小初高学习2017秋八年级数学上册7.3平行线的判定教案2新版北师大版
北师大版八年级上册数学7.3《平行线的判定》教学设计
北师大版八年级上册数学7.3《平行线的判定》教学设计一. 教材分析《平行线的判定》是北师大版八年级上册数学的一节重要内容,主要介绍了同位角相等、内错角相等、同旁内角互补三种平行线的判定方法。
这部分内容是学生学习几何的基础,对于培养学生的逻辑思维能力和空间想象能力具有重要意义。
在教材中,通过生活实例引入平行线的概念,然后引导学生通过观察、思考、交流、总结出平行线的判定方法,最后通过练习来巩固所学知识。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于图形的认知和观察能力也有一定的提高。
但是,学生在空间想象能力和逻辑思维能力方面还有待提高。
此外,学生的学习习惯和动手操作能力也存在一定的差异。
因此,在教学过程中,教师需要关注学生的个体差异,引导他们积极参与课堂活动,提高他们的空间想象能力和逻辑思维能力。
三. 教学目标1.知识与技能:使学生掌握同位角相等、内错角相等、同旁内角互补三种平行线的判定方法,能够运用这些方法判断两条直线是否平行。
2.过程与方法:通过观察、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探究、合作学习的良好习惯。
四. 教学重难点1.教学重点:同位角相等、内错角相等、同旁内角互补三种平行线的判定方法。
2.教学难点:如何引导学生观察、思考、总结出平行线的判定方法。
五. 教学方法1.情境教学法:通过生活实例引入平行线的概念,激发学生的学习兴趣。
2.引导发现法:引导学生观察、思考、交流,总结出平行线的判定方法。
3.实践操作法:让学生通过动手操作,巩固所学知识。
4.激励评价法:关注学生的个体差异,及时给予鼓励和评价,提高他们的学习积极性。
六. 教学准备1.教具:多媒体课件、黑板、粉笔、直线模型、角度模型。
2.学具:学生用书、练习册、直线模型、角度模型。
七. 教学过程1.导入(5分钟)利用多媒体课件展示生活实例,引导学生观察并提出问题:为什么说这两条直线平行?激发学生的学习兴趣。
北师大版八年级数学7.3平行线的判定教案
北师大版数学八年级7.3平行线的判定教学设计课题7.3 平行线的判定学习目标1、初步了解证明的根本步骤和书写;2、会根据根本领实“同位角相等,两直线平行〞来证明“内错角相等,两直线平行〞“同旁内角互补两直线平行〞,并能简单应用这些结论;3、在证明过程中开展初步的演绎推理能力。
重点平行线的三个判定定理的应用难点证明书写的标准化教学过程教学环节教师活动学生活动设计前知迁引1、教师出示课件:前面我们探索过直线平行的条件.大家来想一想:两条直线在什么情况下互相平行呢?同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行平行于同一直线的两条直线平行在同一平面内,不相交的两条直线叫做平行线.第一条为根本领实之一,第四条是平行线的传递性,第五条是平行线的定义,故此我们需要证明“内错角相等,两直线平行〞“同旁内角互补,两直线平行〞学生思考得到两直线平行的方法学生在七年级已经学习过关于平行线的相关知识,通过这个小问题引发学生思考,导出课题探究新知引导学生把“内错角相等,两直线平行〞改写为“两条直线被条直线所截,如果内错角相等,那么这两条直线平行〞,通过改写,让学生写出求证:简单的证明这个定理,带着学生进行几何书写。
证明:∵∠1=∠2〔〕,∠2=∠3〔对顶角相等〕学生思考如何改写,又如何由改写后的文字转化成几何语言的求证。
通过改写学生更加清晰定理中的条件和结论,再写出和求证,把文字语言转化为几何语言和数学语言,∴∠1=∠3〔等量代换〕∴ a∥b〔同位角相等,两直线平行〕引导学生把“内错角相等,两直线平行〞改写为“两条直线被条直线所截,如果同旁内角互补,那么这两条直线平行〞,通过改写,让学生写出求证:要求学生用两种方法进行几何书写。
总结证明的一般步骤:(1)根据题意画出图形(假设已给出图形,则可省略);(2)根据题设和结论,结合图形,写出和求证;(3)经过分析,找出推出求证的途径,写出证明过程;(4)检查证明过程是否正确完善. 学生通过上述例子,再模仿改写和写求证,并用两种方法去证明,让学生感知学习过的知识后立刻运用标准学生的书写。
八年级数学上册7.3平行线的判定教学设计 (新版北师大版)
八年级数学上册7.3平行线的判定教学设计(新版北师大版)一. 教材分析《八年级数学上册7.3平行线的判定》这一节内容主要让学生掌握平行线的判定方法,理解平行线的性质,并能运用这些方法解决实际问题。
教材通过丰富的图片和实例,引导学生探索平行线的判定规律,培养学生的逻辑思维能力和空间想象能力。
二. 学情分析学生在学习这一节内容时,已具备了一定的数学基础,如掌握了直线、射线、线段的性质,具备了一定的观察和分析能力。
但部分学生对于平行线的概念和判定方法可能还较为模糊,因此,在教学过程中,教师需要关注这部分学生的学习需求,通过具体实例和操作,帮助他们理解和掌握平行线的判定方法。
三. 教学目标1.让学生掌握平行线的判定方法,理解平行线的性质。
2.培养学生观察、分析、解决问题的能力。
3.培养学生的逻辑思维能力和空间想象能力。
四. 教学重难点1.平行线的判定方法。
2.平行线性质的应用。
五. 教学方法1.采用问题驱动法,引导学生主动探索平行线的判定方法。
2.利用多媒体辅助教学,展示实例和操作过程,增强学生的直观感受。
3.采用小组合作学习,让学生在讨论中巩固知识,提高解决问题的能力。
4.注重个体差异,针对不同学生提供个性化的指导。
六. 教学准备1.准备相关的多媒体教学课件。
2.准备实例和练习题。
3.准备教学用具,如直尺、三角板等。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的平行线现象,如楼梯、轨道等,引导学生关注平行线,激发学生的学习兴趣。
2.呈现(10分钟)讲解平行线的定义和性质,通过实例和动画演示,让学生直观地理解平行线的概念。
3.操练(10分钟)让学生分组讨论,尝试找出判定两条直线平行的方法。
教师巡回指导,给予个别学生必要的帮助。
4.巩固(10分钟)出示一些判断题和练习题,让学生运用所学知识解决问题,巩固对平行线判定方法的理解。
5.拓展(10分钟)引导学生思考:在实际生活中,平行线有哪些应用?如何运用平行线的性质解决实际问题?6.小结(5分钟)对本节课的内容进行总结,强调平行线的判定方法和性质,提醒学生注意在实际问题中的应用。
北师大版八年级数学上册7.3平行线的判定说课稿
(一)导入新课
为了快速吸引学生的注意力和兴趣,我计划采用以下导入方式:首先,我会向学生展示一些实际生活中的图片,如楼梯、铁路等,让学生观察并提问它们与平行线有什么关系;然后,我会引导学生思考平行线的判定方法,并告诉他们本节课我们将学习一种新的判定方法。这样的导入方式能够激发学生的学习兴趣,使他们能够主动参与到学习过程中。
(二)媒体资源
为了辅助教学,我将使用多媒体课件、实物模型和几何画板等资源。多媒体课件能够提供丰富的信息和图像,帮助学生直观地理解平行线的判定过程;实物模型能够让学生亲自操作和观察,增强他们的实践能力;几何画板能够动态展示平行线的判定过程,帮助学生更好地理解知识点。这些媒体资源在教学中的作用是提供直观、生动的学习材料,激发学生的学习兴趣,提高他们的学习效果。
(二)教学反思
在教学过程中,我预见到可能出现的问题或挑战包括学生对判定方法的理解不够深入、运用不够熟练,以及一些学生可能对证明过程感到困惑。为了应对这些问题,我将提供丰富的实例和练习题,通过引导学生观察、操作和推理,帮助他们深入理解判定方法,并加强课后辅导和个别指导,帮助学生克服学习障碍。
课后,我将通过收集学生的作业、课堂表现和参与度等评估教学效果。根据评估结果,我将针对学生的掌握情况和学习问题,制定具体的反思和改进措施,如调整教学方法、提供额外的辅导资源,或者重新设计教学活动和练习题,以提高教学效果和学生的学习成果。
北师大版八年级数学上册7.3平行线的判定说课稿
一、教材分析
(一)内容概述
本节课的教学内容是北师大版八年级数学上册7.3平行线的判定。这部分内容在整个课程体系中处于八年级上册,是学生学习了直线、射线、线段以及垂线等知识的基础上进行学习的。本节课的主要知识点包括同位角相等、内错角相等、同旁内角互补以及平行线的判定方法。
最新北师大版八年级数学上册《平行线的判定》教学设计(精品教案)
最新北师大版八年级数学上册《平行线的判定》教学设计(精品教案)在这个环节中,教师可以采用学生分组探索的方式,让学生通过讨论和推理来证明平行线的判定方法。
例如,对于上述证明,可以让学生分组讨论,通过画图和推理来证明这个命题。
教师在这个过程中可以引导学生,提出问题,帮助学生理清思路,最终得出正确的结论。
第三环节:反馈练活动内容:让学生通过练来巩固所学的知识和技能。
例如,可以让学生完成一些练题,或者让学生自己设计一些练题,来检验自己的理解和掌握程度。
第四环节:反思与小结活动内容:在这个环节中,教师可以让学生回顾本节课的研究内容,总结所学的知识和技能,同时也可以让学生提出自己的疑问和问题,以便教师在下一节课中进行解答和讲解。
第七章:平行线的证明3.平行线的判定一、学生知识状况分析在研究本课之前,学生已经熟悉平行线的判定方法,并具备初步的逻辑推理能力和对证明步骤的认识,这为今天的研究奠定了一个良好的基础。
此外,在以往的几何研究中,学生也已经熟悉了动手操作、猜想、说理、讨论等活动形式,因此本节课的教学任务是帮助学生从简单的几何证明入手,逐步形成一个初步的、比较清晰的证明思路。
二、教学任务分析本节课的教学目标包括:1.熟练掌握平行线的判定公理及定理;2.能对平行线的判定进行灵活运用,并把它们应用于几何证明中;3.通过学生画图、讨论、推理等活动,发展学生的逻辑推理能力,逐步掌握规范的推理论证格式。
三、教学过程分析本节课的设计分为四个环节:情景引入——探索平行线判定方法的证明——反馈练——反思与小结。
第一环节:情景引入在这个环节中,教师通过对话的形式回顾平行线的判定方法,为下一步顺利地引出新课埋下伏笔。
第二环节:探索平行线判定方法的证明在这个环节中,教师可以采用学生分组探索的方式,让学生通过讨论和推理来证明平行线的判定方法。
教师在这个过程中可以引导学生,提出问题,帮助学生理清思路,最终得出正确的结论。
第三环节:反馈练在这个环节中,教师让学生通过练来巩固所学的知识和技能,以检验自己的理解和掌握程度。
北师大版数学八年级上册《3 平行线的判定》教学设计2
北师大版数学八年级上册《3 平行线的判定》教学设计2一. 教材分析《北师大版数学八年级上册》第三单元主要讲述平行线的判定。
本节课的内容是判定两条直线是否平行。
通过本节课的学习,学生能理解和掌握平行线的判定方法,并能够运用判定方法解决一些实际问题。
教材通过丰富的情境图片和实际问题,激发学生的学习兴趣,引导学生通过观察、思考、探索和交流,获得平行线的判定方法。
二. 学情分析八年级的学生已经学习了直线、射线、线段等基础知识,对图形的认识有一定的基础。
但是,对于平行线的判定,学生可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的认知基础,通过引导和帮助,让学生理解和掌握平行线的判定方法。
三. 教学目标1.知识与技能目标:理解和掌握平行线的判定方法,能够运用判定方法判断两条直线是否平行。
2.过程与方法目标:通过观察、思考、探索和交流,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的合作意识和问题解决能力。
四. 教学重难点1.教学重点:平行线的判定方法。
2.教学难点:如何判断两条直线是否平行。
五. 教学方法1.情境教学法:通过情境图片和实际问题,激发学生的学习兴趣,引导学生参与课堂活动。
2.启发式教学法:通过提问和引导,启发学生思考和探索,培养学生的逻辑思维能力。
3.合作学习法:学生进行小组讨论和合作,培养学生的合作意识和问题解决能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,包括情境图片、例题和练习题等。
2.教学素材:准备一些相关的情境图片和实际问题,用于导入和巩固环节。
3.练习题:准备一些练习题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)利用情境图片和生活实际问题,引导学生观察和思考,激发学生的学习兴趣。
例如,展示一些道路、铁路等图片,让学生观察其中的平行线。
2.呈现(10分钟)通过PPT呈现平行线的判定方法,结合例题进行讲解。
北师大版数学八年级上册《3 平行线的判定》教案2
北师大版数学八年级上册《3 平行线的判定》教案2一. 教材分析《3 平行线的判定》是北师大版数学八年级上册的一章,主要介绍了平行线的判定方法。
本章内容是学生进一步掌握直线与直线、直线与平面之间的位置关系,对于学生空间想象能力的培养和逻辑思维能力的提高具有重要意义。
本节课的内容是判定两条直线是否平行,通过学习,学生能够掌握平行线的判定方法,并能够运用这些方法解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了直线与直线的相交和垂直关系,对于直线与直线的位置关系有一定的了解。
但是,对于如何判定两条直线是否平行,学生可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生通过观察、思考、操作等活动,自主探索平行线的判定方法,提高学生的空间想象能力和逻辑思维能力。
三. 教学目标1.知识与技能:使学生掌握平行线的判定方法,能够运用这些方法解决实际问题。
2.过程与方法:通过观察、思考、操作等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.教学重点:平行线的判定方法。
2.教学难点:如何引导学生自主探索平行线的判定方法。
五. 教学方法采用问题驱动法、观察操作法、小组合作法等教学方法。
通过设置问题情境,引导学生观察、思考、操作,激发学生的学习兴趣,培养学生的空间想象能力和逻辑思维能力。
同时,学生进行小组合作,培养学生的团队合作意识和自主学习能力。
六. 教学准备1.教具准备:直尺、三角板、多媒体设备等。
2.学具准备:学生每人准备一套直尺、三角板。
七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾直线与直线的相交和垂直关系,为新课的学习做好铺垫。
呈现(10分钟)教师通过多媒体展示几组图形,让学生观察并思考:如何判断这两条直线是否平行?引导学生初步感知平行线的判定方法。
操练(10分钟)教师学生进行小组合作,让学生通过实际操作,自主探索平行线的判定方法。
北师大版初二数学上册7.3平行线的判定.3 平行线的判定 教学设计
第七章平行线的证明7.3平行线的判定一、学情分析学生技能基础:在学习本课之前,学生对平行线的判定已经比较熟悉,也有了初步的逻辑推理能力,对简单的证明步骤有较清楚的认识,这为今天的学习奠定了一个良好的基础.活动经验基础:在以往的几何学习中,学生对动手操作、猜想、说理、讨论等活动形式比较熟悉,本节课主要采取学生分组交流、讨论等学习方式,学生已经具备必要的基础.二、教学目标1.熟练掌握平行线的判定公理及定理;2.能对平行线的判定进行灵活运用,并把它们应用于几何证明中.通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力,逐步掌握规范的推理论证格式.3.通过学生画图、讨论、推理等活动,给学生渗透化归思想和分类思想.三、教学重点难点教学重点:证明的基本步骤和书写格式。
教学难点:证明的逻辑推理的思想。
四、教学过程(一)情景引入活动内容:回顾两直线平行的判定方法师:前面我们探索过直线平行的条件.大家来想一想:两条直线在什么情况下互相平行呢?生1:在同一平面内,不相交的两条直线就叫做平行线.生2:两条直线都和第三条直线平行,则这两条直线互相平行.生3:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.师:很好.这些判定方法都是我们经过观察、操作、推理、交流等活动得到的.上节课我们谈到了要证实一个命题是真命题.除公理、定义外,其他真命题都需要通过推理的方法证实.我们知道:“在同一平面内,不相交的两条直线叫做平行线”是定义.“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”是公理.那其他的三个真命题如何证实呢?这节课我们就来探讨.(二)探索平行线判定方法的证明活动内容:① 证明:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 师:这是一个文字证明题,需要先把命题的文字语言转化成几何图形和符号语言.所以根据题意,可以把这个文字证明题转化为下列形式:如图,已知,∠1和∠2是直线a 、b 被直线c 截出的同旁内角,且∠1与∠2互补,求证:a ∥b .如何证明这个题呢?我们来分析分析.师生分析:要证明直线a 与b 平行,可以想到应用平行线的判定公理来证明.这时从图中可以知道:∠1与∠3是同位角,所以只需证明∠1=∠3,则a 与b 即平行.因为从图中可知∠2与∠3组成一个平角,即∠2+∠3=180°,所以:∠3=180°-∠2.又因为已知条件中有∠2与∠1互补,即:∠2+∠1=180°,所以∠1=180°-∠2,因此由等量代换可以知道:∠1=∠3.师:好.下面我们来书写推理过程,大家口述,老师来书写.(在书写的同时说明:符号“∵”读作“因为”,“∴”读作“所以”)证明:∵∠1与∠2互补(已知) ∴∠1+∠2=180°(互补定义)∴∠1=180°-∠2(等式的性质)∵∠3+∠2=180°(平角定义)∴∠3=180°-∠2(等式的性质)∴∠1=∠3(等量代换)∴a ∥b (同位角相等,两直线平行)这样我们经过推理的过程证明了一个命题是真命题,我们把这个真命题称为:直线平行的判定定理.这一定理可简单地写成:同旁内角互补,两直线平行.注意:(1)已给的公理,定义和已经证明的定理以后都可以作为依据.用来证明新定理.(2)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是定义、公理,已经学过的定理.在初学证明时,要求把根据写在每一步推理后面的括号内.② 证明:内错角相等,两直线平行.师:小明用下面的方法作出了平行线,你认为他的作法对吗?为什么?(见相关动画) 123a b c生:我认为他的作法对.他的作法可用上图来表示:∠CFE=45°,∠BEF=45°.因为∠BEF与∠FEA组成一个平角,所以∠FEA=180°-∠BEF=180°-45°=135°.而∠CFE 与∠FEA是同旁内角.且这两个角的和为180°,因此可知:CD∥A B.师:很好.从图中可知:∠CFE与∠FEB是内错角.因此可知:“内错角相等,两直线平行”是真命题.下面我们来用规范的语言书写这个真命题的证明过程.师生分析:已知,∠1和∠2是直线a、b被直线c截出的内错角,且∠1=∠2.求证:a∥b证明:∵∠1=∠2(已知)∠1+∠3=180°(平角定义)∴∠2+∠3=180°(等量代换)∴∠2与∠3互补(互补的定义)∴a∥b(同旁内角互补,两直线平行).这样我们就又得到了直线平行的另一个判定定理:内错角相等,两直线平行.③借助“同位角相等,两直线平行”这一公理,你还能证明哪些熟悉的结论呢?生1:已知,如图,直线a⊥c,b⊥c.求证:a∥b.证明:∵a⊥c,b⊥c(已知)∴∠1=90°∠2=90°(垂直的定义)∴∠1=∠2(等量代换)∴b∥a(同位角相等,两直线平行)生2:由此可以得到:“如果两条直线都和第三条直线垂直,那么这两条直线平行”的结论.师:同学们讨论得真棒.下面我们通过练习来熟悉掌握直线平行的判定定理.(三)反馈练习活动内容:课本随堂练习(四)学生反思与课堂小结活动内容:①这节课我们主要探讨了平行线的判定定理的证明.同学们来归纳一下完成下表:②由角的大小关系来证两直线平行的方法,再一次体现了“数”与“形”的关系;而应用这些公理、定理时,必须能在图形中准确地识别出有关的角.③注意:证明语言的规范化.推理过程要有依据.(五)课外作业习题7.4第1,2,3题四、教学反思平行线是众多平面图形与空间图形的基本构成要素之一,它主要借助角来研究两条直线之间的位置关系,即通过两条直线与第三条直线相交所成的角来判定两条直线平行与否,在教学中,要紧紧围绕这些角(同位角、内错角、同旁内角)与平行线之间的关系展开。
八年级数学上册7.3平行线的判定教案(新版)北师大版
课题:7.3 平行线的判定教学目标:1.初步了解证明的基本步骤和书写格式.2.会根据基本数学事实“同位角相等,两直线平行”来证明“内错角相等,两直线平行”,“同旁内角互补,两直线平行”,并能简单应用这些结论.3.在证明过程中,发展初步的演绎推理能力.教学重点与难点:重点:会根据基本数学事实“同位角相等,两直线平行”来证明“内错角相等,两直线平行”,“同旁内角互补,两直线平行”,并能简单应用这些结论.难点:证明的基本步骤和书写格式.课前准备:制作多媒体课件.教学过程:一、复习旧知,导入新课活动内容:(展示平行的图片)回答以下问题:问题1:前面我们探索过两条直线平行的判别条件有哪些?与同伴交流一下.问题2:这些判别条件中哪一个可以作为基本事实,也就是作为证明的出发点和依据?问题3:这一基本事实的条件和结论分别是什么?问题4:你能用数学符号表示这一基本事实吗?(多媒体出示图)处理方式:学生依次回答:问题1,2,3可以让学生自由发言,适时补充,先让学生回答,进一步回答这一基本事实的条件和结论分别是什么?如何根据基本数学事实“同位角相等,两直线平行”如.完成后进一步共同学习书写符号,从而引导出新课,如何根据基本数学事实用“同位角相等,两直线平行”来证明“内错角相等,两直线平行”,“同旁内角互补,两直线平行”,以及如何应用这些结论呢?本节课让我们共同探讨“平行线的判定”.(教师板书:7.3平行线的判定)设计意图:复习引人,设置问题串层层递进,激发学生的学习热情,顺利引入新课.问题引人为本节课学习奠定基础.二、探究学习,获取新知活动内容1:证明“内错角相等,两直线平行.” 利用两个相同的三角板画平行线(多媒体出示)完成以下探究问题,并与同伴交流.想一想:我们可以用这样的方法做出平行线,你能说说其中的道理吗?(生:内错角相等,两直线平行)探究提示:1.请根据题意画出图形.(学生展示)2.这个命题的条件、结论分别是什么?写出已知和求证? 3.如何证明这一命题是真命题?与同伴交流.处理方式:师让生根据题意画出符合题意的图形,(生可能有些困难)师可以适当点拨,同时借助实物投影展示其他学生的画图情况.再让学生根据命题的条件和结论写出已知和求证,然后进行证明.证明:∵∠1=∠2(已知),∠1=∠3(对顶角相等), ∴∠2=∠3(等量代换).∴a ∥b (同位角相等,两直线平行).(多媒体出示) 4.既然是真命题,我们就称它为定理,因此“内错角相等,两直线平行”就可以作为证明其它命题是真命题的依据.你能用数学符号来表示这个定理吗?处理方式:一名学生板演证明过程,其他学生在练习本上完成.教师巡视指导学习有困难的学生.学生完成后,借助展示学生的证明过程,及时给予评价,同时强调解题书写格式,.活动内容2:证明“同旁内角互补,两直线平行.” (多媒体出示) 探究提示:(1)画出符合题意的图形. (2)写出已知、求证. (3)写出证明过程.处理方式:学生根据提示完成命题的证明,一名同学板演,其他学生在练习本上完成.教师巡视适时引导点拨学习有困难的学生.学生板演完成后,教师组织学生进行评价,及时给予表扬及鼓励.同时借助实物投影展示学生的不同证明过程.证明:∵∠1与∠2互补(已知),∴∠1+∠2=180°(互补的定义).∴∠1=180°-∠2(等式的性质). ∵∠3+∠2=180°(平角的定义), ∴∠3=180°-∠2(等式的性质). ∴∠1=∠3(等量代换).∴a ∥b (同位角相等,两直线平行).(多媒体出示). 探究:哪位同学还有不同的证法? 证明:∵∠1与∠2互补(已知),∴∠1+∠2=180°(互补的定义). ∴∠1=180°-∠2(等式的性质). ∵∠3+∠2=180°(平角的定义), ∴∠3=180°-∠2(等式的性质). ∴∠1=∠3(等量代换).∴a ∥b (内错角相等,两直线平行). (多媒体出示)处理方式:处理本题的方法可以利用以上两种判别方法,不同的学生采用不同的方法去板演,通过以上的证明过程我们可以看出“同旁内角互补,两直线平行”也是真命题,因此师强调这个真命题也可以作为证明其它命题是真命题的依据.用数学符号来表示这个定(学生完成).a bc12设计意图:让学生经历利用基本事实来证明命题是真命题的过程,使学生体会数学证明书写的规范性,并能够结合图形正确的用数学符号表示证明的过程. 在证明过程中,发展初步的演绎推理能力.三、变式训练,应用新知 训练题组一、以抢答的形式完成利用哪一个公理或定理来判断两直线平行的判定?训练题组二、1.想一想:我们可以用以下方法做出平行线,你能说说其中的道理吗?2.下列推理是否正确?为什么?(1)如图,∵∠1=∠2, ∴ l 1∥l 2; (2)如图,∵∠4+∠5=180°, ∴l 3∥l 4; (3)如图,∵∠2=∠4, ∴l 3∥l 4; (4)如图,∵∠3+∠6=180°, ∴l 1∥l 23.蜂房的顶部由三个全等的四边形围成,每个四边形的形状如图所示,其中∠α=109°28′,∠β=70°32′.试确定这个四边形对边的位置关系,并证明你的结论.a bc12 a bc 1 2a bc1 2处理方式:习题1是采用教具的演示的方法由学生口述完成,习题2直接利用公理和定理由学生抢答完成,习题3利用角度的数量关系判断两直线的关系,可采用学生板演的形式进行.设计意图:通过练习巩固所学知识,灵活运用证明格式方法和步骤.通过生活中的身边的事例抽象出数学模型提高学生学习数学的兴趣.四、回顾思考,知识升华通过本节课的学习,你有什么收获?与大家分享.处理方式:学生独立思考后,向同位说;再让学生代表发言,其他学生补充.最后教师归纳总结,完善只是结构.设计意图:归纳总结本节课知识点,使学生进一步明确本节课所学的知识,同时使学生对本节课的知识形成体系,便于学生理解,掌握与记忆.充分发挥学生的主体作用,锻炼了学生分析、归纳、概括能力和语言表述能力.五、达标检测,反馈新知【师】为了检查我们本节课所学的知识是否掌握了,我们来完成下面检测题:基础题:1.已知:如图,直线a,b被直线c所截,且∠1+∠2=180°.求证:a∥b.你有几种证明方法?2.已知:如图,点D,E分别在AB和AC上,CD平分∠ACB,∠DCB =40°,∠AED=80°求证:DE∥BC.第2题 第3题3.如图,木工师傅经常用一把直角尺画出两条平行的直线a 与b ,你知道这样做的道理吗?选做题:4.如图,已知∠1=30°,∠B =60°,AB ⊥AC . (1)计算:∠DAB +∠B ; (2)AD 与BC 平行吗?设计意图:检验学生对本节所学的理解能力和运用程度,分层设置一组课堂反馈检测题,要求学生完成必基础题后,可以有选择的去做选做题,让不同学生得到不同发展,体会到不一样的成功和收获,增强了学生学习数学的信心.六、分层作业,强化目标必做题:课本 第174页 习题7.4 第2题. 选做题:课本 第184页 复习题 第1题.设计意图:让学生巩固所学内容并进行自我检验与评价,既面向全体学生,又因材施教,照顾到学有余力的学生,体现分层教学的原则. 板书设计:1ABCDAD B EC。
北师大版八年级上册数学 7.3 平行线的判定精选教案2
七、课外作业(巩固)
1、必做题:①整理导学案并完成下一节课导学案中的预习案。
②完成《学练优》中的本节内容。
2、思考题:
教学反思:
1、教材P173页,随堂练习
2、习题7.4
1,2,4
四、拓展延伸(提高)
习题7.4数学理解3
五、收获盘点(升华)
证明命题的一般步骤:(1)根据题意画出图形(若已给出图形,则可省略)
(2)根据题设和结论,结合图形,写出已知和求证;(3)完善。
辅助教学:多媒体
教学内容(教学过程)
一、自主预习(感知)
1、七年级时我们学过两条直线平行的哪些判别条件?
2、自学教材P172-173页内容
二、合作探究(理解)
利用同位角相等,两直线平行这个基本事实,证明以下两个命题:
1、内错角相等,两直线平行
2、同旁内角互补,两直线平行
3、教材P173页想一想
三、轻松尝试(运用)
7.3平行线的判定
学科
数学
年级
八年级
授课班级
主备教师
参与教师
课型
新授课
课题
§7.3平行线的判定
备课组长审核签名
教研组长审核签名
教学目标:1、熟练证明的基本步骤和书写格式;
2、会根据“同位角相等,两直线平行”(公理)证明“同旁内角互补,两直线平行”“内错角相等,两直线平行”(定理),并能应用这些结论。
133.北师大版八年级数学上册7.3 平行线的判定(教案)
7.3平行线的判定教学目标【知识与能力】1.了解并掌握平行线的判定公理和定理;2.了解证明的一般步骤.【过程与方法】通过经历利用平行线的第一个判定定理简单论证平行线的另两个判定定理的过程,进一步掌握平行线的判定方法,领悟归纳和转化数学思想方法.【情感态度价值观】通过判定定理的证明、推导,进一步发展空间观念,培养逻辑思维能力.教学重难点【教学重点】平行线判定定理的推导【教学难点】判定定理的证明课前准备课件.教学过程第一环节:情景引入活动内容:回顾两直线平行的判定方法师:前面我们探索过直线平行的条件.大家来想一想:两条直线在什么情况下互相平行呢?生1:在同一平面内,不相交的两条直线就叫做平行线.生2:两条直线都和第三条直线平行,则这两条直线互相平行.生3:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.师:很好.这些判定方法都是我们经过观察、操作、推理、交流等活动得到的.上节课我们谈到了要证实一个命题是真命题.除公理、定义外,其他真命题都需要通过推理的方法证实.我们知道:“在同一平面内,不相交的两条直线叫做平行线”是定义.“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”是公理.那其他的三个真命题如何证实呢?这节课我们就来探讨.活动目的:回顾平行线的判定方法,为下一步顺利地引出新课埋下伏笔.教学效果:由于平行线的判定方法是学生比较熟悉的知识,教师通过对话的形式,可以使学生很快地回忆起这些知识.第二环节:探索平行线判定方法的证明活动内容:① 证明:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 师:这是一个文字证明题,需要先把命题的文字语言转化成几何图形和符号语言.所以根据题意,可以把这个文字证明题转化为下列形式:如图,已知,∠1和∠2是直线a 、b 被直线c 截出的同旁内角,且∠1与∠2互补,求证:a ∥b . 如何证明这个题呢?我们来分析分析. 师生分析:要证明直线a 与b 平行,可以想到应用平行线的判定公理来证明.这时从图中可以知道:∠1与∠3是同位角,所以只需证明∠1=∠3,则a 与b 即平行. 因为从图中可知∠2与∠3组成一个平角,即∠2+∠3=180°,所以:∠3=180°-∠2.又因为已知条件中有∠2与∠1互补,即:∠2+∠1=180°,所以∠1=180°-∠2,因此由等量代换可以知道:∠1=∠3.师:好.下面我们来书写推理过程,大家口述,老师来书写.(在书写的同时说明:符号“∵”读作“因为”,“∴”读作“所以”)证明:∵∠1与∠2互补(已知) ∴∠1+∠2=180°(互补定义)∴∠1=180°-∠2(等式的性质)∵∠3+∠2=180°(平角定义)∴∠3=180°-∠2(等式的性质)∴∠1=∠3(等量代换)∴a ∥b (同位角相等,两直线平行)这样我们经过推理的过程证明了一个命题是真命题,我们把这个真命题称为:直线平行的判定定理.这一定理可简单地写成:同旁内角互补,两直线平行.注意:(1)已给的公理,定义和已经证明的定理以后都可以作为依据.用来证明新定理.(2)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是定义、公理,已经学过的定理.在初学证明时,要求把根据写在每一步推理后面的括号内. ② 证明:内错角相等,两直线平行.师:小明用下面的方法作出了平行线,你认为他的作法对吗?为什么?(见相关动画)生:我认为他的作法对.他的作法可用上图来表示:∠CFE =45°,∠BEF =45°.因为∠BEF 与∠FEA 组成一个平角,所以∠FEA =180°-∠BEF =180°-45°=135°.而∠CFE 与∠FEA 是同旁内角.且这两个角的和为180°,因此可知:CD ∥A B .师:很好.从图中可知:∠CFE 与∠FEB 是内错角.因此可知:“内错角相等,两直线平行”是真命题.下面我们来用规范的语言书写这个真命题的证明过程.师生分析:已知,∠1和∠2是直线a 、b 被直线c 截出的内错角,且∠1=∠2.求证:a ∥b123a b c证明:∵∠1=∠2(已知)∠1+∠3=180°(平角定义)∴∠2+∠3=180°(等量代换)∴∠2与∠3互补(互补的定义)∴a∥b(同旁内角互补,两直线平行).这样我们就又得到了直线平行的另一个判定定理:内错角相等,两直线平行.③借助“同位角相等,两直线平行”这一公理,你还能证明哪些熟悉的结论呢?生1:已知,如图,直线a⊥c,b⊥c.求证:a∥b.证明:∵a⊥c,b⊥c(已知)∴∠1=90°∠2=90°(垂直的定义)∴∠1=∠2(等量代换)∴b∥a(同位角相等,两直线平行)生2:由此可以得到:“如果两条直线都和第三条直线垂直,那么这两条直线平行”的结论.师:同学们讨论得真棒.下面我们通过练习来熟悉掌握直线平行的判定定理.活动目的:通过对学生熟悉的平行线判定的证明,使学生掌握平行线判定公理推导出的另两个判定定理,并逐步掌握规范的推理格式.教学效果:由于学生有了以前学习过的相关知识,对几何证明题的格式有所了解,今天的学习只不过是将原来的零散的知识点以及学生片面的认识进行归纳,学生的认识更提高一步.第三环节:反馈练习活动内容:课本第231页的随堂练习第一题活动目的:巩固本节课所学知识,让教师能对学生的状况进行分析,以便调整前进.教学效果:由于此题只是简单地运用到平行线的判定的三个定理(公理),因此,学生都能很快完成此题.第四环节:学生反思与课堂小结活动内容:①这节课我们主要探讨了平行线的判定定理的证明.同学们来归纳一下完成下表:②由角的大小关系来证两直线平行的方法,再一次体现了“数”与“形”的关系;而应用这些公理、定理时,必须能在图形中准确地识别出有关的角.③注意:证明语言的规范化.推理过程要有依据.活动目的:通过对平行线的判定定理的归纳,使学生的认识有进一步的升华,再一次体会证明格式的严谨,体会到数学的严密性.教学效果:学生充分认识到证明步骤的严密性,对平行线判定的三个定理有了更进一步的认识.课后作业:课本第232页习题6.4第1,2,3题思考题:课本第233页习题6.4第4题(给学有余力的同学做)教学反思平行线是众多平面图形与空间图形的基本构成要素之一,它主要借助角来研究两条直线之间的位置关系,即通过两条直线与第三条直线相交所成的角来判定两条直线平行与否,在教学中,要紧紧围绕这些角(同位角、内错角、同旁内角)与平行线之间的关系展开。
北师大版八年级上册数学7.3《平行线的判定》说课稿
北师大版八年级上册数学7.3《平行线的判定》说课稿一. 教材分析北师大版八年级上册数学7.3《平行线的判定》这一节的内容,是在学生已经掌握了直线、射线、线段的基本概念,以及垂线的性质和判定基础上进行讲解的。
本节课的主要内容是让学生掌握平行线的判定方法,通过判定两个直线是否平行,从而进一步理解和掌握平行线的性质。
教材通过大量的生活中的实例,引导学生探究并发现平行线的判定方法,培养学生的观察能力、思考能力和动手能力。
二. 学情分析学生在学习这一节内容时,已经具备了一定的数学基础,对直线、射线、线段等基本概念有一定的了解,同时,他们也已经学习了垂线的性质和判定,这些都为本节课的学习打下了基础。
然而,学生对于平行线的判定方法可能还没有直观的认识,因此,在教学过程中,我将会以学生已知的知识为基础,引导学生通过观察、思考、动手等方式,去发现和理解平行线的判定方法。
三. 说教学目标1.知识与技能目标:让学生掌握平行线的判定方法,能够运用判定方法判断两条直线是否平行。
2.过程与方法目标:通过观察、思考、动手等方式,培养学生的观察能力、思考能力和动手能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们积极思考、勇于探索的精神。
四. 说教学重难点教学重点:平行线的判定方法。
教学难点:如何引导学生发现和理解平行线的判定方法。
五. 说教学方法与手段在这一节课中,我将采用讲授法、引导发现法、动手操作法等教学方法。
同时,我还会运用多媒体课件、实物模型等教学手段,帮助学生更好地理解和掌握平行线的判定方法。
六. 说教学过程1.导入:通过展示一些生活中的实例,让学生观察并思考,这些实例中的直线是否平行。
从而引出本节课的主题——平行线的判定。
2.探究:引导学生分组讨论,让他们通过观察、思考、动手操作等方式,去发现和总结平行线的判定方法。
3.讲解:在学生探究的基础上,我对平行线的判定方法进行讲解,让学生理解并掌握判定方法。
北师大版八年级上册 第七章 7.3 平行线的判定 教案
7.3平行线的判定(教案)教学目标知识与技能:会根据基本事实“同位角相等,两直线平行”证明平行线的两个判定定理,并能简单应用这些结论.过程与方法:经历证明的基本步骤,熟悉正确的书写格式,感受几何中推理的严谨性,发展初步的演绎推理能力.情感态度与价值观:培养简单分析推理的能力,关注证明意识,积极地参与合作,体会几何学的应用价值.教学重难点【重点】理解和掌握由“同位角相等,两直线平行”来证明“同旁内角互补,两直线平行”及“内错角相等,两直线平行”,并进行简单应用.【难点】对公理和定理的理解和应用.教学准备【教师准备】预想学生学习过程中可能出现的困难.【学生准备】复习公理、证明、定理等概念的含义.教学过程一、导入新课导入一:师:同学们,通过上一节课的学习,你能说一说我们如何判断一个命题是真命题吗?生:用演绎推理的方法进行判断,也就是证明.师:如何进行证明?与同伴交流.生:用公理、定义和已经证明为真的命题来证明.师:前面我们探索过两条直线平行的哪些判别条件?与同伴交流一下.生1:同位角相等,两直线平行.生2:内错角相等,两直线平行.生3:同旁内角互补,两直线平行.师:其中哪一个条件可以作为基本事实,也就是作为证明的出发点和依据?生:同位角相等,两直线平行.师:这一基本事实的条件和结论分别是什么?生:条件是同位角相等,结论是两直线平行.师:你能用数学符号表示这一基本事实吗?(多媒体出示图)生:∵∠1=∠2,∴a∥b.师:如何根据基本事实“同位角相等,两直线平行”来证明“内错角相等,两直线平行”“同旁内角互补,两直线平行”,以及如何应用这些结论呢?本节课让我们共同探讨“平行线的判定”.(教师板书:3平行线的判定)[设计意图]复习引入,设置悬念把学生的心带回课堂,激发学生的学习热情,顺利引入新课.问题引入为本节课的学习奠定基础.导入二:1.以前我们学过平行线的画法,用三角板和直尺画出.(学生动手完成)【问题】(1)上面画图的依据是什么?(2)判断两直线平行还有哪些方法?画出图形,并用符号语言表示几种判断方法.【课件展示】公理:同位角相等,两直线平行.数学符号表示:∵∠1=∠2,∴a∥b.[处理方式]学生先动手画图,再回答,同时书写符号语言,体会文字、图形、符号三者之间的紧密关系,对比课件的书写纠正,教师强调书写格式的规范性.[设计意图]通过动手操作画图,符号的书写,回顾学生比较熟悉的平行线的判定方法,既复习了证明的相关知识,又引起了学生对两直线平行的判定的思考.2.上节课我们学到了要证明一个命题是真命题,除公理、定义外,其他真命题都需要通过推理的方法证实.下面我们就用“同位角相等,两直线平行”这个基本事实,来证明两直线平行的两个判定定理.(板书课题)二、新知构建(1)、证明“内错角相等,两直线平行”思路一(多媒体出示)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简述为:内错角相等,两直线平行.师:同学们,请根据题意画出符合题意的图形.[处理方式]学生理解题意,并画出符合题意的图形.教师让一名学生在黑板上画图,如图所示,同时借助实物投影展示其他学生的画图情况.师:这个命题的条件与结论分别是什么?生:条件是内错角相等,结论是两直线平行.师:如何证明这一命题是真命题?与同伴交流.生:利用基本事实“同位角相等,两直线平行”来证明.师:要想证明一个命题是真命题,我们首先应该结合图形、命题的条件和结论写出已知与求证.【多媒体展示】已知:如图所示,∠1和∠2是直线a,b被直线c截出的内错角,且∠1=∠2.求证:a∥b.[处理方式]一名学生板演证明过程,其他学生在练习本上完成.教师巡视指导学习有困难的学生.学生完成后,借助实物投影展示学生的证明过程,及时给予评价,同时强调解题书写格式.证明过程展示:证明:∵∠1=∠2(已知),∠1=∠3(对顶角相等),∴∠2=∠3(等量代换).∴a∥b(同位角相等,两直线平行).师:由以上证明你能得到什么结论?生:“内错角相等,两直线平行”是真命题.师:既然是真命题,我们就称它为定理,因此“内错角相等,两直线平行”就可以作为证明其他命题是真命题的依据.你能用数学符号来表示这个定理吗?生:若∠1,∠2是直线a,b被直线c所截出的内错角,且∠1=∠2,则a∥b.思路二活动内容1:证明的准备.1.根据文字画出图形;2.这个命题的条件是,结论是;3.根据图形用符号语言表示出这个命题.[处理方式]学生对于命题中条件与结论能准确回答,然后尝试画图,小组内互相交流纠正,教师巡视发现,在用符号写出条件和结论时,大部分学生会写出∠1=∠2,但却漏掉说明∠1,∠2是直线a,b被直线c所截出的内错角,结合七年级学习的内错角、同位角、同旁内角的定义进行复习说明,指出把文字转换成符号时,要根据图形进行完整的描述,引导学生正确地用符号书写条件和结论,过渡到“已知”和“求证”的书写格式.【课件展示】已知:如图所示,∠1和∠2是直线a,b被直线c所截出的内错角,且∠1=∠2.求证:a∥b.[设计意图]通过学生自己动手画图,符号的书写、纠错,结合教师的引导,体会文字、图形、符号的转换方法以及把命题的文字语言转化成几何图形和符号语言的重要性.活动内容2:证明的实践:你能写出证明过程吗?[处理方式]留出足够的时间让学生思考交流,并尝试书写证明过程,教师巡视检查,找两名学生板演,暴露学生中出现的普遍问题:(1)不写“∴”“∵”号;(2)不注明理由;(3)理由不正确.下面的学生帮助纠正之后,对比教材上的证明过程进行纠正,教师强调书写的规范格式.【课件展示】证明:∵∠1=∠2(已知),∠3=∠1(对顶角相等),∴∠3=∠2(等量代换),∴a∥b(同位角相等,两直线平行).[设计意图]通过学生的独立书写,暴露学生普遍存在的问题,再让学生帮助纠正,能引起所有学生的注意,然后与教材上的证明过程进行对比纠错,教师加以强调,强化学生证明过程书写的规范性. (2)、证明“同旁内角互补,两直线平行”师:同学们,你能根据证明“内错角相等,两直线平行”是真命题的过程来证明(多媒体出示)“两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行”(简述为:同旁内角互补,两直线平行)是真命题吗?试一试,并与同伴交流.思路一探究提示:(多媒体出示)(1)画出符合题意的图形.(2)写出已知、求证.(3)写出证明过程.[处理方式]学生根据提示完成命题的证明,一名同学板演,其他学生在练习本上完成.教师巡视,适时引导、点拨学习有困难的学生.学生板演完成后,教师组织学生进行评价,及时给予表扬及鼓励.同时借助实物投影展示学生的不同证明过程.【板演过程展示】已知:如图所示,∠1和∠2是直线a,b被直线c截出的同旁内角,且∠1与∠2互补.求证:a∥b.证明:∵∠1与∠2互补(已知),∴∠1+∠2=180°(互补的定义),∴∠1=180°-∠2(等式的性质).∵∠3+∠2=180°(平角的定义),∴∠3=180°-∠2(等式的性质),∴∠1=∠3(等量代换),∴a∥b(同位角相等,两直线平行).师:哪位同学还有不同的证法?生:我是用定理“内错角相等,两直线平行”来证明“同旁内角互补,两直线平行”是真命题的.师:请展示你的证明过程.(实物投影)证明:∵∠1与∠2互补(已知),∴∠1+∠2=180°(互补的定义),∴∠1=180°-∠2(等式的性质).∵∠3+∠2=180°(平角的定义),∴∠3=180°-∠2(等式的性质),∴∠1=∠3(等量代换),∴a∥b(内错角相等,两直线平行).师:你同意他的做法吗?生:(齐答)同意.师:这位同学表现很棒!通过以上两位同学的证明过程我们可以看出“同旁内角互补,两直线平行”也是真命题,因此也可以作为证明其他命题是真命题的依据.请用数学符号来表示这个定理.生:∠1和∠2是直线a,b被直线c截出的同旁内角,且∠1+∠2=180°,则a∥b.[设计意图]让学生经历利用基本事实来证明命题是真命题的过程,使学生体会数学证明书写的规范性,并能够结合图形正确地用数学符号表示证明的过程.在证明过程中,发展初步的演绎推理能力.思路二活动内容1:证明的准备.(1)根据文字画出图形;(2)这个命题的条件是,结论是;(3)根据图形用符号语言表示出这个命题.[处理方式]学生回答命题的条件与结论,然后尝试独立画图,之后小组内互相交流纠正,教师帮助检查纠正,再对比课件展示,规范从“已知”和“求证”到“证明”的书写格式,强调书写的完整性.【课件展示】已知:如图所示,∠1和∠2是直线a,b被直线c所截出的同旁内角,且∠1与∠2互补.求证:a∥b.证明:∵∠1与∠2互补(已知),∴∠1+∠2=180°(互补的定义),∴∠1=180°-∠2(等式的性质).∵∠3+∠2=180°(平角的定义),∴∠3=180°-∠2(等式的性质),∴∠1=∠3(等量代换),∴a∥b(同位角相等,两直线平行).活动内容2:证明的实践:尝试书写证明过程.[处理方式]尝试书写证明过程,然后相互交流各自的做法,教师巡视检查,适时点拨,帮助后进学生完成,学生完成后及时点评,再把学生中典型的问题收集投影展示:(1)漏掉“∵”“∴”号;(2)不注明理由;(3)理由不正确;(4)步骤不完整,漏掉相关步骤.教师用红笔在投影处纠正,强调书写格式的规范性,学生对比教材上的证明过程进行对比纠正.教师再把出现的不同的证明方法:(1)利用“同位角”证明;(2)利用“内错角”证明,进行投影展示,对学生的不同表现给予点评和肯定.【课件展示】已知:如图所示,∠1和∠2是直线a,b被直线c所截出的同旁内角,且∠1与∠2互补.求证:a∥b.证明:∵∠1与∠2互补(已知),∴∠1+∠2=180°(互补的定义),∴∠1=180°-∠2(等式的性质).∵∠3+∠2=180°(平角的定义),∴∠3=180°-∠2(等式的性质).∴∠1=∠3(等量代换),∴a∥b(内错角相等,两直线平行).[设计意图]通过学生对平行线判定的证明,使学生逐步掌握证明的一般步骤,并能规范书写推理步骤和格式.证明过程展示了定理证明的思考过程和思路,在解决问题的过程中,教师参与到学生中,能及时发现问题、解决问题,同时能对后进生进行辅导,有利于分层教学;放手让学生去思考、独立完成,并且展示多种方法,有利于培养学生学习的主动性和发散思维,充分体现了学生是学习主体的教学思路.[知识拓展]应用该定理判定两直线平行时;其关键是识别哪两个角是同旁内角,因此一定要抓住同旁内角“在两条直线的内部且在截线的同旁”的特点.(3)、总结证明平行线的方法和证明命题的步骤1.通过学习,我们知道了证明平行线的多种方法,你来总结一下.(1)平行线的定义(一般很少用).(2)同位角相等,两直线平行.(3)同旁内角互补,两直线平行.(4)内错角相等,两直线平行.(5)同一平面内,垂直于同一条直线的两条直线相互平行.(6)如果两条直线都和第三条直线平行,那么这两条直线平行.[处理方式]学生稍微整理思考后,老师指名回答,其余学生补充,教师利用课件进行归纳.2.证明命题的一般步骤:(1)根据题意画出图形(若已给出图形,则可省略);(2)根据题设和结论,结合图形,写出已知和求证;(3)经过分析,找出已知推出求证的途径,写出证明过程;(4)检查证明过程是否正确完善.[设计意图]让学生对所学的知识进行归纳整理,形成系统,提升其思维层次,使数学方法系统化,并培养学生及时总结、归纳知识的好习惯.【小试身手】1.既然我们已经学习了平行线的证明方法,那我们一定会有更多的得到平行线的方法,那就利用你手上现有的三角板和直尺等工具,看谁能快速作出平行线.[处理方式]学生独立思考后,小组内展示交流,然后小组代表到讲台前展示不同的方法,同时利用平行线的不同的判定方法解释作图的道理.[设计意图]在这里尽可能地关注不同学生的解答方法,更好地展示学生的个性、多样性和创造性,给学生以鼓励,形成开放性的学习氛围,同时学生在互助学习中,彼此间互相帮助、互相启发,培养互相合作的学习习惯.2.如图所示,下列条件中能判定直线l1∥l2的是()A.∠1=∠2B.∠1=∠5C.∠1+∠3=180°D.∠3=∠5〔解析〕根据同旁内角互补,两直线平行即可判断.故选C.[解题策略]平行线的一些判定方法:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行.三、课堂总结四、课堂练习1.两条直线被第三条直线所截,若同位角相等,则这两条直线;若内错角相等,则这两条直线.答案:平行平行2.如图所示,已知∠1=70°,∠5=70°,在括号内注上适当理由.(1)∵∠1=70°,∠5=70°,∴∠1=∠5().∵∠5=∠2(),∴∠1=∠2().∴AB∥CD().(2)∵∠1=70°,∠5=70°,∴∠1=∠5().∵∠1=∠3,∠5=∠2(),∴∠3=∠2(),∴AB∥CD().答案:(1)等量代换对顶角相等等量代换同位角相等,两直线平行(2)等量代换对顶角相等等量代换内错角相等,两直线平行3.如图所示,不能使AD∥BC的是 ()A.∠1=∠DB.∠A +∠B =180°C.∠B =∠1D.∠2+∠D =180°解析:∠B =∠1,只能判定AB ∥CD.故选C.4. 如图所示,若∠1=∠2,则给出下列结论:①∠3=∠4;②AB ∥CD ;③AD ∥BC.下列说法正确的是( )A.三个都正确B.只有一个正确C.三个都不正确D.只有一个不正确解析:由∠1=∠2,可得②正确.故选B .五、板书设计3 平行线的判定同位角相等内错角相等同旁内角互补⇒两直线平行六、布置作业(1)、教材作业【必做题】教材随堂练习.【选做题】教材习题7.4第4题.(2)、课后作业【基础巩固】1.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D=∠DCEC.∠1=∠2D.∠D+∠ACD=180°2.如图所示,已知∠1=70°,要使AB∥CD,则需具备另一个条件()A.∠2=70°B.∠2=100°C.∠2=110°D.∠3=110°3.如图所示,用直尺和三角尺作直线AB,CD,从图中可知直线AB与直线CD的位置关系为.4.如图所示.(1)如果∠B=∠1,那么根据,可得AD∥BC.(2)如果∠D=∠1,那么根据,可得AB∥CD.(3)如果∠D+∠C=180°,那么根据,可得AD∥BC.5.如图所示,已知直线CE,∠1=130°,∠A=50°,求证AB∥CD.证明:∵CE是一条直线(已知),∴∠1+∠2=180°().∵∠1=130°(),∴∠2=50°().又∵∠A=50°(),∴∠2=∠A().∴AB∥CD().【能力提升】6.如图所示的是由五个同样的三角形组成的图案,三角形的三个角分别为36°,72°,72°,则图中共有对平行线.7.如图所示的是平面内一个弯形管道ABCD的拐角,∠ABC=120°,∠BCD=60°,这时说管道AB∥CD对吗?为什么?【拓展探究】8.如图所示,AC平分∠BAD,∠1=∠2.求证DC∥AB.8.如图所示,∠1和∠D互余,CF⊥DF于F,则AB与CD平行吗?说明理由.【答案与解析】1.C2.C3.平行(解析:根据同位角相等,两直线平行判断.)4.(1)同位角相等,两直线平行(2)内错角相等,两直线平行(3)同旁内角互补,两直线平行5.平角的定义已知等式的性质已知等量代换内错角相等,两直线平行6.5(解析:如图所示,∵∠BAG=∠AHE=72°,∴AB∥EI;∵∠BFC=∠FCD=72°,∴BG∥CD;∵∠CBF=∠BGA=72°,∴BC∥AH;∵∠EDI=∠CKD=72°,∴DE∥CF;∵∠AEH=∠EID=72°,∴AE∥DK.故共有5对平行线.)7.解:对.因为同旁内角互补,两直线平行.8.证明:∵AC平分∠BAD(已知),∴∠1=∠3(角平分线的定义).又∵∠1=∠2(已知),∴∠2=∠3(等量代换),∴DC∥AB(内错角相等,两直线平行).9.解:AB∥CD.理由如下:∵CF⊥DF,∴∠CFD=90°.∵∠1+∠CFD+∠2=180°,∴∠1+∠2=90°,∵∠1与∠D互余,∴∠1+∠D=90°,∴∠2=∠D,∴AB∥CD(内错角相等,两直线平行).。
2017年秋季新版北师大版八年级数学上学期7.3、平行线的判定教学案2
学科
数学
课题
7.3平行线的判定
授课教师
教学
目标
熟练掌握平行线的判定公理及定理;
重点
能对平行线的判定进行灵活运用,并把它们应用于几何证明中.
德育
目标
经历探索平行线的判定方法的过程,
难点
发展学生的逻辑推理能力,逐步掌握规范的推理论 证格式.
教学过程
课堂笔记
一、自主学习
在同一平面内,不相交的两条直线就叫做 平行线.
二、互动导学
证明:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
这是一个文字证明题,需要先把命题 的文字语言转化成几何图形和符号 语言.所以根据题意,可以 把这个文字证明题转化为下列形式:
如 图,已知,∠1和∠2是直线a、b被直线c截出的同旁内角,且∠1与∠2互补,求证:a∥b.
注意:
五拓展提升
求证:两条平行线的一对内错 角的平分线平行.写出已知 、求证(不证明),画出图形.
分析:要审清题意,并分清这个文字命题的条件和结论.然后根据条件和结论结合图形写出已知
六、反思与纠错
励志名言成功=自信+方法+勤奋
(1)已给的公理,定义和已经证明的定理 以后都可以作为依据.用来证明新定理.
(2)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是定义、公理,已经学过的定理.在初学证明时,要求把根据写在每一步推理后面的括号内.
三当堂检测
证明:内错角相等,两直线平行 .
3.巩固提高
如图,已知∠B=142°,∠BFE=38°,∠EFD=40°,∠D=140°,求证:AB∥CD.
两条直线都和第三条直线平 行,则这两条直线互相平行.
最新北师大版八年级数学上册《平行线的判定》教学设计(精品教案)
第七章平行线的证明3.平行线的判定一、学生知识状况分析学生技能基础:在学习本课之前,学生对平行线的判定已经比较熟悉,也有了初步的逻辑推理能力,对简单的证明步骤有较清楚的认识,这为今天的学习奠定了一个良好的基础.活动经验基础:在以往的几何学习中,学生对动手操作、猜想、说理、讨论等活动形式比较熟悉,本节课主要采取学生分组交流、讨论等学习方式,学生已经具备必要的基础.二、教学任务分析在以前的几何学习中,主要是针对几何概念、运算以及几何的初步证明(说理),在学生的头脑中还没有形成一个比较系统的几何证明体系,本节课安排《为什么它们平行》旨在让学生从简单的几何证明入手,逐步形成一个初步的、比较清晰的证明思路,为此,本课时的教学目标是:1.熟练掌握平行线的判定公理及定理;2.能对平行线的判定进行灵活运用,并把它们应用于几何证明中.通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力,逐步掌握规范的推理论证格式.3.通过学生画图、讨论、推理等活动,给学生渗透化归思想和分类思想.三、教学过程分析本节课的设计分为四个环节:情景引入——探索平行线判定方法的证明——反馈练习——反思与小结.第一环节:情景引入活动内容:回顾两直线平行的判定方法师:前面我们探索过直线平行的条件.大家来想一想:两条直线在什么情况下互相平行呢?生1:在同一平面内,不相交的两条直线就叫做平行线.生2:两条直线都和第三条直线平行,则这两条直线互相平行.生3:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.师:很好.这些判定方法都是我们经过观察、操作、推理、交流等活动得到的.上节课我们谈到了要证实一个命题是真命题.除公理、定义外,其他真命题都需要通过推理的方法证实.我们知道:“在同一平面内,不相交的两条直线叫做平行线”是定义.“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”是公理.那其他的三个真命题如何证实呢?这节课我们就来探讨.活动目的:回顾平行线的判定方法,为下一步顺利地引出新课埋下伏笔. 教学效果:由于平行线的判定方法是学生比较熟悉的知识,教师通过对话的形式,可以使学生很快地回忆起这些知识.第二环节:探索平行线判定方法的证明活动内容:① 证明:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.师:这是一个文字证明题,需要先把命题的文字语言转化成几何图形和符号语言.所以根据题意,可以把这个文字证明题转化为下列形式:如图,已知,∠1和∠2是直线a 、b 被直线c 截出的同旁内角,且∠1与∠2互补,求证:a∥b.如何证明这个题呢?我们来分析分析. 师生分析:要证明直线a 与b 平行,可以想到应用平行线的判定公理来证明.这时从图中可以知道:∠1与∠3是同位角,所以只需证明∠1=∠3,则a 与b 即平行.因为从图中可知∠2与∠3组成一个平角,即∠2+∠3=180°,所以:123a bc∠3=180°-∠2.又因为已知条件中有∠2与∠1互补,即:∠2+∠1=180°,所以∠1=180°-∠2,因此由等量代换可以知道:∠1=∠3.师:好.下面我们来书写推理过程,大家口述,老师来书写.(在书写的同时说明:符号“∵”读作“因为”,“∴”读作“所以”)证明:∵∠1与∠2互补(已知)∴∠1+∠2=180°(互补定义)∴∠1=180°-∠2(等式的性质)∵∠3+∠2=180°(平角定义)∴∠3=180°-∠2(等式的性质)∴∠1=∠3(等量代换)∴a∥b(同位角相等,两直线平行)这样我们经过推理的过程证明了一个命题是真命题,我们把这个真命题称为:直线平行的判定定理.这一定理可简单地写成:同旁内角互补,两直线平行.注意:(1)已给的公理,定义和已经证明的定理以后都可以作为依据.用来证明新定理.(2)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是定义、公理,已经学过的定理.在初学证明时,要求把根据写在每一步推理后面的括号内.②证明:内错角相等,两直线平行.师:小明用下面的方法作出了平行线,你认为他的作法对吗?为什么?(见相关动画)生:我认为他的作法对.他的作法可用上图来表示:∠CFE=45°,∠BEF=45°.因为∠BEF与∠FEA组成一个平角,所以∠FEA=180°-∠BEF=180°-45°=135°.而∠CFE与∠FEA是同旁内角.且这两个角的和为180°,因此可知:CD∥AB.师:很好.从图中可知:∠CFE与∠FEB是内错角.因此可知:“内错角相等,两直线平行”是真命题.下面我们来用规范的语言书写这个真命题的证明过程.师生分析:已知,∠1和∠2是直线a、b被直线c截出的内错角,且∠1=∠2.求证:a∥b证明:∵∠1=∠2(已知)∠1+∠3=180°(平角定义)∴∠2+∠3=180°(等量代换)∴∠2与∠3互补(互补的定义)∴a∥b(同旁内角互补,两直线平行).这样我们就又得到了直线平行的另一个判定定理:内错角相等,两直线平行.③借助“同位角相等,两直线平行”这一公理,你还能证明哪些熟悉的结论呢?生1:已知,如图,直线a⊥c,b⊥c.求证:a∥b.证明:∵a⊥c,b⊥c(已知)∴∠1=90°∠2=90°(垂直的定义)∴∠1=∠2(等量代换)∴b∥a(同位角相等,两直线平行)生2:由此可以得到:“如果两条直线都和第三条直线垂直,那么这两条直线平行”的结论.师:同学们讨论得真棒.下面我们通过练习来熟悉掌握直线平行的判定定理.活动目的:通过对学生熟悉的平行线判定的证明,使学生掌握平行线判定公理推导出的另两个判定定理,并逐步掌握规范的推理格式.教学效果:由于学生有了以前学习过的相关知识,对几何证明题的格式有所了解,今天的学习只不过是将原来的零散的知识点以及学生片面的认识进行归纳,学生的认识更提高一步.第三环节:反馈练习活动内容:课本第231页的随堂练习第一题活动目的:巩固本节课所学知识,让教师能对学生的状况进行分析,以便调整前进.教学效果:由于此题只是简单地运用到平行线的判定的三个定理(公理),因此,学生都能很快完成此题.第四环节:学生反思与课堂小结活动内容:①这节课我们主要探讨了平行线的判定定理的证明.同学们来归纳一下完成下表:②由角的大小关系来证两直线平行的方法,再一次体现了“数”与“形”的关系;而应用这些公理、定理时,必须能在图形中准确地识别出有关的角.③注意:证明语言的规范化.推理过程要有依据.活动目的:通过对平行线的判定定理的归纳,使学生的认识有进一步的升华,再一次体会证明格式的严谨,体会到数学的严密性.教学效果:学生充分认识到证明步骤的严密性,对平行线判定的三个定理有了更进一步的认识.课后作业:课本第232页习题6.4第1,2,3题思考题:课本第233页习题6.4第4题(给学有余力的同学做)。
八年级数学上册7.3平行线的判定教案1北师大版(new)
7.3 平行线的判定1.了解并掌握平行线的判定公理和定理;(重点)2.了解证明的一般步骤.(重点)一、情境导入我们知道,光线从空气中进入水中会发生折射现象,光线从水中进入空气中,同样也会发生折射现象.如图为光线从空气中进入水中,再从水中进入空气中的示意图.由于折射率相同,因此有∠1=∠4,∠2=∠3,那么你能说明光线c 与d平行吗?二、合作探究探究点一:平行线的判定【类型一】平行线的判定公理如图,直线l1、l2、l3、l4两两相交,且∠1=∠2=∠3。
求证:l1∥l2,l3∥l4.解析:∠1和∠2是直线l1、l2被直线l3所截得的同位角,∠2和∠3是直线l3、l4被直线l2所截得的同位角,所以由∠1=∠2可以判定l1∥l2,由∠2=∠3可以判定l3∥l4。
证明:∵∠1=∠2(已知),∴l1∥l2(同位角相等,两直线平行).∵∠2=∠3(已知),∴l3∥l4(同位角相等,两直线平行).方法总结:利用平行线的判定公理进行推理证明的关键是分清同位角是哪两条直线被第三条直线所截构成的.【类型二】平行线的判定定理1如图,已知AB,CD与直线EF分别相交于点B,C,且∠ABE=∠DCF。
求证:AB∥CD.解析:由等角的补角相等可知∠ABC=∠BCD.再由平行线的判定定理1即可得到结论.证明:因为∠ABC+∠ABE=∠DCB+∠DCF=180°(邻补角的定义),∠ABE=∠DCF(已知),所以∠ABC=∠DCB(等角的补角相等),所以AB∥CD(内错角相等,两直线平行).方法总结:要证明两条直线平行,主要是指出图形中两条直线被第三条直线所截的角,观察是否有同位角相等、内错角相等、同旁内角互补或由角的数量关系推得同位角相等、内错角相等、同旁内角互补.【类型三】平行线的判定定理2如图,直线AE,CD相交于点O,如果∠A=110°,∠1=70°,就可以说明AB∥CD,这是为什么?解析:由题意可知∠1=∠AOD =70°,又因为∠A=110°,所以∠A+∠AOD=180°,故AB∥CD.解:因为∠1=∠AOD(对顶角相等),∠1=70°,所以∠AOD=70°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.3 平行线的判定
第一环节:情景引入 活动内容:
回顾两直线平行的判定方法
师:前面我们探索过直线平行的条件.大家来想一想:两条直线在什么情况下互相平行呢?
生1:在同一平面内,不相交的两条直线就叫做平行线. 生2:两条直线都和第三条直线平行,则这两条直线互相平行.
生3:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行. 师:很好.这些判定方法都是我们经过观察、操作、推理、交流等活动得到的. 上节课我们谈到了要证实一个命题是真命题.除公理、定义外,其他真命题都需要通过推理的方法证实.
我们知道:“在同一平面内,不相交的两条直线叫做平行线”是定义.“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”是公理.那其他的三个真命题如何证实呢?这节课我们就来探讨. 活动目的:
回顾平行线的判定方法,为下一步顺利地引出新课埋下伏笔. 教学效果:
由于平行线的判定方法是学生比较熟悉的知识,教师通过对话的形式,可以使学生很快地回忆起这些知识.
第二环节:探索平行线判定方法的证明 活动内容:
① 证明:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 师:这是一个文字证明题,需要先把命题的文字语言转化成几何图形和符号语言.所以根据题意,可以把这个文字证明题转化为下列形式:
如图,已知,∠1和∠2是直线a 、b 被直线c 截出的同旁内角,且∠
1与∠2互补,求证:a ∥b .
如何证明这个题呢?我们来分析分析.
1
2
3
a
b
c
师生分析:要证明直线a与b平行,可以想到应用平行线的判定公理来证明.这时从图中可以知道:∠1与∠3是同位角,所以只需证明∠1=∠3,则a与b即平行.
因为从图中可知∠2与∠3组成一个平角,即∠2+∠3=180°,所以:∠3=180°-∠2.又因为已知条件中有∠2与∠1互补,即:∠2+∠1=180°,所以∠1=180°-∠2,因此由等量代换可以知道:∠1=∠3.
师:好.下面我们来书写推理过程,大家口述,老师来书写.(在书写的同时说明:符号“∵”读作“因为”,“∴”读作“所以”)
证明:∵∠1与∠2互补(已知)∴∠1+∠2=180°(互补定义)
∴∠1=180°-∠2(等式的性质)∵∠3+∠2=180°(平角定义)
∴∠3=180°-∠2(等式的性质)
∴∠1=∠3(等量代换)
∴a∥b(同位角相等,两直线平行)
这样我们经过推理的过程证明了一个命题是真命题,我们把这个真命题称为:直线平行的判定定理.
这一定理可简单地写成:同旁内角互补,两直线平行.
注意:(1)已给的公理,定义和已经证明的定理以后都可以作为依据.用来证明新定理.(2)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是定义、公理,已经学过的定理.在初学证明时,要求把根据写在每一步推理后面的括号内.②证明:内错角相等,两直线平行.
师:小明用下面的方法作出了平行线,你认为他的作法对吗?为什么?(见相关动画)
生:我认为他的作法对.他的作法可用上图来表示:∠CFE=45°,∠BEF=45°.因为∠BEF 与∠FEA组成一个平角,所以∠FEA=180°-∠BEF=180°-45°=135°.而∠CFE与∠FEA 是同旁内角.且这两个角的和为180°,因此可知:CD∥A B.
师:很好.从图中可知:∠CFE与∠FEB是内错角.因此可知:“内错角相等,两直线平行”
是真命题.下面我们来用规范的语言书写这个真命题的证明过程.
师生分析:已知,∠1和∠2是直线a、b被直线c截出的内错角,且∠1=∠2.
求证:a∥b
证明:∵∠1=∠2(已知)∠1+∠3=180°(平角定义)
∴∠2+∠3=180°(等量代换)∴∠2与∠3互补(互补的定义)∴a∥b(同旁内角互补,两直线平行).
这样我们就又得到了直线平行的另一个判定定理:内错角相等,两直线平行.
③借助“同位角相等,两直线平行”这一公理,你还能证明哪些熟悉的结论呢?
生1:已知,如图,直线a⊥c,b⊥c.求证:a∥b.
证明:∵a⊥c,b⊥c(已知)
∴∠1=90°∠2=90°(垂直的定义)
∴∠1=∠2(等量代换)
∴b∥a(同位角相等,两直线平行)
生2:由此可以得到:“如果两条直线都和第三条直线垂直,那么这两条直线平行”的结论.师:同学们讨论得真棒.下面我们通过练习来熟悉掌握直线平行的判定定理.
活动目的:
通过对学生熟悉的平行线判定的证明,使学生掌握平行线判定公理推导出的另两个判定定理,并逐步掌握规范的推理格式.
教学效果:
由于学生有了以前学习过的相关知识,对几何证明题的格式有所了解,今天的学习只不过是将原来的零散的知识点以及学生片面的认识进行归纳,学生的认识更提高一步.
第三环节:反馈练习
活动内容:
课本第231页的随堂练习第一题
活动目的:
巩固本节课所学知识,让教师能对学生的状况进行分析,以便调整前进.
教学效果:
由于此题只是简单地运用到平行线的判定的三个定理(公理),因此,学生都能很快完成此题.
第四环节:学生反思与课堂小结
活动内容:
①这节课我们主要探讨了平行线的判定定理的证明.同学们来归纳一下完成下表:
②由角的大小关系来证两直线平行的方法,再一次体现了“数”与“形”的关系;而应用这些公理、定理时,必须能在图形中准确地识别出有关的角.
③注意:证明语言的规范化.推理过程要有依据.
活动目的:
通过对平行线的判定定理的归纳,使学生的认识有进一步的升华,再一次体会证明格式的严谨,体会到数学的严密性.
教学效果:
学生充分认识到证明步骤的严密性,对平行线判定的三个定理有了更进一步的认识.课后作业:课本第232页习题6.4第1,2,3题
思考题:课本第233页习题6.4第4题(给学有余力的同学做)
教学反思
平行线是众多平面图形与空间图形的基本构成要素之一,它主要借助角来研究两条直线之间的位置关系,即通过两条直线与第三条直线相交所成的角来判定两条直线平行与否,在
教学中,要紧紧围绕这些角(同位角、内错角、同旁内角)与平行线之间的关系展开。