[2020理数]课时跟踪检测(六十一) 排列与组合

合集下载

2020版高考数学(理科)复习课后练习第50讲排列与组合

2020版高考数学(理科)复习课后练习第50讲排列与组合

第50讲排列与组合@【墓砒魁身】1•将4名学生分到两个班级,每班至少1人,则不同的分法种数为()A.25B.16C.14D.122.[2018 •内江模拟]5个人站成一排,其中甲、乙之间有且仅有1人,则不同的排法种数是()A.48B.36C.18D.123•数列{a n}共有九项,若九项中有三项值为3,其余六项值为6,则这样的数列共有()A.35 个B.56 个C.84 个D.504 个4. [2018 •上海普陀区调研]书架上有上、中、下三册的《白话史记》和上、下两册的《古诗文鉴赏辞典》,现将这五本书从左到右摆放在一起,则中间位置摆放中册《白话史记》的不同摆放方式的种数为__________ •(结果用数字表示)5. ______________________________________________________________________ [2018 •玉溪模拟由数字0,1,2,3,4组成无重复数字的五位数,其中奇数有 _____________________ 个•® [能力撮升】6. [2018 •昆明质检互不相同的5盆菊花,其中2盆为白色,2盆为黄色,1盆为红色,现要摆成一排,要求红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,共有摆放方法()A.种B.种业至少录用1名大学生的情况有()C. 种D. 种7. [2018 •蚌埠三模]4名大学生到三家企业应聘,每名大学生至多被一家企业录用,则每家企A.24 种B.36 种C.48 种D.60 种&[2018 •深圳模拟某次文艺汇演,要将A,B,C,D,E,F这六个不同节目编排成节目单,如下表:若A,B两个节目要相邻,且都不排在3号位置,则节目单上不同的排序方式有()A.192 种B.144 种C.96 种D.72 种9. [2018 •郑州模拟现有4种不同品牌的汽车各2辆(同一品牌的汽车完全相同),计划将其放在4个车库中,且每个车库放2辆,则恰有2个车库放的是同一品牌的汽车的不同放法共有()A.144 种B.108 种C.72 种D.36 种10. [2018 •合肥质检七人站成两排,前排三人,后排四人,现将甲、乙、丙三人加入,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法种数为()A.120B.240C.360D.48011. 为发展国外孔子学院,教育部选派6名中文教师到泰国、马来西亚、缅甸任教,若每个国家至少去1人,则不同的选派方案种数为()A.180B.240C.540D.63012. ___________________________________________________________________________ 马路上有编号为1,2,3,…,9的九盏路灯,为节约用电,现要求把其中三盏灯关掉,但不能同时关掉相邻的两盏或三盏,也不能关掉两端的路灯,则满足条件的关灯方法共有___________________ 种.13. 根据党中央关于“精准”脱贫的要求,某市农业经济部门决定派出五位相关专家到三个贫困地区进行调研,每个地区至少派遣一位专家,其中甲、乙两位专家需要派遣至同一地区,则不同的派遣方案有___________ 种.14. ___________________________________________ [2018 •郑州模拟某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序贝恫类节目不相邻的排法种数是.®【难点炎礦】15. [2018 •保山二模]一只小蜜蜂位于数轴上的原点处,小蜜蜂每一次具有只向左或只向右飞行一个单位或者两个单位距离的能力,且每次至少飞行一个单位距离.若小蜜蜂经过5次飞行后,停在数轴上实数3位于的点处,则小蜜蜂不同的飞行方式有()A.5 种B.25 种C.55 种D.75 种16. [2018 •浙江绍兴柯桥区二模]有6张卡片分别写有数字1,1,1,2,3,4,从中任取3张,可排出不同的三位数的个数是_________ .(用数字作答)。

2020届高考数学(理科)总复习课时跟踪练:(六十九)排列与组合 Word版含解析

2020届高考数学(理科)总复习课时跟踪练:(六十九)排列与组合 Word版含解析

课时跟踪练(六十九)A 组 基础巩固1.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )A .24B .48C .60D .72解析:第一步,先排个位,有C 种选择;13第二步,排前4位,有A 种选择.4由分步乘法计数原理知有C ·A =72(个).134答案:D2.把6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )A .144B .120C .72D .24解析:先把三把椅子隔开摆好,它们之间和两端有4个位置,再把三人带椅子插放在四个位置,共有A =24种坐法.34答案:D3.(2019·广州综合测试)从1,2,3,4,5这5个数字中任取3个数字组成没有重复数字的三位数,则这个三位数是偶数的概率为( )A. B. C. D.15251235解析:从这5个数字中任取3个数字组成没有重复数字的三位数共有A =60(个),其中是偶数的有C A =24(个),所以所求概率P =351224=,故选B.246025答案:B4.(2019·东北三省四市模拟)哈市某公司有五个不同部门,现有4名在校大学生来该公司实习.要求安排到该公司的两个部门,且每部门安排两名,则不同的安排方案种数为( )A.40 B.60 C.120 D.240解析:从五个不同部门选取两个部门有C种选法,将4名大学25生分别安排在这两个部门有C C种方法,所以不同的安排方案有C24225 C C=60(种),故选B.242答案:B5.(2019·珠海模拟)将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有( )A.480种B.360种C.240种D.120种解析:根据题意,将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则必须有2个小球放入1个盒子,其余的小球各单独放入一个盒子,分2步进行分析:①先将5个小球分成4组,有C=10种分法;②将分好的4组全排列,放入4个盒子,有A=24 254种情况,则不同放法有10×24=240(种).故选C.答案:C6.(2019·武汉模拟)有六人排成一排,其中甲只能在排头或排尾,乙、丙两人必须相邻,则满足要求的排法有( )A.34种B.48种C.96种D.144种解析:特殊元素优先安排,先让甲从头、尾中选取一个位置,有C种选法,乙、丙相邻,捆绑在一起看作一个元素,与其余三个12元素全排列,最后乙、丙可以换位,故共有C·A·A=96(种).1242答案:C7.(2019·青岛模拟)将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有( )A .18种B .24种C .36种D .72种解析:1个路口3人,其余路口各1人的分配方法有C C A 种.11323个路口1人,2个路口各2人的分配方法有C C A 种,2323所以由分类加法计数原理知,甲、乙在同一路口的分配方案为C C A +C C A =36(种).13232323答案:C8.(2019·豫北名校联考)2019年元旦假期,高三的8名同学准备拼车去旅游,其中(1)班、(2)班、(3)班、(4)班每班各两名,分乘甲乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中(1)班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一个班的乘坐方式共有 ( )A .18种B .24种C .48种D .36种解析:由题意,有两类:第一类,(1)班的2名同学在甲车上,甲车上剩下两个要来自不同的班级,从三个班级中选两个,有C =233(种),然后分别从选择的班级中再选择一个学生,有C C =4(种),1212故有3×4=12(种).第二类,(1)班的2名同学不在甲车上,则从剩下的3个班级中选择一个班级的两名同学在甲车上,有C =3(种),13然后再从剩下的两个班级中分别选择一人,有C C =4(种),这时共1212有3×4=12(种),根据分类加法计数原理得,共有12+12=24种不同的乘车方式,故选B.答案:B9.已知-=,则m =________.1C 1C 710C解析:由已知得m 的取值范围为{m |0≤m ≤5,m ∈Z},-=,整理可m !(5-m )!5!m !(6-m )!6!7×(7-m )!m !10×7!得m 2-23m +42=0,解得m =21(舍去)或m =2.答案:210.(2017·浙江卷)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法(用数字作答).解析:从8人中选出4人,且至少有1名女学生的选法种数为C -C =55.4846从4人中选出队长1人,副队长1人,普通队员2人的选法为A =12(种).24故总共有55×12=660种选法.答案:66011.(2019·开封模拟)某班主任准备请2019届毕业生做报告,要从甲、乙等8人中选4人发言,要求甲、乙两人至少一人参加,若甲、乙同时参加,则他们发言中间需恰隔一人,那么不同的发言顺序共有________种(用数字作答).解析:若甲、乙同时参加,有C C C A A =120(种),若甲、乙2261222有一人参与,有C C A =960(种),从而总共的发言顺序有120+960=123641 080(种).答案:1 08012.某宾馆安排A ,B ,C ,D ,E 五人入住3个房间,每个房间至少住1人,且A ,B 不能住同一房间,则共有________种不同的安排方法(用数字作答).解析: 5个人住3个房间,每个房间至少住1人,则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有C ·A =60(种),A ,B 住同353一房间有C ·A =18(种),故有60-18=42(种);当为(2,2,1)时,有133·A =90(种),A ,B 住同一房间有C ·A =18(种),故有90-18=C·C A323372(种),根据分类加法计数原理可知,共有42+72=114(种).答案:114B 组 素养提升13.(2019·合肥质检)7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法的种数为( )A .120B .240C .360D .480解析:前排3人有4个空,从甲、乙、丙3人中选1人插入,有C C 种方法,对于后排,若插入的2人不相邻,有A 种方法;141325若相邻,有C A 种,故共有C C (A +C A )=360(种),故选C.152141325152答案:C14.(2019·佛山质检)设集合A ={(x 1,x 2,x 3,x 4,x 5)|x i ∈{-1,0,1},i =1,2,3,4,5},那么集合A 中满足条件“1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3”的元素个数为( )A .60B .90C .120D .130解析:因为x i ∈{-1,0,1},i =1,2,3,4,5,且1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3,所以x i 中至少两个为0,至多四个为0.(1)x i (i =1,2,3,4,5)中有4个0,1个-1或1,A 有2C =1015个元素.(2)x i中有3个0,2个-1或1,A有C×2×2=40个元素.25(3)x i中有2个0,3个-1或1,A有C×2×2×2=80个元素.35从而,集合A中共有10+40+80=130个元素.答案:D15.(2019·江西八所重点中学联合模拟)摄像师要对已坐定一排照相的5位小朋友的座位顺序进行调整,要求其中恰有2人座位不调整,则不同的调整方案的种数为____________(用数字作答).解析:从5人中任选3人有C种,将3人位置全部进行调整,35有C·C·C种.故有N=C·C·C·C=20种调整方案.1211351211答案:2016.[一题多解]某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有________种.解析:法一(直接法) 若3个不同的项目投资到4个城市中的3个,每个城市一项,共A种方法;若3个不同的项目投资到4个城34市中的2个,一个城市一项、一个城市两项共C A种方法.由分类加法计数原理知共有A+C A=232434232460种方法.法二(间接法) 先任意安排3个项目,每个项目各有4种安排方法,共43=64种排法,其中3个项目落入同一城市的排法不符合要求,共4种,所以总投资方案共43-4=64-4=60(种).答案:60。

2020年高二数学 课时跟踪检测含解析(全一册) 新人教A版必修

2020年高二数学 课时跟踪检测含解析(全一册) 新人教A版必修

2020年高二数学课时跟踪检测含解析(全一册)新人教A版必修课时跟踪检测一棱柱棱锥棱台的结构特征课时跟踪检测二圆柱圆锥圆台球及简单组合体的结构特征课时跟踪检测三中心投影与平行投影及空间几何体的三视图课时跟踪检测四空间几何体的直观图课时跟踪检测五柱体锥体台体的表面积与体积课时跟踪检测六球的体积和表面积课时跟踪检测七平面课时跟踪检测八空间中直线与直线之间的位置关系课时跟踪检测九空间中直线与平面之间的位置关系平面与平面之间的位置关系课时跟踪检测十直线与平面平面与平面平行的判定课时跟踪检测十一直线与平面平面与平面平行的性质课时跟踪检测十二直线与平面垂直的判定课时跟踪检测十三平面与平面垂直的判定课时跟踪检测十四直线与平面垂直的性质平面与平面垂直的性质课时跟踪检测十五倾斜角与斜率课时跟踪检测十六两条直线平行与垂直的判定课时跟踪检测十七直线的点斜式方程课时跟踪检测十八直线的两点式方程课时跟踪检测十九直线的一般式方程课时跟踪检测二十两条直线的交点坐标两点间的距离课时跟踪检测二十一点到直线的距离两条平行线间的距离课时跟踪检测二十二圆的标准方程课时跟踪检测二十三圆的一般方程课时跟踪检测二十四直线与圆的位置关系课时跟踪检测二十五圆与圆的位置关系直线与圆的方程的应用课时跟踪检测二十六空间直角坐标系课时跟踪检测(一)棱柱、棱锥、棱台的结构特征一、题组对点训练对点练一棱柱的结构特征1.下面没有体对角线的一种几何体是( )A.三棱柱B.四棱柱C.五棱柱D.六棱柱解析:选A 三棱柱只有面对角线,没有体对角线.2.关于如图所示的4个几何体,说法正确的是( )A.只有②是棱柱B.只有②④是棱柱C.只有①②是棱柱 D.只有①②④是棱柱解析:选D 解决这类问题,要紧扣棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行.图①②④满足棱柱的定义,正确;图③不满足侧面都是平行四边形,不正确.3.如图,将装有水的长方体水槽固定底面一边后将水槽倾斜一个小角度,则倾斜后水槽中的水形成的几何体的形状是________.解析:由于倾斜角度较小,所以倾斜后水槽中水形成的几何体的形状应为四棱柱.答案:四棱柱对点练二棱锥、棱台的结构特征4.三棱锥的四个面中可以作为底面的有( )A.1个B.2个C.3个 D.4个解析:选D 三棱锥的每一个面均可作为底面,应选D.5.下面说法中,正确的是( )A.上下两个底面平行且是相似四边形的几何体是四棱台B.棱台的所有侧面都是梯形C.棱台的侧棱长必相等D.棱台的上下底面可能不是相似图形解析:选B 由棱台的结构特点可知,A、C、D不正确.6.下列四个几何体为棱台的是( )解析:选C 棱台的底面为多边形,各个侧面为梯形,侧棱延长后又交于一点,只有C项满足这些要求.对点练三多面体的表面展开图7.下列图形中,不是三棱柱展开图的是( )解析:选C 本题考查三棱柱展开图的形状.显然C无法将其折成三棱柱,故选C.8.如图所示,不是正四面体(各棱长都相等的三棱锥)的展开图的是( )A.①③B.②④C.③④ D.①②解析:选C 可选择阴影三角形作为底面进行折叠,发现①②可折成正四面体,③④不论选哪一个三角形作底面折叠都不能折成正四面体.9.如图,这是一个正方体的表面展开图,若把它再折回成正方体后,有下列命题:①点H与点C重合;②点D,M,R重合;③点B与点Q重合;④点A与点S重合.其中正确命题的序号是________(把你认为正确命题的序号都填上).解析:将正方体的六个面分别用“前”“后”“左”“右”“上”“下”标记,若记面NPGF为“下”,面PSRN为“后”,则面PQHG,MNFE,EFCB,DEBA分别为“右”“左”“前”“上”.按各面的标记折成正方体,则点D,M,R重合;点G,C重合;点B,H重合;点A,S,Q重合.故②④正确,①③错误.答案:②④二、综合过关训练1.下列图形经过折叠可以围成一个棱柱的是( )解析:选D A、B、C中底面边数与侧面个数不一致,故不能围成棱柱.2.以下有三个结论:①有两个面互相平行,其余各面都是四边形的多面体一定是棱柱;②有一个面是多边形,其余各面都是三角形的多面体一定是棱锥;③侧面都是矩形的棱柱是长方体.正确的个数是( )A.0 B.1C.2 D.3解析:选A 由棱柱、棱锥定义知①②错;侧面都是矩形的棱柱可能是斜棱柱,故③错.3.某同学制作了一个对面图案相同的正方体礼品盒(如图),则这个正方体礼品盒的表面展开图应该为( )解析:选A 两个☆不能并列相邻,B、D错误;两个※不能并列相邻,C错误,故选A.也可通过实物制作检验来判定.4.下列说法正确的是( )A.有2个面平行,其余各面都是梯形的几何体是棱台B.多面体至少有3个面C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形解析:选D 选项A错误,反例如图1;一个多面体至少有4个面,如三棱锥有4个面,不存在有3个面的多面体,所以选项B错误;选项C错误,反例如图2,上、下底面是全等的菱形,各侧面是全等的正方形,它不是正方体;根据棱柱的定义,知选项D正确.5.若一个棱台共有21条棱,则这个棱台是________棱台.解析:由棱台的概念可知,棱台的上下底面为相似多边形,边数相同;侧面为梯形,侧面个数与底面多边形边数相同,可知该棱台为七棱台.答案:七6.如图所示平面图形沿虚线折起后,(1)为________,(2)为________,(3)为________.解析:结合棱柱、棱锥的概念可知,(1)是四棱柱,(2)是三棱锥,(3)是四棱锥.答案:四棱柱三棱锥四棱锥7.观察下列四张图片,结合所学知识说出这四个建筑物主要的结构特征.解:(1)是上海世博会中国馆,其主体结构是四棱台.(2)是法国卢浮宫,其主体结构是四棱锥.(3)是国家游泳中心“水立方”,其主体结构是四棱柱.(4)是美国五角大楼,其主体结构是五棱柱.8.如图在以O为顶点的三棱锥中,过O的三条棱两两夹角都是30°,在一条棱上取A、B 两点,OA=4 cm,OB=3 cm,以A、B为端点用一条绳子紧绕三棱锥的侧面一周(绳和侧面无摩擦),求此绳在A、B两点间的最短绳长.解:作出三棱锥的侧面展开图,如图A、B两点间最短绳长就是线段AB的长度.在△AOB中,∠AOB=30°×3=90°,OA=4 cm,OB=3 cm,所以AB=OA2+OB2=5 cm.所以此绳在A、B两点间的最短绳长为5 cm.课时跟踪检测(二)圆柱、圆锥、圆台、球及简单组合体的结构特征一、题组对点训练对点练一旋转体的结构特征1.下列几何体中是旋转体的是( )①圆柱;②六棱锥;③正方体;④球体;⑤四面体.A.①和⑤B.①C.③和④ D.①和④解析:选D 根据旋转体的概念可知,①和④是旋转体.2.下面几何体的轴截面(过旋转轴的截面)是圆面的是( )A.圆柱B.圆锥C.球 D.圆台解析:选C 圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形,只有球的轴截面是圆面.3.有下列说法:①球的半径是球面上任意一点与球心的连线;②球的直径是球面上任意两点间的连线;③用一个平面截一个球,得到的是一个圆.其中正确说法的序号是________.解析:利用球的结构特征判断:①正确;②不正确,因为直径必过球心;③不正确,因为得到的是一个圆面.答案:①对点练二简单组合体4.下列几何体是简单组合体的是( )解析:选D A选项中的几何体是圆锥,B选项中的几何体是圆柱,C选项中的几何体是球,D选项中的几何体是一个圆台中挖去一个圆锥,是简单组合体.5.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周所得到的几何体是( ) A.两个圆锥拼接而成的组合体 B.一个圆台C.一个圆锥 D.一个圆锥挖去一个同底的小圆锥解析:选D 如图以AB为轴所得的几何体是一个大圆锥挖去一个同底的小圆锥.6.指出如图(1)(2)所示的图形是由哪些简单几何体构成的.解:分割图形,使它的每一部分都是简单几何体.图(1)是由一个三棱柱和一个四棱柱拼接而成的简单组合体.图(2)是由一个圆锥和一个四棱柱拼接而成的简单组合体.对点练三有关几何体的计算7.用长为4,宽为2的矩形作侧面围成一个圆柱,此圆柱轴截面面积为( )A.8 B.8π C.4πD.2π解析:选B 由题意可知,假设围成的圆柱底面周长为4,高为2,设圆柱底面圆的半径为r,则2πr=4,所以r=2π,所以截面是长为2,宽为4π的矩形,所以截面面积为2×4π=8π.同理,当围成的圆柱底面周长为2,高为4时,截面面积为8π.8.一个圆锥的母线长为20 cm,母线与轴的夹角为30°,则圆锥的高为________cm. 解析:h=20 cos 30°=103(cm).答案:10 3二、综合过关训练1.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为( )A.一个球体B.一个球体中间挖出一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体解析:选B 圆旋转一周形成球,圆中的矩形旋转一周形成一个圆柱,所以选B.2.下列说法中正确的个数是( )①用一个平面去截一个圆锥得到一个圆锥和一个圆台;②圆锥中过轴的截面是一个等腰三角形;③分别以矩形(非正方形)的长和宽所在直线为旋转轴,旋转一周得到的两个几何体是两个不同的圆柱.A.0 B.1 C.2 D.3解析:选C ①中,必须用一个平行于底面的平面去截圆锥,才能得到一个圆锥和一个圆台,故①说法错误;显然②③说法正确.故说法正确的有2个.3.若圆柱体被平面截成如图所示的几何体,则它的侧面展开图是( )解析:选D 结合几何体的实物图,从截面最低点开始高度增加缓慢,然后逐渐变快,最后增加逐渐变慢,不是均衡增加的,所以A、B、C错误.4.两平行平面截半径为5的球,若截面面积分别为9 π和16 π,则这两个平面间的距离是( )A.1 B.7C.3或4 D.1或7解析:选D 如图(1)所示,若两个平行平面在球心同侧,则CD=52-32-52-42=1.如图(2)所示,若两个平行截面在球心两侧,则CD=52-32+52-42=7.5.给出下列说法:①圆柱的底面是圆面;②经过圆柱任意两条母线的截面是一个矩形面;③圆台的任意两条母线的延长线,可能相交,也可能不相交;④夹在圆柱的两个截面间的几何体还是一个旋转体,其中说法正确的是________.解析:①正确,圆柱的底面是圆面;②正确,经过圆柱任意两条母线的截面是一个矩形面;③不正确,圆台的母线延长一定相交于一点;④不正确,夹在圆柱的两个平行于底面的截面间的几何体才是旋转体.答案:①②6.已知圆锥的底面半径为1 cm,高为 2 cm,其内部有一个内接正方体,则这个内接正方体的棱长为________.解析:设正方体的棱长为a,则a2=1-22a1,即a =22. 答案:22cm7.如图所示,梯形ABCD 中,AD ∥BC ,且AD <BC ,当梯形ABCD 绕AD 所在直线旋转一周时,其他各边旋转围成了一个几何体,试描述该几何体的结构特征.解:如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分构成的简单组合体.8.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm 2,母线与轴的夹角是45°,求这个圆台的高、母线长和两底面半径.解:圆台的轴截面如图所示,设圆台上、下底面半径分别为x cm,3x cm,延长AA 1交OO 1的延长线于S ,在Rt △SOA 中,∠ASO =45°, 则∠SAO =45°,所以SO =AO =3x ,SO 1=A 1O 1=x , 所以OO 1=2x .又S 轴截面=12(6x +2x )·2x =392,所以x =7.所以圆台的高OO 1=14 (cm), 母线长l =2OO 1=142(cm), 两底面半径分别为7 cm,21 cm.课时跟踪检测(三) 中心投影与平行投影及空间几何体的三视图一、题组对点训练对点练一 平行投影和中心投影 1.直线的平行投影可能是( ) A .点 B .线段 C .射线D.曲线解析:选A 直线的平行投影可能是直线也可能是点,故选A. 2.下列的四个图形中采用中心投影画法的是( )解析:选A 根据平行投影和中心投影的画法规则,B、C、D选项中的图形均为平行投影下的图形,而A选项中的图形采用的是中心投影画法.3.如图,E,F分别是正方体ABCD­A1B1C1D1的面ADD1A1和面BCC1B1的中心,则四边形BFD1E在该正方体的面上的正投影可能是________(把所有可能图形的序号都填上).解析:图②是在平面DCC1D1或平面ABCD上的正投影;图③是在平面BCC1B1上的正投影.图①④均不符合.答案:②③对点练二简单几何体的三视图4.已知一个几何体的三视图如图所示,则此几何体的组成为( )A.上面为棱台,下面为棱柱B.上面为圆台,下面为棱柱C.上面为圆台,下面为圆柱 D.上面为棱台,下面为圆柱解析:选C 结合三视图,易知该几何体上面为圆台,下面为圆柱.5.如图所示的几何体中,正视图与侧视图都是长方形的是________.解析:(2)的侧视图是三角形,(5)的正视图和侧视图都是等腰梯形,其余的都符合条件.答案:(1)(3)(4)6.如图所示的螺栓是由棱柱和圆柱构成的组合体,试画出它的三视图.解:三视图如图所示.对点练三 由三视图还原空间几何体7.(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .2 5C .3D.2解析:选B 先画出圆柱的直观图,根据题图的三视图可知点M ,N 的位置如图①所示.圆柱的侧面展开图及M ,N 的位置(N 为OP 的四等分点)如图②所示,连接MN ,则图中MN 即为M 到N 的最短路径.∵ON =14×16=4,OM =2,∴MN =OM 2+ON 2= 22+42=2 5.8.如图是一个几何体的三视图,则可以判断此几何体是________.解析:由三视图可知,此几何体为一个正四棱锥. 答案:正四棱锥9.如图,图(1)、(2)、(3)是图(4)表示的几何体的三视图,其中图(1)是________,图(2)是________,图(3)是________(写出视图名称).解析:由几何体的位置知,(1)为正视图,(2)为侧视图,(3)为俯视图.答案:正视图侧视图俯视图二、综合过关训练1.下列命题中正确的是( )A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.一条线段的中点的平行投影仍是这条线段投影的中点解析:选D 矩形的平行投影可能是线段,平行四边形或矩形,梯形的平行投影可能是线段或梯形,两条相交直线的投影是两条相交直线或是一条直线.因此A、B、C均错,故D正确.2.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为( )解析:选B 依题意,侧视图中棱的方向从左上角到右下角,故选B.3.某个游戏环节,玩家需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为( )解析:选A 由题意知,图中正方形、圆形、三角形对应某几何体的三视图,结合选项中给出的图形分析可知,A中几何体满足要求.故选A.4.在一个几何体的三视图中,正视图和侧视图是两个完全相同的图形,如图所示,则相应的俯视图可以为( )A.①②B.②③C.③④ D.②④解析:选D 若俯视图为图①,则该几何体的正视图的上方三角形应该没有高线,故俯视图不可能为图①,排除选项A;若俯视图为图③,则该几何体的侧视图的上方应该没有左边小三角形,故俯视图不可能为图③,排除选项B、C;若俯视图为图②,则该几何体是由上面是正四棱锥,下面是正方体组合而成的简单组合体;若俯视图为图④,则该几何体是由上面是正四棱锥,下面是圆柱组合而成的简单组合体.故选D.5.由小正方体木块搭成的几何体的三视图如图所示,则该几何体由________块小正方体木块搭成.解析:小木块的排列方式如图所示.由图知,几何体由7块小正方体木块搭成.答案:76.若一个正三棱柱(底面为正三角形,侧面为矩形的棱柱)的三视图如图所示,则这个正三棱柱的侧棱长和底面边长分别为________、________.解析:侧视图中尺寸2为正三棱柱的侧棱长,尺寸23为俯视图正三角形的高,所以正三棱柱的底面边长为4.答案:2 47.某组合体的三视图如图所示,试画图说明此组合体的结构特征.解:该三视图表示的几何体是由一个四棱柱和一个四棱台拼接而成的组合体 (如图所示).8.如图,在正四棱柱ABCD ­A 1B 1C 1D 1中,AB =1,AA 1=2,点P 是平面A 1B 1C 1D 1内的一个动点,求三棱锥P ­ABC 的正视图与俯视图的面积的比值的最大值.解:点P 是平面A 1B 1C 1D 1内的一个动点,则三棱锥P ­ABC 的正视图始终是一个底为1,高为2的三角形, 其面积S 1=12×1×2=1.当点P 在底面ABCD 内的投影点在△ABC 的内部或边界上时,其俯视图的面积最小, 最小面积S 2=12×1×1=12,所以三棱锥P ­ABC 的正视图与俯视图的面积的比值的最大值为S 1S 2=2.课时跟踪检测(四) 空间几何体的直观图一、题组对点训练 对点练一 斜二测画法1.用斜二测画法画水平放置的△ABC 时,若∠A 的两边分别平行于x 轴、y 轴,且∠A =90°,则在直观图中∠A ′=( )A .45°B .135°C .45°或135°D.90°解析:选C 在画直观图时,∠A ′的两边依然分别平行于x ′轴、y ′轴,而∠x ′O ′y ′=45°或135°.2.用斜二测画法画水平放置的平面图形的直观图,对其中的线段说法错误的是( ) A .原来相交的仍相交 B .原来垂直的仍垂直 C .原来平行的仍平行 D .原来共点的仍共点解析:选B 根据斜二测画法,原来垂直的未必垂直. 3.关于斜二测画法所得直观图的说法正确的是( ) A .直角三角形的直观图仍是直角三角形 B .梯形的直观图是平行四边形 C .正方形的直观图是菱形D .平行四边形的直观图仍是平行四边形解析:选D 由斜二测画法规则可知,平行于y 轴的线段长度减半,直角坐标系变成斜坐标系,而平行性没有改变,故只有选项D 正确.4.如图,已知等腰三角形ABC ,则如图所示的四个图中,可能是△ABC 的直观图的是 ( )A .①②B .②③C .②④D.③④解析:选 D 原等腰三角形画成直观图后,原来的腰长不相等,③④两图分别是∠x ′O ′y ′成135°和45°的坐标系中的直观图.5.画出水平放置的四边形OBCD (如图所示)的直观图.解:(1)过点C 作CE ⊥x 轴,垂足为E ,如图(1)所示,画出对应的x ′轴、y ′轴,使∠x ′O ′y ′=45°.(2)如图(2)所示,在x ′轴上取点B ′,E ′, 使得O ′B ′=OB ,O ′E ′=OE ; 在y ′轴上取一点D ,使得O ′D ′=12OD ;过E ′作E ′C ′∥y ′轴,使E ′C ′=12EC .(3)连接B ′C ′,C ′D ′,并擦去x ′轴与y ′轴及其他一些辅助线,如图(3)所示,四边形O ′B ′C ′D ′就是所求的直观图.对点练二 由直观图还原平面图形6.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )解析:选A 由直观图的画法可知,落在y 轴上的对角线的长为22,结合各选项可知选A.6.如图所示,△A ′B ′C ′是水平放置的△ABC 的直观图,则在△ABC 的三边及中线AD 中,最长的线段是( )A .AB B .AC C .BCD.AD解析:选B 由直观图可知△ABC 是以∠B 为直角的直角三角形,所以斜边AC 最长. 8.如图所示,Rt △O ′A ′B ′是一平面图形的直观图,直角边O ′B ′=1,则这个平面图形的面积是( )A .2 2B .1 C. 2D.4 2解析:选C 在△AOB 中,OB =O ′B ′=1,OA =2O ′A ′=22,且∠AOB =90°,S △AOB =12OA ·OB =12×1×22= 2.二、综合过关训练1.已知一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,长方体的长、宽、高分别为20 m,5 m,10 m,四棱锥的高为8 m,如果按1∶500的比例画出它的直观图,那么在直观图中,长方体的长、宽、高和棱锥的高应分别为( )A .4 cm,1 cm,2 cm,1.6 cmB .4 cm,0.5 cm,2 cm,0.8 cmC .4 cm,0.5 cm,2 cm,1.6 cmD .4 cm,0.5 cm,1 cm,0.8 cm解析:选C 直观图中长、宽、高应分别按原尺寸的1500,11 000,1500计算,最后单位转化为 cm.2.如图所示的正方形O ′A ′B ′C ′的边长为1 cm,它是水平放置的一个平面图形的直观图,则原图形的周长是( )A .6 cmB .8 cmC .(2+32) cmD.(2+23) cm解析:选B 直观图中,O ′B ′=2,原图形中OC =AB =(22)2+12=3,OA =BC =1,∴原图形的周长是2×(3+1)=8.3.如图是利用斜二测画法画出的△ABO 的直观图,已知O ′B ′=4,A ′B ′∥y ′ 轴,且△ABO 的面积为16,过A ′作A ′C ′⊥x ′轴,则A ′C ′的长为( )A .2 2 B. 2 C .16 2D.1解析:选A 因为A ′B ′∥y ′轴,所以在△ABO 中,AB ⊥OB .又△ABO 的面积为16,所以12AB ·OB =16.所以AB =8,所以A ′B ′=4.如图,作A ′C ′⊥O ′B ′于点C ′,所以B ′C ′=A ′C ′,所以A ′C ′的长为4sin 45°=2 2.4.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为 2 cm,另一个圆锥顶点到底面的距离为3 cm,则其直观图中这两个顶点之间的距离为( )A .2 cmB .3 cmC .2.5 cmD .5 cm解析:选D 圆锥顶点到底面的距离即圆锥的高,故两顶点间距离为2+3=5 cm,在直观图中与z 轴平行的线段长度不变,仍为5 cm.5.有一个长为5,宽为4 的矩形,则其直观图的面积为________. 解析:由于该矩形的面积为S =5×4=20,所以由公式S ′=24S ,得其直观图的面积为S ′=24S =5 2. 答案:5 26.一个水平放置的平面图形的斜二测直观图是直角梯形ABCD ,如图所示,∠ABC =45°,AB =AD =1,DC ⊥BC ,则原平面图形的面积为________.解析:过A 作AE ⊥BC ,垂足为E .∵DC ⊥BC 且AD ∥BC ,∴ADCE 是矩形,∴EC =AD =1.由∠ABC =45°,AB =AD =1知BE =22,∴原平面图形是梯形且上、下两底边长分别为1和1+22,高为2, ∴原平面图形的面积为12×⎝ ⎛⎭⎪⎫1+1+22×2=2+22.答案:2+227.如图,四边形A ′B ′C ′D ′是边长为1的正方形,且它是某个四边形按斜二测画法画出的直观图,请画出该四边形的原图形,并求出原图形的面积.解:画出平面直角坐标系xOy ,使点A 与O 重合, 在x 轴上取点C ,使AC =2, 再在y 轴上取点D ,使AD =2, 取AC 的中点E , 连接DE 并延长至点B , 使DE =EB ,连接DC ,CB ,BA ,则四边形ABCD 为正方形A ′B ′C ′D ′的原图形(也可以过点C 作BC ∥y 轴,且使CB =AD =2,然后连接AB ,DC ),如图所示.易知四边形ABCD 为平行四边形,∵AD =2,AC =2,∴S ▱ABCD =2×2=2 2. 8.如图为一几何体的展开图:沿图中虚线将它们折叠起来,请画出其直观图.解:由题设中所给的展开图可以得出,此几何体是一个四棱锥,其底面是一个边长为2的正方形,垂直于底面的侧棱长为2,其直观图如图所示.课时跟踪检测(五) 柱体、锥体、台体的表面积与体积一、题组对点训练对点练一 柱体、锥体、台体的侧面积与表面积 1.棱长为3的正方体的表面积为( ) A .27 B .64 C .54D.36解析:选C 根据表面积的定义,组成正方体的面共6个,且每个都是边长为3的正方形.从而,其表面积为6×32=54.2.若圆锥的高等于底面直径,则它的底面积与侧面积之比为( )A .1∶2B .1∶ 3C .1∶ 5D.3∶2解析:选C 设圆锥底面半径为r ,则高h =2r ,∴其母线长l =5r .∴S 侧=πrl =5πr 2,S 底=πr 2.则S 底∶S 侧=1∶ 5.3.已知正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4B .16πC .9πD.27π4解析:选A 如图,设球心为O ,半径为r ,则在Rt △AOF 中,(4-r )2+(2)2=r 2,解得r =94,所以该球的表面积为4πr 2=4π×⎝ ⎛⎭⎪⎫94 2=81π4.4.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A .7B .6C .5D.3解析:选A 设圆台较小底面半径为r ,则另一底面半径为3r .由S =π(r +3r )·3=84π,解得r =7.5.一个高为2的圆柱,底面周长为2π,该圆柱的表面积为________.解析:由底面周长为2π可得底面半径为1.S 底=2πr 2=2π,S 侧=2πr ·h =4π,所以S 表=S 底+S 侧=6π.答案:6π对点练二 柱体、锥体、台体的体积6.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .2B .4C .6D.8解析:选C 由几何体的三视图可知,该几何体是一个底面为直角梯形,高为2的直四棱柱,直角梯形的两底边长分别为1,2,高为2,∴该几何体的体积为V =12×(2+1)×2×2=6.7.若圆锥的侧面展开图为一个半径为2的半圆,则圆锥的体积是________.解析:易知圆锥的母线长为2,设圆锥的底面半径为r ,则2πr =12×2π×2,∴r =1,则高h = l 2-r 2= 3.∴V 圆锥=13πr 2· h =13π×3=3π3.答案:3π38.某几何体的三视图如图所示,图中的四边形都是边长为2的正方形,正视图和侧视图中的两条虚线都互相垂直且相等,则该几何体的体积是________.解析:几何体的直观图为正方体去掉以正方体中心为顶点,上底面为底面的四棱锥,其体积为2×2×2-13×1×22=203.答案:203对点练三 求几何体体积的方法9.如图,在正三棱柱ABC ­A 1B 1C 1中,AB =4,AA 1=6.若E ,F 分别是棱BB 1,CC 1上的点,则三棱锥A ­A 1EF 的体积是________.解析:因为在正三棱柱ABC ­A 1B 1C 1中,AA 1∥BB 1,AA 1⊂平面AA 1C 1C ,BB 1⊄平面AA 1C 1C ,所以BB 1∥平面AA 1C 1C ,从而点E 到平面AA 1C 1C 的距离就是点B 到平面AA 1C 1C 的距离,作BH ⊥AC ,垂足为点H ,由于△ABC 是正三角形且边长为4,所以BH =23,从而三棱锥A ­A 1EF 的体积VA ­A 1EF =VE ­A 1AF =13S △A 1AF ·BH =13×12×6×4×23=8 3.答案:8 3 二、综合过关训练1.如图,ABC ­A ′B ′C ′是体积为1的棱柱,则四棱锥C ­AA ′B ′B 的体积是( )。

2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析新人教A版课时跟踪检测一变化率问题导数的概念课时跟踪检测二导数的几何意义课时跟踪检测三几个常用函数的导数基本初等函数的导数公式及导数的运算法则课时跟踪检测四复合函数求导及应用课时跟踪检测五函数的单调性与导数课时跟踪检测六函数的极值与导数课时跟踪检测七函数的最大小值与导数课时跟踪检测八生活中的优化问题举例课时跟踪检测九定积分的概念课时跟踪检测十微积分基本定理课时跟踪检测十一定积分的简单应用课时跟踪检测十二合情推理课时跟踪检测十三演绎推理课时跟踪检测十四综合法和分析法课时跟踪检测十五反证法课时跟踪检测十六数学归纳法课时跟踪检测十七数系的扩充和复数的概念课时跟踪检测十八 复数的几何意义课时跟踪检测十九 复数代数形式的加减运算及其几何意义 课时跟踪检测二十 复数代数形式的乘除运算课时跟踪检测(一) 变化率问题、导数的概念一、题组对点训练对点练一 函数的平均变化率1.如果函数y =ax +b 在区间[1,2]上的平均变化率为3,则a =( ) A .-3 B .2 C .3 D .-2解析:选C 根据平均变化率的定义,可知Δy Δx =(2a +b )-(a +b )2-1=a =3.2.若函数f (x )=-x 2+10的图象上一点⎝ ⎛⎭⎪⎫32,314及邻近一点⎝ ⎛⎭⎪⎫32+Δx ,314+Δy ,则Δy Δx =( )A .3B .-3C .-3-(Δx )2D .-Δx -3解析:选D ∵Δy =f ⎝ ⎛⎭⎪⎫32+Δx -f ⎝ ⎛⎭⎪⎫32=-3Δx -(Δx )2,∴Δy Δx =-3Δx -(Δx )2Δx =-3-Δx . 3.求函数y =f (x )=1x在区间[1,1+Δx ]内的平均变化率.解:∵Δy =f (1+Δx )-f (1)=11+Δx-1=1-1+Δx 1+Δx =1-(1+Δx )(1+1+Δx )1+Δx=-Δx(1+1+Δx )1+Δx, ∴Δy Δx =-1(1+1+Δx )1+Δx. 对点练二 求瞬时速度4.某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 3-2表示,则此物体在t =1 s 时的瞬时速度(单位:m/s)为( )A .1B .3C .-1D .0 答案:B5.求第4题中的物体在t 0时的瞬时速度. 解:物体在t 0时的平均速度为v =s (t 0+Δt )-s (t 0)Δt=(t 0+Δt )3-2-(t 30-2)Δt =3t 20Δt +3t 0(Δt )2+(Δt )3Δt=3t 20+3t 0Δt +(Δt )2.因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20,故此物体在t =t 0时的瞬时速度为3t 20 m/s. 6.若第4题中的物体在t 0时刻的瞬时速度为27 m/s,求t 0的值.解:由v =s (t 0+Δt )-s (t 0)Δt =(t 0+Δt )3-2-(t 30-2)Δt=3t 20Δt +3t 0(Δt )2+(Δt )3Δt =3t 20+3t 0Δt +(Δt )2,因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20. 所以由3t 20=27,解得t 0=±3, 因为t 0>0,故t 0=3,所以物体在3 s 时的瞬时速度为27 m/s. 对点练三 利用定义求函数在某一点处的导数 7.设函数f (x )可导,则lim Δx →0 f (1+3Δx )-f (1)3Δx等于( )A .f ′(1)B .3f ′(1)C .13f ′(1) D .f ′(3)解析:选A lim Δx →0f (1+3Δx )-f (1)3Δx=f ′(1).8.设函数f (x )=ax +3,若f ′(1)=3,则a 等于( ) A .2 B .-2 C .3 D .-3 解析:选C ∵f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=lim Δx →0a (1+Δx )+3-(a +3)Δx=a ,∴a =3.9.求函数f (x )=x 在x =1处的导数f ′(1).解:由导数的定义知,函数在x =1处的导数f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx,而f (1+Δx )-f (1)Δx =1+Δx -1Δx =11+Δx +1,又lim Δx →0 11+Δx +1=12,所以f ′(1)=12.二、综合过关训练1.若f (x )在x =x 0处存在导数,则lim h →0 f (x 0+h )-f (x 0)h( )A .与x 0,h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .以上答案都不对解析:选B 由导数的定义知,函数在x =x 0处的导数只与x 0有关.2.函数y =x 2在x 0到x 0+Δx 之间的平均变化率为k 1,在x 0-Δx 到x 0之间的平均变化率为k 2,则k 1与k 2的大小关系为( )A .k 1>k 2B .k 2<k 2C .k 1=k 2D .不确定解析:选D k 1=f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=2x 0+Δx ;k 2=f (x 0)-f (x 0-Δx )Δx =x 20-(x 0-Δx )2Δx=2x 0-Δx .因为Δx 可正也可负,所以k 1与k 2的大小关系不确定. 3.A ,B 两机关开展节能活动,活动开始后两机关的用电量W 1(t ),W 2(t )与时间t (天)的关系如图所示,则一定有( )A .两机关节能效果一样好B .A 机关比B 机关节能效果好C .A 机关的用电量在[0,t 0]上的平均变化率比B 机关的用电量在[0,t 0]上的平均变化率大D .A 机关与B 机关自节能以来用电量总是一样大解析:选B 由题图可知,A 机关所对应的图象比较陡峭,B 机关所对应的图象比较平缓,且用电量在[0,t 0]上的平均变化率都小于0,故一定有A 机关比B 机关节能效果好.4.一个物体的运动方程为s =1-t +t 2,其中s 的单位是:m,t 的单位是:s,那么物体在3 s 末的瞬时速度是( )A .7 m/sB .6 m/sC .5 m/sD .8 m/s解析:选C ∵Δs Δt =1-(3+Δt )+(3+Δt )2-(1-3+32)Δt=5+Δt ,∴lim Δt →0 Δs Δt =lim Δt →0 (5+Δt )=5 (m/s). 5.如图是函数y =f (x )的图象,则(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 解析:(1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以,函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.答案:(1)12 (2)346.函数y =-1x在点x =4处的导数是________.解析:∵Δy =-14+Δx+14=12-14+Δx =4+Δx -224+Δx =Δx24+Δx (4+Δx +2). ∴Δy Δx =124+Δx (4+Δx +2). ∴lim Δx →0 Δy Δx =lim Δx →0124+Δx (4+Δx +2) =12×4×(4+2)=116.∴y ′|x =4=116.答案:1167.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2(位移:m ;时间:s). (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2时平均速度.解:(1)初速度v 0=lim Δt →0 s (Δt )-s (0)Δt =lim Δt →0 3Δt -(Δt 2)Δt=lim Δt →0 (3-Δt )=3(m/s). 即物体的初速度为3 m/s. (2)v =lim Δt →0s (2+Δt )-s (2)Δt=lim Δt →0 3(2+Δt )-(2+Δt )2-(3×2-4)Δt=lim Δt →0 -(Δt )2-Δt Δt =lim Δt →0 (-Δt -1)=-1(m/s). 即此物体在t =2时的瞬时速度为1 m/s,方向与初速度相反. (3)v =s (2)-s (0)2-0=6-4-02=1(m/s).即t =0到t =2时的平均速度为1 m/s.8.若函数f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围.解:因为函数f (x )在[2,2+Δx ]上的平均变化率为: Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx =-3-Δx ,所以由-3-Δx ≤-1, 得Δx ≥-2. 又因为Δx >0,即Δx 的取值范围是(0,+∞).课时跟踪检测(二) 导数的几何意义一、题组对点训练对点练一 求曲线的切线方程1.曲线y =x 3+11在点(1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .15解析:选C ∵切线的斜率k =lim Δx →0 Δy Δx =lim Δx →0 (1+Δx )3+11-12Δx =lim Δx →0 1+3·Δx +3·(Δx )2+(Δx )3-1Δx =lim Δx →0[3+3(Δx )+(Δx )2]=3, ∴切线的方程为y -12=3(x -1). 令x =0得y =12-3=9.2.求曲线y =1x 在点⎝ ⎛⎭⎪⎫12,2的切线方程.解:因为y ′=lim Δx →0 Δy Δx =lim Δx →0 1x +Δx -1x Δx =lim Δx →0 -1x 2+x ·Δx =-1x 2, 所以曲线在点⎝ ⎛⎭⎪⎫12,2的切线斜率为k =y ′|x =12=-4.故所求切线方程为y -2=-4⎝ ⎛⎭⎪⎫x -12,即4x +y -4=0.对点练二 求切点坐标3.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A ∵点(0,b )在直线x -y +1=0上,∴b =1. 又y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a , ∴过点(0,b )的切线的斜率为y ′|x =0=a =1.4.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则点P 坐标为________. 解析:设P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 2(Δx )2+4x 0Δx +4ΔxΔx=4x 0+4, 又∵f ′(x 0)=16,∴4x 0+4=16,∴x 0=3,∴P (3,30). 答案:(3,30)5.曲线y =f (x )=x 2的切线分别满足下列条件,求出切点的坐标. (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)切线的倾斜角为135°.解:f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,∴x 0=2,y 0=4,即P (2,4),显然P (2,4)不在直线y =4x -5上,∴符合题意.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,∴x 0=-32,y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,∴x 0=-12,y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14. 对点练三 导数几何意义的应用 6.下面说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在解析:选C 根据导数的几何意义及切线的定义知曲线在(x 0,y 0)处有导数,则切线一定存在,但反之不一定成立,故A,B,D 错误.7.设曲线y =f (x )在某点处的导数值为0,则过曲线上该点的切线( ) A .垂直于x 轴B .垂直于y 轴C .既不垂直于x 轴也不垂直于y 轴D .方向不能确定解析:选B 由导数的几何意义知曲线f (x )在此点处的切线的斜率为0,故切线与y 轴垂直.8.如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y =f (x )的图象是( )解析:选D 不妨设A 固定,B 从A 点出发绕圆周旋转一周,刚开始时x 很小,即弧AB 长度很小,这时给x 一个改变量Δx ,那么弦AB 与弧AB 所围成的弓形面积的改变量非常小,即弓形面积的变化较慢;当弦AB 接近于圆的直径时,同样给x 一个改变量Δx ,那么弧AB 与弦AB 所围成的弓形面积的改变量将较大,即弓形面积的变化较快;从直径的位置开始,随着B点的继续旋转,弓形面积的变化又由变化较快变为越来越慢.由上可知函数y =f (x )图象的上升趋势应该是首先比较平缓,然后变得比较陡峭,最后又变得比较平缓,对比各选项知D 正确.9.已知函数y =f (x )的图象如图所示, 则函数y =f ′(x )的图象可能是________(填序号).解析:由y =f (x )的图象及导数的几何意义可知,当x <0时f ′(x )>0,当x =0时,f ′(x )=0,当x >0时,f ′(x )<0,故②符合.答案:②二、综合过关训练1.函数f (x )的图象如图所示,则下列结论正确的是( ) A .0<f ′(a )<f ′(a +1)<f (a +1)-f (a ) B .0<f ′(a +1)<f (a +1)-f (a )<f ′(a ) C .0<f ′(a +1)<f ′(a )<f (a +1)-f (a ) D .0<f (a +1)-f (a )<f ′(a )<f ′(a +1)解析:选B f ′(a ),f ′(a +1)分别为曲线f (x )在x =a ,x =a +1处的切线的斜率,由题图可知f ′(a )>f ′(a +1)>0,而f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a表示(a ,f (a ))与(a +1,f (a+1))两点连线的斜率,且在f ′(a )与f ′(a +1)之间.∴0<f ′(a +1)<f (a +1)-f (a )<f ′(a ).2.曲线y =1x -1在点P (2,1)处的切线的倾斜角为( ) A .π6 B .π4 C .π3 D .3π4解析:选D Δy =12+Δx -1-12-1=11+Δx -1=-Δx 1+Δx ,lim Δx →0 Δy Δx =lim Δx →0 -11+Δx =-1,斜率为-1,倾斜角为3π4.3.曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1 B .y =-x +1 C .y =2x -2D .y =-2x +2解析:选 A 由Δy =(1+Δx )3-2(1+Δx )+1-(1-2+1)=(Δx )3+3(Δx )2+Δx 得lim Δx →0 Δy Δx =lim Δx →0 (Δx )2+3Δx +1=1,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得切线方程为y =x -1.4.设P 0为曲线f (x )=x 3+x -2上的点,且曲线在P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( )A .(1,0)B .(2,8)C .(1,0)或(-1,-4)D .(2,8)或(-1,-4)解析:选C f ′(x )=lim Δx →0 (x +Δx )3+(x +Δx )-2-(x 3+x -2)Δx=lim Δx →0 (3x 2+1)Δx +3x (Δx )2+(Δx )3Δx =3x 2+1.由于曲线f (x )=x 3+x -2在P 0处的切线平行于直线y =4x -1,所以f (x )在P 0处的导数值等于4.设P 0(x 0,y 0),则有f ′(x 0)=3x 20+1=4,解得x 0=±1,P 0的坐标为(1,0)或(-1,-4).5.已知二次函数y =f (x )的图象如图所示,则y =f (x )在A 、B 两点处的导数f ′(a )与f ′(b )的大小关系为:f ′(a )________f ′(b )(填“<”或“>”).解析:f ′(a )与f ′(b )分别表示函数图象在点A 、B 处的切线斜率,故f ′(a )>f ′(b ).答案:>6.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程为____________.解析:曲线y =3x 2-4x +2在点M (1,1)处的切线斜率k =y ′|x =1=lim Δx →03(1+Δx )2-4(1+Δx )+2-3+4-2Δx=lim Δx →0 (3Δx +2)=2.所以过点 P (-1,2)的直线的斜率为2.由点斜式得y-2=2(x+1),即2x-y+4=0.所以所求直线方程为2x-y+4=0.答案:2x-y+4=07.甲、乙二人跑步的路程与时间关系以及百米赛跑路程和时间关系分别如图①②,试问:(1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?解:(1)图①中乙的切线斜率比甲的切线斜率大,故乙跑得快;(2)图②中在快到终点时乙的瞬时速度大,故快到终点时,乙跑得快.8.“菊花”烟花是最壮观的烟花之一,制造时通常期望它在达到最高时爆裂.如果烟花距地面的高度h(m)与时间t(s)之间的关系式为h(t)=-4.9t2+14.7t.其示意图如图所示.根据图象,结合导数的几何意义解释烟花升空后的运动状况.解:如图,结合导数的几何意义,我们可以看出:在t=1.5 s附近曲线比较平坦,也就是说此时烟花的瞬时速度几乎为0,达到最高点并爆裂;在0~1.5 s之间,曲线在任何点的切线斜率大于0且切线的倾斜程度越来越小,也就是说烟花在达到最高点前,以越来越小的速度升空;在1.5 s后,曲线在任何点的切线斜率小于0且切线的倾斜程度越来越大,即烟花达到最高点后,以越来越大的速度下降,直到落地.课时跟踪检测(三) 几个常用函数的导数、基本初等函数的导数公式及导数的运算法则一、题组对点训练对点练一 利用导数公式求函数的导数 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′=-1x ;④⎝ ⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( )A .0B .1C .2D .3解析:选B 因为(cos x )′=-sin x ,所以①错误.sin π3=32,而⎝ ⎛⎭⎪⎫32′=0,所以②错误.⎝ ⎛⎭⎪⎫1x 2′=0-(x 2)′x 4=-2x x 4=-2x 3,所以③错误.⎝ ⎛⎭⎪⎫-1x ′=-0-(x 12)′x =12x -12x =12x -32=12x x,所以④正确. 2.已知f (x )=x α(α∈Q *),若f ′(1)=14,则α等于( )A .13B .12C .18D .14 解析:选D ∵f (x )=x α,∴f ′(x )=αx α-1.∴f ′(1)=α=14.对点练二 利用导数的运算法则求导数 3.函数y =sin x ·cos x 的导数是( ) A .y ′=cos 2x +sin 2x B .y ′=cos 2x -sin 2x C .y ′=2cos x ·sin xD .y ′=cos x ·sin x解析:选B y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x . 4.函数y =x 2x +3的导数为________.解析:y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2(x +3)′(x +3)2=2x (x +3)-x 2(x +3)2=x 2+6x (x +3)2.答案:x 2+6x (x +3)25.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3, 所以a =3.答案:36.求下列函数的导数.(1)y =sin x -2x 2;(2)y =cos x ·ln x ;(3)y =exsin x.解:(1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′=cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′=-sin x ·ln x +cos xx.(3)y ′=⎝ ⎛⎭⎪⎫e x sin x ′=(e x )′·sin x -e x ·(sin x )′sin 2x =e x ·sin x -e x ·cos x sin 2x =e x(sin x -cos x )sin 2x. 对点练三 利用导数公式研究曲线的切线问题7.(2019·全国卷Ⅰ)曲线y =3(x 2+x )e x在点(0,0)处的切线方程为________. 解析:∵y ′=3(2x +1)e x +3(x 2+x )e x =e x (3x 2+9x +3), ∴切线斜率k =e 0×3=3,∴切线方程为y =3x . 答案:y =3x8.若曲线f (x )=x ·sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝ ⎛⎭⎪⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以根据题意得1×⎝ ⎛⎭⎪⎫-a 2=-1,解得a =2.答案:29.已知a ∈R,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a=(a -1)(x -1),令x =0,得y =1.答案:110.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +13上,且在第一象限内,已知曲线C 在点P 处的切线的斜率为2,求点P 的坐标.解:设点P 的坐标为(x 0,y 0),因为y ′=3x 2-10,所以3x 20-10=2,解得x 0=±2.又点P 在第一象限内,所以x 0=2,又点P 在曲线C 上,所以y 0=23-10×2+13=1,所以点P 的坐标为(2,1).二、综合过关训练1.f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N,则f 2 019(x )=( )A .sin xB .-sin xC .cos xD .-cos x解析:选D 因为f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f 2 019(x )=f 3(x )=-cos x .2.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .12解析:选A 因为y ′=x 2-3x ,所以根据导数的几何意义可知,x 2-3x =12,解得x =3(x =-2不合题意,舍去).3.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12B .12C .-22D .22解析:选B y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x ,把x =π4代入得导数值为12,即为所求切线的斜率.4.已知直线y =3x +1与曲线y =ax 3+3相切,则a 的值为( ) A .1 B .±1 C .-1D .-2解析:选A 设切点为(x 0,y 0),则y 0=3x 0+1,且y 0=ax 30+3,所以3x 0+1=ax 30+3…①.对y =ax 3+3求导得y ′=3ax 2,则3ax 20=3,ax 20=1…②,由①②可得x 0=1,所以a =1.5.设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在点(2,f (2))处的切线方程为____________.解析:f ′(x )=3x 2+2ax +a -3, ∵f ′(x )是偶函数,∴a =0, ∴f (x )=x 3-3x ,f ′(x )=3x 2-3, ∴f (2)=8-6=2,f ′(2)=9,∴曲线y =f (x )在点(2,f (2))处的切线方程为y -2=9(x -2), 即9x -y -16=0. 答案:9x -y -16=06.设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=________. 解析:令g (x )=(x +1)(x +2)…(x +n ),则f (x )=xg (x ), 求导得f ′(x )=x ′g (x )+xg ′(x )=g (x )+xg ′(x ), 所以f ′(0)=g (0)+0×g ′(0)=g (0)=1×2×3×…×n . 答案:1×2×3×…×n7.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵y =x +ln x , ∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2), ∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:88.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R.求曲线y =f (x )在点(1,f (1))处的切线方程.解:因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b . 令x =1,得f ′(1)=3+2a +b , 又f ′(1)=2a,3+2a +b =2a , 解得b =-3,令x =2得f ′(2)=12+4a +b , 又f ′(2)=-b , 所以12+4a +b =-b , 解得a =-32.则f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又f ′(1)=2×⎝ ⎛⎭⎪⎫-32=-3, 所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1), 即6x +2y -1=0.9.已知两条直线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.解:不存在.由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0),所以两条曲线在P (x 0,y 0)处的斜率分别为k 1=y ′|x =x 0=cos x 0,k 2=y ′|x =x 0=-sinx 0.若使两条切线互相垂直,必须使cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.课时跟踪检测(四) 复合函数求导及应用一、题组对点训练对点练一 简单复合函数求导问题 1.y =cos 3x 的导数是( ) A .y ′=-3cos 2x sin x B .y ′=-3cos 2x C .y ′=-3sin 2xD .y ′=-3cos x sin 2x解析:选A 令t =cos x ,则y =t 3,y ′=y t ′·t x ′=3t 2·(-sin x )=-3cos 2x sin x . 2.求下列函数的导数. (1)y =ln(e x +x 2); (2)y =102x +3;(3)y =sin 4x +cos 4x .解:(1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x+2x )=e x+2x e x +x2.(2)令u =2x +3,则y =10u,∴y ′x =y ′u ·u ′x =10u·ln 10·(2x +3)′=2×102x +3ln10.(3)y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x ·cos 2x =1-12sin 22x =1-14(1-cos 4x )=34+14cos 4x . 所以y ′=⎝ ⎛⎭⎪⎫34+14cos 4x ′=-sin 4x . 对点练二 复合函数与导数运算法则的综合应用 3.函数y =x 2cos 2x 的导数为( ) A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x解析:选B y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x .4.函数y =x ln(2x +5)的导数为( ) A .ln(2x +5)-x2x +5B .ln(2x +5)+2x2x +5C .2x ln(2x +5)D .x2x +5解析:选 B y ′=[x ln(2x +5)]′=x ′ln(2x +5)+x [ln(2x +5)]′=ln(2x +5)+x ·12x +5·(2x +5)′=ln(2x +5)+2x 2x +5. 5.函数y =sin 2x cos 3x 的导数是________. 解析:∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x . 答案:2cos 2x cos 3x -3sin 2x sin 3x6.已知f (x )=e πxsin πx ,求f ′(x )及f ′⎝ ⎛⎭⎪⎫12.解:∵f (x )=e πxsin πx ,∴f ′(x )=πe πxsin πx +πe πxcos πx =πe πx(sin πx +cos πx ). f ′⎝ ⎛⎭⎪⎫12=πe π2⎝ ⎛⎭⎪⎫sin π2+cos π2=πe 2π. 对点练三 复合函数导数的综合问题7.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D 令y =ax -ln(x +1),则f ′(x )=a -1x +1.所以f (0)=0,且f ′(0)=2.联立解得a =3.8.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5D .0解析:选A 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行. ∵y ′=22x -1,∴y ′|x =x 0=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.9.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( )A .5太贝克B .75ln 2太贝克C .150ln 2 太贝克D .150太贝克解析:选D M ′(t )=-130ln 2×M 02-t30,由M ′(30)=-130ln 2×M 02-3030=-10 ln 2,解得M 0=600, 所以M (t )=600×2-t 30,所以t =60时,铯137的含量为M (60)=600×2-6030=600×14=150(太贝克).二、综合过关训练1.函数y =(2 019-8x )3的导数y ′=( ) A .3(2 019-8x )2B .-24xC .-24(2 019-8x )2D .24(2 019-8x 2)解析:选C y ′=3(2 019-8x )2×(2 019-8x )′=3(2 019-8x )2×(-8)=-24(2 019-8x )2.2.函数y =12(e x +e -x)的导数是( )A .12(e x -e -x) B .12(e x +e -x) C .e x-e -xD .e x+e -x解析:选A y ′=12(e x +e -x )′=12(e x -e -x).3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2解析:选B 设切点坐标是(x 0,x 0+1),依题意有⎩⎪⎨⎪⎧1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.4.函数y =ln ex1+ex 在x =0处的导数为________.解析:y =ln e x1+e x =ln e x -ln(1+e x )=x -ln(1+e x),则y ′=1-e x1+e x .当x =0时,y ′=1-11+1=12. 答案:125.设曲线y =e ax在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 解析:令y =f (x ),则曲线y =e ax在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(0)=2.因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax,所以f ′(0)=a e 0=a ,故a =2.答案:26.f (x )=ax 2-1且f ′(1)=2,则a 的值为________.解析:∵f (x )=(ax 2-1)12,∴f ′(x )=12(ax 2-1)-12·(ax 2-1)′=ax ax 2-1 .又f ′(1)=2,∴aa -1=2,∴a =2. 答案:27.求函数y =a sin x3+b cos 22x (a ,b 是实常数)的导数.解:∵⎝⎛⎭⎪⎫a sin x 3′=a cos x 3·⎝ ⎛⎭⎪⎫x 3′=a 3cos x3,又(cos 22x )′=⎝ ⎛⎭⎪⎫12+12cos 4x ′=12(-sin 4x )×4=-2sin 4x , ∴y =a sin x3+b cos 22x 的导数为y ′=⎝ ⎛⎭⎪⎫a sin x 3′+b (cos 22x )′=a 3cos x 3-2b sin 4x .8.曲线y =e 2xcos 3x 在(0,1)处的切线与l 的距离为5,求l 的方程. 解:由题意知y ′=(e 2x)′cos 3x +e 2x(cos 3x )′ =2e 2x cos 3x +3(-sin 3x )·e 2x=2e 2x cos 3x -3e 2xsin 3x ,所以曲线在(0,1)处的切线的斜率为k =y ′|x =0=2. 所以该切线方程为y -1=2x ,即y =2x +1. 设l 的方程为y =2x +m ,则d =|m -1|5= 5.解得m =-4或m =6.当m =-4时,l 的方程为y =2x -4;当m=6时,l的方程为y=2x+6.综上,可知l的方程为y=2x-4或y=2x+6.课时跟踪检测(五)函数的单调性与导数一、题组对点训练对点练一函数与导函数图象间的关系1.f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是下列选项中的( )解析:选C 题目所给出的是导函数的图象,导函数的图象在x轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在x轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由x∈(-∞,0)时导函数图象在x轴的上方,表示在此区间上,原函数的图象呈上升趋势,可排除B、D两选项.由x∈(0,2)时导函数图象在x轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除A选项.故选C.2.若函数y=f′(x)在区间(x1,x2)内是单调递减函数,则函数y=f(x)在区间(x1,x2)内的图象可以是( )解析:选B 选项A中,f′(x)>0且为常数函数;选项C中,f′(x)>0且f′(x)在(x1,x2)内单调递增;选项D中,f′(x)>0且f′(x)在(x1,x2)内先增后减.故选B.3.如图所示的是函数y=f(x)的导函数y=f′(x)的图象,则在[-2,5]上函数f(x)的递增区间为________.解析:因为在(-1,2)和(4,5]上f′(x)>0,所以f(x)在[-2,5]上的单调递增区间为(-1,2)和(4,5].答案:(-1,2)和(4,5]对点练二判断(证明)函数的单调性、求函数的单调区间4.函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2)B.(0,3)C.(1,4) D.(2,+∞)解析:选D f′(x)=(x-3)′e x+(x-3)(e x)′=e x(x-2).由f′(x)>0得x>2,∴f(x)的单调递增区间是(2,+∞).5.函数f (x )=2x 2-ln x 的递增区间是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-12,0和⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝⎛⎭⎪⎫-∞,-12和⎝ ⎛⎭⎪⎫0,12解析:选C 由题意得,函数的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x=(2x +1)(2x -1)x ,令f ′(x )=(2x +1)(2x -1)x >0,解得x >12,故函数f (x )=2x 2-ln x 的递增区间是⎝ ⎛⎭⎪⎫12,+∞.故选C. 6.已知f (x )=ax 3+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x . (1)求y =f (x )的解析式; (2)求y =f (x )的单调递增区间.解:(1)∵f (x )=ax 3+bx 2+c 的图象经过点(0,1),∴c =1,f ′(x )=3ax 2+2bx ,f ′(1)=3a +2b =1,切点为(1,1),则f (x )=ax 3+bx 2+c 的图象经过点(1,1),得a +b +c =1,解得a =1,b =-1,即f (x )=x 3-x 2+1.(2)由f ′(x )=3x 2-2x >0得x <0或x >23,所以单调递增区间为(-∞,0)和⎝ ⎛⎭⎪⎫23,+∞.对点练三 与参数有关的函数单调性问题7.若函数f (x )=x -a x 在[1,4]上单调递减,则实数a 的最小值为( ) A .1 B .2 C .4D .5解析:选C 函数f (x )=x -a x 在[1,4]上单调递减,只需f ′(x )≤0在[1,4]上恒成立即可,令f ′(x )=1-12ax -12≤0,解得a ≥2x ,则a ≥4.∴a min =4.8.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________.解析:f ′(x )=3x 2+2bx +c ,由题意知-1<x <2是不等式f ′(x )<0的解,即-1,2是方程3x 2+2bx +c =0的两个根,把-1,2分别代入方程,解得b =-32,c =-6.答案:-32-69.已知函数f (x )=(x -2)e x+a (x -1)2.讨论f (x )的单调性. 解:f ′(x )=(x -1)e x+2a (x -1)=(x -1)·(e x+2a ).(1)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.(2)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).①若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)上单调递增;②若-e2<a <0,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a ))∪(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减;③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1)∪(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.二、综合过关训练1.若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x解析:选A 对于选项A,f (x )=2-x=⎝ ⎛⎭⎪⎫12x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫12x =⎝ ⎛⎭⎪⎫e 2x ,∵e 2>1,∴e x f (x )在R 上单调递增,∴f (x )=2-x具有M 性质.对于选项B,f (x )=x 2,e xf (x )=e x x 2,[e xf (x )]′=e x(x 2+2x ),令e x (x 2+2x )>0,得x >0或x <-2;令e x (x 2+2x )<0,得-2<x <0,∴函数e xf (x )在(-∞,-2)和(0,+∞)上单调递增,在(-2,0)上单调递减,∴f (x )=x 2不具有M 性质.对于选项C,f (x )=3-x=⎝ ⎛⎭⎪⎫13x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫13x =⎝ ⎛⎭⎪⎫e 3x ,∵e3<1, ∴y =⎝ ⎛⎭⎪⎫e 3x在R 上单调递减,∴f (x )=3-x不具有M 性质.对于选项D,f (x )=cos x ,e xf (x )=e xcos x ,则[e x f (x )]′=e x (cos x -sin x )≥0在R 上不恒成立,故e x f (x )=e xcos x 在R 上不是单调递增的,∴f (x )=cos x 不具有M 性质.故选A.2.若函数f (x )=x -eln x,0<a <e<b ,则下列说法一定正确的是( ) A .f (a )<f (b ) B .f (a )>f (b ) C .f (a )>f (e)D .f (e)>f (b )解析:选C f ′(x )=1-e x =x -ex,x >0,令f ′(x )=0,得x =e,f (x )在(0,e)上为减函数,在(e,+∞)上为增函数,所以f (a )>f (e),f (b )>f (e),f (a )与f (b )的大小不确定.3.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一直角坐标系中,不可能正确的是( )解析:选D 对于选项A,若曲线C 1为y =f (x )的图象,曲线C 2为y =f ′(x )的图象,则函数y =f (x )在(-∞,0)内是减函数,从而在(-∞,0)内有f ′(x )<0;y =f (x )在(0,+∞)内是增函数,从而在(0,+∞)内有f ′(x )>0.因此,选项A 可能正确.同理,选项B 、C 也可能正确.对于选项D,若曲线C 1为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为增函数,与C 2不相符;若曲线C 2为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为减函数,与C 1不相符.因此,选项D 不可能正确.4.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:选C 因为⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2,又因为f ′(x )g (x )-f (x )g ′(x )<0,所以f (x )g (x )在R 上为减函数.又因为a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ),又因为f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).5.(2019·北京高考)设函数f (x )=e x +a e -x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.解析:∵f (x )=e x +a e -x(a 为常数)的定义域为R, ∴f (0)=e 0+a e -0=1+a =0,∴a =-1.∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x-ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立, 即e x≥ae x 在R 上恒成立,∴a ≤e 2x在R 上恒成立.又e 2x>0,∴a ≤0,即a 的取值范围是(-∞,0]. 答案:-1 (-∞,0]6.如果函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x.由f ′(x )>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞;由f ′(x )<0,得函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12.由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0.解得:1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,32 7.已知函数f (x )=x ln x .(1)求曲线f (x )在x =1处的切线方程;(2)讨论函数f (x )在区间(0,t ](t >0)上的单调性. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=ln x +1. 曲线f (x )在x =1处的切线的斜率为k =f ′(1)=1.把x =1代入f (x )=x ln x 中得f (1)=0,即切点坐标为(1,0).所以曲线f (x )在x =1处的切线方程为y =x -1.(2)令f ′(x )=1+ln x =0,得x =1e.①当0<t <1e时,在区间(0,t ]上,f ′(x )<0,函数f (x )为减函数.②当t >1e 时,在区间⎝ ⎛⎭⎪⎫0,1e 上,f ′(x )<0,f (x )为减函数;在区间⎝ ⎛⎭⎪⎫1e ,t 上,f ′(x )>0,f (x )为增函数.8.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解:h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立,令G (x )=1x 2-2x,则a ≥G (x )max .而G (x )=⎝ ⎛⎭⎪⎫1x-12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x .因为x ∈[1,4],所以h ′(x )=(7x -4)(x -4)16x ≤0,即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.课时跟踪检测(六) 函数的极值与导数一、题组对点训练对点练一 求函数的极值1.函数y =x 3-3x 2-9x (-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值D .极小值-27,无极大值解析:选C 由y ′=3x 2-6x -9=0, 得x =-1或x =3.当x <-1或x >3时,y ′>0; 当-1<x <3时,y ′<0.∴当x =-1时,函数有极大值5; 3∉(-2,2),故无极小值.2.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0 B .0,427C .-427,0D .0,-427解析:选A f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427,当x =1时f (x )取极小值0.3.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________. ①当x =32时,函数取得极小值;②f (x )有两个极值点; ③当x =2时,函数取得极小值; ④当x =1时,函数取得极大值.解析:由题图知,当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,所以f (x )有两个极值点,分别为1和2,且当x =2时函数取得极小值,当x =1时函数取得极大值.只有①不正确.答案:①对点练二 已知函数的极值求参数4.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3解析:选A f ′(x )=3ax 2+b , 由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.5.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( ) A .b <1 B .b >1 C .0<b <1 D .b <12解析:选C f ′(x )=2x -2b =2(x -b ),令f ′(x )=0,解得x =b ,由于函数f (x )在区间(0,1)内有极小值,则有0<b <1.当0<x <b 时,f ′(x )<0;当b <x <1时,f ′(x )>0,符合题意.所以实数b 的取值范围是0<b <1.6.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________.解析:f ′(x )=3x 2+6ax +3(a +2),∵函数f (x )既有极大值又有极小值,∴方程f ′(x )=0有两个不相等的实根,∴Δ=36a 2-36(a +2)>0.即a 2-a -2>0,解之得a >2或a <-1.答案:(-∞,-1)∪(2,+∞) 对点练三 函数极值的综合问题7.设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 则g ′(x )=1x -2a =1-2ax x.当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞. (2)由(1)知,f ′(1)=0.。

考点48 排列与组合-2020年高考数学(理)考点一遍过

考点48 排列与组合-2020年高考数学(理)考点一遍过

专题48 排列与组合(1)理解排列、组合的概念.(2)能利用计数原理推导排列数公式、组合数公式. (3)能解决简单的实际问题.1.排列(1)排列的定义一般地,从n 个不同元素中取出()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. (2)排列数、排列数公式从n 个不同元素中取出()m m n ≤个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数,用符号A mn 表示.一般地,求排列数A m n 可以按依次填m 个空位来考虑:假设有排好顺序的m 个空位,从n 个元素12,,,n a a a L 中任取m 个去填空,一个空位填1个元素,每一种填法就对应一个排列,而要完成“这件事”可以分为m 个步骤来实现.根据分步乘法计数原理,全部填满m 个空位共有(1)(2)[(1)]n n n n m ----L 种填法.这样,我们就得到公式A mn =(1)(2)(1)n n n n m ---+L ,其中,m n *∈N ,且m n ≤.这个公式叫做排列数公式.n 个不同元素全部取出的一个排列,叫做n 个元素的一个全排列,这时公式中m n =,即有A (1)(2)321n n n n n =⨯-⨯-⨯⨯⨯⨯L ,就是说,n 个不同元素全部取出的排列数,等于正整数1到n的连乘积.正整数1到n 的连乘积,叫做n 的阶乘,用!n 表示.所以n 个不同元素的全排列数公式可以写成A !nn n =.另外,我们规定0!=1.于是排列数公式写成阶乘的形式为A mn =!()!n n m -,其中,m n *∈N ,且m n ≤.注意:排列与排列数是两个不同的概念,一个排列是指“按照一定的顺序排成一列”,它是具体的一件事,排列数是指“从n 个不同元素中取出()m m n ≤个元素的所有不同排列的个数”,它是一个数.2.组合(1)组合的定义一般地,从n 个不同元素中取出()m m n ≤个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合.(2)组合数、组合数公式从n 个不同元素中取出()m m n ≤个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号C mn 表示.A (1)(2)(1)C A !m m n nmm n n n n m m ---+==L ,其中,m n *∈N ,且m n ≤.这个公式叫做组合数公式. 因为A mn =!()!n n m -,所以组合数公式还可以写成C mn =!!()!n m n m -,其中,m n *∈N ,且m n ≤.另外,我们规定0C 1n =.(3)组合数的性质性质1:C C m n mn n -=.性质1表明从n 个不同元素中取出m 个元素的组合,与剩下的n m -个元素的组合是一一对应关系.性质2:11C C C m m m n n n -+=+.性质2表明从1n +个不同元素中任取m 个元素的组合,可以分为两类:第1类,取出的m 个元素中不含某个元素a 的组合,只需在除去元素a 的其余n 个元素中任取m 个即可,有C mn 个组合;第2类,取出的m 个元素中含有某个元素a 的组合,只需在除去a 的其余n 个元素中任取1m -个后再取出元素a 即可,有1C m n-个组合.考向一 排列数公式和组合数公式的应用A C A mm n nm m=这个公式体现了排列数公式和组合数公式的联系,也可以用这个关系去加强对公式的记忆.每个公式都有相应的连乘形式和阶乘形式,连乘形式多用于数字计算,阶乘形式多用于对含有字母的排列数或者组合数进行变形或证明.典例1 (1)若224A 7A n n -=,*n ∈N ,求n 的值; (2)222234510C C C C +++⋅⋅⋅+求的值(用数字作答).【答案】(1)7;(2)164.【解析】(1)由题可得(1)7(4)(5)n n n n -=⋅--,即2331700n n +-=, 解得:7n =或*10(,3n n N Q =∈舍去), 7n ∴=.(2)222234510C C C C ++++L=(3233C C +)222345103C C C C ++++-L =(3244C C +)22510C C +++-L 1 =(3255C C +)210C ++-L 1 32610C C =++-L 1=L321010C C =+-1 311C =-1=164.【名师点睛】本题考查排列数组合数的运算,考查计算能力,属于基础题.(1)在解与排列数有关的方程或不等式时,应先求出未知数的取值范围,再利用排列数公式化简方程或不等式,最后得出问题的解.(2)利用111C C C m m m nn n ++++=求解.1.(1)解不等式288A 6A x x -<; (2)证明:11A A A m m m n n n m -+-=.考向二 排列问题的求解解决排列问题的主要方法有:(1)“在”与“不在”的有限制条件的排列问题,既可以从元素入手,也可以从位置入手,原则是谁“特殊”谁优先.不管是从元素考虑还是从位置考虑,都要贯彻到底,不能既考虑元素又考虑位置.(2)解决相邻问题的方法是“捆绑法”,即把相邻元素看作一个整体和其他元素一起排列,同时要注意捆绑元素的内部排列.(3)解决不相邻问题的方法是“插空法”,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中.(4)对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列. (5)若某些问题从正面考虑比较复杂,可从其反面入手,即采用“间接法”.典例2 室内体育课上王老师为了丰富课堂内容,调动同学们的积极性,他把第四排的8个同学请出座位并且编号为1,2,3,4,5,6,7,8.经过观察这8个同学的身体特征,王老师决定,按照1,2号相邻,3,4号相邻,5,6号相邻,而7号与8号不相邻的要求站成一排做一种游戏,有________种排法.(用数字作答) 【答案】576【解析】把编号相邻的3组同学每两个同学捆成一捆,这3捆之间有33A 6=种排序方法,并且形成4个空当,再将7号与8号插进空当中有24A 12=种插法,而捆好的3捆中每相邻的两个同学都有22A 4=种排法.所以不同的排法种数为32612576⨯⨯=.2.一个停车场有5个排成一排的空车位,现有2辆不同的车停进这个停车场,若停好后恰有2个相邻的停车位空着,则不同的停车方法共有 A .6种 B .12种 C .36种D .72种考向三 组合问题的求解组合问题的限制条件主要体现在取出的元素中“含”或“不含”某些元素,在解答时可用直接法,也可用间接法.用直接法求解时,要注意合理地分类或分步;用间接法求解时,要注意题目中“至少”“至多”等关键词的含义,做到不重不漏.典例3 某学校为了迎接市春季运动会,从5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为 A .85 B .86 C .91 D .90【答案】B【解析】方法一(直接法):由题意,可分三类考虑:第1类,男生甲入选,女生乙不入选:1221334343C C C C C 31++=;第2类,男生甲不入选,女生乙入选:1221343434C C C C C 34++=.第3类,男生甲入选,女生乙入选: 21123434C C C C 21++=.∴男生甲与女生乙至少有1人入选的方法种数为31+34+21=86.方法二(间接法):从5名男生和4名女生中任意选出4人,男、女生都有的选法有444954C C C 120--=种;男、女生都有,且男生甲与女生乙都没有入选的方法有4474C C 34-=种.∴男生甲与女生乙至少有1人入选的方法种数为120−34=86.3.在新一轮的高考改革中,一名高二学生在确定选修地理的情况下,想从历史、政治、化学、生物、物理中再选择两科学习,则所选的两科中一定有生物的概率是A .310 B .710 C .25D .35考向四 排列与组合的综合应用先选后排法是解答排列、组合应用问题的根本方法,利用先选后排法解答问题只需要用三步即可完成. 第一步:选元素,即选出符合条件的元素;第二步:进行排列,即把选出的元素按要求进行排列;第三步:计算总数,即根据分步乘法计数原理、分类加法计数原理计算方法总数.典例4 有甲、乙、丙3项任务,任务甲需要2人承担,任务乙、丙各需要1人承担,从10人中选派4人承担这3项任务,不同的选法共有_______________种(用数字作答). 【答案】2520【解析】方法一:先从10人中选出2人承担任务甲,再从余下8人中选出1人承担任务乙,最后从剩下的7人中选出1人承担任务丙.根据分步乘法计数原理,不同的选法共有2111087C C C 2520=种.方法二:先从10人中选出2人承担任务甲,再从余下8人中选出2人分别承担任务乙、丙.根据分步乘法计数原理,不同的选法共有22108C A 2520=种.4.某技术学院安排5个班到3个工厂实习,每个班去一个工厂,每个工厂至少安排一个班,则不同的安排方法共有 A .60种B .90种C .150种D .240种1.已知2C 15n =,那么2A n =A .20B .30C .42D .722.下列等式中,错误的是 A .()111A Am m nn n +++=B .()()!2!1n n n n =-- C .A C !mm n n n =D .11A A m mnn n m+=- 3.甲、乙等五个人排成一排,要求甲和乙不能相邻,则不同的排法种数为 A .48 B .60 C .72D .1204.某校为了提倡素质教育,丰富学生们的课外生活,分别成立绘画、象棋和篮球兴趣小组,现有甲、乙、丙、丁四名学生报名参加,每人仅参加一个兴趣小组,每个兴趣小组至少有一人报名,则不同报名方法有 A .12种 B .24种 C .36种D .72种5.从10名男生6名女生中任选3人参加竞赛,要求参赛的3人中既有男生又有女生,则不同的选法有 A .1190种 B .420种 C .560种D .3360种6.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A .81B .83 C .85D .877.小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母都不与他相邻,则不同坐法的总数为A .12B .36C .84D .968.数学活动小组由12名同学组成,现将这12名同学平均分成四组分别研究四个不同课题,且每组只研究一个课题,并要求每组选出一名组长,则不同的分配方案种数为A .33341296433C C C A A B .3331296C C C 34C .333129644C C C A 43D .3331296C C C 439.用数字0,2,4,7,8,9组成无重复数字的六位数,其中大于420789的正整数的个数为 A .479 B .180 C .455D .45610.元旦晚会期间,高三二班的学生准备了6 个参赛节目,其中有 2 个舞蹈节目,2 个小品节目,2个歌曲节目,要求歌曲节目一定排在首尾,另外2个舞蹈节目一定要排在一起,则这 6 个节目的不同编排种数为 A .48 B .36 C .24D .1211.已知10件产品有2件是次品,为保证使2件次品全部检验出的概率超过0.6,至少应抽取作检验的产品件数为 A .6 B .7 C .8D .912.节目单上有10个位置,现有A ,B ,C 3个节目,要求每个节目前后都有空位且A 节目必须在B ,C 节目之间,则不同的节目排法有 种.13.已知集合{}08C A =,{}1288C ,C B =,{}456888C ,C ,C C =,若从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定不同点的个数为___________.14.给四面体ABCD 的六条棱分别涂上红,黄,蓝,绿四种颜色中的一种,使得有公共顶点的棱所涂的颜色互不相同,则不同的涂色方法种数共有 .15.某房间并排摆有六件不同的工艺品,要求甲、乙两件工艺品必须摆放在两端,丙、丁两件工艺品必须相邻,则不同的摆放方法有 种(用数字作答).16.生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为__________.17.从1到7的7个数字中取两个偶数和三个奇数组成没有重复数字的五位数.试问:(1)能组成多少个不同的五位偶数?(2)五位数中,两个偶数排在一起的有几个?(3)两个偶数不相邻且三个奇数也不相邻的五位数有几个?(所有结果均用数值表示)18.某兴趣小组有9名学生.若从9名学生中选取3人,则选取的3人中恰好有一个女生的概率是15 28.(1)该小组中男女学生各多少人?(2)9个学生站成一列队,现要求女生保持相对顺序不变(即女生前后..顺序保持不变)重新站队,问有多少种重新站队的方法?(要求用数字作答)(3)9名学生站成一列,要求男生必须两两站在一起,有多少种站队的方法?(要求用数字作答)19.4个编号为1,2,3,4的小球放入编号为1,2,3,4的盒子中.(1)①恰好有一个空盒子,有多少种放法?②若把4个不同小球换成4个相同小球,恰好有一个空盒子,有多少种放法?(2)每个盒子放1个球,并且恰好有一球的编号与盒子的编号相同,有多少种放法?1.(2019新课标全国Ⅰ理科)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.11162.(2018新课标全国Ⅱ理科)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112 B .114 C .115D .1183.(2017新课标全国Ⅱ理科)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有 A .12种 B .18种 C .24种D .36种4.(2018新课标全国Ⅰ理科)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)5.(2018江苏)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ .6.(2018浙江)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)7.(2017浙江理科)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有______种不同的选法.(用数字作答)8.(2017天津理科)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答)1.【解析】(1)由288A 6Axx -<,得()()8!8!68!10!x x <⨯--,化简得219840x x -<+,解之得712x <<,①又820xx ≥⎧⎨->⎩,28x ∴<≤,②由①②及x ∈N *得8x =. (2)()()()11!!AA 1!!mm n nn n n m n m ++-=-+--Q()!11!1n n n m n m +⎛⎫=⋅- ⎪-+-⎝⎭()()!!1n mn m n m =⋅-+-()!1!n m n m =⋅+-1A m n m -=,11A A A m m m n n nm -+∴-=. 【名师点睛】本题主要考查排列数的计算问题,要注意A mn 中隐含了3个条件:①m ,*n ∈N ;②m n ≤;③A mn 的运算结果为正整数.在解与排列数有关的方程或不等式时,应先求出未知数的取值范围,再利用排列数公式化简方程或不等式,最后得出问题的解.注意常用变形11A A n n n n n --=,11A A A n n n n n n n ++=-(即()!1!!n n n n ⋅=+-),11A A A m m m n n n m -++=的应用.2.【答案】B【解析】方法一:把空着的2个相邻的停车位看成一个整体,即2辆不同的车可以停进4个停车场,即不同的停车方法共有:24A 4312=⨯=种.方法二:由题意,若2辆不同的车相邻,则有2222A A 4=种方法;若2辆不同的车不相邻,则利用插空法,2个相邻的停车位空着,利用捆绑法, 所以有()222222A A A 8+=种方法. 综上,共有12种方法, 所以B 选项是正确的.【名师点睛】本题考查排列、组合的综合应用,注意空位是相同的是解题的关键.分类讨论,利用捆绑法、插空法,即可得出结论. 3.【答案】C【解析】从历史、政治、化学、生物、物理5科中选2科,数量有25C 10=,所选的2科中一定有生物,则需在从历史、政治、化学、物理4科中选1科,数量有14C 4=,所以其概率为1425C 42C 105P ===. 故答案为C 项.【名师点睛】本题考查组合问题,古典概型的计算,属于简单题.先计算出从历史、政治、化学、生物、物理5科中选2科的数量,然后计算出按照两科里有生物,再选另一科的数量.最后根据古典概型的计算公式,得到答案. 4.【答案】C【解析】将5个班分成3组,有两类方法: (1)3,1,1,有35C 种;(2)2,2,1,有2253C C 2!种.所以不同的安排方法共有22335353C C C A 1502!⎛⎫+⨯= ⎪⎝⎭种.故选C.【名师点睛】本题主要考查了排列组合的实际应用问题:分组分配,注意此类问题一般要先分组再分配(即为排列),属于基础题.先将5人分成3组,3,1,1和2,2,1两种分法,再分配,应用排列组合公式列式求解即可.1.【答案】B【解析】2C 156n n =⇒=,则226A A 30n ==.故选B.【名师点睛】本题考查了排列数和组合数的计算,属于简单题. 2.【答案】C【解析】通过计算得到选项A ,B ,D 的左、右两边都是相等的.对于选项C ,A C !mm n nm =,所以选项C 是错误的.故答案为C .3.【答案】C【解析】甲、乙等五个人排成一排,要求甲和乙不能相邻, 故先安排除甲、乙外的3人,共33A 种方法,然后安排甲、乙在这3人之间的4个空里,共24A 种方法,所以不同的排法种数为3234A A 72⋅=,故选C 项.【名师点睛】本题考查排列问题,利用插空法解决不相邻问题,属于简单题.求解时,因为甲和乙不能相邻,利用插空法列出不同的排法的算式,得到答案. 4.【答案】C【解析】由题意可知,从4人中任选2人作为一个整体,共有C 42=6(种),再把这个整体与其他2人进行全排列,对应3个活动小组,有A 33=6(种)情况, 所以共有6×6=36(种)不同的报名方法. 5.【答案】B【解析】要求参赛的3人中既有男生又有女生,分为两种情况: 第一种情况:1名男生2名女生,有12106C C 种选法; 第二种情况:2名男生1名女生,有21106C C 种选法,由分类计算原理可得不同的选法有1221106106C C C C 420+=种.故选B .【名师点睛】本题考查分类计数原理和组合的应用,属于基础题. 6.【答案】D【解析】由已知,4位同学各自在周六、周日两天中任选一天参加公益活动共有4216=种不同的结果,而周六、周日都有同学参加公益活动有两类不同的情况:(1)一天一人,另一天三人,有1242C A 8=种不同的结果;(2)周六、周日各2人,有24C 6=种不同的结果,故周六、周日都有同学参加公益活动有8614+=种不同的结果, 所以周六、周日都有同学参加公益活动的概率为147168=,选D . 7.【答案】B【解析】记事件:A 小明的父亲与小明相邻,事件:B 小明的母亲与小明相邻, 对于事件A ,将小明与其父亲捆绑,形成一个元素,与其他三个元素进行排序, 则()2424A A 48n A ==,同理可得()()48n B n A ==,对于事件A B I ,将小明父母与小明三人进行捆绑,其中小明居于中间,形成一个元素,与其他两个元素进行排序,则()2323A A 12n A B ==I ,由容斥原理可知,所求的坐法种数为()()()55A 1202481236n A n B n A B --+=-⨯+=I ,故选B .【名师点睛】本题考查排列组合综合问题,考查捆绑法以及容斥原理的应用,解题时要合理利用分类讨论思想与总体淘汰法,考查逻辑推理能力,属于中等题. 8.【答案】B【解析】将12名同学平均分成四组共有33331296344C C C C A 种方案,四组分别研究四个不同课题共有44A 种方案,第一组选择一名组长有3种方案,第二组选择一名组长有3种方案,第三组选择一名组长有3种方案,第四组选择一名组长有3种方案,选取组长的方案共有34种,根据分步乘法计数原理,可知满足题目要求的种数为3333412963444C C C C A A 34=3331296C C C 34,故选B . 9.【答案】C【解析】若十万位大于4,则有553A =360⨯个; 若十万位等于4,当万位大于2时,有443A =72⨯个, 当万位等于2千位不等于0时,有333A =18⨯个, 当万位等于2千位等于0时,有222A +1=5⨯个, 则一共有360+72+18+5=455个.故选C .【名师点睛】排列组合问题中涉及满足要求的几位数的个数时候,采用分类讨论比较方便,能精准的将满足要求的每类数利用排列数、组合数计算出来. 10.【答案】C【解析】分3步进行:①歌曲节目排在首尾,有A 22=2种排法.②将2个小品节目安排在歌曲节目的中间,有A 22=2种排法. ③排好后,2个小品节目与2个歌曲节目之间有3个空位,将2个舞蹈节目全排列,安排在中间的3个空位,有A 22A 31=6种排法,则这6个节目出场的不同编排种数为2×2×6=24,故选C . 11.【答案】C【解析】设抽取x 件,次品全部检出的概率为222810C C 0.6C x x->,化简得()154x x ->,代入选项验证可知,当8x =时,符合题意,故选C .【名师点睛】本小题主要考查古典概型概率计算,考查组合数的计算,属于基础题. 12.【答案】40【解析】除A ,B ,C 3个节目外,还有7个位置,共可形成6个空,从6个空中选3个位置安排3个节目,有C 63种方法,又A 在中间,所以B ,C 有A 22种方法,所以总的排法有C 63A 22=40种.13.【答案】33【解析】由组合数的性质得出2688C C =,不考虑任何限制条件下不同点的个数为113233C C A 36=, 由于2688C C =,坐标中同时含28C 和68C 的点的个数为13C 3=,综上所述:所求点的个数为36333-=,故答案为33.【名师点睛】本题考查排列组合思想的应用,常用的就是分类讨论和分步骤处理,本题中利用总体淘汰法,可简化分类讨论,考查分析问题和解决问题的能力,属于中等题. 14.【答案】96【解析】由题意知,第一步涂DA 有四种方法;第二步涂DB 有三种方法;第三步涂DC 有两种方法;第四步涂AB ,若AB 与DC 相同,则一种涂法,第五步可分两种情况,若BC 与AD 相同,最后一步涂AC 有两种涂法,若BC 与AD 不同,最后一步涂AC 有一种涂法.若第四步涂AB ,AB 与CD 不同,则AB 涂第四种颜色,此时BC ,AC 只有一种涂法.综上,总的涂法种数是4×3×2×[1×(2+1)+1×1]=96. 15.【答案】24【解析】甲、乙两件工艺品的摆放方法有A 22种,丙、丁与剩余的两件工艺品的摆放方法有A 22A 33种,由分步乘法计数原理可知,不同的摆放方法有A 22A 22A 33=24种.16.【答案】1360【解析】由题意,对六艺“礼、乐、射、御、书、数”进行全排列,基本事件的总数为66A 720=种, 满足“数”必须排在前两节,“礼”和“乐”必须分开安排包含的基本事件个数:当第一节是“数”,共有3234A A 72=种不同的排法; 当第二节是“数”,共有51235323A C A A 84-=种不同的排法,所以满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为72841372060P +==. 【名师点睛】本题主要考查了排列、组合的综合应用,以及古典概型及其概率的计算问题,其中解答中合理分类求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 17.【解析】(1)偶数在末尾,五位偶数共有23413442C C A A =576个.(2)五位数中,偶数排在一起的有23423442C C A A =576个.(3)两个偶数不相邻且三个奇数也不相邻的五位数有23233423C C A A =144个.【名师点睛】本题主要考查了数字的组合问题,相邻问题用捆绑,不相邻用插空,属于中档题.求解时,(1)根据先取后排的原则,从1到7的七个数字中取两个偶数和三个奇数,然后进行排列;(2)利用捆绑法把两个偶数捆绑在一起,再和另外三个奇数进行全排列;(3)利用插空法,先排两个偶数,再从两个偶数形成的3个间隔中,插入三个奇数,问题得以解决.18.【解析】(1)设男生有x 人,则21939C C 15C 28x x-=,即(1)(9)90x x x --=,解之得,6x =, 故男生有6人,女生有3人. (2)方法一:按坐座位的方法:第一步:让6名男生先从9个位置中选6个位置坐,共有69A 60480=种;第二步:余下的座位让3个女生去坐,因为要保持相对顺序不变,故只有1种选择, 故一共有604801160479⨯-=种重新站队方法. 方法二:除序法:第一步:9名学生站队共有99A 种站队方法;第二步:3名女生有33A 种站队顺序;故一共有9933A 60480A =种站队方法, 所以重新站队方法有60480160479-=种.(3)第一步:将6名男生分成3组,共有22264233C C C 15A =种; 第二步:3名女生站好队,然后将3组男生插入其中,共有3334A A 144⨯=种;第三步:3组男生中每组男生站队方法共有()322A 8=种.故一共有151********⨯⨯=种站队方法.【名师点睛】本题考查排列组合中的分类讨论,插空法、除序法等,属于中档题.求解时,(1)设男生有x 人,表示出其概率,然后得到男女生人数;(2)方法一:按坐座位的方法分步处理,先安排男生,再安排女生,方法二:对9人全排,然后对3名女生除序;(3)先对6名男生分成3组,再对3名女生全排后,将3组男生插空,每组男生全排,得到答案.19.【解析】(1)①方法一:4个小球不同,4个盒子也不同,是排列问题,恰好有一个空盒子的放法可分两步完成.第一步,先将4个小球中的2个“捆”在一起,有C 42种方法;第二步,把“捆”在一起的球与其他2个球分别放入4个盒子中的3个盒子里,有A 43种方法.所以共有C 42A 43=144(种)放法. 方法二:因为有一个盒子是空的,所以先将这4个小球分为三份,有21142122C C C A 种方法,再将这三份小球放入4个盒子中的3个盒子里,有A 43种放法,所以共有21142122C C C A ·A 43=144(种)放法. ②这里的小球是相同的,只是盒子不同,是组合问题,可分两步完成.第一步,先从4个盒子中选出3个盒子有C 43种方法; 第二步,从3个盒子中选出1个盒子放2个小球有C 31种方法. 所以共有C 43·C 31=12(种)放法. (2)分两步完成.第一步,从4个不同的小球中选1个小球,使它的编号与盒子编号相同有C 41种方法;第二步,另外3个小球与盒子编号均不同,只有2种方法.所以共有C 41·2=8(种)放法.1.【答案】A【解析】由题知,每一爻有2种情况,一重卦的6爻有62种情况,其中6爻中恰有3个阳爻的情况有36C 种情况,所以该重卦恰有3个阳爻的概率为366C 2=516,故选A . 【名师点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题. 2.【答案】C【解析】不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有C 102=45种方法,因为7+23=11+19=13+17=30,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为31=4515,选C. 3.【答案】D【解析】由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有24C 种方法,然后进行全排列,由乘法原理,不同的安排方式共有2343C A 36⨯=种. 故选D .【名师点睛】(1)解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解. 4.【答案】16【解析】根据题意,没有女生入选有C 43=4种选法,从6名学生中任意选3人有C 63=20种选法,故至少有1位女生入选,则不同的选法共有20−4=16种,故答案是16.【名师点睛】该题是一道关于组合计数的题目,并且在涉及到至多、至少问题时多采用间接法,即利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有1名女生和有两名女生分别有多少种选法,之后用加法运算求解.。

排列与组合-小题狂刷2020年高考数学(理)(含解析)

排列与组合-小题狂刷2020年高考数学(理)(含解析)

狂刷49 排列与组合1.有5 个空盒排成一排,要把红、黄两个球放入空盒中,要求一个空盒最多只能放入一个球,并且每个球左右均有空盒,则不同的放入种数为A.8B.C.6D.2.六位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有A.480种B.360 种C.240 种D.120 种3.用数字0,1,2,3,4,5 可以组成没有重复数字的四位奇数的个数是A.72B.144C.150D.1804.黄冈市有很多处风景名胜,仅4A 级景区就有10 处,某单位为了鼓励职工好好工作,准备组织5名优秀的职工到就近的三个景区:龟峰山、天堂寨、红安红色景区去旅游,若规定每人限到一处旅游,且这三个风景区中每个风景区至少安排1 人,则这5名职工的安排方法共有A.90 种B.60 种C.210 种D.150 种5.为迎接双流中学建校80周年校庆,双流区政府计划提升双流中学办学条件.区政府联合双流中学组成工作组,与某建设公司计划进行6 个重点项目的洽谈,考虑到工程时间紧迫的现状,工作组对项目洽谈的顺序提出了如下要求:重点项目甲必须排在前三位,且项目丙、丁必须排在一起,则这六个项目的不同安排方案共有A.240 种B.188种C.156种D.120 种6.某公司有五个不同部门,现有4 名在校大学生来该公司实习,要求安排到该公司的两个部门,且每部门安排两名,则不同的安排方案种数为A.40B.60C .120D .2407.已知 5 辆不同的白颜色和 3 辆不同的红颜色汽车停成一排,则白颜色汽车至少2 辆停在一起且红颜色的汽车互不相邻的停放方法有A . 1880 种B . 1440 种C .720种D .256 种8.6 个高矮互不相同的人站成两排,后排每个人都高于站在他前面的同学的概率为1B .611C .D .8 129.甲、乙、丙、丁、戊 5名学生进行投篮比赛,决出了第1至第 5名的不同名次,甲、乙两人向裁判询问成绩,裁判对甲说 : “很遗憾,你和乙都未拿到冠军 .”对乙说 : “你当然不是最差的 . ”根据裁判的回答, 5 人的名次排列不同的情况共有A . 54 种B . 108 种C .210种D .96 种10.从字母 a,b,c,d,e, f 中选出 4个字母排成一排, 其中一定要选出 a 和b ,并且它们必须相邻 (a 在 b 前面 ),共有排列方法 _________ 种.11.沿着一条笔直的公路有 9 根电线杆, 现要移除 2根,且被移除的电线杆之间至少还有 2 根电线杆被保留,则不同的移除方法有 _______ 种 .12.蚌埠市大力发展旅游产业,蚌埠龙子湖风景区、博物馆、张公山公园、花鼓灯嘉年华、禾泉农庄、 淮河闸水利风景区都是 4A 风景区,还有荆涂山风景区、大明御温泉水世界、花博园等也都是不错的 景点,小明和朋友决定利用三天时间从以上 9个景点中选择 6个景点游玩, 每个景点用半天 (上午、 下午各游玩一个景点) ,且至少选择 4 个 4A 风景区,则小明这三天的游玩有 __________________________ 种不同的安排 方式(用数字表示) .13 .有 5 名师范大学的毕业生,其中学数学的两人,学语文的两人,学英语的一人,现将这 5 名毕业生1 A .4分配到A、B、C三所学校,每所学校至少一人,若 A 校不招收同一学科的毕业生,则不同的分配方法共有B.132 种A .148 种14 .某班准备从含有甲、乙的7 名男生中选取4 人参加4×100 米接力赛,要求甲、乙两人同时参加,且他们在赛道上顺序不能相邻,则不同的排法种数是A.720 B.20C.240 D.12015.在一次抽奖活动中,一个箱子里有编号为1至10 的十个号码球(球的大小、质地完全相同,但编号不8同),里面有n 个号码为中奖号码,若从中任意取出4个小球,其中恰有1个中奖号码的概率为8,21 那么这10个小球中,中奖号码小球的个数n 为A.2 B.3C.4 D.516.两家夫妇各带一个小孩一起到动物园游玩,购票后排队依次入园,为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这 6 人的入园顺序排法种数为A .48B .36C.24 D.1217.五个同学排成一排照相,其中甲、乙两人不排两端,则不同的排法种数为A .33B .36C.40 D.4818.2019年7月1日迎来了我国建党98周年,6名老党员在这天相约来到革命圣地之一的西柏坡.6名老党员中有3名党员当年在同一个班,他们站成一排拍照留念时,要求同班的3 名党员站在一起,且满足条件的每种排法都要拍一张照片,若将照片洗出来,每张照片0.5 元(不含过塑费),且有一半的照片需要过塑,每张过塑费为0.75 元.若将这些照片平均分给每名老党员(过塑的照片也要平均分),则每名老党员需要支付的照片费为A .20.5 B.21 元C.21.5元D.22 元19 .如图,有一种游戏画板,要求参与者用六种颜色给画板涂色,这六种颜色分别为红色、黄色1、黄色2、黄色3、金色1、金色2,其中黄色1、黄色2、黄色3 是三种不同的颜色,金色1、金色2 是两种不同的颜色,要求红色不在两端,黄色1、黄色2、黄色3 有且仅有两种相邻,则不同的涂色方案有B.240 种C.144种D.288 种20 .某校从8 名教师中选派4 名同时去4 个边远地区支教(每地1 名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有A .900 种B .600 种C.300种D.150 种21.某中学连续14 年开展“走进新农村”社会实践活动,让同学们开阔视野,学以致用,展开书本以外的思考,进行课堂之外的磨练.今年该中学有四个班级到三个活动基地.每个活动基地至少分配1 个班级,则A、B 两个班级被分到不同活动基地的情况有 _________ 种.22 .已知甲盒中有红、黑、白三种颜色的球各 3 个,乙盒中有黄、黑、白三种颜色的球各2 个(两盒中每个球除颜色外都相同).从两个盒子中各取1 个球,则取出的2 个球颜色不同的概率是 _________ (结果用最简分数表示).23.【2018 年高考全国Ⅱ卷理数】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2 的偶数可以表示为两个素数的和”,如30 7 23 .在不超过30 的素数中,随机选取两个不同的数,其和等于30 的概率是11 A. B .12 1411 C. D .15 1824.【2017年高考全国Ⅱ卷理数】安排3 名志愿者完成4项工作,每人至少完成1项,每项工作由1 人完成,则不同的安排方式共有A.12 种B.18 种C.24 种25 .【2018 年高考全国Ⅰ卷理数】从2 位女生,4 位男生中选3 人参加科技比赛,且至少有1 位女生入选,则不同的选法共有_____________ 种.(用数字填写答案)26.【2018 年高考江苏卷)某兴趣小组有2名男生和3名女生,现从中任选2 名学生去参加活动,则恰好选中2 名女生的概率为 ____________ .27.【2018年高考浙江卷)从1,3,5,7,9中任取2 个数字,从0,2,4,6中任取2 个数字,一共可A .120 种D.36种以组成 ___________ 个没有重复数字的四位数.(用数字作答)28.【2017 年高考浙江卷)从6 男2女共8 名学生中选出队长1 人,副队长1 人,普通队员2 人组成4 人服务队,要求服务队中至少有1 名女生,共有 __________________ 种不同的选法.(用数字作答)29.【2017 年高考天津卷理数】用数字1,2,3,4,5,6,7,8,9 组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有__________________ 个.(用数字作答)1.有5 个空盒排成一排,要把红、黄两个球放入空盒中,要求一个空盒最多只能放入一个球,并且每个球左右均有空盒,则不同的放入种数为A.8 B.2C.6 D.4【答案】B【解析】很明显两个球只能放在第二个和第四个盒子,故不同的放入种数为A22 2 ,故选B .【名师点睛】本题主要考查排列数公式及其应用,属于基础题.求解时,首先确定放球的方法,然后利用排列数公式即可求得满足题意的放球的种数.2.六位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有A.480种B.360 种C.240 种D.120 种【答案】A【解析】因为6 位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,所以甲安排在除去开头与结尾的中间的4 个位置,有C14 个选择,剩余的元素与位置进行全排列有 A 55,所以不同的演讲次序有C14 A55 480 种.故选A .【名师点睛】本题考查排列、组合以及简单的计数原理的应用,其中遵循特殊元素优先考虑的原则是解题的关键,考查计算能力.求解本题时,直接从中间的4 个演讲的位置,选1 个给甲,其余全排列即可.3.用数字0,1,2,3,4,5 可以组成没有重复数字的四位奇数的个数是A.72 B.144C.150 D.180【答案】B【解析】根据题意,符合奇数的个位数字只能从1,3,5 中选取,组成没有重复数字的四位奇数分三步:第一步,排个位,共有 C 13 种方法;第二步,排千位,共有 C 14 种方法; 第三步,排百、十位,共有 A 24 种方法,1 1 2所以可组成 C3C 4A 4 144个四位奇数,故选 B.【名师点睛】本题主要考查简单排列组合和计数原理的应用 只能从 1,3,5 中选取;千位数字去掉个位数字选用的和 位数字 .4.黄冈市有很多处风景名胜,仅 4A 级景区就有 10 处,某单位为了鼓励职工好好工作,准备组织 5名优 秀的职工到就近的三个景区:龟峰山、天堂寨、红安红色景区去旅游,若规定每人限到一处旅游,且 这三个风景区中每个风景区至少安排 1 人,则这 5名职工的安排方法共有A .90种 C . 210 种【答案】 D解析】把 5 名优秀的职工分成三组,共两类: 3、1、 1,2、2、1,【名师点睛】本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题 .求解本题时,把 5 名优秀的职工分成三组,共两类: 3、1、1,2、 2、1,再分组分配即可求出.有关排列组合的综 合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一 定多读题才能挖掘出隐含条件 .解题过程中要首先分清 “是分类还是分步 ”、“是排列还是组合 ”,在应用 分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率 .5.为迎接双流中学建校 80周年校庆,双流区政府计划提升双流中学办学条件.区政府联合双流中学组成工作组,与某建设公司计划进行 6 个重点项目的洽谈,考虑到工程时间紧迫的现状,工作组对项目洽 谈的顺序提出了如下要求:重点项目甲必须排在前三位,且项目丙、丁必须排在一起,则这六个项目 的不同安排方案共有B .188种.求解时,根据题意,符合奇数的个位数字0 还剩下四个数字中选择,最后再排百、B .60 种 D .150 种根据分组公式共有3 1 1 2 2 1 C 5C 2C 1 C 5C 3C 1A22 A 22分组方法,共有C 53C 12C 11 A22C5A C 223C 1 A 33 150种安排方法,故选 D .A . 240 种C.156种D.120 种【答案】D【解析】第一类:当甲在第1位时,第一步,丙、丁捆绑成的整体有4 种方法,第二步,丙、丁内部排列用A 22 种方法,第三步,其他三人共A33种方法,共4A 22A33 4 2 6 48 种方法;第二类:当甲在第2 位时,第一步,丙、丁捆绑成的整体有3种方法,后面两步与第一类方法相同,共3A 22A333 2 6 36种方法;第三类:当甲在第3 位时,与第二类相同,共36种方法.总计,完成这件事的方法数为N 48 36 36 120 .故选D.【名师点睛】本小题主要考查实际问题中的方案安排种数问题,考查分类加法计数原理和分步乘法计数原理,考查捆绑法,属于基础题.求解时,根据甲在第1,2,3 这三个位置进行分类讨论,按“先排甲,再排丙丁,再排其他三个”,结合分步乘法计数原理以及分类加法计数原理求得不同安排方案.6.某公司有五个不同部门,现有4 名在校大学生来该公司实习,要求安排到该公司的两个部门,且每部门安排两名,则不同的安排方案种数为A.40 B.60C.120 D.240【答案】B【解析】此问题可分为两步求解,第一步将四名大学生分为两组,由于分法为2,2,考虑到重复一半,故分组方案应为1C24种,2第二步将此两组大学生分到5 个部门中的两个部门中,不同的安排方式有A52,故不同的安排方案有1C24A52 60种.245故选B.【名师点睛】本题考查排列组合及简单计数问题,解题的关键是理解事件“某公司共有5 个部门,有4 名大学毕业生,要安排到该公司的两个部门且每个部门安排 2 名”,将问题分为两步来求解.7.已知5 辆不同的白颜色和3 辆不同的红颜色汽车停成一排,则白颜色汽车至少2 辆停在一起且红颜色的汽车互不相邻的停放方法有A . 1880 种B . 1440 种空,3 辆不同的红颜色汽车插空共 A 33种排法, 由分步计数原理得共 A 35A 22A 22A 33 1440 种. 故选 B.【名师点睛】本题主要考查排列中的相邻与不邻问题,常用捆绑与插空法解决,应用了分步计数原 理,理解题意是解题的关键,属于中档题.求解本题时,先从 5 辆白色汽车中选 3 辆全排列后视为 一个整体, 再将剩余 2 辆白色汽车全排列后视为一个整体, 然后将这两个整体全排列, 共有 3 个空, 3 辆不同的红颜色汽车插空排列即可.8.6 个高矮互不相同的人站成两排,后排每个人都高于站在他前面的同学的概率为1B .61 D .1290 1 所以所求概率 P 6 ,故选 C . A 6 8【名师点睛】本题考查了古典概型求概率,以及排列和组合,本题的关键是满足条件的排列看成 6 个 人均分成 3 组,然后 3 组再排列 .9.甲、乙、丙、丁、戊 5名学生进行投篮比赛,决出了第1至第 5名的不同名次,甲、乙两人向裁判询问成绩,裁判对甲说 : “很遗憾,你和乙都未拿到冠军 .”对乙说 : “你当然不是最差的 . ”根据裁判的回答, 5 人的名次排列不同的情况共有A . 54 种B . 108 种C .210种D .96 种C .720种 【答案】 BD .256 种解析】由题意知,白颜色汽车按 3,2分两组,先从 5 辆白色汽车选 3辆全排列共 A 53种排法, 再将剩余 2 辆白色汽车全排列共2 A 22 种排法,再将这两个整体全排列,2 A 22 种排法,排完后有3 个A .C .答案】 C解析】后排每个人都高于站在他前面的同学的站法数为C 26C 24CA 33 90,总的基本事件个数是 A 66 ,答案】A【解析】第一名不是甲和乙,则只能是丙、丁、戊三人中某一个,有C13种选法,而乙不是最差的,则乙只可能是第二、三、四名,有C31种可能,再将剩下的三人排成一列,依次插入即可,由分步乘113法计数原理可知,共有C13C13A 33 = 54 种不同的情况.故选A.【名师点睛】本题主要考查排列、组合与简单的计数问题,解决此类问题的关键是弄清完成一件事,是分类完成还是分步完成,是有顺序还是没有顺序,像这种特殊元素与特殊位置的要优先考虑.求解本题时,甲、乙不是第一名且乙不是最后一名,乙的限制最多,故先排乙,有3 种情况;再排甲,也有3 种情况;余下的问题是三个元素在三个位置全排列,根据分步计数原理得到结果.10.从字母a,b,c,d,e, f 中选出4个字母排成一排,其中一定要选出 a 和b ,并且它们必须相邻(a在b前面),共有排列方法 _________ 种.【答案】36【解析】由于ab已经选出,故再从剩余的4 个字母中选取2 个,方法有C24 6 种,再将这2 个字母和整体ab 进行排列,方法有A33 6种,根据分步计数原理求得所有的排列方法共有6 636 种,故答案为36.【名师点睛】本题主要考查排列与组合及两个基本原理的应用,属于中档题.求解时,从剩余的4 个字母中选取2个,再将这2 个字母和整体ab进行排列,根据分步计数原理求得结果.11.沿着一条笔直的公路有9 根电线杆,现要移除2根,且被移除的电线杆之间至少还有2 根电线杆被保留,则不同的移除方法有 _______ 种.【答案】21【解析】把6 根电线杆放好,7 个空,选择两个放入需要移除的电线杆,这样这两根需要移除的电线杆中间至少有一根,然后再把余下一根放到这两根中间去,所以有C27 21 种方法,故答案为21.【名师点睛】本题考查了排列组合在实际生活中的应用,意在考查灵活应用所学知识解决实际问题的能力,属于中档题.求解本题时,把6 根电线杆放好,7 个空选择两个放入需要移除的电线杆,这样这两根需要移除的电线杆中间至少有一根,然后再把余下一根放到这两根中间去,问题得以解决.12.蚌埠市大力发展旅游产业,蚌埠龙子湖风景区、博物馆、张公山公园、花鼓灯嘉年华、禾泉农庄、 淮河闸水利风景区都是 4A 风景区,还有荆涂山风景区、大明御温泉水世界、花博园等也都是不错的 景点,小明和朋友决定利用三天时间从以上 9个景点中选择 6个景点游玩, 每个景点用半天 (上午、 下午各游玩一个景点) ,且至少选择 4 个 4A 风景区,则小明这三天的游玩有 __________________________ 种不同的安排 方式(用数字表示) .【答案】 46080 【解析】分三种情况:①选择 4 个 4A 景区,有 C 64C 32A 6632400 (种); ②选择 5 个 4A 景区,有 C 56C 13A 66 12960 (种 ); ③选择 6 个 4A 景区,有 C 66A 66 720 (种), 故共有 32400+12960+720=46080 (种 ).名师点睛】本题考查排列组合,要做到不重复、不遗漏,属于基础题 .求解时,先选景区,再进行排列,即可得出答案 .13 .有 5 名师范大学的毕业生,其中学数学的两人,学语文的两人,学英语的一人,现将这【解析】 A 校招收 1 人,则分配方法有 2A 校招收 2 人,则分配方法有 (C 5211A 校招收 3 人,则分配方法有 (1 C 12综上,共有 70 48 8 126 种,故选 C . 【名师点睛】本题考查分组分配计数问题,考查综合分析求解能力,属较难题.求解时,根据 A 校招收人数分类讨论,再根据分类计数原理求解 .14 .某班准备从含有甲、乙的 7 名男生中选取 4 人参加 4×100 米接力赛,要求甲、乙两人同时参加,且5 名毕业生法共有A . 148 种BC .126种D【答案】 CA 校不招收同一学科的毕业生,则不同的分配方 132 种 84 种C 15 (C 14A 22 C 24) 70 种;1)C 3A 2 48 种; C 12)A 22 8种.分配到 A 、B 、C 三所学校,每所学校至少一人,若他们在赛道上顺序不能相邻,则不同的排法种数是A .720 C .240【答案】 D解析】选出除了甲、乙之外的另外两个人并进行排列有 A 52 种,将甲、乙插入这两个人之间 A 23 种,则不同的排法种数为 A 25A 32120. 故选 D.名师点睛】相离问题插空法:对于不能相邻的元素,可以先将其他元素排好,再将所指定的不相邻 的元素插到它们的空隙及两端位置 .求解本题时,利用插空法,先选出除了甲、然后将甲、乙插入这两个人之间的空隙中,进而可以得到答案n (10﹣n )(9﹣n )(8﹣n )= 480( n ∈N *),解得 n =4.【名师点睛】本题考查了古典概型的概率公式的应用,考查了计数原理及组合式公式的运算,属于 中档题.求解时,利用古典概型列出恰有 1 个中奖号码的概率的方程,解方程即可. (2)排列组合一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题 缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法 .16.两家夫妇各带一个小孩一起到动物园游玩,购票后排队依次入园,为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这 6 人的入园顺序排法种数为A . 48B . 20 D . 120乙之外的另外两个人,15.在一次抽奖活动中,一个箱子里有编号为 1至10 的十个号码球(球的大小、 质地完全相同,但编号不 同),里面有 n 个号码为中奖号码,若从中任意取出 4 个小球, 其中恰有 81个中奖号码的概率为 ,21那么这 10个小球中,中奖号码小球的个数 n 为A .2B .C .4D .答案】 C解析】依题意,从 10 个小球中任意取出 4 个小球,其中恰有1 个中奖号码的概率为 8 ,则21821C 1n C 130 n ,C 140 ,所以 故选 C .B . 36C .24D . 1214【答案】 C【解析】先排首尾有 2 种,然后将两个小孩捆绑起来共有 2 种,那么再将小孩这个新的整体和妈妈 们排列共有 A 33种,因此一共有 4A 33=24 种,故选 C.17.五个同学排成一排照相,其中甲、乙两人不排两端,则不同的排法种数为A . 33B . 36C .40D . 48【答案】 B【解析】由题意,先从剩余的三人中选取两人,排在队伍的两端, 再排含有甲、乙的三个人,共有 C 32A22A 33 3 2 6 36种不同的排法,故选B .【名师点睛】本题主要考查分类计数原理与分步计数原理及排列组合的应用,有关排列组合的综合 问题,往往是两个原理及排列组合问题交叉应用才能解决问题,现从剩余的三人中选取两人,排在 队伍的两端,再排含有甲、乙的三个人,即可得到答案.解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清 “是分类还 是分步 ”、 “是排列还是组合 ”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏, 这样才能提高准确率.在某些特定问题上,也可充分考虑 “正难则反 ”的思维方式.18. 2019年 7月 1日迎来了我国建党 98周年, 6名老党员在这天相约来到革命圣地之一的西柏坡 .6名老党员中有 3 名党员当年在同一个班,他们站成一排拍照留念时,要求同班的 满足条件的每种排法都要拍一张照片,若将照片洗出来,每张照片 0.5 元(不含过塑费) ,且有一半 的照片需要过塑, 每张过塑费为 0.75 元.若将这些照片平均分给每名老党员 (过塑的照片也要平均分) 则每名老党员需要支付的照片费为A . 20.5C . 21.5元 【答案】 B 解析】利用捆绑法可求得照片的总数为 A 33A 44 144,144 0.5 72 0.75 则每名老党员需要支付的照片费为144 0.5 72 0.7521元 .6【名师点睛】本题考查排列组合的应用,考查应用意识与解决实际问题的能力党员需要支付的照片费用,需求出照片的总费用,为此又需求出照片的总数,根据排列组合知识可3 名党员站在一起,且B . 21 元D . 22 元.求解时,要求每名老同选法;法,所以不同的选派方案共有 (10+15) A 44 600 种.求出照片的总数.19.如图,有一种游戏画板,要求参与者用六种颜色给画板涂色,这六种颜色分别为红色、黄色1、黄色2、黄色3、金色 1、金色 2,其中黄色 1、黄色 2、黄色 3 是三种不同的颜色,金色 1、金色 2 是两种不同的颜色,要求红色不在两端,黄色 1、黄色 2、黄色 3 有且仅有两种相邻,则不同的涂色方案A . 120 种 C .144种答案】 D解析】不考虑红色的位置,黄色 1、黄色 2、黄色 3 有且仅有两个相邻的涂色方案有2 23 2C 3A 2 A 3 A 4 432 种,这种情况下,红色在左右两端的涂色方案有2 2 1 2 2C 32A 22 C 12 A 22 A 23 144种,从而所求的结果为 432 144 288 种. 故选 D .名师点睛】本小题主要考查涂色问题,考查相邻问题、不在两端的排列组合问题的求解策略,考 查对立事件的方法,属于中档题 .求解时,首先计算出 “黄色 1、黄色 2、黄色 3 有且仅有两个相邻的 涂色方案 ”数,然后计算出 “红色在左右两端,黄色 1、黄色 2、 黄色 3 有且仅有两个相邻的涂色方案 ” 数,用前者减去后者,求得题目所求不同的涂色方案总数20 .某校从 8 名教师中选派 4 名同时去 4 个边远地区支教(每地名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有A . 900 种B .600 种C .300种D .150 种答案】解析】 第一类,甲去,则丙一定去,乙一定不去,再从剩余的5 名教师中选 2 名,有 C 52 10 种不第二类, 甲不去,则丙一定不去,乙可能去也可能不去,从6 名教师中选 4 名,有 C 64 15 种不同选D .288种故选B.【名师点睛】求解本题时,分两步进行,先从8 名教师中选出4 名,因为甲和乙不同去,甲和丙只能同去或同不去,所以可按选甲和不选甲分成两类,由分类计数原理可得这一步的情况数目,再把四名老师分配去4 个边远地区支教,对四名教师进行全排列即可,最后,由分步计数原理,计算可得答案.(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.21.某中学连续14 年开展“走进新农村”社会实践活动,让同学们开阔视野,学以致用,展开书本以外的思考,进行课堂之外的磨练.今年该中学有四个班级到三个活动基地.每个活动基地至少分配1 个班级,则A、B 两个班级被分到不同活动基地的情况有 _________ 种.【答案】30【解析】根据题意,分2 步进行分析:(1)将四个班级分成3组,要求A,B 两个班级不分到同一组,有C42 1 5种分组方法;3(2)将分好的三组全排列,安排到三个活动基地,有A33 6种情况,则有5 6 30种不同的情况,故填30.【名师点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.22 .已知甲盒中有红、黑、白三种颜色的球各 3 个,乙盒中有黄、黑、白三种颜色的球各 2 个(两盒中每个球除颜色外都相同).从两个盒子中各取1 个球,则取出的2 个球颜色不同的概率是 _________ (结果用最简分数表示).【答案】79【解析】甲盒中有红、黑、白三种颜色的球各3 个,乙盒中有黄、黑、白三种颜色的球各 2 个(两盒中每个球除颜色外都相同).从两个盒子中各取1 个球,基本事件总数n 9 6 54 ,取出的2 个球颜色不同包含的基本事件个数m C13C16C13C14C13C1442 ,则取出的2个球颜色不同的概率是P m 42 7.。

高中数学同步课时跟踪检测《排列与组合》

高中数学同步课时跟踪检测《排列与组合》

课时跟踪检测(五十九) 排列与组合1.若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4,5,6这六个数字中任取3个数,组成无重复数字的三位数,其中“伞数”有() A.120个B.80个C.40个D.20个2.甲乙两人从4门课程中各选2门,则甲乙所选的课程中至少有1门不相同的选法共有()A.6种B.12种C.30种D.36种3.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为() A.3×3! B.3×(3!)3C.(3!)4D.9!4.在制作飞机的某一零件时,要先后实施6个工序,其中工序A只能出现在第一步或最后一步,工序B和C在实施时必须相邻,则实施顺序的编排方法共有() A.34种B.48种C.96种D.144种5.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有() A.36种B.48种C.72种D.96种6.“2 012”含有数字0,1,2且有两个数字2.则含有数字0,1,2,且有两个相同数字的四位数的个数为()A.18 B.24C.27 D.367.某工厂将甲、乙等五名新招聘员工分配到三个不同的车间,每个车间至少分配一名员工,且甲、乙两名员工必须分到同一个车间,则不同分法的种数为________.8.某国家代表队要从6名短跑运动员中选4人参加亚运会4×100 m接力,如果其中甲不能跑第一棒,乙不能跑第四棒,共有________种参赛方法.9.某班同学在今年春节写了一幅共勉的对联,他们将对联定成如下形状:则从上而下连读成“龙腾虎跃今胜昔,你追我赶齐争雄”(上、下两字应紧连,如第二行的第一个“腾”字可与第三行的第一或第二个“虎”字连读,但不能与第三行的第三个“虎”字相连),共有________种不同的连读方式(用数字作答).10.2011年深圳世界大学生运动会火炬传递在A、B、C、D、E、F六个城市之间进行,以A为起点,F为终点,B与C必须接连传递,E必须在D的前面传递,且每个城市只经过一次,那么火炬传递的不同路线共有多少种?11.某运输公司有7个车队,每个车队的车辆均多于4辆.现从这个公司中抽调10辆车,并且每个车队至少抽调1辆,那么共有多少种不同的抽调方法?12.3名男生,4名女生,按照不同的要求排队,求不同的排队方案的方法种数:(1)选其中5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体站成一排,男、女各站在一起;(4)全体站成一排,男生不能站在一起;(5)全体站成一排,甲不站排头也不站排尾.1.在具有5个行政区域的地图(如图)上,给这5个区域着色共使用了4种不同的颜色,相邻区域不使用同一颜色,则有________种不同的着色方法.2.回文数是指从左到右读与从右到左读都一样的正整数,如22,121,3 443,94 249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则(1)4位回文数有________个;(2)2n+1(n∈N+)位回文数有________个.3.按照下列要求,分别求有多少种不同的方法?(1)6个不同的小球放入4个不同的盒子;(2)6个不同的小球放入4个不同的盒子,每个盒子至少一个小球;(3)6个相同的小球放入4个不同的盒子,每个盒子至少一个小球.[答题栏]答案课时跟踪检测(五十九)A级1.选C任选3个数,其中最大的数字作十位数,其余2个数作个位和百位再排列,所以有C36A22=40(个).2.选C法一:(直接法):至少有1门不相同有两种情况:①2门不同有C24=6种;②1门不同有C14C13C12=24种.由分类加法计数原理共有6+24=30种.法二:(间接法)由总的选法减去都相同情况,所以有C24C24-C24=30(种).3.选C利用“捆绑法”求解.满足题意的坐法种数为A33(A33)3=(3!)4.4.选C先将BC看作一个整体与A以外的三个元素全排列,有A22A44种排法,再从两端的位置中选一个排A,有A12种选法,则编排方法共有A22·A44·A12=96(种).5.选C恰有两个空位相邻,相当于两个空位与第三个空位不相邻,先将三人排列,然后插空.从而共A33·A24=72种排坐法.6.选B依题意,就所含的两个相同数字是否为0进行分类计数:第一类,所含的两个相同数字是0,则满足题意的四位数的个数为C23A22=6;第二类,所含的两个相同数字不是0,则满足题意的四位数的个数为C12·C13·C13=18.由分类加法计数原理得,满足题意的四位数的个数为6+18=24.7.若甲、乙分到的车间不再分人,则分法有C13×A22×C13=18种;若甲、乙分到的车间再分一人,则分法有3×A22×C13=18种.所以满足题意的分法共有18+18=36(种).答案:368.解析:①若甲、乙均不参赛,则有A44=24种参赛方法;②若甲、乙有且只有一人参赛,则有C12·C34(A44-A33)=144(种);③若甲、乙两人均参赛,则有C24(A44-2A33+A22)=84(种),故一共有24+144+84=252种参赛方法.答案:2529.解析:依题意及分步乘法计数原理可知,从上而下连读方式共有C24·C12·C36=240种.答案:24010.解:因B 与C 必须相邻,故把它们捆绑在一起视为一个整体元素B ′,则B ′、D 、E 不同的排列方式有A 33种,因E 必须在D 的前面传递,所以不同的排列方式有A 332种.又B与C 的排列方式有A 22种,从而不同的排列方式有A 332×A 22=6种.11.解:法一:(分类法)在每个车队抽调1辆车的基础上,还需抽调3辆车.可分成三类:一类是从某1个车队抽调3辆,有C 17种;一类是从2个车队中抽调,其中1个车队抽调1辆,另1个车队抽调2辆,有A 27种;一类是从3个车队中各抽调1辆,有C 37种.故共有C 17+A 27+C 37=84(种)抽调方法.法二:(隔板法)由于每个车队的车辆均多于4辆,只需将10个份额分成7份.可将10个小球排成一排,在相互之间的9个空当中插入6个隔板,即可将小球分成7份.按顺序分别对应车队应抽调车辆数.故共有C 69=84(种)抽调方法.12.解:(1)问题即为从7个元素中选出5个全排列,有A 57=2 520种排法. (2)前排3人,后排4人,相当于排成一排,共有A 77=5 040种排法.(3)相邻问题(捆绑法):男生必须站在一起,是男生的全排列,有A 33种排法;女生必须站在一起,是女生的全排列,有A 44种排法;全体男生、女生各视为一个元素,有A 22种排法,由分步乘法计数原理知, 共有N =A 33·A 44·A 22=288种.(4)不相邻问题(插空法):先安排女生共有A 44种排法,男生在4个女生隔成的五个空中安排共有A 35种排法,故N =A 44·A 35=1 440种.(5)先安排甲,从除去排头和排尾的5个位中安排甲,有A 15=5种排法;再安排其他人,有A 66=720种排法.所以共有A 15·A 66=3 600种排法.B 级1.解析:已知一共使用了4种不同的颜色,因为有5块区域,故必有2块区域的颜色相同.分成两类情况进行讨论:若1,5块区域颜色相同,则有C 14C 13C 12=24种不同的着色方法;若2,4块区域颜色相同,同理也有24种不同的着色方法.故共有48种不同的着色方法.答案:482.解析:2位回文数有9个,4位回文数有9×10=90个,3位回文数有90个,5位回文数有9×10×10=100×9个,依次类推可得2n +1位有9×10n 个.答案:90 9×10n3.解:(1)每个小球都有4种方法,根据分步乘法计数原理共有46=4 096种不同方法. (2)分两类:第1类,6个小球分3,1,1,1放入盒中;第2类,6个小球分2,2,1,1放入盒中,共有C 36·C 14·A 33+C 26·C 24·A 24=1 560种不同放法.(3)法一:按3,1,1,1放入有C 14种方法,按2,2,1,1,放入有C 24种方法,共有C 14+C 24=10种不同放法.法二:(挡板法)在6个球之间的5个空中任选三空隔开,共有C 35=10种不同方法.。

课时跟踪检测(五十六) 排列与组合(一般高中)

课时跟踪检测(五十六) 排列与组合(一般高中)

课时跟踪检测(五十六)排列与组合(一)一般高中适用作业A级——基础小题练熟练快1.将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,那么不同的排列方式共有( )A.12种B.18种C.24种D.36种解析:选A 先排第一列,有A33种方式,再排第二列,有2种方式,故共有A33×2=12种排列方式.2.有5本不同的教科书,其中语文书2本,数学书2本,物理书1本.假设将其并排摆放在书架的同一层上,那么同一科目书都不相邻的放法种数是( )A.24 B.48C.72 D.96解析:选B 据题意可先摆放2本语文书,当1本物理书在2本语文书之间时,只需将2本数学书插在前3本书形成的4个空中即可,现在共有A22A24种摆放方式;当1本物理书放在2本语文书一侧时,共有A22A12C12C13种不同的摆放方式,由分类加法计数原理可得共有A22A24+A22A12C12C13=48种摆放方式.3.(2018·昆明两区七校调研)某校从8名教师当选派4名同时去4个边远地域支教(每地1名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,那么不同的选派方案有( )A.900种B.600种C.300种D.150种解析:选B 依题意,就甲是不是去支教进行分类计数:第一类,甲去支教,那么乙不去支教,且丙也去支教,那么知足题意的选派方案有C25·A44=240(种);第二类,甲不去支教,且丙也不去支教,那么知足题意的选派方案有A46=360(种),因此,知足题意的选派方案共有240+360=600(种),选B.4.将甲、乙等5名交警分派到三个不同路口疏导交通,每一个路口至少一人,那么甲、乙在同一路口的分派方案共有( )A.18种B.24种C.36种D.72种解析:选C 不同的分派方案可分为以下两种情形:①甲、乙两人在一个路口,其余三人分派在另外的两个路口,其不同的分派方案有C23A33=18(种);②甲、乙所在路口分派三人,另外两个路口各分派一个人,其不同的分派方案有C 13A 33=18(种).由分类加法计数原理可知不同的分派方案共有18+18=36(种).5.(2018·武汉调研)三对夫妻站成一排照相,那么仅有一对夫妻相邻的站法总数是( ) A .72 B .144 C .240D .288解析:选D 第一步,先选一对夫妻使之相邻,捆绑在一路看做一个复合元素A ,有C 13A 22=6种排法;第二步,再选一对夫妻,从剩下的那对夫妻当选择一个插入到刚选的夫妻中,把这三个人捆绑在一路看做另一个复合元素B ,有C 12A 22C 12=8种排法;第三步,将复合元素A ,B 和剩下的那对夫妻中剩下的那一个进行全排列,有A 33=6种排法,由分步计数原理,知三对夫妻排成一排照相,仅有一对夫妻相邻的排法有6×8×6=288(种),应选D.6.(2018·郑州质量预测)将数字“124467”从头排列后取得不同的偶数的个数为( ) A .72 B .120 C .192D .240解析:选D 将数字“124467”从头排列后所得数字为偶数,那么末位数应为偶数.(1)假设末位数字为2,因为其他位数上含有2个4,因此有5×4×3×2×12=60种情形;(2)假设末位数字为6,同理有5×4×3×2×12=60种情形;(3)假设末位数字为4,因为其他位数上只含有1个4,因此共有5×4×3×2×1=120种情形.综上,共有60+60+120=240种情形.7.(2018·昆明质检)某小区一号楼共有7层,每层只有1家住户,已知任意相邻两层楼的住户在同一天最多一家有快递,且任意相邻三层楼的住户在同一天至少一家有快递,那么在同一天这7家住户有无快递的可能情形共有________种.解析:分三类:(1)同一天2家有快递:可能是2层和5层、3层和5层、3层和6层,共3种情形;(2)同一天3家有快递:考虑将有快递的3家插入没有快递的4家形成的空位中,有C 35种插入法,但需减去1层、3层与7层有快递,1层、5层与7层有快递这两种情形,因此有C 35-2=8种情形;(3)同一天4家有快递:只有1层、3层、5层、7层有快递这一种情形.依照分类加法计数原理可知,同一天7家住户有无快递的可能情形共有3+8+1=12种.答案:128.现有2个红球、3个黄球、4个白球,同色球不加区分,将这9个球排成一列,有________种不同的方式.(用数字作答).解析:第一步,从9个位置当选出2个位置,分给相同的红球,有C29种选法;第二步,从剩余的7个位置当选出3个位置,分给相同的黄球,有C37种选法;第三步,剩下的4个位置全数分给4个白球,有1种选法.依照分步乘法计数原理可得,排列方式共有C29C37=1 260(种).答案:1 2609.在高三某班进行的演讲竞赛中,共有5位选手参加,其中3位女生,2位男生,若是2位男生不能持续出场,且女生甲不能排第一个,那么出场的顺序的排法种数为________.解析:不相邻问题插空法.2位男生不能持续出场的排法共有N1=A33×A24=72(种),女生甲排第一个且2位男生不持续出场的排法共有N2=A22×A23=12(种),因此出场顺序的排法种数为N=N1-N2=60.答案:6010.把座位编号为1,2,3,4,5的五张电影票全数分给甲、乙、丙、丁四个人,每人至少一张,最多两张,且分得的两张票必需是连号,那么不同的分法种数为________(用数字作答).解析:先将票分为符合条件的4份,由题意,4人分5张票,且每人至少一张,最多两张,那么三人每人一张,一人2张,且分得的票必需是连号,相当于将1,2,3,4,5这五个数用3个板子隔开,分为四部份且不存在三连号.在4个空位插3个板子,共有C34=4种情形,再对应到4个人,有A44=24种情形,那么共有4×24=96种情形.答案:96B级——中档题目练通抓牢1.现有2门不同的考试要安排在5天之内进行,天天最多进行一门考试,且不能持续两天有考试,那么不同的考试安排方案种数是( )A.12 B.6C.8 D.16解析:选A 假设第一门安排在开头或结尾,那么第二门有3种安排方式,这时,共有C12×3=6种方式;假设第一门安排在中间的3天中,那么第二门有2种安排方式,这时,共有3×2=6种方式.综上可得,不同的考试安排方案共有6+6=12种.2.A,B,C,D,E,F六人围坐在一张圆桌周围开会,A是会议的中心发言人,必需坐在最北面的椅子上,B,C二人必需坐相邻的两把椅子,其余三人坐剩余的三把椅子,那么不同的座次有( ) A.60种B.48种C.30种D.24种解析:选B 由题知,可先将B,C二人看做一个整体,再与剩余人进行排列,那么不同的座次有A22A44=48种.3.有5列火车别离预备停在某车站并行的5条轨道上,假设快车A不能停在第3道上,货车B不能停在第1道上,那么5列火车不同的停泊方式数为( )A.56 B.63C.72 D.78解析:选D 假设没有限制,5列火车能够随意停,那么有A55种不同的停泊方式;快车A停在第3道上,那么5列火车不同的停泊方式为A44种;货车B停在第1道上,那么5列火车不同的停泊方式为A44种;快车A 停在第3道上,且货车B停在第1道上,那么5列火车不同的停泊方式为A33种.故符合要求的5列火车不同的停泊方式数为A55-2A44+A33=120-48+6=78.4.如图,∠MON的边OM上有四点A1,A2,A3,A4,ON上有三点B1,B2,B3,那么以O,A1,A2,A3,A4,B1,B2,B3为极点的三角形个数为________.解析:用间接法.先从这8个点中任取3个点,最多组成三角形C38个,再减去三点共线的情形即可.共有C38-C35-C34=42(个).答案:425.4位同窗参加某种形式的竞赛,竞赛规那么规定:选甲题答对得100分,答错得-100分,选乙题答对得90分,答错得-90分,假设4位同窗的总分为0分,那么这4位同窗不同得分情形的种数是________.解析:由于4位同窗的总分为0分,故4位同窗选甲、乙题的人数有且只有三种情形:①甲:4人,乙:0人;②甲:2人,乙:2人;③甲:0人,乙:4人.关于①,需2人答对,2人答错,共有C24=6种情形;关于②,选甲题的需1人答对,1人答错,选乙题的也如此,有C24C12C12=24种情形;关于③,与①相同,有6种情形,故共有6+24+6=36种不同的得分情形.答案:366.有5个男生和3个女生,从当选出5人担任5门不同窗科的科代表,求别离符合以下条件的选法数:(1)有女生但人数必需少于男生;(2)某女生必然担任语文科代表;(3)某男生必需包括在内,但不担任数学科代表;(4)某女生必然要担任语文科代表,某男生必需担任科代表,但不担任数学科代表.解:(1)先选后排,能够是2女3男,也能够是1女4男,先选有C35C23+C45C13种情形,后排有A55种情形,那么符合条件的选法数为(C35C23+C45C13)·A55=5 400.(2)除去该女生后,先选后排,那么符合条件的选法数为C47·A44=840.(3)先选后排,但先安排该男生,那么符合条件的选法数为C47·C14·A44=3 360.(4)先从除去该男生该女生的6人当选3人有C36种情形,再安排该男生有C13种情形,选出的3人全排有A33种情形,那么符合条件的选法数为C36·C13·A33=360.7.用0,1,2,3,4这五个数字,能够组成多少个知足以下条件的没有重复数字的五位数?(1)比21 034大的偶数;(2)左起第二、四位是奇数的偶数.解:(1)可分五类,当末位数字是0,而首位数字是2时,有6个五位数;当末位数字是0,而首位数字是3或4时,有C12A33=12个五位数;当末位数字是2,而首位数字是3或4时,有C12A33=12个五位数;当末位数字是4,而首位数字是2时,有3个五位数;当末位数字是4,而首位数字是3时,有A33=6个五位数;故共有6+12+12+3+6=39个知足条件的五位数.(2)可分为两类:末位数是0,个数有A22·A22=4;末位数是2或4,个数有A22·C12=4;故共有4+4=8个知足条件的五位数.。

2019-2020学年高中数学课时跟踪检测三排列与排列数公式新人教A版选修29

2019-2020学年高中数学课时跟踪检测三排列与排列数公式新人教A版选修29

课时跟踪检测三一、题组对点训练 对点练一 排列概念的理解 1.下列问题是排列问题的是( )A .从10名同学中选取2名去参加知识竞赛,共有多少种不同的选取方法?B .10个人互相通信一次,共写了多少封信?C .平面上有5个点,任意三点不共线,这5个点最多可确定多少条直线?D .从1,2,3,4四个数字中,任选两个相加,其结果共有多少种?解析:选B 排列问题是与顺序有关的问题,四个选项中只有B 中的问题是与顺序相关的,其他问题都与顺序无关,所以选B.2.从3个不同的数字中取出2个:①相加;②相减;③相乘;④相除;⑤一个为被开方数,一个为根指数.则上述问题为排列问题的个数为( )A .2B .3C .4D .5解析:选B 排列与顺序有关,故②④⑤是排列. 对点练二 利用排列数公式进行计算或证明 3.已知A 2n =132,则n 等于( ) A .11 B .12 C .13D .14解析:选B A 2n =n (n -1)=132,即n 2-n -132=0, 解得n =12或n =-11(舍去). 4.A 312-A 310的值是( ) A .480 B .520 C .600D .1 320解析:选C A 312=12×11×10=1 320, A 310=10×9×8=720, 故A 312-A 310=1 320-720=600. 5.下列等式中不成立的是( ) A .A 3n =(n -2)A 2n B.1nA n n +1=A n -1n +1C .n A n -2n -1=A nn D.nn -mA m n -1=A mn解析:选B A 中,右边=(n -2)(n -1)n =A 3n 成立;C 中,左边=n ×(n -1)×…×2=n ×(n -1)×(n -2)×…×2×1=A nn 成立;D 中,左边=nn -m ×(n -1)!(n -m -1)!=n !(n -m )!=A mn 成立;经验证只有B 不正确.6.计算下列各题: (1)A 66;(2)2A 58+7A 48A 88-A 59;(3)若3A 3n =2A 2n +1+6A 2n ,求n .解:(1)A 66=6!=6×5×4×3×2×1=720.(2)2A 58+7A 48A 88-A 59=2×8×7×6×5×4+7×8×7×6×58×7×6×5×4×3×2×1-9×8×7×6×5=1.(3)由3A 3n =2A 2n +1+6A 2n ,得3n (n -1)(n -2)=2(n +1)n +6n (n -1). 因为n ≥3且n ∈N *, 所以3n 2-17n +10=0. 解得n =5或n =23(舍去).所以n =5.对点练三 简单的排列问题7.若从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四种不同工作,则选派方案共有( )A .180种B .360种C .15种D .30种解析:选B 问题为6选4的排列即A 46=360.8.由数字1,2,3,4,5组成无重复数字的四位偶数的个数是( ) A .12 B .24 C .36D .48解析:选D 从2,4中取一个数作为个位数字,有2种取法,再从其余四个数中取出三个数排在前三位,有A 34种,由分步乘法计数原理知组成无重复数字的四位偶数的个数为2×A 34=48.9.沪宁高铁线上有六个大站:上海、苏州、无锡、常州、镇江、南京,铁路部门应为沪宁线上的六个大站(这六个大站之间)准备的不同的火车票的种数为( )A .15B .30C .12D .36解析:选B 只需分析每两个大站之间需要的火车票的种数即可.对于两个大站A 和B ,从A 到B 的火车票与从B 到A 的火车票不同,因为每张车票对应一个起点站和一个终点站,因此,每张火车票对应从6个不同元素(大站)中取出2个不同元素(起点站和终点站)的一种排列,所以问题归结为求从6个不同元素中每次抽出2个不同元素的排列数,故不同的火车票有A26=6×5=30(种).10.将A、B、C、D四名同学按一定顺序排成一行,要求自左向右,且A不排在第一,B 不排在第二,C不排在第三,D不排在第四.试写出他们四人所有不同的排法.解:由于A不排在第一,所以第一只能排B、C、D中的一个,据此可分为三类.由此可写出所有的排法为:BADC,BCDA,BDAC,CADB,CDAB,CDBA,DABC,DCAB,DCBA.11.某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信号,则一共可以表示多少种不同的信号?解:第1类,挂1面旗表示信号,有A13种不同方法;第2类,挂2面旗表示信号,有A23种不同方法;第3类,挂3面旗表示信号,有A33种不同方法.根据分类加法计数原理,可以表示的信号种数为A13+A23+A33=3+3×2+3×2×1=15.二、综合过关训练1.89×90×91×…×100可表示为( )A.A10100B.A11100C.A12100D.A13100解析:选C 最大数为100,共有12个连续整数的乘积,由排列数公式的定义可以得出.2.与A310·A77不相等的是( )A.A910B.81A88C.10A99D.A1010解析:选B A310·A77=10×9×8×7!=A910=10A99=A1010,81A88=9A99≠A1010,故选B.3.有5名同学被安排在周一至周五值日,已知同学甲只能在周一值日,那么5名同学值日顺序的编排方案共有( )A.12种B.24种C.48种D.120种解析:选B ∵同学甲只能在周一值日,∴除同学甲外的4名同学将在周二至周五值日,∴5名同学值日顺序的编排方案共有A44=24(种).4.若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从2,3,4,5,6,9这六个数字中任取3个数,组成无重复数字的三位数,其中“伞数”有( ) A.120个B.80个C.40个D.20个解析:选C 由题意知可按十位数字的取值进行分类:第一类,十位数字取9,有A25个;第二类,十位数字取6,有A24个;第三类,十位数字取5,有A23个;第四类,十位数字取4,有A22个.所以“伞数”的个数为A25+A24+A23+A22=40.故选C.5.由0,1,2,…,9这十个数字组成的无重复数字的四位数中,十位数字与千位数字之差的绝对值等于7的四位数的个数是________.解析:当十位数字为0,千位数字为7时,四位数的个数是A28;当十位数字与千位数字为1,8或8,1时,四位数的个数是A28A22;当十位数字与千位数字为2,9或9,2时,四位数的个数是A28A22.故所求的四位数的个数是A28+A28A22+A28A22=280.答案:2806.有3名大学毕业生,到5家公司应聘,若每家公司至多招聘1名新员工,且3名大学毕业生全部被聘用,若不允许兼职,则共有________种不同的招聘方案.(用数字作答) 解析:将5家公司看作5个不同的位置,从中任选3个位置给3名大学毕业生,则本题即为从5个不同元素中任取3个元素的排列问题,所以不同的招聘方案共有A35=5×4×3=60(种).答案:607.有三张卡片,正面分别写着1,2,3三个数字,反面分别写着0,5,6三个数字,问这三张卡片可组成多少个三位数?解:先排列三张卡片,有A33×2×2×2种排法,0排在首位的个数为A22×2×2,则这三张卡片可以组成A33×2×2×2-A22×2×2=40个三位数.8.某国的篮球职业联赛共有16支球队参加.(1)每队与其余各队在主客场分别比赛一次,共要进行多少场比赛?(2)若16支球队恰好8支来自北部赛区,8支来自南部赛区,为增加比赛观赏度,各自赛区分别采用(1)中的赛制决出赛区冠军后,再进行一场总冠军赛,共要进行多少场比赛?解:(1)任意两队之间要进行一场主场比赛及一场客场比赛,对应于从16支球队任取两支的一个排列,比赛的总场次是A216=16×15=240.(2)由(1)中的分析,比赛的总场次是A28×2+1=8×7×2+1=113.。

2020届高考数学总复习课时跟踪练六十一随机事件的概率文含解析新人教A版

2020届高考数学总复习课时跟踪练六十一随机事件的概率文含解析新人教A版

课时跟踪练(六十一)A 组 基础巩固1.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”的关系为( )A .互斥但非对立事件B .对立事件C .和事件是不可能事件D .以上都不对解析:由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件.答案:A2.设事件A ,B ,已知P (A )=,P (B )=,P (A ∪B )=,则A ,B 之间的关系一定为( )1513815A .两个任意事件 B .互斥事件C .非互斥事件D .对立事件解析:因为P (A )+P (B )=+==P (A ∪B ),所以A ,B 之间的关系一定为互斥事1513815件.故选B.答案:B3.(2019·石家庄模拟)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一件是正品(甲级)的概率为( )A .0.95B .0.97C .0.92D .0.08解析:记抽检的产品是甲级品为事件A ,是乙级品为事件B ,是丙级品为事件C ,这三个事件彼此互斥,因而所求概率为P (A )=1-P (B )-P (C )=1-5%-3%=92%=0.92.答案:C4.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率是,都是白子的17概率是.则从中任意取出2粒恰好是同一色的概率是( )1235A. B. C. D .11712351735解析:设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“任意取出2粒恰好是同一色”为事件C ,则C =A ∪B ,且事件A 与B 互斥,所以P (C )=P (A )+P (B )=+=,即任意取出2粒恰好是同一色的概率为.17123517351735答案:C5.在投掷一枚硬币的试验中,共投掷了100次,“正面朝上”的频数为51,则“正面朝上”的频率为( )A .49B .0.5C .0.51D .0.49解析:由题意,根据事件发生的频率的定义可知,“正面朝上”的频率为=0.51.51100答案:C6.从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的不是一等品”的概率为________.解析:“抽到的不是一等品”与事件A 是对立事件,所以所求概率为1-P (A )=0.35.答案:0.357.某城市2018年的空气质量状况如表所示:污染指数T 3060100110130140概率P1101613730215130其中污染指数T ≤50时,空气质量为优;50<T ≤100时,空气质量为良;100<T ≤150时,空气质量为轻微污染,则该城市2018年空气质量达到良或优的概率为________.解析:由题意可知2018年空气质量达到良或优的概率为P =++=.110161335答案:358.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P (A )=2-a ,P (B )=4a -5.则实数a 的取值范围是________.解析:由题意可知{0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1,)即{0<2-a <1,0<4a -5<1,3a -3≤1,)解得所以<a ≤.{1<a <2,54<a <32,a ≤43,)5443答案:(54,43]9.近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000 吨生活垃圾,数据统计如下(单位:吨):。

2020届高考数学一轮复习:课时作业64《排列与组合》(含解析)

2020届高考数学一轮复习:课时作业64《排列与组合》(含解析)

课时作业64排列与组合1.(2019·昆明质检)互不相同的5盆菊花,其中2盆为白色,2盆为黄色,1盆为红色,先要摆成一排,要求红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,共有摆放方法(D) A.A55种B.A22种C.A24A22种D.C12C12A22A22种解析:红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,即红色菊花两边各一盆白色菊花,一盆黄色菊花,共有C12C12A22 A22种摆放方法.2.(2019·广州测试)某学校获得5个高校自主招生推荐名额,其中甲大学2个,乙大学2个,丙大学1个,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有(B)A.36种B.24种C.22种D.20种解析:根据题意,分两种情况讨论:第一种,3名男生每个大学各推荐1人,2名女生分别推荐给甲大学和乙大学,共有A33A22=12种推荐方法;第二种,将3名男生分成两组分别推荐给甲大学和乙大学,共有C23A22A22=12种推荐方法.故共有24种推荐方法,选B.3.(2019·广东珠海模拟)将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有(C)A.480种B.360种C.240种D.120种解析:根据题意,将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则必须有2个小球放入1个盒子,其余的小球各单独放入一个盒子,分2步进行分析:①先将5个小球分成4组,有C25=10种分法;②将分好的4组全排列,放入4个盒子,有A44=24种情况,则不同放法有10×24=240种.故选C.4.某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为(C)A.16 B.18C.24 D.32解析:将4个车位捆绑在一起,看成一个元素,先排3辆不同型号的车,在3个车位上任意排列,有A33=6(种)排法,再将捆绑在一起的4个车位插入4个空档中,有4种方法,故共有4×6=24(种)方法.5.(2019·河北保定一模)甲、乙、丙、丁四位同学高考之后计划去A、B、C三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去A社区,乙不去B社区,则不同的安排方法种数为(B)A.8 B.7C.6 D.5解析:根据题意,分2种情况讨论:①乙和甲一起去A社区,此时将丙丁二人安排到B、C社区即可,有A22=2种情况,②乙不去A 社区,则乙必须去C社区,若丙丁都去B社区,有1种情况,若丙丁中有1人去B社区,则先在丙丁中选出1人,安排到B社区,剩下1人安排到A或C社区,有2×2=4种情况,则不同的安排方法种数有2+1+4=7种,故选B.6.将7个人(其中包括甲、乙、丙、丁4人)排成一排,若甲不能在排头,乙不能在排尾,丙、丁两人必须相邻,则不同的排法共有(B)A.1 108种B.1 008种C.960种D.504种解析:将丙、丁两人进行捆绑,看成一人.将6人全排列有A22A66种排法;将甲排在排头,有A22A55种排法;乙排在排尾,有A22A55种排法;甲排在排头,乙排在排尾,有A22A44种排法.则甲不能在排头,乙不能在排尾,丙、丁两人必须相邻的不同排法共有A22A66-A22A55-A22A55+A22A44=1 008(种).7.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有(C)A.24对B.30对C.48对D.60对解析:利用正方体中两个独立的正四面体解题,如图,它们的棱是原正方体的12条面对角线.一个正四面体中两条棱成60°角的有(C26-3)对,两个正四面体有(C26-3)×2对.又正方体的面对角线中平行成对,所以共有(C26-3)×2×2=48对,故选C.8.(2019·河南豫北名校联考)2018年元旦假期,高三的8名同学准备拼车去旅游,其中(1)班、(2)班、(3)班、(4)班每班各两名,分乘甲乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中(1)班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一个班的乘坐方式共有(B) A.18种B.24种C.48种D.36种解析:由题意,有两类:第一类,一班的2名同学在甲车上,甲车上剩下两个要来自不同的班级,从三个班级中选两个,有C23=3种,然后分别从选择的班级中再选择一个学生,有C12C12=4种,故有3×4=12种.第二类,一班的2名同学不在甲车上,则从剩下的3个班级中选择一个班级的两名同学在甲车上,有C13=3种,然后再从剩下的两个班级中分别选择一人,有C12C12=4种,这时共有3×4=12种,根据分类计数原理得,共有12+12=24种不同的乘车方式,故选B.9.(2019·洛阳统考)某校有4个社团向高一学生招收新成员,现有3名同学,每人只选报1个社团,恰有2个社团没有同学选报的报法有36种(用数字作答).解析:解法一第一步,选2名同学报名某个社团,有C23·C14=12种报法;第二步,从剩余的3个社团里选一个社团安排另一名同学,有C13·C11=3种报法.由分步乘法计数原理得共有12×3=36种报法.解法二第一步,将3名同学分成两组,一组1人,一组2人,共C23种方法;第二步,从4个社团里选取2个社团让两组同学分别报名,共A24种方法.由分步乘法计数原理得共有C23·A24=36种报法.10.(2019·豫南九校联考)某医院拟派2名内科医生,3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生,外科医生和护士,则不同的分配方案有36种.解析:2名内科医生的分法为A22,3名外科医生与3名护士的分法为C23C13+C13C23,共有A22(C23C13+C13C23)=36(种)不同的分法.11.(2019·衡水模拟)某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则共有114种不同的安排方法.(用数字作答)解析:5个人住3个房间,每个房间至少住1人,则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有C35·A33=60(种),A,B住同一房间有C13·A33=18(种),共有60-18=42(种),当为(2,2,1)时,有C25·C23A22·A33=90(种),A,B住同一房间有C23·A33=18(种),故有90-18=72(种),根据分类加法计数原理可知,共有42+72=114(种).12.(2019·上海崇明一模)从5男3女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人志愿者服务队,要求服务队中至少有1名女生,共有780种不同的选法.解析:要求服务队中至少有1名女生,则分3种情况讨论:①选出志愿者服务队的4人中有1名女生,有C35C13=30种选法,这4人选2人作为队长和副队长有A24=12种,其余2人为普通队员,有1种情况,此时有30×12=360种不同的选法.②选出志愿者服务队的4人中有2名女生,有C25C23=30种选法,这4人选2人作为队长和副队长有A24=12种,其余2人为普通队员,有1种情况,此时有30×12=360种不同的选法.③选出志愿者服务队的4人中有3名女生,有C15C33=5种选法,这4人选2人作为队长和副队长有A24=12种,其余2人为普通队员,有1种情况,此时有5×12=60种不同的选法.则一共有360+360+60=780种不同的选法.13.(2019·南昌调研)某校毕业典礼上有6个节目,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起.则该校毕业典礼节目演出顺序的编排方案共有(A) A.120种B.156种C.188种D.240种解析:解法一记演出顺序为1~6号,对丙、丁的排序进行分类,丙、丁占1和2号,2和3号,3和4号,4和5号,5和6号,其排法种数分别为A22A33,A22A33,C12A22A33,C13A22A33,C13A22A33,故总编排方案有A22A33+A22A33+C12A22A33+C13A22A33+C13A22A33=120(种).解法二记演出顺序为1~6号,按甲的编排进行分类,①当甲在1号位置时,丙、丁相邻的情况有4种,则有C14A22A33=48(种);②当甲在2号位置时,丙、丁相邻的情况有3种,共有C13A22A33=36(种);③当甲在3号位置时,丙、丁相邻的情况有3种,共有C13A22A33=36(种).所以编排方案共有48+36+36=120(种).14.(2019·山西长治模拟)某人设计一项单人游戏,规则如下:先将一棋子放在如图所示的正方形ABCD(边长为3个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为i(i=1,2,…,6),则棋子就按逆时针方向行走i个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A 处的所有不同走法共有( C )A .22种B .24种C .25种D .36种解析:由题意知正方形ABCD (边长为3个单位)的周长是12,抛掷三次骰子后棋子恰好又回到点A 处表示三次骰子的点数之和是12,在点数中三个数字能够使得和为12的有1,5,6;2,4,6;3,4,5;3,3,6;5,5,2;4,4,4,共有6种组合,前三种组合1,5,6;2,4,6;3,4,5各可以排出A 33=6种结果,3,3,6和5,5,2各可以排出A 33A 22=3种结果,4,4,4只可以排出1种结果.根据分类计数原理知共有3×6+2×3+1=25种结果,故选C.15.(2019·天津和平一模)把8个相同的小球全部放入编号为1,2,3,4的四个盒中,则不同的放法种数为( C )A .35B .70C .165D .1 860解析:根据题意,分4种情况讨论:①没有空盒,将8个相同的小球排成一列,排好后,各球之间共有7个空位,在7个空位中任选3个,插入隔板,将小球分成4组,顺次对应4个盒子,有C 37=35种放法;②有1个空盒,在4个盒中任选3个,放入小球,有C 34=4种选法,将8个相同的小球排成一列,排好后,各球之间共有7个空位,在7个空位中任选2个,插入隔板,将小球分成3组,顺次对应3个盒子,有C 27=21种分组方法,则有4×21=84种放法;③有2个空盒,在4个盒中任选2个,放入小球,有C 24=6种选法,将8个相同的小球排成一列,排好后,各球之间共有7个空位,在7个空位中任选1个,插入隔板,将小球分成2组,顺次对应2个盒子,有C17=7种分组方法,则有6×7=42种放法;④有3个空盒,即将8个小球全部放进1个盒子,有4种放法.故一共有35+84+42+4=165种放法.故选C.16.(2019·洛阳预测)设三位数n=abc,若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有165个.解析:a,b,c要能构成三角形的边长,显然均不为0,即a,b,c∈(1,2,3,…,9).①若构成等边三角形,设这样的三位数的个数为n1,由于三位数中三个数字都相同,所以n1=C19=9;②若构成等腰(非等边)三角形,设这样的三位数的个数为n2,由于三位数中只有2个不同数字,设为a,b,注意到三角形腰与底可以互换,所以可取的数组(a,b)共有2C29组,但当大数为底时,设a>b,必须满足b<a<2b,此时,不能构成三角形的数字是共20种情况.同时,每个数组(a,b)中的两个数字填上三个数位,有C23种情况,故n2=C23(2C29-20)=156.综上,n=n1+n2=165.。

2020版高考数学人教版理科一轮复习课时作业:63_排列与组合

2020版高考数学人教版理科一轮复习课时作业:63_排列与组合

课时作业63排列与组合一、选择题1.从10名大学毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为(C)A.85 B.56C.49 D.28解析:分两类:甲、乙中只有1人入选且丙没有入选,甲、乙均入选且丙没有入选,计算可得所求选法种数为C12C27+C22C17=49.2.4位男生和2位女生排成一排,男生有且只有2位相邻,则不同排法的种数是(C)A.72 B.96C.144 D.240解析:先在4位男生中选出2位,易知他们是可以交换位置的,则共有A24种选法,然后再将2位女生全排列,共有A22种排法,最后将3组男生插空全排列,共有A33种排法.综上所述,共有A24A22A33=144种不同的排法.故选C.3.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为(D) A.144 B.120C.72 D.24解析:“插空法”,先排3个空位,形成4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A34=4×3×2=24.4.A,B,C,D,E,F六人围坐在一张圆桌周围开会,A是会议的中心发言人,必须坐在最北面的椅子上,B,C二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有(B)A.60种B.48种C.30种D.24种解析:由题知,可先将B,C二人看作一个整体,再与剩余人进行排列,则不同的座次有A22A44=48种.5.(2019·昆明两区七校调研)某校从8名教师中选派4名同时去4个边远地区支教(每地1名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有( B )A .900种B .600种C .300种D .150种解析:依题意,就甲是否去支教进行分类计数:第一类,甲去支教,则乙不去支教,且丙也去支教,则满足题意的选派方案有C 25·A 44=240(种);第二类,甲不去支教,且丙也不去支教,则满足题意的选派方案有A 46=360(种),因此,满足题意的选派方案共有240+360=600(种),故选B.6.将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,则甲、乙在同一路口的分配方案共有( C )A .18种B .24种C .36种D .72种解析:不同的分配方案可分为以下两种情况:①甲、乙两人在一个路口,其余三人分配在另外的两个路口,其不同的分配方案有C 23A 33=18(种);②甲、乙所在路口分配三人,另外两个路口各分配一个人,其不同的分配方案有C 13A 33=18(种).由分类加法计数原理可知不同的分配方案共有18+18=36(种).7.(2019·安徽黄山二模)我国的第一艘航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼-15”飞机准备着舰,规定乙机不能最先着舰,且丙机必须在甲机之前着舰(不一定相邻),那么不同的着舰方法种数为( C )A .24B .36C .48D .96解析:根据题意,分2种情况讨论:①丙机最先着舰,此时只需将剩下的4架飞机全排列,有A 44=24种情况,即此时有24种不同的着舰方法;②丙机不最先着舰,此时需要在除甲、乙、丙之外的2架飞机中任选1架,作为最先着舰的飞机,将剩下的4架飞机全排列,丙机在甲机之前和丙机在甲机之后的数目相同,则此时有12×C 12A 44=24种情况,即此时有24种不同的着舰方法.则一共有24+24=48种不同的着舰方法.故选C.二、填空题8.现将5张连号的电影票分给甲、乙等5个人,每人一张,若甲、乙分得的电影票连号,则共有48种不同的分法.(用数字作答)解析:电影票号码相邻只有4种情况,则甲、乙2人在这4种情况中选一种,共C14种选法,2张票分给甲、乙,共有A22种分法,其余3张票分给其他3个人,共有A33种分法,根据分步乘法计数原理,可得共有C14A22A33=48种分法.9.现有2个红球、3个黄球、4个白球,同色球不加区分,将这9个球排成一列,有1_260种不同的方法.(用数字作答)解析:第一步,从9个位置中选出2个位置,分给相同的红球,有C29种选法;第二步,从剩余的7个位置中选出3个位置,分给相同的黄球,有C37种选法;第三步,剩下的4个位置全部分给4个白球,有1种选法.根据分步乘法计数原理可得,排列方法共有C29C37=1 260(种).10.(2018·浙江卷)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成1_260个没有重复数字的四位数.(用数字作答)解析:若取的4个数字不包括0,则可以组成的四位数的个数为C25C23A44;若取的4个数字包括0,则可以组成的四位数的个数为C25C13C13A33.综上,一共可以组成的没有重复数字的四位数的个数为C25C23A44+C25C13C13A33=720+540=1 260.11.某班主任准备请2018届毕业生做报告,要从甲、乙等8人中选4人发言,要求甲、乙两人至少有一人参加,若甲、乙同时参加,则他们发言中间需恰好间隔一人,那么不同的发言顺序共有1_080种.(用数字作答)解析:若甲、乙同时参加,有2C26A22A22=120种,若甲、乙有一人参加,有C12C36A44=960种,从而不同的发言顺序有1 080种.12.(2019·福建福州二模)福州西湖公园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,不同的安排方案共有(B)A.90种B.180种C.270种D.360种解析:根据题意,分3步进行分析:①在6位志愿者中任选1个,安排到甲展区,有C16=6种情况;②在剩下的5个志愿者中任选1个,安排到乙展区,有C15=5种情况;③将剩下的4个志愿者平均分成2组,然后安排到剩下的2个展区,有C 24C 22A 22×A 22=6种情况,则一共有6×5×6=180种不同的安排方案,故选B.13.(2019·郑州质量预测)将数字“124467”重新排列后得到不同的偶数的个数为( D )A .72B .120C .192D .240解析:将数字“124 467”重新排列后所得数字为偶数,则末位数应为偶数.(1)若末位数字为2,因为其他位数上含有2个4,所以有5×4×3×2×12=60种情况;(2)若末位数字为6,同理有5×4×3×2×12=60种情况;(3)若末位数字为4,因为其他位数上只含有1个4,所以共有5×4×3×2×1=120种情况.综上,共有60+60+120=240种情况.14.(2019·昆明质检)某小区一号楼共有7层,每层只有1家住户,已知任意相邻两层楼的住户在同一天至多一家有快递,且任意相邻三层楼的住户在同一天至少一家有快递,则在同一天这7家住户有无快递的可能情况共有12种.解析:分三类:(1)同一天2家有快递:可能是2层和5层、3层和5层、3层和6层,共3种情况;(2)同一天3家有快递:考虑将有快递的3家插入没有快递的4家形成的空位中,有C 35种插入法,但需减去1层、3层与7层有快递,1层、5层与7层有快递这两种情况,所以有C 35-2=8种情况;(3)同一天4家有快递:只有1层、3层、5层、7层有快递这一种情况.根据分类加法计数原理可知,同一天7家住户有无快递的可能情况共有3+8+1=12种.尖子生小题库——供重点班学生使用,普通班学生慎用15.(2019·河南豫北名校联考)2018年元旦假期,高三的8名同学准备拼车去旅游,其中(1)班、(2)班、(3)班、(4)班每班各两名,分乘甲乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中(1)班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一个班的乘坐方式共有( B )A .18种B .24种C .48种D .36种解析:由题意,有两类:第一类,一班的2名同学在甲车上,甲车上剩下两个要来自不同的班级,从三个班级中选两个,有C23=3种,然后分别从选择的班级中再选择一个学生,有C12C12=4种,故有3×4=12种.第二类,一班的2名同学不在甲车上,则从剩下的3个班级中选择一个班级的两名同学在甲车上,有C13=3种,然后再从剩下的两个班级中分别选择一人,有C12C12=4种,这时共有3×4=12种,根据分类计数原理得,共有12+12=24种不同的乘车方式,故选B.16.(2019·山西长治二模)某人设计一项单人游戏,规则如下:先将一棋子放在如图所示的正方形ABCD(边长为3个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为i(i=1,2,…,6),则棋子就按逆时针方向行走i个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A处的所有不同走法共有(C)A.22种B.24种C.25种D.36种解析:由题意知正方形ABCD(边长为3个单位)的周长是12,抛掷三次骰子后棋子恰好又回到点A处表示三次骰子的点数之和是12,在点数中三个数字能够使得和为12的有1,5,6;2,4,6;3,4,5;3,3,6;5,5,2;4,4,4,共有6种组合,前三种组合1,5,6;2,4,6;3,4,5各可以排出A33=6种结果,3,3,6和5,5,2各可以排出A33A22=3种结果,4,4,4只可以排出1种结果.根据分类计数原理知共有3×6+2×3+1=25种结果,故选C.。

2020年浙江高三数学总复习:排列与组合课时训练

2020年浙江高三数学总复习:排列与组合课时训练

第二节排列与组合课时训练【选题明细表】一、选择题1.若二,则x为(C )(A)3 (B)5(C)3或5 (D)以上都不对解析:答案为3或5,故选C.2.6本相同的数学书和3本相同的语文书分给9个人,每人1本,共有不同分法(A )(A)种(B)'种(C)种(D) ' •'种解析:9个人中有6人被分到数学书,有3人被分到语文书,因为6本数学书相同且3本语文书相同故与顺序无关,只需从9人中选出3人严H J T-3给语文书剩下的6人均给数学书即可,即不同的分法共有二种.故选A.3.10名同学合影,站成了前排3人,后排7人,现摄影师要从后排7人中抽2人站前排,其他人的相对顺序不变,则不同调整方法的种数为(C )(A) ' (C) (B) (D)解析:首先从后排的7人中抽2人,有种方法;再把2个人在5个位置中选2个位置进行排列有'种.由分步乘法计数原理知不同调整方法种数是.故选C.4. 一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为(C )3(A)3 X 3! (B)3 X (3!)(C)(3!) 4(D)9!解析:分成四个步骤完成,第1步三家全排列为'=3!,第2,3,4步对每家成员排序都是'=3!,根据分步乘法计数原理总数m=(3!) 4.故选C. 5.2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是(B )(A)60 (B)48 (C)42 (D)36解析:用排除法,先不考虑甲不站两端.先排男生有'种,再把女生分两部分,然后在3个空中插空排列,共有居.屈.屈种然后排除甲站两端的/ ,共有排法种数-2 . = ( -2 )=6 X (12-4)=48.故选B.6. 将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有(C )(A)18 种(B)24 种(C)36 种(D)72 种解析:一个路口有3人的分配方法有(种);两个路口各有2人的分配方法有’’(种).所以由分类加法计数原理,甲、乙在同一路口的分配方案为c詁加+空匚加=36(种).7. 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张. 从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1 张,不同取法的种数为(C )(A)232 (B)252 (C)472 (D)484解析:有一张红色的取法有••种;无红色的取法种数有-•,所以总的不同取法有•+ - =472(种),故选C.8. 有大小形状完全相同的4个黑球,2个白球,放入如图所示的九个格子中,每个格子至多放入1个小球,相邻格子(即有公共边的两个正方形)中放入的小球不同色,则不同的放法共有(C )(A)32 种(B)40 种(C)48 种(D)56 种解析:第一类,当4个黑球在4个顶角的位置时,白球放在除最中间后剩下4个格中任选两个,故有=6(种),如图.□回□□□0□0第二类,当有一个黑球在最中间时,其他三个黑球只能放在顶角位置,有=4(种),当其中一个白球在顶角时,另一个白球只有2种放法,当白球不在顶角时,白球放在除顶角后剩下4个格中任选两个有=6种,故有4X (2+6)=32(种),如图.0□0□□0□0第三类,当4个黑球放在每外围三个格的中间时,白球从剩下5个格中任选两个有=10(种),如图.□S□L□□0□根据分类加法计数原理,故有6+32+10=48(种).故选C.二、填空题9.4个不同的小球放入编号为1,2,3,4的4个盒中,则恰有1个空盒的放法共有________ 种,没有空盒的放法共有___________ 种.(用数字作答)2,1,1的3组,有 ''种.最后将3组球放入4个盒中的3个,分配方解析:把4个小球分成3组,每组至少1个,即分成小球个数分别为法有’种,因此,放法共有二X ' =144种.将4个不同的小球放入四个盒子中,没有空盒的放法共有=24种.答案:144 2410. (2018 •全国I卷)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有 _______ 种.(用数字填写答案)解析:法一按参加的女生人数可分两类:只有1位女生参加有种,有2位女生参加有种,故共有+ =2X 6+4=16(种).法二从2位女生,4位男生中选3人,共有种情况,没有女生参加的情况有种,故共有-=20-4=16(种).答案:1611. ______________________________________ 张、王两家夫妇各带1个小孩一起到动物园游玩,购票后排队依次入园.为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数为______________________________________ .(用数字作答)解析:第一步:将两位爸爸排在两端有2种排法;第二步:将两个小孩视作一人与两位妈妈任意排在中间的三个位置上有种排法;第三步:将两个小孩排序有2种排法.故总的排法有2X 2X =24(种).答案:2412. (2018 •嘉兴一中模拟)电影院一排有10个位置,甲、乙、丙三人去看电影,要求他们坐在同一排,那么他们每人左、右两边都有空位且甲坐在中间的坐法有__________ 种.解析:除甲、乙、丙三人的座位外,还有7个座位,共可形成6个空,三人从6个空中选3个位置坐上去有种坐法,因为甲坐在中间,所以乙丙有'种坐法,所以他们每人左、右两边都有空位且甲坐在中间的坐法有• ’ =40(种).答案:4013. 某运输公司有7个车队,每个车队的车辆均多于4辆.现从这个公司中抽调10辆车,并且每个车队至少抽调1辆,那么共有________ 种不同的抽调方法.解析:(分类法):在每个车队抽调1辆车的基础上,还需抽调3辆车. 可分成三类:一类是从某1个车队抽调3辆,有种;一类是从2个车队中抽调,其中1个车队抽调1辆,另1个车队抽调2辆,有种;一类是从3个车队中各抽调1辆,有种.故共有+ + =84(种)抽调方法.答案:8414. (2018 •浙江卷)从1,3,5,7,9 中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成 ________ 个没有重复数字的四位数.(用数字作答)解析:不含有0的四位数有x X ■ =720(个).含有0的四位数有xxx' =540(个).综上,四位数的个数为720+540=1 260.答案:1 26015. 将并排的有不同编号的5个房间安排给5个工作人员临时休息,假定每个人可以选择任一房间,且选择各个房间是等可能的,则恰有2个房间无人选择且这2个房间不相邻的安排方式的种数解析:先将5人分成三组(1,1,3或2,2,1两种形式),再将这三组人安排到3个房间,然后将2个房间插入前面住了人的3个房间形成的空厂1厂1厂3厂2厂"2广1档中即可,故安排方式共有(八+「)•’.=900(种).答案:900 三、解答题16. (1)现有10个保送上大学的名额,分配给7所学校,每校至少有1 个名额,问名额分配的方法共有多少种?⑵已知集合A二{5},B={1,2},C={1,3,4}, 从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,那么最多可确定多少个不同的点?解:(1)法一每个学校至少一个名额,则分去7个,剩余3个名额分到7所学校的方法种数就是要求的分配方法种数.分类:若3个名额分到一所学校有7种方法;若分配到2所学校有X 2=42(种);若分配到3所学校有=35(种).所以共有7+42+35=84(种)方法.法二10个元素之间有9个间隔,要求分成7份,相当于用6块挡板插在9个间隔中,共有=84(种)不同方法.所以名额分配的方法共有84种.⑵①从集合B中取元素2时,确定=18(个)点.②当从集合B中取元素1,且从C中取元素1,则确定的不同点有X 1=3(个).③当从B中取元素1,且从C中取出元素3或4,则确定的不同点有= 12(个).所以由分类加法计数原理,共确定」+ + =33(个)不同点.17. 某市工商局对35件商品进行抽样检查,已知其中有15件假货.现从35件商品中选取3件.(1)其中某一件假货必须在内,不同的取法有多少种?(2)其中某一件假货不能在内,不同的取法有多少种?(3)恰有2件假货在内,不同的取法有多少种?(4)至少有2件假货在内,不同的取法有多少种?(5)至多有2件假货在内,不同的取法有多少种?解:(1)从余下的34件商品中,选取2件有=561(种), 所以某一件假货必须在内的不同取法有561种.⑵从34件可选商品中,选取3件,有=5 984(种),或者-=5 984(种).所以某一件假货不能在内的不同取法有 5 984种.⑶从20件真货中选取1件,从15件假货中选取2件有-=2 100(种),所以恰有2件假货在内的不同取法有2 100种.(4)选取2件假货有••,选取3件假货有种,所以共有选取方式=2 555(种),至少有2件假货在内的不同取法有2 555种.(5)法一(直接法)有2件假货在内,不同的取法有••种,有1件假货在内,不同的取法有••种;没有假货在内有•种,因此共有选取方式+ + =6 090(种).法二(间接法)选取3件的总数有,因此共有选取方式-= 6 545-455=6 090(种).。

2019-2020学年高中数学课时跟踪检测六组合的应用习题课

2019-2020学年高中数学课时跟踪检测六组合的应用习题课

课时跟踪检测六一、题组对点训练对点练一有限制条件的组合问题1.某市拟从4个重点项目和6个一般项目中各选2个项目作为本年度要启动的项目,则重点项目A 和一般项目B至少有一个被选中的不同选法的种数是( )A.15 B.45C.60 D.75解析:选C 从4个重点项目和6个一般项目中各选2个项目共有C24C26=90种不同的选法,重点项目A和一般项目B都不被选中的不同选法有C23C25=30(种),所以重点项目A和一般项目B至少有一个被选中的不同选法的种数是90-30=60.2.某计算机商店有6台不同的品牌机和5台不同的兼容机,从中选购5台,且至少有品牌机和兼容机各2台,则不同的选购方法有( )A.1 050种B.700种C.350种D.200种解析:选C 分两类:(1)从6台不同的品牌机中选3台和从5台不同的兼容机中选2台;(2)从6台不同的品牌机中选2台和从5台不同的兼容机中选3台.所以有C36C25+C26C35=350种不同的选购方法.3.某校开设9门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门.学校规定,每位同学选修4门,共有________种不同的选修方案.(用数字作答)解析:分两类,一类是选A,B,C中的一门,则有C13C36种选法;另一类是不选A,B,C,则有C46种选法,故共有C46+C13C36=75种不同的选修方案.答案:754.在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人去参加市级培训,在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加;(3)甲、乙、丙三人不能参加;(4)甲、乙、丙三人只能有1人参加;(5)甲、乙、丙三人至少1人参加.解:(1)C512=792种不同的选法.(2)甲、乙、丙三人必须参加,只需从另外的9人中选2人,共有C29=36种不同的选法.(3)甲、乙、丙三人不能参加,只需从另外的9人中选5人,共有C59=126种不同的选法.(4)甲、乙、丙三人只能有1人参加,分两步,先从甲、乙、丙中选1人,有C13=3种选法,再从另外的9人中选4人有C49种选法,共有C13C49=378种不同的选法.(5)法一(直接法)可分为三类:第一类,甲、乙、丙中有1人参加,共有C 13C 49种不同的选法; 第二类,甲、乙、丙中有2人参加,共有C 23C 39种不同的选法; 第三类,甲、乙、丙3人均参加,共有C 33C 29种不同的选法; 共有C 13C 49+C 23C 39+C 33C 29=666种不同的选法.法二:(间接法)12人中任意选5人共有C 512种,甲、乙、丙三人不能参加的有C 59种,所以共有C 512-C 59=666种不同的选法.对点练二 分组(分配)问题5.若将9名会员分成三组讨论问题,每组3人,共有不同的分组方法种数有( ) A .C 39C 36 B .A 39A 36 C.C 39C 36A 33D .A 39A 36A 33解析:选C 此题为平均分组问题,有C 39C 36A 33种分法.6.为调查某商品当前的市场价格,国家统计局将5位调查员分成三组,其中两组各2人,另一组1人,分赴三个不同的地区进行商品价格调查,则不同的分配方案有( )A .90种B .180种C .30种D .15种解析:选A 将5位调查员分成三组,其中两组各2人,另一组1人,有C 25C 23A 22种不同的分法,再将其分到三个不同地区,有A 33种不同的分法,所以不同的分配方案的种数为C 25C 23A 22·A 33=90,故选A.7.某中学实习的5名大学毕业生需到A ,B ,C ,D 4个班级当辅导员,每班至少一名辅导员,且A 班必须有两名辅导员,则不同的分配方法有多少种?解:第一步,把5名大学毕业生分成人数为2,1,1,1的四份,有C 25·C 13·C 12·C 11A 33=C 25种分法; 第二步,把分好的四份分配给A ,B ,C ,D 4个班级,有A 33种分法. 根据分步乘法计数原理,可得总共的分配方法种数为C 25A 33=60种. 对点练三 排列、组合的综合问题8.从甲、乙等5人中选出3人排成一列,则甲不在排头的排法种数是( ) A .12 B .24 C .36D .48解析:选D ①若不选甲,则排法种数为A 34=24;②若选甲,则先从后两个位置中选一个给甲,再从其余的4人中选2人排列.排法种数为C 12A 24=24.由分类加法计数原理,可得不同的排法种数为24+24=48.故选D.9.从8个不同的数中选出5个数构成函数f(x)(x∈{1,2,3,4,5})的值域,如果这8个不同的数中的A,B两个数不能是x=5对应的函数值,那么不同的选法种数为( )A.C28A36B.C17A47C.C16A47D.无法确定解析:选C 自变量有5个,函数值也是5个不同的数,因此自变量与函数值只能一一对应,不会出现多对一的情形.因为A,B两个数不能是x=5对应的函数值,所以先从余下6个数中选出与5对应的函数值,有C16种方法,再从其他7个数中选出4个数排列即可,故不同的选法共有C16A47种,故选C.10.有4个不同的球,4个不同的盒子,把球全部放入盒子内.(1)共有几种放法?(2)恰有2个盒子不放球,有几种放法?解:(1)44=256(种).(2)恰有2个盒子不放球,也就是把4个不同的小球只放入2个盒子中,有两类放法;第一类,1个盒子放3个小球,1个盒子放1个小球,先把小球分组,有C34种,再放到2个小盒中有A24种放法,共有C34A24种放法;第二类,2个盒子中各放2个小球有C24C24种放法,故恰有2个盒子不放球的方法共有C34A24+C24 C24=84种放法.二、综合过关训练1.把编号为1,2,3,4,5的五个球全部放入甲、乙、丙、丁四个盒子中,每盒至少放入一个球,且放入同一盒子的多个球必须连号,那么不同的放法种数为( )A.96 B.240C.48 D.40解析:选A 由题意,知一定有两个球放入同一盒中,又连号球有(1,2),(2,3),(3,4),(4,5)四种可能,因此总的放法种数为4A44=96,选A.2.把甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名同学,且甲、乙两名学生不能分到同一个班,则不同的分法种数为( )A.24 B.30C.36 D.81解析:选B 根据题意,总的分法种数为C24A33=36.若甲、乙两人分在同一个班,则分法种数为A33=6,所以甲、乙两名学生不能分到同一个班的分法种数为36-6=30,故选B.3.四个不同的球放入编号为1,2,3,4的四个盒子中,恰有一个空盒的方法有( )A.288种B.144种C.96种D.24种解析:选B 先从四个球中取两个放在一起,有C24种不同的取法,再把取出的两个球看成一个球与另外两个球看作三个元素,分别放入四个盒子的三个盒子中,有A34种不同方法,据分步乘法计数原理,可得共有C24·A34=144种不同的方法.故选B.4.两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( )A.10种B.15种C.20种D.30种解析:选C 分三种情况:恰好打3局,有2种情形;恰好打4局(一人前3局中赢2局,输1局,第4局赢),共有2C23=6种情形;恰好打5局(一人前4局中赢2局,输2局,第5局赢),共有2C24=12种情形.所有可能出现的情形种数为2+6+12=20.5.有两条平行直线a和b,在直线a上取4个点,直线b上取5个点,以这些点为顶点作三角形,这样的三角形共有________个.解析:分两类,第一类:从直线a上任取一个点,从直线b上任取两个点,共有C14·C25种方法;第二类:从直线a上任取两个点,从直线b上任取一个点共有C24·C15种方法.∴满足条件的三角形共有C14·C25+C24·C15=70个.答案:706.将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有________种.解析:根据2号盒子里放球的个数分类.第一类,2号盒子里放2个球,有C24种放法.第二类,2号盒子里放3个球,有C34种放法,所以不同的放球方法的种数为C24+C34=10.答案:107.某市工商局对35种商品进行抽样检查,结果有15种假货,先从35种商品中选取3种.(1)恰有2种假货在内的不同取法有多少种?(2)至少有2种假货在内的不同取法有多少种?(3)至多有2种假货在内的不同取法有多少种?解:(1)从20种真货中选取1件,从15种假货中选取2件,有C120C215=2 100种取法.所以恰有2种假货在内的不同取法有2 100种.(2)选取2件假货有C120C215种,选取3件假货有C315种,共有C120C215+C315=2 555种取法.所以至少有2种假货在内的不同取法有2 555种.(3)选取3件的种数有C335,因此有C335-C315=6 090种取法.所以至多有2种假货在内的不同取法有6 090种.8.从1到9的九个数字中取三个偶数和四个奇数.(1)能组成多少个没有重复数字的七位数?(2)在(1)中的七位数中,三个偶数排在一起的有几个?(3)在(1)中的七位数中,偶数排在一起,奇数也排在一起的有几个?(4)在(1)中的七位数中,任意两个偶数都不相邻的七位数有几个?解:(1)分步完成:第一步,在4个偶数中取3个,可有C34种情况;第二步,在5个奇数中取4个,可有C45种情况;第三步,把3个偶数,4个奇数进行排列,可有A77种情况,所以符合题意的七位数的个数为C34C45A77=100 800.(2)上述七位数中,3个偶数排在一起的有C34C45A33A55=14 400个数.(3)上述七位数中,3个偶数排在一起,4个奇数也排在一起的共有C34C45A33A44A22=5 760个数.(4)上述七位数中,偶数都不相邻,可先把4个奇数排好,再把3个偶数插入5个空中,共有C34C45A44A35=28 800个数.。

高考数学一轮总复习 课时跟踪检测(六十二) 排列与组合 理 新人教版-新人教版高三全册数学试题

高考数学一轮总复习 课时跟踪检测(六十二) 排列与组合 理 新人教版-新人教版高三全册数学试题

课时跟踪检测(六十二) 排列与组合一抓基础,多练小题做到眼疾手快1.将2名教师、4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.10种B.9种C.12种 D.8种解析:选C 依题意,满足题意的不同安排方案共有C12·C24=12种.2.世界华商大会的某分会场有A,B,C三个展台,将甲、乙、丙、丁共4名“双语”志愿者分配到这三个展台,每个展台至少1人,其中甲、乙两人被分配到同一展台的不同分法的种数有( )A.12种 B.10种C.8种 D.6种解析:选D ∵甲、乙两人被分配到同一展台,∴可以把甲与乙捆在一起,看成一个人,然后将3个人分到3个展台上进行全排列,即有A33种,∴甲、乙两人被分配到同一展台的不同分法的种数有A33=6种.3.将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排方法的种数为( )A.10 B.20C.30 D.40解析:选B 将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么必然是一个宿舍2名,而另一个宿舍3名,共有C35C22×2=20种.4.从1,2,3,4,5,6六个数字中,选出一个偶数和两个奇数,组成一个没有重复数字的三位数,这样的三位数共有( )A.9个 B.24个C.36个 D.54个解析:选D 选出符合题意的三个数共有C13C23种方法,这三个数可组成C13C23A33=54个没有重复数字的三位数.5.在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有( )A.36个 B.24个解析:选B 各位数字之和是奇数,则这三个数字中三个都是奇数或两个偶数一个奇数,所有可能情况有A 33+C 13A 33=6+18=24(个).二保高考,全练题型做到高考达标1.(2016·某某四校联考)有5名优秀毕业生到母校的3个班去做学习经验交流,则每个班至少去一名的不同分派方法种数为( )A .150B .180C .200D .280解析:选A 分两类:一类,3个班分派的毕业生人数分别为2,2,1,则有C 25C 23A 22·A 33=90种分派方法;另一类,3个班分派的毕业生人数分别为1,1,3,则有C 35·A 33=60种分派方法.所以不同分派方法种数为90+60=150种.2.(2016·某某摸底)现有2门不同的考试要安排在5天之内进行,每天最多进行一门考试,且不能连续两天有考试,那么不同的考试安排方案种数是( )A .12B .6C .8D .16解析:选A 若第一门安排在开头或结尾,则第二门有3种安排方法,这时,共有C 12×3=6种方法;若第一门安排在中间的3天中,则第二门有2种安排方法,这时,共有3×2=6种方法.综上可得,不同的考试安排方案共有6+6=12种.3.(2016·某某模拟)有5本不同的教科书,其中语文书2本,数学书2本,物理书1本.若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是( )A .24B .48C .72D .96解析:选B 据题意可先摆放2本语文书,当1本物理书在2本语文书之间时,只需将2本数学书插在前3本书形成的4个空中即可,此时共有A 22A 24种摆放方法;当1本物理书放在2本语文书一侧时,共有A 22A 12C 12C 13种不同的摆放方法,由分类加法计数原理可得共有A 22A 24+A 22A 12C 12C 13=48种摆放方法.4.用1,2,3,4,5,6组成数字不重复的六位数,满足1不在左、右两端,2,4,6三个偶数中有且只有两个偶数相邻,则这样的六位数的个数为( )A .423B .288解析:选B 若2,4相邻,把2,4捆绑在一起,与另外四个数排列(相当于5个元素排列),1不在左、右两侧,则六位数的个数为2×C 13×A 44=144,同理2,4与6相邻的有A 22×2×2×A 33=48个,所以只有2,4相邻的有144-48=96个,全部符合条件的六位数有96×3=288个.5.(2016·某某某某调研)将A ,B ,C ,D ,E 排成一列,要求A ,B ,C 在排列中顺序为“A ,B ,C ”或“C ,B ,A ”(可以不相邻),这样的排列数有( )A .12种B .20种C .40种D .60种解析:选C (排序一定用除法)五个元素没有限制全排列数为A 55,由于要求A ,B ,C 的次序一定(按A ,B ,C 或C ,B ,A ),故除以这三个元素的全排列A 33,可得这样的排列数有A 55A 33×2=40种.6.4位同学参加某种形式的竞赛,竞赛规则规定:选甲题答对得100分,答错得-100分,选乙题答对得90分,答错得-90分,若4位同学的总分为0分,则这4位同学不同得分情况的种数是________.解析:由于4位同学的总分为0分,故4位同学选甲、乙题的人数有且只有三种情况:①甲:4人,乙:0人;②甲:2人,乙:2人;③甲:0人,乙:4人.对于①,须2人答对,2人答错,共有C 24=6种情况;对于②,选甲题的须1人答对,1人答错,选乙题的也如此,有C 24C 12C 12=24种情况;对于③,与①相同,有6种情况,故共有6+24+6=36种不同的情况.答案:367.(2016·某某质检)若把英语单词“error”的字母顺序写错了,则可能出现的错误共有________种.解析:A 25-1=19.答案:198.(2015·某某重点中学协作体摸底)把座位编号为1,2,3,4,5的五X 电影票全部分给甲、乙、丙、丁四个人,每人至少一X ,至多两X ,且分得的两X 票必须是连号,那么不同的分法种数为________(用数字作答).解析:先将票分为符合条件的4份,由题意,4人分5X 票,且每人至少一X ,至多两X ,则三人每人一X ,一人2X ,且分得的票必须是连号,相当于将1,2,3,4,5这五个数用3个板子隔开,分为四部分且不存在三连号.在4个空位插3个板子,共有C 34=4种情况,再对应到4个人,有A 44=24种情况,则共有4×24=96种情况.答案:969.(2016·某某考前质检)5名工人分别要在某3天中选择1天休息,且每天至少有一人休息,则不同的安排方式有________种(用数字填写).解析:由题意可知5名工人分别要在某3天中任选1天休息,且每天至少有一人休息,则不同的安排方式共分两类:第一类,有两天中只有一人休息,另外一天有三人休息,共有C 35A 33=60种方法;第二类,有两天中分别有两人休息,另外一天只有一人休息,共有C 25C 23A 22·A 33=90种方法.综上所述,共有60+90=150种方法.答案:15010.将7个相同的小球放入4个不同的盒子中.(1)不出现空盒时的放入方式共有多少种?(2)可出现空盒时的放入方式共有多少种?解:(1)将7个相同的小球排成一排,在中间形成的6个空当中插入无区别的3个“隔板”将球分成4份,每一种插入隔板的方式对应一种球的放入方式,则共有C 36=20种不同的放入方式.(2)每种放入方式对应于将7个相同的小球与3个相同的“隔板”进行一次排列,即从10个位置中选3个位置安排隔板,故共有C 310=120种放入方式.三上台阶,自主选做志在冲刺名校1.(2015·某某模拟)有红、蓝、黄、绿四种颜色的球各6个,每种颜色的6个球分别标有数字1,2,3,4,5,6,从中任取3个标号不同的球,这3个颜色互不相同且所标数字互不相邻的取法种数为( )A .80B .84C .96D .104 解析:选C 所标数字互不相邻的方法有135,136,146,246,共4种方法.3个颜色互不相同有A 34=4×3×2=24种,∴这3个颜色互不相同且所标数字互不相邻的取法有24×4=96种.2.(2016·某某师大附中月考)已知集合A ={x |x =a 0+a 1×3+a 2×32+a 3×33},其中a i ∈{0,1,2}(i =0,1,2,3)且a 3≠0,则A 中所有元素之和等于( )A.3 240 B.3 120C.2 997 D.2 889解析:选D 由题意可知,a0,a1,a2各有3种取法(均可取0,1,2),a3有2种取法(可取1,2),由分步乘法计数原理可得共有3×3×3×2种取法.∴当a0取0,1,2时,a1,a2各有3种取法,a3有2种取法,共有3×3×2=18种取法,即集合A中含有a0项的所有数的和为(0+1+2)×18;同理可得集合A中含有a1项的所有数的和为(3×0+3×1+3×2)×18;集合A中含有a2项的所有数的和为(32×0+32×1+32×2)×18;集合A中含有a3项的所有数的和为(33×1+33×2)×27;由分类加法计数原理得集合A中所有元素之和S=(0+1+2)×18+(3×0+3×1+3×2)×18+(32×0+32×1+32×2)×18+(33×1+33×2)×27=18×(3+9+27)+81×27=702+2 187=2 889.3.用0,1,2,3,4这五个数字,可以组成多少个满足下列条件的没有重复数字的五位数?(1)比21 034大的偶数;(2)左起第二、四位是奇数的偶数.解:(1)法一:可分五类,当末位数字是0,而首位数字是2时,有6个五位数;当末位数字是0,而首位数字是3或4时,有A12A33=12个五位数;当末位数字是2,而首位数字是3或4时,有A12A33=12个五位数;当末位数字是4,而首位数字是2时,有3个五位数;当末位数字是4,而首位数字是3时,有A33=6个五位数;故共有6+12+12+3+6=39个满足条件的五位数.法二:不大于21 034的偶数可分为三类:万位数字是1的偶数,有A13·A33=18个五位数;万位数字是2,而千位数字是0的偶数,有A22个五位数;还有一个为21 034本身.而由0,1,2,3,4组成的五位偶数个数有A44+A12·A13·A33=60个,故满足条件的五位偶数的个数为60-18-2-1=39.(2)法一:可分为两类:末位数是0,个数有A22·A22=4;末位数是2或4,个数有A22·A12=4;故共有A22·A22+A22·A12=8个满足条件的五位数.法二:第二、四位从奇数1,3中取,有A22个;首位从2,4中取,有A12个;余下的排在剩下的两位,有A22个,故共有A22A12A22=8个满足条件的五位数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时跟踪检测(六十一)排列与组合[A级基础题——基稳才能楼高]1.将3张不同的奥运会门票分给10名同学中的3人,每人1张,则不同分法的种数是()A.2 160B.720C.240 D.120解析:选B分步来完成此事.第1张有10种分法;第2张有9种分法;第3张有8种分法,则共有10×9×8=720种分法.2.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40 B.16C.13 D.10解析:选C分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.3.(2019·安徽调研)用数字0,1,2,3,4组成没有重复数字且大于3 000的四位数,这样的四位数有()A.250个B.249个C.48个D.24个解析:选C①当千位上的数字为4时,满足条件的四位数有A34=24(个);②当千位上的数字为3时,满足条件的四位数有A34=24(个).由分类加法计数原理得所有满足条件的四位数共有24+24=48(个),故选C.4.(2019·漳州八校联考)若无重复数字的三位数满足条件:①个位数字与十位数字之和为奇数,②所有数位上的数字和为偶数,则这样的三位数的个数是()A.540 B.480C.360 D.200解析:选D由个位数字与十位数字之和为奇数知个位数字、十位数字1奇1偶,有C15 C15A22=50种排法;所有数位上的数字和为偶数,则百位数字是奇数,有C14=4种满足题意的选法,故满足题意的三位数共有50×4=200(个).5.(2019·福州高三质检)福州西湖公园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,不同的安排方案共有() A.90种B.180种C.270种D.360种解析:选B可分两步:第一步,甲、乙两个展区各安排一个人,有A26种不同的安排方案;第二步,剩下两个展区各两个人,有C24C22种不同的安排方案,根据分步乘法计数原理,不同的安排方案的种数为A26C24C22=180.故选B.6.(2019·北京朝阳区一模)某单位安排甲、乙、丙、丁4名工作人员从周一到周五值班,每天有且只有1人值班,每人至少安排一天且甲连续两天值班,则不同的安排方法种数为()A.18 B.24C.48 D.96解析:选B甲连续两天值班,共有(周一,周二),(周二,周三),(周三,周四),(周四,周五)四种情况,剩下三个人进行全排列,有A33=6种排法,因此共有4×6=24种排法,故选B.[B级保分题——准做快做达标]1.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()A.3 B.4C.6 D.8解析:选D先考虑递增数列,以1为首项的等比数列为1,2,4;1,3,9.以2为首项的等比数列为2,4,8.以4为首项的等比数列为4,6,9.同理可得到4个递减数列,∴所求的数列的个数为2(2+1+1)=8.2.(2019·芜湖一模)某校高一开设4门选修课,有4名同学选修,每人只选1门,恰有2门课程没有同学选修,则不同的选课方案有()A.96种B.84种C.78种D.16种解析:选B先确定选的两门,选法种数为C24=6,再确定学生选的情况,选法种数为24-2=14,所以不同的选课方案有6×14=84(种),故选B.3.(2019·东莞质检)将甲、乙、丙、丁4名学生分配到三个不同的班,每个班至少1名,则不同分配方法的种数为()A.18 B.24C.36 D.72解析:选C先将4人分成三组,有C24=6种方法,再将三组同学分配到三个班级有A33=6种分配方法,依据分步乘法计数原理可得不同分配方法有6×6=36(种),故选C.4.(2019·衡水二中检测)用红、黄、蓝三种颜色给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则不同的涂色方案的种数是()A.12 B.24C.30 D.36解析:选C按顺序涂色,第一个圆有三种选择,第二个圆有二种选择,若前三个圆用了三种颜色,则第三个圆有一种选择,后三个圆也用了三种颜色,共有3×2×1×C12×C12=24(种),若前三个圆用了两种颜色,则后三个圆也用了两种颜色,所以共有3×2=6(种).综上可得不同的涂色方案的种数是30.5.(2019·云南民大附中期中)将5位同学分别保送到北京大学、上海交通大学、中山大学这3所大学就读,每所大学至少保送1人,则不同的保送方法共有()A.150种B.180种C.240种D.540种解析:选A先将5人分成三组,3,1,1或2,2,1,共有C35+C15×C24×C222!=25种分法;再将三组学生分到3所学校有A33=6种分法.故共有25×6=150种不同的保送方法.故选A.6.(2019·东北三省四市一模)6本不同的书在书架上摆成一排,要求甲、乙两本书必须摆放在两端,丙、丁两本书必须相邻,则不同的摆放方法有()A.24种B.36种C.48种D.60种解析:选A由题意知将甲、乙两本书放在两端有A22种放法,将丙、丁两本书捆绑,与剩余的两本书排列,有A33种放法,将相邻的丙、丁两本书排列,有A22种放法,所以不同的摆放方法有A22×A33×A22=24(种),故选A.7.(2019·河南三门峡联考)5名大人带2个小孩排队上山,小孩不排在一起也不排在头尾,则不同的排法种数有()A.A55A24种B.A55A25种C.A55A26种D.(A77-4A66)种解析:选A 首先5名大人先排队,共有A 55种排法,然后把2个小孩插进中间的4个空中,共有A 24种排法,根据分步乘法计数原理,共有A 55A 24种排法,故选A.8.(2019·临海白云高级中学月考)2个男生和4个女生排成一排,其中男生必须相邻且不排两端的不同排法有( )A .A 44A 13A 22种B .A 44A 15A 22种C .A 66A 24种D .A 66A 24·A 22种 解析:选A 4个女生站成一排有A 44种排法,2个男生相邻,故视作一体,采用插空法,将其放在4个女生的3个空中(不含两端),有A 13种排法,2个男生站成一排有A 22种排法,根据分步乘法计数原理,不同排法种数为A 44A 13A 22,故选A.9.现有5种不同颜色的染料,要对如图所示的四个不同区域进行涂色,要求有公共边的两个区域不能使用同一种颜色,则不同的涂色方法的种数是( )A .120B .140C .240D .260解析:选D 由题意,先涂A 处共有5种涂法,再涂B 处有4种涂法,再涂C 处,若C 处与A 处所涂颜色相同,则C 处有1种涂法,D 处有4种涂法;若C 处与A 处所涂颜色不同,则C 处有3种涂法,D 处有3种涂法,由此可得不同的涂色方法有5×4×(1×4+3×3)=260(种),故选D.10.(2019·沈阳东北育才学校月考)已知A ,B ,C ,D 四个家庭各有2名小孩,四个家庭准备乘甲、乙两辆汽车出去游玩,每车限坐4名小孩(乘同一辆车的4名小孩不考虑位置),其中A 家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4名小孩中恰有2名来自同一个家庭的乘坐方式共有( )A .18种B .24种C .36种D .48种解析:选B 若A 家庭的孪生姐妹乘坐甲车,则甲车中另外2名小孩来自不同的家庭,有C 23C 12C 12=12种乘坐方式,若A 家庭的孪生姐妹乘坐乙车,则甲车中来自同一个家庭的2名小孩来自B ,C ,D 家庭中的一个,有C 13C 12C 12=12种乘坐方式,所以共有12+12=24种乘坐方式,故选B.11.已知集合M ={1,-2,3},N ={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在直角坐标系中,第一、二象限不同点的个数为________.解析:分两类:一是以集合M 中的元素为横坐标,以集合N 中的元素为纵坐标有3×2=6个不同的点;二是以集合N 中的元素为横坐标,以集合M 中的元素为纵坐标有4×2=8个不同的点,故由分类加法计数原理得共有6+8=14个不同的点.答案:1412.(2019·洛阳高三统考)某校有4个社团向高一学生招收新成员,现有3名同学,每人只选报1个社团,恰有2个社团没有同学选报的报法有________种(用数字作答).解析:法一:第一步,选2名同学报名某个社团,有C23·C14=12种报法;第二步,从剩余的3个社团里选一个社团安排另一名同学,有C13·C11=3种报法.由分步乘法计数原理得共有12×3=36种报法.法二:第一步,将3名同学分成两组,一组1人,一组2人,共C23种方法;第二步,从4个社团里选取2个社团让两组同学分别报名,共A24种方法.由分步乘法计数原理得共有C23·A24=36(种).答案:3613.(2018·全国卷Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)解析:法一:(直接法)按参加的女生人数可分两类:只有1位女生参加有C12C24种,有2位女生参加有C22C14种.故共有C12C24+C22C14=2×6+4=16(种).法二:(间接法)从2位女生,4位男生中选3人,共有C36种情况,没有女生参加的情况有C34种,故共有C36-C34=20-4=16(种).答案:1614.(2019·江西师大附中月考)用数字1,2,3组成的五位数中,数字1,2,3均出现的五位数共有________个(用数字作答).解析:使用间接法,首先计算全部的情况数目,共3×3×3×3×3=243(个),其中包含数字全部相同(即只有1个数字)的有3个,还有只含有2个数字的有C23·(2×2×2×2×2-2)=90(个).故1,2,3均出现(即含有3个数字)的五位数有243-3-90=150(个).答案:15015.从4名男同学中选出2人,6名女同学中选出3人,并将选出的5人排成一排.(1)共有多少种不同的排法?(2)若选出的2名男同学不相邻,共有多少种不同的排法?(用数字表示)解:(1)从4名男生中选出2人,有C24种选法,从6名女生中选出3人,有C36种选法,根据分步乘法计数原理知选出5人,再把这5个人进行排列共有C24C36A55=14 400(种).(2)在选出的5个人中,若2名男生不相邻,则第一步先排3名女生,第二步再让男生插空,根据分步乘法计数原理知共有C24C36A33A24=8 640(种).16.用0,1,2,3,4这五个数字,可以组成多少个满足下列条件的没有重复数字的五位数?(1)比21 034大的偶数;(2)左起第二、四位是奇数的偶数.解:(1)可分五类,当末位数字是0,而首位数字是2时,有6个五位数;当末位数字是0,而首位数字是3或4时,有C12A33=12个五位数;当末位数字是2,而首位数字是3或4时,有C12A33=12个五位数;当末位数字是4,而首位数字是2时,有3个五位数;当末位数字是4,而首位数字是3时,有A33=6个五位数.故共有6+12+12+3+6=39个满足条件的五位数.(2)可分为两类:末位数是0,个数有A22·A22=4;末位数是2或4,个数有A22·C12=4.故共有4+4=8个满足条件的五位数.。

相关文档
最新文档