DE ==,把三角板ABC 固定不动,让三角板DEF 绕点O 旋转,
设射线DE 与射线AB 相交于点P ,射线DF 与线段BC 相交于点Q .
(1)如图1,当射线DF 经过点B ,即点Q 与点B 重合时,易证APD CDQ △∽△.此
时,AP
CQ =· . (2)将三角板DEF 由图1所示的位置绕点O 沿逆时针方向旋转,设旋转角为α.其中
图8-2 图
8-1 (第27题) A B C D E F
G
H
P
090α<<,问AP CQ ·的值是否改变?说明你的理由.
(3)在(2)的条件下,设CQ x =,两块三角板重叠面积为y ,求y 与x 的函数关系式.(图2,图3供解题用)
6.(25T)(大连市14分)如图25-1,正方形ABCD 和正方形QMNP ,∠M =∠B ,M 是正方形ABCD 的对称中心,MN 交AB 于F ,QM 交AD 于E . ⑴求证:ME = MF .
⑵如图25-2,若将原题中的“正方形”改为“菱形”,其他条件不变,探索线段ME 与线段MF 的关系,并加以证明.
⑶如图25-3,若将原题中的“正方形”改为“矩形”,且AB = m BC ,其他条件不变,探索线段ME 与线段MF 的关系,并说明理由.
⑷根据前面的探索和图25-4,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题;若不能,请说明理由.
图25 - 4
图25 - 3
图25 - 2
图25 -1
A
P
Q
Q
P
Q
P
A
B
C
D
F
M N
A
B
C
E M
N
B
C
D E M
N
F D
P
Q
D A
F
N
M
E C
B
8.(2009年江西省)25.如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠. (1)求点E 到BC 的距离; (2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.
①当点N 在线段AD 上时(如图2),P M N △的形状是否发生改变?若不变,求出PMN
△的周长;若改变,请说明理由;
②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.
B E
P A D(O) C
Q F M B E P A
C Q F D(O) D(O) B (Q ) C F E
A
P 图1 图2 图3
7.问题解决
如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重
合),压平后得到折痕MN .当
12CE CD =时,求AM
BN
的值.
类比归纳
在图(1)中,若
13CE CD =,则AM BN 的值等于 ;若1
4
CE CD =,则AM BN 的值等
于 ;若1CE CD n =(n 为整数),则AM
BN
的值等于 .(用含n 的式子表示) 联系拓广
如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()11
1AB CE m BC m CD n
=>=,,则AM BN 的值等
于 .(用含m n ,的式子表示)
9.若P 为ABC △所在平面上一点,且120APB BPC CPA ∠=∠=∠=°,则点P 叫做ABC △的费马点.
(1)若点P 为锐角ABC △的费马点,且60ABC PA PC ∠===°
,3,4,则PB 的值为________;
方法指导:
为了求得AM BN 的值,可先求BN 、AM 的长,不妨设:AB =2
图(2)
N A
B C D E
F M
A D E
B
F C
图4(备用)
A
D E
B
F C
图5(备用)
A D E B
F C
图1 图2 A D E
B
F C P
N
M 图3 A D E
B
F
C
P
N
M (第25题)
(2)如图,在锐角ABC △外侧作等边ACB △′连结BB ′. 求证:BB ′过ABC △的费马点P ,且BB ′=PA PB PC ++.
10.(1)如图1,图2,图3,在ABC △中,分别以AB AC ,为边,向ABC △外作正三角形,正四边形,正五边形,BE CD ,相交于点O .
①如图1,求证:ABE ADC △≌△;
②探究:如图1,BOC ∠= ;如图2,BOC ∠= ;如图3,BOC ∠= .
(2)如图4,已知:AB AD ,是以AB 为边向ABC △外所作正n 边形的一组邻边;AC AE ,是以AC 为边向ABC △外所作正n 边形的一组邻边.BE CD ,的延长相交于点O .
①猜想:如图4,BOC ∠= (用含n 的式子表示); ②根据图4证明你的猜想.
11.在一平直河岸l 同侧有A B ,两个村庄,A B ,到l 的距离分别是3km 和2km ,
km AB a =(1)a >.现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水.
方案设计
某班数学兴趣小组设计了两种铺设管道方案:图13-1是方案一的示意图,设该方案中管道长度为1d ,且1(km)d P B B A =+(其中BP l ⊥于点P );图13-2是方案二的示意图,设该方案中管道长度为2d ,且2(k m )d P A P B =+(其中点A '与点A 关于l 对称,A B '与l 交于点P ).
观察计算
(1)在方案一中,1d = km (用含a 的式子表示);
(2)在方案二中,组长小宇为了计算2d 的长,作了如图13-3所示的辅助线,请你按小宇同学的思路计算,2d = km (用含a 的式子表示).
12.(北京市)25.我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定
A
C
B
B '
第(25)题
A
B P l
l
A
B P A ' C
图13-1 图13-2
l
A
B P A '
C
图13-3
K
义:至少有一组对边相等的四边形叫做等对边四边形.
(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称; (2)如图,在ABC △中,点D E ,分别在AB AC ,上, 设CD BE ,相交于点O ,若60A ∠=°,1
2
DCB EBC A ∠=∠=
∠. 请你写出图中一个与A ∠相等的角,并猜想图中哪个四边形 是等对边四边形;
(3)在ABC △中,如果A ∠是不等于60°的锐角,点D E ,分别在AB AC ,上,且
1
2
DCB EBC A ∠=∠=
∠.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.

B O A
D
E
C。

相关文档
最新文档