2018-2019学年人教版八年级数学下册习题课件:期中达标测试题 (共29张PPT)
2018-2019学年人教新版山东省临沂市平邑县八年级第二学期期中数学试卷及答案 含解析
2018-2019学年山东省临沂市平邑县八年级第二学期期中数学试卷一、选择题(共12小题)1.若二次根式有意义,则a的取值范围是()A.a≥2B.a≤2C.a>2D.a≠22.下列二次根式中,属于最简二次根式的是()A.B.C.D.3.下列计算正确的是()A.B.C.D.24.正方形具有而菱形不一定具有的性质是()A.四个角为直角B.对角线互相垂直C.对角线互相平分D.对边平行且相等5.以下各组数据为三角形的三边长,能构成直角三角形的是()A.B.2,3,4C.2,2,1D.4,5,66.如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+7.如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC长为半径作圆弧交边AB于点D.若AC=3,BC=4.则BD的长是()A.2B.3C.4D.58.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1 cm B.2 cm C.3 cm D.4 cm9.如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12B.16C.20D.2410.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6B.8C.10D.1211.如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.16﹣8B.﹣12+8C.8﹣4D.4﹣212.如图,Rt△ABC中,∠C=90°,AC=3,BC=4.分别以AB、AC、BC为边在AB 的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S4.则S1+S2+S3+S4等于()A.14B.16C.18D.20二、填空题13.比较大小:.(填“>、<、或=”)14.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B 的距离为12m,这棵大树在折断前的高度为.15.某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使点C均可直接到达A,B两点,测量找到AC和BC的中点D,E,测得DE的长为1200m,则隧道AB的长度为米.16.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是.17.如图所示,直线经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E.若DE=5,BF=3,则EF的长为.18.观察下列各式:①;②=;③,…请用含n (n≥1)的式子写出你猜想的规律:.三、解答题(满分66分)19.计算(1)(2)20.如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F.求证:OE=OF.21.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.(1)在图①中,以格点为端点,画线段MN=;(2)在图②中,以格点为顶点,画正方形ABCD,使它的面积为10.22.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.23.如图,在△ABC中,点O是AC边上一动点,过点O作BC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F(1)求证:EO=FO;(2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.(3)在第(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,请直接写出凹四边形ABCE的面积为.24.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.求证:AM=AD+MC.【探究展示】(2)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,试判断AM=AD+MC是否成立?若成立,请给出证明,若不成立,请说明理由;【拓展延伸】(3)若(2)中矩形ABCD两边AB=6,BC=9,求AM的长.参考答案一、选择题(本题共12小题.每小题3分,共36分)1.若二次根式有意义,则a的取值范围是()A.a≥2B.a≤2C.a>2D.a≠2【分析】根据负数没有平方根列出关于a的不等式,求出不等式的解集确定出a的范围即可.解:∵二次根式有意义,∴a﹣2≥0,即a≥2,则a的范围是a≥2,故选:A.2.下列二次根式中,属于最简二次根式的是()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解:A、被开方数含分母,故A错误;B、被开方数含分母,故B错误;C、被开方数含能开得尽方的因数,故C错误;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D正确;故选:D.3.下列计算正确的是()A.B.C.D.2【分析】根据二次根式的加减法对A、C、D进行判断;根据二次根式的乘法法则对C 进行判断.解:A、原式=2,所以A选项的计算错误;B、原式=3,所以C选项的计算错误;C、原式=2,所以C选项的计算正确;D、2与不能合并,所以D选项的计算错误.故选:C.4.正方形具有而菱形不一定具有的性质是()A.四个角为直角B.对角线互相垂直C.对角线互相平分D.对边平行且相等【分析】举出正方形具有而菱形不一定具有的所有性质,即可得出答案.解:正方形具有而菱形不一定具有的性质是:①正方形的对角线相等,而菱形不一定对角线相等,②正方形的四个角是直角,而菱形的四个角不一定是直角,故选:A.5.以下各组数据为三角形的三边长,能构成直角三角形的是()A.B.2,3,4C.2,2,1D.4,5,6【分析】由(2)2+(2)2=16=42,可得出三边长为2,2,4的三角形为直角三角形,此题得解.解:∵(2)2+(2)2=16=42,∴三边长为2,2,4的三角形为直角三角形.故选:A.6.如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+【分析】点A在以O为圆心,OB长为半径的圆上,所以在直角△BOC中,根据勾股定理求得圆O的半径OA=OB=,然后由实数与数轴的关系可以求得a的值.解:如图,点A在以O为圆心,OB长为半径的圆上.∵在直角△BOC中,OC=2,BC=1,则根据勾股定理知OB===,∴OA=OB=,∴a=﹣1﹣.故选:A.7.如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC长为半径作圆弧交边AB于点D.若AC=3,BC=4.则BD的长是()A.2B.3C.4D.5【分析】首先利用勾股定理可以算出AB的长,再根据题意可得到AD=AC,根据BD=AB﹣AD即可算出答案.解:∵AC=3,BC=4,∴AB===5,∵以点A为圆心,AC长为半径画弧,交AB于点D,∴AD=AC,∴AD=3,∴BD=AB﹣AD=5﹣3=2.故选:A.8.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1 cm B.2 cm C.3 cm D.4 cm【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的长.解:∵AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=3cm,∵BC=AD=5cm,∴EC=BC﹣BE=5﹣3=2cm,故选:B.9.如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12B.16C.20D.24【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.解:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长=4BC=4×6=24.故选:D.10.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6B.8C.10D.12【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB﹣BF,即可得到结果.解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故选:C.11.如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.16﹣8B.﹣12+8C.8﹣4D.4﹣2【分析】根据正方形的面积求出两个正方形的边长,从而求出AB、BC,再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.解:∵两张正方形纸片的面积分别为16cm2和12cm2,∴它们的边长分别为=4cm,=2cm,∴AB=4cm,BC=(2+4)cm,∴空白部分的面积=(2+4)×4﹣12﹣16,=8+16﹣12﹣16,=(﹣12+8)cm2.故选:B.12.如图,Rt△ABC中,∠C=90°,AC=3,BC=4.分别以AB、AC、BC为边在AB 的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S4.则S1+S2+S3+S4等于()A.14B.16C.18D.20【分析】过F作AM的垂线交AM于D,通过证明S1+S2+S3+S4=Rt△ABC的面积×3,依此即可求解.解:过F作AM的垂线交AM于D,可证明Rt△ADF≌Rt△ABC,Rt△DFK≌Rt△CAT,所以S2=S Rt△ABC.由Rt△DFK≌Rt△CAT可进一步证得:Rt△FPT≌Rt△EMK,∴S3=S△FPT,又可证得Rt△AQF≌Rt△ACB,∴S1+S3=S Rt△AQF=S Rt△ABC.易证Rt△ABC≌Rt△EBN,∴S4=S Rt△ABC,∴S1+S2+S3+S4=(S1+S3)+S2+S4=S Rt△ABC+S Rt△ABC+S Rt△ABC=S Rt△ABC×3=4×3÷2×3=18.故选:C.二、填空题(每小题3分,满分18分)13.比较大小:<.(填“>、<、或=”)【分析】先把两个实数平方,然后根据实数的大小比较方法即可求解.解:∵()2=12,(3)2=18,而12<18,∴2<3.故答案为:<.14.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B 的距离为12m,这棵大树在折断前的高度为18m.【分析】根据大树的折断部分与未断部分、地面恰好构成直角三角形,再根据勾股定理求出AC的长,进而可得出结论.解:∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m,AB=12m,∴AC===13(m),∴这棵树原来的高度=BC+AC=5+13=18(m).答:棵树原来高18m.故答案为:18米.15.某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使点C均可直接到达A,B两点,测量找到AC和BC的中点D,E,测得DE的长为1200m,则隧道AB的长度为2400米.【分析】由D为AC的中点、E为BC的中点,可得出DE为△ABC的中位线,根据DE 的长度结合三角形中位线定理即可得出AB的长度.解:∵D为AC的中点,E为BC的中点,∵DE为△ABC的中位线,又∵DE=1200m,∴AB=2DE=2400m.故答案是:2400.16.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是(5,4).【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.解:∵菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,∴AB=5,∴DO=4,∴点C的坐标是:(5,4).故答案为:(5,4).17.如图所示,直线经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E.若DE=5,BF=3,则EF的长为8.【分析】首先证明∠ABF=∠EAD,再利用AAS定理证明△AFB≌△DEA,进而得到AF=ED=5,AE=BF=3,然后再根据线段的和差关系可得答案.解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠BAF+∠EAD=90°,∵BF⊥a,DE⊥a,∴∠AED=∠AFB=90°∴∠BAF+∠ABF=90°,∴∠ABF=∠EAD,∴△AFB≌△DEA,∴AF=ED=5,AE=BF=3,∴EF=AF+AE=5+3=8,故答案为:818.观察下列各式:①;②=;③,…请用含n (n≥1)的式子写出你猜想的规律:=(n+1).【分析】从给出的三个式子中,我们可以发现计算出的等号后面的系数为等号前面的根号里的整数加分数的分子,根号里的还是原来的分数,依此可以找出规律.解:从①②③三个式子中,我们可以发现计算出的等号后面的系数为等号前面的根号里的整数加分数的分子,根号里的还是原来的分数,即=(n+1).三、解答题(满分66分)19.计算(1)(2)【分析】(1)先根据二次根式的乘除法则运算,然后化简后合并即可;(2)先根据二次根式的除法法则和完全平方公式运算,然后合并即可.解:(1)原式=6﹣﹣+=6﹣﹣+=5﹣;(2)原式=2﹣+1﹣2+3=2﹣+4﹣2=4﹣.20.如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F.求证:OE=OF.【分析】由平行四边形性质可证得△AOE≌△COF,则可证得OE=OF.【解答】证明:∵四边形ABCD为平行四边形,∴AB∥CD,OA=OC,∴∠EAO=∠FCO,在△AOE和△COF中∴△AOE≌△COF(ASA),∴OE=OF.21.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.(1)在图①中,以格点为端点,画线段MN=;(2)在图②中,以格点为顶点,画正方形ABCD,使它的面积为10.【分析】(1)以3和2为直角边作出直角三角形,斜边即为所求;(2)以3和1为直角边作出直角三角形,斜边为正方形的边长,如图②所示.解:(1)如图①所示:(2)如图②所示.22.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.【分析】(1)利用平行线的性质及中点的定义,可利用AAS证得结论;(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,∴AE=DE,在△AFE和△DBE中,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵AD为BC边上的中线∴DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S菱形ADCF=AC▪DF=×4×5=10.23.如图,在△ABC中,点O是AC边上一动点,过点O作BC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F(1)求证:EO=FO;(2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.(3)在第(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,请直接写出凹四边形ABCE的面积为24.【分析】(1)由平行线的性质和角平分线的定义得出∠OEC=∠OCE,证出EO=CO,同理得出FO=CO,即可得出EO=FO;(2)由对角线互相平分证明四边形CEAF是平行四边形,再由对角线相等即可得出结论;(3)先根据勾股定理求出AC,得出△ACE的面积=AE×EC,再由勾股定理的逆定理证明△ABC是直角三角形,得出△ABC的面积=AB•AC,凹四边形ABCE的面积=△ABC的面积﹣△ACE的面积,即可得出结果.【解答】(1)证明:∵EF∥BC,∴∠OEC=∠BCE,∵CE平分∠ACB,∴∠BCE=∠OCE,∴∠OEC=∠OCE,∴EO=CO,同理:FO=CO,∴EO=FO;(2)解:当点O运动到AC的中点时,四边形CEAF是矩形;理由如下:由(1)得:EO=FO,又∵O是AC的中点,∴AO=CO,∴四边形CEAF是平行四边形,∵EO=FO=CO,∴EO=FO=AO=CO,∴EF=AC,∴四边形CEAF是矩形;(3)解:由(2)得:四边形CEAF是矩形,∴∠AEC=90°,∴AC===5,△ACE的面积=AE×EC=×3×4=6,∵122+52=132,即AB2+AC2=BC2,∴△ABC是直角三角形,∠BAC=90°,∴△ABC的面积=AB•AC=×12×5=30,∴凹四边形ABCE的面积=△ABC的面积﹣△ACE的面积=30﹣6=24;故答案为:24.24.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.求证:AM=AD+MC.【探究展示】(2)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,试判断AM=AD+MC是否成立?若成立,请给出证明,若不成立,请说明理由;【拓展延伸】(3)若(2)中矩形ABCD两边AB=6,BC=9,求AM的长.【分析】(1)先构造出△ADE≌△NCE,即可得出结论;(2)同(1)的方法即可得出结论;(3)设出MC=x,利用(2)的结论得出AM=9+x,再利用勾股定理建立方程求出CM 即可得出结论.解:(1)如图1,延长AE,BC相交于N,∵四边形ABCD是正方形,∴AD∥BC,∴∠DAE=∠ENC,∵AE平分∠DAE,∴∠∠DAE=∠MAE,∴∠ENC=∠MAE,在△ADE和△NCE中,,∴△ADE≌△NCE,∴AD=CN,∴AM=MN=NC+MC=AD+MC;(2)结论AM=AD+CM仍然成立,理由:如图2,延长AE,BC相交于N,∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠ENC,∵AE平分∠DAE,∴∠DAE=∠MAE,∴∠ENC=∠MAE,在△ADE和△NCE中,,∴△ADE≌△NCE,∴AD=CN,∴AM=MN=NC+MC=AD+MC;(3)设MC=x,则BM=BC﹣CN=9﹣x,由(2)知,AM=AD+MC=9+x,在Rt△ABM中,AM2﹣BM2=AB2,(9+x)2﹣(9﹣x)2=36,∴x=1,∴AM=AD+MC=10.。
四川省南充市白塔中学2018-2019学年八年级第二学期下册期中考试数学试题(含答案)
四川省南充市白塔中学2018-2019年度第二学期八年级下册期中考试数学测试卷一、选择题:(每题3分,共30分)1.下列运算错误的是( )A. =B. =C. =D. 2(2=【答案】A【解析】【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.【详解】解:AB ,计算正确,故本选项错误;CD 、()2=2,计算正确,故本选项错误;故选A .【点睛】本题考查了二次根式的加减及乘除运算,解答本题的关键是掌握二次根式的加减及乘除法则.2.若k ,m ,n =,则下列关于k ,m ,n 的大小关系,正确的是( )A. m <k <nB. m =n >kC. m <n <kD. k <m =n【答案】A【解析】分析】化为最简二次根式,求得k 、m 、n 的值,比较即可解答.=∴k=3,m=2,n=5,∴m <k <n ,故选A.解决问题的关键.3.如图,矩形ABCD 的两条对角线相交于点O ,∠AOB=60°,AB=2,则矩形的对角线AC 的长是( )A. 2B. 4C.D. 【答案】B【解析】【分析】 根据矩形的性质可得AC=BD ,OA=OC ,OD=OB ,由此可得OA=OB ,再由∠AOB=60°,根据有一个角为60°的等腰三角形是等边三角形,即可判定△AOB 是等边三角形,所以OA=OB=AB=2,即可得AC=2OA=4.【详解】∵矩形ABCD ,∴AC=BD ,OA=OC ,OD=OB ,∴OA=OB ,∵∠AOB=60°,∴△AOB 是等边三角形,∴OA=OB=AB=2,∴AC=2OA=2×2=4,故选B .【点睛】本题考查了矩形的性质,熟练运用矩形的性质是解决问题的关键.4.如图,在Rt ABC ∆中,9AB =,6BC =,90B ∠=︒,将ABC ∆折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A. 52B. 53C. 4D. 5【答案】C【解析】【分析】设BN=x ,则由折叠的性质可得DN=AN=9-x ,根据中点的定义可得BD=3,在Rt △BND 中,根据勾股定理可得关于x 的方程,解方程即可求解.【详解】设BN x =,则9AN x =-.由折叠的性质,得9DN AN x ==-.因为点D 是BC 的中点,所以3BD =.在Rt NBD ∆中,由勾股定理,得222BN BD DN +=,即()22239x x +=-,解得4x =,故线段BN 的长为4.故选C.【点睛】此题考查了折叠的性质,勾股定理,中点的定义以及方程思想,熟练掌握折叠的性质及勾股定理是解答本题的关键.5. 下列命题中,真命题是A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 对角线互相平分的四边形是平行四边形D. 对角线互相垂直平分的四边形是正方形【答案】C【解析】试题分析:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B、对角线互相垂直的平行四边形是菱形;故本选项错误;C、对角线互相平分的四边形是平行四边形;故本选项正确;D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误.故选C.6.若x=﹣3,则1等于( )A. ﹣1B. 1C. 3D. ﹣3【答案】B【解析】分析:将x=-3代入二次根式进行计算即可得出答案.=-=,故选B.详解:当x=-3时,原式=1121点睛:本题主要考查的就是二次根式的计算法则,属于基础题型.明确二次根式的计算法则是解题的关键.7.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,则水是()尺.A. 3.5B. 4C. 4.5D. 5【答案】C【解析】试题分析:如图,设水深h尺,在Rt△ABC中,AB=h,AC=h+3,BC=6,由勾股定理得,AC2=AB2+BC2,即(h+3)2=h2+62,∴h2+6h+9=h2+36,6h=27,解得h=4.5.故答案选C.考点:勾股定理.8.如图,在菱形ABCD中,E,F分别在AB,CD上,且BE=DF,EF与BD相交于点O,连结AO.若∠CBD=35°,则∠DAO的度数为()A. 35°B. 55°C. 65°D. 75°【答案】B【解析】试题分析:由菱形的性质以及已知条件可证明△BOE≌△DOF,所以可得BO=DO,即O为BD的中点,进而可得AO⊥BD,再由∠CBD=35°,则可以求出∠DAO的度数.解:∵四边形ABCD是菱形,∴AB∥CD,∴∠OEB=∠OFD,∠EBO=∠ODF,∵BE=DF,∴在△BOE和△DOF中,,∴△BOE≌△DOF,∴BO=OD ,∴AO⊥BD ,∴∠AOD=90°,∵∠CBD=35°,∴∠ADO=35°,∴∠DAO=55°,故选B .点评:本题考查了菱形的性质、全等三角形的判定和性质,证明出AO⊥BD 是解题的关键.9.若△ABC 三边长a ,b ,c +|1b a --|+(5c -)2=0,则△ABC 是( )A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形【答案】C【解析】【分析】 根据非负数的性质求得a 、b 、c 的值,再根据勾股定理的逆定理即可解答.【详解】+|b-a-1|+(c-5)2=0,∴a+b-25=0,b-a-1=0,c-5=0,∴a=12,b=13,c=5,∵222169a c b +==,∴△ABC 直角三角形.故选C.【点睛】本题考查了非负数的性质及勾股定理的逆定理,根据非负数的性质求得a 、b 、c 的值是解决问题的关键.10.如图,矩形ABCD 的面积为20cm 2,对角线交于点O ;以AB 、AO 为邻边做平行四边形AOC 1B ,对角线交于点O 1;以AB 、AO 1为邻边做平行四边形AO 1C 2B ;…依此类推,则平行四边形AO 4C 5B 的面积为A. 54cm 2B. 58cm 2C. 516cm 2D. 532cm 2 【答案】B【解析】【详解】根据矩形的对角线互相平分,平行四边形的对角线互相平分可得下一个图形的面积是上一个图形面积的12. 设矩形ABCD 的面积为S ,则S =20cm 2.∵O 为矩形ABCD 的对角线的交点,∴平行四边形AOC 1B 底边AB 上的高等于BC 的12 ∴平行四边形AOC 1B 的面积12S =. ∵平行四边形AOC 1B 的对角线交于点O 1, ∴平行四边形AO 1C 2B 的边AB 上的高等于平行四边形AOC1B 底边AB 上的高的12, ∴平行四边形AO 1C 2B 的面积=12⨯12S =212S , ……依此类推,平行四边形AO 4C 5B 的面积55205228S ===(cm 2). 二、填空题:(每题3分,共24分)11.3-x ,则x 的取值范围是__________.【答案】3x ≤【解析】﹣x,∴x-3≤0,解得:x≤3,12..E为□ABCD边AD上一点,将ABE沿BE翻折得到FBE,点F在BD上,且EF=DF.若∠C=52°,则∠ABE=____.【答案】51°【解析】【分析】由平行四边形的性质和折叠的性质得出∠BFE=∠A=52°,∠FBE=∠ABE,由等腰三角形的性质和三角形的外角性质得出∠EDF=∠DEF=12∠BFE=26°,由三角形内角和定理求出∠ABD=102°,即可得出∠ABE的度数.【详解】∵四边形ABCD为平行四边形,∴∠A=∠C=52°,AD∥B C.由折叠的性质可得∠ABE=∠FBE,∠A=∠BFE=52°,∵EF=DF,∴∠FED=∠EDF,∴∠EFB=∠FED+∠EDF=2∠EDF=52°,即∠EDF=26°. ∵AD∥BC,∴∠CBD=∠EDF=26°,∠ABC=180°-∠A=128°,∴∠ABF=∠ABC-∠CBD=128°-26°=102°.又∵∠ABE=∠FBE,∴∠ABE=12∠ABF=12×102°=51°.【点睛】本题是图形翻折变换的题目,掌握翻折变换的性质以及平行四边形的性质是关键.13.如图,阴影部分是两个正方形,其他三个图形是一个正方形和两个直角三角形,则阴影部分的面积和为______.【答案】81 【解析】【分析】两个阴影正方形的面积和等于直角三角形另一未知边的平方.利用勾股定理即可求出.【详解】两个阴影正方形的面积和为152-122=81,故答案为81.【点睛】本题考查了正方形的面积以及勾股定理的应用,准确识图是解题的关键.14.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处,当△CEB'为直角三角形时,BE的长为 .【答案】3或32.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得3x2 =,∴BE=32;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为32或3.故答案为:32或3.15.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若DE=4, 则AB长为_____.【答案】8【解析】【分析】根据垂线的性质可知△ADC是直角三角形,再Rt△ADC中,利用直角三角形斜边上的中线是斜边的一半可得AC=8;由AB=AC即可得AB=8.【详解】∵在△ABC中,AD⊥BC,垂足为D,∴△ADC是直角三角形;∵E是AC的中点.∴DE=12AC(直角三角形的斜边上的中线是斜边的一半);又∵DE=4,AB=AC,∴AB=8;故答案为8.【点睛】本题考查了直角三角形斜边上的中线的性质.熟知直角三角形的斜边上的中线是斜边的一半是解决问题的关键.16.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF 的长为______.【答案】4-【解析】∵四边形ABCD是正方形,其边长为4,BD是其对角线,∴∠BAD=90°,∠ABD=∠ADB=45°,BD=又∵∠BAE=22.5°,∴∠DAE=90°-22.5°=67.5°,∴∠AED=180°-45°-67.5°=67.5°=∠DAE,∴DE=AD=4,∴BE=4,∵EF⊥AB于点F,∠ABD=45°,∴△BEF是等腰直角三角形,∴4=-故答案为4-17.计算:3=___________【答案】1【解析】【分析】根据实数的乘除法混合运算法则计算即可.【详解】原式=1333=⨯=1.故答案为1.【点睛】本题考查了实数的混合运算.解题的关键是掌握实数混合运算的顺序与法则.18.如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD的中点,P是线段BD上的一个动点,则PM+PN的最小值是____.【答案】5【解析】【详解】试题分析:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵四边形ABCD是菱形,∴CP=12AC=3,BP=12BD=4,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,考点:1、菱形的性质;2、轴对称-最短路线问题三、解答题(共计66分)19.计算:25|.【答案】【解析】试题分析:先进行二次根式的乘法运算,再去绝对值,然后把二次根式化为最简二次根式后合并即可.试题解析:原式.20.为了增强学生体质,学校鼓励学生多参加体育锻炼,小华同学马上行动,每天围绕小区进行晨跑锻炼.该小区外围道路近似为如图所示四边形ABCD,已知四边形ABED为正方形,∠DCE=45°,AB=100米.小华某天绕该道路晨跑5 1.41)【答案】小华该天晨跑的路程约为2705米【解析】分析:由正方形的性质得△DEC是等腰直角三角形,然后利用勾股定理求出CD的长度,然后求出小胖每天晨跑的路程.详解:∵四边形ABCD是正方形,∴DE=AB=BE=AD=100,∠DEC=∠DEB=90°,又∵∠DCE=45°,∴△DEC是等腰直角三角形,∴EC=DE=100,∴DC==5(AB+BC+CD+AD)=5(100+100+100+100)=5(400+≈2705(米),∴小华该天晨跑的路程约为2705米.点睛:本题主要考查了正方形的性质和解直角三角形的应用,解题的关键是利用勾股定理求出DC的长度,此题难度不大.21.如图,在平行四边形ABCD中,∠ABC=45°,E、F分别在CD和BC的延长线上,AE∥BD,∠EFC =30°,AB=2.求CF的长.【答案】.【解析】【分析】首先证明四边形ABDE是平行四边形,可得AB=DE=CD,即D为CE中点,然后再得CE=4,再利用三角函数可求出HF和CH的长即可.【详解】四边形ABCD是平行四边形,=,//∴,AB DCAB CDAE DB,//∴四边形ABDE是平行四边形,∴==,即D为CE中点,AB DE CDAB=,2∴=,CE4//AB CD ,45ECF ABC ∴∠=∠=,过E 作EH BF ⊥于点H ,4CE =,45ECF ∠=,EH CH ∴==,30EFC ∠=,FH ∴=CF ∴=.【点睛】本题考查了平行四边形的判定与性质,以及三角函数的应用,关键是掌握平行四边形对边相等. 22.如图,四边形ABCD 是菱形,,BE AD BF CD ⊥⊥,垂足分别为点,E F .()1求证:BE BF =;()2当菱形ABCD 的对角线8AC =,BD=6时,求BE 的长.【答案】(1)见解析;(2)245BE =. 【解析】【分析】(1)根据菱形的邻边相等,对角相等,证明△ABE 与△CBF 全等,再根据全等三角形对应边相等即可证明;(2)先根据菱形的对角线互相垂直平分,求出菱形的边长,再根据菱形的面积等于对角线乘积的一半和底边乘以高两种求法即可求出.【详解】(1)证明:四边形ABCD 是菱形,BAE BCF ∴∠=∠, BA BC =又BE AD ⊥,BF CD ⊥AEB CFB ∴∠=∠∴△ABE ≌△CBF(AAS)BE BF ∴=(2)解:四边形ABCD 是菱形,142OA AC ∴==,132OB BD ==,90AOB ∠︒=,AD AB =,5AD AB ∴===,1··2ABCD S AD BE AC BD 菱形==, 15862BE ∴⨯⨯=, 245BE ∴=. 故答案为(1)见解析;(2)245. 【点睛】本题考查了全等三角形的性质和判定,菱形的性质和面积,注意:菱形的四条边都相等,菱形的对角相等.23.当=1x x 2-4x +2的值. 【答案】1【解析】试题分析:先化简x ,然后代入求值.试题解析:解:2x ==+原式=2(2)2x --=2(22)2-=3-2=1.24.已知:如图,AB=3,AC=4,AB ⊥AC ,BD=12,CD=13,(1)求BC 的长度;(2)证明:BC ⊥BD .【答案】(1)5;(2)证明见解析.【解析】(1)在Rt△ABC中,直接利用勾股定理即可求出BC 的长;(2)利用勾股定理的逆定理判断出△BCD为直接三角形,其中∠CBD=90°,即可得证.25. 如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A 重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.【答案】(1)见解析(2)①1;②2【解析】试题分析:(1)利用菱形的性质和已知条件可证明四边形AMDN的对边平行且相等即可;(2)①有(1)可知四边形AMDN是平行四边形,利用有一个角为直角的平行四边形为矩形即∠DMA=90°,所以AM=12AD=1时即可;②当平行四边形AMND的邻边AM=DM时,四边形为菱形,利用已知条件再证明三角形AMD是等边三角形即可.试题解析:(1)证明:∵四边形ABCD是菱形,∴ND∥AM ,∴∠NDE=∠MAE ,∠DNE=∠AME ,又∵点E 是AD 边的中点,∴DE=AE ,∴△NDE≌△MAE ,∴ND=MA ,∴四边形AMDN 是平行四边形;(2)解:①当AM 的值为1时,四边形AMDN 是矩形.理由如下: ∵AM=1=12AD , ∴∠ADM=30°∵∠DAM=60°,∴∠AMD=90°,∴平行四边形AMDN 是矩形;②当AM 的值为2时,四边形AMDN 是菱形.理由如下:∵AM=2,∴AM=AD=2,∴△AMD 是等边三角形,∴AM=DM ,∴平行四边形AMDN 是菱形,考点:1.菱形的判定与性质;2.平行四边形的判定;3.矩形的判定.26.如图1,将ABC ∆纸片沿中位线EH 折叠,使点A 的对称点D 落在BC 边上,再将纸片分别沿等腰BED ∆和等腰DHC ∆的底边上的高线EF 、HG 折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将ABCD 纸片按图2的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段______和______;:ABCD AEFG S S =Y 矩形______.(2)ABCD 纸片还可以按图3的方式折叠成一个叠合矩形EFGH ,若5EF =,12EH =,求AD 的长;(3)如图4,梯形ABCD 纸片满足//AD BC ,AD BC <,AB BC ⊥,8AB =,10CD =.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出AD 、BC 的长. 【答案】 (1). AE (2). GF (3). 1:2【解析】分析:(1)由图可直接得到第一、二空答案,根据折叠的性质可得△AEH 与△ABE 面积相等、梯形HFGA 与梯形FCDG 面积相等,据此不难得到第三空答案;(2)对图形进行点标注,如图所示:首先根据勾股定理求得FH 的长,再根据折叠的性质以及请到的知识可得AH =FN ,HD =HN ,然后根据线段和差关系即可得到AD 的长;(3)根据题目信息,动手这一下,然后将结合画出来,再结合折叠的性质以及勾股定理的知识分析解答即可.详解:(1)根据题意得:操作形成的折痕分别是线段AE 、GF ;由折叠的性质得:△ABE≌△AHE,四边形AHFG≌四边形DCFG ,∴△ABE 的面积=△AHE 的面积,四边形AHFG 的面积=四边形DCFG 的面积,∴S 矩形AEFG =12S 平行四边形ABCD , ∴S 矩形AEFG :S 平行四边形ABCD =1:2;故答案为AE,GF,1:2;(2)∵四边形EFGH是矩形,∴∠HEF=90°,∴=13,由折叠的性质得:AD=FH=13;由折叠的对称性可知:DH=NH,AH=HM,CF=FN. 易得△AEH≌CGF,所以CF=AH,所以AD=DH+AH=HN+FN=FH=13.(3)有3种折法,如图4、图5、图6所示:①折法1中,如图4所示:由折叠的性质得:AD=BG,AE=BE=12AB=4,CF=DF=12CD=5,GM=CM,∠FMC=90°,∵四边形EFMB是叠合正方形,∴BM=FM=4,∴=,∴AD=BG=BM-GM=1,BC=BM+CM=7;②折法2中,如图5所示:由折叠的性质得:四边形EMHG的面积=12梯形ABCD的面积,AE=BE=12AB=4,DG=NG,NH=CH,BM=FM,MN=MC,∴GH=12CD=5,∵四边形EMHG是叠合正方形,∴EM=GH=5,正方形EMHG的面积=52=25,∵∠B=90°,∴,设AD=x,则MN=FM+FN=3+x,∵梯形ABCD的面积=12(AD+BC)×8=2×25,∴AD+BC=252,∴BC=252-x,∴MC=BC-BM=252-x-3,∵MN=MC,∴3+x=252-x-3,解得:x=134,∴AD=134,BC=252-134=374;③折法3中,如图6所示,作GM⊥BC于M,则E 、G 分别为AB 、CD 的中点,则AH=AE=BE=BF=4,CG=12CD=5,正方形的边长,GM=FM=4,,∴BC=BF+FM+CM=11,FN=CF=7,DH=NH=8-7=1,∴AD=5.点睛:本题是四边形综合题,考查了折叠的性质,正方形的性质、勾股定理、梯形面积的计算、解方程等知识,本题综合性强,有一定难度.。
山东省临沂市兰陵县2018-2019学年八年级(下)期中数学试卷(含解析)
2018-2019学年山东省临沂市兰陵县八年级(下)期中数学试卷姓名:得分:日期:一、选择题(本大题共 12 小题,共 36 分)1、(3分) 如图,已知等腰三角形ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC 于点E,则下列结论一定正确的是()A.AE=ECB.AE=BEC.∠EBC=∠BACD.∠EBC=∠ABE2、(3分) 下列命题中是假命题的是()A.同旁内角互补,两直线平行B.垂线段最短C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.直线外一点到这条直线的垂线段叫做点到直线的距离3、(3分) 如图,点C是△ABE的BE边上一点,点F在AE上,D是BC的中点,且AB=AC= CE,给出下列结论:①AD⊥BC;②CF⊥AE;③∠1=∠2;④AB+BD=DE.其中正确的结论有()A.1个B.2个C.3个D.4个4、(3分) 如图所示,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,BE=6cm,则AC等于()A.6cmB.5cmC.4cmD.3cm5、(3分) 若m>n,则下列不等式正确的是()A.m-2<n-2B.m4>n4C.6m<6nD.-8m>-8n6、(3分) 如图是两个关于x的一元一次不等式的解集在同一数轴上的表示,由它们组成的不等式组的解集是()A.x>-1B.x>2C.x≥2D.-1<x≤27、(3分) 小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A.210x+90(15-x)≥1800B.90x+210(15-x)≤1800C.210x+90(15-x)≥1.8D.90x+210(15-x)≤1.88、(3分) 如图,A,B,C,D中的哪幅图案可以通过图案①平移得到()A.B.C.D.9、(3分) 如图,△ABC绕点A旋转一定角度后得到△ADE,若BC=4,AC=3,则下列说法正确的是()A.DE=3B.AE=4C.∠ACB是旋转角D.∠CAE是旋转角10、(3分) 如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是()A.(1,1)B.(0,1)C.(-1,1)D.(2,0)11、(3分) 山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透空的感觉和艺术享受.下列四幅剪纸图案中,是中心对称图形的是()B.C.D.A.12、(3分) 如图,直线y=ax+b与x轴交于点A(7,0),与直线y=kx交于点B(2,4),则不等式kx≤ax+b的解集为()A.x≤2B.x≥2C.0<x≤2D.2≤x≤6二、填空题(本大题共 6 小题,共 24 分)13、(4分) 已知等腰三角形的两边长分别是4和9,则周长是______.14、(4分) 如图,在Rt△ABC中,∠C=90°,DE是AB的垂直平分线,∠CAD:∠DAB=2:1,则∠B=______.15、(4分) 2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为______cm.16、(4分) 将一个等边三角形至少绕其中心旋转______°,就能与本身重合.17、(4分) 如图,将△ABC绕点A顺时针旋转60°得到△AED,若∠EAD=30°,则∠CAE的度数为______.18、(4分) 如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y=4x上一点,则点B与其对应点B′间的距离为______.5三、计算题(本大题共 2 小题,共 16 分)19、(8分) 解不等式x-2(x-1)>0,并将它的解集在数轴上表示出来.20、(8分) 放学时,小刚问小东今天数学作业是哪几题,小东回答说:“不等式组{x−22+3≥x +11−3(x −1)<8−x的正整数解就是今天数学作业的题号.”聪明的你知道今天的数学作业是哪几题吗?四、解答题(本大题共 5 小题,共 44 分)21、(8分) 如图所示,已知△ABC 的角平分线BM ,CN 相交于点P .(1)判断AP 能否平分∠BAC ?请说明理由.(2)由此题你得到的结论是______.22、(8分) 如图,在平面直角坐标系中,△ABC 三个顶点的坐标分别为:A (1,-4),B (5,-4),C (4,-1).(1)将△ABC 经过平移得到△A 1B 1C 1,若点C 的应点C 1的坐标为(2,5),则点A ,B 的对应点A 1,B 1的坐标分别为______ ;(2)在如图的坐标系中画出△A 1B 1C 1,并画出与△A 1B 1C 1关于原点O 成中心对称的△A 2B 2C 2.23、(8分) 如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.24、(10分) 某超市电器销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:(1)求A、B两种型号的电风扇的销售价.(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能请给出采购方案.若不能,请说明理由.25、(10分) 如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.2018-2019学年山东省临沂市兰陵县八年级(下)期中数学试卷【第 1 题】【答案】C【解析】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠A=∠EBC,故选:C.利用等腰三角形的性质分别判断后即可确定正确的选项.本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.【第 2 题】【答案】D【解析】解:A、同旁内角互补,两直线平行,所以A选项为真命题;B、直线外一点与直线上所有点的连线段中,垂线段最短,所以B选项为真命题;C、在同一平面内,过一点有且只有一条直线与已知直线垂直,所以C选项为真命题;D、直线外一点到这条直线的垂线段的长叫做点到直线的距离,所以D选项为假命题.故选:D.根据平行线的判定对A进行判断;根据垂线段公理对B进行判断;根据过一点有且只有一条直线与原直线垂直对C进行判断;根据点到直线的距离的定义对D进行判断.本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.【第 3 题】【答案】B【解析】解:①∵D是BC的中点,AB=AC,∴AD⊥BC,故①正确;②∵F在AE上,不一定是AE的中点,AC=CE,∴无法证明CF ⊥AE ,故②错误;③无法证明∠1=∠2,故③错误;④∵D 是BC 的中点,∴BD =DC ,∵AB =CE ,∴AB +BD =CE +DC =DE ,故④正确.故其中正确的结论有①④,共两个.故选:B .①根据等腰三角形三线合一的性质即可作出判断;②由于F 在AE 上,不一定是AE 的中点,故无法作出判断;③无法证明∠1=∠2;④根据等量关系即可作出判断.此题考查了等腰三角形三线合一的性质,以及三角形的中线的概念.等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【 第 4 题 】【 答 案 】D【 解析 】解:∵在△ABC 中,∠ACB =90°,∠B =15°,∴∠BAC =90°-15°=75°,∵DE 垂直平分AB ,交BC 于点E ,BE =6cm ,∴BE =AE =6cm ,∴∠EAB =∠B =15°,∴∠EAC =75°-15°=60°,∵∠C =90°,∴∠AEC =30°,∴AC =12AE =12×6cm =3cm ,故选:D .根据三角形内角和定理求出∠BAC ,根据线段垂直平分性质求出BE =AE =6cm ,求出∠EAB =∠B =15°,求出∠EAC ,求出∠AEC ,根据含30°角的直角三角形性质求出即可.本题考查了线段垂直平分线性质,含30°角的直角三角形性质,等腰三角形的性质,三角形内角和定理的应用,能求出∠AEC 的度数和AF =BF 是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.【第 5 题】【答案】B【解析】解:A、将m>n两边都减2得:m-2>n-2,此选项错误;B、将m>n两边都除以4得:m4>n4,此选项正确;C、将m>n两边都乘以6得:6m>6n,此选项错误;D、将m>n两边都乘以-8,得:-8m<-8n,此选项错误;故选:B.将原不等式两边分别都减2、都除以4、都乘以6、都乘以-8,根据不等式得基本性质逐一判断即可得.本题主要考查不等式的性质,解题的关键是掌握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【第 6 题】【答案】C【解析】解:根据数轴得:不等式组的解集为x≥2,故选:C.找出两个不等式解集的方法部分确定出不等式组的解集即可.此题考查了在数轴表示不等式的解集,弄清不等式组取解集的方法是解本题的关键.【第 7 题】【答案】A【解析】解:由题意可得210x+90(15-x)≥1800,根据题意可以列出相应的不等式,从而可以解答本题.本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.【第 8 题】【答案】D【解析】解:通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D可以通过图案①平移得到.故选:D.根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.【第 9 题】【答案】D【解析】解:由旋转的性质得:DE=BC=4,故A不正确;AE=AC=3,故B不正确;旋转角是∠CAE,故D正确;∠ACB不是旋转角,故C不正确;故选:D.由旋转的意义可得,将△ABC绕点A逆时针旋转一个角度后得到△ADE,此时对应边为;AC=AE,AB=AD,CB=ED,旋转角为∠CAE或∠BAD,以此逐个进行判断,得出答案.考查旋转的性质,对应边相等、对应角相等,理解旋转角的意义等知识,掌握这些知识是前提和基础.【第 10 题】【答案】B解:作线段AD、BE、FC的垂直平分线,它们相交于点P(0,1),如图,所以△DEF是由△ABC绕着点P逆时针旋转90°得到的.故选:B.利用旋转的性质,旋转中心在各对应点的连线段的垂直平分线上,则作线段AD、BE、FC的垂直平分线,它们相点P(0,1)即为旋转中心.本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.解决本题的关键是利用旋转的性质确定旋转中心.【第 11 题】【答案】B【解析】解:A、不是中心对称图形,故本选项不符合题意;B、是中心对称图形,故本选项符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意.故选:B.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.【第 12 题】A【解析】解:∵直线y=ax+b与直线y=kx交于点B(2,4),∴不等式kx≤ax+b的解集为x≤2.故选:A.写出直线y=kx在直线y=ax+b下方部分的x的取值范围即可.本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x 轴上(或下)方部分所有的点的横坐标所构成的集合.【第 13 题】【答案】22【解析】解:当等腰三角形的腰为4时,三边为4,4,9,4+4<9,三边关系不成立,当等腰三角形的腰为9时,三边为4,9,9,三边关系成立,周长为4+9+9=22.故答案为:22.根据腰为4或9,分类求解,注意根据三角形的三边关系进行判断.本题考查了等腰三角形的性质,三角形三边关系定理.关键是根据已知边那个为腰,分类讨论.【第 14 题】【答案】22.5°【解析】解:在Rt△ABC中∵DE是AB的垂直平分线∴∠B=∠BAD∵∠CAD:∠DAB=2:1∴∠B =22.5°故答案为22.5°.由DE 是AB 的垂直平分线,利用线段的垂直平分线的性质得∠B =∠BAD ,结合∠CAD :∠DAB =2:1与直角三角形两锐角互余,可以得到答案.此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.由已知条件得出4∠B =90°是正确解答本题的关键.【 第 15 题 】【 答 案 】55【 解析 】解:设长为8x ,高为11x ,由题意,得:19x +20≤115,解得:x ≤5,故行李箱的高的最大值为:11x =55,答:行李箱的高的最大值为55厘米.故答案为:55利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm 得出不等式求出即可.此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.【 第 16 题 】【 答 案 】120【 解析 】解:360°÷3=120°,因此,一个正三角形至少绕其中心旋转120度,就能与本身重合,故答案为:120一个正三角形的三个顶点中,每两个相邻顶点与中心的角度是360∘3=120∘,即120°,因此,一个正三角形至少绕其中心旋转120°,就能与本身重合.本题主要是考查正三角形的特征.一个正多边形每两个相邻顶点与中心构成的角度是360°除以这个多边形的边数,绕中心每旋转这个数度或这个度数的整数倍时,就能与自身重合.【第 17 题】【答案】30°【解析】解:∵△ABC绕点A顺时针旋转60°得到△AED,∴∠DAC=60°,∴∠CAE=∠DAC-∠EAD=60°-30°=30°.故答案为30°.根据旋转的性质得∠DAC=60°,然后计算∠DAC-∠EAD即可.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.【第 18 题】【答案】解:如图,连接AA′、BB′.∵点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是4.x上一点,又∵点A的对应点在直线y=45x,解得x=5.∴4=45∴点A′的坐标是(5,4),∴AA′=5.∴根据平移的性质知BB′=AA′=5.故答案为:5.【解析】根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.本题考查了一次函数图象上点的坐标特征、坐标与图形变化--平移.根据平移的性质得到BB′=AA′是解题的关键.【第 19 题】【答案】解:去括号得,x-2x+2>0,移项得,x-2x>-2,合并得,-x>-2,系数化为1,得x<2.解集在数轴上表示为:【解析】本题解不等式的步骤为:去括号;移项及合并;系数化为1.本题考查了解不等式的一般步骤,需注意在不等式两边都除以一个负数时,应只改变不等号的方向,余下该怎么除还怎么除.【第 20 题】【答案】解:{x−22+3≥x+1①1−3(x−1)<8−x①,由①得,x≤2;由②得,x>-2,故此不等式组的解集为:2<x≤2,∴x的正整数解为:1,2.∴今天的数学作业是1,2题.【解析】分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的正整数解即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【第 21 题】【答案】解:(1)AP能平分∠BAC;理由如下:如图,过点P作PQ⊥BC、PK⊥AB、PL⊥AC;∵△ABC的角平分线BM、CN相交于点P,∴PK=PQ,PL=PQ,∴PK=PL,∴AP平分∠BAC;(2)如图,作辅助线;证明PK=PL即可解决问题.结论:三角形的三条内角平分线相交于一点.故答案为:三角形的三条内角平分线相交于一点.【解析】该题主要考查了三角形的内角平分线的性质及其应用问题;作辅助线是解决该题的关键.【第 22 题】【答案】(1)(-1,2),(3,2),(2)如图所示:△A1B1C1,△A2B2C2即为所求.【解析】(1)根据平移的性质画出图形,进而得出坐标即可;(2)根据关于原点O成中心对称的性质画出图形即可.本题主要考查作图-轴对称变换和平移变换,熟练掌握轴对称变换、平移变换的定义是解题的关键.【第 23 题】【答案】证明:(1)由旋转的性质得,CD=CF,∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠BCD+∠DCE=90°,∴∠BCD=∠ECF,在△BDC和△EFC中,{CE=BC①BCD=①ECFCD=CF,∴△BDC≌△EFC(SAS);(2)∵EF∥CD,∴∠F+∠DCF=180°,∵∠DCF=90°,∴∠F=90°,∵△BDC≌△EFC,∴∠BDC=∠F=90°.【解析】(1)根据旋转的性质可得CD=CF,∠DCF=90°,然后根据同角的余角相等求出∠BCD=∠ECF,再利用“边角边”证明即可;(2)根据两直线平行,同旁内角互补求出∠F=90°,再根据全等三角形对应角相等可得∠BDC=∠F.本题考查了旋转的性质,全等三角形的判定与性质,平行线的性质,旋转前后对应边相等,此类题目难点在于利用同角的余角相等求出相等的角.【第 24 题】【答案】解:(1)设A、B两种型号的电风扇的销售价分别为x、y元,则:{3x+5y=18004x+10y=3100,解得:{x=250 y=210,答:A、B两种型号电风扇的销售介分别为250元和210元.(2)设采购A种型号电风扇a台,则采购B种型号的电风扇(30-a)台则200a+170(30-a)≤540,解得:a≤10,答:最多采购A种型号的电风扇10台.(3)根据题意得:(250-200)a+(210-170)(30-a)=1400,解得a=20,∵a≤10,∴在(2)条件下超市销售完这30台电风扇不能实现利润为1400元的目标.【解析】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,根据3台A 型号5台B 型号的电扇收入1800元,4台A 型号10台B 型号的电扇收入3100元,列方程组求解即可;(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30-a )台,根据金额不多余5400元,列不等式求解即可得出答案;(3)设利润为1400元,列方程求出a 的值为20,不符合(2)的条件,可知不能实现目标.本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.【 第 25 题 】【 答 案 】(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°.∴∠D =∠AEC .又∵∠DBC =∠ECA =90°,且BC =CA ,在△DBC 和△ECA 中,∵{①D =①AEC①DBC =①ECA =90∘BC =AC∴△DBC ≌△ECA (AAS ).∴AE =CD .(2)解:∵△CDB ≌△AEC ,∴BD =CE ,∵AE 是BC 边上的中线,∴BD =EC =12BC =12AC ,且AC =12cm .∴BD =6cm .【 解析 】- 21 - (1)证两条线段相等,通常用全等,本题中的AE 和CD 分别在三角形AEC 和三角形CDB 中,在这两个三角形中,已经有一组边相等,一组角相等了,因此只需再找一组角即可利用角角边进行解答.(2)由(1)得BD =EC =12BC =12AC ,且AC =12,即可求出BD 的长.三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.。
陕西省西安市高新一中2018-2019学年八年级(下)期中数学试卷解析版
2018-2019 学年陕西省西安市高新一中八年级(下)期中数学试卷.选择题(共10小题)4 .在平行四边形 ABCD 中,/ A: / B: / C=1: 3: 1,则/ D 的度数是()A. 45°B, 60°C. 120°D, 135°5 .如果把分式 等中的x 、y 的值都扩大5倍,那么分式的值()B.扩大5倍 D,以上都不正确A (0, 0)、B (4, 0)、D (1, 2)为平行四边形的三个顶7.如图,在^ ABC 中,点D 是边BC 上的点(与 B, C 两点不重合)DF // AB,分别交AB, AC 于E, F 两点,下列条件能判定四边形 AEDF 是菱形的是( )2. A. 1卜面四个图形分别是绿色食品、 C. 3 D. 4节水、节能和回收标志,在这四个标志中,是中心对称D.B. (a+b) (a — b) =a 2 - b 2C. x2 —4= ( x+2) (x —2)D. (a+b) 2=a 2+b 2+2abA .不变C.缩小为原来的一倍 5 A. (2, 5) B. (4, 2) C. (5, 2)D. (6, 2),过点D 作DE // AC, 1.下列式子: —,—自一中,是分式的有( 51+xB. 2图形的是(A.x2-x- 2 = x(x- 1) - 2 6.如图,在平面直角坐标系中,点,则第四个顶点 C 的坐标是(C. 4D. 510 .如图,平行四边形 ABCD 的对角线AC, BD 相交于点O, AE 平分/ BAD,分别交BC, BD 于点 E, P,连接 OE, / ADC = 60° , AB=yBC=2,下列结论: ① /CAD =30° ; ②BD = 2\";③S 四边形ABCD =AB?AC;④OE=^AD;⑤$。
0£=^.其中正确的个数B. AD 为BC 边上的中线C. AD= BDD. AD 平分/ BAC8.某工程队准备修建一条长1200米的道路, 由于采用新的施工方式, 实际每天修建道路的速度比原计划快20%,结果提前两天完成任务,若设原计划每天修建道路 x 米,则根据题意可列方程为()A -=2「30_L2OO__Q(1+20%纭 乂9.如图,△ ABC 是等边三角形,点 AC,若/\ ABC 的周长为12,则D1200 LL200 oB..、 - ------ -- 2(1-20%)K xn 1200.__1200o k (1-2。
2018-2019学年人教版初二数学下册期中试卷(含答案)
2018-2019学年八年级(下)期中数学试卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.2.不等式2x﹣6>0的解集在数轴上表示正确的是()A.B.C.D.3.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为()A.(0,1)B.(0,﹣1)C.C(1,﹣1)D.(1,0)4.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM的一个动点,若PA=4,则PQ的最小值为()A.2B.4C.2D.5.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A.3cm B.4cm C.6cm D.9cm6.若关于x的不等式组的整数解共有4个,则a的取值范围是()A.﹣2<a≤﹣1B.﹣2≤a<﹣1C.﹣1<a≤0D.﹣1≤a<0二、填空题(本大题共6小题,每小题3分,共18分)7.命题“直角三角形两锐角互余”的逆命题是:.8.如图,将△AOB绕点O按逆时针方向旋转60°后得到△COD,若∠AOB=15°,则∠AOD的度数为°.9.函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为.10.某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于5%,则至多可打折.11.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为cm.12.如图,在△ABC中,AB=AC=2,∠BAC=120°,点A的坐标是(1,0),点B.C在y轴上,在x轴上是否存在点P,使△PAB、△PBC、△PAC都是等腰三角形,满足条件的P点的坐标.三、(本大题共5小题,每小题6分,共30分)13.(1)解不等式:5x﹣13≥2(x﹣2)(2)如图,将△ABC绕点C顺时针方向旋转40°得到△DEC,若AC⊥DE,求∠BAC的度数.14.解不等式组,并把解集在数轴上表示出来.15.请你只用无刻度的直尺按要求作图:(1)如图①,AD、BE是△ABC的角平分线,且相交于点O,请你作出∠C的平分线.(2)如图②,AC与BD相交于O,且∠DAO=∠BAO=∠CBO=∠ABO,请你作出∠AOB的平分线.16.如图,在△ABC中,∠BAC=15°,将△ABC绕点A按逆时针方向旋转90°,到△ADE的位置,然后将△ADE以AD为轴翻折到△ADF的位置,连接CF,判断△ACF的形状,并说明理由.17.阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc.例如:=3×6﹣4×5=﹣2,如果有>0,求x的取值范围.四、(本大题共3小题,每小题8分,共24分)18.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.19.若关于x,y的二元一次方程组中,x的值为正数,y的值为负数,求m的取值范围.20.如图,在四边形ABCD中,已知AD∥BC,E为CD的中点,连接AE并延长AE交BC的延长线于点F.(1)求证:CF=AD;(2)若AD=2,AB=8,当BC为多少时,点B在线段AF的垂直平分线上?为什么?五、(本大题共2小题,每小题9分,共18分)21.某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买).若师生均购买二等座票,则共需1020元.(1)参加活动的教师有人,学生有人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元.①求y关于x的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?22.如图,某船于上午11时30分在A处观察海岛B在北偏东60°,该船以10海里/小时的速度向东航行至C处,再观察海岛在北偏东30°,且船距离海岛20海里(1)求该船到达C处的时刻.(2)若该船从C处继续向东航行,何时到达B岛正南的D处?六、(本大题共12分)23.如图,在△ABC中,已知AB=AC,∠BAC=90°,BC=8cm,直线CM⊥BC,动点D从点C 开始沿射线CB方向以每秒2厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度运动,连接AD、AE,设运动时间为t秒.(1)求AB的长;(2)当t为多少时,△ABD的面积为10cm2?(3)当t为多少时,△ABD≌△ACE,并简要说明理由(可在备用图中画出具体图形).参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念进行判断即可.【解答】解:A、图形不是中心对称图形;B、图形是中心对称图形;C、图形不是中心对称图形;D、图形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后能与自身重合.2.不等式2x﹣6>0的解集在数轴上表示正确的是()A.B.C.D.【分析】根据解不等式的方法,可得答案.【解答】解:2x﹣6>0,解得x>3,故选:A.【点评】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画).3.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为()A.(0,1)B.(0,﹣1)C.C(1,﹣1)D.(1,0)【分析】连接AA′,CC′,线段AA′、CC′的垂直平分线的交点就是点P.【解答】解:连接AA′、CC′,作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,直线MN和直线EF的交点为P,点P就是旋转中心.∵直线MN为:x=1,设直线CC′为y=kx+b,由题意:,∴,∴直线CC′为y=x+,∵直线EF⊥CC′,经过CC′中点(,),∴直线EF为y=﹣3x+2,由得,∴P(1,﹣1).故选:C.【点评】本题考查旋转的性质,掌握对应点连线段的垂直平分线的交点就是旋转中心,是解题的关键.4.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM的一个动点,若PA=4,则PQ的最小值为()A.2B.4C.2D.【分析】作PQ⊥OM于Q,根据角平分线的性质解答.【解答】解:作PQ⊥OM于Q,则此时PQ最小,∵OP平分∠MON,PA⊥ON,PQ⊥OM,∴PQ=PA=4,即PQ的最小值为4,故选:B.【点评】本题考查的是角平分线的性质、垂线段最短,掌握角的平分线上的点到角的两边的距离相等是解题的关键.5.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A.3cm B.4cm C.6cm D.9cm【分析】求出AE=BE,推出∠A=∠1=∠2=30°,求出DE=CE=3cm,根据含30度角的直角三角形性质求出即可.【解答】解:∵DE垂直平分AB,∴AE=BE,∴∠2=∠A,∵∠1=∠2,∴∠A=∠1=∠2,∵∠C=90°,∴∠A=∠1=∠2=30°,∵∠1=∠2,ED⊥AB,∠C=90°,∴CE=DE=3cm,在Rt△ADE中,∠ADE=90°,∠A=30°,∴AE=2DE=6cm,故选:C.【点评】本题考查了垂直平分线性质,角平分线性质,等腰三角形性质,含30度角的直角三角形性质的应用,关键是求出∠A=30°和得出DE的长.6.若关于x的不等式组的整数解共有4个,则a的取值范围是()A.﹣2<a≤﹣1B.﹣2≤a<﹣1C.﹣1<a≤0D.﹣1≤a<0【分析】表示出不等式组的解集,由解集中的整数解共有4个,确定出a的范围即可.【解答】解:不等式组整理得:,即a<x<3,由不等式组的整数解共有4个,得到﹣2≤a<﹣1,故选:B.【点评】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.命题“直角三角形两锐角互余”的逆命题是:如果三角形有两个角互余,那么这个三角形是直角三角形.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【解答】解:因为“直角三角形两锐角互余”的题设是“三角形是直角三角形”,结论是“两个锐角互余”,所以逆命题是:“如果三角形有两个角互余,那么这个三角形是直角三角形”.故答案为:如果三角形有两个角互余,那么这个三角形是直角三角形.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.8.如图,将△AOB绕点O按逆时针方向旋转60°后得到△COD,若∠AOB=15°,则∠AOD的度数为45°.【分析】根据角的和差定义计算即可;【解答】解:∵将△AOB绕点O按逆时针方向旋转60°后得到△COD,∴∠DOB=60°,∵∠AOB=15°,∴∠AOD=60°﹣15°=45°.故答案为45.【点评】本题考查旋转变换,角的和差定义等知识,解题的关键是理解题意,属于中考基础题.9.函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为x<1.【分析】由图知:①当x>1时,y>0;②当x<1时,y<0;因此当y<0时,x<1;由此可得解.【解答】解:根据图示知:一次函数y=kx+b的图象x轴、y轴交于点(1,0),(0,﹣2);即当x<1时,函数值y的范围是y<0;因而当不等式kx+b<0时,x的取值范围是x<1.故答案为:x<1【点评】本题主要考查的是关于一次函数与一元一次不等式的题目,在解题时,认真体会一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.10.某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于5%,则至多可打8折.【分析】设至多可打x折,根据“某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于5%”,列出关于x的一元一次不等式,解之即可.【解答】解:设至多可打x折,根据题意得:1575×≥1200(1+5%),解得:x≥8,即至多可打8折,故答案为:8.【点评】本题考查一元一次不等式的应用,正确找出不等量关系,列出一元一次不等式是解题的关键.11.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为13cm.【分析】直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.【解答】解:∵将线段DC沿着CB的方向平移7cm得到线段EF,∴EF=DC=4cm,FC=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周长为:4+4+5=13(cm).故答案为:13.【点评】此题主要考查了平移的性质,根据题意得出BE的长是解题关键.12.如图,在△ABC中,AB=AC=2,∠BAC=120°,点A的坐标是(1,0),点B.C在y轴上,在x轴上是否存在点P,使△PAB、△PBC、△PAC都是等腰三角形,满足条件的P点的坐标(﹣1,0)(3,0).【分析】先由等腰三角形三线合一的性质得出OB=OC,∠OAB=∠OAC=60°,再取A(1,0)关于y轴的对称点P(﹣1,0),根据轴对称的性质得到PB=AB,PC=AC,∠BPA=∠BAP=60°,所以PB=AB=PC=AC,从而根据等腰三角形的定义得出△PAB、△PBC、△PAC都是等腰三角形.【解答】解:∵AB=AC=2,AO⊥BC,∠BAC=120°,∴OB=OC,∠OAB=∠OAC=∠BAC=60°,∴取A(1,0)关于y轴的对称点P(﹣1,0),则PB=AB,PC=AC,∠BPA=∠BAP=60°,∴PB=AB=PC=AC,∴△PAB、△PBC、△PAC都是等腰三角形,同理可得(3,0)也符合题意.所以在x轴上存在点P(﹣1,0)(3,0),使△PAB、△PBC、△PAC都是等腰三角形;故答案为:(﹣1,0)(3,0),【点评】本题考查了等腰三角形的判定与性质,坐标与图形性质,难度适中,由等腰三角形三线合一的性质得出OB=OC,∠OAB=∠OAC=60°是解题的关键.三、(本大题共5小题,每小题6分,共30分)13.(1)解不等式:5x﹣13≥2(x﹣2)(2)如图,将△ABC绕点C顺时针方向旋转40°得到△DEC,若AC⊥DE,求∠BAC的度数.【分析】(1)按照去括号、移项、合并同类项、化系数为1的步骤解不等式即可;(2)设AC交DE于H.在Rt△CDH中求出∠D即可解决问题;【解答】解:(1)5x﹣13≥2(x﹣2)5x﹣13≥2x﹣4,3x≥9x≥3(2)设AC交DE于H.∵∠BCE=∠ACD=40°,AC⊥DE,∴∠CHD=90°,∴∠D=90°﹣40°=50°,∴∠A=∠D=50°.【点评】本题考查旋转变换、三角形内角和定理、解一元一次不等式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.解不等式组,并把解集在数轴上表示出来.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:解不等式2x+3>﹣5,得:x>﹣4,解不等式﹣1≥3(x﹣1),得:x≤1,则不等式组的解集为﹣4<x≤1,将不等式组的解集表示在数轴上如下:【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.请你只用无刻度的直尺按要求作图:(1)如图①,AD、BE是△ABC的角平分线,且相交于点O,请你作出∠C的平分线.(2)如图②,AC与BD相交于O,且∠DAO=∠BAO=∠CBO=∠ABO,请你作出∠AOB的平分线.【分析】(1)连接OC并延长交AB于F,则利用三角形的三条角平分线相交于一点可判断CF平分∠ACB;(2)AD和BC的延长线相交于E,连接EC并延长交AB于F,可证明△OAB和△EAB为等腰三角形,则根据等腰三角形的性质可判断OF平分∠AOB.【解答】解:(1)如图①,CF为所作;(2)如图②,OF为所作.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).16.如图,在△ABC中,∠BAC=15°,将△ABC绕点A按逆时针方向旋转90°,到△ADE的位置,然后将△ADE以AD为轴翻折到△ADF的位置,连接CF,判断△ACF的形状,并说明理由.【分析】由旋转和翻折的性质可知:AC=AF,然后再求得∠CAF=60°,从而可得出△ACF为等边三角形.【解答】解:由旋转的性质可知:∠BAC=∠DAE=15°,AC=AE,∠CAE=90°,由翻折的性质可知:∠FAD=∠EAD=15°,AF=AE.∴AC=AF,∠CAF=60°,∴△ACF为等边三角形.【点评】本题主要考查的是翻折变换、旋转变换、等边三角形的性质和判定,证得AC=AF,∠CAF =60°是解题的关键.17.阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc.例如:=3×6﹣4×5=﹣2,如果有>0,求x的取值范围.【分析】根据题意得出关于x的不等式,求出x的取值范围即可.【解答】解:由题意可得2x﹣3(x﹣2)>0,解得x<6.故x的取值范围是x<6.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.四、(本大题共3小题,每小题8分,共24分)18.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.【分析】(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.19.若关于x,y的二元一次方程组中,x的值为正数,y的值为负数,求m的取值范围.【分析】先求出方程组的解,即可得出关于m的不等式组,求出不等式组的解集即可.【解答】解:,①+②,得:2x=2m+6,x=m+3,①﹣②,得:4y=4m﹣4,y=m﹣1,∵x的值为正数,y的值为负数,∴,解得﹣3<m<1.【点评】本题考查了解二元一次方程组,解一元一次不等式组,能正确解二元一次方程组和解一元一次不等式组是解此题的关键,题目比较好,难度适中.20.如图,在四边形ABCD中,已知AD∥BC,E为CD的中点,连接AE并延长AE交BC的延长线于点F.(1)求证:CF=AD;(2)若AD=2,AB=8,当BC为多少时,点B在线段AF的垂直平分线上?为什么?【分析】(1)通过求证△FEC≌△AED来证明CF=AD;(2)若点B在线段AF的垂直平分线上,则应有AB=BF∵AB=8,CF=AD=2,∴BC=BF﹣CF =8﹣2=6时有AB=BF.【解答】(1)证明:∵AD∥BC,∴∠F=∠DAE.又∵∠FEC=∠AED,∴∠ECF=∠ADE,∵E为CD中点,∴CE=DE,在△FEC与△AED中,∵,∴△FEC≌△AED,∴CF=AD;(2)当BC=6时,点B在线段AF的垂直平分线上,其理由是:∵BC=6,AD=2,AB=8,∴AB=BC+AD,又∵CF=AD,BC+CF=BF,∴AB=BF,∴△ABF是等腰三角形,∴点B在AF的垂直平分线上.【点评】此题考查全等三角形的判定和性质,关键是利用了:(1)梯形的性质,(2)全等三角形的判定和性质,(3)中垂线的性质进行分析.五、(本大题共2小题,每小题9分,共18分)21.某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买).若师生均购买二等座票,则共需1020元.(1)参加活动的教师有10人,学生有50人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元.①求y关于x的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?【分析】(1)设参加活动的教师有a人,学生有b人,根据等量关系:师生共60人;若师生均购买二等座票,则共需1020元;列出方程组,求出方程组的解即可;(2)①根据购买一、二等座票全部费用=购买一等座票钱数+教师购买二等座票钱数+学生购买二等座票钱数,依此可得解析式;②根据不等关系:购买一、二等座票全部费用不多于1032元,列出方程求解即可.【解答】解:(1)设参加活动的教师有a人,学生有b人,依题意有,解得.故参加活动的教师有10人,学生有50人;(2)①依题意有:y=26x+22(10﹣x)+16×50=4x+1020.故y关于x的函数关系式是y=4x+1020(0<x<10);②依题意有4x+1020≤1032,解得x≤3.故提早前往的教师最多只能3人.故答案为:10,50.【点评】本题主要考查对一次函数,二元一次方程组,一元一次不等式等知识点的理解和掌握,此题是一个拔高的题目,有一定的难度.22.如图,某船于上午11时30分在A处观察海岛B在北偏东60°,该船以10海里/小时的速度向东航行至C处,再观察海岛在北偏东30°,且船距离海岛20海里(1)求该船到达C处的时刻.(2)若该船从C处继续向东航行,何时到达B岛正南的D处?【分析】(1)根据题意得:∠A=30°,∠BCD=60°,BC=20海里,根据三角形外角的性质,易证得∠ABC=∠A,根据等角对等边,即可求得AC=BC,又由船的速度为10海里/时,即可求得船到达C点的时间;(2)由在Rt△BCD中,∠BCD=60°,BC=20海里,即可求得CD的长,继而求得到达B岛正南的D处的时间.【解答】解:(1)根据题意得:∠A=30°,∠BCD=60°,BC=20海里,∴∠ABC=∠BCD﹣∠A=60°﹣30°=30°,∴∠ABC=∠A,∴AC=BC=20(海里),∵船的速度为10海里/时,∴20÷10=2(小时),∴船到达C点的时间为:13时30分;(2)在Rt△BCD中,∠BCD=60°,BC=20海里,∴CD=BC•cos60°=20×=10(海里),∵10÷10=1(小时),∴在14时30分到达B岛正南的D处.【点评】此题考查了方向角问题、等腰三角形的判定与性质以及直角三角形的性质.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.六、(本大题共12分)23.如图,在△ABC中,已知AB=AC,∠BAC=90°,BC=8cm,直线CM⊥BC,动点D从点C 开始沿射线CB方向以每秒2厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度运动,连接AD、AE,设运动时间为t秒.(1)求AB的长;(2)当t为多少时,△ABD的面积为10cm2?(3)当t为多少时,△ABD≌△ACE,并简要说明理由(可在备用图中画出具体图形).【分析】(1)运用勾股定理直接求出;(2)首先求出△ABD中BD边上的高,然后根据面积公式列出方程,求出BD的值,分两种情况分别求出t的值;(3)假设△ABD≌△ACE,根据全等三角形的对应边相等得出BD=CE,分别用含t的代数式表示CE和BD,得到关于t的方程,从而求出t的值.【解答】解:(1)∵在△ABC中,AB=AC,∠BAC=90°,∴2AB2=BC2,∴AB==4cm;(2)过A作AF⊥BC交BC于点F,则AF=BC=4cm,∵S=10cm2△ABD∴AF×BD=20,∴BD=5cm.若D在B点右侧,则CD=3cm,t=1.5s;若D在B点左侧,则CD=13cm,t=6.5s.(3)动点E从点C沿射线CM方向运动秒或当动点E从点C沿射线CM的反向延长线方向运动8秒时,△ABD≌△ACE.理由如下:(说理过程简要说明即可)①当E在射线CM上时,D必在CB上,则需BD=CE.∵CE=t,BD=8﹣2t∴t=8﹣2t,∴t=,证明:在△ABD和△ACE中∵,∴△ABD≌△ACE(SAS).②当E在CM的反向延长线上时,D必在CB延长线上,则需BD=CE.∵CE=t,BD=2t﹣8,∴t=2t﹣8,∴t=8,证明:在△ABD和△ACE中∵,∴△ABD≌△ACE(SAS).【点评】本题考查了等腰直角三角形、全等三角形的性质及面积,综合性强,题目难度适中.。
山西省太原市志达中学校2018-2019学年八年级下学期期中考试数学试题(解析版)
y乙= (200 ×12 + 50x) × 85% ,
即= y乙
2040 + 85 x ; 2
当
y甲
<
y乙
时,1800
+
50x
<
2040
+
85 2
x
,
∴ x < 32 ,
又根据题意可得: x12 ,
∴12x < 32 ,
综上所述,当购买的餐椅大于等于 12 少于 32 把时,到甲商场购买更优惠.
【解析】证明 ∆BO′A ≅ ∆BOC ,又 ∠OBO=′ 60° ,所以 ∆BO′A 可以由 ∆BOC 绕点 B 逆时针旋
转 60° 得到,故结论①正确;
由 ∆OBO′ 是等边三角形,可知结论②正确;
在 ∆AOO′ 中,三边长为 3,4,5,这是一组勾股数,故 ∆AOO′ 是直角三角形;进而求得
∠AOB =150° ,故结论③正确;
【考点】图形的旋转 【答案】45° 【解析】略
【难度星级】★
13.如图,在 △ABC 中, AB = 4 , BC = 6 ,∠B = 60° ,将 ∆ABC 沿射线 BC 的方向平移 2 个单位后,得到 △A′B′C′ ,连接 A′C ,则△ A′B′C 的周长为___________.
7
【考点】平移的性质
2
2(2x −1) − 3(5x +1) ≥ 6
−11x ≥ 11 x ≤ −1
【难度星级】★★
17.(本题 5 分)先化简,再求值:
x − 3(x − 2) ≤ 4
解不等式组:1
− 2x 4
<
1
−
x
【考点】解不等式组 【答案】1 ≤星级】★★
2018-2019学年上学期八年级 数学期中考试卷含答案
2018-2019学年上学期期中教学质量调研八年级数学一.精心选择,一锤定音(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一个答案是正确的,请将正确答案的序号直接填入下表中)序号 1 2 3 4 5 6 7 9 10答案1.下面四个手机应用图标中是轴对称图形的是2.已知图中的两个三角形全等,则的大小为A.B. C. D.3.如图,三角形被木板遮住一部分,这个三角形是A.锐角三角形B.直角三角形C.钝角三角形 D.以上都有可能4.如图,∠ACB=90,CD⊥AB,垂足为D,下列结论错误的是A.图中有三个直角三角形B. ∠1=∠2C. ∠1和∠B都是∠A的余角D.∠2=∠A5.已知n边形从一个顶点出发可以作9条对角线,则n=A.9B.10C.11D.126.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有A.1个B.2个C.3个D.4个7.如图,点O在△ABC内,且到三边的距离相等,若∠A=60,则∠BOC的大小为A. B. C. D.608.如图,在Rt△ABC中,∠BAC=90,AD⊥BC于D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=2A.30B.C.60D.759.如图所示,小华从A点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24,……,照这样走下去,他第一次加到出发地A点时,一共走的路程是A.140米B.150米C.160米D.240米10.如图,在Rt△ABC中,∠ACB=90,∠BAC的平分线交BC于D,过点C作CG⊥AB于G,交AD 于E,过点D作DF⊥AB于 F.下列结论①∠CED=;②;③∠ADF=;④CE=DF.正确的是A.①②④B.②③④C.①③D.①②③④二.细心填一填,试试自己的身手!(本大题共10个小题;每小题3分,共30分)11.一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是.12.三角形三边长分别为3,,7,则的取值范围是.13.一个正多边形的内角和为540,则这个正多边形的每个外角的度数为.14.如图,已知AB⊥BD,AB∥DE,AB=ED。
2018-2019学年第二学期期中质量检测八年级数学试题(带答案)
姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题(时间 120分钟 分值 120分)一.选择题(本大题共10小题,每小题3分,共30分) 1.下列方程中,是关于x 的一元二次方程的是( ) A .ax 2+bx +c =0(a ,b ,c 为常数) B .x 2﹣x ﹣2=0 C .+﹣2=0D .x 2+2x =x 2﹣12.一元二次方程x 2+ax+a ﹣1=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根C .有实数根D .没有实数根3.如果关于x 的一元二次方程(m ﹣3)x 2+3x +m 2﹣9=0有一个解是0,那么m 的值是( )A .﹣3B .3C .±3D .0或﹣34.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则应邀请( )个球队参加比赛. A.6 B.7C.8D.95.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为( )A.1B.2C.-1D.-26.已知点A(-3,y 1),B(2,y 2),C(3,y 3)在抛物线y =2x 2-4x +c 上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 2>y 3>y 17.某烟花厂为春节烟火晚会特别设计制作一种新型礼炮,这种礼炮的升空高度h(m )与飞行时间t(s )的关系式是h =-52t 2+20t +1,若这种礼炮点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .3 sB .4 sC .5 sD .6 s 8.已知函数y =ax 2-2ax -1(a 是常数,a ≠0),下列结论正确的是( )A .当a =1时,函数图象过点(-1,1)B .当a =-2时,函数图象与x 轴没有交点C .若a >0,则当x ≥1时,y 随x 的增大而减小D .若a <0,则当x ≤1时,y 随x 的增大而增大9.在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )10. 如图,抛物线y =ax 2+bx +c(a≠0)与x 轴交于点A(-2,0),B(1,0), 直线x =-0.5与此抛物线交于点C ,与x 轴交于点M , 在直线上取点D ,使MD =MC ,连接AC ,BC ,AD ,BD , 某同学根据图象写出下列结论:①a-b =0;②当-2<x<1时,y>0;③四边形ACBD 是菱形; ④9a-3b +c>0,你认为其中正确的是( )A .②③④B .①②④C .①③④D .①②③ 第10题图二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分) 11.如果y =(m ﹣2)是关于x 的二次函数,则m =__________.12. 如果一元二次方程x 2﹣4x+k =0经配方后,得(x ﹣2)2=1,那么k = . 13.若m 是方程2x 2+3x ﹣1=0的根,则式子4m 2+6m+2019的值为 .14. 已知抛物线c bx ax y ++=2经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是__________.15. 若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为 __________.16.已知关于x 的方程(k ﹣2)2x 2+(2k+1)x+1=0有实数根,则k 的取值范围是__________. 17.把二次函数y =12x 2+3x +52的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象的顶点是__________.18.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3). 若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2), 点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为__________. 第18题图三.解答题(本大题共7小题,共62分)19.(8分)选择适当方法解下列方程(1)(3x﹣1)2=(x﹣1)2(2)3x(x﹣1)=2﹣2x20.(7分)已知关于x的一元二次方程x2+x+m﹣1=0.(1)当m=0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m的取值范围.21.(8分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?22.(8分)为落实素质教育要求,促进学生全面发展,我市某中学2016年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2018年投资18.59万元.(1)求该学校为新增电脑投资的年平均增长率;(2)从2016年到2018年,该中学三年为新增电脑共投资多少万元?23.(9分)已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.24.(10分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?25.(12分)在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h的取值范围.姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题答案一.选择题(本大题共10小题,每小题3分,共30分)1. B2. C3. A4.B5. D6.B7.B8. D9. C 10.D二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分)11. m=-1 12. 3 13. 2021 14. (1,-8) 15. -1或2或1 16. k ≥ 17. (-1,1) 18. 12三.解答题(本大题共7小题,共62分)19.(8分)解:(1)3x ﹣1=±(x ﹣1)………………………………………………1分 即3x ﹣1=x ﹣1或3x ﹣1=﹣(x ﹣1)……………………3分 所以x 1=0,x 2=;……………………4分(2)3x (x ﹣1)+2(x ﹣1)=0…………………………………1分(x ﹣1)(3x +2)=0x ﹣1=0或3x +2=0…………………3分 所以x 1=1,x 2=﹣.……………………4分20.解:(1)当m =0时,方程为x 2+x ﹣1=0. △=12﹣4×1×(﹣1)=5>0. ∴x =, ∴x 1=,x 2=.…………………4分(2)∵方程有两个不相等的实数根, ∴△>0即(﹣1)2﹣4×1×(m ﹣1) =1﹣4m +4 =5﹣4m >0 ∵5﹣4m >0∴m <.…………………7分21. (8分)解:设AB 的长度为x 米,则BC 的长度为(100-4x)米,根据题意得 (100-4x)x =400,解得x 1=20,x 2=5,………………4分 则100-4x =20或100-4x =80,∵80>25,∴x 2=5舍去, 即AB =20,BC =20,则羊圈的边长AB ,BC 分别是20米,20米。
山西省2018-2019学年第二学期八年级阶段二质量评估·数学(人教版)试题(pdf版,有答案)
11. 使二次根式 姨1-3x 有意义的 x 的取值范围是
.
12. 如图,每个小正方形的边长都为 1,△ABC 的顶点都在小正方形的顶点上,则该三角
形的最长边等于
.
(第 5 题图)
(第 6 题图)
八年级数学 (人教版) 第 1 页 (共 4 页)
(第 12 题图)
(第 13 题图)
13. 如图,在平行四边形 ABCD 中,AE⊥BC 于点 E,AF⊥CD 于点 F,若∠EAF=56°,则
个单位长度的速度沿折线 A-C-B-A 运动(回到点 A 停止运动),设运动时间为 t 秒.
(1)当点 P 在 BC 上时,且满足 PA=PB 时,求出此时 t 的值;
(2)当点 P 在 AB 上时,求出 t 为何值时,△ACP 为以 AC 为腰的等腰三角形.
23.(本题 14 分)综合与实践:
问题发现:
;
AB2+BC2+CD2+AD2 的值是
;
(2)如图 3,已知四边形 ABCD 是菱形,证明:AC2+BD2=AB2+BC2+CD2+AD2;
拓广探索:
(3)智慧小组看了创新小组交流后,提出了一个猜想,如图 4,在荀ABCD 中,AC2+BD2=
AB2+BC2+CD2+AD2,你认为这个猜想正确吗?请说明理由;
绳索有多长?(注:古代 5 尺为 1 步)
建立数学模型:如图,秋千绳索 OA 静止的时候,踏板离地高 1 尺(AC=1 尺),将它往 前推进两步(EB=10 尺),此时踏板升高离地 5 尺(BD=5 尺).已知 OC⊥CD 于点 C, BD⊥CD 于点 D,BE⊥OC 于点 E,点 A 在 OC 上,OA=OB,求秋千绳索(OA 或 OB)的 长度. 请解答下列问题: (1)直接写出四边形 ECDB 是哪种特殊的四边形; (2)求 OA 的长.
2018-2019学年第二学期八年级数学期中模拟试卷(1)
2018-2019学年第二学期八年级数学期中模拟试卷(1)一.选择题(共10小题,满分30分)1.若分式的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.02.如果反比例函数的图象经过点(﹣2,3),那么k的值是()A.B.﹣6C.D.63.(3分)已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.4.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD 的长为()A.4B.3C.2D.15.计算结果是()A.0B.1C.﹣1D.x6.函数y=x+的图象如图所示,下列对该函数性质的论断不可能正确的是()A.该函数的图象是中心对称图形B.y的值不可能为1C.在每个象限内,y的值随x值的增大而减小D.当x>0时,该函数在x=1时取得最小值27.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=16,则HE等于()A.32B.16C.8D.108.如图,O为坐标原点,菱形OABC的顶点A的坐标为(﹣4,3),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12B.﹣27C.﹣32D.﹣369.如图,正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分面积是()cm2.A.B.C.D.10.如图,正方形ABCD中AE=AB,EF⊥AC于E交BC于F,则图中等腰三角形的个数为()A.2个B.3个C.4个D.5个二.填空题(共8小题,满分24分)11.若代数式有意义,则x的取值范围是.12.已知a2﹣2ab﹣b2=0,(a≠0,b≠0),则代数式的值.13.在函数y=﹣的图象上有三点(﹣1,y1),(﹣0.25,y2),(3,y3),则函数值y1,y2,y3的大小关系是.14.如图,在Rt△ABC中,∠ACB=90°,点D、点E分别是边AB、AC的中点,点F在AB上,且EF∥CD.若EF=2,则AB=.15.(3分)如图,反比例函数y=与一次函数y=﹣x+6的图象交点为E、F,则点E的坐标为,△EOF的面积为.反比例函数值大于一次函数值时x的范围是.16.(3分)若关于x的分式方程无解,则m=.17.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.18.如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD 上一动点,则EP+AP的最小值为.三.解答题(共10小题,满分76分)19.解下列分式方程:(1)=(2)﹣=20.先化简,再求值:÷(﹣x+1),其中x满足x2+7x=0.21.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.22.甲、乙两地相距50km,A骑自行车从甲地到乙地,出发3小时20分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A、B 两人的速度.23.如图,点B的坐标是(4,4),作BA⊥x轴于点A,作BC⊥y轴于点C,反比例函数(k>0)的图象经过BC的中点E,与AB交于点F,分别连接OE、CF,OE与CF交于点M,连接AM.(1)求反比例函数的函数解析式及点F的坐标;(2)你认为线段OE与CF有何位置关系?请说明你的理由.(3)求证:AM=AO.24.如图所示,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.请判断△PMN的形状,并说明理由.25.如图,直线x=t(>0)与双曲线y=(x>0)交于点A,与双曲线y=(x<0)交于点B,连结OA,OB.(1)当k1,k2分别为某一确定值时,随t值的增大,△AOB的面积(填增大、不变、或减小).(2)当k1+k2=0,S△AOB=8时,求k1、k2的值.26.(8分)如图:矩形ABCD中,AC是对角线,∠BAC的平分线AE交于点E,∠DCA的平分线CF交AD于F.(1)求证四边形AECF是平行四边形.(2)若四边形AECF是菱形,求AB与AC的数量关系.27.(10分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.28.(12分)如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B 作BD⊥y轴,垂足为D,交OA于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.参考答案与试题解析一.选择题(共10小题,满分3分)1.若分式的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.0故选:A.2.如果反比例函数的图象经过点(﹣2,3),那么k的值是()A.B.﹣6C.D.6故选:B.3.(3分)已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.故选:B.4.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD 的长为()A.4B.3C.2D.1故选:A.5.计算结果是()A.0B.1C.﹣1D.x故选:C.6.函数y=x+的图象如图所示,下列对该函数性质的论断不可能正确的是()A.该函数的图象是中心对称图形B.y的值不可能为1C.在每个象限内,y的值随x值的增大而减小D.当x>0时,该函数在x=1时取得最小值2【解答】解:由图可得,该函数的图象关于原点对称,是中心对称图形,故A选项结论正确;当x>0时,有三种情况:0<x<1时,y的值随x值的增大而减小,且y>2;x=1时,y =2;x>1时,y>2;故B选项结论正确;当y的值为1时,可得方程x+=1,△<0,无解,故y的值不可能为1,故D选项结论正确.所以,结论不正确的是C.故选:C.7.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=16,则HE等于()A.32B.16C.8D.10【解答】解:∵D,F分别为BC,AB边的中点,∴AC=2DF=32,∵AH⊥BC,∴∠AHC=90°,又E为AC边的中点,∴HE=AC=16,故选:B.8.如图,O为坐标原点,菱形OABC的顶点A的坐标为(﹣4,3),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12B.﹣27C.﹣32D.﹣36【解答】解:∵A(﹣4,3),∴OA==5,∵菱形OABC,∴AO=OC=5,则点B的横坐标为﹣3﹣4=﹣9,故B的坐标为:(﹣9,3),将点B的坐标代入y=得,3=,解得:k=﹣27.故选:B.9.如图,正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分面积是()cm2.A.B.C.D.【解答】解:如图,连接CG.∵正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,∴△CDE≌△CBF,易得,△BGE≌△DGF,所以S△BGE=S△EGC,S△DGF=S△CGF,于是S△BGE=S△EGC=S△DGF=S△CGF,又因为S△BFC=1××=cm2,所以S△BGE=×=cm2,则空白部分的面积为4×=cm2,于是阴影部分的面积为1×1﹣=cm2.故选:B.10.如图,正方形ABCD中AE=AB,EF⊥AC于E交BC于F,则图中等腰三角形的个数为()A.2个B.3个C.4个D.5个【解答】解:在正方形ABCD中有,AB=BC,AD=CD,∠ACB=45°,∴△ABC,△ADC是等腰三角形,∠EFC=90°﹣∠ACB=45°=∠ACB,∴EF=CE,△EFC是等腰三角形,∵AE=AB,∴△AEB是等腰三角形,∠ABE=∠AEB,∴∠FBE=90°﹣∠ABE=90°﹣∠AEB=∠BEF,∴FB=FE,∴△BEF是等腰三角形.故共有5个等腰三角形.故选:D.二.填空题(共8小题,满分9分)11.若代数式有意义,则x的取值范围是x≠4.12.已知a2﹣2ab﹣b2=0,(a≠0,b≠0),则代数式的值﹣2.【解答】解:∵a2﹣2ab﹣b2=0,∴b2﹣a2=﹣2ab,则===﹣2,故答案为:﹣2.13.在函数y=﹣的图象上有三点(﹣1,y1),(﹣0.25,y2),(3,y3),则函数值y1,y2,y3的大小关系是y3<y1<y2.【解答】解:∵反比例函数y=﹣的k=﹣2<0,∴函数图象的两个分式分别位于二、四象限,且在每一象限内y随x的增大而增大.∵﹣1<0,﹣0.25<0,∴点(﹣1,y1),(﹣0.25,y2)位于第二象限,∴y1>0,y2>0,∵﹣0.25>﹣1<0,∴0<y1<y2.∵3>0,∴点(3,y3)位于第四象限,∴y3<0,∴y3<y1<y2.故答案为:y3<y1<y2.14.如图,在Rt△ABC中,∠ACB=90°,点D、点E分别是边AB、AC的中点,点F在AB上,且EF∥CD.若EF=2,则AB=8.【解答】解:∵E是AC中点,且EF∥CD,∴EF是△ACD的中位线,则CD=2EF=4,在Rt△ABC中,∵D是AB中点,∴AB=2CD=8,故答案为:8.15.(3分)如图,反比例函数y=与一次函数y=﹣x+6的图象交点为E、F,则点E的坐标为(1,5),△EOF的面积为12.反比例函数值大于一次函数值时x的范围是0<x<1或x>5.【解答】解:联立两函数解析式可得,解得或,∴E点坐标为(1,5),在y=﹣x+6中,令y=0可求得x=6,∴A(6,0),∴OA=6,∴S△EOF=S△AOE﹣S△AOF=×6×5﹣×6×1=15﹣3=12,∵E(1,5),F(5,1),∴当反比例函数值大于一次函数值时x的取值范围为0<x<1或x>5,故答案为:(1,5);12;0<x<1或x>5.16.(3分)若关于x的分式方程无解,则m=6,10.【解答】解:∵关于x的分式方程无解,∴x=﹣,原方程去分母得:m(x+1)﹣5=(2x+1)(m﹣3)解得:x=,m=6时,方程无解.或=﹣是方程无解,此时m=10.故答案为6,10.17.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=96°.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180°,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.18.如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD 上一动点,则EP+AP的最小值为2.【解答】解:如图,作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB•CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,P′A+P′E的值最小,最小值为CE=2,故答案为:2.三.解答题(共10小题,满分30分)19.解下列分式方程:(1)=(2)﹣=【解答】解:(1)方程两边都乘以x(x+7),得100(x+7)=30x.解这个一元一次方程,得x=﹣10.检验:当x=﹣10,x(x+7)≠0.所以,x=﹣10是原分式方程的根.(2)方程两边都乘以(x+3)(x﹣3),得x﹣3+2(x+3)=12.解这个一元一次方程,得x=3.检验:当x=3时,(x+3)(x﹣3)=0.因此,x=3是原分式方程的增根,所以,原分式方程无解.20.先化简,再求值:÷(﹣x+1),其中x满足x2+7x=0.【解答】解:原式=÷(﹣)==×=﹣∵x2+7x=0x(x+7)=0∴x1=0,x2=﹣7当x=0时,除式(﹣x+1)=0,所以x不能为0,所以x=﹣7.当x=﹣7时,原式=﹣=﹣=21.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵AB=10,AC⊥BC,∴AC==6,∴OA=AC=3,∴S平行四边形ABCD=BC•AC=8×6=48.22.甲、乙两地相距50km,A骑自行车从甲地到乙地,出发3小时20分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A、B 两人的速度.【解答】解:设A的速度为xkm/时,则B的速度为3xkm/时.根据题意得方程:.解得:x=10.经检验:x=10是原方程的根.∴3x=30.答:A,B两人的速度分别为10km/时、30km/时.23.如图,点B的坐标是(4,4),作BA⊥x轴于点A,作BC⊥y轴于点C,反比例函数(k>0)的图象经过BC的中点E,与AB交于点F,分别连接OE、CF,OE与CF交于点M,连接AM.(1)求反比例函数的函数解析式及点F的坐标;(2)你认为线段OE与CF有何位置关系?请说明你的理由.(3)求证:AM=AO.【解答】(1)解:∵正方形ABCO,B(4,4),E为BC中点,∴OA=AB=BC=OC=4,CE=BE=2,F的横坐标是4,∴E的坐标是(2,4),把E的坐标代入y=得:k=8,∴y=,∵F在双曲线上,∴把F的横坐标是4代入得:y=2,∴F(4,2),答:反比例函数的函数解析式是y=,点F的坐标是(4,2).(2)线段OE与CF的位置关系是OE⊥CF,理由是:∵E的坐标是(2,4),点F的坐标是(4,2),∴AF=4﹣2=2=CE,∵正方形OABC,∴OC=BC,∠B=∠BCO=90°,∵在△OCE和△CBF中,∴△OCE≌△CBF,∴∠COE=∠BCF,∵∠BCO=90°,∴∠COE+∠CEO=90°,∴∠BCF+∠CEO=90°,∴∠CME=180°﹣90°=90°,即OE⊥CF.(3)证明:∵OC=4,CE=2,由勾股定理得:OE=2,过M作MN⊥OC于N,∵OE⊥CF,∴∠CMO=∠OCE=90°,∵∠COE=∠COE,∴△CMO∽△ECO,∴==,即==,解得:CM=,OM=,在△CMO中,由三角形的面积公式得:×OC×MN=×CM×OM,即4MN=×,解得:MN=,在△OMN中,由勾股定理得:ON==,即M(,),∵A(4,0),∴由勾股定理得:AM=4=AO,即AM=AO.24.如图所示,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.请判断△PMN的形状,并说明理由.【解答】解:△PMN是等腰三角形.理由如下:∵点P是BD的中点,点M是CD的中点,∴PM=BC,同理:PN=AD,∵AD=BC,∴PM=PN,∴△PMN是等腰三角形.25.如图,直线x=t(>0)与双曲线y=(x>0)交于点A,与双曲线y=(x<0)交于点B,连结OA,OB.(1)当k1,k2分别为某一确定值时,随t值的增大,△AOB的面积不变(填增大、不变、或减小).(2)当k1+k2=0,S△AOB=8时,求k1、k2的值.【解答】解:(1)不变,∵S△AOC=|k1|,S△BOC=|k2|,∴S△AOB=S△AOC+S△BOC=(|k1|+|k2|),∵k1,k2分别为某一确定值,∴△AOB的面积不变,故答案为:不变;(2)由题意可知:k1>0,k2<0,∴S△AOB=k1﹣k2=8,∵k1+k2=0,解得k1=8,k2=﹣8.26.(8分)如图:矩形ABCD中,AC是对角线,∠BAC的平分线AE交于点E,∠DCA的平分线CF交AD于F.(1)求证四边形AECF是平行四边形.(2)若四边形AECF是菱形,求AB与AC的数量关系.【解答】证明:(1)∵四边形ABCD是矩形,∴AB∥DC,∴∠BAC=∠DCA,∵∠BAC=2∠EAC,∠DCA=2∠FCA,∴∠EAC=∠FCA,∴AE∥CF,∵AE∥EF,∴四边形AECF是平行四边形;(2)当2AB=AC时,四边形AECF是菱形,理由如下:∵2AB=AC,∠ABC=90°,∴∠ACB=30°,∠BAC=60°,∴∠EAC=30°,∴∠EAC=∠ACB,∴AE=EC,∵四边形AECF是平行四边形,∴平行四边形AECF是菱形.27.(10分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.【解答】解:(1)在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴△ABG≌△AFG(HL);(2)∵△ABG≌△AFG,∴BG=FG,设BG=FG=x,则GC=6﹣x,∵E为CD的中点,∴CE=EF=DE=3,∴EG=3+x,∴在Rt△CEG中,32+(6﹣x)2=(3+x)2,解得x=2,∴BG=2.28.(12分)如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B 作BD⊥y轴,垂足为D,交OA于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.【解答】解:(1)∵点B(3,2)在反比例函数y=的图象上,∴a=3×2=6,∴反比例函数的表达式为y=,∵点A的纵坐标为4,∵点A在反比例函数y=图象上,∴A(,4),∴,∴,∴一次函数的表达式为y=﹣x+6;(2)如图1,过点A作AF⊥x轴于F交OB于G,∵B(3,2),∴直线OB的解析式为y=x,∴G(,1),A(,4),∴AG=4﹣1=3,∴S△AOB=S△AOG+S△ABG=×3×3=.(3)如图2中,①当∠AOE1=90°时,∵直线AC的解析式为y=x,∴直线OE1的小时为y=﹣x,当y=2时,x=﹣,∴E1(﹣,2).②当∠OAE2=90°时,可得直线AE2的解析式为y=﹣x+,当y=2时,x=,∴E2(,2).③当∠OEA=90°时,易知AC=OC=CE=,∵C(,2),∴可得E3(,2),E4(,2),综上所述,满足条件的点E坐标为(﹣,2)或(,2)或(,2)或(,2).。
黑龙江省佳木斯市桦南县实验中学2018-2019人教版八年级数学下册 期中检测试题(Word版附答案)
2018—2019桦南县实验中学八年级(下)期中测试卷数学试题考生注意:1.考试时间120分钟.2. 全卷共三大题,满分120分.题号一二三总分21 22 23 24 25 26 27 28分数一、填空题(本大题共10小题,共30分)一、填空题(本大题共10小题,共30分)1. 化简=.2.如图,在△ABC中,AB=AC,D为BC上一点,且AB=BD,AD=DC,则∠C=度.3.在△ABC中,BC=6,E、F分别是AB、AC的中点,则EF=.4.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD=cm.5.+|b﹣4|=0,则=.6. 一架云梯长25m,如果斜靠在墙上,梯子底端离墙7m,梯子的顶端距离地面有m,如果梯子的顶端下滑了4m,那么梯子的底端在水平方向滑动了m.7.写出“两组对边分别相等的四边形是平行四边形”的逆命题.8.比较大小:(填“>”、“=”、“<”).9.菱形的两条对角线分别是6cm和8cm,则这个菱形的面积是 cm2.10.如图,边长为2菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第6个菱形的边长为.二、选择题(本大题共10小题,每小题3分,共30分.)11.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.9 B.10 C. D.12.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10D.1113.如图,在矩形ABCD中,对角线AC=8cm,∠AOD=120°,则AB的长为()A. cm B.2cm C. cm D.4cm14.如图,在▱ABCD中,AD=6,AB=4,DE平分∠ADC交BC于点E,则BE的长是()A.2 B.3 C.4 D.515.使代数式有意义的x的取值范围是()16.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是()A.12米B.13米C.14米D.15米17.下面各组数是三角形的三边的长,则能构成直角三角形的是()A.2,2,3 B.60,80,100 C.4,5,6 D.5,6,718.下列式子中,属于最简二次根式的是()A.B.C. D.19.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A.13B.26 C.47 D.9420. 如图□ABCD的对角线ACBD交于点O,平分∠BAD交BC于点E,且∠ADC=600,AB=BC,连接OE .下列结论:①∠CAD=300 ②S□ABCD=AB•AC③OB=AB④OE=BC成立的个数有得分评卷人得分评卷人第2题图第10题图第14题图第19题图第20题图第11题图第13题图第12题图( )A. 1个B. 2个C. 3个D. 4个 三、解答题(本大题共8小题,共60分) 21.(满分5分)计算(1)﹣(﹣)(2)+a ﹣4+.22.(满分6分)如图,A .B 两点分别位于一个池塘的两端.小明想用绳子测量A .B 间的距离,但绳子不够长,小明想出了这样一个办法:先在地上取一个可以直接到达A 点和B 点的点C ,连接AC 并延长到D ,使CD=AC ;连接BC 并延长到E ,使CE=CB ,连接DE 并测量出它的长度,DE 的长度就是A .B 间的距离.请你说明其中的道理.23. (满分6分)已知a ,b 是等腰三角形的两条边长,且a,b 满足b=, 求此三角形的周长.24.(满分7分)有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线,已知门宽4尺,求竹竿高与门高. 得分 评卷人得分 评卷人得分 评卷人得分评卷人25.(满分8分)已知:在△ABC中,∠A比∠B小40°,∠B比∠C大50°,求∠A,∠B,∠C的度数.26.(满分8分)某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(AB<BC)的对角线的交点O旋转(①⇒②⇒③),图中的M、N分别为直角三角形的直角边与矩形ABCD的边CD、BC的交点.(1)该学习小组成员意外的发现图①(三角板一直角边与OD重合)中,BN2=CD2+CN2,在图③中(三角板一边与OC重合),CN2=BN2+CD2,请你对这名成员在图①和图③中发现的结论选择其一说明理由.(2)试探究图②中BN、CN、CM、DM这四条线段之间的数量关系,写出你的结论,并说明理由.(3)将矩形ABCD改为边长为1的正方形ABCD,直角三角板的直角顶点绕O点旋转到图④,两直角边与AB、BC分别交于M、N,直接写出BN、CN、CM、DM这四条线段之间所满足的数量关系.(不需要证明)27.(满分10分如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN 交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.28.(满分10分)如图,在△ABC中,AB=BC,D、E、F分别是BC、AC、AB边上的中点.(1)求证:四边形BDEF是菱形;(2)若AB=12cm,求菱形BDEF的周长.得分评卷人得分评卷人得分评卷人得分评卷人。
2018-2019学年辽宁省沈阳市皇姑区虹桥中学八年级(下)期中数学试卷
2018-2019学年辽宁省沈阳市皇姑区虹桥中学八年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)下列方程中,是二元一次方程的是()A.3x-2y=4zB.6xy+9=0C.A+4y=6D.x42.(3分)下列各组数是二元一次方程组的解的是()[y-x=lA.侦1B.(x=0 c.侦7D.ly=2ly=l ly=0[y=-23.(3分)要组成一个三角形,三条线段长度可取()A.9,6,13B.2,3,5C.18,9,8D.3,5,94.(3分)若x>y f则下列式子错误的是()A.x-3>y-3B.JL>X.335.(3分)下列图形中有稳定性的是()C.- 2x<-2yD.3-x>3-yA.正方形B.长方形C.直角三角形D.平行四边形6.(3分)一个多边形的外角和与它的内角和相等,则多边形是()A.三角形B.四边形C.五边形D.六边形7.(3分)如图,/若ZA=70°,ZB=40°B,ZC=32°.则ZBDC=()A.102°AB.110°C.142°D.148°8.(3分)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折9.(3分)如图所示,已知△ABC中,ZA=80°,若沿图中虚线剪去ZA,则Z1+Z2等于()C.260°D.315°10.(3分)给出下列命题:①三角形的一个外角等于两个内角和;②若ZA+ZB=ZC,则AABC是直角三角形;③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外.正确的命题有()A.1个B.2个C.3个D.4个二、填空题:(每题3分,共30分)11.(3分)将方程x+4y=2改写成用含y的式子表示x的形式.12.(3分)不等式组P X<2X+4的最大整数解是_______.[x+6《3x13.(3分)已知在△A BC中,若则ZkABC中最大的角度数为°.5314.(3分)已知等腰三角形的两条边长分别为2和5,则它的周长为.15.(3分)一个多边形的内角和为1080°,若每个内角都相等,则每个外角的度数是_______16.(3分)A3、CD相交于点。
山东省乐陵市2018-2019学年八年级下学期期中考试数学试题 含解析
2018-2019学年八年级下学期期中考试数学试题一、选择题.(每题3分,共48分)1.下列各组数中,能作为直角三角形三边长的是()A.1、2、3 B.3、5、7 C.32、42、52 D.5、12、132.如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯长度至少应是()A.13m B.17m C.18m D.25m3.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为()A.4 B.16 C.D.4或4.如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为()A.8 B.9 C.10 D.115.已知四边形ABCD,有以下四个条件:(1)AB=AD,AB=BC;(2)∠A=∠B,∠C=∠D;(3)AB∥CD,AB=CD;(4)AB∥CD,AD∥BC.其中能判定四边形ABCD是平行四边形的有()个.A.1 B.2 C.3 D.46.平行四边形一边的长是10cm,那么这个平行四边形的两条对角线长可以是()A.4cm,6cm B.6cm,8cm C.8cm,12cm D.20cm,30cm7.如果点A(1,m)与点B(3,n)都在直线y=﹣2x+1上,那么m与n的关系是()A.m>n B.m<n C.m=n D.不能确定8.在四边形ABCD中,∠A=∠B=∠C=90°,如果再添加一个条件,即可推出该四边形是正方形,这个条件可以是()A.BC=CD B.AB=CD C.∠D=90°D.AD=BC9.一次函数y=kx﹣6(k<0)的图象大致是()A.B.C.D.10.下列图象中,哪些表示y是x的函数?有()个.A.1个B.2个C.3个D.4个11.公式L=L0+KP表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A.L=10+0.5P B.L=10+5P C.L=80+0.5P D.L=80+5P12.已知一次函数y=kx﹣3且y随x的增大而增大,那么它的图象经过()A.第二、三、四象限B.第一、二、三象限C.第一、三、四象限D.第一、二、四象限13.下列命题中正确的是()A.对角线相等的四边形是菱形B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是菱形D.对角线互相垂直的平行四边形是菱形14.对于函数y=﹣3x+1,下列结论正确的是()A.它的图象必经过点(﹣1,3)B.它的图象经过第一、二、三象限C.当x>1时,y<0D.y随x的增大而增大15.如图,在正方形ABCD的外侧作等边三角形ADE,那么∠BED为()A.60°B.45°C.30°D.15°16.正方形ABCD的边长为1,其面积记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为S2,…按此规律继续下去,则S2019的值为()A.B.C.D.二、填空题.(每题3分,共24分)17.函数y=﹣中自变量x的取值范围是.18.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为.19.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为.20.已知一次函数y=kx+k﹣3的图象经过点(2,3),则k的值为.21.将直线y=2x﹣1沿y轴正方向平移2个单位,得到的直线的解析式为.22.请写出一个图象经过点(1,1)的一次函数的表达式:.23.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是.24.如图,已知正比例函数y1=ax与一次函数y2=﹣x+b的图象交于点P下面有四个结论:①a>0;②b<0;③当x<0时,y1<0;④当x>2时,y1<y2.其中正确的序号是三、解答题(共计78分)25.有一块田地的形状和尺寸如图所示,求它的面积.26.已知:如图,在▱ABCD中,点E在AB上,点F在CD上,且DE∥BF.求证:DE=BF.27.已知:如图,在矩形ABCD中,AB=3,BC=4.将△BCD沿对角线BD翻折得到△BED,BE交AD于点O.(1)判断△BOD的形状,并证明;(2)直接写出线段OD的长.28.在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.29.在平面直角坐标系xOy中,直线y=kx+b(k≠0)与直线y=2x的交点为P(2,m),与x轴的交点为A.(1)求m的值;(2)过点P作PB⊥x轴于B,如果△PAB的面积为6,求k的值.30.某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少要有1名教师.现有甲、乙两种大客车(不能超员)它们的载客量和租金如下:(1)共需租多少辆汽车?(2)给出最节省费用的租车方案.31.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)32.阅读以下内容并回答问题:如图1,在平面直角坐标系xOy中,有一个△OEF,要求在△OEF内作一个内接正方形ABCD,使正方形A,B两个顶点在△OEF的OE边上,另两个顶点C,D分别在EF和OF两条边上.小丽感到要使四边形的四个顶点同时满足上述条件有些困难,但可以先让四边形的三个顶点满足条件,于是她先画了一个有三个顶点在三角形边上的正方形(如图2).接着她又在△OEF内画了一个这样的正方形(如图3).她发现如果再多画一些这样的正方形,就能发现这些点C位置的排列图形,根据这个图形就能画出满足条件的正方形了.(1)请你也实验一下,再多画几个这样的正方形,猜想小丽发现这些点C排列的图形是;(2)请你参考上述思路,继续解决问题:如果E,F两点的坐标分别为E(6,0),F(4,3).①当A1的坐标是(1,0)时,则C1的坐标是;②当A2的坐标是(2,0)时,则C2的坐标是;③结合(1)中猜想,求出正方形ABCD的顶点D的坐标,在图3中画出满足条件的正方形ABCD.参考答案与试题解析一.选择题(共16小题)1.下列各组数中,能作为直角三角形三边长的是()A.1、2、3 B.3、5、7 C.32、42、52 D.5、12、13 【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【解答】解:A、∵1+2=3,∴三条线段不能组成三角形,不能组成直角三角形,故A选项错误;B、∵52+32≠72,∴三条线段不能组成直角三角形,故B选项错误;C、∵322+422≠522,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+122=132,∴∴三条线段能组成直角三角形,故D选项正确;故选:D.2.如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯长度至少应是()A.13m B.17m C.18m D.25m【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【解答】解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17米.故选:B.3.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为()A.4 B.16 C.D.4或【分析】此题要分两种情况:当3和5都是直角边时;当5是斜边长时;分别利用勾股定理计算出第三边长即可.【解答】解:当3和5都是直角边时,第三边长为:=;当5是斜边长时,第三边长为:=4.故选:D.4.如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为()A.8 B.9 C.10 D.11【分析】运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE,然后证明△ACB≌△DCE,再结合全等三角形的性质和勾股定理来求解即可.【解答】解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,在△ABC和△CED中,,∴△ACB≌△DCE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S b=S a+S c=1+9=10,∴b的面积为10,故选:C.5.已知四边形ABCD,有以下四个条件:(1)AB=AD,AB=BC;(2)∠A=∠B,∠C=∠D;(3)AB∥CD,AB=CD;(4)AB∥CD,AD∥BC.其中能判定四边形ABCD是平行四边形的有()个.A.1 B.2 C.3 D.4【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【解答】解:根据平行四边形的判定定理知,(1),(2)不符合是平行四边形的条件;(3)(4)满足四边形是平行四边形.故选:B.6.平行四边形一边的长是10cm,那么这个平行四边形的两条对角线长可以是()A.4cm,6cm B.6cm,8cm C.8cm,12cm D.20cm,30cm【分析】平行四边形的这条边和两条对角线的一半构成三角形,应该满足第三边大于两边之差小于两边之和才能构成三角形.【解答】解:A、∵2+3<10,不能够成三角形,故此选项错误;B、4+3<10,不能够成三角形,故此选项错误;C、4+6=10,不能构成三角形,故此选项错误;D、10+10>15,能够成三角形,故此选项正确;故选:D.7.如果点A(1,m)与点B(3,n)都在直线y=﹣2x+1上,那么m与n的关系是()A.m>n B.m<n C.m=n D.不能确定【分析】先根据一次函数的解析式判断出函数的增减性,再根据1<3即可得出结论.【解答】解:∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(1,m)与点B(3,n)都在直线y=﹣2x+1上,1<3,∴m>n.故选:A.8.在四边形ABCD中,∠A=∠B=∠C=90°,如果再添加一个条件,即可推出该四边形是正方形,这个条件可以是()A.BC=CD B.AB=CD C.∠D=90°D.AD=BC【分析】根据正方形的判定方法即可判定;【解答】解:∵∠A=∠B=∠C=90°,∴四边形ABCD是矩形,∴当BC=CD时,四边形ABCD是正方形,故选:A.9.一次函数y=kx﹣6(k<0)的图象大致是()A.B.C.D.【分析】一次函数y=kx+b中,k的符号决定了直线的方向,b的符号决定了直线与y轴的交点位置,据此判断即可.【解答】解:∵一次函数y=kx﹣6中,k<0∴直线从左往右下降又∵常数项﹣6<0∴直线与y轴交于负半轴∴直线经过第二、三、四象限故选:D.10.下列图象中,哪些表示y是x的函数?有()个.A.1个B.2个C.3个D.4个【分析】函数就是在一个变化过程中有两个变量x,y,当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.【解答】解:根据函数的定义可知,每给定自变量x一个值都有唯一的函数值y相对应,所以第四个错误.故选:C.11.公式L=L0+KP表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A.L=10+0.5P B.L=10+5P C.L=80+0.5P D.L=80+5P【分析】A和B中,L0=10,表示弹簧短;A和C中,K=0.5,表示弹簧硬,由此即可得出结论.【解答】解:∵10<80,0.5<5,∴A和B中,L0=10,表示弹簧短;A和C中,K=0.5,表示弹簧硬,∴A选项表示这是一个短而硬的弹簧.故选:A.12.已知一次函数y=kx﹣3且y随x的增大而增大,那么它的图象经过()A.第二、三、四象限B.第一、二、三象限C.第一、三、四象限D.第一、二、四象限【分析】根据“一次函数y=kx﹣3且y随x的增大而增大”得到k<0,再由k的符号确定该函数图象所经过的象限.【解答】解:∵一次函数y=kx﹣3且y随x的增大而增大,∴k<0,该直线与y轴交于y轴负半轴,∴该直线经过第一、三、四象限.故选:C.13.下列命题中正确的是()A.对角线相等的四边形是菱形B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是菱形D.对角线互相垂直的平行四边形是菱形【分析】根据菱形对角线互相垂直平分的判定方法进行解答.【解答】解:对角线互相垂直平分的四边形是菱形;对角线互相垂直的平行四边形是菱形;故选:D.14.对于函数y=﹣3x+1,下列结论正确的是()A.它的图象必经过点(﹣1,3)B.它的图象经过第一、二、三象限C.当x>1时,y<0D.y随x的增大而增大【分析】根据一次函数的性质可以判断各个选项是否正确,从而可以解答本题.【解答】解:A.它的图象必经过点(﹣1,4),错误;B.它的图象经过第一、二、四象限,错误;C.当x>1时,y<0,正确;D.y随x的增大而减小,错误;故选:C.15.如图,在正方形ABCD的外侧作等边三角形ADE,那么∠BED为()A.60°B.45°C.30°D.15°【分析】由正方形性质可得AB=AD,∠BAD=90°,由等边三角形性质可得AE=AD,∠DAE=∠AED=60°,再根据等腰三角形性质和三角形内角和定理即可求得∠BED.【解答】解:∵四边形ABCD是正方形∴AB=AD,∠BAD=90°∵△ADE是等边三角形∴AE=AD,∠DAE=∠AED=60°∴AB=AE,∠BAE=∠BAD+∠DAE=90°+60°=150°∴∠ABE=∠AEB=(180°﹣∠BAE)=15°∴∠BED=∠AED﹣∠AEB=60°﹣15°=45°故选:B.16.正方形ABCD的边长为1,其面积记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为S2,…按此规律继续下去,则S2019的值为()A.B.C.D.【分析】根据等腰直角三角形的性质可得出S2+S2=S1,写出部分S n的值,根据数的变化找出变化规律S n=()n﹣1,依此规律即可得出结论.【解答】解:在图中标上字母E,如图所示.∵正方形ABCD的边长为1,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察,发现规律:S1=12=1,S2=S1=,S3=S2=,S4=S3=,…,∴S n=()n﹣1.当n=2019时,S2019=()2019﹣1=()2018,故选:B.二.填空题(共8小题)17.函数y=﹣中自变量x的取值范围是﹣2<x≤3 .【分析】二次根式有意义的条件就是被开方数大于或等于0.分式有意义的条件是分母不为0,列不等式组求解.【解答】解:根据题意,得,解得:﹣2<x≤3,则自变量x的取值范围是﹣2<x≤3.18.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为 3 .【分析】根据矩形是中心对称图形寻找思路:△AOE≌△COF,图中阴影部分的面积就是△BCD的面积.【解答】解:∵四边形ABCD是矩形,∴OA=OC,∠AEO=∠CFO;又∵∠AOE=∠COF,在△AOE和△COF中,,∴△AOE≌△COF,∴S△AOE=S△COF,∴图中阴影部分的面积就是△BCD的面积.S△BCD=BC×CD=×2×3=3.故答案为:3.19.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为24 .【分析】首先根据题意画出图形,由一个菱形的边长为5,其中一条对角线长为8,可利用勾股定理,求得另一菱形的对角线长,继而求得答案.【解答】解:如图,∵菱形ABCD中,BD=8,AB=5,∴AC⊥BD,OB=BD=4,∴OA==3,∴AC=2OA=6,∴这个菱形的面积为:AC•BD=×6×8=24.故答案为:24.20.已知一次函数y=kx+k﹣3的图象经过点(2,3),则k的值为 2 .【分析】将点(2,3)代入y=kx+k﹣3可得关于k的方程,解方程求出k的值即可.【解答】解:将点(2,3)代入一次函数y=kx+k﹣3,可得:3=2k+k﹣3,解得:k=2.故答案为:2.21.将直线y=2x﹣1沿y轴正方向平移2个单位,得到的直线的解析式为y=2x+1 .【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将直线y=2x﹣1向上平移2个单位后,所得直线的表达式是y=2x﹣1+2,即y=2x+1.故答案为:y=2x+1.22.请写出一个图象经过点(1,1)的一次函数的表达式:y=2x﹣1(不唯一).【分析】可设这个一次函数解析式为:y=kx﹣1,把(1,1)代入即可.【解答】解:设这个一次函数解析式为:y=kx﹣1,把(1,1)代入得k=2,∴这个一次函数解析式为:y=2x﹣1(不唯一).23.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是x>3 .【分析】观察函数图象得到当x>3时,函数y=x+b的图象都在y=kx+6的图象上方,所以关于x的不等式x+b>kx+6的解集为x>3.【解答】解:当x>3时,x+b>kx+6,即不等式x+b>kx+6的解集为x>3.故答案为:x>3.24.如图,已知正比例函数y1=ax与一次函数y2=﹣x+b的图象交于点P下面有四个结论:①a>0;②b<0;③当x<0时,y1<0;④当x>2时,y1<y2.其中正确的序号是①③【分析】根据函数的图象直接判断后即可确定正确的答案.【解答】解:①∵正比例函数y1=ax经过一三象限,∴a>0正确;②∵一次函数y2=﹣x+b的图象交y轴的正半轴,∴b>0,∴b<0错误;③∵当x<0时y1=ax的图象位于x轴的下方,、∴y1<0正确;④观察图象得当x>2时y1>y2,∴y1<y2错误,故答案为:①③.三.解答题(共8小题)25.有一块田地的形状和尺寸如图所示,求它的面积.【分析】在直角△ACD中,已知AD,CD,根据勾股定理可以求得AC,根据AC,BC,AB的关系可以判定△ABC为直角三角形,根据直角三角形面积计算公式即可计算四边形ABCD 的面积.【解答】解:连接AC,在Rt△ACD中,AC为斜边,已知AD=4,CD=3,则AC==5,∵AC2+BC2=AB2,∴△ABC为直角三角形,∴S四边形ABCD=S△ABC﹣S△ACD=AC•CB﹣AD•DC=24,答:该四边形面积为24.26.已知:如图,在▱ABCD中,点E在AB上,点F在CD上,且DE∥BF.求证:DE=BF.【分析】只要证明四边形DEBF是平行四边形即可解决问题;【解答】证明:∵四边形ABCD是平行四边形,∴DC∥AB,即DF∥BE,又∵DE∥BF,∴四边形DEBF是平行四边形,∴DE=BF.27.已知:如图,在矩形ABCD中,AB=3,BC=4.将△BCD沿对角线BD翻折得到△BED,BE交AD于点O.(1)判断△BOD的形状,并证明;(2)直接写出线段OD的长.【分析】(1)根据矩形的性质和翻折的性质可得结论;(2)设OD=x,则AO=4﹣x,BO=OD=x,根据勾股定理列方程可得结论.【解答】(本小题满分5分)解:(1)△BOD为等腰三角形,证明如下:…………………………………………………………………(1分)∵矩形ABCD,∴AD∥BC.∴∠ADB=∠DBC.…………………………………………………………………………(2分)又∵△BCD沿对角线BD翻折得到△BED,∴∠OBD=∠DBC.…………………………………………………………………………(3分)∴∠OBD=∠ADB.∴OB=OD.∴△BOD为等腰三角形.…………………………………………………………………………(4分)(2)设OD=x,则AO=4﹣x,BO=OD=x,由勾股定理得:OB2=AB2+AO2,∴x2=32+(4﹣x)2,∴x=,∴OD=.……………………………………………………………………………(5分)28.在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【分析】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF =∠DFA,根据角平分线的判定,可得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC==5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.29.在平面直角坐标系xOy中,直线y=kx+b(k≠0)与直线y=2x的交点为P(2,m),与x轴的交点为A.(1)求m的值;(2)过点P作PB⊥x轴于B,如果△PAB的面积为6,求k的值.【分析】(1)把点P(2,m)代入直线y=2x可求m的值;(2)先求得PB=4,根据三角形面积公式可求AB=3,可得A1(5,0),A2(﹣1,0),再根据待定系数法可求k的值.【解答】解:(1)∵直线y=2x过点P(2,m),∴m=4.(2)∵P(2,4),∴PB=4.又∵△PAB的面积为6,∴AB=3.∴A1(5,0),A2(﹣1,0).当直线y=kx+b经过A1(5,0)和P(2,4)时,可得k=.当直线y=kx+b经过A2(﹣1,0)和P(2,4)时,可得k=.综上所述,k=.30.某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少要有1名教师.现有甲、乙两种大客车(不能超员)它们的载客量和租金如下:(1)共需租多少辆汽车?(2)给出最节省费用的租车方案.【分析】(1)由甲种客车载客量多于乙种客车可得出:若只租甲种客车,所需辆数最少,由租用甲种客车还需要6辆及只有6名教师可得出共需租车6辆;(2)设租用甲种客车x辆,则租用乙种客车(6﹣x)辆,根据所租客车可乘载人数及租车总费用不超过2300元,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,结合x为整数可得出各租车方案,再求出各租车方案的租车总费用,比较后即可得出结论.【解答】解:(1)∵45>30,∴若只租甲种客车,所需辆数最少.又∵45×5=225<234+6,且教师只有6名,∴共需租车6辆.(2)设租用甲种客车x辆,则租用乙种客车(6﹣x)辆,依题意,得:,解得:4≤x≤5.∵x为整数,∴x=4,5,∴共有2种租车方案,方案1:租甲种客车4辆,乙种客车2辆;方案2:租甲种客车5辆,乙种客车1辆.方案1所需费用=400×4+280×2=2160(元),方案2所需费用=400×5+280=2280(元).∵2160<2280,∴方案1租甲种客车4辆,乙种客车2辆最省钱.31.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)【分析】(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.【解答】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.(2)四边形EFGH是菱形.证明:如图2中,连接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD即∠APC=∠BPD,在△APC和△BPD中,,∴△APC≌△BPD,∴AC=BD∵点E,F,G分别为边AB,BC,CD的中点,∴EF=AC,FG=BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.(3)四边形EFGH是正方形.证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.32.阅读以下内容并回答问题:如图1,在平面直角坐标系xOy中,有一个△OEF,要求在△OEF内作一个内接正方形ABCD,使正方形A,B两个顶点在△OEF的OE边上,另两个顶点C,D分别在EF和OF两条边上.小丽感到要使四边形的四个顶点同时满足上述条件有些困难,但可以先让四边形的三个顶点满足条件,于是她先画了一个有三个顶点在三角形边上的正方形(如图2).接着她又在△OEF内画了一个这样的正方形(如图3).她发现如果再多画一些这样的正方形,就能发现这些点C位置的排列图形,根据这个图形就能画出满足条件的正方形了.(1)请你也实验一下,再多画几个这样的正方形,猜想小丽发现这些点C排列的图形是一条线段;(2)请你参考上述思路,继续解决问题:如果E,F两点的坐标分别为E(6,0),F(4,3).①当A1的坐标是(1,0)时,则C1的坐标是(,);②当A2的坐标是(2,0)时,则C2的坐标是(,);③结合(1)中猜想,求出正方形ABCD的顶点D的坐标,在图3中画出满足条件的正方形ABCD.【分析】(1)直接得出结论;(2)先确定出直线OF的解析式,①将x=1代入直线OF解析式在求出y,即可得出结论;②将x=2代入直线OF解析式在求出y,即可得出结论;③先求出直线C1C2的表达式为y=x和直线EF的表达式为y=﹣+9,进而求出C点坐标为(,2),即可得出结论.【解答】解:(1)一条线段;故答案为:一条线段;(2)∵F(4,3).∴直线OF的表达式是y=x,①∵四边形A1B1C1D1是正方形,∴A1D1=A1B1,把x=1代入直线y=x中,得y=,∴OB1=OA1+A1B1=1+=,∴C1的坐标是(,),故答案为:(,);②∵四边形A2B2C2D2是正方形,∴A2D2=A2B2,把x=2代入直线y=x中,得y=,∴OB2=OA2+A2B2=2+=,∴C2的坐标是(,),故答案为:(,);③设过C1,C2两点的一次函数表达式是y=kx+b(k≠0).代入C1,C2两点得解得,∴直线C1C2的表达式为y=x,设过E(6,0),F(4,3)两点的一次函数表达式是y=k'x+b'(k'≠0).代入E,F两点得解得,所以直线EF的表达式为y=﹣x+9直线EF:y=﹣x+9与直线C1C2:y=x的交点坐标为C.解得x=,y=2.∴C点坐标为(,2).把y=2代入y=x,解得x=,∴D点坐标为(,2)即:所画四边形ABCD如图3所示,。
江苏省常州市溧阳市2018-2019学年度下学期八年级数学期中测试题 (解析版)
2018-2019学年度下学期八年级数学期中测试题一、选择题(本大题共8小题,每小题2分,共16分,在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应的位置上)1.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个2.下列事件中最适合使用普查方式收集数据的是()A.了解某班同学的身高情况B.了解全市每天丢弃的废旧电池数C.了解50发炮弹的杀伤半径D.了解我省农民的年人均收入情况3.下列从左到右变形正确的是()A.=B.=C.=D.=4.下列分式,,,,中,最简分式的个数是()A.1个B.2个C.3个D.4个5.把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.缩小2倍D.不变6.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种B.4种C.5种D.6种7.下列判断中正确的是()A.对角线互相垂直的四边形是菱形B.三个角相等的四边形是矩形C.对角线相等的平行四边形是正方形D.对角线互相垂直的矩形是正方形8.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为()A.1s B.s C.s D.2s二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.当x=时,分式的值是0.10.如果菱形的两条对角线长分别为6和8,那么这个菱形一边上的高是.11.分式,﹣,的最简公分母是.12.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他安全相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在0.15左右,则口袋中红色球可能有个.13.如图,P是等边△ABC内的一点,PB=2cm,PC=3cm,AB=4cm,若将△BCP绕点B按逆时针方向旋转到△ABP′,则PP′=.14.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD =24cm,△OAB的周长是18cm,则EF的长为.15.如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1S2;(填“>”或“<”或“=”)16.已知正方形ABCD的边长为4,点E,F分别在AD,DC上,AE=DF=1,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.17.如图,已知AB=2,C为线段AB上的一个动点,分别以AC,CB为边在AB的同侧作菱形ACED和菱形CBGF,点C,E,F在一条直线上,∠D=120°.P、Q分别是对角线AE,BF的中点,当点C在线段AB上移动时,点P,Q之间的距离最短为(结果保留根号).18.如图,在正方形ABCD的外部作∠AED=45°,且AE=6,DE=3,连接BE,则BE=.三、解答题(本大题共8小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤)19.计算:(1)(﹣)(2)×(3)﹣(4)÷(x+2﹣)20.先化简:,再选一个你喜欢的a的值代入求值.21.为弘扬中华传统文化,某校组织八年级800名学生参加汉字听写大赛为了解学生整体听写能力,从中抽取部分学生的成绩(得分取正整数,满分为100分)进行统计分析,得到如下所示的模数分布表:请根据尚未完成的表格,解答下列问题:(1)本次抽样调查的样本容量为,表中m=.n(2)补全图中所示的频数分布直方图;(3)若成绩超过80分为优秀,则该校八年级学生中汉字听写能力优秀的约有多少人?22.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(1,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.23.如图,△ABC中,AB=AC,∠BAC=100°,将△ABC绕点A顺时针方向旋转40°得到△ADE,BC与AD、DE交于点G、F.(1)求∠AGC的度数;(2)求证:四边形ABFE是菱形.24.如图,平行四边形ABCD中,对角线AC、BD相交于点O,AD=DB,点E、F、G分别是AO、BO、DC的中点,连接EF、DE、EG、GF.(1)求证:四边形DEFG是平行四边形;(2)求证:EG=EF.25.在平面直角坐标系xOy中,点M的坐标为(x1,y1),点的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角分平行于x轴、y轴,则称该菱形为边的“坐标菱形”.(1)已知点A(2,0),B(0,3),则以AB为边的“坐标菱形”的面积为;(2)若点C(1,2),点D在直线x=5上,以CD为边的“坐标菱形”为正方形,求直线CD的函数表达式.26.如图,在矩形ABCD中,AB=4,BC=3,点Q在BC上,BQ=2,点P是AB上的一个动点,连接PQ,将△PBQ沿PQ翻折,点B落在点B′.(1)当AP=时,四边形PBQB′的面积是矩形面积的;(2)当AP为何值时,四边形PBQB′是正方形?为什么?(3)在翻折过程中是否存在AP的值,使得点B′与矩形对称中心点O重合,如果存在,请求出AP的值;如果不存在,请说明理由.参考答案与试题解析一.选择题(共8小题)1.【解答】解:第一个是中心对称图形,也是轴对称图形;第二个不是中心对称图形,是轴对称图形;第三个不是中心对称图形,是轴对称图形;第四个既是中心对称图形又是轴对称图形.综上可得,共有2个符合题意.故选:C.2.【解答】解:A、了解某班同学的身高情况适合普查,故A正确;B、了解全市每天丢弃的废旧电池数,调查范围广,适合抽样调查,故B错误;C、了解50发炮弹的杀伤半径,调查具有破坏性,适合抽样调查,故C错误;D、了解我省农民的年人均收入情况,调查范围广适合抽样调查,故D错误;故选:A.3.【解答】解:A、分子和分母都加上c和原分式不相等,不符合分式的基本性质,故本选项不符合题意;B、分式的分子乘以a,分母乘以b,不符合分式的基本性质,故本选项不符合题意;C、当c=0时,分式的分子和分母都乘以c,不符合分式的基本性质,故本选项不符合题意;D、分式的分子和分母都除以c,符合分式的基本性质,故本选项符合题意;故选:D.4.【解答】解:=,=,=b+2,这三个不是最简分式,所以最简分式有:,,共2个,故选:B.5.【解答】解:=,即分式的值不变,故选:D.6.【解答】解:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;∴有4种可能使四边形ABCD为平行四边形.故选:B.7.【解答】解:A、对角线互相垂直的平行四边形是菱形,故原命题错误;B、四个角相等的四边形是矩形,故原命题错误;C、对角线相等的菱形是正方形,故原命题错误;D、对角线互相垂直的矩形是正方形,正确;故选:D.8.【解答】解:连接BD,∵四边形ABCD是菱形,∴AB=AD,∠ADB=∠ADC=60°,∴△ABD是等边三角形,∴AD=BD,又∵△DEF是等边三角形,∴∠EDF=∠DEF=60°,又∵∠ADB=60°,∴∠ADE=∠BDF,在△ADE和△BDF中,,∴△ADE≌△BDF(AAS),∴AE=BF,∵AE=t,CF=2t,∴BF=BC﹣CF=4﹣2t,∴t=4﹣2t∴t=,故选:C.二.填空题(共10小题)9.【解答】解:由题意得:1﹣x2=0,x﹣1≠0,解得:x=﹣1,故答案为:﹣1.10.【解答】解:由题意知AC=6,BD=8,则菱形的面积S=×6×8=24,∵菱形对角线互相垂直平分,∴△AOB为直角三角形,AO=3,BO=4,∴AB==5,∴菱形的高h==.故答案为:.11.【解答】解:分式,﹣,的最简公分母是12x2y2,故答案为:12x2y2.12.【解答】解:40×0.15=6(个).故答案为:6.13.【解答】解:连接PP',∵△ABC为等边三角形,∴∠ABC=60°.根据旋转的性质,有∠PBP′=∠ABC=60°,BP′=BP,∴△BPP′是等边三角形,∴PP′=BP=2cm,故答案为:2cm.14.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC+BD=24厘米,∴OA+OB=12cm,∵△OAB的周长是18厘米,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=AB=3cm.故答案为:3cm.15.【解答】解:∵四边形ABCD是矩形,四边形MBQK是矩形,四边形PKND是矩形,∴△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,∴△ABD的面积﹣△MBK的面积﹣△PKD的面积=△CDB的面积﹣△QKB的面积=△NDK的面积,∴S1=S2.故答案为:=.16.【解答】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=4、CF=CD﹣DF=4﹣1=3,∴BF==5,∴GH=BF=,故答案为:.17.【解答】解:连接PC、CQ.∵四边形ACED,四边形CBGF是菱形,∠D=120°,∴∠ACE=120°,∠FCB=60°,∵P,Q分别是对角线AE,BF的中点,∴∠ECP=∠ACE,∠FCQ=∠BCF,∴∠PCQ=90°,设AC=2a,则BC=2﹣2a,PC=a,CQ=BC=().∴PQ===.∴当a=时,点P,Q之间的距离最短,最短距离是.故答案为:.18.【解答】解:将△ABE绕点A逆时针旋转90°,得到△ADF,根据旋转的性质可知BE=FD,PA=EA,∠FAE=90°,所以∠FEA=45°,∴∠FED=45°+45°=90°.∴EF=AE=6.在Rt△FED中,利用勾股定理可得FD==9,所以BE=FD=9.故答案为9.三.解答题(共8小题)19.【解答】解:(1)(﹣)=﹣;(2)×==;(3)﹣===; (4)÷(x +2﹣) ====.20.【解答】解:原式=[﹣]•=•=•=, 当a =﹣1时,原式=﹣1.21.【解答】解:(1)样本容量是:16÷0.08=200;样本中成绩的中位数落在第四组;m =200×0.40=80,n ==0.12,故答案为:200、80、=0.12;(2)补全频数分布直方图,如下:(3)1000(0.4+0.12)=520(人).答:该校八年级学生中汉字听写能力优秀的约有520人.22.【解答】解:(1)如图所示;(2)如图,旋转中心为(2,﹣1);(3)作点A关于x轴的对称点A′,连接A′B交x轴于点P,则点P即为所求点,∵A(﹣3,2),∴A′(﹣3,﹣2).设直线A′B的解析式为y=kx+b(k≠0),∵A′(﹣3,﹣2),B(0,4),∴,解得,∴直线A′B的解析式为y=2x+4,∵当y=0时,x=﹣2,∴P(﹣2,0).23.【解答】解:(1)∵AB=AC,∠BAC=100°∴∠B=∠C=40°,∵将△ABC绕点A顺时针方向旋转40°得到△ADE,∴AB=AD,∠BAD=40°,∠B=∠D=40°,∠BAC=∠DAE=120°,∴∠AGC=∠B+∠BAD=80°(2)∵∠D=∠BAD=40°,∴AB∥DE,∵∠DAE+∠AGC=180°∴AE∥BF∴四边形ABFE是平行四边形,且AB=AE,∴四边形ABFE是菱形.24.【解答】(1)证明:∵点E、F、G分别是AO、BO、DC的中点,∴EF是△OAB的中位线,DG=CD,∴EF∥AB,EF=AB,DG=CD,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,OD=OB=DB,∴EF=DG,EF∥DG,∴四边形DEFG是平行四边形;(2)证明:由(1)得:EF=DG,∵AD=DB,OD=DB,∴AD=OD,∵点E是AO的中点,∴DE⊥OA,∴△CDE是直角三角形,∠CED=90°,∵点G是DC的中点,∴EG=CD=DG,∴EG=EF.25.【解答】解:(1)如图1,∵点A(2,0),B(0,3),∴OA=2,OB=3,∵四边形ABCD是菱形∴AC=2OA=4,BD=2OB=6,∴以AB为边的“坐标菱形”的面积=AC×BD=12,故答案为:12(2)如图2,∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线x=5的夹角是45°,过点C作CE⊥DE于E,∴D(5,6)或(5,﹣2),设直线CD的解析式为y=kx+b,或∴或∴直线CD的表达式为:y=x+1或y=﹣x+3;26.【解答】解:(1)在矩形ABCD中,AB=4,BC=3,∴S矩形ABCD=AB•BC=4×3=12,∵四边形PBQB′的面积是矩形面积的,∴S四边形PBQB'=S矩形ABCD=×12=6,由折叠知,△PBQ≌△PB'Q,∴S△PBQ=S△PB'Q=S四边形PBQB'=3,∴BQ=3,∴S△PBQ=BQ•BP=×2BP=3,∴BP=3,∴AP=AB﹣BP=3,故答案为:3;(2)∵四边形PBQB′是正方形,∴BP=BQ=2,∴AP=AB﹣BP=4﹣2=2,即:当AP为2时,四边形PBQB'是正方形;(3)存在,理由:如图,连接BD,交PQ于E,则BD必过点O,∵四边形ABCD是矩形,∴ABC=∠BAD=90°,AD=BC=3,根据勾股定理得,BD===5,∵O是矩形ABCD的中心,∴BO=BD=×5=,当点B′与矩形对称中心点O重合时,BE=BO==,由折叠知,BO⊥PQ,∴∠BEQ=90°,在Rt△BEQ中,BQ=2,根据勾股定理得,EQ===,∵∠BEQ=∠PBQ=90°,∠BQE=∠PQB,∴△BEQ∽△PBQ,∴,∴,∴PB=,∴AP=AB﹣PB=4﹣,。
2018-2019学年八年级(下)期中数学试卷1 解析版
2018-2019学八年级(下)期中数学试卷一.选择题(共10小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.3.下列运算正确的是()A.2﹣=1B.+=C.×=4D.÷=2 4.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A.28°B.38°C.62°D.72°5.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1 6.如图,在一个高为3m,长为5m的楼梯表面铺地毯,则地毯长度为()A.7m B.8m C.9m D.10m7.如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F分别是AB,AO的中点,连接EF,若EF=3,则BD的长为()A.6B.9C.12D.158.如图正方形ABCD中以CD为边向外作等边三角形CDE,连接AE、AC,则∠CAE度数为()A.15°B.30°C.45°D.20°9.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm10.如图,已知长方形ABCD中,AD=6,AB=8,P是AD边上的点,将△ABP沿BP折叠,使点A落在点E上,PE、BE与CD分别交于点O、F,且OD=OE,则AP的长为()A.4.8B.5C.5.2D.5.4二.填空题(共4小题)11.计算3﹣的结果是.12.如图所示,数轴上点A所表示的数为a,则a的值是.13.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=7,则EF的长为.14.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,AB=1,点P为BC上任意一点,连接P A,以P A、PC为邻边作▱P AQC,连接PQ,则PQ的最小值为.三.解答题(共11小题)15.计算:(﹣2)×﹣616.先化简,再求值:(2﹣)÷,其中x=﹣3.17.若x、y都是实数,且y=++,求x2y+xy2的值.18.已知:如图,在△ABC中,AB=13,AC=20,AD=12,且AD⊥BC,垂足为点D,求BC的长.19.已知:如图,在▱ABCD中,E,F是对角线BD上两个点,且BE=DF.求证:AE=CF.20.如图,在四边形ABCD中,AB=AD=6,∠A=60°,BC=10,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.21.如图,在矩形ABCD中,M为BC上的点,过点D作DE⊥AM于E,DE=DC=5,AE =2EM.(1)求证:BM=AE;(2)求BM的长.22.阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①==;②===+1等运算都是分母有理化.根据上述材料,(1)化简:(2)计算:+++…+.23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.24.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E 作EF⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.25.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)直接写出AM、AD、MC三条线段的数量关系:;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.参考答案与试题解析一.选择题(共10小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补【分析】根据平行四边形的性质和菱形的性质对各选项进行判断.【解答】解:A、平行四边形的对边平行且相等,所以A选项错误;B、平行四边形的对角线互相平分,所以B选项错误;C、菱形的对角线互相垂直,平行四边形的对角线互相平分,所以C选项正确;D、平行四边形的对角相等,所以D选项错误.故选:C.2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.【分析】根据勾股定理即可得到结论.【解答】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB===,故选:B.3.下列运算正确的是()A.2﹣=1B.+=C.×=4D.÷=2【分析】根据二次根式的运算法则逐一计算可得.【解答】解:A.2﹣=,此选项错误;B.与不是同类二次根式,不能合并,此选项错误;C.×=×2=4,此选项正确;D.÷=,此选项错误;故选:C.4.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A.28°B.38°C.62°D.72°【分析】由在平行四边形ABCD中,∠A=118°,可求得∠B的度数,又由CE⊥AB,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴∠B=180°﹣∠A=180°﹣118°=62°,∵CE⊥AB,∴∠BCE=90°﹣∠B=28°.故选:A.5.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1【分析】根据二次根式有意义的条件可得x+1≥0,根据分式有意义的条件可得x﹣1≠0,再解即可.【解答】解:由题意得:x+1≥0,且x﹣1≠0,解得:x≥﹣1,且x≠1,故选:D.6.如图,在一个高为3m,长为5m的楼梯表面铺地毯,则地毯长度为()A.7m B.8m C.9m D.10m【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【解答】解:由勾股定理得:楼梯的水平宽度==4,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是3+4=7(m).故选:A.7.如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F分别是AB,AO的中点,连接EF,若EF=3,则BD的长为()A.6B.9C.12D.15【分析】根据已知条件可以得到EF是△OAB的中位线,则OB=2EF=6,再利用平行四边形的性质得出BD即可.【解答】解:∵点E,F分别是AB,AO的中点,连接EF,EF=3,∴EF是△OAB的中位线,则OB=2EF=6,∵在▱ABCD中,∴BD=2OB=12,故选:C.8.如图正方形ABCD中以CD为边向外作等边三角形CDE,连接AE、AC,则∠CAE度数为()A.15°B.30°C.45°D.20°【分析】先利用正方形的性质得到DA=DC,∠CAD=45°,∠ADC=90°,利用等边三角形的性质得到DE=DC,∠CDE=60°,则DA=DE,∠ADE=150°,再根据等腰三角形的性质和三角形内角和计算出∠DAE=15°,然后计算∠CAD与∠DAE的差即可.【解答】解:∵四边形ABCD为正方形,∴DA=DC,∠CAD=45°,∠ADC=90°,∵△CDE为等边三角形,∴DE=DC,∠CDE=60°,∴DA=DE,∠ADE=90°+60°=150°,∴∠DAE=∠DEA,∴∠DAE=(180°﹣150°)=15°,∴∠CAE=45°﹣15°=30°.故选:B.9.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm【分析】思想两个勾股定理求出菱形的边长,再利用菱形的面积的两种求法构建方程即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4,OB=OD=3,∴AB=5cm,∴S菱形ABCD=AC•BD=AB•DH,∴DH==4.8.故选:A.10.如图,已知长方形ABCD中,AD=6,AB=8,P是AD边上的点,将△ABP沿BP折叠,使点A落在点E上,PE、BE与CD分别交于点O、F,且OD=OE,则AP的长为()A.4.8B.5C.5.2D.5.4【分析】由矩形的性质得出∠A=∠C=∠D=90°,CD=AB=8,BC=AD=6,由折叠的性质得出EP=AP,BE=AB=8,∠E=∠A=90°,由ASA证明△ODP≌△OEF,得出PD=FE,OP=OF,因此DF=EP=AP,设AP=x,则DF=x,FE=PD=6﹣x,得出CF=CD﹣DF=8﹣x,BF=BE﹣FE=x+2,在Rt△BCF中,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是长方形,∴∠A=∠C=∠D=90°,CD=AB=8,BC=AD=6,由折叠的性质得:EP=AP,BE=AB=8,∠E=∠A=90°,在△ODP和△OEF中,,∴△ODP≌△OEF(ASA),∴PD=FE,OP=OF,∴DF=EP=AP,设AP=x,则DF=x,FE=PD=6﹣x,∴CF=CD﹣DF=8﹣x,BF=BE﹣FE=x+2,在Rt△BCF中,BC2+CF2=BF2,即62+(8﹣x)2=(x+2)2,解得:x=4.8;故选:A.二.填空题(共4小题)11.计算3﹣的结果是﹣.【分析】直接化简二次根式,进而合并得出答案.【解答】解:原式=3×﹣2=﹣2=﹣.故答案为:﹣.12.如图所示,数轴上点A所表示的数为a,则a的值是﹣.【分析】根据图形,利用勾股定理可以求得a的值.【解答】解:由图可得,a=﹣,故答案为:﹣.13.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=7,则EF的长为1.【分析】根据三角形中位线定理得到DE=BC=3.5,根据直角三角形的性质得到DF =AB=2.5,计算即可.【解答】解:∵DE是△ABC的中位线,∴DE=BC=3.5,DE∥BC,∵∠AFB=90°,D为AB的中点,∴DF=AB=2.5,∴EF=DE﹣DF=1,故答案为:1.14.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,AB=1,点P为BC上任意一点,连接P A,以P A、PC为邻边作▱P AQC,连接PQ,则PQ的最小值为.【分析】以P A,PC为邻边作平行四边形P AQC,由平行四边形的性质可知O是AC中点,PQ最短也就是PO最短,所以应该过O作BC的垂线P′O,根据垂线段最短即可解决问题;【解答】解:∵∠BAC=90°,∠B=60°,AB=1,∴BC=2AB=2,AC=,∵四边形APCQ是平行四边形,∴PO=QO,CO=AO=,∵PQ最短也就是PO最短,∴过O作BC的垂线OP′,∴则PQ的最小值为2OP′=2OC•sin30°=,故答案为:.三.解答题(共11小题)15.计算:(﹣2)×﹣6【分析】先算乘法,再合并同类二次根式即可.【解答】解:原式=3﹣2﹣3=﹣2.16.先化简,再求值:(2﹣)÷,其中x=﹣3.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=×=,把x=﹣3代入得:原式===1﹣2.17.若x、y都是实数,且y=++,求x2y+xy2的值.【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后代入求值即可.【解答】解:由题意得:,解得:x=2,则y=,x2y+xy2=xy(x+y)=2(2+)=4+4.18.已知:如图,在△ABC中,AB=13,AC=20,AD=12,且AD⊥BC,垂足为点D,求BC的长.【分析】依据勾股定理,即可得到BD和CD的长,进而得出BC=BD+CD=21.【解答】解:∵AB=13,AC=20,AD=12,AD⊥BC,∴Rt△ABD中,BD===5,Rt△ACD中,CD===16,∴BC=BD+CD=5+16=21.19.已知:如图,在▱ABCD中,E,F是对角线BD上两个点,且BE=DF.求证:AE=CF.【分析】根据平行四边形的性质和全等三角形的判定和性质证明即可.【解答】证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=DC,∴∠ABE=∠CDF,又∵BE=DF,在△ABE与△CDF中,∴△ABE≌△CDF(SAS)∴AE=CF.20.如图,在四边形ABCD中,AB=AD=6,∠A=60°,BC=10,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.【分析】(1)连接BD,根据AB=AD=6,∠A=60°,得出△ABD是等边三角形,求得BD=8,然后根据勾股定理的逆定理判断三角形BDC是直角三角形,从而求得∠ADC=150°;(2)根据四边形的面积等于三角形ABD和三角形BCD的和即可求得.【解答】解:(1)连接BD,∵AB=AD=6,∠A=60°,∴△ABD是等边三角形,∴BD=6,∠ADB=60°,∵BC=10,CD=8,则BD2+CD2=82+62=100,BC2=102=100,∴BD2+CD2=BC2,∴∠BDC=90°,∴∠ADC=150°;(2)S=S△ABD+S△BDC=AD•AD+BD•DC=×6××6+×8×6=9+24.21.如图,在矩形ABCD中,M为BC上的点,过点D作DE⊥AM于E,DE=DC=5,AE =2EM.(1)求证:BM=AE;(2)求BM的长.【分析】(1)由题意可证△AED≌△ABM,则结论可得.(2)在Rt△ABM中根据勾股定理可求EM的长,即可求AE的长.【解答】证明:(1)∵四边形ABCD是矩形∴AD∥BC,AB=CD,∠B=∠C=90°∴∠DAE=∠AMB∵CD=DE,CD=AB∴AB=DE,且∠ABC=∠AED=90°,∠DAE=∠AMB∴△ADE≌△ABM∴BM=AE(2)在Rt△ABM中,AM2=AB2+BM2.∴9EM2=25+4EM2.∴EM=∴AE=BM=222.阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①==;②===+1等运算都是分母有理化.根据上述材料,(1)化简:(2)计算:+++…+.【分析】(1)原式分母有理化,计算即可得到结果;(2)原式各自分母有理化化简后,合并即可得到结果.【解答】解:(1)原式==+;(2)原式=﹣1+﹣+…+﹣=﹣1.23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.【分析】(1)通过证明四边形OCEB是矩形来推知OE=CB;(2)利用(1)中的AC⊥BD、OE=CB,结合已知条件,在Rt△BOC中,由勾股定理求得CO=1,OB=2.然后由菱形的对角线互相平分和菱形的面积公式进行解答.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD.∵CE∥BD,EB∥AC,∴四边形OCEB是平行四边形,∴四边形OCEB是矩形,∴OE=CB;(2)解:∵由(1)知,AC⊥BD,OC:OB=1:2,∴BC=OE=.∴在Rt△BOC中,由勾股定理得BC2=OC2+OB2,∴CO=1,OB=2.∵四边形ABCD是菱形,∴AC=2,BD=4,∴菱形ABCD的面积是:BD•AC=4.24.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E 作EF⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.【分析】(1)由正方形的性质可得∠ABC=90°,AD∥BC,由“AAS”可证△ABM≌△EF A,可得AF=BM;(2)由勾股定理可求AM=13,由全等三角形的性质可得AM=AE=13,即可求DE的长.【解答】证明:(1)∵四边形ABCD是正方形∴∠ABC=90°,AD∥BC∴∠EAF=∠AMB,∵∠AFE=∠ABC=90°,AE=AM,∴△ABM≌△EF A(AAS)∴AF=BM(2)∵在Rt△ABM中,AB=12,AF=BM=5∴AM==13∵△ABM≌△EF A,∴AM=AE=13,∵四边形ABCD是正方形,∴AB=AD,∴DE=AE﹣AD=13﹣12=125.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)直接写出AM、AD、MC三条线段的数量关系:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.【分析】(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.(2)作F A⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.(3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.【解答】证明:延长AE、BC交于点N,如图1(1),∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.在△ADE和△NCE中,∴△ADE≌△NCE(AAS).∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠F AE=90°.∴∠F AB=90°﹣∠BAE=∠DAE.在△ABF和△ADE中,∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠F AB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠F AB=∠F AM.∴∠F=∠F AM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①结论AM=AD+MC仍然成立.证明:延长AE、BC交于点P,如图2(1),∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠EPC=∠MAE.∴MA=MP.在△ADE和△PCE中,∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.②结论AM=DE+BM不成立.证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠QAB=∠QAM.∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.在△ABQ和△ADE中,∴△ABQ≌△ADE(AAS).∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.∴AM=DE+BM不成立.。
2018-2019学年人教新版福建省厦门市思明区双十中学八年级第二学期期中数学试卷 含解析
2018-2019学年八年级第二学期期中数学测试卷一、选择题1.函数2y x =+中,自变量x 的取值范围在数轴上表示正确的是( )A .B .C .D .2.下列式子中,属于最简二次根式的是( ) A .9B .10C .20D .133.设路程为()s km ,速度为(/)v km h ,时间为()t h ,当50s =时,50t v=,在这个函数关系式中( )A .路程是常量,t 是s 的函数B .速度是常量,t 是v 的函数C .时间是常量,v 是t 的函数D .50S =是常量,v 是自变量,t 是v 的函数4.以下列各组数据为边长作三角形,其中能组成直角三角形的是( ) A .8,15,17B .2,5,27C .6,9,15D .4,12,135.下列计算正确的是( ) A .2(2)2=B .321-=C .623÷=D .235=g6.已知四边形ABCD 中,//AB CD .则添加下列条件,不能使四边形ABCD 成为平行四边形的是( ) A .AB CD =B .B D ∠=∠C .//AD BCD .AD BC =7.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,若50COD ∠=︒,那么CAD ∠的度数是( )A .20︒B .25︒C .30︒D .40︒8.如图,在ABCD Y 中,用直尺和圆规作BAD ∠的平分线AG 交BC 于点E .若6BF =,AB=,则AE的长为()5A.4 B.6 C.8 D.109.如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子但水位较低,且瓶口又小,乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.在这则乌鸦喝水的故事中,设从乌鸦看到瓶的那刻起向后的时间为x,瓶中水位的高度为y,如图所示的图象中最符合故事情景的是()A.B.C.D.10.如图,在Rt ABC∠=︒,分别以各边为直径作半圆,图中阴影部分在数学史C∆中,90上称为“希波克拉底月牙”,当4BC=时,则阴影部分的面积为()AC=,2A.4 B.4πC.8πD.8二、填空题(本大题有6小题,每小题4分,共24分)11.化简(18=;(2)36=.12.在平行四边形ABCD中,已知5AB=,3BC=,则它的周长为13.如图,在平行四边形ABCD中,10BC=,14AC=,8BD=,则BOC∆的周长是.14.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,ABC∆中,90ACB∠=︒,10AC AB+=,3BC=,求AC的长,如果设AC x=,则可列方程为.15.如图,ACB∆和ECD∆都是等腰直角三角形,ACB∆的锐角顶点A在ECD∆的斜边DE上,若3AE=,5AC=,则DE=.16.如图,正方形ABCD的面积是2,E,F,P分别是AB,BC,AC上的动点,PE PF+的最小值等于.三、解答题(本大题有9小题,共86分)17.计算:(1)112282-+ (2)27506⨯÷18.当31x =+,31y =-时,求代数式22x y xy -+的值. 19.用描点法画出函数1y x =-的图象.20.某天早晨,王老师从家出发步行前往学校,途中在路边一饭店吃早餐,如图所示是王老师从家到学校这一过程中的所走路程s (米)与时间t (分)之间的关系. (1)学校离他家 米,从出发到学校,王老师共用了 分钟; (2)王老师吃早餐用了多少分钟?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?吃完早餐后的平均速度是多少?21.如图,在四边形ABCD 中,1AB =,2BC =,2CD =,3AD =,且90ABC ∠=︒,连接AC ,试判断ACD ∆的形状.22.已知:如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O .若12∠=∠,4AB =,8BD =,求:平行四边形ABCD 的周长.23.如图1,在Rt ABC ∆中,90ACB ∠=︒,过点C 的直线//m AB ,D 为AB 边上一点,过点D 作DE BC ⊥,交直线m 于点E ,垂足为点F ,连接CD 、BE . (Ⅰ)求证:CE AD =;(Ⅱ)如图2,当点D是AB中点时,连接CD.()i四边形BECD是什么特殊四边形?说明你的理由;()ii当A∠=︒时,四边形BECD是正方形.(直接写出答案)24.如图,菱形ABCD中,60BAD∠=︒,过点D作DE AD⊥交对角线AC于点E,连接BE,取BE的中点F,连接DF(1)请你根据题意补全图形;(2)若10AB=,则菱形ABCD的面积为;(直接写出答案)(3)请用等式表示线段DF、AE、BC之间的数量关系,并证明.25.在一次数学活动中,小辉将一块矩形纸片ABCD对折,使AD与BC重合,得到折痕EF,把纸片展开,再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM.同时,得到了线段BN(1)如图1,若点N刚好落在折痕EF上时,①过N作NG BC⊥,求证:12NG BN=;②求AMN∠的度数;(2)如图2,当M为射线AD上的一个动点时,已知3AB=,5BC=,若BNC∆是直三角形时,请求出AM的长.参考答案一、选择题1.函数2y x =+中,自变量x 的取值范围在数轴上表示正确的是( )A .B .C .D .【分析】根据二次根式有意义的条件可得20x +…,再解即可. 解:由题意得:20x +…, 解得:2x -…, 在数轴上表示为,故选:D .2.下列式子中,属于最简二次根式的是( ) A 9B 10C 20D 13【分析】根据最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式进行判断即可.解:A 93=,被开方数含能开得尽方的因数,不是最简二次根式; B 10是最简二次根式;C 2025=,被开方数含能开得尽方的因数,不是最简二次根式;D 13故选:B .3.设路程为()s km ,速度为(/)v km h ,时间为()t h ,当50s =时,50t v=,在这个函数关系式中( )A .路程是常量,t 是s 的函数B .速度是常量,t 是v 的函数C .时间是常量,v 是t 的函数D .50S =是常量,v 是自变量,t 是v 的函数 【分析】利用函数的概念对各选项进行判断. 解:在函数关系式50t v=中,v 为自变量,t 为v 的函数,50为常量. 故选:D .4.以下列各组数据为边长作三角形,其中能组成直角三角形的是( )A .8,15,17B ,5,C .6,9,15D .4,12,13【分析】根据勾股定理的逆定理逐个判断即可. 【解答】A 、22281517+=Q ,∴以8,15,17为边能组成直角三角形,故本选项符合题意;B 、2225+≠Q ,∴,5,C 、2226915+≠Q ,∴以6,9,15为边不能组成直角三角形,故本选项不符合题意;D 、22241213+≠Q ,∴以4,12,13为边不能组成直角三角形,故本选项不符合题意;故选:A .5.下列计算正确的是( )A .22=B 1=C 3=D =【分析】计算出各个选项中的式子的正确结果,即可得到哪个选项是正确的.解:Q 22=,故选项A 正确;Q -不能合并,故选项B 错误;Q =,故选项C 错误;Q=,故选项D 错误;故选:A .6.已知四边形ABCD 中,//AB CD .则添加下列条件,不能使四边形ABCD 成为平行四边形的是( ) A .AB CD =B .B D ∠=∠C .//AD BCD .AD BC =【分析】已知//AB CD,可根据有一组边平行且相等的四边形是平行四边形来判定,也可根据两组分别平行的四边形是平行四边形来判定.解:Q在四边形ABCD中,//AB CD,=,∴可添加的条件是:AB DC∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形),故选项A不符合题意;Q,//AB CD∴∠+∠=︒,B C180Q,∠=∠B DD C∴∠+∠=︒,180AD BC∴,//∴四边形ABCD是平行四边形,故选项B不符合题意;Q,//AD BC,AB CD//∴四边形ABCD是平行四边形,故选项C不符合题意;Q,AD BC=无法得出四边形ABCD是平行四边形,故选项D符合题意.AB CD//故选:D.7.如图,在矩形ABCD中,对角线AC,BD交于点O,若50∠的度COD∠=︒,那么CAD 数是()A.20︒B.25︒C.30︒D.40︒【分析】只要证明OA OD=,根据三角形的外角的性质即可解决问题;解:Q矩形ABCD中,对角线AC,BD相交于点O,=,OA OC=,∴=,OD OBDB AC∴=,OA OD∴∠=∠,CAD ADO50COD CAD ADO ∠=︒=∠+∠Q , 25CAD ∴∠=︒,故选:B .8.如图,在ABCD Y 中,用直尺和圆规作BAD ∠的平分线AG 交BC 于点E .若6BF =,5AB =,则AE 的长为( )A .4B .6C .8D .10【分析】由基本作图得到AB AF =,加上AO 平分BAD ∠,则根据等腰三角形的性质得到AO BF ⊥,132BO FO BF ===,再根据平行四边形的性质得//AF BE ,所以13∠=∠,于是得到23∠=∠,根据等腰三角形的判定得AB EB =,然后再根据等腰三角形的性质得到AO OE =,最后利用勾股定理计算出AO ,从而得到AE 的长.解:连结EF ,AE 与BF 交于点O ,如图, AB AF =Q ,AO 平分BAD ∠, AO BF ∴⊥,132BO FO BF ===, Q 四边形ABCD 为平行四边形, //AF BE ∴, 13∴∠=∠, 23∴∠=∠,AB EB ∴=,而BO AE ⊥, AO OE ∴=,在Rt AOB ∆中,2222534AO AB OB =-=-=, 28AE AO ∴==.故选:C .9.如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子但水位较低,且瓶口又小,乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.在这则乌鸦喝水的故事中,设从乌鸦看到瓶的那刻起向后的时间为x,瓶中水位的高度为y,如图所示的图象中最符合故事情景的是()A.B.C.D.【分析】由于原来水位较低,乌鸦沉思一会后才想出办法,说明将在沉思的这段时间内水位没有变化,乌鸦衔来一个个小石子放入瓶中,水位将会上升,乌鸦喝水后的水位应不低于一开始的水位,由此即可作出判断.解:Q乌鸦在沉思的这段时间内水位没有变化,∴排除C,Q乌鸦衔来一个个小石子放入瓶中,水位将会上升,∴排除A,Q乌鸦喝水后的水位应不低于一开始的水位,∴排除B,∴正确.D故选:D.10.如图,在Rt ABC∠=︒,分别以各边为直径作半圆,图中阴影部分在数学史∆中,90C上称为“希波克拉底月牙”,当4AC =,2BC =时,则阴影部分的面积为( )A .4B .4πC .8πD .8【分析】根据勾股定理得到222AB AC BC =+,根据扇形面积公式计算即可.解:由勾股定理得,22220AB AC BC =+=, 则阴影部分的面积2221111()()()2222222AC BC AB AC BC πππ=⨯⨯+⨯⨯+⨯⨯-⨯⨯ 22211124()224AC BC AB π=⨯⨯+⨯⨯⨯+- 4=,故选:A .二、填空题(本大题有6小题,每小题4分,共24分)11.化简(18= 22 ;(26= .【分析】(1)化成最简二次根式即可;(26,然后化简即可.解:(182=(236366666===⨯. 故答案为:(1)22(26 12.在平行四边形ABCD 中,已知5AB =,3BC =,则它的周长为 16【分析】根据平行四边形的性质可得5AB CD ==,3BC AD ==,进而可得周长. 解:Q 四边形ABCD 是平行四边形,5AB CD ∴==,3BC AD ==,∴它的周长为:523216⨯+⨯=,故答案为:16.13.如图,在平行四边形ABCD 中,10BC =,14AC =,8BD =,则BOC ∆的周长是 21 .【分析】由平行四边形的性质得出7OA OC ==,4OB OD ==,即可得出BOC ∆的周长. 解:Q 四边形ABCD 是平行四边形,7OA OC ∴==,4OB OD ==,BOC ∴∆的周长471021OB OC BC =++=++=;故答案为:21.14.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,ABC ∆中,90ACB ∠=︒,10AC AB +=,3BC =,求AC 的长,如果设AC x =,则可列方程为 2223(10)x x +=- .【分析】设AC x =,可知10AB x =-,再根据勾股定理即可得出结论.解:设AC x =,10AC AB +=Q ,10AB x ∴=-.Q 在Rt ABC ∆中,90ACB ∠=︒,222AC BC AB ∴+=,即2223(10)x x +=-.故答案为:2223(10)x x +=-.15.如图,ACB ∆和ECD ∆都是等腰直角三角形,ACB ∆的锐角顶点A 在ECD ∆的斜边DE 上,若3AE =,5AC =,则DE 73 .【分析】连结BD ,由等腰直角三角形的性质得出90ECD ACB ∠=∠=︒,45E ADC CAB ∠=∠=∠=︒,EC DC =,AC BC =,由SAS 证明AEC BDC ∆≅∆,得出AE BD =,证出90BDA BDC ADC ∠=∠+∠=︒,在Rt ADB ∆中.由勾股定理即可得出结论.解:连结BD ,如图,ACB ∆Q 与ECD ∆都是等腰直角三角形,90ECD ACB ∴∠=∠=︒,45E ADC CAB ∠=∠=∠=︒,EC DC =,AC BC =, ECD ACD ACB ACD ∠-∠=∠-∠Q ,ACE BCD ∴∠=∠,在AEC ∆和BDC ∆中,AC BC ACE BCD EC DC =⎧⎪∠=∠⎨⎪=⎩,()AEC BDC SAS ∴∆≅∆. 3AE BD ∴==,45E BDC∠=∠=︒,90BDA BDC ADC ∴∠=∠+∠=︒,在Rt ACB ∆中.210AB AC ==,由勾股定理得:2222(10)(3)7AD AB BD =-=-=,37DE AE AD ∴=+=+;故答案为:37+.16.如图,正方形ABCD 的面积是2,E ,F ,P 分别是AB ,BC ,AC 上的动点,PE PF+的最小值等于 2 .【分析】过点P 作//MN AD 交AB 于点M ,交CD 于点N ,根据正方形的性质可得出MN AB ⊥,且PM PE „、PN PF „,由此即可得出AD PE PF +„,再由正方形的面积为2即可得出结论.解:过点P 作//MN AD 交AB 于点M ,交CD 于点N ,如图所示.Q 四边形ABCD 为正方形,MN AB ∴⊥,PM PE ∴„(当PE AB ⊥时取等号),PN PF „(当PF BC ⊥时取等号), MN AD PM PN PE PF ∴==++„,Q 正方形ABCD 的面积是2,2AD ∴=.故答案为:2.三、解答题(本大题有9小题,共86分)17.计算:(1112282-+ (227506【分析】(1)先化成最简二次根式,然后合并;(2)利用二次根式乘除法则运算;解:(1)原式2==+=(2)原式=÷=15=.18.当1x =,1y =-时,求代数式22x y xy -+的值.【分析】将x 、y 的值代入原式()()x y x y xy =-++,再根据二次根式的混合运算顺序和运算法则计算可得.解:当1x =,1y =-时,原式()()x y x y xy =-++111)1)1)=+-++++⨯2(31)=⨯-2=+.19.用描点法画出函数1y x =-的图象.【分析】确定出函数图象与坐标轴的两个交点,然后利用两点确定一条直线作出函数图象即可.解:0x =时,1y =-,0y =时,1x =,所以,函数图象与坐标轴的交点坐标为(0,1)-,(1,0),函数图象如图所示.20.某天早晨,王老师从家出发步行前往学校,途中在路边一饭店吃早餐,如图所示是王老师从家到学校这一过程中的所走路程s(米)与时间t(分)之间的关系.(1)学校离他家1000 米,从出发到学校,王老师共用了分钟;(2)王老师吃早餐用了多少分钟?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?吃完早餐后的平均速度是多少?【分析】(1)由于步行前往学校,途中在路旁一家饭店吃早餐,那么行驶路程s(千米)与时间t(分)之间的关系图象中有一段平行x轴的线段,然后学校,根据图象可以直接得到结论;(2)根据图象中平行x轴的线段即可确定王老师吃早餐用了多少时间;(3)根据图象可以分别求出吃早餐以前的速度和吃完早餐以后的速度,然后比较即可得到结果.解:(1)学校距他家1000米,王老师用25分钟;(2)王老师吃早餐用了201010-=(分钟);(3)吃完早餐以后速度快,(1000500)(2520)100-÷-=(米/分). 答:吃完早餐后的平均速度是100米/分.21.如图,在四边形ABCD 中,1AB =,2BC =,2CD =,3AD =,且90ABC ∠=︒,连接AC ,试判断ACD ∆的形状.【分析】先根据勾股定理求出AC 的长,在ACD ∆中,再由勾股定理的逆定理,判断三角形的形状.解:ACD ∆是直角三角形.理由是:90B ∠=︒Q ,1AB =,2BC =,222145AC AB BC ∴=+=+=, 5AC ∴=,又22549AC CD +=+=Q ,29AD =,222AC CD AD ∴+=,ACD ∴∆是直角三角形.22.已知:如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O .若12∠=∠,4AB =,8BD =,求:平行四边形ABCD 的周长.【分析】首先判断四边形ABCD 是矩形,然后利用勾股定理求得AD 的长,从而求得矩形的周长即可.解:12∠=∠Q ,OA OB ∴=,Q 四边形ABCD 是平行四边形,OA OC ∴=,OB OD =,AC BD ∴=,∴四边形ABCD 为矩形,90BAD ∴∠=︒,4AB =Q ,8BD =, 224843AD ∴=+=,∴四边形ABCD 的周长为2(443)883⨯+=+.23.如图1,在Rt ABC ∆中,90ACB ∠=︒,过点C 的直线//m AB ,D 为AB 边上一点,过点D 作DE BC ⊥,交直线m 于点E ,垂足为点F ,连接CD 、BE . (Ⅰ)求证:CE AD =;(Ⅱ)如图2,当点D 是AB 中点时,连接CD . ()i 四边形BECD 是什么特殊四边形?说明你的理由;()ii 当A ∠= 45︒ ︒时,四边形BECD 是正方形.(直接写出答案)【分析】(Ⅰ)连接CD ,利用同角的余角相等,得到DCA CDE ∠=∠,利用平行四边形的判定和性质得结论;(Ⅱ)()i 先证明四边形BECD 是平行四边形,再利用直角三角形斜边的中线等于斜边的一半说明邻边相等,证明该四边形是菱形;()ii 由菱形、正方形、平行四边形的性质可得结论. 解:(Ⅰ)证明:连接CD ,//m AB Q ,//EC AD ∴DE BC ⊥Q ,90CFD ∴∠=︒,90BCD DCA ∠+∠=︒Q ,90BCD CDE ∠+∠=︒, DCA CDE ∴∠=∠,//DE AC ∴∴四边形DECA 是平行四边形,CE DA ∴=(Ⅱ)()i 四边形BECD 是菱形.Q由(Ⅰ)知:四边形DECA是平行四边形,CE ADCE DA∴=,//在Rt ABC∆中,Q点D是AB的中点,∴==,BD DC DA又CE DACE ADQ,//=∴四边形BECD是菱形.()ii当45∠=︒时,A由于四边形DECA是平行四边形,45∴∠=∠=︒,EDB A又BE BDQ,=∴∠=∠=︒,BED EDB45∴∠=︒.EBD90由于四边形BECD是菱形,∴四边形BECD是正方形.故答案为:45︒24.如图,菱形ABCD中,60⊥交对角线AC于点E,连接BE,∠=︒,过点D作DE ADBAD取BE的中点F,连接DF(1)请你根据题意补全图形;(2)若10AB=,则菱形ABCD的面积为3;(直接写出答案)(3)请用等式表示线段DF、AE、BC之间的数量关系,并证明.【分析】(1)根据已知条件画图即可;(2)连接BD ,求出30BAO ∠=︒,进而求出OA ,OB ,即可求出AC ,BD ,最后用菱形的面积等于两条对角线积的一半计算即可得出结论;(3)取AE 中点G ,连接GF 、GD ,证明DGF ∆是直角三角形,在Rt DGF ∆中,利用222GD GF DF +=,即可得出结论.解:(1)补全图形如图1所示:(2)如图2,连接BD 交BC 于O ,Q 四边形ABCD 是菱形,BD AC ∴⊥,2BD OB =,2AC OA =,AB AD =, AC Q 是菱形ABCD 的对角线,1302BAO BAD ∴∠=∠=︒, 在Rt AOB ∆中,152OB AB ==, 353OA OB ∴==,210BD OB ∴==,2103AC OA ==,1110310322ABCD S AC BD ∴=⋅=⨯=菱形, 故答案为:503;(3)DF 、BC 、AE 之间的数量关系是:2224AE BC DF +=, 证明:如图3,取AE 中点G ,连接GF 、GD ,Q 四边形ABCD 是菱形,60BAD ∠=︒,112302BAD ∴∠=∠=∠=︒,AB BC =, Q 点F 是BE 的中点,点G 是AE 的中点,GF ∴是ABE ∆的中位线.1122GF AB BC ∴==,//GF AB . 3130∴∠=∠=︒.ED AD ⊥Q ,90ADE ∴∠=︒∴在Rt ADE ∆中,12DG AG AE ==, 2430∴∠=∠=︒,52460∴∠=∠+∠=︒,3590FGD ∴∠=∠+∠=︒,∴在Rt DGF ∆中,222DG GF DF +=,22211()()22AE BC DF ∴+=, 即2224AE BC DF +=.25.在一次数学活动中,小辉将一块矩形纸片ABCD 对折,使AD 与BC 重合,得到折痕EF ,把纸片展开,再一次折叠纸片,使点A 落在EF 上,并使折痕经过点B ,得到折痕BM .同时,得到了线段BN(1)如图1,若点N 刚好落在折痕EF 上时,①过N 作NG BC ⊥,求证:12NG BN =; ②求AMN ∠的度数;(2)如图2,当M 为射线AD 上的一个动点时,已知3AB =,5BC =,若BNC ∆是直三角形时,请求出AM 的长.【分析】(1)①根据折叠的性质得到12DF FC CD ==,BN BA =,根据矩形的性质证明即可;②根据直角三角形的性质得到30NBG ∠=︒,求出60NBE ∠=︒,根据四边形内角和等于360︒计算,得到答案;(2)根据勾股定理求出CN ,再根据勾股定理列式计算即可.【解答】(1)①证明:由折叠的性质可知,12DF FC CD ==,BN BA =,90CFE ∠=︒, 90C ∠=︒Q ,90CFE ∠=︒,NG BC ⊥,∴四边形FCNG 为矩形,12NG FC CD ∴==,则1122NG BA BN ==; ②解:在Rt NGB ∆中,12NG BN =, 30NBG ∴∠=︒,60NBE ∴∠=︒,由折叠的性质可知,90MNB A ∠=∠=︒, 360909060120AMN ∴∠=︒-︒-︒-︒=︒;(2)解:BNC ∆是直三角形时,NBC ∠和NCB ∠不能为90︒, 当90CNB ∠=︒时,2222534CN CB BN =-=-=, 90MNB ∠=︒Q ,∴点C 、N 、M 在同一条直线上,由折叠的性质可知,AM MN =,在Rt DCM ∆中,222CM CD DM =+,即222(4)3(5)AM AM +=+- 解得,1AM =,则BNC ∆是直三角形时,1AM =.。
2018-2019学年浙江省温州市鹿城实验中学八年级(下)期中数学试卷
2018-2019学年浙江省温州市鹿城实验中学八年级(下)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)若二次根式有意义,则x的取值范围为()A.x<2B.x>2C.x≤2D.x≥22.(3分)下列图形既是中心对称图形又是轴对称图形的是()A.B.C.D.3.(3分)一个多边形的内角和是720°,这个多边形的边数是()A.4B.5C.6D.74.(3分)用配方法解方程x2﹣4x=1时,原方程应变形为()A.(x﹣2)2=1B.(x+2)2=5C.(x﹣2)2=5D.(x+2)2=1 5.(3分)学习组织“超强大脑”答题赛,参赛的11名选手得分情况如表所示,那么这11名选手得分的中位数和众数分别是()分数(分)60809095人数(人)2234A.86.5和90B.80和90C.90和95D.90和906.(3分)在▱ABCD中,若∠A+∠C=80°,则∠B的度数为()A.100°B.130°C.140°D.150°7.(3分)若关于x的一元二次方程x2﹣2x+m=0有两个相等的实数根,则m的值是()A.﹣1B.0C.1D.28.(3分)用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设()A.至少有一个内角是直角B.至少有两个内角是直角C.至多有一个内角是直角D.至多有两个内角是直角9.(3分)如图所示,在平行四边形ABCD中,对角线AC,BD相交于点O,过点O的直=3,S△BOF=5,则平行四边形ABCD的面线EF分别交AD于点E,BC于点F,S△AOE积()A.24B.32C.40D.4810.(3分)如图,在▱ABCD中,P是对角线BD上的一点,过点作EF∥AB与AD和BC 分别交于点E和点F,连接AP,CP.已知AE=4,EP=2,∠ABC=60°,则阴影部分的面积是()A.2B.4C.4D.8二、填空题(共6小题,每小题4分,共24分):11.(4分)化简=.12.(4分)一组数据1、2、3、4、5的方差是.13.(4分)公园新增设了一台滑梯,该滑梯高度AC=1米,滑梯AB的坡比是1:3,则该滑梯AB的长是米.14.(4分)已知一个正多边形的每一个外角都是30°,则这个正多边形是正边形.15.(4分)某服装店经销一种品牌服装,平均每天可销售20件,每件赢利44元,经市场预测发现:在每件降价不超过10元的情况下,若每件降价1元,则每天可多销售5件,若该专卖店要使该品牌服装每天的赢利为1600元,则每件应降价元.16.(4分)如图,已知∠ACB=90°,AC=4,∠CAB=60°,D为AC的中点,E为AB上的一动点,以AD、DE为一组邻边构造▱ADEP,连接CP,则CP的最小值是.三、解答题(第17、18题各8分,19题、20题各6分21题7分22题11分共46分):17.(8分)计算:(1);(2)﹣.18.(8分)解方程:(1)2x2﹣10x=0;(2)2(x+2)2﹣18=0.19.(6分)如图,在所给的6×6方格中,每个小正方形的边长都是1.按要求画多边形,使它的各个顶点都在方格的顶点上.(1)在图甲中画一个面积为5的平行四边形.(2)在图乙中画一个平行四边形使它的周长不是整数.20.(6分)某班进行“闪亮之星”的推选工作,经过自荐和第一轮筛选后,甲、乙两位同学进入终选.如表为甲、乙两位同学的得分情况.其中人气分的计算方法是:根据班级主科老师和同学的投票结果,老师一票记10分,同学一票记2分,两个分数相加即为人气分.学生人气分学习行规工作分分分老师票数学生票数分数甲420a859585乙22570909290(1)a=,b=;(2)经全班同学讨论决定,候选人的最终得分将根据如图所示的百分比折算后计入总分,经计算,甲同学的最终得分为87分,请你求出乙同学的最终得分,并判断哪位同学当选.21.(7分)某农场要建一个饲养场(长方形ABCD),饲养场的一面靠墙(墙最大可用长度为27米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长57米,设饲养场(长方形ABCD)的宽为a米.(1)饲养场的长为米(用含a的代数式表示).(2)若饲养场的面积为288m2,求a的值.22.(11分)如图,在Rt△AOB中,点C为线段AB的中点,OB=4,∠A=30°,点P从点O出发以每秒1个单位的速度先沿OB方向运动到点B,再沿BA方向运动到终点A,设点P运动时间为t秒,以OP,OC为邻边构造▱OPDC.(1)当点P在线段OB上时,S▱OPDC=(用含t的代数式表示);(2)在整个运动过程中,当▱OPDC的面积为6时,求t的值;(3)连接OD,作点C关于直线OD的对称点C′(点C与点C′不重合),当点C′落在△AOB的边上时,求t的值(直接写出答案).2018-2019学年浙江省温州市鹿城实验中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.2.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.【点评】本题主要考查了多边形的内角和定理即180°•(n﹣2),难度适中.4.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.5.【点评】本题考查中位数和众数的概念.在一组数据中出现次数最多的数叫做这组数据的众数;将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.6.【点评】本题考查了平行四边形的性质,注意掌握平行四边形的对角相等、邻角互补的性质是解题的关键.7.【点评】此题考查了一元二次方程判别式的知识.此题难度不大,注意若一元二次方程有两个相等的实数根,则可得△=0.8.【点评】此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,不需要一一否定,只需否定其一即可.9.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.10.【点评】本题考查了平行四边形的判定与性质、平行线的性质、三角函数定义、三角形面积的计算等知识;熟练掌握平行四边形的判定与性质是解题的关键.二、填空题(共6小题,每小题4分,共24分):11.【点评】本题考查了根据二次根式的意义与化简,二次根式规律总结:当a≥0时,=a;当a<0时,=﹣a.12.【点评】本题考查方差的定义.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.13.【点评】此题主要考查了解直角三角形的应用,正确得出BC的长是解题关键.14.【点评】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.15.【点评】此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.16.【点评】本题考查了平行四边形的性质,直角三角形的性质,解决本题的关键是利用全等三角形的性质求出OP的长,也考查了垂线段最短.三、解答题(第17、18题各8分,19题、20题各6分21题7分22题11分共46分):17.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【点评】本题考查了解一元二次方程,解决本题的关键是掌握解一元二次方程的方法.19.【点评】本题考查作图﹣应用与设计,平行四边形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20.【点评】本题考查了加权平均数,熟记公式是解题的关键.21.【点评】考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.【点评】本题主要考查的是四边形的综合应用,解答本题主要应用了含30度角的直角三角形的性质,翻折的性质,等边三角形的性质和判定,平行四边形的性质,根据题意画出符合题意的图形是解题的关键.。
山东省青岛市胶州市2018-2019学年八年级(下)期中数学试卷 解析版
2018-2019学年山东省青岛市胶州市八年级(下)期中数学试卷一.选择题(共8小题)1.用不等式表示“x与17的和不小于它的5倍”,正确的是()A.x+17>5x B.x+17≥5x C.x+17<5x D.x+17≤5x2.若一个等腰三角形的底边长为6,则它的腰长x的取值范围是()A.x>3B.x>6C.0<x<3D.3<x<63.下列四个图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.下列各组图形都是由两个全等的三角形组成,其中仅通过平移就可以使一个三角形与另一个三角形重合的是()A.B.C.D.5.如果一个三角形一条边上的中点到其它两边距离相等,那么这个三角形一定是()A.等边三角形B.等腰三角形C.直角三角形D.斜三角形6.如图,将Rt△ABC绕顶点C顺时针旋转90°,得到△DEC,连接AD,若∠ADE=25°,则∠B的度数为()A.55°B.60°C.65°D.70°7.如图,在△ABC中,AC=BC,D、E分别是AB、AC上一点,且AD=AE,连接DE并延长交BC的延长线于点F,若DF=BD,则∠A的度数为()A.30B.36C.45D.728.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.5条B.6条C.7条D.8条二.填空题(共8小题)9.若等腰三角形的一个内角的度数为48°,则其顶角的度数为.10.如图,在△ABC中,BC=6,将△ABC沿BC方向平移得到△A′B′C′,连接AA′,若A′B′恰好经过AC的中点O,则AA′的长度为.11.如图,在△ABC中,CD平分∠ACB,DE⊥AC于点E,若BC=5,DE=1,则△DBC 的面积为.12.一次函数的图象如图所示,当0<y<2时,x的取值范围是.13.如图,在△ABC中,∠B=∠ACB=2∠A,DE垂直平分AC,垂足为点E,交AB于点D,则∠BCD的度数为°.14.如图,线段AB的端点都在方格线的交点(格点)上,将线段AB按一定方向平移一定距离后,如果点A的对应点A’的坐标为(5,1),那么点B的对应点B′的坐标是.15.如图,在等边△ABC中,AB=4,AD是BC边上的中线,将△ABD绕点A旋转,使AB 与AC重合,连接DE,则线段DE的长为.16.在平面直角坐标系中,△OAB的位置如图所示.将△OAB绕点O顺时针旋转90°得△OA1B1;再将△OA1B1绕点O顺时针旋转90°得△OA2B2;再将△OA2B2绕点O顺时针旋转90°得△OA3B3;…依此类推,第9次旋转得到△OA9B9,则顶点A的对应点A9的坐标为.三.解答题(共8小题)17.尺规作图:用直尺和圆规作图,不写作法,但要保留作图痕迹.已知:△ABC求作:点P,使点P在△ABC内,到AB,BC的距离相等,且PB=PC.18.(1)解不等式2(1﹣x)<5﹣3x(2)求不等式的正整数解(3)解不等式组(4)解不等式组,并把解集在数轴上表示出来.19.某种商品进价为200元,标价300元出售,商场规定可以打折销售,但其利润不能少于5%.请你帮助售货员计算一下,此种商品可以按几折销售?20.如图,在△ABC中,∠C=90°,∠B=60°,AB的垂直平分线分别交AB,AC于点D,E,且CE=1.求△ABC的面积.21.某校计划组织八年级部分学生(不少于10人)开展暑期游学活动,现有两家旅行社前来洽谈,报价均为每人2000元,且各有优惠.甲旅行社表示:可以先免去3名学生的费用,其余学生按8折收费;乙旅行社表示:所有学生一律按7折收费.该学校选择哪家旅行社更优惠?22.如图①,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4,点D在直线BC上,E 在AC上,且AC=CD,DE=AB.(1)如图②,将△ECD沿CB方向平移,使点E落在AB上,得△E1C1D1,求平移的距离;(2)如图③,将△ECD绕点C逆时针旋转,使点E落在AB上,得△E2CD2,求旋转角∠DCD2的度数.23.甲、乙两人分别骑自行车和摩托车,从同一地点沿相同的路线前往距离80km的某地,图中l1,l2分别表示甲、乙两人离开出发地的距离s(km)与行驶时间t(h)之间的函数关系.请根据图象解答下列问题:(1)甲、乙两人谁到达目的地较早?早多长时间?(2)分别求甲、乙两人行驶过程中s与t的函数关系式;(3)试确定当两辆车都在行驶途中(不包括出发地和目的地)时,t的取值范围;并在这一时间段内,求t为何值时,摩托车行驶在自行车前面?24.【问题】如图①,点D是∠ABC的角平分线BP上一点,连接AD,CD,若∠A与∠C 互补,则线段AD与CD有什么数量关系?【探究】探究一:如图②,若∠A=90°,则∠C=180°﹣∠A=90°,即AD⊥AB,CD⊥BC,又因为BD平分∠ABC,所以AD=CD,理由是:.探究二:若∠A≠90°,请借助图①,探究AD与CD的数量关系并说明理由.【理论】点D是∠ABC的角平分线BP上一点,连接AD,CD,若∠A与∠C互补,则线段AD与CD的数量关系是.【拓展】已知:如图③,在△ABC中,AB=AC,∠A=100°,BD平分∠ABC.求证:BC=AD+BD参考答案与试题解析一.选择题(共8小题)1.用不等式表示“x与17的和不小于它的5倍”,正确的是()A.x+17>5x B.x+17≥5x C.x+17<5x D.x+17≤5x【分析】直接利用x与17的和表示为:x+17,再利用“不小于它的5倍”得出不等式即可.【解答】解:由题意可得:x+17≥5x.故选:B.2.若一个等腰三角形的底边长为6,则它的腰长x的取值范围是()A.x>3B.x>6C.0<x<3D.3<x<6【分析】根据等腰三角形两腰相等和三角形中任意两边之和大于第三边列不等式,求解即可.【解答】解:∵等腰三角形的底边长6,等腰三角形的两腰相等,且三角形中任意两边之和大于第三边∴2x>6,∴x>3.故选:A.3.下列四个图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念与中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,不是轴对称图形,故本选项符合题意;B、是中心对称图形,也是轴对称图形,故本选项不符合题意;C、不是中心对称图形,是轴对称图形,故本选项不符合题意;D、不是中心对称图形,是轴对称图形,故本选项不符合题意.故选:A.4.下列各组图形都是由两个全等的三角形组成,其中仅通过平移就可以使一个三角形与另一个三角形重合的是()A.B.C.D.【分析】根据平移的性质,结合图形判定正确选项.【解答】解:观察图形可知:D中两个图形通过平移使两个三角形重合.故选:D.5.如果一个三角形一条边上的中点到其它两边距离相等,那么这个三角形一定是()A.等边三角形B.等腰三角形C.直角三角形D.斜三角形【分析】本题根据已知条件可以通过证明三角形全等得出三角形的形状,注意:有效利用“等角对等边”.【解答】解:∵DE⊥AB,DF⊥AC,∴∠BED=∠DFC=90°,∵在△BDE和△CDF,BD=CD,DE=DF,∴△DBE≌△DFC(HL),∴∠B=∠C,∴AB=AC,∴这个三角形一定是等腰三角形.故选:B.6.如图,将Rt△ABC绕顶点C顺时针旋转90°,得到△DEC,连接AD,若∠ADE=25°,则∠B的度数为()A.55°B.60°C.65°D.70°【分析】先根据旋转的性质得到∴∠B=∠DEC,∠DCE=∠ACB=90°,CA=CD,则可判断△ACD为等腰直角三角形,所以∠CAD=45°,然后根据三角形外角性质计算出∠DEC即可.【解答】解:∵将Rt△ABC绕顶点C顺时针旋转90°,得到△DEC,∴∠B=∠DEC,∠DCE=∠ACB=90°,CA=CD,∴△ACD为等腰直角三角形,∴∠CAD=45°,∵∠DEC=∠EAD+∠ADE=45°+25°=70°,∴∠B=70°.故选:D.7.如图,在△ABC中,AC=BC,D、E分别是AB、AC上一点,且AD=AE,连接DE并延长交BC的延长线于点F,若DF=BD,则∠A的度数为()A.30B.36C.45D.72【分析】由CA=CB,可以设∠A=∠B=x.想办法构建方程即可解决问题;【解答】解:∵CA=CB,∴∠A=∠B,设∠A=∠B=x.∵DF=DB,∴∠B=∠F=x,∵AD=AE,∴∠ADE=∠AED=∠B+∠F=2x,∴x+2x+2x=180°,∴x=36°,故选:B.8.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.5条B.6条C.7条D.8条【分析】根据等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可.【解答】解:如图所示:当BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7时都能得到符合题意的等腰三角形.故选:C.二.填空题(共8小题)9.若等腰三角形的一个内角的度数为48°,则其顶角的度数为84°或48°.【分析】已知等腰三角形的一个内角为40°,则这个角有可能是底角,也有可能是顶角,所以应该分情况进行分析,从而得到答案.【解答】解:当这个角是顶角时,则顶角的度数为48°,当这个角是底角时,则顶角的度数180°﹣48°×2=84°,故其顶角的度数为:84°或48°.故答案为:84°或48°.10.如图,在△ABC中,BC=6,将△ABC沿BC方向平移得到△A′B′C′,连接AA′,若A′B′恰好经过AC的中点O,则AA′的长度为3.【分析】先根据平移的性质得到AA′=BB′,AA′∥BB′,则可判定四边形ABB′A′为平行四边形,所以AB∥A′B′,再证明OB′为△ABC的中位线得到BB′=CB′=BC=3,于是得到AA′=3.【解答】解:∵△ABC沿BC方向平移得到△A′B′C′,∴AA′=BB′,AA′∥BB′,∴四边形ABB′A′为平行四边形,∴AB∥A′B′,∵点O为AC的中点,∴OB′为△ABC的中位线,∴BB′=CB′=BC=3,∴AA′=3.故答案为3.11.如图,在△ABC中,CD平分∠ACB,DE⊥AC于点E,若BC=5,DE=1,则△DBC 的面积为 2.5.【分析】作DF⊥BC于点F,然后根据角平分线的性质可以得到DF=DE=1,由BC=5,再根据三角形的面积公式可以得到△BCD的面积,本题得以解决.【解答】解:作DF⊥BC于点F,∵CD平分∠ACB,DE⊥AC,DF⊥BC,DE=1,∴DF=DE=1,又∵BC=5,∴△DBC的面积为:=2.5,故答案为:2.5.12.一次函数的图象如图所示,当0<y<2时,x的取值范围是0<x<3.【分析】观察图象发现当x=0时,y=2,当x=3时y=0,据此求解.【解答】解:当0<y<2时,x的取值范围是0<x<3,故答案为:0<x<3.13.如图,在△ABC中,∠B=∠ACB=2∠A,DE垂直平分AC,垂足为点E,交AB于点D,则∠BCD的度数为36°.【分析】利用三角形内角和定理求出∠A,∠B,∠ACB,再根据线段的垂直平分线的性质,推出DA=DC,推出∠ACD=∠A即可解决问题.【解答】解:∵∠B=∠ACB=2∠A,∠B+∠ACB+∠A=180°,∴5∠A=180°,∴∠A=36°,∴∠B=∠ACB=72°,∵DE垂直平分线段AC,∴DA=DC,∴∠A=∠DCA=36°,∴∠DCB=∠ACB﹣∠ACD=36°,故答案为36.14.如图,线段AB的端点都在方格线的交点(格点)上,将线段AB按一定方向平移一定距离后,如果点A的对应点A’的坐标为(5,1),那么点B的对应点B′的坐标是(8,3).【分析】根据平移的性质得出由A到A'是A点向右平移4个单位,再向下平移1个单位得到A',根据这个规律即可求出答案.【解答】解:∵将线段AB平移至线段A′B′,如果A的对应点A′的坐标是(5,1),A(1,2),∴A点向右平移4个单位,再向下平移1个单位得到A',∵点B的坐标是(4,4),∴5﹣1=4,2﹣4=﹣2,∴B的对应点B'的坐标是(8,3),故答案为:(8,3).15.如图,在等边△ABC中,AB=4,AD是BC边上的中线,将△ABD绕点A旋转,使AB 与AC重合,连接DE,则线段DE的长为2.【分析】由等边△ABC中,AB=4,D是BC的中点,根据三线合一的性质与勾股定理,可求得AD的长为2,又由将△ABD绕点A逆时针旋转得△ACE,易得△ADE是等边三角形,继而求得答案.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC=4,∠BAC=60°,∵BD=DC=2,∴AD⊥BC,∴AD===2.∵△ABD绕点A逆时针旋转后得到△ACE,使AB与AC重合,∴∠BAD=∠CAE,AD=AE,∴∠DAE=∠BAC=60°,∴△ADE是等边三角形,∴DE=AD=2,故答案为:2.16.在平面直角坐标系中,△OAB的位置如图所示.将△OAB绕点O顺时针旋转90°得△OA1B1;再将△OA1B1绕点O顺时针旋转90°得△OA2B2;再将△OA2B2绕点O顺时针旋转90°得△OA3B3;…依此类推,第9次旋转得到△OA9B9,则顶点A的对应点A9的坐标为(2,﹣1).【分析】根据旋转的概率,即可得出每旋转4次一个循环,进而得到第9次旋转得到△OA9B9,则顶点A的对应点A9的坐标与点A1的坐标相同.【解答】解:将△OAB绕点O顺时针旋转90°得△OA1B1;此时,点A1的坐标为(2,﹣1);再将△OA1B1绕点O顺时针旋转90°得△OA2B2;此时,点A2的坐标为(﹣1,2);再将△OA2B2绕点O顺时针旋转90°得△OA3B3;此时,点A3的坐标为(﹣2,1);再将△OA3B3绕点O顺时针旋转90°得△OA4B4;此时,点A4的坐标为(1,2);∴每旋转4次一个循环,…依此类推,第9次旋转得到△OA9B9,则顶点A的对应点A9的坐标与点A1的坐标相同,为(2,﹣1);故答案为:(2,﹣1).三.解答题(共8小题)17.尺规作图:用直尺和圆规作图,不写作法,但要保留作图痕迹.已知:△ABC求作:点P,使点P在△ABC内,到AB,BC的距离相等,且PB=PC.【分析】根据角平分线的性质和线段垂直平分线的性质即可作出符合条件的点P.【解答】解:如图,作∠ABC的角平分线和BC的垂直平分线,两条线相交于点P.点P即为所求.18.(1)解不等式2(1﹣x)<5﹣3x(2)求不等式的正整数解(3)解不等式组(4)解不等式组,并把解集在数轴上表示出来.【分析】(1)利用解一元一次不等式的一般步骤解出不等式即可.(2)利用解一元一次不等式的一般步骤解出不等式,然后求出正整数解:(3)首先解每个不等式,然后确定两个不等式的解集的公共部分,就是不等式组的解集;(4)首先解每个不等式,然后确定两个不等式的解集的公共部分,就是不等式组的解集.【解答】解:(1)2(1﹣x)<5﹣3x,去括号,得2﹣2x<5﹣3x,移项,得﹣2x+3x>5﹣2,合并同类项,得x>3:(2)去分母,得4(x+1)>3(2x﹣1)去括号,得4x+4>6x﹣6,移项,得4x﹣6x>﹣6﹣4,合并同类项,得﹣2x>﹣10:系数化为1,得x<5;(3),由①得,x<﹣1,由②得,x<﹣4,所以不等式组的解集为:x<﹣4.(4)由不等式①得:x>﹣2;由不等式①得:x≤2;∴原不等式组的解集是﹣2<x≤2,在数轴上表示为:19.某种商品进价为200元,标价300元出售,商场规定可以打折销售,但其利润不能少于5%.请你帮助售货员计算一下,此种商品可以按几折销售?【分析】利润率不能低于5%,意思是利润率大于或等于5%,相应的关系式为:(打折后的销售价﹣进价)÷进价≥5%,把相关数值代入即可求解.【解答】解:售价为300×0.1x,那么利润为300×0.1x﹣200,所以相应的关系式为300×0.1x﹣200≥200×5%,解得:x≥7.答:该商品最多可以7折.20.如图,在△ABC中,∠C=90°,∠B=60°,AB的垂直平分线分别交AB,AC于点D,E,且CE=1.求△ABC的面积.【分析】连接BE.证明∠EBC=∠ABE=30°,想办法求出AC,BE即可解决问题.【解答】解:连接BE.∵DE垂直平分AB,∴EA=EB,∵∠C=90°,∠ABC=60°,∴∠A=∠EBA=30°,∴CBE=30°,∴BE=AE=2EC=2,BE=CE=,∴AC=AE+EC=2+1=3,∴S△ACB=×3×=.21.某校计划组织八年级部分学生(不少于10人)开展暑期游学活动,现有两家旅行社前来洽谈,报价均为每人2000元,且各有优惠.甲旅行社表示:可以先免去3名学生的费用,其余学生按8折收费;乙旅行社表示:所有学生一律按7折收费.该学校选择哪家旅行社更优惠?【分析】设学生x人,甲旅行社收费为y甲,乙旅行社收费为y乙.构建一次函数,把问题转化为不等式或方程解决即可.【解答】解:设学生x人,甲旅行社收费为y甲,乙旅行社收费为y乙.由题意y甲=2000×0.8(x﹣3)=1600x﹣4800,y乙=2000×0.7x=1400x,当y甲>y乙时,1600x﹣4800>1400x,解得:x>40,当y甲<y乙时,1600x﹣4800<1400x,解得:x<40,当y甲=y乙时,1600x﹣4800=1400x,解得:x=40,答:学生人数大于40人时,选乙旅行社,学生人数小于40人时,选甲旅行社,学生人数为40人时,两家费用一样.22.如图①,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4,点D在直线BC上,E 在AC上,且AC=CD,DE=AB.(1)如图②,将△ECD沿CB方向平移,使点E落在AB上,得△E1C1D1,求平移的距离;(2)如图③,将△ECD绕点C逆时针旋转,使点E落在AB上,得△E2CD2,求旋转角∠DCD2的度数.【分析】(1)证明Rt△ACB≌Rt△DCE(HL),得出BC=CE,再利用含30度角的直角三角形的性质得出BE1=2BC1,最后用勾股定理求出BC1即可得出结论.(2)△ECD绕点C旋转的度数即∠ECE2的度数;易得:∠ECE2=∠BAC=30°,则答案可求出.【解答】(1)解:∵∠ACB=90°∴∠ECD=90°,∵AC=CD,DE=AB.∴Rt△ACB≌Rt△DCE(HL),∴BC=CE,∵∠A=30°,AB=4,∴BC=AB=2,∴CE=2,由平移知,C1E1∥AC,C1E1=CE=2,∴∠BE1C1=∠A=30°,∴BE1=2BC1,∴BE12﹣BC12=C1E12,即:4BC12﹣BC12=4,∴BC1=,∴CC1=BC﹣BC1=2﹣;即平移距离为2﹣.(2)解:旋转角∠DCD2的度数是△ECD绕点C旋转的度数,即∠ECE2的度数;∵∠ABC=60°,BC=CE2=2,AB=4,∴△E2BC是等边三角形,∴BC=E2C=E2B=2,∴AE2=E2C=2,∴∠E2AC=∠E2CA,∴∠ECE2=∠BAC=30°,∴∠DCD2=∠ECE2=30°.23.甲、乙两人分别骑自行车和摩托车,从同一地点沿相同的路线前往距离80km的某地,图中l1,l2分别表示甲、乙两人离开出发地的距离s(km)与行驶时间t(h)之间的函数关系.请根据图象解答下列问题:(1)甲、乙两人谁到达目的地较早?早多长时间?(2)分别求甲、乙两人行驶过程中s与t的函数关系式;(3)试确定当两辆车都在行驶途中(不包括出发地和目的地)时,t的取值范围;并在这一时间段内,求t为何值时,摩托车行驶在自行车前面?【分析】(1)根据函数图象可以解答本题;(2)根据图象中的数据可以分别求得l1和l2对应的表达式;(3)根据图象可得当两辆车都在行驶途中(不包括出发地和目的地)时,t的取值范围;根据(2)的结论求出两直线的交点坐标即可得出t为何值时,摩托车行驶在自行车前面.【解答】解:(1)根据图象可知,乙到达目的地较早,比甲早2小时;(2)根据图象可知,甲的速度为:80÷5=16(km/h),∴l1对应的表达式为s=16t;乙的速度为80÷(3﹣1)=40(km/h),设l2对应的表达式为s=40t+b,把(3,80)代入得,40×3+b=80,解得b=﹣40,∴l2对应的表达式为s=40t﹣40,;(3)由图象可得:1<x<3时,两人均行驶在途中(不包括起点和终点).联立l1和l2:,解得,∴时,摩托车行驶在自行车前面.24.【问题】如图①,点D是∠ABC的角平分线BP上一点,连接AD,CD,若∠A与∠C 互补,则线段AD与CD有什么数量关系?【探究】探究一:如图②,若∠A=90°,则∠C=180°﹣∠A=90°,即AD⊥AB,CD⊥BC,又因为BD平分∠ABC,所以AD=CD,理由是:角平分线上的点到角的两边的距离相等.探究二:若∠A≠90°,请借助图①,探究AD与CD的数量关系并说明理由.【理论】点D是∠ABC的角平分线BP上一点,连接AD,CD,若∠A与∠C互补,则线段AD与CD的数量关系是AD=CD.【拓展】已知:如图③,在△ABC中,AB=AC,∠A=100°,BD平分∠ABC.求证:BC=AD+BD【分析】探究一:根据角平分线的性质定理解答;探究二:作DF⊥BC于F,作DE⊥AB交BA的延长线于E,证明△DAE≌△DCF,根据全等三角形的性质证明结论;【理论】根据探究结果得到答案;【拓展】在BC上取一点E,使BE=BD,作DF⊥BA角BA的延长线于F,DG⊥BC于G,证明△DAF≌△DEG,得到AD=ED,根据等腰三角形的性质得到DE=CE,等量代换得到AD=CE,结合图形证明结论.【解答】解:探究一:∵BD平分∠ABC,AD⊥AB,CD⊥BC,∴AD=CD,理由是:角平分线上的点到角的两边的距离相等,故答案为:角平分线上的点到角的两边的距离相等;探究二:作DF⊥BC于F,作DE⊥AB交BA的延长线于E,∵BD平分∠ABC,AE⊥AB,DF⊥BC,∴DE=DF,∵∠BAD+∠DAE=180°,∠BAD+∠C=180°,∴∠DAE=∠C,在△DAE和△DCF中,,∴△DAE≌△DCF(AAS)∴AD=DC;【理论】综上所述,点D是∠ABC的角平分线BP上一点,连接AD,CD,若∠A与∠C 互补,则线段AD与CD的数量关系是AD=CD,故答案为:AD=CD;【拓展】在BC上取一点E,使BE=BD,作DF⊥BA角BA的延长线于F,DG⊥BC于G,∴∠DF A=∠DGE=90°.∵BD平分∠ABC,DF⊥BA,DG⊥BC,∴DF=DG,∵∠BAC=100°,AB=AC,∴∠F AD=80°,∠ABC=∠C=40°,∴∠DBC=20°,∵BE=BD,∴∠BED=∠BDE=80°,∴∠DAF=∠BED.在△DAF和△DEG中,,∴△DAF≌△DEG(AAS),∴AD=ED,∵∠BED=∠C+∠EDC,∴∠EDC=40°,∴∠EDC=∠C,∴DE=CE,∴AD=CE.∵BC=BE+CE,∴BC=BD+AD.。
2018-2019学年新人教版八年级数学第二学期期中试卷(含答案)
2018-2019学年八年级(下)期中数学试卷一、选择题(每小题4分,共40分)1.下列式子为最简二次根式的是()A.B.C.D.2.以下各式不是代数式的是()A.0B.C.D.3.在△ABC中,AC2﹣AB2=BC2,那么()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定4.如果是一个正整数,那么x可取的最小正整数的值是()A.2B.3C.4D.85.如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=64,S3=289,则S2为()A.15B.225C.81D.256.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间7.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF8.计算的结果是()A.2+B.C.2﹣D.9.实数a在数轴上的位置如图所示,则化简后为()A.7B.﹣7C.2a﹣15D.无法确定10.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm二、填空题(每小题4分,共20分)11.命题“若a=b,则a2=b2”的逆命题是.12.化简的结果是.13.若长方形相邻两边的长分别是cm和cm,则它的周长是cm.14.下列各组数:①1、2、3;②6、8、10;③0.3、0.4、0.5;④9、40、41;其中是勾股数的有(填序号).15.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.16.若成立,则x满足.17.若a﹣=,则a+=.18.有一个边长为2m的正方形洞口,想用一个圆形盖住这个洞口,圆形盖的半径至少是m.19.对于任意不相等的两个实数a、b,定义运算※如下:a※b=,如3※2=.那么8※12=.20.如图,OP=1,过点P作PP1⊥OP,得PP1=1;连接OP1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,连接OP2,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,连接OP3,得OP3=2;…依此法继续作下去,得OP2013=.三、解答题(本大题共6个小题,共70分)21.(12分)(1)5.(2).22.(12分)将Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C所对的三条边.(1)已知a=,b=3,求c的长.(2)已知c=13,b=12,求a的长.23.(10分)先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.24.(10分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.25.(12分)如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD的长.26.(14分)阅读下面的问题:﹣1;=;;……(1)求与的值.(2)已知n是正整数,求与的值;(3)计算+.2018-2019学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.下列式子为最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、=,不是最简二次根式,故此选项错误;B、是最简二次根式,故此选项正确;C、=2,不是最简二次根式,故此选项错误;D、=2,不是最简二次根式,故此选项错误;故选:B.【点评】此题主要考查了最简二次根式,正确把握最简二次根式的定义是解题关键.2.以下各式不是代数式的是()A.0B.C.D.【分析】代数式是指把数或表示数的字母用+、﹣、×、÷连接起来的式子,而对于带有=、>、<等数量关系的式子则不是代数式.由此可得答案.【解答】解:A、0是单独数字,是代数式;B、是代数式;C、是不等式,不是代数式;D、是数字,是代数式;故选:C.【点评】此类问题主要考查了代数式的定义,只要根据代数式的定义进行判断,就能熟练解决此类问题.3.在△ABC中,AC2﹣AB2=BC2,那么()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定【分析】先把AC2﹣AB2=BC2转化为AC2=AB2+BC2的形式,再由勾股定理的逆定理可判断出△ABC是直角三角形,再根据大边对大角的性质即可作出判断.【解答】解:∵AC2﹣AB2=BC2,∴AC2=AB2+BC2,∴△ABC是直角三角形,∴∠B=90°.故选:B.【点评】本题考查的是勾股定理的逆定理,即果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.如果是一个正整数,那么x可取的最小正整数的值是()A.2B.3C.4D.8【分析】首先化简,再确定x的最小正整数的值.【解答】解:=3,x可取的最小正整数的值为2,故选:A.【点评】此题主要考查了二次根式有意义的条件,关键是正确进行化简.5.如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=64,S3=289,则S2为()A.15B.225C.81D.25【分析】根据正方形的面积公式求出BC、AB,根据勾股定理计算即可.【解答】解:∵S1=64,S3=289,∴BC=8,AB=17,由勾股定理得,AC==15,∴S2=152=225,故选:B.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.6.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选:C.【点评】本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.7.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF【分析】设出正方形的边长,利用勾股定理,解出AB、CD、EF、GH各自的长度,再由勾股定理的逆定理分别验算,看哪三条边能够成直角三角形.【解答】解:设小正方形的边长为1,则AB2=22+22=8,CD2=22+42=20,EF2=12+22=5,GH2=22+32=13.因为AB2+EF2=GH2,所以能构成一个直角三角形三边的线段是AB、EF、GH.故选:B.【点评】考查了勾股定理逆定理的应用.8.计算的结果是()A.2+B.C.2﹣D.【分析】原式利用积的乘方变形为=[(+2)(﹣2)]2017•(﹣2),再利用平方差公式计算,从而得出答案.【解答】解:原式=(+2)2017•(﹣2)2017•(﹣2)=[(+2)(﹣2)]2017•(﹣2)=(﹣1)2017•(﹣2)=﹣(﹣2)=2﹣,故选:C.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则及积的乘方的运算法则.9.实数a在数轴上的位置如图所示,则化简后为()A.7B.﹣7C.2a﹣15D.无法确定【分析】先从实数a在数轴上的位置,得出a的取值范围,然后求出(a﹣4)和(a﹣11)的取值范围,再开方化简.【解答】解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选:A.【点评】本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.10.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm【分析】根据折叠前后角相等可证AO=CO,在直角三角形ADO中,运用勾股定理求得DO,再根据线段的和差关系求解即可.【解答】解:根据折叠前后角相等可知∠BAC=∠EAC,∵四边形ABCD是矩形,∴AB∥CD,∴∠BAC=∠ACD,∴∠EAC=∠ACD,∴AO=CO=5cm,在直角三角形ADO中,DO==3cm,AB=CD=DO+CO=3+5=8cm.故选:C.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.二、填空题(每小题4分,共20分)11.命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【分析】如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题,如果把其中一个叫做原命题,那么把另一个叫做它的逆命题.故只需将命题“若a=b,则a2=b2”的题设和结论互换,变成新的命题即可.【解答】解:命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【点评】写出一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换.在写逆命题时要用词准确,语句通顺.12.化简的结果是5.【分析】根据二次根式的性质解答.【解答】解:=|﹣5|=5.【点评】解答此题,要弄清二次根式的性质:=|a|的运用.13.若长方形相邻两边的长分别是cm和cm,则它的周长是14cm.【分析】直接化简二次根式进而计算得出答案.【解答】解:∵长方形相邻两边的长分别是cm和cm,∴它的周长是:2(+)=2(2+5)=14(cm).故答案为:14.【点评】此题主要考查了二次根式的应用,正确化简二次根式是解题关键.14.下列各组数:①1、2、3;②6、8、10;③0.3、0.4、0.5;④9、40、41;其中是勾股数的有②④(填序号).【分析】勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数,根据定义即可求解.【解答】解:①1、2、3不属于勾股数;②6、8、10属于勾股数;③0.3、0.4、0.5不属于勾股数;④9、40、41属于勾股数;∴勾股数只有2组.故答案为:②④【点评】本题考查了勾股数的定义,注意:作为勾股数的三个数必须是正整数,一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.15.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了4步路(假设2步为1米),却踩伤了花草.【分析】本题关键是求出路长,即三角形的斜边长.求两直角边的和与斜边的差.【解答】解:根据勾股定理可得斜边长是=5m.则少走的距离是3+4﹣5=2m,∵2步为1米,∴少走了4步,故答案为:4.【点评】本题就是一个简单的勾股定理的应用问题.16.若成立,则x满足2≤x<3.【分析】根据二次根式有意义及分式有意义的条件,即可得出x的取值范围.【解答】解:∵成立,∴,解得:2≤x<3.故答案为:2≤x<3.【点评】本题考查了二次根式的乘除法及二次根式及分式有意义的条件,关键是掌握二次根式有意义:被开方数为非负数,分式有意义:分母不为零.17.若a﹣=,则a+=.【分析】根据完全平方公式即可求出答案.【解答】解:由题意可知:(a﹣)2=2017,∴a2﹣2+=2017∴a2+2+=2021∴(a+)2=2021∴a+=±故答案为:±【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.18.有一个边长为2m的正方形洞口,想用一个圆形盖住这个洞口,圆形盖的半径至少是m.【分析】根据圆形盖的直径最小应等于正方形的对角线的长,才能将洞口盖住,根据勾股定理进行解答.【解答】解:∵正方形的边长为2m,∴正方形的对角线长为=2(m),∴想用一个圆盖去盖住这个洞口,则圆形盖的半径至少是m;故答案为【点评】本题考查的是正多边形和圆、勾股定理的应用,根据正方形和圆的关系确定圆的半径是解题的关键.19.对于任意不相等的两个实数a、b,定义运算※如下:a※b=,如3※2=.那么8※12=﹣.【分析】根据所给的式子求出8※12的值即可.【解答】解:∵a※b=,∴8※12===﹣.故答案为:﹣.【点评】本题考查的是算术平方根,根据题意得出8※12=是解答此题的关键.20.如图,OP=1,过点P作PP1⊥OP,得PP1=1;连接OP1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,连接OP2,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,连接OP3,得OP3=2;…依此法继续作下去,得OP2013=.【分析】根据勾股定理分别求出每个直角三角形斜边长,根据结果得出规律,即可得出答案.【解答】解:∵OP1=,由勾股定理得:OP2==,OP3==,…OP2013=,故答案为:.【点评】本题考查了勾股定理的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方,解此题的关键是能根据求出的结果得出规律.三、解答题(本大题共6个小题,共70分)21.(12分)(1)5.(2).【分析】(1)先化简各二次根式,再合并同类二次根式即可;(2)根据二次根式的乘除运算法则计算可得.【解答】解:(1)原式=5×+4﹣=5﹣;(2)原式=×()=×==.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.22.(12分)将Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C所对的三条边.(1)已知a=,b=3,求c的长.(2)已知c=13,b=12,求a的长.【分析】(1)利用勾股定理计算c边的长;(2)利用勾股定理计算a边的长;【解答】解:(1)∵∠C=90°,a=,b=3.∴c==4(2))∵∠C=90°,c=13,b=12,∴a==5【点评】本题主要考查了勾股定理的应用,属于基础题.23.(10分)先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.【分析】根据分式的除法可以化简题目中的式子,然后将a、b代入化简后的式子即可解答本题.【解答】解:(a2b+ab)÷=ab(a+1)=ab,当a=+1,b=﹣1时,原式==3﹣1=2.【点评】本题考查分式的化简求值、分母有理化,解答本题的关键是明确分式化简求值的方法.24.(10分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.【分析】过A作CD⊥AB.修建公路CD,则工厂C到公路的距离最短,首先证明△ABC是直角三角形,然后根据三角形的面积公式求得CD的长.【解答】解:过A作CD⊥AB,垂足为D,∵6002+8002=10002,∴AC2+BC2=AB2,∴∠ACB=90°,S=AB•CD=AC•BC,△ACB×600×800=×1000×DB,解得:BD=480,∴新建的路的长为480m.【点评】此题主要考查了勾股定理逆定理以及三角形的面积公式,关键是证明△ABC是直角三角形.25.(12分)如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD的长.【分析】先设CD=x,则BD=BC+CD=9+x,再运用勾股定理分别在△ACD与△ABD中表示出AD2,列出方程,求解即可.【解答】解:设CD=x,则BD=BC+CD=9+x.在△ACD中,∵∠D=90°,∴AD2=AC2﹣CD2,在△ABD中,∵∠D=90°,∴AD2=AB2﹣BD2,∴AC2﹣CD2=AB2﹣BD2,即102﹣x2=172﹣(9+x)2,解得x=6,∴AD2=102﹣62=64,∴AD=8.故AD的长为8.【点评】本题主要考查了勾股定理的运用,根据AD的长度不变列出方程是解题的关键.26.(14分)阅读下面的问题:﹣1;=;;……(1)求与的值.(2)已知n是正整数,求与的值;(3)计算+.【分析】(1)根据分母有理化可以解答本题;(2)根据分母有理化可以解答本题;(3)根据(2)中的结果可以解答本题.【解答】解:(1)==,==;(2)==,==;(3)+==﹣1+=﹣1+10=9.【点评】本题考查二次根式的化简求值、分母有理化,解答本题的关键是明确二次根式化简求值的方法.。
2018-2019学年人教新版广东省中山市十二校联考八年级第二学期期中数学试卷及答案 含解析
2018-2019学年广东省中山市十二校联考八年级第二学期期中数学试卷一、选择题(共10小题)1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.下列计算正确的是()A.÷2=B.(2)2=16C.2×=D.﹣=3.若△ABC的三边分别为5、12、13,则△ABC的面积是()A.30B.40C.50D.604.下列各数中,与的积为有理数的是()A.B.3C.2D.2﹣5.在Rt△ABC中,∠C=90°.如果BC=3,AC=5,那么AB=()A.B.4C.4或D.以上都不对6.如图,下列哪组条件不能判定四边形ABCD是平行四边形()A.AB∥CD,AB=CD B.AB∥CD,AD∥BCC.OA=OC,OB=OD D.AB∥CD,AD=BC7.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB 的面积为4cm2.则OC的长为()A.2B.3C.4D.58.如图,菱形ABCD的两条对角线相交于O,若AC=8,BD=6,则菱形ABCD的周长是()A.48B.24C.20D.9.矩形的对角线一定具有的性质是()A.互相垂直B.互相垂直且相等C.相等D.互相垂直平分10.如图,把一张正方形纸对折两次后,沿虚线剪下一角,展开后所得图形一定是()A.三角形B.菱形C.矩形D.正方形二、填空题(共6个小题,每小题4分,满分24分)11.二次根式中字母x的取值范围是.12.定理“对角线互相平分的四边形是平行四边形”的逆定理是.13.如图,△ABC中,若∠ACB=90°,∠B=56°,D是AB的中点,则∠ACD=°.14.如图,四边形ABCD中,连接AC,AB∥DC,要使AD=BC,需要添加的一个条件是.15.如图所示,正方形ABCD的周长为16cm,则矩形EFCH的周长是cm.16.如图,已知等边三角形ABC边长为16,△ABC的三条中位线组成△A1B1C1,△A1B1C1的三条中位线组成△A2B2C2,依此进行下去得到△A4B4C4的周长为.三、解答题(一)(共3个小题,每小题6分,满分18分)17.化简:18.如图,E、F分别为▱ABCD的边BC、AD上的点,且∠1=∠2.求证:四边形AECF 是平行四边形.19.已知矩形ABCD中,AD=,AB=,求这个矩形的对角线AC的长及其面积.四、解答题(二)(共3个小题,每小题7分,满分21分)20.在甲村至乙村的公路有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险而需要暂时封锁?请通过计算进行说明.21.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.22.如图,在△ABC中,AC=9,AB=12,BC=15,P为BC边上一动点,PG⊥AC于点G,PH⊥AB于点H.(1)求证:四边形AGPH是矩形;(2)在点P的运动过程中,GH的长度是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.五、解答题(三)(共3个小题,每小题9分,满分27分)23.阅读下面材料,回答问题:(1)在化简的过程中,小张和小李的化简结果不同;小张的化简如下:===﹣小李的化简如下:===﹣请判断谁的化简结果是正确的,谁的化简结果是错误的,并说明理由.(2)请你利用上面所学的方法化简:①;②.24.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.25.如图,在Rt△ABC中,∠B=90°,AC=12,∠A=60°.点D从点C出发沿CA方向以每秒2个单位长的速度向A点匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)AB的长是.(2)在D、E的运动过程中,线段EF与AD的关系是否发生变化?若不变化,那么线段EF与AD是何关系,并给予证明;若变化,请说明理由.(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.参考答案一、单项选择题(共10个小题,每小题3分,满分30分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的运算法则即可求出答案.解:(A)原式=2,故A不是最简二次根式;(C)原式=2,故C不是最简二次根式;(D)原式=,故D不是最简二次根式;故选:B.2.下列计算正确的是()A.÷2=B.(2)2=16C.2×=D.﹣=【分析】根据二次根式的除法法则对A进行判断;根据二次根式的性质对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的加减法对D进行判断.解:A、原式=2÷2=,所以A选项正确;B、原式=4×2=8,所以B选项错误;C、原式=2×=,所以C选项错误;D、原式=2﹣=,所以D选项错误.故选:A.3.若△ABC的三边分别为5、12、13,则△ABC的面积是()A.30B.40C.50D.60【分析】根据三边长度判断三角形为直角三角形.再求面积.解:∵△ABC的三边分别为5、12、13,且52+122=132,∴△ABC是直角三角形,两直角边是5,12,则S△ABC==30.故选:A.4.下列各数中,与的积为有理数的是()A.B.3C.2D.2﹣【分析】根据实数运算的法则对各选项进行逐一解答即可.解:A、×=,故A错误;B、×3=3,故B错误;C、×2=6,故C正确;D、×(2﹣)=2﹣3,故D错误.故选:C.5.在Rt△ABC中,∠C=90°.如果BC=3,AC=5,那么AB=()A.B.4C.4或D.以上都不对【分析】直接利用勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,求出答案即可.解:∵在Rt△ABC中,∠C=90°.BC=3,AC=5,∴AB==.故选:A.6.如图,下列哪组条件不能判定四边形ABCD是平行四边形()A.AB∥CD,AB=CD B.AB∥CD,AD∥BCC.OA=OC,OB=OD D.AB∥CD,AD=BC【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.解:根据平行四边形的判定,A、B、C均符合是平行四边形的条件,D则不能判定是平行四边形.故选:D.7.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB 的面积为4cm2.则OC的长为()A.2B.3C.4D.5【分析】根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.解:根据作图,AC=BC=OA,∵OA=OB,∴OA=OB=BC=AC,∴四边形OACB是菱形,∵AB=2cm,四边形OACB的面积为4cm2,∴AB•OC=×2×OC=4,解得OC=4cm.故选:C.8.如图,菱形ABCD的两条对角线相交于O,若AC=8,BD=6,则菱形ABCD的周长是()A.48B.24C.20D.【分析】根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.解:∵菱形ABCD的两条对角线相交于O,AC=8,BD=6,由菱形对角线互相垂直平分,∴BO=OD=3,AO=OC=4,∴AB==5,故菱形的周长为20,故选:C.9.矩形的对角线一定具有的性质是()A.互相垂直B.互相垂直且相等C.相等D.互相垂直平分【分析】根据矩形的性质即可判断;解:因为矩形的对角线相等且互相平分,所以选项C正确,故选:C.10.如图,把一张正方形纸对折两次后,沿虚线剪下一角,展开后所得图形一定是()A.三角形B.菱形C.矩形D.正方形【分析】此类问题只有动手操作一下,按照题意的顺序折叠,剪开,观察所得的图形,可得正确的选项.解:由题意可得:四边形的四边形相等,故展开图一定是菱形.故选:B.二、填空题(共6个小题,每小题4分,满分24分)11.二次根式中字母x的取值范围是x≥3.【分析】由二次根式有意义的条件得出不等式,解不等式即可.解:当x﹣3≥0时,二次根式有意义,则x≥3;故答案为:x≥3.12.定理“对角线互相平分的四边形是平行四边形”的逆定理是平行四边形是对角线互相平分的四边形.【分析】题设:四边形的对角线互相平分,结论:四边形是平行四边形.把题设和结论互换即得其逆定理.解:逆定理是:平行四边形是对角线互相平分的四边形.13.如图,△ABC中,若∠ACB=90°,∠B=56°,D是AB的中点,则∠ACD=34°.【分析】由∠ACB=90°,D是AB的中点,可得出CD=BD=AD,结合∠B的度数可得出∠BCD的度数,再由∠ACD和∠BCD互余可求出∠ACD的度数.解:∵∠ACB=90°,D是AB的中点,∴CD=BD=AD=AB,∴∠BCD=∠B=56°,∴∠ACD=∠ACB﹣∠BCD=90°﹣56°=34°.故答案为:34°.14.如图,四边形ABCD中,连接AC,AB∥DC,要使AD=BC,需要添加的一个条件是AB=CD(答案不唯一).【分析】由AB∥DC,AB=DC证出四边形ABCD是平行四边形,即可得出AD=BC.解:添加条件为:AB=DC(答案不唯一);理由如下:∵AB∥DC,AB=DC,∴四边形ABCD是平行四边形,∴AD=BC.15.如图所示,正方形ABCD的周长为16cm,则矩形EFCH的周长是8cm.【分析】由正方形的周长可以求出正方形的边长,根据矩形的性质喝正方形的性质就可以求得EH+HC=CD,CF+EF=BC,从而可以求出矩形的周长.解:∵四边形ABCD是正方形,且周长为16cm,∴AB=BC=CD=AD=4,∠C=90°.∠BDC=∠DBC=45°.∵四边形EFCH是矩形,∴矩形EFCH的周长=2(EF+CH).∠EHC=90°,∴∠EHD=90°,∴∠HED=45°,∴∠HED=∠EDH,∴DH=EH,∴EH+CH=DH+CH=CD=4cm,∴矩形EFCH的周长=2×4=8cm.故答案为:8.16.如图,已知等边三角形ABC边长为16,△ABC的三条中位线组成△A1B1C1,△A1B1C1的三条中位线组成△A2B2C2,依此进行下去得到△A4B4C4的周长为3.【分析】根据三角形中位线定理求出△A1B1C1的周长,同理计算,得到答案.解:∵等边三角形ABC边长为16,∴△ABC的周长为48,∵△A1B1C1是△ABC的三条中位线组成,∴△A1B1C1的周长=×△ABC的周长=24,同理,△A2B2C2,的周长=24×=12,△A3B3C3的周长=12×=6,△A4B4C4的周长=6×=3,故答案为:3.三、解答题(一)(共3个小题,每小题6分,满分18分)17.化简:【分析】首先化简二次根式,然后再合并同类二次根式.解:原式=3+6﹣2﹣5,=4﹣2.18.如图,E、F分别为▱ABCD的边BC、AD上的点,且∠1=∠2.求证:四边形AECF 是平行四边形.【分析】由条件可证明AE∥FC,结合平行四边形的性质可证明四边形AECF是平行四边形.【解答】证明:∵四边形ABCD为平行四边形,∴AD∥BC,∴∠1=∠EAF,∵∠1=∠2,∴∠EAF=∠2,∴AE∥CF,∴四边形AECF是平行四边形.19.已知矩形ABCD中,AD=,AB=,求这个矩形的对角线AC的长及其面积.【分析】根据勾股定理得出AC,进而利用矩形的面积解答即可.解:∵AD=,AB=,∴AC=,∴矩形的面积=AD•AB=.四、解答题(二)(共3个小题,每小题7分,满分21分)20.在甲村至乙村的公路有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险而需要暂时封锁?请通过计算进行说明.【分析】过C作CD⊥AB于D.根据BC=400米,AC=300米,∠ACB=90°,利用根据勾股定理有AB=500米.利用S△ABC=AB•CD=BC•AC得到CD=240米.再根据240米<250米可以判断有危险.解:公路AB需要暂时封锁.理由如下:如图,过C作CD⊥AB于D.因为BC=400米,AC=300米,∠ACB=90°,所以根据勾股定理有AB=500米.因为S△ABC=AB•CD=BC•AC所以CD===240米.由于240米<250米,故有危险,因此AB段公路需要暂时封锁.21.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.【分析】(1)首先证明AB=AF=AD,然后再证明∠AFG=90°,接下来,依据HL 可证明△ABG≌△AFG;(2)利用勾股定理得出GE2=CG2+CE2,进而求出BG即可.解:(1)在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴△ABG≌△AFG(HL);(2)∵△ABG≌△AFG,∴BG=FG,设BG=FG=x,则GC=6﹣x,∵E为CD的中点,∴CE=EF=DE=3,∴EG=3+x,∴在Rt△CEG中,32+(6﹣x)2=(3+x)2,解得x=2,∴BG=2.22.如图,在△ABC中,AC=9,AB=12,BC=15,P为BC边上一动点,PG⊥AC于点G,PH⊥AB于点H.(1)求证:四边形AGPH是矩形;(2)在点P的运动过程中,GH的长度是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.【分析】(1)根据“矩形的定义”证明结论;(2)连结AP.当AP⊥BC时AP最短,结合矩形的两对角线相等和面积法来求GH的值.【解答】(1)证明∵AC=9 AB=12 BC=15,∴AC2=81,AB2=144,BC2=225,∴AC2+AB2=BC2,∴∠A=90°.∵PG⊥AC,PH⊥AB,∴∠AGP=∠AHP=90°,∴四边形AGPH是矩形;(2)存在.理由如下:连结AP.∵四边形AGPH是矩形,∴GH=AP.∵当AP⊥BC时AP最短.∴9×12=15•AP.∴AP=.五、解答题(三)(共3个小题,每小题9分,满分27分)23.阅读下面材料,回答问题:(1)在化简的过程中,小张和小李的化简结果不同;小张的化简如下:===﹣小李的化简如下:===﹣请判断谁的化简结果是正确的,谁的化简结果是错误的,并说明理由.(2)请你利用上面所学的方法化简:①;②.【分析】(1)直接利用完全平方公式将原式变形开平方即可得出答案;(2)①直接利用完全平方公式将原式变形开平方即可得出答案;②直接利用完全平方公式将原式变形开平方即可得出答案.解:(1)小李化简正确,小张的化简结果错误;因为=﹣;(2)①==+1;②原式==﹣1.24.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.【分析】(1)利用平行线的性质及中点的定义,可利用AAS证得结论;(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,∴AE=DE,在△AFE和△DBE中,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵AD为BC边上的中线∴DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S菱形ADCF=AC▪DF=×4×5=10.25.如图,在Rt△ABC中,∠B=90°,AC=12,∠A=60°.点D从点C出发沿CA方向以每秒2个单位长的速度向A点匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)AB的长是6.(2)在D、E的运动过程中,线段EF与AD的关系是否发生变化?若不变化,那么线段EF与AD是何关系,并给予证明;若变化,请说明理由.(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.【分析】(1)在Rt△ABC中,∠C=30°,则AC=2AB,得到AB的值.(2)先证四边形AEFD是平行四边形,从而证得AD∥EF,并且AD=EF,在运动过程中关系不变.(3)求得四边形AEFD为平行四边形,若使▱AEFD为菱形则需要满足的条件及求得.解:(1)Rt△ABC中,∠B=90°,∠A=60°.∴∠C=30°∵AC=12∴AB=6,故答案为:6;(2)EF与AD平行且相等.证明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=t.又∵AE=t,∴AE=DF,∵AB⊥BC,DF⊥BC,∴AE∥DF.∴四边形AEFD为平行四边形.∴EF与AD平行且相等.(3)能;理由如下:∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.∵AB=6,AC=12.∴AD=AC﹣DC=12﹣2t.若使▱AEFD为菱形,则需AE=AD,即t=12﹣2t,t=4.即当t=4时,四边形AEFD为菱形.。