2002年到2010年温州市数学中考试卷答案汇总

合集下载

温州市中考数学试卷及答案(Word解析版)

温州市中考数学试卷及答案(Word解析版)

浙江省温州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分。

每小题只有一个选项是正确的,不选,多选,错选,均不给分)1.(4分)(•温州)计算:(﹣2)×3的结果是()A.﹣6 B.﹣1 C.1D.6考点:有理数的乘法.分析:根据有理数的乘法运算法则进行计算即可得解.解答:解:(﹣2)×3=﹣2×3=﹣6.故选A.点评:本题考查了有理数的乘法,是基础题,计算时要注意符号的处理.2.(4分)(•温州)小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图,由图可知,该班同学最喜欢的球类项目是()A.羽毛球B.乒乓球C.排球D.篮球考点:扇形统计图.分析:利用扇形图可得喜欢各类比赛的人数的百分比,选择同学们最喜欢的项目,即对应的扇形的圆心角最大的,由此即可求出答案.解答:解:喜欢乒乓篮球比赛的人所占的百分比最大,故该班最喜欢的球类项目是篮球.故选D.点评:本题考查的是扇形图的定义.在扇形统计图中,各部分占总体的百分比之和为1,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比.3.(4分)(•温州)下列各图中,经过折叠能围成一个立方体的是()A.B.C.D.考点:展开图折叠成几何体.分析:由平面图形的折叠及正方体的展开图解题.解答:解:A、可以折叠成一个正方体;B、是“凹”字格,故不能折叠成一个正方体;C、折叠后有两个面重合,缺少一个底面,所以也不能折叠成一个正方体;D、是“田”字格,故不能折叠成一个正方体.故选A.点评:本题考查了展开图折叠成几何体.注意只要有“田”、“凹”字格的展开图都不是正方体的表面展开图.4.(4分)(•温州)下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,11考点:三角形三边关系分析:看哪个选项中两条较小的边的和不大于最大的边即可.解答:解:A、因为1+2<4,所以本组数不能构成三角形.故本选项错误;B、因为4+5=9,所以本组数不能构成三角形.故本选项错误;C、因为9﹣4<5<8+4,所以本组数可以构成三角形.故本选项正确;D、因为5+5<11,所以本组数不能构成三角形.故本选项错误;故选C.点评:本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,只要满足两短边的和大于最长的边,就可以构成三角形.5.(4分)(•温州)若分式的值为0,则x的值是()A.x=3 B.x=0 C.x=﹣3 D.x=﹣4考点:分式的值为零的条件.分析:根据分式值为零的条件可得x﹣3=0,且x+4≠0,再解即可.解答:解:由题意得:x﹣3=0,且x+4≠0,解得:x=3,故选:A.点评:此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.6.(4分)(•温州)已知点P(1,﹣3)在反比例函数y=(k≠0)的图象上,则k的值是()A.3B.﹣3 C.D.﹣考点:反比例函数图象上点的坐标特征.分析:把点P(1,﹣3)代入反比例函数y=,求出k的值即可.解答:解:∵点P(1,﹣3)在反比例函数y=(k≠0)的图象上,∴﹣3=,解得k=﹣3.故选B.点评:本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.7.(4分)(•温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()A.B.C.D.考点:垂径定理;勾股定理分析:根据垂径定理可得AC=BC=AB,在Rt△OBC中可求出OB.解答:解:∵OC⊥弦AB于点C,∴AC=BC=AB,在Rt△OBC中,OB==.故选B.点评:本题考查了垂径定理及勾股定理的知识,解答本题的关键是熟练掌握垂径定理的内容.8.(4分)(•温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是()A.B.C.D.考点:锐角三角函数的定义分析:利用正弦函数的定义即可直接求解.解答:解:sinA==.故选C.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.9.(4分)(•温州)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是()A.4.5 B.8C.10.5 D.14考点:平行线分线段成比例.分析:根据平行线分线段成比例定理列式进行计算即可得解.解答:解:∵DE∥BC,∴=,即=,解得EC=8.故选B.点评:本题考查了平行线分线段成比例定理,找准对应关系是解题的关键.10.(4分)(•温州)在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作,如图所示.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是()A.B.C.D.考点:圆的认识分析:首先根据AB、AC的长求得S1+S3和S2+S4的值,然后两值相减即可求得结论.解答:解:∵AB=4,AC=2,∴S1+S3=2π,S2+S4=,∵S1﹣S2=,∴(S1+S3)﹣(S2+S4)=(S1﹣S2)+(S3﹣S4)=π∴S3﹣S4=π,故选D.点评:本题考查了圆的认识,解题的关键是正确的表示出S1+S3和S2+S4的值.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)(•温州)因式分解:m2﹣5m=m(m﹣5).考点:因式分解-提公因式法.分析:先确定公因式m,然后提取分解.解答:解:m2﹣5m=m(m﹣5).故答案为:m(m﹣5).点评:此题考查了提公因式法分解因式,关键是确定公因式m.12.(5分)(•温州)在演唱比赛中,5位评委给一位歌手的打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均得分是8分.考点:算术平均数.分析:根据算术平均数的计算公式,先求出这5个数的和,再除以5即可.解答:解:根据题意得:(8.2+8.3+7.8+7.7+8.0)÷5=8(分);故答案为:8.点评:此题考查了算术平均数,用到的知识点是算术平均数的计算公式,熟记公式是解决本题的关键.13.(5分)(•温州)如图,直线a,b被直线c所截,若a∥b,∠1=40°,∠2=70°,则∠3=110度.考点:平行线的性质;三角形内角和定理.分根据两直线平行,内错角相等求出∠4,再根据对顶角相等解答.析:解答:解:∵a∥b,∠1=40°,∴∠4=∠1=40°,∴∠3=∠2+∠4=70°+40°=110°.故答案为:110.点评:本题考查了平行线的性质,对顶角相等的性质,是基础题,熟记性质是解题的关键.14.(5分)(•温州)方程x2﹣2x﹣1=0的解是x1=1+,x2=1﹣.考点:解一元二次方程-配方法.分析:首先把常数项2移项后,然后在左右两边同时加上一次项系数﹣2的一半的平方,然后开方即可求得答案.解答:解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴x2﹣2x+1=2,∴(x﹣1)2=2,∴x=1±,∴原方程的解为:x1=1+,x2=1﹣.故答案为:x1=1+,x2=1﹣.点评:此题考查了配方法解一元二次方程.解题时注意配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.15.(5分)(•温州)如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(﹣2,0),(﹣1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A′B′C′(A和A′,B和B′,C和C′分别是对应顶点),直线y=x+b经过点A,C′,则点C′的坐标是(1,3).考点:一次函数图象上点的坐标特征;坐标与图形变化-对称.分根据轴对称的性质可得OB=OB′,然后求出AB′,再根据直线y=x+b可得析:AB′=B′C′,然后写出点C′的坐标即可.解答:解:∵A(﹣2,0),B(﹣1,0),∴AO=2,OB=1,∵△A′B′C′和△ABC关于y轴对称,∴OB=OB′=1,∴AB′=AO+OB′=2+1=3,∵直线y=x+b经过点A,C′,∴AB′=B′C′=3,∴点C′的坐标为(1,3).故答案为:(1,3).点评:本题考查了一次函数图象上点的坐标特征,坐标与图形变化﹣对称,根据直线解析式的k值等于1得到AB′=B′C′是解本题的关键.16.(5分)(•温州)一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线上.木工师傅想了一个巧妙的办法,他测量了PQ与圆洞的切点K到点B的距离及相关数据(单位:cm),从点N沿折线NF﹣FM(NF∥BC,FM∥AB)切割,如图1所示.图2中的矩形EFGH是切割后的两块木板拼接成符合要求的矩形桌面示意图(不重叠,无缝隙,不记损耗),则CN,AM的长分别是18cm、31cm.考点:圆的综合题分析:如图,延长OK交线段AB于点M′,延长PQ交BC于点G,交FN于点N′,设圆孔半径为r.在Rt△KBG中,根据勾股定理,得r=16(cm).根据题意知,圆心O在矩形EFGH的对角线上,则KN′=AB=42cm,OM′=KM′+r=CB=65cm.则根据图中相关线段间的和差关系求得CN=QG﹣QN′=44﹣26=18(cm),AM=BC﹣PD﹣KM′=130﹣50﹣49=31(cm).解答:解:如图,延长OK交线段AB于点M′,延长PQ交BC于点G,交FN于点N′.设圆孔半径为r.在Rt△KBG中,根据勾股定理,得BG2+KG2=BK2,即(130﹣50)2+(44+r)2=1002,解得,r=16(cm).根据题意知,圆心O在矩形EFGH的对角线上,则KN′=AB=42cm,OM′=KM′+r=CB=65cm.∴QN′=KN′﹣KQ=42﹣16=26(cm),KM′=49(cm),∴CN=QG﹣QN′=44﹣26=18(cm),∴AM=BC﹣PD﹣KM′=130﹣50﹣49=31(cm),综上所述,CN,AM的长分别是18cm、31cm.故填:18cm、31cm.点评:本题以改造矩形桌面为载体,让学生在问题解决过程中,考查了矩形、直角三角形及圆等相关知识,积累了将实际问题转化为数学问题经验,渗透了图形变换思想,体现了数学思想方法在现实问题中的应用价值.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明,演算步骤或证明过程)17.(10分)(•温州)(1)计算:+()+()0(2)化简:(1+a)(1﹣a)+a(a﹣3)考点:整式的混合运算;实数的运算;零指数幂.专题:计算题.分析:(1)原式第一项化为最简二次根式,第二项去括号,最后一项利用零指数幂法则计算,合并即可得到结果;(2)原式第一项利用平方差公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果.解答:解:(1)原式=2+﹣1+1=3;(2)原式=1﹣a2+a2﹣3a=1﹣3a.点评:此题考查了整式的混合运算,以及实数的运算,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.18.(8分)(•温州)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.考点:全等三角形的判定与性质;角平分线的性质;含30度角的直角三角形.分析:(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可;(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.解(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,答:∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.点评:本题考查了全等三角形的判定,角平分线性质,含30度角的直角三角形性质的应用,注意:角平分线上的点到角两边的距离相等.19.(8分)(•温州)如图,在方格纸中,△ABC的三个顶点和点P都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.(1)将△ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图;(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示意图.考点:作图-旋转变换;作图-平移变换.专题:图表型.分析:(1)根据网格结构,把△ABC向右平移后可使点P为三角形的内部的三个格点中的任意一个;(2)把△ABC绕点C顺时针旋转90°即可使点P在三角形内部.解答:解:(1)平移后的三角形如图所示;(2)如图所示,旋转后的三角形如图所示.点评:本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构是解题的关键.20.(10分)(•温州)如图,抛物线y=a(x﹣1)2+4与x轴交于点A,B,与y轴交于点C,过点C作CD∥x轴交抛物线的对称轴于点D,连接BD,已知点A的坐标为(﹣1,0)(1)求该抛物线的解析式;(2)求梯形COBD的面积.考点:待定系数法求二次函数解析式;二次函数的性质;抛物线与x轴的交点.专题:计算题.分析:(1)将A坐标代入抛物线解析式,求出a的值,即可确定出解析式;(2)抛物线解析式令x=0求出y的值,求出OC的长,根据对称轴求出CD的长,令y=0求出x的值,确定出OB的长,利用梯形面积公式即可求出梯形COBD的面积.解答:解:(1)将A(﹣1,0)代入y=a(x﹣1)2+4中,得:0=4a+4,解得:a=﹣1,则抛物线解析式为y=﹣(x﹣1)2+4;(2)对于抛物线解析式,令x=0,得到y=3,即OC=3,∵抛物线解析式为y=﹣(x﹣1)2+4的对称轴为直线x=1,∴CD=1,∵A(﹣1,0),∴B(3,0),即OB=3,则S梯形OCDA==6.点评:此题考查了利用待定系数法求二次函数解析式,二次函数的性质,以及二次函数与x 轴的交点,熟练掌握待定系数法是解本题的关键.21.(10分)(•温州)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?考点:概率公式;一元一次不等式的应用.分析:(1)根据概率公式,求摸到黄球的概率,即用黄球的个数除以小球总个数即可得出得到黄球的概率;(2)假设取走了x个黑球,则放入x个黄球,进而利用概率公式得出不等式,求出即可.解答:解:(1)∵一个不透明的袋中装有5个黄球,13个黑球和22个红球,∴摸出一个球摸到黄球的概率为:=;(2)设取走x个黑球,则放入x个黄球,由题意,得≥,解得:x≥,答:至少取走了9个黑球.点评:此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.22.(10分)(•温州)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.考点:圆周角定理;等腰三角形的判定与性质;勾股定理.分析:(1)由AB为⊙O的直径,易证得AC⊥BD,又由DC=CB,根据线段垂直平分线的性质,可证得AD=AB,即可得:∠B=∠D;(2)首先设BC=x,则AC=x﹣2,由在Rt△ABC中,AC2+BC2=AB2,可得方程:(x﹣2)2+x2=42,解此方程即可求得CB的长,继而求得CE的长.解答:(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴AC⊥BC,∵DC=CB,∴AD=AB,∴∠B=∠D;(2)解:设BC=x,则AC=x﹣2,在Rt△ABC中,AC2+BC2=AB2,∴(x﹣2)2+x2=42,解得:x1=1+,x2=1﹣(舍去),∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴CD=CE,∵CD=CB,∴CE=CB=1+.点评:此题考查了圆周角定理、线段垂直平分线的性质、等腰三角形的判定与性质以及勾股定理等知识.此题难度适中,注意掌握方程思想与数形结合思想的应用.23.(10分)(•温州)某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图,趣题巧解,数学应用,魔方复原,每个项目得分都按一定百分比折算后记入总分,下表为甲,乙,丙三位同学得分情况(单位:分)七巧板拼图趣题巧解数学应用魔方复原甲 66 89 86 68乙 66 60 80 68丙 66 80 90 68(1)比赛后,甲猜测七巧板拼图,趣题巧解,数学应用,魔方复原这四个项目得分分别按10%,40%,20%,30%折算△记入总分,根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包含80分)的学生获一等奖,现获悉乙,丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问甲能否获得这次比赛的一等奖?考点:二元一次方程组的应用;加权平均数.分析:(1)根据求加权平均数的方法就可以直接求出甲的总分;(2)设趣题巧解所占的百分比为x,数学运用所占的百分比为y,由条件建立方程组求出其解就可以求出甲的总分而得出结论.解答:解:(1)由题意,得甲的总分为:66×10%+89×40%+86×20%+68×30%=79.8;(2)设趣题巧解所占的百分比为x,数学运用所占的百分比为y,由题意,得,解得:,∴甲的总分为:20+89×0.3+86×0.4=81.1>80,∴甲能获一等奖.点评:本题考查了列二元一次方程组解实际问题的运用,加权平均数的运用,在解答时建立方程组求出趣题巧解和数学运用的百分比是解答本题的关键.24.(14分)(•温州)如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A (6,0),B(0.8),点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴上的一动点,连接CD,DE,以CD,DE为边作▱CDEF.(1)当0<m<8时,求CE的长(用含m的代数式表示);(2)当m=3时,是否存在点D,使▱CDEF的顶点F恰好落在y轴上?若存在,求出点D 的坐标;若不存在,请说明理由;(3)点D在整个运动过程中,若存在唯一的位置,使得▱CDEF为矩形,请求出所有满足条件的m的值.考点:相似形综合题.分析:(1)首先证明△BCE∽△BAO,根据相似三角形的对应边的比相等即可求得;(2)证明△EDA∽△BOA,根据相似三角形的对应边的比相等即可求得;(3)分m>0,m=0和m<0三种情况进行讨论,当m=0时,一定不成立,当m>0时,分0<m<8和m>8两种情况,利用三角函数的定义即可求解.当m<0时,分点E与点A重合和点E与点A不重合时,两种情况进行讨论.解答:解:(1)∵A(6,0),B(0,8).∴OA=6,OB=8.∴AB=10,∵∠CEB=∠AOB=90°,又∵∠OBA=∠EBC,∴△BCE∽△BAO,∴=,即=,∴CE=﹣m;(2)∵m=3,∴BC=8﹣m=5,CE=﹣m=3.∴BE=4,∴AE=AB﹣BE=6.∵点F落在y轴上(如图2).∴DE∥BO,∴△EDA∽△BOA,∴=即=.∴OD=,∴点D的坐标为(,0).(3)取CE的中点P,过P作PG⊥y轴于点G.则CP=CE=﹣m.(Ⅰ)当m>0时,①当0<m<8时,如图3.易证∠GCP=∠BAO,∴cos∠GCP=cos∠BAO=,∴CG=CP•cos∠GCP=(﹣m)=﹣m.∴OG=OC+OG=m+﹣m=m+.根据题意得,得:OG=CP,∴m+=﹣m,解得:m=;②当m≥8时,OG>CP,显然不存在满足条件的m的值.(Ⅱ)当m=0时,即点C与原点O重合(如图4).(Ⅲ)当m<0时,①当点E与点A重合时,(如图5),易证△COA∽△AOB,∴=,即=,解得:m=﹣.②当点E与点A不重合时,(如图6).OG=OC﹣OG=﹣m﹣(﹣m)=﹣m﹣.由题意得:OG=CP,∴﹣m﹣=﹣m.解得m=﹣.综上所述,m的值是或0或﹣或﹣.点本题是相似三角形的判定于性质以及三角函数的综合应用,正确进行分类是关键.评:。

温州历年中考数学试题及答案

温州历年中考数学试题及答案

温州历年中考数学试题及答案一、选择题1.5 ÷ 0.75 = ?A. 2B. 2.5C. 3D. 4【答案】B. 2.52.已知一个长方体的长、宽、高分别为a cm、b cm、c cm,体积为V cm³,则V的值是下列哪个?A. abcB. a + b + cC. ab + bc + acD. 2(a + b + c)【答案】A. abc3.甲乙丙丁4个人手拉手围成一圈站成一排,顺时针刚好是按照年龄由大到小的顺序,甲比乙大,乙比丙大,丙比丁大,那么乙的年龄最小的可能是?A. 10岁B. 11岁C. 12岁D. 13岁【答案】C. 12岁二、填空题1.已知2x - y = 5,那么x - y = ______。

【答案】32.已知a:b = 3:4,b:c = 5:7,求a:b:c = ____:____:____。

【答案】15:20:28三、解答题1.市场上有两种品牌的可乐,甲、乙两种,其中甲品牌的售价是乙品牌售价的3/4,甲品牌每天销量是乙品牌销量的4/5。

如果一天销售了540瓶可乐,求甲、乙两种品牌各自的销售量。

【解答】设甲品牌每天销量为x瓶,则乙品牌每天销量为4x/5瓶。

根据题意,有x + 4x/5 = 540。

解得x = 300,即甲品牌销量为300瓶,乙品牌销量为4x/5 = 240瓶。

2.某商场举办特卖活动,若购买总额满300元可以打8折,满500元可以打7折,满800元可以打6折。

小明在这次活动中购买了一台电视机,原价是3000元,求小明实际支付的金额。

【解答】小明购买了一台电视机,原价是3000元。

根据购买总额的情况,有以下几种情况:- 若小明购买总额不满300元,则按原价3000元计算,小明实际支付的金额为3000元。

- 若小明购买总额满300元但不满500元,则按照打8折计算,小明实际支付的金额为3000 * 0.8 = 2400元。

- 若小明购买总额满500元但不满800元,则按照打7折计算,小明实际支付的金额为3000 * 0.7 = 2100元。

2010年浙江省温州市中考数学试题及答案

2010年浙江省温州市中考数学试题及答案

2010年浙江省温州市中考数学试卷卷 Ⅰ一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.给出四个数0,2,一21,0.3其中最小的是( ) A .0 B .2 C .一21 D .0.3 2.把不等式x+2>4的解表示在数轴上,正确的是( )3.计算42a a 的结果是( )A .a 2B .a 6C .a 8D .a 164.某班学生参加课外兴趣小组情况的统计图如图所示,则参加人数最多的课外兴趣小组是( )A .书法B .象棋C .体育D .美术5.直线y=x+3与y 轴的交点坐标是( )A .(0,3)B .(0,1)C .(3,O)D .(1,0)6.如图,已知一商场自动扶梯的长z 为10米,该自动扶梯到达的高度h 为6米,自动扶梯与地面所成的角为θ,则tan θ的值等于( ) A.43 B.34 C.53 D.547.下列命题中,属于假命题的是( )A .三角形三个内角的和等于l80°B .两直线平行,同位角相等C .矩形的对角线相等D .相等的角是对顶角.8.如图,AC ;BD 是矩形ABCD 的对角线,过点D 作DE//AC 交BC 的延长线于E ,则图中与 △ABC 全等的三角形共有( )A .1个B .2个C .3个D .4个9.如图,在△ABC 中,AB=BC=2,以AB 为直径的⊙0与BC 相切于点B ,则AC 等于( )A .2B .3 c .22 D .2310.用若干根相同的火柴棒首尾顺次相接围成一个梯形(提供的火柴棒全部用完),下列根数A .5B .6C .7D .8卷 Ⅱ二、填空题(本题有6小题。

每小题5分,共30分)11.分解因式:m 2—2m= .12.在“情系玉树献爱心”捐款活动中,某校九(1)班同学人人拿出自己的零花钱,现将同学们的捐款数整理成统计表,则该班同学平均每人捐款 元. 13.当x= 时,分式13-+x x 的值等于2.14.若一个反比例函数的图象位于二、四象限,则它的解析式可能是 .(写出一个即可)15.某班级从文化用品市场购买了签字笔和圆珠笔共l5支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了 支.16.勾股定理有着悠久的历史,它曾引起很多人的兴趣.l955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在右图的勾股图中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQR 使得∠R=90°,点H 在边QR 上,点D ,E 在边PR 上,点G ,F 在边_PQ 上,那么△PQR 的周长等于 .三、解答题(本题有8小题,共80分)17.(本题l0分)(1)计算:()1021320108-⎪⎭⎫ ⎝⎛--+.(2)先化简,再求值:(a+6)(a-b)+a(2b-a),其中n=1.5,b=-2.18.(本题6分)由3个相同的小立方块搭成的几何体如图所示,请画出它的主视图和俯视图.19.(本题8分)2010年上海世博会某展览馆展厅东面有两个入口A ,B ,南面j 西面、北面各有一个出口,示意图如图所示.小华任选一个入口进入展览大厅,参观结束后任选一个出口离开.(1)她从进入到离开共有多少种可能的结果?(要求画出树状图)(2)她从入口A 进入展厅并从北出口或西出口离开的概率是多少?20.(本题8分)如图,在正方形ABCD 中,AB=4,0为对角线BD 的中点,分别以OB ,OD 为直径作⊙1O ,⊙2O 。

最新温州市中考数学试题及答案(word版)[1]

最新温州市中考数学试题及答案(word版)[1]

2011年温州市初中学业考试数 学参考公式:)0(2≠++=a c bx ax y 的顶点坐标是)44,2(2ab ac a b -- 卷 Ⅰ一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分) 1、计算:2)1(+-的结果是( )A 、-1B 、1C 、-3D 、32、某校开展形式多样的“阳光体育”活动,七(3)班同学积极响应,全班参与。

晶晶绘制了该班同学参加体育项目情况的扇形统计图(如图所示),由图可知参加人数最多的体育项目是( )A 、排球B 、乒乓球C 、篮球D 、跳绳3、如图所示的物体有两个紧靠在一起的圆柱体组成,它的主视图...是( )4、已知点P (-1,4)在反比例函数)0(≠=k xky 的图像上,则k 的值是( ) A 、41-B 、41C 、4D 、-45、如图,在△ABC 中,∠C=90°,AB=13,BC=5,则sinA 的值是( ) A 、135 B 、1312 C 、125 D 、5136、如图,在矩形ABCD 中,对角线AC ,BD 交与点O 。

已知∠AOB=60°,AC=16,则图中长度为8的线段有( )A 、2条B 、4条C 、5条D 、6条7、为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与。

现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5∽6.5组别的频率是( ) A 、0.1 B 、0.2 C 、0.3 D 、0.48、已知线段AB=7cm ,现以点A 为圆心,2cm 为半径画⊙A ;再以点B 为圆心,3cm 为半径画⊙B ,则⊙A 和⊙B 的位置关系( )A 、内含B 、相交C 、外切D 、外离9、已知二次函数的图像)30(≤≤x 如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )A 、有最小值0,有最大值3B 、有最小值-1,有最大值0C 、有最小值-1,有最大值3D 、有最小值-1,无最大值 10、如图,O 是正方形ABCD 的对角线BD 上一点,⊙O 与边AB,BC 都相切,点E,F 分别在AD,DC 上,现将△DEF 沿着EF 对折,折痕EF 与⊙O 相切,此时点D 恰好落在圆心O 处。

(精品中考卷)浙江省温州市中考数学真题及答案

(精品中考卷)浙江省温州市中考数学真题及答案

2022年浙江省温州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)计算9(3)+-的结果是( ) A .6B .6-C .3D .3-2.(4分)某物体如图所示,它的主视图是( )A .B .C .D .3.(4分)某校参加课外兴趣小组的学生人数统计图如图所示.若信息技术小组有60人,则劳动实践小组有( ) A .75人B .90人C .108人D .150人4.(4分)化简3()()a b -⋅-的结果是( ) A .3ab -B .3abC .3a b -D .3a b5.(4分)9张背面相同的卡片,正面分别写有不同的从1到9的一个自然数.现将卡片背面朝上,从中任意抽出一张,正面的数是偶数的概率为( ) A .19B .29C .49 D .596.(4分)若关于x 的方程260x x c ++=有两个相等的实数根,则c 的值是( ) A .36B .36-C .9D .9-7.(4分)小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s 米,所经过的时间为t 分钟.下列选项中的图象,能近似刻画s 与t 之间关系的是( )A .B .C .D .8.(4分)如图,AB ,AC 是O 的两条弦,OD AB ⊥于点D ,OE AC ⊥于点E ,连结OB ,OC .若130DOE ∠=︒,则BOC ∠的度数为( )A .95︒B .100︒C .105︒D .130︒9.(4分)已知点(,2)A a ,(,2)B b ,(,7)C c 都在抛物线2(1)2y x =--上,点A 在点B 左侧,下列选项正确的是( ) A .若0c <,则a c b << B .若0c <,则a b c << C .若0c >,则a c b <<D .若0c >,则a b c <<10.(4分)如图,在Rt ABC ∆中,90ACB ∠=︒,以其三边为边向外作正方形,连结CF ,作GM CF ⊥于点M ,BJ GM ⊥于点J ,AK BJ ⊥于点K ,交CF 于点L .若正方形ABGF与正方形JKLM 的面积之比为5,CE =,则CH 的长为( )A B C.D10二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:22m n-= .12.(5分)某校5个小组在一次植树活动中植树株数的统计图如图所示,则平均每组植树 株.13.(5分)计算:22x xy xy xxy xy+-+= .14.(5分)若扇形的圆心角为120︒,半径为32,则它的弧长为 .15.(5分)如图,在菱形ABCD中,1AB=,60BAD∠=︒.在其内部作形状、大小都相同的菱形AENH和菱形CGMF,使点E,F,G,H分别在边AB,BC,CD,DA上,点M,N在对角线AC上.若3AE BE=,则MN的长为 .16.(5分)如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M在旋转中心O的正下方.某一时刻,太阳光线恰好垂直照射叶片OA,OB,此时各叶片影子在点M 右侧成线段CD,测得8.5MC m=,13CD m=,垂直于地面的木棒EF与影子FG的比为2:3,则点O,M之间的距离等于 米.转动时,叶片外端离地面的最大高度等于 米.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1221(3)3||9-+-+--.(2)解不等式9273x x -+…,并把解集表示在数轴上.18.(8分)如图,在26⨯的方格纸中,已知格点P ,请按要求画格点图形(顶点均在格点上).(1)在图1中画一个锐角三角形,使P 为其中一边的中点,再画出该三角形向右平移2个单位后的图形.(2)在图2中画一个以P 为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P 旋转180︒后的图形.19.(8分)为了解某校400名学生在校午餐所需的时间,抽查了20名学生在校午餐所花的时间,由图示分组信息得:A ,C ,B ,B ,C ,C ,C ,A ,B ,C ,C ,C ,D ,B ,C ,C ,C ,E ,C ,C .分组信息A 组:510x <…B 组:1015x <…C 组:1520x <…D 组:2025x <…E 组:2530x <…注:x (分钟)为午餐时间!某校被抽查的20名学生在校午餐所花时间的频数表组别 划记 频数 A 2 B 4 C D E 合计20(1)请填写频数表,并估计这400名学生午餐所花时间在C 组的人数.(2)在既考虑学生午餐用时需求,又考虑食堂运行效率的情况下,校方准备在15分钟,20分钟,25分钟,30分钟中选择一个作为午餐时间,你认为应选择几分钟为宜?说明理由.20.(8分)如图,BD 是ABC ∆的角平分线,//DE BC ,交AB 于点E . (1)求证:EBD EDB ∠=∠.(2)当AB AC =时,请判断CD 与ED 的大小关系,并说明理由.21.(10分)已知反比例函数(0)ky k x=≠的图象的一支如图所示,它经过点(3,2)-. (1)求这个反比例函数的表达式,并补画该函数图象的另一支. (2)求当5y …,且0y ≠时自变量x 的取值范围.22.(10分)如图,在ABC ∆中,AD BC ⊥于点D ,E ,F 分别是AC ,AB 的中点,O 是DF 的中点,EO 的延长线交线段BD 于点G ,连结DE ,EF ,FG . (1)求证:四边形DEFG 是平行四边形. (2)当5AD =,5tan 2EDC ∠=时,求FG 的长.23.(12分)根据以下素材,探索完成任务.如何设计拱桥景观灯的悬挂方案?素材1 图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽20m ,拱顶离水面5m .据调查,该河段水位在此基础上再涨1.8m 达到最高.素材2 为迎佳节,拟在图1桥洞前面的桥拱上悬挂40cm 长的灯笼,如图3.为了安全,灯笼底部距离水面不小于1m ;为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6m ;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.问题解决任务1 确定桥拱形状在图2中建立合适的直角坐标系,求抛物线的函数表达式.任务2 探究悬挂范围在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.任务3 拟定设计方案给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.24.(14分)如图1,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆于点D ,BE CD ⊥,交CD 延长线于点E ,交半圆于点F ,已知5BC =,3BE =,点P ,Q 分别在线段AB ,BE 上(不与端点重合),且满足54AP BQ =.设BQ x =,CP y =. (1)求半圆O 的半径. (2)求y 关于x 的函数表达式.(3)如图2,过点P 作PR CE ⊥于点R ,连结PQ ,RQ . ①当PQR ∆为直角三角形时,求x 的值.②作点F 关于QR 的对称点F ',当点F '落在BC 上时,求CF BF ''的值.2022年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)+-的结果是( )1.(4分)计算9(3)A.6B.6-C.3D.3-【分析】根据有理数的加法法则计算即可.+-【解答】解:9(3)=+-(93)=.6故选:A.【点评】本题考查了有理数的加法,掌握绝对值不相等的异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值是解题的关键.2.(4分)某物体如图所示,它的主视图是( )A.B.C.D.【分析】根据主视图的定义和画法进行判断即可.【解答】解:某物体如图所示,它的主视图是:故选:D.【点评】本题考查简单几何体的主视图,主视图就是从正面看物体所得到的图形.3.(4分)某校参加课外兴趣小组的学生人数统计图如图所示.若信息技术小组有60人,则劳动实践小组有( ) A .75人B .90人C .108人D .150人【分析】根据信息技术的人数和所占的百分比可以计算出本次参加兴趣小组的总人数,然后根据劳动实践所占的百分比,即可计算出劳动实践小组的人数. 【解答】解:本次参加课外兴趣小组的人数为:6020%300÷=, 劳动实践小组有:30030%90⨯=(人), 故选:B .【点评】本题考查扇形统计图,解答本题的关键是明确题意,求出本次参加兴趣小组的总人数.4.(4分)化简3()()a b -⋅-的结果是( ) A .3ab -B .3abC .3a b -D .3a b【分析】先化简乘方,再根据单项式乘单项式的法则计算即可. 【解答】解:原式3()a b =-⋅- 3a b =.故选:D .【点评】本题考查单项式乘单项式,掌握单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式是解题的关键.5.(4分)9张背面相同的卡片,正面分别写有不同的从1到9的一个自然数.现将卡片背面朝上,从中任意抽出一张,正面的数是偶数的概率为( ) A .19B .29C .49 D .59【分析】让正面的数字是偶数的情况数除以总情况数9即为所求的概率. 【解答】解:因为1到9共9个自然数.是偶数的有4个, 所以正面的数是偶数的概率为49.故选:C .【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.6.(4分)若关于x 的方程260x x c ++=有两个相等的实数根,则c 的值是( ) A .36B .36-C .9D .9-【分析】方程260x x c ++=有两个相等的实数根,可知△2640c =-=,然后即可计算出c 的值.【解答】解: 方程260x x c ++=有两个相等的实数根, ∴△2640c =-=,解得9c =, 故选:C .【点评】本题考查根的判别式,解答本题的关键是明确一元二次方程有两个相等的实数根时△0=.7.(4分)小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s 米,所经过的时间为t 分钟.下列选项中的图象,能近似刻画s 与t 之间关系的是( )A .B .C .D .【分析】根据函数图象可知,小聪从家出发,则图象从原点开始,在10~20分钟休息可解答.【解答】解:由题意可知:小聪某次从家出发,s 米表示他离家的路程,所以C ,D 错误; 小聪在凉亭休息10分钟,所以A 正确,B 错误. 故选:A .【点评】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.8.(4分)如图,AB ,AC 是O 的两条弦,OD AB ⊥于点D ,OE AC ⊥于点E ,连结OB ,OC .若130DOE ∠=︒,则BOC ∠的度数为( )A .95︒B .100︒C .105︒D .130︒【分析】根据四边形的内角和等于360︒计算可得50BAC ∠=︒,再根据圆周角定理得到2BOC BAC ∠=∠,进而可以得到答案.【解答】解:OD AB ⊥ ,OE AC ⊥, 90ADO ∴∠=︒,90AEO ∠=︒, 130DOE ∠=︒ ,360909013050BAC ∴∠=︒-︒-︒-︒=︒, 2100BOC BAC ∴∠=∠=︒,故选:B .【点评】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.(4分)已知点(,2)A a ,(,2)B b ,(,7)C c 都在抛物线2(1)2y x =--上,点A 在点B 左侧,下列选项正确的是( ) A .若0c <,则a c b << B .若0c <,则a b c << C .若0c >,则a c b <<D .若0c >,则a b c <<【分析】根据题目中的抛物线和二次函数的性质,可以判断当0c <时,a 、b 、c 的大小关系或当0c >时,a 、b 、c 的大小关系. 【解答】解: 抛物线2(1)2y x =--,∴该抛物线的对称轴为直线1x =,抛物线开口向上,当1x >时,y 随x 的增大而增大,当1x <时,y 随x 的增大而减小,点(,2)A a ,(,2)B b ,(,7)C c 都在抛物线2(1)2y x =--上,点A 在点B 左侧, ∴若0c <,则c a b <<,故选项A 、B 均不符合题意;若0c >,则a b c <<,故选项C 不符合题意,选项D 符合题意; 故选:D .【点评】本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.10.(4分)如图,在Rt ABC ∆中,90ACB ∠=︒,以其三边为边向外作正方形,连结CF ,作GM CF ⊥于点M ,BJ GM ⊥于点J ,AK BJ ⊥于点K ,交CF 于点L .若正方形ABGF与正方形JKLM 的面积之比为5,CE =,则CH 的长为( )AB C .D 【分析】设CF 交AB 于P ,过C 作CN AB ⊥于N ,设正方形JKLM 边长为m ,根据正方形ABGF 与正方形JKLM 的面积之比为5,得AF AB ==,证明()AFL FGM AAS ∆≅∆,可得AL FM =,设AL FM x ==,在Rt AFL ∆中,222())x x m ++=,可解得x m =,有AL FM m ==,2FL m =,从而可得AP =,52FP m =,BP =P 为AB 中点,CP AP BP ===,由CPN FPA ∆∆∽,得CN m =,12PN m =,即得AN =,而tan BC CN BAC AC AN ∠===,又AEC BCH ∆∆∽,得BC CHAC CE =,即=CH =.【解答】解:设CF 交AB 于P ,过C 作CN AB ⊥于N ,如图:设正方形JKLM 边长为m , ∴正方形JKLM 面积为2m ,正方形ABGF 与正方形JKLM 的面积之比为5, ∴正方形ABGF 的面积为25m ,AF AB ∴==,由已知可得:90AFL MFG MGF ∠=︒-∠=∠,90ALF FMG ∠=︒=∠,AF GF =, ()AFL FGM AAS ∴∆≅∆,AL FM ∴=,设AL FM x ==,则FL FM ML x m =+=+, 在Rt AFL ∆中,222AL FL AF +=,222())x x m ∴++=, 解得x m =或2x m =-(舍去), AL FM m ∴==,2FL m =,1tan 22AP AL m AFL AF FL m ∠==== ,∴12=,AP ∴=52FP m ∴===,BP AB AP =-==, AP BP ∴=,即P 为AB 中点, 90ACB ∠=︒ ,CP AP BP ∴===CPN APF ∠=∠ ,90CNP FAP ∠=︒=∠, CPN FPA ∴∆∆∽,∴CP CN PNFP AF AP ==== CN m ∴=,12PN m =,AN AP PN ∴=+=,tan BC CNBAC AC AN∴∠====AEC ∆ 和BCH ∆是等腰直角三角形, AEC BCH ∴∆∆∽,∴BC CHAC CE=,CE =+∴=,CH ∴=故选:C .【点评】本题考查正方形性质及应用,涉及全等三角形判定与性质,相似三角形判定与性质,勾股定理等知识,解题的关键是用含m 的代数式表示相关线段的长度. 二、填空题(本题有6小题,每小题5分,共30分) 11.(5分)分解因式:22m n -= ()()m n m n +- . 【分析】直接利用平方差公式分解因式即可. 【解答】解:22()()m n m n m n -=+-, 故答案为:()()m n m n +-.【点评】此题主要考查了平方差公式分解因式,熟记公式22()()a b a b a b -=+-是解题关键.12.(5分)某校5个小组在一次植树活动中植树株数的统计图如图所示,则平均每组植树 5 株.【分析】根据加权平均数公式即可解决问题.【解答】解:观察图形可知:1(43747)55x =++++=,∴平均每组植树5株.故答案为:5.【点评】本题考查了加权平均数,解决本题的关键是掌握加权平均数公式.13.(5分)计算:22x xy xy x xy xy+-+= 2 .【分析】将分式化简后再进行加法运算即可. 【解答】解:原式()()x x y x y x xy xy+-=+, x y y x y y +-=+, 2y y=, 2=. 故答案为:2.【点评】本题主要考查了分式的加法运算,熟记运算法则是解题的关键. 14.(5分)若扇形的圆心角为120︒,半径为32,则它的弧长为 π . 【分析】根据题目中的数据和弧长公式,可以计算出该扇形的弧长. 【解答】解: 扇形的圆心角为120︒,半径为32, ∴它的弧长为:31202180ππ⨯=,故答案为:π.【点评】本题考查弧长的计算,解答本题的关键是明确弧长的计算公式180n rl π=. 15.(5分)如图,在菱形ABCD 中,1AB =,60BAD ∠=︒.在其内部作形状、大小都相同的菱形AENH 和菱形CGMF ,使点E ,F ,G ,H 分别在边AB ,BC ,CD ,DA 上,点M ,N 在对角线AC 上.若3AE BE =,则MN 的长为【分析】根据菱形的性质和锐角三角函数,可以求得AC 、AM 和MN 的长,然后即可计算出MN 的长.【解答】解:连接DB 交AC 于点O ,作MI AB ⊥于点I ,作FJ AB ⊥交AB 的延长线于点J ,如图所示,四边形ABCD 是菱形,60BAD ∠=︒,1AB =, 1AB BC CD DA ∴====,30BAC ∠=︒,AC BD ⊥,ABD ∆ 是等边三角形, 12OD ∴=,AO ∴===,2AC AO ∴== 3AE BE = ,34AE ∴=,14BE =, 菱形AENH 和菱形CGMF 大小相同, 14BE BF ∴==,60FBJ ∠=︒,1sin 604FJ BF ∴=⋅︒==,MI FJ ∴==,sin 30MI AM ∴===︒,同理可得,CN =MN AC AM CN ∴=--=,.【点评】本题考查菱形的性质、等边三角形的判定与性质,解答本题的关键是作出合适的辅助线,求出AC、AM和MN的长.16.(5分)如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M在旋转中心O的正下方.某一时刻,太阳光线恰好垂直照射叶片OA,OB,此时各叶片影子在点M右侧成线段CD,测得8.5MC m=,13CD m=,垂直于地面的木棒EF与影子FG的比为2:3,则点O,M之间的距离等于 10 米.转动时,叶片外端离地面的最大高度等于 米.【分析】作辅助线,构建直角CND∆,证明HMC EFG∆∆∽,根据垂直于地面的木棒EF与影子FG的比为2:3,列比例式可得HM的长,由三角函数的定义可得CN的长,从而得OA OB==【解答】解:如图,设AC与OM交于点H,过点C作CN BD⊥于N,//HC EG,HCM EGF∴∠=∠,90CMH EFG∠=∠=︒,HMC EFG∴∆∆∽,∴23HM EFCM FG==,即28.53HM=,173HM∴=,//BD EG,BDC EGF∴∠=∠,tan tanBDC EGF∴∠=∠,∴23CN EF DN FG ==,设2CN x =,3DN x =,则CD =,∴13=,x ∴=,AB CN ∴==,12OA OB AB ∴=== 在Rt AHO ∆中,AHO CHM ∠=∠ ,sin AO AHO OH ∴∠==∴= 133OH ∴=, 13171033OM OH HM ∴=+=+=, 以点O 为圆心,OA 的长为半径作圆,当OB 与OM 共线时,叶片外端离地面的高度最大,其最大高度等于(10米.故答案为:10,(10.【点评】根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1221(3)3||9-+-+--.(2)解不等式9273x x -+…,并把解集表示在数轴上.【分析】(1)根据算术平方根、有理数的乘方、负整数指数幂和绝对值可以解答本题; (2)先解出不等式的解集,再在数轴上表示出其解集即可.【解答】解:(1221(3)3||9-+-+--113999=++- 12=;(2)9273x x -+…,移项,得:9732x x -+…, 合并同类项,得:25x …, 系数化为1,得: 2.5x …, 其解集在数轴上表示如下:.【点评】本题考查实数的运算、解一元一次不等式,解答本题的关键是明确实数运算的运算法则和解一元一次不等式的方法.18.(8分)如图,在26⨯的方格纸中,已知格点P ,请按要求画格点图形(顶点均在格点上).(1)在图1中画一个锐角三角形,使P 为其中一边的中点,再画出该三角形向右平移2个单位后的图形.(2)在图2中画一个以P 为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P 旋转180︒后的图形.【分析】(1)根据题意画出合适的图形即可,注意本题答案不唯一,主要作出的图形符合题意即可;(2)根据题意画出合适的图形即可,注意本题答案不唯一,主要作出的图形符合题意即可.【解答】解:(1)如图1中ABC ∆即为所求(答案不唯一); (2)如图2中ABC ∆即为所求(答案不唯一).【点评】本题考查作图—旋转变换、作图—平移变换,解答本题的关键是明确题意,画出相应的图形,注意不要忘记画出平移后或旋转后的图形.19.(8分)为了解某校400名学生在校午餐所需的时间,抽查了20名学生在校午餐所花的时间,由图示分组信息得:A ,C ,B ,B ,C ,C ,C ,A ,B ,C ,C ,C ,D ,B ,C ,C ,C ,E ,C ,C .分组信息A 组:510x <…B 组:1015x <…C 组:1520x <…D 组:2025x <…E 组:2530x <…注:x (分钟)为午餐时间!某校被抽查的20名学生在校午餐所花时间的频数表组别划记 频数 A 2 B 4 C 12 D E 合计20(1)请填写频数表,并估计这400名学生午餐所花时间在C 组的人数.(2)在既考虑学生午餐用时需求,又考虑食堂运行效率的情况下,校方准备在15分钟,20分钟,25分钟,30分钟中选择一个作为午餐时间,你认为应选择几分钟为宜?说明理由.【分析】(1)根据数据收集20名学生用餐时间,可得C ,D 、E 组的频数,即可完成统计表,根据样本估计总体的方法进行计算即可得答案; (2)分析每组数据的频数即可得出答案. 【解答】解:(1)频数表填写如图,12400240⨯=(名).20答:这400名学生午餐所花时间在C组的有240名.(2)①选择25分钟,有19人能按时完成用餐,占比95%,可以鼓励最后一位同学适当加快用餐速度,有利于食堂提高运行效率,②选择20分钟,有18人能按时完成用餐,占比90%,可以鼓励最后两位同学适当加快用餐速度或采用合理照顾如优先用餐等方式,以满足学生午餐用时需求,又提高食堂的运行效率.③选择30分钟,能说明所有学生都能完成用餐,但未考虑食堂的运行效率.【点评】本题主要考查了频数(率)分布表,调查数据收集的过程与方法,用样本估计总体,熟练掌握频数(率)分布表,调查数据收集的过程与方法,用样本估计总体的计算方法进行求解是解决本题的关键.20.(8分)如图,BD是ABCDE BC,交AB于点E.∆的角平分线,//∠=∠.(1)求证:EBD EDB(2)当AB AC=时,请判断CD与ED的大小关系,并说明理由.【分析】(1)利用角平分线的定义和平行线的性质可得结论;=,从而有CD BE(2)利用平行线的性质可得ADE AED∠=∠,则AD AE=,由(1)得,EBD EDB=,等量代换即可.∠=∠,可知BE DE是ABC【解答】(1)证明:BD∆的角平分线,CBD EBD∴∠=∠,,//DE BC∴∠=∠,CBD EDB∴∠=∠.EBD EDB(2)解:CD ED=,理由如下:,=AB AC∴∠=∠,C ABC,//DE BC∠=∠,ADE C∴∠=∠,AED ABC∴∠=∠,ADE AED∴=,AD AE∴=,CD BE由(1)得,EBD EDB∠=∠,∴=,BE DE∴=.CD ED【点评】本题主要考查了平行线的性质,等腰三角形的判定与性质,角平分线的定义等知识,熟练掌握平行与角平分线可推出等腰三角形是解题的关键.21.(10分)已知反比例函数0)y=≠的图象的一支如图所示,它经过点(3,2)-.(1)求这个反比例函数的表达式,并补画该函数图象的另一支.y≠时自变量x的取值范围.y…,且0(2)求当5【分析】(1)利用待定系数法求函数解析式,利用描点法补充函数图像;(2)利用数形结合思想确定关键点,从而求得相应的自变量的取值范围.【解答】解:(1)把点(3,2)-代入(0)k y k x=≠, 23k -=, 解得:6k =-,∴反比例函数的表达式为6y x=-, 补充其函数图像如下:(2)当5y =时,65x -=, 解得:65x =-, ∴当5y …,且0y ≠时,65x -…或0x >. 【点评】本题考查反比例函数,掌握待定系数法求函数解析式及反比例函数的图像性质,利用数形结合思想解题是关键.22.(10分)如图,在ABC ∆中,AD BC ⊥于点D ,E ,F 分别是AC ,AB 的中点,O 是DF 的中点,EO 的延长线交线段BD 于点G ,连结DE ,EF ,FG .(1)求证:四边形DEFG 是平行四边形.(2)当5AD =,5tan 2EDC ∠=时,求FG 的长.【分析】(1)由三角形中位线定理得//EF BC ,则EFO GDO ∠=∠,再证()OEF OGD ASA ∆≅∆,得EF GD =,然后由平行四边形的判定即可得出结论;(2)由直角三角形斜边上的中线性质得12DE AC CE ==,则C EDC ∠=∠,再由锐角三角函数定义得2CD =,然后由勾股定理得AC =,则12DE AC ==,进而由平行四边形的性质即可得出结论.【解答】(1)证明:E ,F 分别是AC ,AB 的中点, EF ∴是ABC ∆的中位线,//EF BC ∴,EFO GDO ∴∠=∠,O 是DF 的中点,OF OD ∴=,在OEF ∆和OGD ∆中,EFO GDO OF ODEOF GOD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()OEF OGD ASA ∴∆≅∆,EF GD ∴=,∴四边形DEFG 是平行四边形.(2)解:AD BC ⊥ ,90ADC ∴∠=︒,E 是AC 的中点,12DE AC CE ∴==, C EDC ∴∠=∠,5tan tan 2AD C EDC CD ∴==∠=,即552CD =, 2CD ∴=,AC ∴===,12DE AC ∴==, 由(1)可知,四边形DEFG 是平行四边形,FG DE ∴== 【点评】本题考查了平行四边形的判定与性质、全等三角形的判定与性质、三角形中位线定理、直角三角形斜边上的中线性质、等腰三角形的性质、勾股定理以及锐角三角函数定义等知识,熟练掌握平行四边形的判定与性质是解题的关键.23.(12分)根据以下素材,探索完成任务.任务2 探究悬挂范围 在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.任务3 拟定设计方案 给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.【分析】任务1:利用待定系数法可得抛物线的函数表达式;任务2:根据该河段水位再涨1.8m 达到最高,灯笼底部距离水面至少1m ,灯笼长0.4m ,计算悬挂点的纵坐标的最小值是 1.8m -;任务3:介绍两种方案:分别挂7盏和8盏.【解答】解:任务1:以拱顶为原点,建立如图1所示的直角坐标系,则顶点为(0,0),且过点(10,5)B -,设抛物线的解析式为:2y ax =,把点(10,5)B -代入得:1005a =-,120a ∴=-, ∴抛物线的函数表达式为:2120y x =-; 任务2:该河段水位再涨1.8m 达到最高,灯笼底部距离水面不小于1m ,灯笼长0.4m ,∴当悬挂点的纵坐标5 1.810.4 1.8y -+++=-…,即悬挂点的纵坐标的最小值是 1.8m -,当 1.8y =-时,21 1.820x-=-, 6x ∴=±,∴悬挂点的横坐标的取值范围是:66x -……; 任务3:方案一:如图2(坐标轴的横轴),从顶点处开始悬挂灯笼,66x-……,相邻两盏灯笼悬挂点的水平间距均为1.6m,∴若顶点一侧悬挂4盏灯笼时,1.646⨯>,若顶点一侧悬挂3盏灯笼时,1.636⨯<,∴顶点一侧最多悬挂3盏灯笼,灯笼挂满后成轴对称分布,∴共可挂7盏灯笼,∴最左边一盏灯笼的横坐标为: 1.63 4.8-⨯=-;方案二:如图3,若顶点一侧悬挂5盏灯笼时,0.81.6(51)6+⨯->,若顶点一侧悬挂4盏灯笼时,0.8 1.6(41)6+⨯-<,∴顶点一侧最多悬挂4盏灯笼,灯笼挂满后成轴对称分布,∴共可挂8盏灯笼,∴最左边一盏灯笼的横坐标为:0.8 1.63 5.6--⨯=--.【点评】本题考查了二次函数的应用,熟练掌握不同坐标系中求解析式,能把实际问题转化为抛物线是解题的关键.24.(14分)如图1,AB为半圆O的直径,C为BA延长线上一点,CD切半圆于点D,BE CD⊥,交CD延长线于点E,交半圆于点F,已知5BC=,3BE=,点P,Q分别在线段AB,BE上(不与端点重合),且满足54APBQ=.设BQ x=,CP y=.(1)求半圆O的半径.(2)求y关于x的函数表达式.(3)如图2,过点P作PR CE⊥于点R,连结PQ,RQ.①当PQR∆为直角三角形时,求x的值.②作点F关于QR的对称点F',当点F'落在BC上时,求CFBF''的值.【分析】(1)连接OD ,设半径为r ,利用COD CBE ∆∆∽,得OD CO BE CB=,代入计算即可; (2)根据CP AP AC =+,用含x 的代数式表示AP 的长,再由(1)计算求AC 的长即可;(3)①显然90PRQ ∠<︒,所以分两种情形,当90RPQ ∠=︒时,则四边形RPQE 是矩形,当90PQR ∠=︒时,过点P 作PH BE ⊥于点H ,则四边形PHER 是矩形,分别根据图形可得答案;②连接AF ,QF ',由对称可知QF QF '=,45F QR EQR '∠=∠=︒,利用三角函数表示出BF '和BF 的长度,从而解决问题.【解答】解:(1)如图1,连接OD ,设半径为r ,CD 切半圆于点D ,OD CD ∴⊥,BE CD ⊥ ,//OD BE ∴,COD CBE ∴∆∆∽, ∴OD CO BE CB =, ∴535r r -=, 解得158r =,∴半圆O 的半径为158; (2)由(1)得,1555284CA CB AB =-=-⨯=, 54AP BQ =,BQ x =, 54AP x ∴=, CP AP AC ∴=+,5544y x ∴=+; (3)①显然90PRQ ∠<︒,所以分两种情形,当90RPQ ∠=︒时,则四边形RPQE 是矩形,PR QE ∴=,333sin 544PR PC C y x =⨯==+ , ∴33344x x +=-, 97x ∴=, 当90PQR ∠=︒时,过点P 作PH BE ⊥于点H ,如图,则四边形PHER 是矩形,PH RE ∴=,EH PR =,4cos 15CR CP C y x =⋅==+ , 3PH RE x EQ ∴==-=,45EQR ERQ ∴∠=∠=︒,45PQH QPH ∴∠=︒=∠,3HQ HP x ∴==-,由EH PR =得:33(3)(3)44x x x -+-=+, 2111x ∴=, 综上,x 的值为97或2111; ②如图,连接AF ,QF ',由对称可知QF QF '=,45F QR EQR '∠=∠=︒,90BQF '∴∠=︒,4tan 3QF QF BQ B x '∴==⋅=, AB 是半圆O 的直径,90AFB ∴∠=︒,9cos 4BF AB B ∴=⋅=, ∴4934x x +=, 2728x ∴=, ∴319119CF BC BF BC BF BF BF x ''-==-=-='''. 【点评】本题是圆的综合题,主要考查了切线的性质,相似三角形的判定与性质,圆周角定理,三角函数等知识,利用三角函数表示各线段的长并运用分类讨论思想是解题的关键。

2004-2011年浙江省温州市数学中考试卷及答案(8套)

2004-2011年浙江省温州市数学中考试卷及答案(8套)

2010年南通市初中毕业、升学考试数 学一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应.....位置..上. 1. -4的倒数是 A .4B .-4C .14D .-142. 9的算术平方根是 A .3B .-3C .81D .-813. 用科学记数法表示0.000031,结果是A .3.1×10-4 B .3.1×10-5C .0.31×10-4D .31×10-64. 36x -x 的取值范围是A .2x -≥B .2x ≠-C .2x ≥D .2x ≠5. 如图,⊙O 的直径AB =4,点C 在⊙O 上,∠ABC =30°,则AC 的长是A .1B CD .26. 某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中合格品约为 A .9.5万件 B .9万件 C .9500件D .5000件7. 关于x 的方程12mx x -=的解为正实数,则m 的取值范围是A .m ≥2B .m ≤2C .m >2D .m <28. 如图,菱形ABCD 中,AB = 5,∠BCD = 120°,则对角线A(第5题)·OABCAC 的长是 A .20 B .15 C .10D .59. 如图,已知□ABCD 的对角线BD =4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为 A .4π cmB .3π cmC .2π cmD .π cm10.在平面直角坐标系xOy 中,已知点P (2,2),点Q 在y 轴上,△PQO 是等腰三角形,则满足条件的点Q 共有 A .5个B .4个C .3个D .2个二、填空题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答.题卡相应位置......上. 11.如果正比例函数y kx =的图象经过点(1,-2),那么k 的值等于 ▲ .12.若△ABC ∽△DEF , △ABC 与△DEF 的相似比为1∶2,则△ABC 与△DEF 的周长比为 ▲ . 13.分解因式:2ax ax -= ▲ .14.质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的概率为 ▲ .15.在平面直角坐标系中,已知线段MN 的两个端点的坐标分别是M (-4,-1)、N (0,1),将线段MN 平移后得到线段M ′N ′ (点M 、N 分别平移到点M ′、N ′的位置),若点M ′的坐标为 (-2,2),则点N ′的坐标为 ▲ .16.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD 做折纸游戏,他将纸片沿EF 折叠后,D 、C 两点分别落在D ′、C ′的位 置,并利用量角器量得∠EFB =65°,则∠AED ′等于 ▲ 度. 17.如图,正方形ABCD 的边长为4,点M 在边DC 上,M 、N 两点关于对角线AC 对称,若DM =1,则tan ∠ADN = ▲ . 18.设x 1、x 2 是一元二次方程x 2+4x -3=0的两个根,2x 1(x 22+5x 2-3)+a =2,则a = ▲ .(第9题)ABCDOA (第17题)BDM C··(第16题)三、解答题:本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 19.(本小题满分10分)计算:(1)203(4)(π3)2|5|-+----;(2)2293(1)69a a a a-÷-++.20.(本小题满分8分)如图,⊙O 的直径AB 垂直于弦CD ,垂足P 是OB 的中点, CD =6 cm ,求直径AB 的长.21.(本小题满分9分)如图,直线y x m =+与双曲线ky x=相交于A (2,1)、B 两点. (1)求m 及k 的值;(2)不解关于x 、y 的方程组,,y x m ky x =+⎧⎪⎨=⎪⎩直接写出点B 的坐标; (3)直线24y x m =-+经过点B 吗?请说明理由.22.(本小题满分8分)某地区随机抽取若干名八年级学生进行地理会考模拟测试,并对测试成绩(x 分)进行了统计,具体统计结果见下表:某地区八年级地理会考模拟测试成绩统计表O ADC· P (第20题)(第21题)(1)填空:①本次抽样调查共测试了▲名学生;②参加地理会考模拟测试的学生成绩的中位数落在分数段▲上;③若用扇形统计图表示统计结果,则分数段为90<x≤100的人数所对应扇形的圆心角的度数为▲;(2)该地区确定地理会考成绩60分以上(含60分)的为合格,要求合格率不低于97%.现已知本次测试得60分的学生有117人,通过计算说明本次地理会考模拟测试的合格率是否达到要求?23.(本小题满分9分)光明中学九年级(1)班开展数学实践活动,小李沿着东西方向的公路以50 m/min的速度向正东方向行走,在A处测得建筑物C在北偏东60°方向上,20min后他走到B处,测得建筑物C 在北偏西45°方向上,求建筑物C到公路AB的距离.3 1.732)24.(本小题满分8分)(1)将一批重490吨的货物分配给甲、乙两船运输.现甲、乙两船已分别运走其任务数的57、37,在已运走的货物中,甲船比乙船多运30吨.求分配给甲、乙两船的任务数各多少吨?(2)自编一道应用题,要求如下:①是路程应用题.三个数据100,25,15必须全部用到,不添加其他数据.②只要编题,不必解答.25.(本小题满分8分)如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.北北(第23题)能否由上面的已知条件证明AB ∥ED ?如果能,请给出证明;如果不能,请从下列三个条件中选择一个..合适的条件.....,添加到已知条件中,使AB ∥ED 成立,并给出证明. 供选择的三个条件(请从其中选择一个): ①AB =ED ; ②BC =EF ; ③∠ACB =∠DFE .26.(本小题满分10分)小沈准备给小陈打电话,由于保管不善,电话本上的小陈手机号码中,有两个数字已模糊不清.如果用x 、y 表示这两个看不清的数字,那么小陈的手机号码为139x 370y 580(手机号码由11个数字组成),小沈记得这11个数字之和是20的整数倍. (1)求x +y 的值;(2)求小沈一次拨对小陈手机号码的概率.27.(本小题满分12分)如图,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y . (1)求y 关于x 的函数关系式; (2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若y =m12,要使△DEF 为等腰三角形,m 的值应为多少?27.(本小题满分14分)已知抛物线y =ax2+bx +c 经过A (-4,3)、B (2,0)两点,当x =3和x =-3时,这条抛物线上对应点的纵坐标相等.经过点C (0,-2)的直线l 与x 轴平行,O 为坐标原点. (1)求直线AB 和这条抛物线的解析式;(2)以A 为圆心,AO 为半径的圆记为⊙A ,判断直线l 与⊙A 的位置关系,并说明理由;(3)设直线AB 上的点D 的横坐标为-1,P (m ,n )是抛物线y =ax2+bx +c 上的动点,当△PDO 的周长最小时,求四边形CODP 的面积.(第25题)A B C D EF2010年南通市中考数学试卷答案1、D2、A3、B4、C5、D6、A7、C8、D9、C 10、B 11、-2 12、1:2 13、ax(x-1) 14、21 15、(2,4) 16、50°17、3418、8 19、⑴4 ⑵ 3+a a20、3421、⑴ m=-1,k=2 ;⑵ (-1,-2);⑶经过点B 22、⑴ ①4000 ②80<x ≤90 ③108°; ⑵ 符合要求,合格率=5.97975.040001172171==--%>97%23、)13(50- m 24、分配给甲、乙两船的任务数分别是210吨和280吨 25、略26、⑴根据题意,设36+x+y=20k(k 为整数) 则x+y=20k-36 ∵0≤x+y ≤18 ∴0≤20k-36≤18 1.8≤k ≤2.7 ∵k 为整数 ∴k=2∴x+y=20×2-36=4 ⑵小沈一次拨对小陈手机号码的概率是51 27、解:(1)∵EF ⊥DE ,∴∠DEF =90°,∴∠BEF +∠CED =90°∵∠BEF +∠BFE =90°,∴∠BFE =∠CED 又∵∠B =∠C =90°,∴△BEF ∽△CDE ∴BE BF =CD CE ,即x y -8=mx∴y =-m 1x2+m8x ········································································ 4分 (2)若m =8,则y =-81x2+x =-81( x -4)2+2∴当x =4时,y 的值最大,y 最大=2 ················································· 7分 (3)若y =m 12,则-m 1x2+m8x =m 12∴x2-8x +12=0,解得x 1=2,x 2=6 ················································ 8分∵△DEF 为直角三角形,∴要使△DEF 为等腰三角形,只能DE =EF 又DE 2=CD 2+CE 2=m2+x2,EF 2=BE 2+BF 2=( 8-x )2+y2=( 8-x )2+2144m ∴m2+x2=( 8-x )2+2144m ,即m2+16x -64-2144m =0 当x =2时,m 2-32-2144m=0,即m 4-32m2-144=0解得m2=36或m2=-4(舍去)∵m >0,∴m =6 ········································································ 10分当x =6时,m2+32-2144m=0,即m4+32m2-144=0解得m2=-36(舍去)或m2=4∵m >0,∴m =2 ········································································ 12分28、解:(1)设直线AB 的解析式为y =px +q则⎩⎪⎨⎪⎧3=-4p +q 0=2p +q 解得⎩⎪⎨⎪⎧p =-21q =1∴直线AB 的解析式为y =-21x +1 ·················································· 2分∵当x =3和x =-3∴抛物线的对称轴为y 轴,∴b =0,∴y =ax2+c 把A (-4,3)、B (2,0)代入,得:⎩⎪⎨⎪⎧3=16a +c 0=4a +c 解得⎩⎪⎨⎪⎧a =41c =-1∴抛物线的解析式为y =41x2-1 ·················· 4分(2)∵A (-4,3),∴AO =2243+=5,即⊙A 的半径为∵经过点C (0,-2)的直线l 与x 轴平行∴直线l 的解析式为y =-2,∴点A 到直线l 的距离为5∴直线l 与⊙A 相切 ······································································ 8分 (3)把x =-1代入y =-21x +1,得y =23,∴D (-1,23) 过点P 作PH ⊥直线l 于H ,则PH =n +2,即41m2+1 又∵PO =22n m+=222141)(-m m+=41m2+1∴PH =PO ················································································ 10分 ∵DO 的长度为定值,∴当PD +PO 即PD +PH 最小时,△PDO 的周长最小 当D 、P 、H 三点在一条直线上时,PD +PH 最小 ∴点P 的横坐标为-1,代入抛物线的解析式,得n =-43∴P (-1,-43) ···································· 12分 此时四边形CODP 的面积为: S 四边形CODP=S △PDO +S △PCO=21×( 23+43)×1+21×2×1=817 ············ 14分。

历年浙江省温州市中考数学试题(含答案)

历年浙江省温州市中考数学试题(含答案)

2016年浙江省温州市中考数学试卷一、(共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确的选项填在题后的括号内)1.计算(+5)+(﹣2)的结果是()A.7 B.﹣7 C.3 D.﹣32.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时B.4~6小时C.6~8小时D.8~10小时3.三本相同的书本叠成如图所示的几何体,它的主视图是()A.B.C.D.4.已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x,乙数为y,根据题意,列方程组正确的是()A.B.C.D.5.若分式的值为0,则x的值是()A.﹣3 B.﹣2 C.0 D.26.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A.B.C.D.7.六边形的内角和是()A.540° B.720° C.900° D.1080°8.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+109.如图,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是()A.c>a>b B.b>a>c C.c>b>a D.b>c>a10.如图,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B 时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是()A.一直减小B.一直不变C.先减小后增大D.先增大后减小二、填空题(共6小题,每小题5分,满分30分)11.因式分解:a2﹣3a=.12.某小组6名同学的体育成绩(满分40分)分别为:36,40,38,38,32,35,这组数据的中位数是分.13.方程组的解是.14.如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=度.15.七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”,小明利用七巧板(如图1所示)中各板块的边长之间的关系拼成一个凸六边形(如图2所示),则该凸六边形的周长是cm.16.如图,点A,B在反比例函数y=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是.三、解答题(共8小题,满分80分)17.(1)计算:+(﹣3)2﹣(﹣1)0.(2)化简:(2+m)(2﹣m)+m(m﹣1).18.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?19.如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.20.如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点四边形,使P在四边形内部(不包括边界上),且P到四边形的两个顶点的距离相等.(1)在图甲中画出一个▱ABCD.(2)在图乙中画出一个四边形ABCD,使∠D=90°,且∠A≠90°.(注:图甲、乙在答题纸上)21.如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF.(1)求证:∠1=∠F.(2)若sinB=,EF=2,求CD的长.22.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元/千克)15 25 30 千克数40 40 20(1)求该什锦糖的单价.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?23.如图,抛物线y=x2﹣mx﹣3(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B 在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO的延长线于点D,BE=2AC.(1)用含m的代数式表示BE的长.(2)当m=时,判断点D是否落在抛物线上,并说明理由.(3)若AG∥y轴,交OB于点F,交BD于点G.①若△DOE与△BGF的面积相等,求m的值.②连结AE,交OB于点M,若△AMF与△BGF的面积相等,则m的值是.24.如图,在射线BA,BC,AD,CD围成的菱形ABCD中,∠ABC=60°,AB=6,O是射线BD上一点,⊙O与BA,BC都相切,与BO的延长线交于点M.过M作EF⊥BD 交线段BA(或射线AD)于点E,交线段BC(或射线CD)于点F.以EF为边作矩形EFGH,点G,H分别在围成菱形的另外两条射线上.(1)求证:BO=2OM.(2)设EF>HE,当矩形EFGH的面积为24时,求⊙O的半径.(3)当HE或HG与⊙O相切时,求出所有满足条件的BO的长.2016年浙江省温州市中考数学试卷参考答案与试题解析一、(共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确的选项填在题后的括号内)1.计算(+5)+(﹣2)的结果是()A.7 B.﹣7 C.3 D.﹣3【考点】有理数的加法.【分析】根据有理数的加法运算法则进行计算即可得解.【解答】解:(+5)+(﹣2),=+(5﹣2),=3.故选C.2.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时B.4~6小时C.6~8小时D.8~10小时【考点】频数(率)分布直方图.【分析】根据条形统计图可以得到哪一组的人数最多,从而可以解答本题.【解答】解:由条形统计图可得,人数最多的一组是4~6小时,频数为22,故选B.3.三本相同的书本叠成如图所示的几何体,它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】主视图是分别从物体正面看,所得到的图形.【解答】解:观察图形可知,三本相同的书本叠成如图所示的几何体,它的主视图是.故选:B.4.已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x,乙数为y,根据题意,列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得等量关系:①甲数+乙数=7,②甲数=乙数×2,根据等量关系列出方程组即可.【解答】解:设甲数为x,乙数为y,根据题意,可列方程组,得:,故选:A.5.若分式的值为0,则x的值是()A.﹣3 B.﹣2 C.0 D.2【考点】分式的值为零的条件.【分析】直接利用分式的值为0,则分子为0,进而求出答案.【解答】解:∵分式的值为0,∴x﹣2=0,∴x=2.故选:D.6.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A.B.C.D.【考点】概率公式.【分析】由题意可得,共有10可能的结果,其中从口袋中任意摸出一个球是白球的有5情况,利用概率公式即可求得答案.【解答】解:∵从装有2个黄球、3个红球和5个白球的袋中任意摸出一个球有10种等可能结果,其中摸出的球是白球的结果有5种,∴从袋中任意摸出一个球,是白球的概率是=,故选:A.7.六边形的内角和是()A.540° B.720° C.900° D.1080°【考点】多边形内角与外角.【分析】多边形内角和定理:n变形的内角和等于(n﹣2)×180°(n≥3,且n为整数),据此计算可得.【解答】解:由内角和公式可得:(6﹣2)×180°=720°,故选:B.8.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+10【考点】待定系数法求一次函数解析式;矩形的性质.【分析】设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据题意可得到x、y之间的关系式,可得出答案.【解答】解:设P点坐标为(x,y),如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为10,∴2(x+y)=10,∴x+y=5,即y=﹣x+5,故选C.9.如图,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是()A.c>a>b B.b>a>c C.c>b>a D.b>c>a【考点】翻折变换(折叠问题).【分析】(1)图1,根据折叠得:DE是线段AC的垂直平分线,由中位线定理的推论可知:DE是△ABC的中位线,得出DE的长,即a的长;(2)图2,同理可得:MN是△ABC的中位线,得出MN的长,即b的长;(3)图3,根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即c的长.【解答】解:第一次折叠如图1,折痕为DE,由折叠得:AE=EC=AC=×4=2,DE⊥AC∵∠ACB=90°∴DE∥BC∴a=DE=BC=×3=第二次折叠如图2,折痕为MN,由折叠得:BN=NC=BC=×3=,MN⊥BC∵∠ACB=90°∴MN∥AC∴b=MN=AC=×4=2第三次折叠如图3,折痕为GH,由勾股定理得:AB==5由折叠得:AG=BG=AB=×5=,GH⊥AB∴∠AGH=90°∵∠A=∠A,∠AGH=∠ACB∴△ACB∽△AGH∴=∴=∴GH=,即c=∵2>>∴b>c>a故选(D)10.如图,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B 时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是()A.一直减小B.一直不变C.先减小后增大D.先增大后减小【考点】动点问题的函数图象.【分析】设PD=x,AB边上的高为h,想办法求出AD、h,构建二次函数,利用二次函数的性质解决问题即可.【解答】解:在RT△ABC中,∵∠ACB=90°,AC=4,BC=2,∴AB===2,设PD=x,AB边上的高为h,h==,∵PD∥BC,∴=,∴AD=2x,AP=x,∴S1+S2=•2x•x+(2﹣1﹣x)•=x2﹣2x+4﹣=(x﹣1)2+3﹣,∴当0<x<1时,S1+S2的值随x的增大而减小,当1≤x≤2时,S1+S2的值随x的增大而增大.故选C.二、填空题(共6小题,每小题5分,满分30分)11.因式分解:a2﹣3a=a(a﹣3).【考点】因式分解-提公因式法.【分析】直接把公因式a提出来即可.【解答】解:a2﹣3a=a(a﹣3).故答案为:a(a﹣3).12.某小组6名同学的体育成绩(满分40分)分别为:36,40,38,38,32,35,这组数据的中位数是37分.【考点】中位数.【分析】直接利用中位数的定义分析得出答案.【解答】解:数据按从小到大排列为:32,35,36,38,38,40,则这组数据的中位数是:(36+38)÷2=37.故答案为:37.13.方程组的解是.【考点】二元一次方程组的解.【分析】由于y的系数互为相反数,直接用加减法解答即可.【解答】解:解方程组,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+2y=5,解得:y=1,∴,故答案为:.14.如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=46度.【考点】旋转的性质.【分析】先根据三角形外角的性质求出∠ACA′=67°,再由△ABC绕点C按顺时针方向旋转至△A′B′C,得到△ABC≌△A′B′C,证明∠BCB′=∠ACA′,利用平角即可解答.【解答】解:∵∠A=27°,∠B=40°,∴∠ACA′=∠A+∠B=27°+40°=67°,∵△ABC绕点C按顺时针方向旋转至△A′B′C,∴△ABC≌△A′B′C,∴∠ACB=∠A′CB′,∴∠ACB﹣∠B′CA=∠A′CB﹣∠B′CA,即∠BCB′=∠ACA′,∴∠BCB′=67°,∴∠ACB′=180°∠ACA′﹣∠BCB′=180°﹣67°﹣67°=46°,故答案为:46.15.七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”,小明利用七巧板(如图1所示)中各板块的边长之间的关系拼成一个凸六边形(如图2所示),则该凸六边形的周长是(32+16)cm.【考点】七巧板.【分析】由正方形的性质和勾股定理求出各板块的边长,即可求出凸六边形的周长.【解答】解:如图所示:图形1:边长分别是:16,8,8;图形2:边长分别是:16,8,8;图形3:边长分别是:8,4,4;图形4:边长是:4;图形5:边长分别是:8,4,4;图形6:边长分别是:4,8;图形7:边长分别是:8,8,8;∴凸六边形的周长=8+2×8+8+4×4=32+16(cm);故答案为:32+16.16.如图,点A,B在反比例函数y=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是.【考点】反比例函数系数k的几何意义.【分析】根据三角形面积间的关系找出2S△ABD=S△BAC,设点A的坐标为(m,),点B 的坐标为(n,),结合CD=k、面积公式以及AB=2AC即可得出关于m、n、k的三元二次方程组,解方程组即可得出结论.【解答】解:∵E是AB的中点,∴S△ABD=2S△ADE,S△BAC=2S△BCE,又∵△BCE的面积是△ADE的面积的2倍,∴2S△ABD=S△BAC.设点A的坐标为(m,),点B的坐标为(n,),则有,解得:,或(舍去).故答案为:.三、解答题(共8小题,满分80分)17.(1)计算:+(﹣3)2﹣(﹣1)0.(2)化简:(2+m)(2﹣m)+m(m﹣1).【考点】实数的运算;单项式乘多项式;平方差公式;零指数幂.【分析】(1)直接利用二次根式的性质结合零指数幂的性质分别分析得出答案;(2)直接利用平方差公式计算,进而去括号得出答案.【解答】解:(1)原式=2+9﹣1=2+8;(2)(2+m)(2﹣m)+m(m﹣1)=4﹣m2+m2﹣m=4﹣m.18.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?【考点】扇形统计图;用样本估计总体.【分析】(1)根据扇形统计图可以求得“非常了解”的人数的百分比;(2)根据扇形统计图可以求得对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人.【解答】解:(1)由题意可得,“非常了解”的人数的百分比为:,即“非常了解”的人数的百分比为20%;(2)由题意可得,对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有:1200×=600(人),即对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有600人.19.如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)由平行四边形的性质得出AD∥BC,AB∥CD,证出∠DAE=∠F,∠D=∠ECF,由AAS证明△ADE≌△FCE即可;(2)由全等三角形的性质得出AE=EF=3,由平行线的性质证出∠AED=∠BAF=90°,由勾股定理求出DE,即可得出CD的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAE=∠F,∠D=∠ECF,∵E是▱ABCD的边CD的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS);(2)解:∵ADE≌△FCE,∴AE=EF=3,∵AB∥CD,∴∠AED=∠BAF=90°,在▱ABCD中,AD=BC=5,∴DE===4,∴CD=2DE=8.20.如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点四边形,使P在四边形内部(不包括边界上),且P到四边形的两个顶点的距离相等.(1)在图甲中画出一个▱ABCD.(2)在图乙中画出一个四边形ABCD,使∠D=90°,且∠A≠90°.(注:图甲、乙在答题纸上)【考点】平行四边形的性质.【分析】(1)先以点P为圆心、PB长为半径作圆,会得到4个格点,再选取合适格点,根据平行四边形的判定作出平行四边形即可;(2)先以点P为圆心、PB长为半径作圆,会得到8个格点,再选取合适格点记作点C,再以AC为直径作圆,该圆与方格网的交点任取一个即为点D,即可得.【解答】解:(1)如图①:.(2)如图②,.21.如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF.(1)求证:∠1=∠F.(2)若sinB=,EF=2,求CD的长.【考点】圆周角定理;解直角三角形.【分析】(1)连接DE,由BD是⊙O的直径,得到∠DEB=90°,由于E是AB的中点,得到DA=DB,根据等腰三角形的性质得到∠1=∠B等量代换即可得到结论;(2)g根据等腰三角形的判定定理得到AE=EF=2,推出AB=2AE=4,在Rt△ABC 中,根据勾股定理得到BC==8,设CD=x,则AD=BD=8﹣x,根据勾股定理列方程即可得到结论.【解答】解:(1)证明:连接DE,∵BD是⊙O的直径,∴∠DEB=90°,∵E是AB的中点,∴DA=DB,∴∠1=∠B,∵∠B=∠F,∴∠1=∠F;(2)∵∠1=∠F,∴AE=EF=2,∴AB=2AE=4,在Rt△ABC中,AC=AB•sinB=4,∴BC==8,设CD=x,则AD=BD=8﹣x,∵AC2+CD2=AD2,即42+x2=(8﹣x)2,∴x=3,即CD=3.22.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元/千克)15 25 30 千克数40 40 20(1)求该什锦糖的单价.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?【考点】一元一次不等式的应用;加权平均数.【分析】(1)根据加权平均数的计算公式和三种糖果的单价和克数,列出算式进行计算即可;(2)设加入丙种糖果x千克,则加入甲种糖果千克,根据商家计划在什锦糖中加入甲、丙两种糖果共100千克和锦糖的单价每千克至少降低2元,列出不等式进行求解即可.【解答】解:(1)根据题意得:=22(元/千克).答:该什锦糖的单价是22元/千克;(2)设加入丙种糖果x千克,则加入甲种糖果千克,根据题意得:≤20,解得:x≤20.答:加入丙种糖果20千克.23.如图,抛物线y=x2﹣mx﹣3(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B 在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO的延长线于点D,BE=2AC.(1)用含m的代数式表示BE的长.(2)当m=时,判断点D是否落在抛物线上,并说明理由.(3)若AG∥y轴,交OB于点F,交BD于点G.①若△DOE与△BGF的面积相等,求m的值.②连结AE,交OB于点M,若△AMF与△BGF的面积相等,则m的值是.【考点】二次函数综合题.【分析】(1)根据A、C两点纵坐标相同,求出点A横坐标即可解决问题.(2)求出点D坐标,然后判断即可.(3)①首先根据EO=2FG,证明BG=2DE,列出方程即可解决问题.②求出直线AE、BO的解析式,求出交点M的横坐标,列出方程即可解决问题.【解答】解:(1)∵C(0,﹣3),AC⊥OC,∴点A纵坐标为﹣3,y=﹣3时,﹣3=x2﹣mx﹣3,解得x=0或m,∴点A坐标(m,﹣3),∴AC=m,∴BE=2AC=2m.(2)∵m=,∴点A坐标(,﹣3),∴直线OA为y=﹣x,∴抛物线解析式为y=x2﹣x﹣3,∴点B坐标(2,3),∴点D纵坐标为3,对于函数y=﹣x,当y=3时,x=﹣,∴点D坐标(﹣,3).∵对于函数y=x2﹣x﹣3,x=﹣时,y=3,∴点D在落在抛物线上.(3)①∵∠ACE=∠CEG=∠EGA=90°,∴四边形ECAG是矩形,∴EG=AC=BG,∵FG∥OE,∴OF=FB,∵EG=BG,∴EO=2FG,∵•DE•EO=•GB•GF,∴BG=2DE,∵DE∥AC,∴==,∵点B坐标(2m,2m2﹣3),∴OC=2OE,∴3=2(2m2﹣3),∵m>0,∴m=.②∵A(m,﹣3),B(2m,2m2﹣3),E(0,2m2﹣3),∴直线AE解析式为y=﹣2mx+2m2﹣3,直线OB解析式为y=x,由消去y得到﹣2mx+2m2﹣3=x,解得x=,∴点M横坐标为,∵△AMF的面积=△BFG的面积,∴•(+3)•(m﹣)=•m••(2m2﹣3),整理得到:2m4﹣9m2=0,∵m>0,∴m=.故答案为.24.如图,在射线BA,BC,AD,CD围成的菱形ABCD中,∠ABC=60°,AB=6,O是射线BD上一点,⊙O与BA,BC都相切,与BO的延长线交于点M.过M作EF⊥BD 交线段BA(或射线AD)于点E,交线段BC(或射线CD)于点F.以EF为边作矩形EFGH,点G,H分别在围成菱形的另外两条射线上.(1)求证:BO=2OM.(2)设EF>HE,当矩形EFGH的面积为24时,求⊙O的半径.(3)当HE或HG与⊙O相切时,求出所有满足条件的BO的长.【考点】圆的综合题.【分析】(1)设⊙O切AB于点P,连接OP,由切线的性质可知∠OPB=90°.先由菱形的性质求得∠OBP的度数,然后依据含30°直角三角形的性质证明即可;(2)设GH交BD于点N,连接AC,交BD于点Q.先依据特殊锐角三角函数值求得BD 的长,设⊙O的半径为r,则OB=2r,MB=3r.当点E在AB上时.在Rt△BEM中,依据特殊锐角三角函数值可得到EM的长(用含r的式子表示),由图形的对称性可得到EF、ND、BM的长(用含r的式子表示,从而得到MN=18﹣6r,接下来依据矩形的面积列方程求解即可;当点E在AD边上时.BM=3r,则MD=18﹣3r,最后由MB=3r=12列方程求解即可;(3)先根据题意画出符合题意的图形,①如图4所示,点E在AD上时,可求得DM=r,BM=3r,然后依据BM+MD=18,列方程求解即可;②如图5所示;依据图形的对称性可知得到OB=BD;③如图6所示,可证明D与O重合,从而可求得OB的长;④如图7所示:先求得DM=r,OMB=3r,由BM﹣DM=DB列方程求解即可.【解答】解:(1)如图1所示:设⊙O切AB于点P,连接OP,则∠OPB=90°.∵四边形ABCD为菱形,∴∠ABD=∠ABC=30°.∴OB=2OP.∵OP=OM,∴BO=2OP=2OM.(2)如图2所示:设GH交BD于点N,连接AC,交BD于点Q.∵四边形ABCD是菱形,∴AC⊥BD.∴BD=2BQ=2AB•cos∠ABQ=AB=18.设⊙O的半径为r,则OB=2r,MB=3r.∵EF>HE,∴点E,F,G,H均在菱形的边上.①如图2所示,当点E在AB上时.在Rt△BEM中,EM=BM•tan∠EBM=r.由对称性得:EF=2EM=2r,ND=BM=3r.∴MN=18﹣6r.=EF•MN=2r(18﹣6r)=24.∴S矩形EFGH解得:r1=1,r2=2.当r=1时,EF<HE,∴r=1时,不合题意舍当r=2时,EF>HE,∴⊙O的半径为2.∴BM=3r=6.如图3所示:当点E在AD边上时.BM=3r,则MD=18﹣3r.由对称性可知:NB=MD=6.∴MB=3r=18﹣6=12.解得:r=4.综上所述,⊙O的半径为2或4.(3)解设GH交BD于点N,⊙O的半径为r,则BO=2r.当点E在边BA上时,显然不存在HE或HG与⊙O相切.①如图4所示,点E在AD上时.∵HE与⊙O相切,∴ME=r,DM=r.∴3r+r=18.解得:r=9﹣3.∴OB=18﹣6.②如图5所示;由图形的对称性得:ON=OM,BN=DM.∴OB=BD=9.③如图6所示.∵HG与⊙O相切时,MN=2r.∵BN+MN=BM=3r.∴BN=r.∴DM=FM=GN=BN=r.∴D与O重合.∴BO=BD=18.④如图7所示:∵HE与⊙O相切,∴EM=r,DM=r.∴3r﹣r=18.∴r=9+3.∴OB=2r=18+6.综上所述,当HE或GH与⊙O相切时,OB的长为18﹣6或9或18或18+6.。

(中考真题)浙江省温州市中考数学试卷1(word版)(含答案评分标准)

(中考真题)浙江省温州市中考数学试卷1(word版)(含答案评分标准)

1过两点有且只有一条直线 2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交 d﹤r②直线L和⊙O相切 d=r③直线L和⊙O相离 d﹥r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离 d﹥R+r ②两圆外切 d=R+r③两圆相交 R-r﹤d﹤R+r(R﹥r)④两圆内切 d=R-r(R﹥r) ⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积√3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=n∏R/180145扇形面积公式:S扇形=n∏R/360=LR/2146内公切线长= d-(R-r) 外公切线长= d-(R+r)[/watermark]。

(历年中考)浙江省温州市中考数学试题 含答案

(历年中考)浙江省温州市中考数学试题 含答案

2016年浙江省温州市中考数学试卷一、(共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确的选项填在题后的括号内)1.计算(+5)+(﹣2)的结果是()A.7 B.﹣7 C.3 D.﹣32.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时B.4~6小时C.6~8小时D.8~10小时3.三本相同的书本叠成如图所示的几何体,它的主视图是()A.B.C.D.4.已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x,乙数为y,根据题意,列方程组正确的是()A.B.C.D.5.若分式的值为0,则x的值是()A.﹣3 B.﹣2 C.0 D.26.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A.B.C.D.7.六边形的内角和是()A.540° B.720° C.900° D.1080°8.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+109.如图,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是()A.c>a>b B.b>a>c C.c>b>a D.b>c>a10.如图,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B 时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是()A.一直减小B.一直不变C.先减小后增大D.先增大后减小二、填空题(共6小题,每小题5分,满分30分)11.因式分解:a2﹣3a=.12.某小组6名同学的体育成绩(满分40分)分别为:36,40,38,38,32,35,这组数据的中位数是分.13.方程组的解是.14.如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=度.15.七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”,小明利用七巧板(如图1所示)中各板块的边长之间的关系拼成一个凸六边形(如图2所示),则该凸六边形的周长是cm.16.如图,点A,B在反比例函数y=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是.三、解答题(共8小题,满分80分)17.(1)计算:+(﹣3)2﹣(﹣1)0.(2)化简:(2+m)(2﹣m)+m(m﹣1).18.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?19.如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.20.如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点四边形,使P在四边形内部(不包括边界上),且P到四边形的两个顶点的距离相等.(1)在图甲中画出一个▱ABCD.(2)在图乙中画出一个四边形ABCD,使∠D=90°,且∠A≠90°.(注:图甲、乙在答题纸上)21.如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF.(1)求证:∠1=∠F.(2)若sinB=,EF=2,求CD的长.22.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元/千克)15 25 30 千克数40 40 20(1)求该什锦糖的单价.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?23.如图,抛物线y=x2﹣mx﹣3(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B 在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO的延长线于点D,BE=2AC.(1)用含m的代数式表示BE的长.(2)当m=时,判断点D是否落在抛物线上,并说明理由.(3)若AG∥y轴,交OB于点F,交BD于点G.①若△DOE与△BGF的面积相等,求m的值.②连结AE,交OB于点M,若△AMF与△BGF的面积相等,则m的值是.24.如图,在射线BA,BC,AD,CD围成的菱形ABCD中,∠ABC=60°,AB=6,O是射线BD上一点,⊙O与BA,BC都相切,与BO的延长线交于点M.过M作EF⊥BD 交线段BA(或射线AD)于点E,交线段BC(或射线CD)于点F.以EF为边作矩形EFGH,点G,H分别在围成菱形的另外两条射线上.(1)求证:BO=2OM.(2)设EF>HE,当矩形EFGH的面积为24时,求⊙O的半径.(3)当HE或HG与⊙O相切时,求出所有满足条件的BO的长.2016年浙江省温州市中考数学试卷参考答案与试题解析一、(共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确的选项填在题后的括号内)1.计算(+5)+(﹣2)的结果是()A.7 B.﹣7 C.3 D.﹣3【考点】有理数的加法.【分析】根据有理数的加法运算法则进行计算即可得解.【解答】解:(+5)+(﹣2),=+(5﹣2),=3.故选C.2.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时B.4~6小时C.6~8小时D.8~10小时【考点】频数(率)分布直方图.【分析】根据条形统计图可以得到哪一组的人数最多,从而可以解答本题.【解答】解:由条形统计图可得,人数最多的一组是4~6小时,频数为22,故选B.3.三本相同的书本叠成如图所示的几何体,它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】主视图是分别从物体正面看,所得到的图形.【解答】解:观察图形可知,三本相同的书本叠成如图所示的几何体,它的主视图是.故选:B.4.已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x,乙数为y,根据题意,列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得等量关系:①甲数+乙数=7,②甲数=乙数×2,根据等量关系列出方程组即可.【解答】解:设甲数为x,乙数为y,根据题意,可列方程组,得:,故选:A.5.若分式的值为0,则x的值是()A.﹣3 B.﹣2 C.0 D.2【考点】分式的值为零的条件.【分析】直接利用分式的值为0,则分子为0,进而求出答案.【解答】解:∵分式的值为0,∴x﹣2=0,∴x=2.故选:D.6.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A.B.C.D.【考点】概率公式.【分析】由题意可得,共有10可能的结果,其中从口袋中任意摸出一个球是白球的有5情况,利用概率公式即可求得答案.【解答】解:∵从装有2个黄球、3个红球和5个白球的袋中任意摸出一个球有10种等可能结果,其中摸出的球是白球的结果有5种,∴从袋中任意摸出一个球,是白球的概率是=,故选:A.7.六边形的内角和是()A.540° B.720° C.900° D.1080°【考点】多边形内角与外角.【分析】多边形内角和定理:n变形的内角和等于(n﹣2)×180°(n≥3,且n为整数),据此计算可得.【解答】解:由内角和公式可得:(6﹣2)×180°=720°,故选:B.8.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+10【考点】待定系数法求一次函数解析式;矩形的性质.【分析】设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据题意可得到x、y之间的关系式,可得出答案.【解答】解:设P点坐标为(x,y),如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为10,∴2(x+y)=10,∴x+y=5,即y=﹣x+5,故选C.9.如图,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是()A.c>a>b B.b>a>c C.c>b>a D.b>c>a【考点】翻折变换(折叠问题).【分析】(1)图1,根据折叠得:DE是线段AC的垂直平分线,由中位线定理的推论可知:DE是△ABC的中位线,得出DE的长,即a的长;(2)图2,同理可得:MN是△ABC的中位线,得出MN的长,即b的长;(3)图3,根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即c的长.【解答】解:第一次折叠如图1,折痕为DE,由折叠得:AE=EC=AC=×4=2,DE⊥AC∵∠ACB=90°∴DE∥BC∴a=DE=BC=×3=第二次折叠如图2,折痕为MN,由折叠得:BN=NC=BC=×3=,MN⊥BC∵∠ACB=90°∴MN∥AC∴b=MN=AC=×4=2第三次折叠如图3,折痕为GH,由勾股定理得:AB==5由折叠得:AG=BG=AB=×5=,GH⊥AB∴∠AGH=90°∵∠A=∠A,∠AGH=∠ACB∴△ACB∽△AGH∴=∴=∴GH=,即c=∵2>>∴b>c>a故选(D)10.如图,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B 时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是()A.一直减小B.一直不变C.先减小后增大D.先增大后减小【考点】动点问题的函数图象.【分析】设PD=x,AB边上的高为h,想办法求出AD、h,构建二次函数,利用二次函数的性质解决问题即可.【解答】解:在RT△ABC中,∵∠ACB=90°,AC=4,BC=2,∴AB===2,设PD=x,AB边上的高为h,h==,∵PD∥BC,∴=,∴AD=2x,AP=x,∴S1+S2=•2x•x+(2﹣1﹣x)•=x2﹣2x+4﹣=(x﹣1)2+3﹣,∴当0<x<1时,S1+S2的值随x的增大而减小,当1≤x≤2时,S1+S2的值随x的增大而增大.故选C.二、填空题(共6小题,每小题5分,满分30分)11.因式分解:a2﹣3a=a(a﹣3).【考点】因式分解-提公因式法.【分析】直接把公因式a提出来即可.【解答】解:a2﹣3a=a(a﹣3).故答案为:a(a﹣3).12.某小组6名同学的体育成绩(满分40分)分别为:36,40,38,38,32,35,这组数据的中位数是37分.【考点】中位数.【分析】直接利用中位数的定义分析得出答案.【解答】解:数据按从小到大排列为:32,35,36,38,38,40,则这组数据的中位数是:(36+38)÷2=37.故答案为:37.13.方程组的解是.【考点】二元一次方程组的解.【分析】由于y的系数互为相反数,直接用加减法解答即可.【解答】解:解方程组,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+2y=5,解得:y=1,∴,故答案为:.14.如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=46度.【考点】旋转的性质.【分析】先根据三角形外角的性质求出∠ACA′=67°,再由△ABC绕点C按顺时针方向旋转至△A′B′C,得到△ABC≌△A′B′C,证明∠BCB′=∠ACA′,利用平角即可解答.【解答】解:∵∠A=27°,∠B=40°,∴∠ACA′=∠A+∠B=27°+40°=67°,∵△ABC绕点C按顺时针方向旋转至△A′B′C,∴△ABC≌△A′B′C,∴∠ACB=∠A′CB′,∴∠ACB﹣∠B′CA=∠A′CB﹣∠B′CA,即∠BCB′=∠ACA′,∴∠BCB′=67°,∴∠ACB′=180°∠ACA′﹣∠BCB′=180°﹣67°﹣67°=46°,故答案为:46.15.七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”,小明利用七巧板(如图1所示)中各板块的边长之间的关系拼成一个凸六边形(如图2所示),则该凸六边形的周长是(32+16)cm.【考点】七巧板.【分析】由正方形的性质和勾股定理求出各板块的边长,即可求出凸六边形的周长.【解答】解:如图所示:图形1:边长分别是:16,8,8;图形2:边长分别是:16,8,8;图形3:边长分别是:8,4,4;图形4:边长是:4;图形5:边长分别是:8,4,4;图形6:边长分别是:4,8;图形7:边长分别是:8,8,8;∴凸六边形的周长=8+2×8+8+4×4=32+16(cm);故答案为:32+16.16.如图,点A,B在反比例函数y=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是.【考点】反比例函数系数k的几何意义.【分析】根据三角形面积间的关系找出2S△ABD=S△BAC,设点A的坐标为(m,),点B 的坐标为(n,),结合CD=k、面积公式以及AB=2AC即可得出关于m、n、k的三元二次方程组,解方程组即可得出结论.【解答】解:∵E是AB的中点,∴S△ABD=2S△ADE,S△BAC=2S△BCE,又∵△BCE的面积是△ADE的面积的2倍,∴2S△ABD=S△BAC.设点A的坐标为(m,),点B的坐标为(n,),则有,解得:,或(舍去).故答案为:.三、解答题(共8小题,满分80分)17.(1)计算:+(﹣3)2﹣(﹣1)0.(2)化简:(2+m)(2﹣m)+m(m﹣1).【考点】实数的运算;单项式乘多项式;平方差公式;零指数幂.【分析】(1)直接利用二次根式的性质结合零指数幂的性质分别分析得出答案;(2)直接利用平方差公式计算,进而去括号得出答案.【解答】解:(1)原式=2+9﹣1=2+8;(2)(2+m)(2﹣m)+m(m﹣1)=4﹣m2+m2﹣m=4﹣m.18.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?【考点】扇形统计图;用样本估计总体.【分析】(1)根据扇形统计图可以求得“非常了解”的人数的百分比;(2)根据扇形统计图可以求得对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人.【解答】解:(1)由题意可得,“非常了解”的人数的百分比为:,即“非常了解”的人数的百分比为20%;(2)由题意可得,对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有:1200×=600(人),即对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有600人.19.如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)由平行四边形的性质得出AD∥BC,AB∥CD,证出∠DAE=∠F,∠D=∠ECF,由AAS证明△ADE≌△FCE即可;(2)由全等三角形的性质得出AE=EF=3,由平行线的性质证出∠AED=∠BAF=90°,由勾股定理求出DE,即可得出CD的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAE=∠F,∠D=∠ECF,∵E是▱ABCD的边CD的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS);(2)解:∵ADE≌△FCE,∴AE=EF=3,∵AB∥CD,∴∠AED=∠BAF=90°,在▱ABCD中,AD=BC=5,∴DE===4,∴CD=2DE=8.20.如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点四边形,使P在四边形内部(不包括边界上),且P到四边形的两个顶点的距离相等.(1)在图甲中画出一个▱ABCD.(2)在图乙中画出一个四边形ABCD,使∠D=90°,且∠A≠90°.(注:图甲、乙在答题纸上)【考点】平行四边形的性质.【分析】(1)先以点P为圆心、PB长为半径作圆,会得到4个格点,再选取合适格点,根据平行四边形的判定作出平行四边形即可;(2)先以点P为圆心、PB长为半径作圆,会得到8个格点,再选取合适格点记作点C,再以AC为直径作圆,该圆与方格网的交点任取一个即为点D,即可得.【解答】解:(1)如图①:.(2)如图②,.21.如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF.(1)求证:∠1=∠F.(2)若sinB=,EF=2,求CD的长.【考点】圆周角定理;解直角三角形.【分析】(1)连接DE,由BD是⊙O的直径,得到∠DEB=90°,由于E是AB的中点,得到DA=DB,根据等腰三角形的性质得到∠1=∠B等量代换即可得到结论;(2)g根据等腰三角形的判定定理得到AE=EF=2,推出AB=2AE=4,在Rt△ABC 中,根据勾股定理得到BC==8,设CD=x,则AD=BD=8﹣x,根据勾股定理列方程即可得到结论.【解答】解:(1)证明:连接DE,∵BD是⊙O的直径,∴∠DEB=90°,∵E是AB的中点,∴DA=DB,∴∠1=∠B,∵∠B=∠F,∴∠1=∠F;(2)∵∠1=∠F,∴AE=EF=2,∴AB=2AE=4,在Rt△ABC中,AC=AB•sinB=4,∴BC==8,设CD=x,则AD=BD=8﹣x,∵AC2+CD2=AD2,即42+x2=(8﹣x)2,∴x=3,即CD=3.22.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元/千克)15 25 30 千克数40 40 20(1)求该什锦糖的单价.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?【考点】一元一次不等式的应用;加权平均数.【分析】(1)根据加权平均数的计算公式和三种糖果的单价和克数,列出算式进行计算即可;(2)设加入丙种糖果x千克,则加入甲种糖果千克,根据商家计划在什锦糖中加入甲、丙两种糖果共100千克和锦糖的单价每千克至少降低2元,列出不等式进行求解即可.【解答】解:(1)根据题意得:=22(元/千克).答:该什锦糖的单价是22元/千克;(2)设加入丙种糖果x千克,则加入甲种糖果千克,根据题意得:≤20,解得:x≤20.答:加入丙种糖果20千克.23.如图,抛物线y=x2﹣mx﹣3(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B 在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO的延长线于点D,BE=2AC.(1)用含m的代数式表示BE的长.(2)当m=时,判断点D是否落在抛物线上,并说明理由.(3)若AG∥y轴,交OB于点F,交BD于点G.①若△DOE与△BGF的面积相等,求m的值.②连结AE,交OB于点M,若△AMF与△BGF的面积相等,则m的值是.【考点】二次函数综合题.【分析】(1)根据A、C两点纵坐标相同,求出点A横坐标即可解决问题.(2)求出点D坐标,然后判断即可.(3)①首先根据EO=2FG,证明BG=2DE,列出方程即可解决问题.②求出直线AE、BO的解析式,求出交点M的横坐标,列出方程即可解决问题.【解答】解:(1)∵C(0,﹣3),AC⊥OC,∴点A纵坐标为﹣3,y=﹣3时,﹣3=x2﹣mx﹣3,解得x=0或m,∴点A坐标(m,﹣3),∴AC=m,∴BE=2AC=2m.(2)∵m=,∴点A坐标(,﹣3),∴直线OA为y=﹣x,∴抛物线解析式为y=x2﹣x﹣3,∴点B坐标(2,3),∴点D纵坐标为3,对于函数y=﹣x,当y=3时,x=﹣,∴点D坐标(﹣,3).∵对于函数y=x2﹣x﹣3,x=﹣时,y=3,∴点D在落在抛物线上.(3)①∵∠ACE=∠CEG=∠EGA=90°,∴四边形ECAG是矩形,∴EG=AC=BG,∵FG∥OE,∴OF=FB,∵EG=BG,∴EO=2FG,∵•DE•EO=•GB•GF,∴BG=2DE,∵DE∥AC,∴==,∵点B坐标(2m,2m2﹣3),∴OC=2OE,∴3=2(2m2﹣3),∵m>0,∴m=.②∵A(m,﹣3),B(2m,2m2﹣3),E(0,2m2﹣3),∴直线AE解析式为y=﹣2mx+2m2﹣3,直线OB解析式为y=x,由消去y得到﹣2mx+2m2﹣3=x,解得x=,∴点M横坐标为,∵△AMF的面积=△BFG的面积,∴•(+3)•(m﹣)=•m••(2m2﹣3),整理得到:2m4﹣9m2=0,∵m>0,∴m=.故答案为.24.如图,在射线BA,BC,AD,CD围成的菱形ABCD中,∠ABC=60°,AB=6,O是射线BD上一点,⊙O与BA,BC都相切,与BO的延长线交于点M.过M作EF⊥BD 交线段BA(或射线AD)于点E,交线段BC(或射线CD)于点F.以EF为边作矩形EFGH,点G,H分别在围成菱形的另外两条射线上.(1)求证:BO=2OM.(2)设EF>HE,当矩形EFGH的面积为24时,求⊙O的半径.(3)当HE或HG与⊙O相切时,求出所有满足条件的BO的长.【考点】圆的综合题.【分析】(1)设⊙O切AB于点P,连接OP,由切线的性质可知∠OPB=90°.先由菱形的性质求得∠OBP的度数,然后依据含30°直角三角形的性质证明即可;(2)设GH交BD于点N,连接AC,交BD于点Q.先依据特殊锐角三角函数值求得BD 的长,设⊙O的半径为r,则OB=2r,MB=3r.当点E在AB上时.在Rt△BEM中,依据特殊锐角三角函数值可得到EM的长(用含r的式子表示),由图形的对称性可得到EF、ND、BM的长(用含r的式子表示,从而得到MN=18﹣6r,接下来依据矩形的面积列方程求解即可;当点E在AD边上时.BM=3r,则MD=18﹣3r,最后由MB=3r=12列方程求解即可;(3)先根据题意画出符合题意的图形,①如图4所示,点E在AD上时,可求得DM=r,BM=3r,然后依据BM+MD=18,列方程求解即可;②如图5所示;依据图形的对称性可知得到OB=BD;③如图6所示,可证明D与O重合,从而可求得OB的长;④如图7所示:先求得DM=r,OMB=3r,由BM﹣DM=DB列方程求解即可.【解答】解:(1)如图1所示:设⊙O切AB于点P,连接OP,则∠OPB=90°.∵四边形ABCD为菱形,∴∠ABD=∠ABC=30°.∴OB=2OP.∵OP=OM,∴BO=2OP=2OM.(2)如图2所示:设GH交BD于点N,连接AC,交BD于点Q.∵四边形ABCD是菱形,∴AC⊥BD.∴BD=2BQ=2AB•cos∠ABQ=AB=18.设⊙O的半径为r,则OB=2r,MB=3r.∵EF>HE,∴点E,F,G,H均在菱形的边上.①如图2所示,当点E在AB上时.在Rt△BEM中,EM=BM•tan∠EBM=r.由对称性得:EF=2EM=2r,ND=BM=3r.∴MN=18﹣6r.=EF•MN=2r(18﹣6r)=24.∴S矩形EFGH解得:r1=1,r2=2.当r=1时,EF<HE,∴r=1时,不合题意舍当r=2时,EF>HE,∴⊙O的半径为2.∴BM=3r=6.如图3所示:当点E在AD边上时.BM=3r,则MD=18﹣3r.由对称性可知:NB=MD=6.∴MB=3r=18﹣6=12.解得:r=4.综上所述,⊙O的半径为2或4.(3)解设GH交BD于点N,⊙O的半径为r,则BO=2r.当点E在边BA上时,显然不存在HE或HG与⊙O相切.①如图4所示,点E在AD上时.∵HE与⊙O相切,∴ME=r,DM=r.∴3r+r=18.解得:r=9﹣3.∴OB=18﹣6.②如图5所示;由图形的对称性得:ON=OM,BN=DM.∴OB=BD=9.③如图6所示.∵HG与⊙O相切时,MN=2r.∵BN+MN=BM=3r.∴BN=r.∴DM=FM=GN=BN=r.∴D与O重合.∴BO=BD=18.④如图7所示:∵HE与⊙O相切,∴EM=r,DM=r.∴3r﹣r=18.∴r=9+3.∴OB=2r=18+6.综上所述,当HE或GH与⊙O相切时,OB的长为18﹣6或9或18或18+6.。

2002年温州市中考数学试题及答案解析

2002年温州市中考数学试题及答案解析

2002年温州市初中数学学业考试卷Ⅰ一、选择题(本题有12小题,每小题4分,共48分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.计算(+2)+(-3)其结果是( )A.+1B.-1C.+6 D,-62.2001年温州市财政总收入为961088万元,用四舍五入法取近似值,保留三个有效数字,并用科学记数法表示其结果是( )A.9.61×103万元B.9.61×104万元C.9.61×105万元D.9.610×104万元3.如图,立方体ABCD—A1B1C1D1中,与棱AD垂直的平面是( )A.平面A1B,平面CD1B.平面A1D,平面BC1C.平面AC,平面A1C1D.平面BD,平面AD14.已知扇形的弧长是2πcm,半径为12cm,则这个扇形的圆心角是( ) A.60°B.45°C.30°D.20°5.圆锥的高线长是8㎝,底面直径为12㎝,则这个圆锥的侧面积是( )A.48πcm2B.cm2C.cm2D.60πcm26.不等式组12231312()2x xx x+⎧-<⎪⎪⎨⎪+≥-⎪⎩的解是( )A.x>2 B.x≥-2 C.x<2 D.-2≤x<27.若a<0,化简|a-其结果是( )A.0B.2a C.-2a D.2a或-2a8.两圆的半径分别为3cm和4cm,圆心距为1cm,则两圆的位置关系是( ) A.相离B.相交C.内切D.外切9.如图,AB是⊙O的直径,点P在BA的延长线上,PC是⊙O的切线,C为切点,PC=2,PA=4,则⊙O的半径等于( )A.1B.2 C.32D.210.在△ABC中,点D、E分别在边AB,AC上,且DE∥BC,AE=3,EC=2,那么S△ADE :S△ABC等于()A.2:3B.3:5 C9:4D9:2511.一次抽奖活动中,印发奖券1000张,其中一等奖20张,二等奖80张,三等奖200张,那么第一位抽奖者(仅买一张奖券)中奖的概率是( )A.150B.225C.15D.31012.如图,在梯形ABCD中,AD∥BC,AB=DC,∠C=60°,BD平分∠ABC,如果这个梯形的周长为30,则AB的长是( )A.4 B.5 C.6 D.7卷Ⅱ二、填空题(本题有6小题,每小题5分,共30分)13.分解因式:x3一xy2-x+y=14.已知y与x+l成正比例,当x=5时,y=12,则y关于x的函数解析式是15.某养鱼户去年在鱼塘中投放了一批鱼苗,现在为了解这批鱼的平均重量,从中捞取10条鱼,测得其重量如下(单位:kg)1.21.10.90.8l.31.21.31.01.01.2试估计这批鱼的平均重量约是kg.16.Rt△ABC中,∠C=Rt∠,BC=4,AB=5,则tgB=17.某公司董事会拨出总题为40万元款项作为奖励金,全部用于奖励本年度做出突出贡献的一、二、三等奖的职工.原来设定:一等奖每人5万元,二等奖每人3万元,三等奖每人2万元;后因考虑到一等奖的职工科技创新已给公司带来巨大的经济效益,现在改为:一等奖每人15万元二等奖每人4方元,三等奖每人1万元,那么该公司本年度获得一、二、三等奖的职工共人.18.如图,扇形OAB中,∠AOB=90°,半径OA=1,C是线段AB的中点,CD∥OA,交弧AB于点D,则CD=三、解答题(本题有4小题,共25分)19.(本题6分)计算:131()2--+20.(本题6分)解方程组111xyx=-⎨=⎪+⎩21.(本题6分)如图,△ACF内接于⊙O,AB是⊙O的直径,弦CD⊥AB于点E.(1)求证:∠ACE=∠AFC;(2)若CD=BE=8,求sin∠AFC的值.22.(本题7分)当m为何值时,方程x2-(m+2)x+m2=0的两根之和与两根之积相等.四、画图题(本题9分)23.已知:菱形ABCD中(如图),∠A=72°,请设计三种不同的分法,将菱形ABCD 分割成四个三角形,使得每个三角形都是等腰三角形.(画图工具不限,要求画出分割线段;标出能够说明分法所得三角形内角的度数,没有标出能够说明分法所得三角形内角度数不给分;不要求写出画法,不要求证明.)注:两种分法只要有一条分割线段位置不同,就认为是两种不同的分法.分法一:分法二:分法三:五、解答题(本题有3小题,共38分)24.(本题12分)二次函数y=ax2+bx+c(其中a>0)它的图象与x轴交于A(m,0),B(n,0)两点,其中m<n,与y轴交于点C(0,t)(1)若它的图象的顶点为P,点P的坐标为(2,-1),点C在x轴上方,且点C到x轴的距离为3,求A,B,C三点的坐标;(要求写出过程)(2)若m,n, t都是整数,且0<m<6,0<n<6,0<t≤6,△ABC的面积为6,试写出一个满足条件的二次函数的解析式(只要求写出结果,不要求写出过程),并在直角坐标系中(下图),画出你所填二次函数的图象,且标出相应A,B,C三点的位置.25.(本题12分)欣欣日用品零售商店,从某公司批发部每月按销售合同以批发单价每把8元购进雨伞(数量至少为100把),欣欣商店根据销售记录,这种雨伞以零售单价每把为14元出售时,月销售量为100把,如果零售单价每降价0.1元,月销售量就要增加5把.现在该公司的批发部为了扩大这种雨伞的销售量,给零售商制定如下优惠措施:如果零售商每月从批发部购进雨伞的数量超过100把,其超过100把的部份每把按原批发单价九五折(即95%)付费,但零售单价每把不能低于10元.欣欣日用品零售商店应将这种雨伞的零售单价定为每把多少元出售时,才能使这种雨伞的月销售利润最大?最大月销售利润是多少元?(销售利润=销售款额-进货款额)26.(本题14分)如图,正方形ABCD中,AB=l,BC为⊙O的直径,设AD边上有一动点P(不运动至A、D),BP交⊙O于点F,CF的延长线交AB于点E,连结PE.(1)设BP=x,CF=y,求y与x之间的函数关系式,并写出自变量x的取值范围;(2)当CF=2EF时,求BP的长;(3)是否存在点P,使ΔAEP∽ΔBEC(其对应关系只能是A—B,E-E,P-C)?如果存在,试求出AP的长;如果不存在,请说明理由.2002年温州市初中数学学业考试参考答案一、选择题(每小题4分,共48分)。

浙江省温州市2001-2012年中考数学试题分类解析

浙江省温州市2001-2012年中考数学试题分类解析

1 2001-2012年浙江温州中考数学试题分类解析汇编(12专题)专题3:方程(组)和不等式(组)一、选择题1. (2002年浙江温州4分)不等式组 x x 122313x 12(x )2+?-<????+≥-??的解是【】 A .x >2 B .x≥-2 C .x <2 D .-2≤x<2【答案】A 。

【考点】解一元一次不等式组。

【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。

因此, x x 12x 223x 2x 213x 12(x )2>>+?-<???????≥-??+≥-??。

故选A 。

2. (2003年浙江温州4分)方程2x +1=5的根是【】A .4B .3C .2D .1【答案】C 。

【考点】方程的根。

【分析】方程的根就是适合该方程的解,也就是将其带入可是方程正确的一个数。

因此,方程2x +1=5的根是2。

故选C 。

3. (2004年浙江温州4分)不等式组x 32x 4>-??≤?的解在数轴上表示为【】 (A) (B) (C) (D) 【答案】D 。

【考点】解一元一次不等式组,在数轴上表示不等式组的解集。

【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。

因此,x 3x 33x 22x 4x 2>><--????-≤??≤≤??。

不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个。

在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示。

2002温州中考数学试题及答案

2002温州中考数学试题及答案

2002温州中考数学试题及答案2002年温州中考数学试题及答案一、选择题(每题3分,共30分)1. 下列各数中,最小的数是()A. -2B. 0C. 3D. 2答案:A2. 一个数的相反数是-5,这个数是()A. 5B. -5C. 0D. 1答案:A3. 下列计算正确的是()A. 2a + 3a = 5a^2B. 3a - 2a = a^2C. 3a - 2a = aD. 2a + 3a = 5a答案:D4. 一个角的补角是它的余角的3倍,这个角的度数是()A. 45°B. 60°C. 90°D. 120°答案:B5. 一个等腰三角形的两边长分别为3和6,那么这个三角形的周长是()A. 9B. 12C. 15D. 无法确定答案:D6. 下列说法正确的是()A. 任何数的绝对值都是正数B. 两个负数比较大小,绝对值大的反而小C. 任何数的平方都是正数D. 任何数的立方都是正数答案:B7. 一个数的平方等于它本身,这个数是()A. 0B. 1C. 0或1D. 无法确定答案:C8. 一个数的立方等于它本身,这个数是()A. 0B. 1C. -1D. 0或1答案:D9. 一个数的倒数等于它本身,这个数是()A. 0B. 1C. -1D. 0或1答案:B10. 一个数的相反数等于它本身,这个数是()A. 0B. 1C. -1D. 0或1答案:A二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数是______。

答案:±512. 一个数的相反数是-3,这个数是______。

答案:313. 一个数的平方是9,这个数是______。

答案:±314. 一个数的立方是-8,这个数是______。

答案:-215. 一个角的补角是120°,这个角的度数是______。

答案:60°16. 一个等腰三角形的两边长分别为4和6,那么这个三角形的周长是______。

最新整理温州市中考数试卷及答案.doc

最新整理温州市中考数试卷及答案.doc

浙江温州高中阶段学校招生考试数学试卷班级__________学号__________姓名______________得分______________一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分) 1.下列各数中,最小的数是 () (A )-1 (B )0(C )1(D ) 2 2.方程4x-1=3的解是 ()(A )x =-1 (B )x =1(C )x =-2(D )x =23.由4个相同的小立方块搭成的几何体如图所示,它的左视图是() (A ) (B ) (C ) (D ) 4.若分式x -1x +2的值为零,则x 的值是() (A )0 (B )1 (C )-1 (D )-2 5.抛物线y=(x-1)2+3的对称轴是 ()(A )直线x =1 (B )直线x =3 (C )直线x =-1 (D )直线x =-36.已知反比例函数y = kx的图象经过点(3,-2),则k 的值是()(A)-6 (B )6 (C ) 2 3 (D )- 237.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD=2,AC =3,则sin B 的值是 ( )(A ) 2 3 (B ) 3 2 (C ) 3 4 (D ) 4 38.已知⊙O 1和⊙O 2外切,它们的半径分别为2cm 和5cm ,则O 1O 2的长是() (A )2cm(B )3cm(C )5cm(D )7cm9.体育老师对九年级(1)班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得数据绘制成频数分布直方图(如图).由图可知,最喜欢篮球的频率是 ( )C A BD (第7题图) (第3题图)(A )0.16 (B )0.24 (C )0.3 (D )0.410.以OA 为斜边作等腰直角三角形OAB ,再以OB 为斜边在△OAB 外侧作等腰直角三角形OBC ,如此继续,得到8个等腰直角三角形(如图),则图中△OAB 与△OHJ 的面积比值是 ( )(A )32 (B )64 (C )128 (D )256 二、填空题(本题有6小题,每小题5分,共30分) 11.分解因式:x 2-9=___________.12.布袋中装有2个红球,3个白球,5个黑球,它们除颜色外均相同,则从袋中任意摸出一个球是白球..的概率是__________. 13.如图,菱形ABCD 中,∠A =60º,对角线BD =8,则菱形ABCD 的周长等于______. 14.如图,⊙O 的半径为5,弦AB =8,OC ⊥AB 于C ,则OC 的长等于__________.15.为了奖励兴趣小组的同学,张老师花92元钱购买了《智力大挑战》和《数学趣题》两种书.已知《智力大挑战》每本18元.《数学趣题》每本8元,则《数学趣题》买了______本. 16.如图,点A 1,A 2,A 3,A 4在射线OA 上,点B 1,B 2,B 3在射线OB 上,且A 1B 1∥A 2B 2∥A 3B 3,A 2B 1∥A 3B 2∥A 4B 3.若△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,则图中三个阴影三角形面积之和为____________.三、解答题(本题有8小题,共80分) 17.(本题10分)(1)计算:8-(3-1)0+|-1|.(2)我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个..,并选择你认为适当的方法解这个方程. ①x 2-3x +1=0;②(x -1)2=3;③x 2-3x =0;④x 2-2x =4.(第10题图) (第9题图) A C BD (第13题图) (第14题图) (第16题图) 1 2 3 418.(本题8分)如图,在直角坐标系中,Rt △AOB 的两条直角边OA ,OB 分别在x 轴的负半轴,y 轴的负半轴上,且OA =2,OB =1.将Rt △AOB 绕点O 按顺时针方向旋转90º,再把所得的像沿x 轴正方向平移1个单位,得△CDO . (1)写出点A ,C 的坐标;(2)求点A 和点C 之间的距离.19.(本题9分)文文和彬彬在证明“有两个角相等的三角形是等腰三角形”这一命题时,画出图形,写出“已知”,“求证”(如图),她们对各自所作的辅助线描述如下: 文文:“过点A 作BC 的中垂线AD ,垂足为D ”; 彬彬:“作△ABC 的角平分线AD ”. 数学老师看了两位同学的辅助线作法后,说:“彬彬的作法是正确的,而文文的作法需要订正.”(1)请你简要说明文文的辅助线作法错在哪里. (2)根据彬彬的辅助线作法,完成证明过程.20.(本题9分)如图,方格纸中有三个点A ,B ,C ,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形; (2)在图乙中作出的四边形是轴对称图形但不是中心对称图形; (3)在图丙中作出的四边形既是轴对称图形又是中心对称图形. (注:图甲、图乙、图丙在答题纸上)21.(本题10分)一次奥运知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对x 道题. (1(2 22.(本题10分)一次函数y =x -3的图象与x 轴,y 轴分别交于点A ,B .一个二次函数y =x 2+bx +c 的图象经过点A ,B .x(第19题图) 已知:如图,在ABC△中,B C ∠=∠. 求证:AB AC =. A B (第20题图)(1)求点A,B的坐标,并画出一次函数y=x-3的图象;(2)求二次函数的解析式及它的最小值.23.(本题10分)温州皮鞋畅销世界,享誉全球.某皮鞋专卖店老板对第一季度男女皮鞋的销售收入进行统计,并绘制了扇形统计图(如图).由于三月份开展促销活动,男、女皮鞋的销售收入分别比二月份增长了40%,60%.已知第一季度男女皮鞋的销售总收入为200万元. (1)一月份销售收入______________万元,二月份销售收入_____________万元,三月份销售收入__________万元;(2)二月份男、女皮鞋的销售收入各是多少万元? 24.(本题14分)如图,在Rt △ABC 中,∠A =90º,AB =6,AC =8,D ,E 分别是边AB ,AC的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ ⊥BC 于Q ,过点Q 作QR ∥BA 交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ =x ,QR =y . (1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使△PQR 为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.ABCD ERP H Q(第24题图)(第23题图)第一季度男女皮鞋浙江温州高中阶段学校招生考试数学参考答案一、选择题(本题有10小题,每小题4分,共40分)17.(本题10分)(101)111+-=+= (2)①1232x ±=,;②121x =,10x =,23x =;④121x =,18.(本题8分)(1)点A 的坐标是(20)-,,点C 的坐标是(12),. (2)连结AC ,在Rt ACD △中, 3AD OA OD =+=,2CD =,222222313AC CD AD ∴=+=+=, AC ∴=.19.(本题9分)解:(1)只要合理即可.(2)证明:作ABC △的角平分线AD ,则BAD CAD ∠=∠, 又B C ∠=∠,AD AD =, ABD ACD ∴△≌△,AB AC ∴=. 20.(本题9分)(本题答案不唯一)21.(本题10分) 解:(1)25x -;5(25)x -- (2)根据题意,得105(25)100xx -->解得15x >x ∴的最小正整数解是16x= 答:小明同学至少答对16道题. 22.(本题10分)解:(1)令0y =,得3x =,∴点A 的坐标是(30),令0x =,得3y =-,∴点B 的坐标是(03)-,(2)二次函数2y x bx c=++的图象经过点A B ,,x(第18题图)图甲(是中心对称图形 但不是轴对称图形) 图乙(是轴对称图形但 不是中心对称图形) 图丙(既是轴对称图形 又是中心对称图形) x0933b c c =++⎧∴⎨-=⎩,解得:23b c =-⎧⎨=-⎩. ∴二次函数2y x bx c =++的解析式是223y x x =--, 2223(1)4y x x x =--=--,∴函数223y x x =--的最小值为4-.23.(本题10分) 解:(1)50;60;90.(2)设二月份男、女皮鞋的销售收入分别为x 万元,y 万元, 根据题意,得60(140)(164)90x y x y +=⎧⎨+++=⎩%%,解得3525x y =⎧⎨=⎩.答:二月份男、女皮鞋的销售收入分别为35万元、25万元.24. (本题14分) 解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=.点D 为AB 中点,132BD AB ∴==. 90DHB A ∠=∠=,B B ∠=∠. BHD BAC ∴△∽△, DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=.(2)QR AB ∥,90QRC A ∴∠=∠=.C C ∠=∠,RQC ABC ∴△∽△, RQ QC AB BC ∴=,10610y x-∴=, 即y 关于x 的函数关系式为:365y x =-+.(3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=, 1C ∴∠=∠.84cos 1cos 105C ∴∠===,45QM QP ∴=, 1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=. ②当PQ RQ =时,312655x -+=,6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点, 于是点R 为EC 的中点,11224CR CE AC ∴===.tan QR BAC CR CA==,A BCD ER PM 2 1 A HA BCD E R PHQ366528x -+∴=,152x ∴=.综上所述,当x 为185或6或152时,PQR △为等腰三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温州市2002年至2010年中考数学答案汇总(权威发布)汇总人:黄祖谈2002年温州中考数学试卷答案一、选择题(每小题4分,共48分)2003年中考数学试卷参考答案2004年温州中考数学试卷参考答案一、 填空题(本题有6题,每小题5分,共30分)13、x ≥3 14、1,-2,3 15、3 16、5/6 (3分)理由:只要合理都给满分,比如:第一个数为2/3,后一个数是前一个数的分子、分母都加1所得的数 17、C A B 18、6π 二、 解答题(本题有8小题,共72分) 19、(本题8分)原式=)8(21225)632(222122分分分+==⨯++20、(本题8分)画对一个给2分,二个给5分,三个给8分 略21、(本题8分) (1)∵AB ∥CD,∴∠B=∠C (2分) 又∵∠EAF=∠C,∴∠EAF=∠B (4分)(2)在⊿AFB 与⊿EFA 中,∵∠EAF=∠B,∠AFB=∠EFA,∴⊿AFB=∽⊿EFA (6分)∴AFEF FBAF =,即AF 2=FE ·FB (8分)(2) 当n 很大时,频率将会接近0.7(在0.7+0.01范围内都给分) (6分) (3)获得铅笔的概率约是0.7(在0.7+0.01范围内都给分) (8分) (4)圆心角的度数为0.7×360°=252° (10分) 23、(本题12分)(1)由图象知,当t 由0增大到4时,点P 由B C,∴BC==4×2=8(㎝) (3分) (2) a=S △ABC =21×6×8=24(㎝2) (6分)(3) 同理,由图象知 CD=4㎝,DE=6㎝,则EF=2㎝,AF=14㎝∴图1中的图象面积为4×8+2×14=60㎝2 (9分)(4) 图1中的多边形的周长为(14+6)×2=40㎝ b=(40-6)÷2=17秒 (12分) 24、(本题12分)解:(1)100000×(1+60%)-100000×(1+45%)=100000×15%=15000(吨)答:每天还可以增加15000吨工业用水 (4分)(2) y=10(x %-45%)=0.1x -4.5(45<x <100) (8分)(3)1170025)45.01(10000010)75.01(100000=+⨯-+⨯(万元)答:每天能增加11700万元工业产值。

(12分) 25、(本题12分)解:(1)∵四边形ABCD 是正方形 ∴∠A=∠B=Rt ∠ ∴AF 、BP 都是⊙O 的切线 (1分)又∵PF 是⊙O 的切线 ∴EF=FA,PE=PB ∴四边形CDFP 的周长为AD+DC+CB=2×3=6 (3分)(2)∴连结OE,∵PF 是⊙O 的切线 ∴OE ⊥PF .在Rt ⊿AOF 和Rt ⊿EOF 中∵AO=EO,OF=OF ∴Rt ⊿AOF ∽Rt ⊿EOF ∴∠AOF=∠EOF(5分)同理∠BOP=∠EOP ∴∠EOF+∠EOP=1/2×180°=90°∴∠EOP=90°即OF ⊥OP (7分)(3)存在(如果这一步不写,但下面各步骤都正确,不扣分) (8分)∵∠EOF=∠AOF ∴∠EHG=∠AOE=2∠EOF,∴当∠EHG=∠AOE=2∠EOF,即∠EOF=30°时 Rt ⊿EOF ∽Rt ⊿EHG (10分) 此时∠EOF=30°,∠BOP=∠EOP=90°-30°=60°∴BP=OB ·tan60°=3 (12分)26、(本题14分)解:(1)抛物线的开口向下,点C 的坐标是(0,m -1) (2分)(2)∵点A 、B 分别在x 轴的正、负半轴上∴方程-x 2+2 (m -3)x+m -1=0的两根异号,即m -1>0∴OC=m -1,由tan ∠CAB=3,得OB=31OC=31(m -1) ∴点B 的坐标为(0,31--m ) (4分)代入解析式得01)3)(1(32)1(912=-+-----m m m m 由m+1≠0得 01)3(32)1(91=+----m m ∴m=4 (7分)抛物线的解析式为y=-x 2+2x+3 (8分) (3) 当0<x <3时,y >0,∴四边形AOCP 的面积为S △COP +S △OPA =y x 321321⨯+⨯ (10分)=823)23(23)32(2322+--=++-x x x x(12分)∴当点P 的坐标为(415,23)时,四边形AOCP 的面积达到最大值823 (14分) 27、(本题14分)(1) 设已知矩形的长与宽分别为a,b,所求矩形为x,y.则⎩⎨⎧=+=+abxy b a y x 2)(2 ∴x,y 是方程t 2-2(a+b)t+2ab=0的两根 ∵⊿=4(a+b)2-8ab=4(a 2+b 2)>0, ∴方程有解∴对于长与宽分别为a,b 矩形,存在周长与面积都是已知矩形的2倍的矩形。

(3分) (2) (2)设已知矩形的长与宽分别为a,b,所求矩形为x,y.则⎩⎨⎧=+=+mabxy b a m y x )( ∴x,y 是方程t 2-m(a+b)t+mab=0的两根当⊿=m 2(a+b)2-4mab >0,即2)(4b a ab m +≥时,方程有解∴对于长与宽分别为a,b 矩形, 当2)(4b a ab m +≥时,存在周长与面积都是已知矩形的m 倍的矩形 (7分)∵(a -b)2≥0, ∴a 2+b 2≥2ab ∴a 2+b 2+2ab ≥4ab 即(a+b)2≥4ab,1)(42≤+b a ab ,∴2)(4b a ab +的最大值为1 (9分)∴当m ≥1时,所有的矩形都有周长与面积都是已知矩形的m 倍的矩形。

(10分)2005年温州市数学中考试卷参考答案参考答案一、选择题1、C2、A3、B4、C5、B6、B7、D8、B9、A 10、C 11、A 12、B 二、填空题13、5xy 14、2 15、a(b +2)(b -2) 16、略(答案不惟一) 17、0.21 18、4三、解答题19、解:原式=23+(2+3)-1=33+1 20、证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AO =CO , ∴∠EAO =∠FCO , ∵∠AOE =∠COF , ∴△AOE ≌△COF ∴OE =OF21、解:⑴∵S △FAE ∶S 四边形AOCE =1∶3,∴S △FAE ∶S △FOC =1∶4, ∵四边形AOCB 是正方形, ∴AB ∥OC ,∴△FAE ∽△FOC , ∴AE ∶OC =1∶2, ∵OA =OC =6, ∴AE =3,∴点E 的坐标是(3,6)⑵设直线EC 的解析式是y =kx +b , ∵直线y =kx +b 过E(3,6)和C(6,0) ∴⎩⎨⎧3k +b =66k +b =0 ,解得:⎩⎨⎧k =-2b =12∴直线EC 的解析式是y =-2x +12 22、列举以下四种铺设的示意图供参考23、解:⑴ 初三⑵班体育成绩达标率为(1-0.02)×100%=98% 其余班级体育成绩达标率为1-12.5%=87.5%答:初三⑵班体育成绩达标率和其余班级体育成绩达标率分别为98%和87.5% ⑵、设全校有x 名同学,由题意得: 50×98%+(x -50)×87.5%≥90%, 解得:x ≤210答:全段同学人数不超过210人。

① 24、解:⑴∵四边形ABCD 内接于⊙O ,∴∠CDA =∠ABE , ∵ BF AD ,∴∠DCA =∠BAE , ∴△CAD ∽△AEB⑵、过A 作AH ⊥BC 于H(如图)∵A 是 BDC 中点,∴HC =HB =12 BC , ∵∠CAE =900,∴AC 2=CH ·CE =12BC ·CE⑶∵A 是 BDC 中点,AB =2,∴AC =AB =2, ∵EM 是⊙O 的切线,∴EB ·EC =EM 2 ①∵AC 2=12BC ·CE ,BC ·CE =8 ②①+②得:EC(EB +BC)=17,∴EC 2=17 ∵EC 2=AC 2+AE 2,∴AE =17-22=13 ∵△CAD ∽△ABE ,∴∠CAD =∠AEC ,∴cot ∠CAD =cot ∠AEC =AE AC =13225、解:⑴∵当Q 在AB 上时,显然PQ 不垂直于AC 。

当,由题意得:BP =x ,CQ =2x ,PC =4-x , ∴AB =BC =CA =4,∠C =600,若PQ ⊥AC ,则有∠QPC =300,∴PC =2CQ∴4-x =2×2x ,∴x =45,∴当x =45(Q 在AC 上)时,PQ ⊥AC ;⑵ 当0<x <2时,P 在BD 上,Q 在AC 上,过点Q 作QH ⊥BC 于H ,∵∠C =600,QC =2x ,∴QH =QC ×sin600=3x∵AB =AC ,AD ⊥BC ,∴BD =CD =12BC =2∴DP =2-x ,∴y =12 PD ·QH =12(2-x)·3x =-32x 2+3x⑶ 当0<x <2时,在Rt △QHC 中,QC =2x ,∠C =600,∴HC =x ,∴BP =HC ∵BD =CD ,∴DP =DH ,∵AD ⊥BC ,QH ⊥BC ,∴AD ∥QH , ∴OP =OQ∴S △PDO =S △DQO ,∴AD 平分△PQD 的面积;⑷ 显然,不存在x 的值,使得以PQ 为直径的圆与AC 相离当x =45或165时,以PQ 为直径的圆与AC 相切。

当0≤x <45或45<x <165或165<x ≤4时,以PQ 为直径的圆与AC 相交。

2006年温州市中考数学参考答案白1白2红白1白2红红白2白1第二次摸出 的球第一次摸出 的球开始温州市2007年初中毕业学业考试数学试卷参考答案一、选择题(共10小题,每小题4分,共40分)三、解答题(本题有8小题,共80分)17(本题10分,共2个小题,每小题5分)(1)解:原式=11+=(2)解:如选择多项式:22111,3122x x x x+-++则:22211(1)(31)4(4)22x x x x x x x x+-+++=+=+18(本题8分),12,AB AB C DC ABD ABAC AD=∠=∠∠=∠∴∆≅∆∴=证明19(本题10分)解:(1)100×44%=44(户)答:这100户家庭中有44户扔掉牛奶盒.(2)44×100=4400(户)答:扔掉牛奶盒的家庭有4400户.(3)4400×90÷6=66000(个)答:一年扔掉的牛奶盒可以制作成66000个卷纸.20(本题8分)解:(1)如图所示(2)设直线OP的函数解析式为:y=kx+b,因为点P的坐标为(-2,3),代入,得3=-2k,32k∴=-即直线OP的函数解析式为:32y x=-21(本题8分)解:(1)从箱子中任意摸出一个球是白球的概率是23P=(2)记两个白球分别为白1与白2,画树状图如右所示:从树状图可看出:事件发生的所有可能的结果总数为6,DC两次摸出球的都是白球的结果总数为2,因此其概率2163P ==.22(本题10分) 解:(1)连结OC ,因为PC 切O 于点C ,P C O C ∴⊥1AB 2PA ,21sin .2O C AO AP PO P ∴===∴∴∠=又直径= (或:在1,sin 22O C O C R t P O C P P OP O∆∠===)(2)连结AC ,由AB 是直90,903060,ACB COA ∴∠=︒∠=︒-︒=︒,2,OC OA CAO CA r CB =∴∆∴==∴==又是正三角形。

相关文档
最新文档