代数式求值经典题型1-(含详细答案)
初中数学代数式求值综合测试卷(含答案)
初中数学代数式求值综合测试卷
一、单选题(共7道,每道10分)
1.化简的结果为( )
A. B.
C.9m-2
D.-9m-2
答案:D
试题难度:三颗星知识点:整式的加减
2.若关于x的多项式的值与x无关,则m2-2m2-2(2m-4)+4m的值为( )
A.-28
B.28
C.-32
D.44
答案:A
试题难度:三颗星知识点:整式的加减;化简求值
3.已知a-b=1,则代数式2a-2b-3的值是()
A.-1
B.1
C.-5
D.5
答案:A
试题难度:三颗星知识点:整体代入
4.已知代数式的值是8,那么代数式的值为()
A.1
B.2
C.3
D.4
答案:B
试题难度:三颗星知识点:整体代入
5.当x=2时,代数式ax3+bx+1的值为6,那么当x=-2时这个式子的值为()
A.-4
B.1
C.5
D.6
答案:A
试题难度:三颗星知识点:整体代入
6.一个三位数,中间的数字为a,个位上的数字比十位上的数字大2,百位上的数字比个位上的数字小3,用代数式表示这个三位数为()
A.3a+1
B.111a-98
C.111a+199
D.111a-298
答案:B
试题难度:三颗星知识点:数位表示
7.若a表示一个两位数,b也表示一个两位数,要把b放在a的右边,那么所组成的四位数应表示为()
A.100a+b
B.100a+10b
C.100b+a
D.1000b+10a
答案:A
试题难度:三颗星知识点:数位表示。
代数式求值经典题型(含详细答案)
代数式求值经典题型【编著】黄勇权经典题型:1、x+x 1=3,求代数式x2-2x 1的值。
2、已知a+b=3ab ,求代数式b 1a 1+的值。
3、已知x 2-5x+1=0,求代数式x 1x +的值。
4、已知x-y=3,求代数式(x+1)2-2x+y(y-2x )的值。
5、已知x-y=2,xy=3,求代数式x 2-x y6+y2的值。
6、已知y x =2,则x y-x 的值是多少?7、若2y 1x 1=+,求代数式:3y x y -3x y 3x y -x ++的值。
8、已知5-x =4y-4-y 2,则代数式2x-3+4y的值是多少?9、化简求值,12x x 1-x 2++÷)(1x 21+-,其中x=13-10、x 2-4x+1=0,求代数式:x 2+2x 1的值。
【答案】1、x+x 1 =3,求代数式:x 2-2x 1的值。
解:x2-2x 1=(x+x 1)(x-x 1)=(x+x 1)2x1-x )( =(x+x 1)22x 12x +-=(x+x 1)4x12x 22-++ =(x+x 1)4x 1x 2-+)(将x+x 1=3代入式中=3×432-=352、已知a+b=3ab ,求代数式:b 1a 1+的值。
解:b 1a 1+=ab b a +将a+b=3ab 代入式中=3 3、已知x2-5x+1=0,求代数式:x1x +的值。
解:因x 2-5x+1=0,等式两边同时除以x则有:x 0x 1x x 5x x 2=+-化简得:x-5+x 1=0把-5移到等号的右边,得:x1x +=54、已知x-y=3,求代数式:(x+1)2-2x+y (y-2x)的值。
解:(x+1)2-2x+y(y-2x)去括号,展开得=x2+2x+1-2x+y2-2xy合并同类项,+2x与-2x抵消=x2+1+y2-2xy把+1移到最后,22此三项结合=(x2-2xy+y2)+1=(x-y)2+1将x-y=3合代入式中=(3)2+1=3+1=45、已知x-y=2,xy=3,求代数式x 2-x y6+y2的值。
初中数学代数式化简求值练习题(含答案)
初中数学代数式化简求值练习题(含答案)1、已知x=1,求代数式x²+x(x-2)+(x+1)(x-1)的值。
2、已知x= -2,求代数式3(x-1)²+4x(x+2)-10的值。
3、先化简,再求值:2(x-3)(x+2)-(3+x)(3-x)-3(x-1)2,其中x=-2。
4、先化简再求值∶(2x³-2y²)-3(x³y²+x³)+2(y²+y²x³),其中x=-1,y=2。
5、先化简,再求值:(3x²y-2xy²)-2(xy²-2x²y),其中x=2,y=-1。
6、先化简,再求值:5y(2x²y+3xy²)-3x(4xy²+3x²y),其中x=1,y=-1。
7、先化简,再求值:(3x²y-xy²)-2(xy²-3x²y),其中x=-2,y=3。
8、先化简,再求值:(3x²y-2xy²)-2(xy²-2x²y),其中x=2,y=-1。
9、若x²+2y²=5,求多项式(3x²-2xy+y²)-(x²-2xy-3y²)的值。
10、先化简,再求值:5x²+4-3x²-5x-2x²-5+6x,其中x=-3。
11、先化简,再求值:2(x+x²y)-2/3(3x²y+3/2x)-y²,其中x=1,y=-3。
12、先化简,再求值:(4x²y-3xy)+(-5x²y+2xy)-(2yx²-1),其中x=2,y=1/2。
13、先化简,再求值:2x²y-[2xy²-2(-x²y+4xy²)],其中x=1/2,y=-2。
代数式求值经典题型1-(含详细答案)
题
.
. .
.
【第 1 步】
解 因为 x、y 互为相反数,
所以,x+y=0--------(1)
第
【第 2 步】
5
题
2x² -3x +2 +7xy-3y+5y²
把 x+y=0 代入上式,得 上式=(2x+5)×0 - 3×0 +2
=2
. 把 2x2,7xy,5y2,结合,-3x,-3y 结合,
=( 2x²+7xy+5y²)+( -3x -3y)+2
. 把 x²移到等号的左边 .
题
x² +xy -xy -y - x² = -2x
. 合并同类项 .
(x² - x²)+(xy-xy)-y= -2x
-y = -2x
y = 2x
.
x²+xy-y² 代数式 y²+2xy 把 y = 2x 代入
x²+x·(2x)-(2x)² = (2x)²+2x·(2x)
两边同时平方,x²-2xy+y²=5
将(1)、(2)代入上式,得
把-2xy 移到等号右边,
上式=( 5)² [( 5)² +4xy]
得,x²+y²=5 +2xy------(2)
第 4
【第 2 步】
题
(x²- y²)² - 10(x²+y²)
-10 (5 +2xy) =5(5+4xy)-10(5 +2xy) =25+20xy-50- 20xy
题
温馨提示 选B
本题有一定难度,请同学们自己先做一遍,实在 做不出来,再看答案。
代数式求值(习题及答案)
代数式求值(习题)➢ 例题示范例1:若23a b -=,则代数式2(2)422000b a a b --++的值是_______.思路分析观察已知,发现字母a ,b 的值无法确定,所以考虑整体代入.对比已知及所求,把2a -b 当作一个整体,对所求式子进行变形.原式=2(2)2(2)2000a b a b ---+最后整体代入,化简➢ 巩固练习1. 关于x 的代数式222(28)4(21)x x kx x x ⎡⎤+---+⎣⎦,当k 为何值时,代数式的值是常数?2. 若关于x 的代数式2214(45)64x mx x x mx mx ⎛⎫+---+- ⎪⎝⎭的值与x 无关,求代数式2223(21)363m m m m ⎡⎤-+-+⎢⎥⎣⎦的值. 3. 若232a b a b -=+,则代数式2(2)15(2)22a b a b a b a b-+-+-+的值是_______. 4. 若代数式2346x x -+的值是9,则代数式2463x x -+的值是___________. 5. 若2x y =,则代数式45x y x y-+的值是___________. 6. 已知当5x =时,代数式25ax bx +-的值是10,则当5x =时,代数式25ax bx ++的值是____________.7. 已知当3x =-时,代数式535ax bx cx ++-的值是7,则当3x =时,代数式535ax bx cx ++-的值是__________.8. 若m 表示一个两位数, n 表示一个两位数,把m 放在n 的右边,则这个四位数可用代数式表示为_____________.9. 若a 表示一个一位数,b 表示一个两位数,c 表示一个三位数,把c 放在a的左边,b 放在a 的右边,组成一个六位数,则这个六位数可用代数式表示为__________________.➢ 思考小结1. 已知3240x x --=,则代数式3361x x -++的值是_______.通过本讲的学习,小明的做法:①把含有字母的项“32x x -”作为整体,则324x x -=;②在所求的代数式中找整体,对比系数解决:小刚的做法:①把最高次项“3x ”作为整体,则324x x =+;②在所求的代数式中找整体,对比系数解决:小聪的做法:①把“324x x --”作为整体;②在所求的代数式中找整体,对比系数解决:对比小明、小刚、小聪的做法,我们发现无论把“32x x -”, “3x ”还是“324x x --”作为整体,代入,目标都是把所求的代数式降次,这种转化的思想是“高次降次”.【参考答案】➢巩固练习1.当k=6时,代数式的值为常数2.m=-1,原式=-m-3,当m=-1时,原式=-23.114.75.16.207.-178.100n+m9. 1 000c+100a+b➢思考小结-11。
代数式化简求值的三种考法—2023-2024学年七年级数学上册(人教版)(解析版)
代数式化简求值的三种考法类型一、整体代入求值【答案】【分析】根据一元一次方程的解的定义,将3x =代入2mx n −=,得出32n m −=−,代入代数式,即可求解.【详解】解:∵3x =是关于x 的一元一次方程2mx n −=的解, ∴32m n −=,即32n m −=− ∴265n m −+=()()2352251n m −+=⨯−+=,故答案为:1.【点睛】本题考查了一元一次方程解的定义,代数式求值,整体代入解题的关键. 例2.已知代数式232a b −+的值为4,则代数式 2628b a −+的值为( ) A .4 B .8−C .12D .4−【答案】A【分析】由代数式232a b −+的值为4,可知23a b −的值,再观察题中的两个代数式23a b −和2628b a −+,可以发现226282(3)8b a a b −+=−−+,代入即可求解.【详解】解:∵代数式232a b −+的值为4,∴2324a b −+=,即232a b −=,∴2628b a −+22(3)8a b =−−+228=−⨯+4=,故选:A .【点睛】此题主要考查了代数式求值,代数式中的字母没有明确告知,而是隐含在题设中,首先应从题设入手,寻找要求的代数式与题设之间的关系,然后利用“整体代入法”求代数式的值.例3.已知535y ax bx cx =++−,当3x =时,7y =,那么3x =−时,y =( ) A .-3 B .-7 C .-17 D .7【答案】C【分析】把3x =,7y =代入计算得5333312a b c ++=,然后把3x =−代入原式化简,利用整体代入法即可得到答案.【详解】解:∵535y ax bx cx =++−中,当3x =时,7y =,∴5333357a b c ++−=, ∴5333312a b c ++=,把3x =−代入535y ax bx cx =++−,得 533335y b c a =−−−−, 53(333)5a b c =−++−125=−− 17=−;故选择:C.【点睛】本题考查了求代数式的值,解题的关键是利用整体代入法进行解题.【分析】根据绝对值的性质,求出,a b 可能取得值,根据0a b −<确定,a b 的值,再代数求值. 【详解】解:5a =,18b −=,5a ∴=±,18b −=±, 5a ∴=±,9b =或7−, 0a b −<Q ,∴当5a =,9b =时,5914a b +=+=;当5a =−,9b =时,594a b +=−+=. 故a b +的值为4或14.【点睛】本题考查了绝对值与代数式求值,解决本题的关键在于根据绝对值的性质求出,a b 的值,然后分情况讨论.【分析】先根据多项式乘以多项式运算法则,将括号展开,再将2a b −=,5ab =代入进行计算即可. 【详解】解:()()()444416416a b ab a b ab a b −+=+−−=+−−,∵2a b −=,5ab =, ∴原式5421619=−⨯−=−.故答案为:19−.【点睛】本题主要考查了多项式乘以多项式,解题的关键是掌握多项式乘以多项式,把前面一个多项式的每一项分别乘以后面一个多项式的每一项. 【变式训练3】已知a +b =2ab ,那么232a ab ba ab b++−+=( )A .6B .7C .9D .10【答案】B【详解】解:∵2a b ab +=,∴232a ab b a ab b ++−+=2()3a b ab a b ab +++−=2232ab ab ab ab ⨯+−=43ab ab ab +=7abab =7,故选:B .类型二、特殊值法代入求值例1.已知关于x 的多项式4323ax bx cx dx e ++++,其中a ,b ,c ,d 为互不相等的整数. (1)若4abcd =,求+++a b c d 的值;(2)在(1)的条件下,当1x =时,这个多项式的值为27,求e 的值;(3)在(1)、(2)条件下,若=1x −时,这个多项式4323ax bx cx dx e ++++的值是14,求a c +的值. 【答案】(1)0 (2)3e = (3) 6.5−【分析】(1)由a b c d 、、、是互不相等的整数,4abcd =可得这四个数由1−,1,2−,2组成,再进行计算即可得到答案;(2)把1x =代入432327ax bx cx dx e ++++=,即可求出e 的值;(3)把=1x −代入432314ax bx cx dx e ++++=,再根据0a b c d +++=,即可求出a c +的值.【详解】(1)解:4abcd =,且a b c d 、、、是互不相等的整数, ∴a b c d 、、、为1−,1,2−,2,0a b c d ∴+++=;(2)解:当1x =时,4323ax bx cx dx e ++++ 43231111a b c d e =⨯+⨯+⨯+⨯+ 3a b c d e =++++ 30e =+27=,3e ∴=;(3)解:当=1x −时,4323ax bx cx dx e ++++()()()()43231111a b c d e =⨯−+⨯−+⨯−+⨯−+3a b c d e =−+−+14=,13a b c d ∴−+−=−, 0a b c d +++=, 6.5a c ∴+=−.【点睛】本题主要考查了求代数式的值,解题的关键是得出a b c d 、、、这四个数以及a b c d 、、、之间的关系.【变式训练1】已知()20211232021012320211x a a x a x a x a x +=++++⋅⋅⋅+,则20212020201920181a a a a a −+−+⋅⋅⋅+的值为 .【答案】1【分析】分别令=1x −、0x =代入,求得对应代数式的值,求解即可.【详解】解:令=1x −,则()202101232020202110x a a a a a a +=−+−+⋅⋅⋅−=+,令0x =,则()2021011x a +==,∴2021202020192018100a a a a a a −+−+⋅⋅⋅+−=, ∴2021202020192018101a a a a a a −+−+⋅⋅⋅+==.故答案为:1.【点睛】此题考查了求代数式的值,解题的关键是给x 赋值,得到对应代数式的值. 【变式训练2】若()665432654321021x a x a x a x a x a x a x a −=++++++,则5310a a a a ++−=______. 【答案】365−【详解】解:令x=0,代入等式中得到:()61−=a ,∴0=1a , 令x=1,代入等式中得到:65432101①=++++++a a a a a a a , 令x=-1,代入等式中得到:66543210(3)②−−−−=+++a a a a a a a ,将①式减去②式,得到:65311(3)2()−−+=+a a a ,∴536113)3642(−+=+=−a a a ,∴53103641365++−=−−=−a a a a , 故答案为:365−.【变式训练3】特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则(1)取0x =时,直接可以得到00a =;(2)取1x =时,可以得到432106a a a a a ++++=; (3)取1x =−时,可以得到432106a a a a a −+−+=−;(4)把(2),(3)的结论相加,就可以得到4222a a +020+=a ,结合(1)00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x −+−+−+−+−+−+=.求:(1)0a 的值;(2) 6543210++++++a a a a a a a 的值; (3) 642a a a ++的值. 【答案】(1)4;(2)8;(3)0 【解析】(1)解:当1x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴0414a =⨯=;(2)解:当2x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴65432108a a a a a a a +++++=+;(3)解:当2x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴65432108a a a a a a a +++++=+①;当0x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴65432100+−++=−−a a a a a a a ②;用①+②得:406282222++=+a a a a ,∴642040a a a a ++=−=. 类型三、降幂思想求值例.若2230x x −+=,则3227122020x x x −++=_____; 【答案】2029【详解】解:∵2230x x −+=, ∴223x x −=−,∴3227122020x x x −++=x(2x2-4x -3x+12)+2020=x[2(x2-2x)-3x+12]+2020= x[2×(-3)-3x+12]+2020=x(-3x+6)+2020=-3(x2-2x)+2020=-3×(-3)+2020=9+2020=2029 故答案为:2029.【分析】根据已知得到2232022x x −=,再将所求式子变形为()()22232320222020x x x x x x =−+−−−,整体代入计算即可.【详解】解:∵22320220x x −−=, ∴2232022x x −=, ∴32220252020x x x −−−322232*********x x x x x =−+−−−()()22232320222020x x x x x x =−+−−−2022202220222020x x =+−−2=故答案为:2.【点睛】本题主要考查了代数式求值,利用整体代入的思想求解是解题的关键. 【变式训练2】如果2233x x −+的值为5,则2695x x −−的值为______. 【答案】1【详解】∵22335x x −+=,∴2232x x −=∴2695x x −−()23235x x =−−325=⨯−1=,故答案为:1. 【变式训练3】已知21x x +=,求43222023x x x x +−−+的值. 【答案】2022【分析】把所求式子变形成含已知的代数式,结合整体代入的思想解答即可.【详解】解:∵21x x +=, ∴43222023x x x x +−−+()22222023x x x x x =+−−+2222023x x x =−−+ 22023x x =−−+()22023x x =−++12023=−+2022=.【点睛】本题考查了代数式求值和整式的乘法,正确变形,灵活应用整体思想是解题的关键. 【变式训练4】已知210x x −−=,则3222021x x −++的值是______. 【答案】2022【详解】解:∵210x x −−=,∴230x x x −−=, ∴32210x x −+−=,∴3221x x −+=,∴3222021120212022x x −++=+=,故答案为:2022.课后训练1.已知2|1|(2)0x y −++=,a 与b 互为倒数,c 与d 互为相反数,求32()()33x y ab c d +−−++的值. 【答案】-2 【详解】解:()2120x y −++=,()21020x y −≥+≥,.10x ∴−=,20y += 1x ∴=,2y =−因为a 与b 互为倒数,所以1ab = 因为c 与d 互为相反数,所以0c d += ∴原式()()()321213c d =−−−++()311=−−=-2.2.已知23a bc +=,222b bc −=−.则22543a b bc +−的值是( ) A .23− B .7C .13D .23【答案】B【分析】将所求式子变形为()()22542a bc b bc ++−,再整体代入计算.【详解】解:∵23a bc +=,222b bc −=−, ∴22543a b bc +−225548a bc b bc =+−+()()22254a bc b bc =+−+()5342=⨯+⨯−158=−7=故选B .【点睛】本题考查了整式的加减,代数式求值,解题的关键是掌握整体思想的灵活运用. 3.已知21a a +=,那么3222023a a ++的值是( ) A .2021 B .2022 C .2023 D .2024【答案】D【分析】先将3a 降次为2a a −+,然后代入代数式,再根据已知条件即可求解. 【详解】解:∵21a a +=,∴21a a =−+,则32a a a =−+,∴3222023a a ++2222023a a a =−+++ 22023a a =++12023=+2024=,故选:D .【点睛】本题考查了已知代数式的值求代数式的值,解决本题的关键是要将未知代数式进行降幂.【分析】根据2330a a −−=得出233a a ∴−=,然后整体代入求解;【详解】2330a a −−=Q ,233a a ∴−=,∴()222021262320212320212015a a a a −+=−−+=−⨯+=,故答案为:2015.【点睛】本题考查了求代数式的值,根据已有的等式整体代入求值是解题的关键.【分析】根据互为相反数的两个数的和为零,得到0m n +=,2c 与d 互为倒数得到21c d ⋅=,b 是最大的负整数得1b =-,代入求值.【详解】解:由题意可知,互为相反数的两个数的和为零,得到0m n +=,2c 与d 互为倒数得到21c d ⋅=,b 是最大的负整数得1b =-,故原式20200(11)=−−.0=.故答案为:0.【点睛】本题考查相反数的性质,倒数的性质以及最大的负整数,熟练掌握知识点是解题的关键.【答案】【分析】先把1x =代入531ax bx cx +++,可得a b c ++的值,再把1x =−代入531ax bx cx +++得1a b c −−−+,变形后再次把a b c ++的值代入计算即可.【详解】把1x =代入531ax bx cx +++得,12023a b c +++=∴2022a b c ++=,再把1x =−代入531ax bx cx +++得()11a b c a b c −−−+=−+++20221=−+ 2021=−.【点睛】此题考查代数式求值,解题关键在于把x 的值代入和整体思想的应用.【答案】(1)37;17;(2)2n+【分析】(1)根据题意代入求值即可;(2)分别计算1(),()f n f n 的值,找到规律再求解【详解】(1)()2263661637f ==+; 221114417114f ⎛⎫⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫+ ⎪⎝⎭;(2)22222111(),()1111n n f n f n n n n ===+++1()()1f n f n \+=∴()()()()1111231231f f f f f f n f n ⎛⎫⎛⎫⎛⎫+++++⋅⋅⋅+++ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭()()()()1111231231f f f f f f n f n ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+++++⋅⋅⋅+++ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦11122n n =+⨯=+.【点睛】本题考查了代数式求值,分式的计算,理解题意,找到1()()1f n f n +=是解题的关键.【答案】【分析】把2x x +当整体代入求值,通过两次代入即可得出最后结果.【详解】解:230+−=x x ,23∴+=x x ,32225x x x +−+ 32225x x x x =++−+()2225x x x x x =++−+23x x +=,∴原式2325x x x =+−+25x x =++ 35=+8=,故答案为:8.【点睛】本题考查分解因式的应用,同时也要熟练运用整体代入的方法,快速分析出所需代入的整体是解题的关键.9.已知24a +=,()214b −=,且0ab <,则a b +=______.【答案】1或-3【详解】∵24a +=,()214b −=,∴a+2=±4,b−1=±2,∴a=2或a=−6,b=3或b=−1;∵0ab <,∴a=2,b=−1或a=−6,b=3,当a=2,b=−1时,则2(1)1a b +=+−=;当a=−6,b=3时,则633a b +=−+=−;故答案为:1或-3.。
最全代数式求值(整体代入三)(人教版)(含答案)
学生做题前请先回答以下问题问题1:整体代入的思考方向:①求值困难,考虑_____________;②化简________________,对比确定________;③整体代入,化简.问题2:当时,代数式的值是 2 015;则当时,计算代数式的值.①根据题意可得,化简得,无法求出p和q的具体值,考虑_____________;②所求是,化简得,对比已知及所求,考虑把________作为整体;③整体代入,化简,最后结果为______.代数式求值(整体代入三)(人教版)一、单选题(共12道,每道8分)1.当x=1时,代数式的值为100,则当x=-1时,这个代数式的值为( )A.-98B.-99C.-100D.98答案:A解题思路:试题难度:三颗星知识点:整体代入2.当x=-3时,代数式的值为7,则当x=3时,这个代数式的值为( )A.-3B.-7C.7D.-17答案:D解题思路:试题难度:三颗星知识点:整体代入3.当x=2时,代数式的值为3,则当x=-2时,代数式的值为( )A.-5B.0C.-3D.-6答案:A解题思路:试题难度:三颗星知识点:整体代入4.当时,代数式的值为6,则当时,代数式的值为( )A.6B.-22C.-14D.-2答案:B解题思路:试题难度:三颗星知识点:整体代入5.当x=1时,代数式的值为3,则当x=-1时,代数式的值为( )A.2B.1C.9D.7答案:C解题思路:试题难度:三颗星知识点:整体代入6.当x=1时,代数式的值为7,则当x=-1时,这个代数式的值为( )A.7B.1C.3D.-7答案:B解题思路:试题难度:三颗星知识点:整体代入7.当x=-1时,代数式的值为5,则当x=1时,代数式的值为( )A.2B.-2C.10D.-10答案:C解题思路:试题难度:三颗星知识点:整体代入8.若,则的值为( )A.1B.-1C.5D.-5答案:D解题思路:试题难度:三颗星知识点:整体代入9.若,则的值为( )A.5B.6C.11D.12答案:A解题思路:试题难度:三颗星知识点:整体代入10.若,则的值为( )A. B.1 C. D.答案:B解题思路:试题难度:三颗星知识点:整体代入11.若,,则代数式的值为( )A.-3B.C.D.答案:C解题思路:试题难度:三颗星知识点:整体代入12.若,,则代数式的值为( )A.11B.4C.9D.6答案:A解题思路:试题难度:三颗星知识点:整体代入是 一 的 性思维训练。
七年级数学代数式求值(整体代入三)(人教版)(含答案)
学生做题前请先回答以下问题问题1:整体代入的思考方向:①求值困难,考虑_____________;②化简________________,对比确定________;③整体代入,化简.问题2:当时,代数式的值是 2 015;则当时,计算代数式的值.①根据题意可得,化简得,无法求出p和q的具体值,考虑_____________;②所求是,化简得,对比已知及所求,考虑把________作为整体;③整体代入,化简,最后结果为______.代数式求值(整体代入三)(人教版)一、单选题(共12道,每道8分)1.当x=1时,代数式的值为100,则当x=-1时,这个代数式的值为( )A.-98B.-99C.-100D.98答案:A解题思路:试题难度:三颗星知识点:整体代入2.当x=-3时,代数式的值为7,则当x=3时,这个代数式的值为( )A.-3B.-7C.7D.-17答案:D解题思路:试题难度:三颗星知识点:整体代入3.当x=2时,代数式的值为3,则当x=-2时,代数式的值为( )A.-5B.0C.-3D.-6答案:A解题思路:试题难度:三颗星知识点:整体代入4.当时,代数式的值为6,则当时,代数式的值为( )A.6B.-22C.-14D.-2答案:B解题思路:试题难度:三颗星知识点:整体代入5.当x=1时,代数式的值为3,则当x=-1时,代数式的值为( )A.2B.1C.9D.7答案:C解题思路:试题难度:三颗星知识点:整体代入6.当x=1时,代数式的值为7,则当x=-1时,这个代数式的值为( )A.7B.1C.3D.-7答案:B解题思路:试题难度:三颗星知识点:整体代入7.当x=-1时,代数式的值为5,则当x=1时,代数式的值为( )A.2B.-2C.10D.-10答案:C解题思路:试题难度:三颗星知识点:整体代入8.若,则的值为( )A.1B.-1C.5D.-5答案:D解题思路:试题难度:三颗星知识点:整体代入9.若,则的值为( )A.5B.6C.11D.12答案:A解题思路:试题难度:三颗星知识点:整体代入10.若,则的值为( )A. B.1C. D.答案:B解题思路:试题难度:三颗星知识点:整体代入11.若,,则代数式的值为( )A.-3B.C. D.答案:C解题思路:试题难度:三颗星知识点:整体代入12.若,,则代数式的值为( )A.11B.4C.9D.6答案:A解题思路:试题难度:三颗星知识点:整体代入。
代数式求值经典题型1-(含详细答案)
初中数学《代数式求值》已知a+b= 2 ,a-b= 3求代数式a(a+2b)+b(2a-b)的值已知a²+a-3=0求代数式13a3+52a2的值已知x - 1x= 2,求代数式x²- 1x²的值已知x - y = 5求代数式(x²- y²)²- 10(x²+y²)的值若x、y互为相反数,求代数式2x²-3x +2 +7xy-3y+5y²的值若x²-2x -2=0,求代数式x4+410x²的值。
已知x(x+y)-y(x+1)=x(x-2)求代数式x²+xy-y²y²+2xy已知x+y= -2求代数式x²+ 2y(x+1)+(y-1)²已知x是最大的负整数,y是绝对值最小的有理数,求代数式3x3+ 2y2x+(2y+3x)²已知x-y=2求代数式x3-6xy-y3已知3x²-x-1 =0,求代数式6x3+7x²-5x-2018题目:已知a-b= -1,b-c=2,求代数式(a+b+c)(a-b-c)(1 - ca)2 的值已知x、y是正数,且x=7y²2x+5y,求代数式4x²-2x+xy +2y-5y²+3 的值已知x+y =3,x²+y²=6求代数式2x²+2x²y+2xy+xy²+y3的值(2)-(1)得:4xy=3-4x²y²,把-4x²y²移到左边4x²y²+4xy=3 两边同时加上1,得:4x²y²+4xy+1=4,即(2xy+1)²=4 ,两边同时开方,2xy+1= ±2因为x、y是正数,那么2xy+1也是正数,所以2xy+1=-2(舍去)故2xy+1=2 ,即xy= 12--------------(3)把(3)代入到(2),得,x²+ 2×12+y²=3 则有:x²+y²=2----(4)已知x2-3x+1=0,求代数式x² - 1 x²已知x、y是正数,且x - y=3,xy= 5,Array求代数式x3+x2y+x2y+y3的值。
代数式求值经典题型1~(含详细答案解析)
初中数学《代数式求值》已知a+b= 2 ,a-b= 3求代数式a(a+2b)+b(2a-b)的值已知a²+a-3=0求代数式13a3+52a2的值已知x - 1x= 2,求代数式x²- 1x²的值已知x - y = 5求代数式(x²- y²)²- 10(x²+y²)的值若x、y互为相反数,求代数式2x²-3x +2 +7xy-3y+5y²的值若x²-2x -2=0,求代数式x4+410x²的值。
已知x(x+y)-y(x+1)=x(x-2)求代数式x²+xy-y²y²+2xy已知x+y= -2求代数式x²+ 2y(x+1)+(y-1)²已知x是最大的负整数,y是绝对值最小的有理数,求代数式3x3+ 2y2x+(2y+3x)²已知x-y=2求代数式x3-6xy-y3已知3x²-x-1 =0,求代数式6x3+7x²-5x-2018题目:已知a-b= -1,b-c=2,求代数式(a+b+c)(a-b-c)(1 - ca)2 的值已知x、y是正数,且x=7y²2x+5y,求代数式4x²-2x+xy +2y-5y²+3 的值(2)-(1)得:4xy=3-4x²y²,把-4x²y²移到左边4x²y²+4xy=3 两边同时加上1,得:4x²y²+4xy+1=4,即(2xy+1)²=4 ,两边同时开方,2xy+1= ±2因为x、y是正数,那么2xy+1也是正数,所以2xy+1=-2(舍去)故2xy+1=2 ,即xy= 12--------------(3)把(3)代入到(2),得,x²+ 2×12+y²=3 则有:x²+y²=2----(4)已知x2-3x+1=0,求代数式x² - 1 x²。
代数式求值经典题型1-(含详细答案)
初中数学《代数式求值》(~\第113a 3 +52a 2原式=13a(a 2 +4a)将4a拆分成:a+3a=13a[ (a2+a ) +3a]已知a2+a-3=0 即a2+a=3 将它代入上式原式=13a (3+3a )将3提取出来=39a (a+1 )将a乘进括号里面=39 (a2+a )(1)1x21)X1(X + )X1已知x-X2,将其代入(1 )上式=X))X-)X(X- (1)=21代数式X2 - 的值为X2r ----------------------------------已知x - y 二\(5求代数式 (x2- y 2 )2-10 (x2+y 2)的值1I温馨提示本题有一定难度,请同学们自己先做一遍,实在做不出来,再看答案。
z \ =(x-y ) 2 X2 -2xy+y 2+4xy ) -10 (x2+y 2)=(x-y )2[ (x-y ) 2+4xy卜10 (x2+y 2)将(1 )、(2 )代入上式,得上式=(頁)2 [(頁)2 +4xy]-10 (5 +2xy )=5 (5+4xy ) -10 (5 +2xy )=25+20xy-50- 20xy=-25答案:代数式 (x2- y 2) 2 - 10 (x2+y 2)的值是-25£若x、y互为相反数,求代数式2x 2 -3x +2 +7xy-3y+5y 2 的值£若x、y互为相反数,【第2步】2x 2 -3x +2 +7xy-3y+5y2.把 2x 2, 7xy , 5y 2,结合,-3x , -3y 结合,(2x 2+7xy+5y2)+ ( -3x -3y ) +2所以,x+y=0把x+y=O 代入上式,得 上式=(2x+5 )X 0- 3 X 0 +2(1)=2.用十字叉乘法提取-3答案:2(2x+5y ) (x+y ) -3 (x+y ) +2x 2 -2x -2=0X4+4求代数式的值10x 2本题有一定难度,请同学们自己先做一遍,实在做不出来,再看答案。
(专题精选)初中数学代数式经典测试题含答案解析
(专题精选)初中数学代数式经典测试题含答案解析一、选择题1.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( ) A .1 B .2C .3D .4【答案】D 【解析】 【分析】根据同类项的概念求解. 【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项,n 2∴=,m 11-=, n 2∴=,m 2=. 则m n 4+=. 故选D . 【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.2.如果多项式4x 4+ 4x 2+ A 是一个完全平方式,那么A 不可能是( ). A .1 B .4C .x 6D .8x 3【答案】B 【解析】 【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案. 【详解】∵4x 4+ 4x 2+1=(2x+1)2, ∴A=1,不符合题意, ∵4x 4+ 4x 2+ 4不是完全平方式, ∴A=4,符合题意, ∵4x 4+ 4x 2+ x 6=(2x+x 3)2, ∴A= x 6,不符合题意, ∵4x 4+ 4x 2+8x 3=(2x 2+2x )2, ∴A=8x 3,不符合题意. 故选B . 【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.3.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=()A.7500 B.10000 C.12500 D.2500【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199=22 119919922++⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A.【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.4.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.40【答案】B【解析】试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n+个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B.考点:规律型:图形变化类.5.下列图形都是由面积为1的正方形按一定的规律组成的,其中,第1个图形中面积为1的正方形有9个,第2个图形中面积为1的正方形有14个,……,按此规律,则第几个图形中面积为1的正方形的个数为2019个()A.400 B.401 C.402 D.403【答案】D【解析】【分析】由第1个图形有9个边长为1的小正方形,第2个图形有9+5=14个边长为1的小正方形,第3个图形有9+5×2=19个边长为1的小正方形,…由此得出第n个图形有9+5×(n-1)=5n+4个边长为1的小正方形,由此求得答案即可.【详解】解:第1个图形边长为1的小正方形有9个,第2个图形边长为1的小正方形有9+5=14个,第3个图形边长为1的小正方形有9+5×2=19个,…第n个图形边长为1的小正方形有9+5×(n-1)=5n+4个,当5n+4=2019时,解得n=403所以第403个图形中边长为1的小正方形的个数为2019个.故选:D.【点睛】此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.6.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示9,则表示58的有序数对是()A.(11,3)B.(3,11)C.(11,9)D.(9,11)【答案】A【解析】试题分析:根据排列规律可知从1开始,第N排排N个数,呈蛇形顺序接力,第1排1个数;第2排2个数;第3排3个数;第4排4个数 根据此规律即可得出结论.解:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以58在第11排;偶数排从左到右由大到小,奇数排从左到右由小到大,所以58应该在11排的从左到右第3个数. 故选A .考点:坐标确定位置.7.如图1所示,有一张长方形纸片,将其沿线剪开,正好可以剪成完全相同的8个长为a ,宽为b 的小长方形,用这8个小长方形不重叠地拼成图2所示的大正方形,则大正方形中间的阴影部分面积可以表示为( )A .2()a b - B .29bC .29aD .22a b -【答案】B 【解析】 【分析】根据图1可得出35a b =,即53a b =,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +,阴影部分的面积即为正方形的面积与长方形面积的差.【详解】解:由图可知,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b + ∴阴影部分的面积为:22(2)8(2)a b ab a b +-=- ∵35a b =,即53a b =∴阴影部分的面积为:222(2)()39b b a b -=-=故选:B . 【点睛】本题考查的知识点是完全平方公式,根据图1得出a ,b 的关系是解此题的关键.8.如果(x 2+px +q )(x 2-5x +7)的展开式中不含x 2与x 3项,那么p 与q 的值是( ) A .p =5,q =18 B .p =-5,q =18 C .p =-5,q =-18D .p =5,q =-18【答案】A 【解析】试题解析:∵(x 2+px+q )(x 2-5x+7)=x 4+(p-5)x 3+(7-5p+q )x 2+(7-5q )x+7q , 又∵展开式中不含x 2与x 3项, ∴p-5=0,7-5p+q=0, 解得p=5,q=18. 故选A .9.下列运算正确的是( ). A .()2222x y x xy y -=-- B .224a a a += C .226a a a ⋅= D .()2224xy x y =【答案】D 【解析】 【分析】直接利用合并同类项法则以及积的乘方法则、同底数幂的乘法法则、完全平方公式分别化简求出答案. 【详解】解:A.、()2222x y x xy y -=-+,故本选项错误; B.、2222a a a +=,故本选项错误; C.、224a a a ⋅=,故本选项错误; D 、 ()2224xy x y =,故本选项正确;故选:D . 【点睛】本题主要考查合并同类项、积的乘方、同底数幂的乘法、完全平方公式,熟练掌握相关的计算法则是解题的关键.10.下列图形都是由同样大小的五角星按照一定规律所组成的,按此规律排列下去,第n 个图形中五角星的个数为( )A .31n -B .3nC .31n +D .32n +【答案】C 【解析】 【分析】根据前4个图形中五角星的个数得到规律,即可列式得到答案. 【详解】 观察图形可知:第1个图形中一共是4个五角星,即4311=⨯+, 第2个图形中一共是7个五角星,即7321=⨯+, 第3个图形中一共是10个五角星,即10331=⨯+, 第4个图形中一共是13个五角星,即13341=⨯+,L ,按此规律排列下去,第n 个图形中一共有五角星的个数为31n +, 故选:C. 【点睛】此题考查图形类规律的探究,观察图形得到五角星的个数的变化规律并运用解题是关键.11.下列运算中,正确的是( ) A .236x x x ⋅= B .333()ab a b =C .33(2)6a a =D .239-=-【答案】B 【解析】 【分析】分别根据同底数幂的乘法法则,积的乘方法则以及负整数指数幂的运算法则逐一判断即可. 【详解】x 2•x 3=x 5,故选项A 不合题意; (ab )3=a 3b 3,故选项B 符合题意; (2a )3=8a 6,故选项C 不合题意;3−2=19,故选项D 不合题意. 故选:B . 【点睛】此题考查同底数幂的乘法,幂的乘方与积的乘方以及负整数指数幂的计算,熟练掌握幂的运算法则是解题的关键.12.下列运算中正确的是( ) A .2235a a a += B .222(2)4a b a b +=+ C .236236a a a ⋅= D .()()22224a b a b a b -+=-【答案】D 【解析】 【分析】根据多项式乘以多项式的法则,分别进行计算,即可求出答案.【详解】A 、2a+3a=5a ,故本选项错误;B 、(2a+b )2=4a 2+4ab+b 2,故本选项错误;C 、2a 2•3a 3=6a 5,故本选项错误;D 、(2a-b )(2a+b )=4a 2-b 2,故本选项正确. 故选D . 【点睛】本题主要考查多项式乘以多项式.注意不要漏项,漏字母,有同类项的合并同类项.13.若3,2x y xy +==, 则()()5235x xy y +--的值为( )A .12B .11C .10D .9【答案】B 【解析】 【分析】项将多项式去括号化简,再将3,2x y xy +==代入计算.【详解】()()5235x xy y +--=235()xy x y -++,∵3,2x y xy +==,∴原式=2-6+15=11, 故选:B. 【点睛】此题考查整式的化简求值,正确去括号、合并同类项是解题的关键.14.下列算式能用平方差公式计算的是( ) A .(2)(2)a b b a +- B .11(1)(1)22x x +--C .(3)(3)x y x y --+D .()()m n m n ---+【答案】D 【解析】 【分析】利用平方差公式的结构特征判断即可. 【详解】(-m-n )(-m+n )=(-m )2-n 2=m 2-n 2, 故选D . 【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.15.如图,从边长为(4a +)cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D 【解析】 【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算. 【详解】 矩形的面积为: (a+4)2-(a+1)2 =(a 2+8a+16)-(a 2+2a+1) =a 2+8a+16-a 2-2a-1 =6a+15. 故选D .16.按如图所示的运算程序,能使输出y 的值为1的是( )A .a =3,b =2B .a =﹣3,b =﹣1C .a =1,b =3D .a =4,b =2【答案】A 【解析】 【分析】根据题意,每个选项进行计算,即可判断. 【详解】解:A 、当a =3,b =2时,y =12a -=132-=1,符合题意; B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意; C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意;D 、当a =4,b =2时,y =12a -=142-=12,不符合题意. 故选:A . 【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.17.已知x=2y+3,则代数式9-8y+4x 的值是( ) A .3 B .21C .5D .-15【答案】B 【解析】 【分析】直接将已知变形进而代入原式求出答案. 【详解】 解:∵x=2y+3 ∴x-2y=3∴98494(2y x y x -+=--⨯)=9-4(-3)=21 故选:B 【点睛】此题主要考查了整式的加减以及代数式求值,正确将原式变形是解题关键.18.若55+55+55+55+55=25n ,则n 的值为( ) A .10 B .6C .5D .3【答案】D 【解析】 【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案. 【详解】解:∵55+55+55+55+55=25n , ∴55×5=52n , 则56=52n , 解得:n =3. 故选D . 【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.19.若x +y =,x ﹣y =3﹣的值为( )A .B .1C .6D .3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y=,x﹣y=3﹣,==1.故选:B.【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.20.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠:+⨯=元,若一年内例如,购买A类会员年卡,一年内健身20次,消费1500100203500在该健身俱乐部健身的次数介于50-60次之间,则最省钱的方式为()A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡【答案】C【解析】【分析】设一年内在该健身俱乐部健身x次,分别用含x的代数式表示出购买各类卡所需消费,然后将x=50和x=60分别代入各个代数式中比较大小即可得出结论.【详解】解:设一年内在该健身俱乐部健身x次,由题意可知:50≤x≤60则购买A类会员年卡,需要消费(1500+100x)元;购买B类会员年卡,需要消费(3000+60x)元;购买C类会员年卡,需要消费(4000+40x)元;不购买会员卡年卡,需要消费180x元;当x=50时,购买A类会员年卡,需要消费1500+100×50=6500元;购买B类会员年卡,需要消费3000+60×50=6000元;购买C类会员年卡,需要消费4000+40×50=6000;不购买会员卡年卡,需要消费180×50=9000元;6000<6500<9000当x=60时,购买A类会员年卡,需要消费1500+100×60=7500元;购买B类会员年卡,需要消费3000+60×60=6600元;购买C类会员年卡,需要消费4000+40×60=6400;不购买会员卡年卡,需要消费180×60=10800元;6400<6600<7500<10800综上所述:最省钱的方式为购买C类会员年卡故选C.【点睛】此题考查的是用代数式表示实际意义,掌握实际问题中各个量之间的关系是解决此题的关键.。
代数式的值-2023年新七年级数学核心知识点与常见题型(沪教版)(解析版)
代数式的值【知识梳理】(1)代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值. 题型简单总结以下三种:①已知条件不化简,所给代数式化简; ②已知条件化简,所给代数式不化简; ③已知条件和所给代数式都要化简.【考点剖析】 一、用代数式数、图形的规律 一、单选题1.(2021秋·上海·七年级期中)某影院第一排有20个座位,每退一排就多1个座位,则第n 排有座位( ) A .()20n +个 B .()21n +个C .()19n +个D .()18n +个【答案】C【分析】根据后面每一排都比前一排多1个座位表示出前几排的座位数,即可得出规律,然后求解即可. 【详解】第一排有20个座位,第二排有21个座位,第三排有22个座位,…,第n 排有(n+19)个座位. 故选C .【点睛】本题考查了列代数式,是规律探寻题,比较简单.二、填空题2.(2022秋·上海·七年级专题练习)七(1)班共有n 名同学,每两人握一次手,他们一共握了____次手.【答案】()21n n −【分析】自己不能跟自己握手,所以需要握手的人数应该是除自己外的(n−1)个人.【详解】每个人都要和另外的n−1个人握一次手,n 个人共握手n×(n−1)次,由于每两人握手,应算作一次,需去掉重复的情况,实际只握了n×(n−1)÷2=()21n n −次.故答案为()21n n −【点睛】本题目考查的是握手问题,如果人数比较少,可以用枚举法解答;如果人数比较多,可以用公式:()21n n −解答.【答案】4x +16/164x +【分析】日历中任意框出4个数,设其中最小的数为x ,并用x 分别表示出其他三个数,然后4个数相加即可.【详解】解:最小的数为x ,则其它3个分别是1x +,7x +,8x +, 这4个数之和为178416x x x x x ++++++=+, 故答案为:416x +【点睛】本题考查了代数式的应用,理解日历中任意框出4个数的关系是解题关键.【答案】 32 76 (1)1(1)n n n n +++12=3212-13=761134−=13121145−=2120()()11111+11n n n n n n ++−=++【答案】(4n+1).【分析】根据题目中的图形变化规律可知,每一次变化增加四个三角形,从而可以解答本题. 【详解】解:由图可得, 图(1)所得三角形总个数为:1+4=5; 图(2)所得三角形总个数为:1+4×2=9; 图(3)所得三角形总个数为:1+4×3=13; 所以第n 个图中共有(4n+1)个三角形; 故答案为:(4n+1).【点睛】本题主要考查图形的变化类,解答本题的关键是发现题目中图形的变化规律,求出相应的三角形的个数.6.(2022秋·上海·七年级专题练习)如图为手的示意图,在各个手指间标记字母A ,B ,C ,D .请你按图中箭头所指方向(即A →B →C →D →C →B →A →B →C →…的方式)从A 开始数连续的正整数1,2,3,…,当字母C 第()21n −次出现时(n 为正整数),恰好数到的数是______(用含n 的代数式表示).【答案】63n −【分析】根据题意可以发现六个为一个循环,每个循环中字母C 出现两次,从而可以解答本题.【详解】解:按照A →B →C →D →C →B →A →B →C →…的方式进行,每6个字母ABCDCB 一循环,每一循环里字母C 出现2次,当循环n 次时,字母C 第2n 次出现时(n 为正整数),此时数到最后一个数为6n , 当字母C 第()21n −次出现时(n 为正整数),再数3个数为63n −.故答案为:63n −.【点睛】本题考查代数式、数的规律,是基础考点,难度较易,掌握相关知识是解题关键.三、解答题(2)a n = (用含n 的代数式表示)(3)按照上述方法,能否得到2019个正方形?如果能,请求出n ;如果不能,请简述理由. 【答案】(1)10,13;(2)3n-2;(3)不能,【分析】根据已知图形可以发现:每次剪开,都会增加3个正方形,所以可以得到此题的规律为:第n 个图形中的正方形个数为:3n-2.【详解】(1)根据已知图形可以发现:每次剪开,都会增加3个正方形, ∴第4个图中为7+3=10个,第5个图中为10+3=13个;(2)根据(1)中的数据规律可知:第n 个图形中的正方形个数为:32n −; (3)不能.∵若能得到2019个正方形,则有322019n −=,则32021n =,但是2021不能被3整除,∴不能得到2019个正方形.【点睛】本题考查了图形的变化类问题,关键是要通过观察图形,分析、归纳发现其中的规律. (2019++2022+++2019+2020+2021=++【答案】(1)12n (n+1)(2)12(n+1)2【分析】(1)根据题目中的方法进行求解即可; (2)仿照题目中的方法进行求解即可. (1)解:由题意得:1+2+3+…+(n-2)+(n-1)+n=12n(n+1);(2)1+3+5+…+(2n+1)=12×12(1+2n+1)(n+1)=12(n+1)2.【点睛】本题主要考查规律型:数字的变化类,列代数式,解答的关键是总结出存在的规律.【答案】(1)-3(2)5;-20;42k−【分析】尝试:(1)将前4个数字相加可得;(2)根据“相邻四个台阶上数的和都相等”列出方程求解可得;应用:根据“台阶上的数字是每4个一循环”求解可得;发现:由循环规律即可知数“2”所在的台阶数为4k﹣2.(1) 解:尝试: (1)()()52193++−+−=−答:前4个台阶上数的和是3−.(2)∵任意相邻四个台阶上数的和都相等, ∴()()2193x +−+−+=−,解得5x =第5个台阶上的数x 是5.应用:由题意知台阶上的数字4个一循环, ∵3849÷=……2 ∴()935220⨯−++=−即从下到上前38个台阶上数的和20− 发现:数“2”所在的台阶数42k − (2)解:(2)∵任意相邻四个台阶上数的和都相等, ∴()()2193x +−+−+=−,解得5x =第5个台阶上的数x 是5.应用:由题意知台阶上的数字4个一循环, ∵3849÷=……2 ∴()935220⨯−++=−即从下到上前38个台阶上数的和20− 发现:数“2”所在的台阶数42k −.【点睛】本题主要考查了列代数式,解一元一次方程,解题的关键是根据相邻四个台阶上数的和都相等得出台阶上的数字是每4个一循环. 二、已知字母的值,求代数值的值 一、单选题1.(2022秋·上海青浦·七年级校考期中)已知()42251A x =+,则当1x =时,3A 的值为( ) A .8000 B .1000C .1000±D .8000±【答案】D【分析】利用乘方的逆运算以及已知条件求出A 的值,然后利用乘法运算法则求出3A 的值即可. 【详解】解:∵()4222[5(51]21)x A x ++=±=,1x =,∴225(1)5(11)20A x =±+=±⨯+=±,∴33(20)8000A =±=±.故选:D .【点睛】本题主要考查了乘法运算、乘方的逆运算以及代数式求值,解题关键是熟练掌握相关运算法则.二、填空题【答案】119/9【分析】直接代入求值即可.【详解】解:当13x =-时,原式2111913⎛⎫=⎪+ =−⎝⎭, 故答案为:119.【答案】8−/0.125−【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而代入得出答案. 【详解】解:∵230.2504a b ⎛⎫−++= ⎪⎝⎭, ∴30.250,04a b −=+=,∴30.25,4a b ==−,∴222233139120.2520.2544168168a ab b ⎛⎫⎛⎫−−=−⨯⨯−−−=+−=−⎪ ⎪⎝⎭⎝⎭.故答案为:18−.【点睛】此题主要考查了非负数的性质,代数式求值,正确得出a ,b 的值是解题关键.【答案】8【分析】直接把12x =代入计算即可. 【详解】解:当12x =时,()113131922228x x ⎛⎫⨯⨯+ ⎪+⎝⎭==故答案为:98【点睛】本题主要考查了代数式求值,有理数的混合运算法则,在解题时要根据题意代入计算即可. 5.(2022秋·上海嘉定·七年级校考期中)当2x =−,3y =时,代数式22x xy y ++的值是___________. 【答案】7【分析】将x 、y 的值代入计算即可. 【详解】解:当2x =−,3y =时, 22x xy y ++()()222233=−+−⨯+469=−+ 7=.故答案为7.【点睛】考查了代数式求值,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值,正确进行计算是解题的关键.6.(2022秋·上海静安·七年级校考阶段练习)当2a =−时,代数式3(1)a a +的值等于__________. 【答案】6【分析】根据题意,直接将2a =−代入代数式进行计算即可求解. 【详解】解:当2a =−时,代数式3(1)a a +()()32216=⨯−⨯−+=,故答案为:6.【点睛】本题考查了代数式求值,正确的计算是解题的关键.7.(2023秋·上海静安·七年级新中初级中学校考期末)当a =5,b =-3时,a -b 的值为__________. 【答案】8【分析】根据已知字母的值,直接代入求值即可. 【详解】解:∵a=5,b=-3, ∴a-b=5-(-3)=8; 故答案为:8.【点睛】此题主要考查了代数式求值,掌握代数式求值方法是解题的关键.【答案】2或18/18或2【分析】根据a 与b 都为正整数即可求得. 【详解】解:根据题意得,只有当2b =和18时, 17a =和1,故答案为:2或18.【点睛】本题考查了正整数的定义(大于0的整数),准确的计算是解决本题的关键.【答案】41【分析】把a 、b 、c 的值代入代数式进行计算即可. 【详解】解:把2a =,3b =−,4c =−代入得:()()224342441b ac −=−−⨯⨯−=,故答案为:41.【点睛】本题考查了代数式求值,准确计算是解题的关键.10.(2022秋·上海·七年级校考阶段练习)当1x =,代数式31px qx ++的值为2022,则当=1x −,代数式31px qx ++的值是_______.【答案】2020−【分析】根据“当1x =,代数式31px qx ++的值为2022”可得2021p q +=,再将=1x −代入31px qx ++可得()p q −++1,再整体代入计算即可.【详解】解:∵当1x =,代数式31px qx ++的值是2022.∴把1x =代入31px qx ++得,12022p q ++=∴2021p q +=∴把=1x −代入31px qx ++得,1()1202112020p q p q −−+=−++=−+=−故答案为:2020−.【点睛】本题考查代数式求值,根据题意得出2021p q +=是解决问题的关键.三、解答题【答案】(1)2212x x −+;(2)218m . 【分析】(1)根据题意“目”字形的窗框,长有4段,总长为4AD =4x 米,则AB =2442x−米,再根据长方形面积计算公式即可得出答案;(2)把x =3代入(1)中关于面积的代数式中即可得出答案.【详解】(1)根据题意得AB=2441222x x −=−,∴S 长方形ABCD ()2122212x x x x =−⋅=−+.(2)当3x =时,221229123x x −+=−⨯+⨯1836=−+218m =.答:长方形ABCD 面积为218m .【点睛】本题主要考查了列代数及代数式的求值,根据题意列出合理的代数式是解决本题的关键.【答案】(1)22ab b −(2)222a ab b −+ (3)7800【分析】(1)根据题意表示出十字路的面积即可;(2)根据题意表示出铺设的草坪的面积即可;(3)根据(1)表示出的式子,把a 与b 的值代入计算即可得出答案.【详解】(1)根据题意可得,()222ab b a b ab ab b ab b +−=+−=− ∴修建的道路是22ab b −平方米;铺设的草坪的面积为()2222a b a ab b −=−+;(3)当20a =,1b =时, 2222201139ab b −=⨯⨯−=(平方米),392007800⨯=(元).∴需要投资7800元修建道路.【点睛】本题考查代数式求值,以及列代数式,整式的混合运算,熟练掌握运算法则是解题的关键. (1)试用含a 的代数式表示(2)当12a =时,比较S 阴影【答案】(1)213182a a −+(2)BGF S S ∆=阴【分析】(1)根据图形,把阴影的面积表示出来ABCD ECGF ABD BGF S S S S S ∆∆=+−−阴,化简即可解得. (2)把当12a =代入求值,即可解得.【详解】(1)解:∵22ABCD ECGF S S a b +=+,212ABD S a ∆=,()()1632BGF S a b a b ∆=⨯+⨯=+, ∴ABCD ECGF ABD BGF S S S S S ∆∆=+−−阴()221332a b a a b =+−−+213182a a =−+;()2131832BGF S S a a a b ∆−=−+−+阴 ()21122a a =−将12a =代入,0BGF S S ∆−=阴, ∴BGF S S ∆=阴.【点睛】此题考查了列代数式求阴影的面积,解题的关键是把阴影部分的面积表示出来. 14.(2022秋·上海徐汇·七年级上海市徐汇中学校联考期末)已知52345670123456721)x a a x a x a x a x a x a x a x −=+++++++((1)求01234567a a a a a a a a −+−+−+−的值.(2)求0246a a a a +++的值.【答案】(1)243−(2)121−【分析】(1)根据已知条件,=1x −代入即可解得.(2)把1x =代入进行计算,最后再与(1)中所得等式进行相加即可求解.【详解】(1)52345670123456721)x a a x a x a x a x a x a x a x −=+++++++(把=1x −代入,01234567a a a a a a a a −+−+−+−()521=--243=− (2)把1x =代入,52345670123456721)x a a x a x a x a x a x a x a x −=+++++++(,解得:012345671a a a a a a a a +++++++=①,根据第一问可得∶01234567243a a a a a a a a -+-+-+-=-②, ①+②得:()02462242a a a a +++=-∴0246121a a a a +++=- 【点睛】本题主要考查的是求代数式的值,特殊值法的应用是解题的关键. (1)求这个无盖长方体纸盒的表面积(用含(2)求这个无盖长方体纸盒的容积(用含【答案】(1)2604a −(2)3243260a a a −+,31.5 【分析】(1)根据题意易知,无盖长方体纸盒的表面积即长方形纸片的面积减去四个小正方形的面积;(2)长方形纸盒的长为102a −,宽为62a −,高为a ,容积=长⨯宽⨯高,再将32a =代入即可.【详解】(1)解:由题意可知,无盖长方体纸盒的表面积即长方形纸片的面积减去四个小正方形的面积, 221064604S a a =⨯−=−,∴这个无盖长方体纸盒的表面积为2604a −.(2)长方形纸盒的长为102a −,宽为62a −,高为a ,容积=长⨯宽⨯高()()321026243260a a a a a a=−⨯−⨯=−+, 将32a =代入,得:323334326031.5222⎛⎫⎛⎫⎛⎫⨯−⨯+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭答:容积为31.5.【点睛】本题考查了列代数式,解题的关键是正确表示纸盒的长,宽,高.三、已知式子的值,求代数式的值一、单选题1.(2023秋·上海静安·七年级新中初级中学校考期末)已知x − 2y = 2,则2x — 4y 的值是( )A .5B .2C .4D .7【答案】C 【分析】先根据x−2y =2,再变形,最后代入求出即可.【详解】解:∵x−2y =2,∴2x−4y =2(x−2y )=2×2=4,故选:C .【点睛】本题考查了求代数式的值,能够整体代入是解此题的关键.二、填空题2.(2023秋·上海嘉定·七年级上海市育才中学校考期末)如果34a b −=,那么261a b −−的值是________.【答案】7【分析】用整体代入法求解即可.【详解】解:∵34a b −=,∴()261231817a b a b −−=−−=−=.故答案为:7.【点睛】此题考查了代数式求值,代数式中字母的值没有明确告知,而是隐含在已知条件中,首先应从条件“整体代入法”求代数式的值. 3.(2023秋·上海浦东新·七年级校考期中)已知3x =时,代数式38ax bx ++的值是12;那么当3x =−时,代数式35ax bx +−的值为__________.【答案】9−【分析】将3x =代入38ax bx ++,求出273a b +值,将3x =−,以及273a b +值,代入35ax bx +−进行求值即可.【详解】解:∵3x =时,代数式38ax bx ++的值是12,即:273812a b ++=,∴2734a b +=;当3x =−时:()3527352735459ax bx a b a b +−=−−−=−+−=−−=−.故答案为:9−.【点睛】本题考查代数式求值.解题的关键是利用整体思想,代入求值. 4.(2022秋·上海·七年级校考期末)已知231x y +=,那么代数式()()72345x y x y +−−−的值是___________.【答案】7【分析】去括号,合并同类项,再代入求值即可.【详解】解:()()72345x y x y +−−−72345x y x y =+−++465x y =++()2235x y =++231x y += 原式215=⨯+7= 故答案为:7.【点睛】本题考查了整式的化简和整体代入法求值;解题的关键是去括号,根据已知构造相同整式.【答案】5/0.8【分析】由题意易得2x y =,然后代入求解即可.【详解】解:由2x y =可知2x y =,∴2224365x y y y x y y y ++==−−; 故答案为45.【点睛】本题主要考查代数式的值,解题的关键是得到2x y =.6.(2022秋·上海·七年级校考期中)已知210a a −−=,则代数式326a a −+=_____.【答案】7【分析】根据已知条件得到2a a −=1,再把原式变形,代入即可求解.【详解】解:∵210a a −−=,∴2a a −=1,326a a −+32226a a a a −+−+=()2226a a a a a −+−+=226a a a +−+=26a a −+= 16+=7=.故答案为:7.【点睛】此题主要考查代数式求值以及利用提取公因式求式子的值,将式子转化为32226a a a a −+−+,以及利用()322a a a a a −−=是解题的关键.【答案】36−【分析】由相伴数的定义分别计算[]a ,[]b 的值,再计算3b a −=−,最后利用整体思想解题.【详解】根据题意得,111a b −=++,则3b a −=−,()()()3333327936b a a b b a b a −−+=−+−=−−=−.故答案为:36−.【点睛】本题考查新定义计算、已知式子的值,求代数式的值,理解题意是解题关键.【答案】5或11−/11−或5【分析】根据a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,可以得到0a b +=,1cd =,2m =±,然后代入所求式子计算即可.【详解】解:依题意0a b +=,1cd =,||2m =,2m ∴=±,当2m =时,22043423152121a bm cd m m ++−=+⨯−⨯=++;当2m =−时,()20434231112121a bm cd m m ++−=+⨯−−⨯=−++;故答案为:5或11−.【点睛】本题考查代数式求值,绝对值,相反数和倒数的性质,解答本题的关键是求出0a b +=,1cd =,2m =±.三、解答题【答案】(1)b −(2)-2,2(3)-9【分析】(1)根据每行、每列的3个代数式的和相等,可得a 与b 的关系;(2)根据第一行与第三列、对角线上与第二行的和相等,可得a 与b 的值;(3)根据“等和格”的定义可得方程,分别进行整理代入可求出b 的值.【详解】(1)解:如图2,根据题意得232−+=+a a b a ,33a b ∴−=,解得a b =−,故答案为:b −;(2)解:如图3,可得2322283a a b a a a b b −+=+⎧⎨−+=−+⎩,解得22a b =−⎧⎨=⎩,故答案为:2,2−;(3)解:如图4,可得2222223a a a a a a a ++−=++−,∴23a a +=,又22223322a a a b a a a a ++−=++++,2223b a a ∴=−−−,∴22()32339b a a =−+−=−⨯−=−,故答案为:9−.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是充分利用“每行,每列及对角线上的3个数(或代数式)的和都相等”,得出等式求解.10.(2022秋·上海·七年级专题练习)在某班小组学习的过程中,同学们碰到了这样的问题:“已知【答案】(1)7 (2)34【分析】(1)由已知115a b ab a b +=+=,113b c bc b c +=+=,116c a ca c a +=+=,可得111111536a b b c c a +++++=++,即可得出答案;(2)由已知216m m +=,可得16m m +=,m 4+1m 2=m 2+1m 2=(m +1m)2−2,即可得出答案.【解答】解:(1)115a b ab a b +=+=,113b c bc b c +=+=,116c a ca c a +=+=,∴111111536a b b c c a +++++=++, ∴22214a b c ++=,∴1a+1b+1c=ab+bc+ca abc=7;(2)216m m +=,∴16m m +=,422211m m m m +=+,∴m 2+1m 2=(m +1m)2−2=62−2=34.∴42134m m +=.【点评】本题主要考查了代数式求值,合理应运题目所给条件是解决本题的关键.11.(2022秋·上海·七年级专题练习)已知a 、b 互为相反数,x 、y 互为倒数,m 到原点距离2个单位. (1)根据题意,m =________.【答案】(1)2或-2;(2)5.【分析】(1)根据绝对值的定义可得答案;(2)先根据相反数的性质、倒数的定义得出a+b=0,xy=1,再结合m 的值分别代入计算即可. 【详解】解:(1)∵m 到原点距离2个单位, ∴m=2或-2, 故答案为:2或-2;(2)根据题意知a+b=0,xy=1,m=2或-2, 当m=2时,()202022a b m xy +++−=22+0+(-1)2020=4+1=5; 当m=-2时,()202022a b m xy +++−=(-2)2+0+(-1)2020=4+1=5;综上,()202022a b m xy +++−的值为5.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则. 四、程序流程图与代数式的值 一、单选题【答案】C【分析】输入4,计算234x x −=,判断40>,输出4,输入2,计算232x x −=−,判断20−<,输出12,最后计算142+的和即可.【详解】解:输入4,计算22343416124x x −=−⨯=−=,40>∴输出4;输入2,计算223232462x x −=−⨯=−=−,20−<计算112x = ∴输出12;19422∴+=故选:C .【点睛】本题考查已知字母的值,求整式的值,是基础考点,掌握相关知识是解题关键.2.(2020秋·上海·七年级上海市进才中学北校校考阶段练习)如图,是一个运算程序的示意图,如果开始输入的x 的值为81,那么第2020次输出的结果为( )A .3B .27C .81D .1【答案】Dx ,输出27;输入27,输出9;输入9,输出3;输入3,输出1;输入1,输出3L 直至出现循环规律,分奇数次与偶数次输入,据此解题.【详解】根据题意,第1次输入x 的值为81,1x ≠,计算11=81=2733x ⨯,输出27,第2次输入x 的值为27,1x ≠,计算11=27=933x ⨯,输出9, 第3次输入x 的值为9,1x ≠,计算11=9=333x ⨯,输出3, 第4次输入x 的值为3,1x ≠,计算11=3=133x ⨯,输出1,第5次输入x 的值为1,=1x ,计算+2=1+2=3x ,输出3,第6次输入x 的值为3,1x ≠,计算11=3=133x ⨯,输出1,第7次输入x 的值为1,=1x ,计算+2=1+2=3x ,输出3,L从第3次开始,第奇数次输出的结果为3,第偶数次输出的结果为1,2020>3且为偶数,第2020次输出的结果为1,故选:D.【点睛】本题考查代数式求值,是重要考点,难度较易,掌握相关知识是解题关键.3.(2019秋·上海杨浦·七年级校考阶段练习)在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1B.2,1,4C.1,4,2D.2,4,1【答案】D【详解】A.把x=4代入得:42=2,把x=2代入得:22=1,本选项不合题意;B.把x=2代入得:22=1,把x=1代入得:3+1=4,本选项不合题意;C.把x=1代入得:3+1=4,把x=4代入得:42=2,本选项不合题意;D.把x=2代入得:22=1,把x=1代入得:3+1=4,本选项符合题意,故选:D.【过关检测】一.选择题(共6小题)1.(2020秋•虹口区校级期末)当x=3,y=2时,代数式的值是()A.B.2C.0D.3【分析】当x=3,y=2时,直接代入代数式即可得到结果.【解答】解:==.故选:A.【点评】此题较简单,代入时细心即可.2.(2020秋•浦东新区校级月考)如图,是一个运算程序的示意图,若开始输入x的值为81,则第2020次输出的结果是()A.3B.27C.9D.1【分析】分别求出第一次输出27,第二次输出9,第三次输出3,第四次输出1,第五次输出3,第六次输出1,……由此可得,从第三次开始,每两次一个循环.【解答】解:由题可知,第一次输出27,第二次输出9,第三次输出3,第四次输出1,第五次输出3,第六次输出1,……由此可得,从第三次开始,每两次一个循环,∵(2020﹣2)÷2=1009,∴第2020次输出结果与第4次输出结果一样,∴第2020次输出的结果为1,故选:D.【点评】本题考查数字的变化规律;能够通过所给例子,找到循环规律是解题的关键.3.(2022秋•闵行区期中)当x=2时,整式ax3+bx﹣1的值等于﹣19,那么当x=﹣2时,整式ax3+bx﹣1的值为()A.19B.﹣19C.17D.﹣17【分析】将x=2代入整式,使其值为﹣19,列出关系式,把x=﹣2代入整式,变形后将得出的关系式代入计算即可求出值.【解答】解:∵当x=2时,整式ax3+bx﹣1的值为﹣19,∴8a+2b﹣1=﹣19,即8a+2b=﹣18,则当x=﹣2时,原式=﹣8a﹣2b﹣1=18﹣1=17.故选:C.【点评】本题考查了代数式的求值,正确变形并整体代入,是解题的关键.4.(2019秋•浦东新区期末)已知:(2x+1)3=ax3+bx2+cx+d,那么代数式﹣a+b﹣c+d的值是()A.﹣1B.1C.27D.﹣27【分析】在(2x+1)3=ax3+bx2+cx+d中,令x=﹣1,求出代数式﹣a+b﹣c+d的值是多少即可.【解答】解:当x=﹣1时,﹣a+b﹣c+d=(﹣2+1)3=﹣1故选:A.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.5.(2019秋•乐亭县期末)当x=﹣1时,3x2+9x﹣1的值为()A.0B.﹣7C.﹣9D.3【分析】把x=﹣1代入3x2+9x﹣1,转化为有理数的混合运算,计算求值即可.【解答】解:把x=﹣1代入3x2+9x﹣1得:原式=3×(﹣1)2+9×(﹣1)﹣1=3﹣9﹣1=﹣7,故选:B.【点评】本题考查了代数式求值,正确掌握代入法和有理数的混合运算是解题的关键.6.(2019秋•浦东新区期中)如果﹣x=1,那么3x2﹣3x﹣2的值是()A.1B.﹣1C.2D.﹣2【分析】把x2﹣x=1整体代入原式=3(x2﹣x)﹣2,计算可得.【解答】解:∵x2﹣x=1,∴3x2﹣3x﹣2=3(x2﹣x)﹣2=3×1﹣2=1.故选:A.【点评】本题主要考查代数式求值,解题的关键是熟练掌握整体代入思想的运用.二.填空题(共12小题)7.(2022秋•静安区月考)当a=﹣2时,代数式3a(a+1)的值等于.【分析】直接把a=﹣2代入代数式中进行计算即可.【解答】解:原式=3×(﹣2)×(﹣2+1)=﹣6×(﹣1)=6.故答案为:6.【点评】本题考查了代数式求值:把字母的值代入代数式进行计算得到对应的代数式的值.8.(2022秋•闵行区校级期中)当x=﹣时,代数式x2+1的值是.【分析】把x=﹣代入原式计算即可.【解答】解:当x=﹣时,原式=+1=1,故答案为:1.【点评】本题考查了代数式的求值,掌握用数值代替代数式里的字母进行计算,正确计算结果是解题关键.9.(2022•闵行区校级开学)已知x﹣5=y+4=z+1,代数式(y﹣x)2+(z﹣x)2+(y﹣z)2的值为.【分析】先加减法求出z﹣x=﹣6,y﹣x=﹣9,y﹣z=﹣3,进而代入解答即可.【解答】解:∵x﹣5=y+4=z+1,∴z﹣x=﹣6,y﹣x=﹣9,y﹣z=﹣3,把z﹣x=﹣6,y﹣x=﹣9,y﹣z=﹣3代入(y﹣x)2+(z﹣x)2+(y﹣z)2=81+36+9=126,故答案为:126.【点评】此题主要考查了代数式求值,正确将原式变形是解题关键.10.(2022秋•嘉定区校级期末)如果a﹣3b=4,那么2a﹣6b﹣1的值是.【分析】首先把2a﹣6b﹣1化成2(a﹣3b)﹣1,然后把a﹣3b=4代入化简后的算式计算即可.【解答】解:∵a﹣3b=4,∴2a﹣6b﹣1=2(a﹣3b)﹣1=2×4﹣1=8﹣1=7.故答案为:7.【点评】此题主要考查了代数式求值问题,求代数式的值可以直接代入计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.11.(2022秋•宝山区期末)当a=3时,代数式﹣2a2+a的值是.【分析】未知数的值已给出,直接代入求解.【解答】解:根据题意,直接将a=3代入,得(﹣2)×32+3=﹣18+3=﹣15.故答案为:﹣15.【点评】本题考查了用代入法求解,掌握代入法求解的方法是关键.12.(2022秋•浦东新区期中)定义a﹣b=0,则称a、b互容,若2x2﹣2与x+4互容,则6x2﹣3x﹣9=.【分析】先根据新定义求出2x2﹣x=6,再把6x2﹣3x﹣9化为3(2x2﹣x)﹣9的形式,整体代入计算即可.【解答】解:∵2x2﹣2与x+4互容,∴2x2﹣2﹣(x+4)=0,∴2x2﹣x=6,∴6x2﹣3x﹣9=3(2x2﹣x)﹣9=3×6﹣9=9,故答案为:9.【点评】本题考查了代数式的求值,掌握乘法分配律的逆运算,把(2x2﹣x)看做一个整体进行计算是解题关键.13.(2022•闵行区校级开学)当x时代数式ax2+bx﹣3的值为5,当x=1时代数式(2ax2+bx﹣5)4的值为.【分析】直接把x=2代入进而得出4a+2b=8,再把x=1代入求出答案.【解答】解:∵当x=2时,代数式ax2+bx﹣3的值为5,∴4a+2b=8,∴2a+b=4,∴当x=1时,代数式(2ax2+bx﹣5)4=(4﹣5)4=1.故答案为:1.【点评】此题主要考查了代数式求值,正确将原式变形是解题关键.14.(2022秋•宝山区校级月考)当a=﹣2时,﹣a2﹣2a+1=.【分析】把a的值代入代数式进行计算即可得解.【解答】解:当a=﹣2时,﹣a2﹣2a+1=﹣(﹣2)2﹣2×(﹣2)+1=﹣4+4+1=1.故答案为:1.【点评】本题考查了代数式求值,比较简单,把a的值代入代数式进行计算即可.15.(2022秋•黄浦区期中)定义:对于一个数x,我们把[x]称作x的相伴数;若x≥0,则[x]=x﹣1;若x<0,则[x]=x+1.例=,[﹣2]=﹣1;已知当a>0,b<0时有[a]=[b]+1,则代数式(b﹣a)3﹣3a+3b的值为.【分析】根据定义的新运算可得a﹣1=b+1+1,从而可得a﹣b=3,然后利用整体的思想进行计算即可解答.【解答】解:当a>0,b<0时,[a]=[b]+1,∴a﹣1=b+1+1,∴a﹣b=3,∴(b﹣a)3﹣3a+3b=﹣(a﹣b)3﹣3(a﹣b)=﹣33﹣3×3=﹣27﹣9=﹣36,故答案为:﹣36.【点评】本题考查了代数式求值,熟练掌握求代数式值中的整体思想是解题的关键.16.(2022秋•长宁区校级期中)当x=3时,代数式2x3+3x2﹣x+3的值是.【分析】将x=3代入运算即可.【解答】解:当x=3时,原式=2×33+3×32﹣3+3=2×27+3×9﹣3+3=54+27=81,故答案为:81.【点评】本题主要考查了求代数式的值,正确利用有理数的混合运算的法则运算是解题的关键.17.(2022秋•青浦区校级期中)当x=﹣2时,代数式的值为.【分析】将x=﹣2代入代数式,按照代数式要求的运算顺序和运算法则计算可得.【解答】解:当x=﹣2时,==3,故答案为:3.【点评】本题考查了代数式的求值,属于基础题,只要将已知条件代入求值即可.18.(2022秋•闵行区期中)如果代数式﹣2a2+3b+8的值为1,那么代数式4a2﹣6b+2的值等于.【分析】根据﹣2a2+3b+8的值为1,可得:﹣2a2+3b+8=1,所以﹣2a2+3b=﹣7,据此求出代数式4a2﹣6b+2的值等于多少即可.【解答】解:∵﹣2a2+3b+8的值为1,∴﹣2a2+3b+8=1,∴﹣2a2+3b=﹣7,∴4a2﹣6b+2=﹣2(﹣2a2+3b)+2=﹣2×(﹣7)+2=14+2=16故答案为:16.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.三.解答题(共8小题)19.(2021秋•松江区期中)如图所示,已知正方形的边长为2a.(1)用含有a的代数式表示阴影部分的面积;(2)当a=2时,求阴影部分的面积.(保留π)【分析】(1)先表示出半圆的面积,再表示出大三角形的面积,最后用正方形的面积减去半圆和大三角形的面积即可得出阴影部分的面积;(2)把a=2代入(1)中的结论,即可得出答案.【解答】解:(1)由题意得,半圆的面积为=,大三角形的面积为=a2,∵正方形的面积为2a×2a=4a2,∴阴影部分的面积为==(3﹣)a2;(2)当a=2时,(3﹣)a2=(3﹣)×22=12﹣2π,∴阴影部分的面积为12﹣2π.【点评】本题主要考查的是列代数式求值的问题,关键是要牢记圆,三角形和正方形的面积公式.20.(2021秋•浦东新区期中)某中学有一块长30m,宽20m的长方形空地,计划在这块空地上划分出部分区域种花,小明同学设计方案如图,设花带的宽度为x米.(1)请用含x的式子表示空白部分长方形的面积;(要化简)(2)当花带宽2米时,空白部分长方形面积能超过400m2吗?请说明理由.【分析】(1)空白部分长方形的两条边长分别是(30﹣2x)m,(20﹣x)m.得空白部分长方形的面积;(2)通过有理数的混合运算得结果与400进行比较.【解答】解:(1)空白部分长方形的两条边长分别是(30﹣2x)m,(20﹣x)m.白部分长方形的面积:(30﹣2x)(20﹣x)=2x2﹣70x+600.(2)答:超过.∵2×22﹣70×2+600=468(m2),∵468>400,∴空白部分长方形面积能超过400 m2.【点评】本题考查有代数式表示实际问题,掌握用代数式表示长方形的边长,读懂题意列出代数式是解决此题关键.21.(2020秋•嘉定区期末)在某班小组学习的过程中,同学们碰到了这样的问题:“已知=5,=3,=6,求的值”.根据已知条件中式子的特点,同学们会想起+=,于是问题可转化为:“已知=+=5,=+=3,=+=6,求=++的值”,这样解答就方便了.(1)通过阅读,试求的值;(2)利用上述解题思路请你解决以下问题:已知=6,求的值.【分析】(1)由已知=+=5,=+=3,=+=6,可得+++++=5+3+6,即可得出答案;(2)由已知=6,可得m+=6,=(m+)2﹣2,即可得出答案.【解答】解:(1)∵=+=5,=+=3,=+=6,∴+++++=5+3+6,∴,∴++==7;(2)∵=6,∴,,∴m2+=(m)2﹣2=62﹣2=34.∴.【点评】本题主要考查了代数式求值,合理应运题目所给条件是解决本题的关键.22.(2021秋•金山区期中)如图,正方形ABCD的边长等于a,正方形BEFG的边长等于b(a>b),其中,点G、E分别在AB、BC上.(1)用a、b的代数式表示图中的阴影部分面积;(2)当a=5,b=2时,求图中的阴影部分面积.【分析】(1)用正方形ABCD的面积减去正方形BEFG的面积再减去直角三角形AGD与在直角三角形DCE的和即可得出结论;(2)将a=5,b=2代入(1)中的代数式计算即可.【解答】解:S阴影=S正方形ABCD﹣S正方形BEFG﹣(S△ADG+S△DEC)==ab﹣b2.(2)当a=5,b=2时,ab﹣b2=5×2﹣4=6.【点评】本题主要考查了列代数式,求代数式的值,正确使用图形的面积公式是解题的关键.23.(2021秋•黄浦区期中)老王想靠着一面足够长的旧墙EF,开垦一块长方形的菜地ABCD,如图所示,菜地的一边靠墙,另外三边用竹篱笆围起来,并在平行于墙的一边BC上留1米宽装门,已知现有竹篱。
北师大版七年级数学上册《代数式求值》专项练习(含答案)
代数式求值一、选择题(共12小题)1.已知m=1,n=0,则代数式m+n的值为()A.﹣1 B.1 C.﹣2 D.22.已知x2﹣2x﹣8=0,则3x2﹣6x﹣18的值为()A.54 B.6 C.﹣10 D.﹣183.已知a2+2a=1,则代数式2a2+4a﹣1的值为()A.0 B.1 C.﹣1 D.﹣24.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1 B.2,1,4 C.1,4,2 D.2,4,15.当x=1时,代数式4﹣3x的值是()A.1 B.2 C.3 D.46.已知x=1,y=2,则代数式x﹣y的值为()A.1 B.﹣1 C.2 D.﹣37.已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6 C.﹣2或6 D.﹣2或308.按如图的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=﹣2 B.x=3,y=﹣3 C.x=﹣4,y=2 D.x=﹣3,y=﹣99.若m+n=﹣1,则(m+n)2﹣2m﹣2n的值是()A.3 B.0 C.1 D.210.已知x﹣2y=3,则代数式6﹣2x+4y的值为()A.0 B.﹣1 C.﹣3 D.311.当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣712.如图是一个运算程序的示意图,若开始输入x的值为81,则第2014次输出的结果为()A.3 B.27 C.9 D.1二、填空题(共18小题)13.若4a﹣2b=2π,则2a﹣b+π= .14.若2m﹣n2=4,则代数式10+4m﹣2n2的值为.15.若a﹣2b=3,则9﹣2a+4b的值为.16.已知3a﹣2b=2,则9a﹣6b= .17.若a2﹣3b=5,则6b﹣2a2+2015= .18.按照如图所示的操作步骤,若输入的值为3,则输出的值为.19.若a﹣2b=3,则2a﹣4b﹣5= .20.已知m2﹣m=6,则1﹣2m2+2m= .21.当x=1时,代数式x2+1= .22.若m+n=0,则2m+2n+1= .23.按如图所示的程序计算.若输入x的值为3,则输出的值为.24.按照如图所示的操作步骤,若输入x的值为2,则输出的值为.25.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是.26.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是.27.若x2﹣2x=3,则代数式2x2﹣4x+3的值为.28.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为.29.已知x(x+3)=1,则代数式2x2+6x﹣5的值为.30.已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为.参考答案与试题解析一、选择题(共12小题)1.已知m=1,n=0,则代数式m+n的值为()A.﹣1 B.1 C.﹣2 D.2【考点】代数式求值.【分析】把m、n的值代入代数式进行计算即可得解.【解答】解:当m=1,n=0时,m+n=1+0=1.故选B.【点评】本题考查了代数式求值,把m、n的值代入即可,比较简单.2.已知x2﹣2x﹣8=0,则3x2﹣6x﹣18的值为()A.54 B.6 C.﹣10 D.﹣18【考点】代数式求值.【专题】计算题.【分析】所求式子前两项提取3变形后,将已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣2x﹣8=0,即x2﹣2x=8,∴3x2﹣6x﹣18=3(x2﹣2x)﹣18=24﹣18=6.故选B.【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.3.已知a2+2a=1,则代数式2a2+4a﹣1的值为()A.0 B.1 C.﹣1 D.﹣2【考点】代数式求值.【专题】计算题.【分析】原式前两项提取变形后,将已知等式代入计算即可求出值.【解答】解:∵a2+2a=1,∴原式=2(a2+2a)﹣1=2﹣1=1,故选B【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.4.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1 B.2,1,4 C.1,4,2 D.2,4,1【考点】代数式求值.【专题】压轴题;图表型.【分析】把各项中的数字代入程序中计算得到结果,即可做出判断.【解答】解:A、把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;B、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项不合题意;C、把x=1代入得:3+1=4,把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;D、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项符合题意,故选D【点评】此题考查了代数式求值,弄清程序框图中的运算法则是解本题的关键.5.当x=1时,代数式4﹣3x的值是()A.1 B.2 C.3 D.4【考点】代数式求值.【专题】计算题.【分析】把x的值代入原式计算即可得到结果.【解答】解:当x=1时,原式=4﹣3=1,故选A.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.6.已知x=1,y=2,则代数式x﹣y的值为()A.1 B.﹣1 C.2 D.﹣3【考点】代数式求值.【分析】根据代数式的求值方法,把x=1,y=2代入x﹣y,求出代数式x﹣y的值为多少即可.【解答】解:当x=1,y=2时,x﹣y=1﹣2=﹣1,即代数式x﹣y的值为﹣1.故选:B.【点评】此题主要考查了代数式的求法,采用代入法即可,要熟练掌握,解答此题的关键是要明确:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.7.已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6 C.﹣2或6 D.﹣2或30【考点】代数式求值.【分析】方程两边同时乘以2,再化出2x2﹣4x求值.【解答】解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.【点评】本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.8.按如图的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=﹣2 B.x=3,y=﹣3 C.x=﹣4,y=2 D.x=﹣3,y=﹣9【考点】代数式求值;二元一次方程的解.【专题】计算题.【分析】根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.【解答】解:由题意得,2x﹣y=3,A、x=5时,y=7,故A选项错误;B、x=3时,y=3,故B选项错误;C、x=﹣4时,y=﹣11,故C选项错误;D、x=﹣3时,y=﹣9,故D选项正确.故选:D.【点评】本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.9.若m+n=﹣1,则(m+n)2﹣2m﹣2n的值是()A.3 B.0 C.1 D.2【考点】代数式求值.【分析】把(m+n)看作一个整体并代入所求代数式进行计算即可得解.【解答】解:∵m+n=﹣1,∴(m+n)2﹣2m﹣2n=(m+n)2﹣2(m+n)=(﹣1)2﹣2×(﹣1)=1+2=3.故选:A.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.10.已知x﹣2y=3,则代数式6﹣2x+4y的值为()A.0 B.﹣1 C.﹣3 D.3【考点】代数式求值.【分析】先把6﹣2x+4y变形为6﹣2(x﹣2y),然后把x﹣2y=3整体代入计算即可.【解答】解:∵x﹣2y=3,∴6﹣2x+4y=6﹣2(x﹣2y)=6﹣2×3=6﹣6=0故选:A.【点评】本题考查了代数式求值:先把所求的代数式根据已知条件进行变形,然后利用整体的思想进行计算.11.当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣7【考点】代数式求值.【专题】整体思想.【分析】把x=1代入代数式求出a、b的关系式,再把x=﹣1代入进行计算即可得解.【解答】解:x=1时, ax3﹣3bx+4=a﹣3b+4=7,解得a﹣3b=3,当x=﹣1时, ax3﹣3bx+4=﹣a+3b+4=﹣3+4=1.故选:C.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.12.如图是一个运算程序的示意图,若开始输入x的值为81,则第2014次输出的结果为()A.3 B.27 C.9 D.1【考点】代数式求值.【专题】图表型.【分析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【解答】解:第1次,×81=27,第2次,×27=9,第3次,×9=3,第4次,×3=1,第5次,1+2=3,第6次,×3=1,…,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2014是偶数,∴第2014次输出的结果为1.故选:D.【点评】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.二、填空题(共18小题)13.若4a﹣2b=2π,则2a﹣b+π= 2π.【考点】代数式求值.【分析】根据整体代入法解答即可.【解答】解:因为4a﹣2b=2π,所以可得2a﹣b=π,把2a﹣b=π代入2a﹣b+π=2π.【点评】此题考查代数式求值,关键是根据整体代入法计算.14.若2m﹣n2=4,则代数式10+4m﹣2n2的值为18 .【考点】代数式求值.【分析】观察发现4m﹣2n2是2m﹣n2的2倍,进而可得4m﹣2n2=8,然后再求代数式10+4m﹣2n2的值.【解答】解:∵2m﹣n2=4,∴4m﹣2n2=8,∴10+4m﹣2n2=18,故答案为:18.【点评】此题主要考查了求代数式的值,关键是找出代数式之间的关系.15.若a﹣2b=3,则9﹣2a+4b的值为 3 .【考点】代数式求值.【专题】计算题.【分析】原式后两项提取﹣2变形后,把已知等式代入计算即可求出值.【解答】解:∵a﹣2b=3,∴原式=9﹣2(a﹣2b)=9﹣6=3,故答案为:3.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.已知3a﹣2b=2,则9a﹣6b= 6 .【考点】代数式求值.【分析】把3a﹣2b整体代入进行计算即可得解.【解答】解:∵3a﹣2b=2,∴9a﹣6b=3(3a﹣2b)=3×2=6,故答案为;6.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.17.若a2﹣3b=5,则6b﹣2a2+2015= 2005 .【考点】代数式求值.【分析】首先根据a2﹣3b=5,求出6b﹣2a2的值是多少,然后用所得的结果加上2015,求出算式6b﹣2a2+2015的值是多少即可.【解答】解:6b﹣2a2+2015=﹣2(a2﹣3b)+2015=﹣2×5+2015=﹣10+2015=2005.故答案为:2005.【点评】此题主要考查了代数式的求值问题,采用代入法即可,要熟练掌握,题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.按照如图所示的操作步骤,若输入的值为3,则输出的值为55 .【考点】代数式求值.【专题】图表型.【分析】根据运算程序列式计算即可得解.【解答】解:由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.故答案为:55.【点评】本题考查了代数式求值,读懂题目运算程序是解题的关键.19.若a﹣2b=3,则2a﹣4b﹣5= 1 .【考点】代数式求值.【分析】把所求代数式转化为含有(a﹣2b)形式的代数式,然后将a﹣2b=3整体代入并求值即可.【解答】解:2a﹣4b﹣5=2(a﹣2b)﹣5=2×3﹣5=1.故答案是:1.【点评】本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a﹣2b)的值,然后利用“整体代入法”求代数式的值.20.已知m2﹣m=6,则1﹣2m2+2m= ﹣11 .【考点】代数式求值.【专题】整体思想.【分析】把m2﹣m看作一个整体,代入代数式进行计算即可得解.【解答】解:∵m2﹣m=6,∴1﹣2m2+2m=1﹣2(m2﹣m)=1﹣2×6=﹣11.故答案为:﹣11.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.21.当x=1时,代数式x2+1= 2 .【考点】代数式求值.【分析】把x的值代入代数式进行计算即可得解.【解答】解:x=1时,x2+1=12+1=1+1=2.故答案为:2.【点评】本题考查了代数式求值,是基础题,准确计算是解题的关键.22.若m+n=0,则2m+2n+1= 1 .【考点】代数式求值.【分析】把所求代数式转化成已知条件的形式,然后整体代入进行计算即可得解.【解答】解:∵m+n=0,∴2m+2n+1=2(m+n)+1,=2×0+1,=0+1,=1.故答案为:1.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.23.按如图所示的程序计算.若输入x的值为3,则输出的值为﹣3 .【考点】代数式求值.【专题】图表型.【分析】根据x的值是奇数,代入下边的关系式进行计算即可得解.【解答】解:x=3时,输出的值为﹣x=﹣3.故答案为:﹣3.【点评】本题考查了代数式求值,准确选择关系式是解题的关键.24.按照如图所示的操作步骤,若输入x的值为2,则输出的值为20 .【考点】代数式求值.【专题】图表型.【分析】根据运算程序写出算式,然后代入数据进行计算即可得解.【解答】解:由图可知,运算程序为(x+3)2﹣5,当x=2时,(x+3)2﹣5=(2+3)2﹣5=25﹣5=20.故答案为:20.【点评】本题考查了代数式求值,是基础题,根据图表准确写出运算程序是解题的关键.25.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是9 .【考点】代数式求值.【专题】应用题.【分析】观察可看出未知数的值没有直接给出,而是隐含在题中,需要找出规律,代入求解.【解答】解:根据所给规则:m=(﹣1)2+3﹣1=3∴最后得到的实数是32+1﹣1=9.【点评】依照规则,首先计算m的值,再进一步计算即可.隐含了整体的数学思想和正确运算的能力.26.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是 3 .【考点】代数式求值.【分析】将x=1代入代数式2ax3+3bx+4,令其值是5求出2a+3b的值,再将x=﹣1代入代数式2ax3+3bx+4,变形后代入计算即可求出值.【解答】解:∵x=1时,代数式2ax3+3bx+4=2a+3b+4=5,即2a+3b=1,∴x=﹣1时,代数式2ax3+3bx+4=﹣2a﹣3b+4=﹣(2a+3b)+4=﹣1+4=3.故答案为:3【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.27.若x2﹣2x=3,则代数式2x2﹣4x+3的值为9 .【考点】代数式求值.【专题】计算题.【分析】所求式子前两项提取2变形后,将已知等式代入计算即可求出值.【解答】解:∵x2﹣2x=3,∴2x2﹣4x+3=2(x2﹣2x)+3=6+3=9.故答案为:9【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.28.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为 5 .【考点】代数式求值.【专题】整体思想.【分析】先求出m2﹣2m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.【解答】解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=5.故答案为:5.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.29.已知x(x+3)=1,则代数式2x2+6x﹣5的值为﹣3 .【考点】代数式求值;单项式乘多项式.【专题】整体思想.【分析】把所求代数式整理出已知条件的形式,然后代入数据进行计算即可得解.【解答】解:∵x(x+3)=1,∴2x2+6x﹣5=2x(x+3)﹣5=2×1﹣5=2﹣5=﹣3.故答案为:﹣3.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.30.已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为9 .【考点】代数式求值.【专题】整体思想.【分析】把所求代数式整理成已知条件的形式,然后代入进行计算即可得解.【解答】解:∵x2﹣2x=5,∴2x2﹣4x﹣1=2(x2﹣2x)﹣1,=2×5﹣1,=10﹣1,=9.故答案为:9.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.。
最新中考数学复习专项练习--代数式求值(含解析)
代数式求值(含解析)一、单选题1.如图,若输入x的值为﹣5,则输出的结果y为()A. -6B. 5C. -5D. 62.已知a﹣b=2,则代数式2a﹣2b﹣3的值是()A. 1B. 2C. 5D. 73.设某代数式为A,若存在实数x0使得代数式A的值为负数,则代数式A可以是()A. |3﹣x|B. x2+xC. D. x2﹣2x+14.若,,则代数式的值是()A. 2B. -2C. 1D. -15.已知2y﹣x=2,则2x﹣4y的值为()A. 4B. -4C. 8D. -86.已知,则的值是()A. B.C. D.7.已知x2﹣2x﹣5=0,则2x2﹣4x的值为()A. -10B. 10C. ﹣2或10D. 2或﹣108.设a,b是非零有理数,且(a+b)2=0,则的值为()A. B. 3C. 1D. -19.已知:a﹣3b=2,则6﹣2a+6b的值为()A. 2B. -2C. 4D. -410.已知代数式的值是5,则代数式的值是()A. 6B. -6C. 11D. -911.已知=3,则代数式的值是()A. B.C. D.12.若3x=6,2y=4则5x+4y 的值为()A. 18B. 15C. 9D. 613.如果a﹣2b=﹣3,则代数式5﹣a+2b的值是()A. -1B. 8C. 2D. -214.当x=1时,代数式ax5+bx3+1的值为6,则x=﹣1时,ax5+bx3+1的值是()A. ﹣6B. ﹣5C. 4D. ﹣4二、填空题15.若x的值满足2x2+3x+7=8,则4x2+6x﹣9=________16.当a=3,b=﹣1时,代数式的值是________.17.若3a2﹣a﹣2=0,则5+2a﹣6a2=________.18.若2a﹣3b2=5,则6﹣2a+3b2=________.19.若,则________。
三、计算题20.先化简,再求值:3(x+2)2﹣2(x﹣2)(x+2),其中x=﹣.21.先化简,再求值:(x+1)(x-1)-(x+1)2,其中x=-222.先化简再求值:,其中a=-,b=-2.23.已知:a﹣b=2,ab=1,求(a﹣2b)2+3a(a﹣b)的值.四、解答题24.当x=-,y=5时,求代数式6x2﹣y+3的值25.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款多少元(用含x的代数式表示);若该客户按方案②购买,需付款多少元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?五、综合题26.阅读理解:由面积都是1的小正方格组成的方格平面叫做格点平面.而纵横两组平行线的交点叫做格点.如图1中,有9个格点,如果一个正方形的每个顶点都在格点上,那么这个正方形称为格点正方形.(1)探索发现:按照图形完成下表:格点正方形内格点数格点正方形面积关于格点正方形的面积S,从上述表格中你发现了什么规律?(2)继续猜想:类比格点正方形的概念,如果一个长方形的每个顶点都在格点上,那么这个长方形称为格点长方形,对于格点长方形的面积,你认为也有类似(1)中的规律吗?试以图5中格点长方形为例来说明.27.化简求值:(1)已知x=-1,求x2+3x-1的值;(2)已知,求值.答案解析部分一、单选题1.如图,若输入x的值为﹣5,则输出的结果y为()A. -6B. 5C. -5D. 6【答案】D【考点】代数式求值【解析】【解答】解:已知x=﹣5<0,∴y=﹣x+1=﹣(﹣5)+1=6.故选D.【分析】由已知输入x的值为﹣5,所以由图示得y=﹣x+1,求出y.2.已知a﹣b=2,则代数式2a﹣2b﹣3的值是()A. 1B. 2C. 5D. 7【答案】A【考点】代数式求值【解析】【解答】解:∵a﹣b=2,∴2a﹣2b﹣3=2(a﹣b)﹣3=2×2﹣3=1.故选:A.【分析】直接利用已知a﹣b=2,再将原式变形代入a﹣b=2求出答案.3.设某代数式为A,若存在实数x0使得代数式A的值为负数,则代数式A可以是()A. |3﹣x|B. x2+xC. D. x2﹣2x+1【答案】B【考点】代数式求值【解析】【解答】解:对于任意的x,都有|3﹣x|≥0,,x2﹣2x+1=(x﹣1)2≥0,因为x2+x=(x+0.5)2﹣0.25,所以对于任意的x的取值,代数式A的值可以为正数、负数或0,即存在实数x0使得代数式A的值为负数.故选:B.【分析】首先根据对于任意的x,都有|3﹣x|≥0,,x2﹣2x+1=(x﹣1)2≥0,所以对于任意的实数x0,代数式A的值都为非负数;然后判断出x2+x=(x+0.5)2﹣0.25,对于任意的x的取值,代数式A的值可以为正数、负数或0,即存在实数x0使得代数式A的值为负数,据此解答即可.4.若,,则代数式的值是()A. 2B. -2C. 1D. -1【答案】D【考点】代数式求值【解析】【分析】 ,把,代入上式即可。
专题05_整式及代数式求值技巧(解析版)
专题05整式及代数式求值题型考点1:根据整式的概念求某些字母的值时,一般需要列出关于这个字母的方程.解此类问题经常利用的是单项式或多项式的次数概念;同类项的概念;单项式的系数不等于0;多项式某项的系数等于0或不等于0等.巧用单项式的次数、系数求字母的值1.若-m 3x 3y |n -2|是关于x ,y 的单项式,且系数是56,次数是7,则m =________,n =________.【答案】-52;6或-2 【解析】:单项式-m 3x 3·y |n -2|的系数是-m 3,即-m 3=56,则m =-52.次数是7,则|n -2|=7-3=4,即n -2=±4,解得n =6或-2.2.已知(a -2)x 2y |a|+1是关于x ,y 的五次单项式,求(a +1)2的值.【答案】解:因为(a -2)x 2y|a|+1是关于x ,y 的五次单项式,所以a -2≠0且2+|a|+1=5.所以a =-2.所以(a +1)2=(-2+1)2=1.巧用多项式的项、次数求字母的值3.多项式-m 2n 2+m 3-12n -23的各项是________________________,是____次______项式.【答案】-m 2n 2,m 3,-12n ,-23;四;四 4.若(m -3)x 2-2x -(m +2)是关于x 的一次多项式,则m =________;若它是关于x 的二次三项式,则m 应满足的条件是____________________.【答案】3;m ≠3且m ≠-25.若化简关于x ,y 的整式x 3+2a(x 2+xy)-bx 2-xy +y 2,得到的结果是一个三次二项式,求a 3+b 2的值.【答案】解:x 3-2a(x 2+xy)-bx 2-xy +y 2=x 3+(2a -b)x 2+(2a -1)xy +y 2,因为这个关于x ,y 的整式是一个三次二项式,所以2a -b =0,2a -1=0. 所以a =12,b =1. 所以a 3+b 2=⎝ ⎛⎭⎪⎫123+12=98.巧用与多项式的某些项无关求字母的值6.已知关于x的多项式3x4-(m+5)x3+(n-1)x2-5x+3不含x3项和x2项,求m+2n 的值.【答案】解:依题意可知,-(m+5)=0,n-1=0,则m=-5,n=1,所以m+2n=-5+2×1=-3.7.当k为何值时,关于x,y的多项式x2+2kxy-3y2-6xy-y中不含xy项?【答案】解:x2+2kxy-3y2-6xy-y=x2+(2k-6)xy-3y2-y,因为此多项式中不含xy项,所以xy项的系数为0,即2k-6=0.所以k=3.所以当k=3时,关于x,y的多项式x2+2kxy-3y2-6xy-y中不含xy项.巧用同类项求字母的值8.若-2x3y m与5x n y2是同类项,则m=______,n=________.【答案】2;39.若关于x,y的单项式(2+m)x a y4与4x2y b+5的和等于0,求3m+2a+4b的值.【答案】解:由题意得2+m=-4,a=2,b+5=4,所以m=-6,a=2,b=-1.所以3m+2a+4b=3×(-6)+2×2+4×(-1)=-18.考点2:用数值代替代数式里的字母,按照代数式里的运算符号,计算出的结果就是代数式的值.如果要求值的式子比较简单,可以直接代入求值;如果要求值的式子比较复杂,可考虑先将式子化简,然后代入求值;有时我们还需根据题目的特点,选择特殊的方法求式子的值,如整体代入求值等.直接代入求值1.若a=49,b=109,则ab-9a的值为________.【答案】4 9002.当a=3,b=2或a=-2,b=-1或a=4,b=-3时,(1)求a2+2ab+b2,(a+b)2的值;(2)从中你发现了怎样的规律?【答案】解:(1)当a=3,b=2时,a2+2ab+b2=32+2×3×2+22=25,(a+b)2=(3+2)2=25;当a=-2,b=-1时,a2+2ab+b2=(-2)2+2×(-2)×(-1)+(-1)2=9,(a+b)2=[(-2)+(-1)]2=9;当a =4,b =-3时,a 2+2ab +b 2=42+2×4×(-3)+(-3)2=1,(a +b)2=(4-3)2=1.(2)a 2+2ab +b 2=(a +b)2. 题型2: 先化简再代入求值3.已知A =1-x 2,B =x 2-4x -3,C =5x 2+4,求多项式A -2[A -B -2(B -C)]的值,其中x =-1.【答案】解:原式=A -2A +2B +4(B -C)=A -2A +2B +4B -4C =-A +6B -4C. 因为A =1-x 2,B =x 2-4x -3,C =5x 2+4,所以原式=x 2-1+6x 2-24x -18-4(5x 2+4)=-13x 2-24x -35.当x =-1时,原式=-13x 2-24x -35=-13×(-1)2-24×(-1)-35=-13+24-35=-24. 题型3: 特征条件代入求值4.已知|x -2|+(y +1)2=0,求-2(2x -3y 2)+5(x -y 2)-1的值.【答案】解:由条件|x -2|+(y +1)2=0,得x -2=0且y +1=0,所以x =2,y =-1.原式=-4x +6y 2+5x -5y 2-1=x +y 2-1.当x =2,y =-1时,原式=x +y 2-1=2+(-1)2-1=2. 题型4: 整体代入求值5.已知2x -3y =5,求6x -9y -5的值.【答案】解:6x -9y -5=3(2x -3y)-5=3×5-5=10.6.已知当x =2时,多项式ax 3-bx +1的值是-17,那么当x =-1时,多项式12ax -3bx 3-5的值是多少?【答案】解:因为当x =2时,多项式ax 3-bx +1的值是-17,所以8a -2b +1=-17.所以8a -2b =-18.当x =-1时,12ax -3bx 3-5=-12a +3b -5=(-12a +3b)-5=-32(8a -2b)-5=-32×(-18)-5=22. 题型5: 整体加减求值7.已知x2-xy=-3,2xy-y2=-8,求代数式2x2+4xy-3y2的值.【答案】解:由x2-xy=-3,得2x2-2xy=-6①;由2xy-y2=-8,得6xy-3y2=-24②.①+②,得(2x2-2xy)+(6xy-3y2)=(-6)+(-24)=-30,即2x2+4xy-3y2=-30.8.已知m2-mn=21,mn-n2=-12.求下列代数式的值:(1)m2-n2;(2)m2-2mn+n2.【答案】解:(1)因为m2-mn=21,mn-n2=-12,所以m2-n2=(m2-mn)+(mn-n2)=21-12=9.(2)因为m2-mn=21,mn-n2=-12,所以m2-2mn+n2=(m2-mn)-(mn-n2)=21-(-12)=21+12=33.取特殊值代入求值(特殊值法)9.已知(x+1)3=ax3+bx2+cx+d,求a+b+c的值.【答案】解:令x=0,得(0+1)3=d,所以d=1.再令x=1,得(1+1)3=a+b+c+d,所以a+b+c+d=8.所以a+b+c=8-1=7.。
代数式求值(整体代入一)(人教版)(含答案)
学生做题前请先回答以下问题问题1:整体代入的思考方向①求值困难,考虑_____________;②化简________________,对比确定________;③整体代入,化简.问题2:已知代数式2a2+3b=6,求代数式4a2+6b+8的值.①根据2a2+3b=6无法求出a和b的具体值,考虑_____________;②对比已知及所求,考虑把________作为整体;③整体代入,化简,最后结果为______.代数式求值(整体代入一)(人教版)一、单选题(共13道,每道7分)1.把看成一个整体,合并同类项的结果为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:合并同类项2.把看成一个整体,合并同类项的结果为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:合并同类项3.设,把用含的代数式表示并化简的结果为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:整体代入4.设,把用含的代数式表示并化简的结果为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:整体代入5.若,则代数式的值为( )A.0B.4C.6D.2答案:C解题思路:试题难度:三颗星知识点:整体代入6.已知,则的值为( )A.-1B.0C.1D.3答案:A解题思路:试题难度:三颗星知识点:整体代入7.若,则代数式的值为( )A.-1B.1C.-5D.5答案:A解题思路:试题难度:三颗星知识点:整体代入8.已知代数式的值是4,则的值为( )A.1B.5C.9D.10答案:C解题思路:试题难度:三颗星知识点:整体代入9.若代数式的值为5,则代数式的值为( )A.1B.9C.11D.21答案:B解题思路:试题难度:三颗星知识点:整体代入10.已知代数式的值为6,则的值为( )A.24B.18C.12D.9答案:B解题思路:试题难度:三颗星知识点:整体代入11.若,则的值为( )A.0B.2C.5D.8答案:D解题思路:试题难度:三颗星知识点:整体代入12.若,则的值为( )A.7B.-7C.1D.-1答案:A解题思路:试题难度:三颗星知识点:整体代入13.若,则的值为( )A.-59B.-31C.41D.61答案:D解题思路:试题难度:三颗星知识点:整体代入。
代数式经典测试题附解析
代数式经典测试题附解析一、选择题1.若多项式x 2+mx +4能用完全平方公式分解因式,则m 的值可以是( ) A .4B .﹣4C .±2D .±4【答案】D【解析】【分析】利用完全平方公式因式分解2222=()a ab b a b ±+±计算即可.【详解】解:∵x 2+mx +4=(x ±2)2,即x 2+mx +4=x 2±4x +4,∴m =±4.故选:D .【点睛】本题要熟记完全平方公式,尤其是两种情况的分类讨论.2.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a ,用含a 的式子表示这组数的和是( )A .2a 2-2aB .2a 2-2a -2C .2a 2-aD .2a 2+a【答案】C【解析】【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n =2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n =2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∵250=a ,∴2101=(250)2•2=2a 2,∴原式=2a 2-a .故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n =2n+1-2.3.下列各式中,运算正确的是( )A .632a a a ÷=B .325()a a =C .=D =【答案】D【解析】【分析】利用同底数幂的除法、幂的乘方、二次根式的加法和二次根式的除法法则计算.【详解】解:A 、a 6÷a 3=a 3,故不对;B 、(a 3)2=a 6,故不对;C 、和不是同类二次根式,因而不能合并;D 、符合二次根式的除法法则,正确.故选D .4.一种微生物的直径约为0.0000027米,用科学计数法表示为( )A .62.710-⨯B .72.710-⨯C .62.710-⨯D .72.710⨯【答案】A【解析】【分析】绝对值小于1的正数科学记数法所使用的是负指数幂,指数由原数左边起第一个不为0的数字前面的0的个数所决定.【详解】解:0.0000027的左边第一个不为0的数字2的前面有6个0,所以指数为-6,由科学记数法的定义得到答案为62.710-⨯.故选A.【点睛】本题考查了绝对值小于1的正数科学记数法表示,一般形式为10n a -⨯.5.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .40【答案】B【解析】 试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n 个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n +个, 则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B .考点:规律型:图形变化类.6.下列运算错误的是( )A .()326m m =B .109a a a ÷=C .358⋅=x x xD .437a a a +=【答案】D【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【详解】A 、(m 2)3=m 6,正确;B 、a 10÷a 9=a ,正确;C 、x 3•x 5=x 8,正确;D 、a 4+a 3=a 4+a 3,错误;故选:D .【点睛】此题考查合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.7.下列运算正确的是( )A .2m 2+m 2=3m 4B .(mn 2)2=mn 4C .2m•4m 2=8m 2D .m 5÷m 3=m 2【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算后即可解答.【详解】选项A ,2m 2+m 2=3m 2,故此选项错误;选项B ,(mn 2)2=m 2n 4,故此选项错误;选项C ,2m •4m 2=8m 3,故此选项错误;选项D ,m 5÷m 3=m 2,正确.故选D .【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题关键.8.若35m =,34n =,则23m n -等于( ) A .254 B .6C .21D .20 【答案】A【解析】【分析】根据幂的运算法则转化式子,代入数值计算即可.【详解】解:∵35m =,34n =, ∴222233(3)3253544-==÷÷÷==m n m n m n , 故选:A .【点睛】本题考查了同底数幂的除法和幂的乘方的逆用,熟练掌握同底数幂的除法和幂的乘方的运算法则是解题的关键.9.下列各计算中,正确的是( )A .2323a a a +=B .326a a a ⋅=C .824a a a ÷=D .326()a a =【答案】D【解析】【分析】本题主要考查的就是同底数幂的计算法则【详解】解:A 、不是同类项,无法进行合并计算;B 、同底数幂乘法,底数不变,指数相加,原式=5a ;C 、同底数幂的除法,底数不变,指数相减,原式=6a ;D 、幂的乘方法则,底数不变,指数相乘,原式=6a .【点睛】本题主要考查的就是同底数幂的计算法则.在运用同底数幂的计算的时候首先必须将各幂的底数化成相同,然后再利用公式来进行计算得出答案.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方法则,底数不变,指数相乘.在进行逆运算的时候很多同学容易用错,例如:m n m n a a a +=+等等.10.5. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(-10%)(+15%)万元B .(1-10%)(1+15%)万元C .(-10%+15%)万元D .(1-10%+15%)万元【答案】B【解析】列代数式.据3月份的产值是a 万元,用a 把4月份的产值表示出来a (1-10%),从而得出5月份产值列出式子a 1-10%)(1+15%).故选B .11.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )A .(a+b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab+b 2C .(a+b )2=a 2+2ab+b 2D .(a+b )2=(a ﹣b )2+4ab【答案】B【解析】【分析】 根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a ﹣b )2;图2中阴影部分的面积为:a 2﹣2ab+b 2; ∴(a ﹣b )2=a 2﹣2ab+b 2,故选B .【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.12.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为()A.7 B.12 C.13 D.25【答案】C【解析】【分析】设正方形A的边长为a,正方形B的边长为b,根据图形列式整理得a2+b2−2ab=1,2ab =12,求出a2+b2即可.【详解】解:设正方形A的边长为a,正方形B的边长为b,由图甲得:a2−b2−2(a−b)b=1,即a2+b2−2ab=1,由图乙得:(a+b)2−a2−b2=12,即2ab=12,所以a2+b2=13,即正方形A,B的面积之和为13,故选:C.【点睛】本题主要考查了完全平方公式在几何图形中的应用,解题的关键是根据图形列出算式.13.已知多项式x-a与x2+2x-1的乘积中不含x2项,则常数a的值是()A.-1 B.1 C.2 D.-2【答案】C【解析】分析:先计算(x﹣a)(x2+2x﹣1),然后将含x2的项进行合并,最后令其系数为0即可求出a的值.详解:(x﹣a)(x2+2x﹣1)=x3+2x2﹣x﹣ax2﹣2ax+a=x3+2x2﹣ax2﹣x﹣2ax+a=x3+(2﹣a)x2﹣x﹣2ax+a令2﹣a=0,∴a=2.故选C.点睛:本题考查了多项式乘以多项式,解题的关键是熟练运用运算法则,本题属于基础题型.14.如图,从边长为(4a +)cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .15.按如图所示的运算程序,能使输出y 的值为1的是( )A .a =3,b =2B .a =﹣3,b =﹣1C .a =1,b =3D .a =4,b =2【答案】A【解析】【分析】根据题意,每个选项进行计算,即可判断.【详解】解:A 、当a =3,b =2时,y =12a -=132-=1,符合题意;B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意;C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意;D 、当a =4,b =2时,y =12a -=142-=12,不符合题意. 故选:A .【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.16.已知112x y +=,则23xy x y xy +-的值为( ) A .12 B .2 C .12- D .2-【答案】D【解析】【分析】先将已知条件变形为2x y xy +=,再将其整体代入所求式子求值即可得解.【详解】解:∵112x y+= ∴2x y xy+= ∴2x y xy += ∴2222323xy xy xy x y xy xy xy xy ===-+---. 故选:D【点睛】本题考查了分式的化简求值,此题涉及到的是整体代入法,能将已知式子整理变形为2x y xy +=的形式是解题的关键.17.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1【答案】B【解析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,,…,, 下边三角形的数字规律为:1+2,,…,, ∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.18.计算(-2)2009+(-2)2010的结果是( )A .22019B .22009C .-2D .-22010【答案】B【解析】(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009,故选B .19.下列运算中,正确的是( )A .236x x x ⋅=B .333()ab a b =C .33(2)6a a =D .239-=-【答案】B【解析】【分析】分别根据同底数幂的乘法法则,积的乘方法则以及负整数指数幂的运算法则逐一判断即可.【详解】x 2•x 3=x 5,故选项A 不合题意;(ab )3=a 3b 3,故选项B 符合题意;(2a )3=8a 6,故选项C 不合题意; 3−2=19,故选项D 不合题意. 故选:B .【点睛】 此题考查同底数幂的乘法,幂的乘方与积的乘方以及负整数指数幂的计算,熟练掌握幂的运算法则是解题的关键.20.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A.110 B.158 C.168 D.178【答案】B【解析】根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4−0,22=4×6−2,44=6×8−4,∴m=12×14−10=158.故选C.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
1 / 37
初中数学
《代数式求值》
已知 a+b=
2 ,a-b=
3
求代数式a (a+2b )+b (2a-b )的值
.
.
3 / 37
已知 a ²+a-3=0
求代数式13a 3 +52a 2 的值
.
.
5 / 37
已知 x - 1
x
=
2,
求代数式 x ² -
1x ²
的值
6 / 37
7 / 37
已知x - y = 5
求代数式(x²- y²)²- 10(x²+y²)的值
8 / 37
若x、y互为相反数,
求代数式2x²-3x +2 +7xy-3y+5y²的值
10 / 37
11 / 37
若x²-2x -2=0,
求代数式x4+4
10x²
的值。
12 / 37
13 / 37
已知x(x+y)-y(x+1)=x(x-2)
求代数式x²+xy-y²y²+2xy
14 / 37
15 / 37
已知x+y= -2
求代数式x²+ 2y(x+1)+(y-1)²
16 / 37
已知x是最大的负整数,y是绝对值最小的有理数,
求代数式3x3+ 2y2x+(2y+3x)²
18 / 37
19 / 37
已知x-y=2
求代数式x3-6xy-y3
20 / 37
.
21 / 37
.
22 / 37
已知3x ²-x-1 =0,
求代数式6x 3+7x ²-5x-2018
.
24 / 37
题目:已知a-b= -1,b-c=2,
求代数式(a+b+c )(a-b-c )(1 - c
a
)2 的值
.
.
26 / 37
已知x 、y 是正数,且x=7y ²2x+5y
,
求代数式4x ² -2x+xy +2y-5y ²+3 的值
/
已知x+y =3,x²+y²=6
求代数式2x²+2x²y+2xy+xy²+y3的值
28 / 37
30 / 37
.
31 / 37
(2)-(1)得:4xy=3-4x ²y ²,把-4x ²y ²移到左边 4x ²y ²+4xy=3 两边同时加上1,得: 4x ²y ²+4xy+1=4,
即(2xy+1)²=4 ,两边同时开方, 2xy+1= ±2
因为x 、y 是正数,那么2xy+1也是正数,所以2xy+1=-2(舍去)
故2xy+1=2 ,即xy= 1
2 --------------(3)
把(3)代入到(2),得,
x ² + 2× 1
2 +y ²=
3 则有:x ²+y ² =2----(4)
32 / 37
已知x2-3x+1=0,
求代数式x² - 1
x²
的值,
33 / 37
.
.
35 / 37
已知x 、y 是正数,且x - y=3,xy=
5,
求代数式x 3+x 2y+x 2y+y 3的值
36 / 37。