代数式及合并同类项经典难题
代数式 去括号和合并同类项专项练习
去括号和合并同类项专项训练单项式中的数字因数叫做单项式的系数。
单项式中所有字母的指数的和叫做单项式的次数。
几个单项式的和叫做多项式。
多项式中,每个单项式叫做多项式的项;多项式里含有几项,就把这个多项式叫做几项式,其中次数最高的项的次数叫做这个多项式的次数。
不含字母的项叫做常数项。
所含字母相同,并且相同字母的指数也相同的项叫做同类项。
根据乘法分配律把同类项合并成一项叫做合并同类项。
合并同类项法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不改变。
括号前面是“﹣”号,把括号和它前面的“﹣”号去掉,括号里各项的符号都要改变。
一、选择题1 .下列式子中正确的是( )A.3a+2b =5abB.C.D.5xy-5yx =0 2 .下列各组中,不是同类项的是A 、3和0B 、2222R R ππ与C 、xy 与2pxyD 、11113+--+-n n n n x y y x 与 3 .下列各对单项式中,不是同类项的是( )A.0与31B.23n m x y +-与22m n y x +C.213x y 与225yxD.20.4a b 与20.3ab4 .如果23321133a b x y x y +--与是同类项,那么a 、b 的值分别是( )A.12a b =⎧⎨=⎩B.02a b =⎧⎨=⎩C.21a b =⎧⎨=⎩D.11a b =⎧⎨=⎩5 .下列各组中的两项不属于同类项的是 ( )A.233m n 和23m n -B.5xy 和5xyC.-1和14D.2a 和3x6 .下列合并同类项正确的是A.628=-a a ;B.532725x x x =+C. b a ab b a 22223=-;D.y x y x y x 222835-=-- 7 .已知代数式y x 2+的值是3,则代数式142++y x 的值是A.1B.4C. 7D.不能确定8 .x 是一个两位数,y 是一个一位数,如果把y 放在x 的左边,那么所成的三位数表示为A.yxB.x y +C.10x y +D.100x y +752853x x x =+y x xy y x 22254-=-2 / 49 .某班共有x 名学生,其中男生占51%,则女生人数为 ( )A 、49%xB 、51%xC 、49%x D 、51%x10.一个两位数是a ,还有一个三位数是b ,如果把这个两位数放在这个三位数的前面,组成一个五位数,则这个五位数的表示方法是 ( )A.b a +10B.b a +100C.b a +1000D.b a + 11. 与y x 221不仅所含字母相同,而且相同字母的指数也相同的是( )A.z x 221B. xy 21C.2yx -D. x 2y 12.下列各组式子中,两个单项式是同类项的是( ) A.2a 与2a B.5b a 2 与b a 2 C. xy 与y x 2 D. 0.3m 2n 与0.3x 2y 13.下列计算正确的是( )A.2a+b=2abB.3222=-x xC. 7mn-7nm=0D.a+a=2a 14、化简(3-π)-︱π-3︱的结果为( )A .6B .-2πC .2π-6D .6-2π二、填空题1.写出322x y -的一个同类项_______________________.2.单项式113a b a x y +--与345y x 是同类项,则a b -的值为_________。3.若2243a b x y x y x y -+=-,则a b +=__________. 4.合并同类项:._______________223322=++-ab b a ab b a5.已知622x y 和313m n x y -是同类项,则29517m mn --的值是_____________. 6.某公司员工,月工资由m 元增长了10%后达到_______元。 7.在9)62(22++-+b ab k a 中,不含ab 项,则k= 8.若22+k k y x 与n y x 23的和为5n y x 2,则k= ,n=9. 若-3x m-1y 4与2n 2y x 31+是同类项,则m= n=10. 如果3423x y a b a b -与的和是单项式,那么x = . y = .三.合并同类项:(1)b a b a 222+- (2)b a b a b a -+++-3223;(3)b a b a b a 2222132-+; (4)322223b ab b a ab b a a +-+-+(5)5253432222+++--xy y x xy y x (6) 222b ab a 43ab 21a 32-++-(7)2222532xy y x xy y x -+--; (8)5312322-+-+-x x x x四.化简:(1)(2x-3y)+(-5x+4y); (2)(8a-7b)-(-4a-5b);(3)(8x-3y)-(4x+3y-z)+2z ; (4)()()()y x y x y x 3242332+--+--(5)()()43537422+-----x x x x (6).2a-3b+[4a-2(3a-b)];4 / 44、先化简,再求值。
代数式求值合并同类项化简求值练习题
代数式求值合并同类项化简求值练习题代数式求值合并同类项化简求值3、 9、(3m-5)-(n-3m) 10、 -(2m-3)1、当x=-21 ,y=-4时,代数式x 2-2xy+y 2的值是(2、在代数式2x 2y 3-2x 3y+y 4-5x 4y 3中,其中x=0,y=-2,这个代数式的5值为(3、 x =-2时,代数式x+ -的值是(x4、当x=5时,代数式2x+4=(55、代数式x 2+2008的最小值是(6、已知:a 2+3a+5=7,求 3a 2+9a-2 的值7、已知 3a 2-a-2=0,贝J 5+2a-6a 2=( 8、已知:a,b 互为相反数,c,d 互为倒数,I m =2,求代数式的值4、3(a+b)2-4(a+b)2718 p-9q+5+9q-16p1 2,52 1 2-3 a b+ 5 a b -2b a 2(a -b) - 4(a + b)的值 a+b 3(a —b)+2a+1= 0,求 2a 2+4a-3 的值项:8、5a-(3b-2c+a)9、当a=-11 ,b=-6时,代数式a (b 2+ab )的值是()当a=4,b=5,c=-时,代数式 4当 x+y=151 ,xy=-101 时,求代数式6x+5xy+6y 的值 2 5 10、 11、 2a +b =( ) 云=()12、当口=3时,求代数式a +b1、 -5ab+3ab2、18 p-9q+5-9q-10p 5、2ab-5ab+3ab 6、5x 2y-12y 2x 4+3x 4y 2-6yx 2 ),此时x=(a^+m 2-cd10m11、n-3(4-2m)12、a+5(-b-1)20、2a 5-(a+2b-3c)21、 -(2a-b)+(c-1)22、x 2+(3x-y+y 2)23、-(a+b)-(c-d)24、- {- [ -(5x-4y)]}25、3(m-1)-4(1-m)26、-3(2x 2-xy)+4(x 2+xy+6)5 240、A=4a+5b,B=-3a -2b,求2A-B 41、(a+b)+2(a+b)-4(a+b) 42 、(7x-3y)-(10y-5x)13、-(5m+n)-7(a-3b) 15、6a2-4ab-4(2a2+ 2 ab) 14、2ab-(3ab-5a 2b)16、3x- [ 5x-( 1 x-4)]17、3x-5x+(3x-1)18、4(xyz-2xy)-(xyz-3z)+3(2xy-z)佃、A=x 2+xy+y 2, B=-3xy-x 2,求 B-A2A-3B2 c 2 、-xy +3xy 45、7a+3a+2a-^+346 、3a+2b-5a-b47、-4ab+8-2b 2-9ab-848、3b-3a 3+1+a3-2b49、 2y+6y+2xy-550、3f+2f-7f27、- {+ :-(x-y):} +{- :-(x+y):}28、2x 2-1(xy-x 2)-8xy 230、y -(6x-y+3z) 29、-2(ab-3a 2)- : 2b 2-(5ab+a 2)+2ab ]312、9x - [ x-(5z+4)] 32、x+ : -6y+(5z-1)33 、-(7x+y)+(z+4) 34、4(x 2+xy-6)-3(2x 2-xy) 35、x+[ (3x+1)-(4-x): 36、-(2x-y) 37、-3a+(4a 2+2)38、- : -(2a-3y):39、-3(a-7)51 丿x —f+5x —4f53, 3pq+7pq+4pq+pq55,7xy —8wx+5xy —12xy57,4X —5859,a+(5a —3b)—(a —2b)61丿8x —(—3x —5)626063,(—4y+3)—(—5y —2)6465,-6667,16a —8(3b+4c)69;(5m+n)—7(a —71,—8(3a —2ab+4) 73;2?(3?1) 75, 77, 79, —3(2s —3(—ab+2a)—(3a —b)‘2a+3b+6a+9b —丿30a2b+2b2c —15a2b —4b2c6870727476783(xy —2z)+(—xy+3z) 805x4+3x2y —10—3x2y+x4匕83,(7y —3z)—(8y —5z) 85,2(2a2+9b)+3(—5a 2—4b)86 87, 3b2—(a 2+b2)—b 2丿4+3*1)丿 4a —(a —3b)丿 3(2xy —y ) —2xy丿(3x —」)—(2—5x)丿 3x+1—2(4—x)丿n —3(4—2m)丿f+【(12—9v)3(x +y )+X 丿4(m+p)—7(n —2q)丿a —(5a —3b)+(2b —a)丿工2a —1)—(3a+3),14(abc —2a)+3(6a —,.4(pq+p 「)+(4pq+p 「)82 ,p2+3pq+6—8p2+pq:(a5—6b)—3(—5a —4b):3(2X2—xy)+4(x2+xy —6),x+(2x —1)—(卜+3)389, —2(ab —3a 2)+(5ab —a 2) 902a2—(ab+a2)—8ab 8891:(b —4)+4(—b —3)92 , l(x2—y)+一 *y 2)+ 一(X2+y2) 236兰310、当 a=-2,b=2 时,求代数式 2(a 2b+ab 2)-2(a 2b-1)-2ab 2-2 的值 11、当X =- - ,y=-1时,求代数式2x 2y+1的值212、当X =-2时,求代数式x+丄的值X13、当 x=-1,y=-2 时,求代数式 2xy+3x 2y-6xy-4x 2y 的值 14、当 m=5,pgq 二-| 时,求代数式 3pq-1 m-4pq+m 的值 15、当 m-mn=1,4mn-3n 2=-2 时,求代数式 m+3mn-36 的值 2 2 当 x=-1,y=-2 时,求代数式 3-2xy+3yx +6xy-4x y 的值当x 2-xy=3a,xy-y 2=-2a 时,求代数式x 2-y 2的值当x=2004,y=-1 时,求代数式 A=x-xy+y 2,B=-x 2+2xy+y 2,A+B 的值19、当 a=5 时,求代数式(6a+2a 2+1)-(a 2-3a)的值 20、当X =-2时,求代数式9X +6X 2-3(X - -X 2)的值二、先化简,再求值1、当x=2时,求代数式-3X 2+5X -0.5X 2+x-1的值 2、当P=3,q=3时,求代数式8p 2-7q+6q-7p 2-7的值 3、当X =-5时,求代数式6X +2X 2-3X +2X +1的值 4、 5、 6、7、9、当x=2,y=-3时,求代数式4x 2+3xy-x 2-9的值当m=6,n=2时,求代数式-m-3 n-5 n--m 的值 3 2 6 6 当m=5,pJ’q 二--时,求代数式3pq- - m-4pq 的值 3 2 5 当X =-2时,求代数式9X +6X 2-3(X - 2X 2)的值 3 当xr !时,求代数式丄(-4x 2+2X -8)-( 的值 2 4 2当 a=-1,b=1 时,求代数式(5a 2-3b 2)+(a 2+b 2)-(5a 2+3S)的值 16、 18、21、当 x=5 时,求代数式 *(2X 2-6X -4)-4(-1+X + l x 2)的值22、当 x=-,时,求代数式(2x 2-x-1)-(x 2-x- - )+(3x 2-3 -)的值23 323、当 x 2+xy=2,y 2+xy=5 时,求代数式 x 2+2xy+y 2 的值43、-(m-2n)+4(m+5n)-2(-3m-n) 44I y+1 I =0 时,求代数式 5xy 2- [ 2x 2y-(2x y-xy 2)]的24、当 25、当 26、当 a-b=4,c+d=-6 时,求代数式(b+c)-(a-d)的值 a=-,b=1时,求代数式a 2+3ab-b 2的值2 a=l ,b 二一时,求代数式 4(b+1)+4(1-a)-4(a+b) 的值 7327、当 2&当29、当 a=,时, a=6,b=3时,求代数式ab b 的值4a=-2,b= 2 时,求代数式丄a-2(a- -b 2)-( -a- - b 2)的值32 3 2 3求代数式1-(2a-1)-3(a+1) 的值 30、当(x+2) 2+。
七年级代数式知识点及例题
七年级代数式知识点及例题代数式在初中数学中占有重要地位,是进一步学习高中数学和其他科学学科的基础。
本文将为大家介绍七年级代数式的知识点,并通过例题让大家更好地掌握这些知识点。
一、代数式的概念代数式指用数字和字母以及运算符号组成的式子,例如:2x+3y或a²-b²等。
其中数字和字母都被称为代数项,符号+、-、×和÷被称为代数式的运算符号。
二、代数式的基本运算1. 合并同类项合并同类项是代数式基本原则之一。
同类项有相同的字母部分,其指数可以不同,例如:3x、5x和-2x就是同类项。
将同类项相加或相减得到的结果称为合并同类项。
例如:2x²+3x²=5x²,6xy-2xy=4xy。
2. 去括号一般情况下,可以使用分配律去掉括号,从而简化代数式。
例如:3(x+2)=3x+6。
3. 移项移项是指将代数式中的各个式子移到等式两边,通过加、减或乘、除等运算来求解。
三、代数式的解题方法1. 代入法代入法是求解代数式的一种简单方法。
将给定的数值代入代数式中,然后通过基本运算得出最终结果。
例如:已知x=2,求2x+3,将x=2代入得:2*2+3=7。
2. 整理法整理法是指通过基本运算对代数式进行化简,化简后的代数式更符合求解要求,从而实现对代数式求解的目的。
例如:已知3x+2=8,将式子化简为3x=6,然后得出x=2的解。
四、常见的七年级代数式例题1. 合并同类项:将3x+5x+2y-7y合并同类项,并化简为最简代数式。
解:同类项3x和5x的和是8x,同类项2y和-7y的和是-5y,因此合并同类项后得到8x-5y。
2. 去括号:化简3(x+2)+2(x-1),并将其化简为最简代数式。
解:根据分配律,展开式子3(x+2)+2(x-1)得到3x+6+2x-2。
将同类项3x和2x合并,同类项6和-2合并,得到最简代数式5x+4。
3. 求解未知数:已知3x+2=8,求x的值。
初一数学合并同类项试题
初一数学合并同类项试题1.代数式-2x+3y2+5x中,同类项是和 .【答案】-2x,5x【解析】本题考查了同类项的定义根据同类项的定义:所含字母相同,相同字母的指数相同,即可得出答案.根据同类项的定义:代数式-2x+3y2+5x中,同类项是-2x和5x.思路拓展:解答本题的关键是掌握好同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同。
2.下列各组代数式中,属于同类项的是()A.2x2y与2xy2B.x y与-x yC.2x与2xy D.2x2与2y2【答案】B【解析】本题考查了同类项的定义根据同类项的定义:所含字母相同,相同字母的指数相同,依次分析各项即可得出答案.A、2x2y与2xy2字母的指数不同,不是同类项;B、x y与-x y是同类项;C、2x与2xy字母不同,不是同类项;D、2x2与2y2字母不同,不是同类项;故选B.思路拓展:解答本题的关键是掌握好同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同。
3.已知25x6y和5x2m y是同类项,m的值为()A.2B.3C.4D.2或3【答案】B【解析】本题考查了合并同类项根据同类项的定义:所含字母相同,相同字母的指数相同,即可得出答案.由题意得,2m=6,m=3,故选B.思路拓展:解答本题的关键是掌握好同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同。
4.合并同类项5x2y-2x2y的结果是()A.3B.3xy2C.3x2y D.-3x2y【答案】C【解析】本题考查的是合并同类项先根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,即可得到结果。
2a2b-3a-3a2b+2a=2a2b-3a2b-3a+2a=-a2b-a,5x2y-2x2y =(5-2)x2y=3x2y,故选C.思路拓展:解答本题的关键是掌握好合并同类项时把系数相加减,字母与字母的指数不变.5.求代数式的值:6x+2x2-3x+x2+1,其中x=3【答案】原式=3x+3x2+1="37"【解析】本题考查的是合并同类项,代数式求值先根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,再代入求值即可。
九年级数学下册综合算式专项练习题代数式的合并同类项
九年级数学下册综合算式专项练习题代数式的合并同类项在九年级数学学习的过程中,我们经常会遇到各种各样的代数式。
而在简化代数式的时候,合并同类项是一个非常重要且必须掌握的技巧。
本文将围绕九年级数学下册的综合算式专项练习题,详细介绍代数式中合并同类项的方法和步骤。
一、合并同类项的定义在代数式中,若多项式中的变量的指数相同且相应系数也相同,则它们是同类项。
合并同类项就是将代数式中的同类项进行合并,简化算式,以便更方便地进行计算。
例如,对于代数式3x + 2y - 5x - 4y + 7x,其中每个字母后面的数字代表该字母的系数,我们可以将这个代数式中的同类项进行合并,得到5x - 2y。
二、合并同类项的步骤接下来,我们将介绍合并同类项的具体步骤,以便更好地理解和掌握这个技巧。
步骤一:对于给定的代数式,我们首先将其中的项按照字母的顺序排列。
例如,对于代数式3x + 2y - 5x - 4y + 7x,我们可以按照字母的顺序重新排列为3x - 5x + 7x + 2y - 4y。
步骤二:在排列后的代数式中,我们从左到右合并相邻的同类项。
例如,在步骤一的排列结果中,我们可以先合并3x和-5x,得到-2x;再合并-2x和7x,得到5x;最后合并2y和-4y,得到-2y。
因此,最终合并同类项后的结果为5x - 2y。
三、综合算式专项练习题为了更好地巩固和应用所学的合并同类项的方法,下面我们将提供一些综合算式专项练习题。
1. 合并同类项:2x + 3y - 5x - 2y + 4x解析:按照步骤一重新排列为2x - 5x + 4x + 3y - 2y,再按照步骤二合并同类项,得到:x + y。
2. 合并同类项:5a^2b - 3ab^2 - 2ab + ab^2解析:按照步骤一重新排列为5a^2b - 3ab^2 - 2ab + ab^2,再按照步骤二合并同类项,得到:5a^2b - 3ab^2 - ab + ab^2。
合并同类项计算题
合并同类项计算题
同类项计算是指在代数式中,将同样字母指数相同的项合并为一个项,并进行相加或相减的计算。
在合并同类项计算中,主要涉及到加法、减法
和乘法三种运算。
首先,我们先来看加法运算。
假设有一个多项式表达式:
3x^2+2x+5x^2-4x+7
要合并同类项,首先将代数式按照指数的大小排列,得到:
3x^2+5x^2+2x-4x+7
然后将指数相同的项进行合并,得到:
(3+5)x^2+(2-4)x+7
即:
8x^2-2x+7
接下来,我们来看减法运算。
假设有一个多项式表达式:
4y^3-3y^2+7y^3+2y^2-5
要合并同类项,首先按照指数的大小排列,得到:
4y^3+7y^3-3y^2+2y^2-5
然后将指数相同的项进行合并,得到:
(4+7)y^3+(-3+2)y^2-5
即:
11y^3-y^2-5
最后,我们来看乘法运算。
假设有一个多项式表达式:
(2x-3)(x+4)
要进行乘法运算,可以采用分配律进行展开:
2x*x+2x*4-3*x-3*4
即:
2x^2+8x-3x-12
接下来,将同类项进行合并,得到:
2x^2+(8x-3x)-12
即:
2x^2+5x-12
可以看出,合并同类项计算具有一定的规律性,可以通过整理代数式
中相同字母指数的项,并进行相加或相减的方式进行计算。
在解题过程中,需要注意项的顺序和指数的大小,以及合并同类项的原则。
通过练习和积累,可以熟练掌握合并同类项计算的方法和技巧。
合并同类项例题
合并同类项例题摘要:1.合并同类项的定义与作用2.合并同类项的步骤与方法3.合并同类项的实际应用4.合并同类项的注意事项正文:一、合并同类项的定义与作用合并同类项是代数学中的一种基本运算方法,主要用于简化代数式。
所谓同类项,是指含有相同字母和相同次数的项。
合并同类项的目的是将复杂的代数式化简为简单的形式,以便于进行下一步的运算。
二、合并同类项的步骤与方法合并同类项的过程可以分为以下几个步骤:1.识别同类项:观察代数式中的各项,找出含有相同字母和相同次数的项。
2.提取同类项:将识别出的同类项提取出来,可以简化代数式。
3.合并同类项:对提取出的同类项进行合并,将它们的系数相加,字母和次数保持不变。
4.检查代数式:合并完成后,检查代数式是否还有其他同类项可以合并,以确保代数式已经简化到最简形式。
三、合并同类项的实际应用合并同类项在代数学中有广泛的应用,例如:1.代数式的简化:通过合并同类项,可以将复杂的代数式简化为简单的形式,便于进行下一步的运算。
2.方程的求解:在解方程时,合并同类项可以帮助我们消去某些项,使方程更容易求解。
3.证明数学定理:在证明数学定理时,合并同类项可以帮助我们化简式子,更清晰地展示证明过程。
四、合并同类项的注意事项在进行合并同类项时,需要注意以下几点:1.保持字母和次数不变:在合并同类项时,只能将同类项的系数相加,字母和次数要保持不变。
2.不要忽略任何同类项:在检查代数式时,要确保所有同类项都已提取并合并,以免影响最终结果。
3.注意同类项的符号:在合并同类项时,要注意同类项的符号,正负号要一并考虑。
代数式的值与合并同类项(3种题型)-2023年新七年级数学(苏科版)(解析版)
代数式的值与合并同类项(3种题型)1.会求代数式的值,会利用求代数式的值解决较简单的实际问题。
2.掌握同类项及合并同类项的概念,并能熟练进行合并;3.掌握同类项的有关应用;4.体会整体思想即换元的思想的应用.一.代数式求值(1)代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;二.同类项(1)定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.同类项中所含字母可以看成是数字、单项式、多项式等.(2)注意事项:①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;②同类项与系数的大小无关;③同类项与它们所含的字母顺序无关;④所有常数项都是同类项.三.合并同类项(1)定义:把多项式中同类项合成一项,叫做合并同类项.(2)合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.(3)合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.一.代数式求值(共8小题)1.(2022秋•连云港期末)当x=﹣3时,代数式2x+5的值是()A.﹣7B.﹣2C.﹣1D.11【分析】将x=﹣3,代入2x+5进行计算即可.【解答】解:当x=﹣3时,2x+5=2×(﹣3)+5=﹣1,故选:C.【点评】本题考查代数式求值.属于基础题型,正确的进行运算,是解题的关键.2.(2022秋•姑苏区校级期末)已知m,n满足3m﹣4n+1=0,则代数式9m﹣12n﹣4的值为()A.0B.﹣1C.﹣7D.﹣10【分析】将代数式适当变形后,利用整体代入的方法解答即可.【解答】解:∵3m﹣4n+1=0,∴3m﹣4n=﹣1.∴原式=3(3m﹣4n)﹣4=3×(﹣1)﹣4=﹣3﹣4=﹣7.故选:C.【点评】本题主要考查了求代数式的值,将代数式适当变形后,利用整体代入的方法解答是解题的关键.3.(2022秋•高邮市期末)如图,按图中的程序进行计算.(1)当输入的x=30时,输出的数为;当输入的x=﹣16时,输出的数为;(2)若输出的数为﹣52时,求输入的整数x的值.【分析】(1)根据图中的程进行列式计算,即可求解;(2)当输出的数为﹣52时,分两种情况进行讨论.【解答】解:(1)根据运算程序可知:当输入的x=30时,得:|30|×(﹣2)=﹣60<﹣45,∴输入的x=30时,输出的数为﹣60;根据运算程序可知:当输入的x=﹣16时,得:|﹣16|×(﹣2)=﹣32>﹣45;再输入x=﹣32,得:|﹣32|×(﹣2)=﹣64<﹣45,∴输入的x=﹣32时,输出的数为﹣64;故答案为:﹣60,﹣64;(2)当输出的数为﹣52时,分两种情况:第一种情况:|x|×(﹣2)=﹣52,解得:x=±26;第二种情况:当第一次计算结果为﹣26时,再循环一次输入的结果为﹣52,则|x|×(﹣2)=﹣26,解得:x=±13,综上所述,输出的数为﹣52时,求输入的整数x的值为:x=±26或±13.【点评】本题考查程序流程图与有理数的计算、绝对值,解题的关键是掌握有理数的运算法则和解绝对值方程.4.(2022秋•海安市期末)已知3x2﹣4xy+7y2=2m﹣17,x2+5xy+6y2=m+12,则式子x2﹣7xy﹣y2的值为()A.﹣41B.﹣C.D.【分析】先利用等式的性质,再整体求解.【解答】解:第一个等式减去第二个等式的2倍,得x2﹣14xy﹣y2=﹣41,∴x2﹣7xy﹣y2=﹣,故选:B.【点评】本题考查了代数式求值,整体求解是解题的关键.5.(2022秋•宝应县期末)“十一”期间,小明和父母一起开车到距家300千米的景点旅游,出发前,汽车油箱内储油60升,当行驶100千米时,发现油箱余油量为50升(假设行驶过程中汽车的耗油量是均匀的).(1)该车平均每千米的耗油量是升,行驶x千米时的剩余油量是升(用含有x的代数式表示);(2)当x=260千米时,求剩余油量;(3)当油箱中剩余油量低于3升时,汽车将自动报警,试问汽车最多行驶多少千米就自动报警?请说明理由.【分析】(1)单位耗油量=耗油量÷行驶里程,剩余油量=油箱内油的升数﹣行驶路程的耗油量;(2)把x=260千米代入剩余油量公式,计算即可;(3)把剩余油量3代入(2)中求出x即可.【解答】解:(1)(60﹣50)÷100=0.1(升).行驶路程与耗油量的关系为:(0.1x)升.故答案为:0.1,(60﹣0.1x).(2)当x=260千米时,60﹣0.1×260=60﹣26=34(升).答:剩余油量为34升.(3)由题意可知:60﹣0.1x<3,解得:x>570.故行驶距离大于570千米时会自动报警.【点评】本题考查了列代数式、求代数式的值.题目难度不大,列出代数式是关键.6.(2022秋•苏州期末)我校七年级(3)班数学活动小组的同学用纸板制作长方体包装盒,其平面展开图和相关尺寸如下,其中阴影部分为内部粘贴角料(单位:毫米).(1)此长方体包装盒的体积为立方毫米(用含x,y的式子表示).(2)若内部粘贴角料的面积占长方体表面纸板面积的,则当x=30,y=52时,制作这样一个长方体共需要纸板多少平方毫米?【分析】(1)由长方体包装盒的平面展开图,可知该长方体的长为y毫米,宽为x毫米,高为65毫米,根据长方体的体积=长×宽×高即可求解;(2)由于长方体的表面积=2(长×宽+长×高+宽×高),又内部粘贴角料的面积占长方体表面纸板面积的,所以制作这样一个长方体共需要纸板的面积=(1+)×长方体的表面积.【解答】解:(1)由题意,知该长方体的长为y毫米,宽为x毫米,高为65毫米,则长方体包装盒的体积为:65xy立方毫米.故答案为:65xy;(2)∵长方体的长为y毫米,宽为x毫米,高为65毫米,∴长方体的表面积=2(xy+65y+65x)平方毫米,又∵内部粘贴角料的面积占长方体表面纸板面积的,∴制作这样一个长方体共需要纸板的面积S=(1+)×2(xy+65y+65x)=xy+143x+143y平方毫米,将x=30,y=52代入得:S=15158平方毫米答:制作这样一个长方体共需要纸板15158平方毫米.【点评】本题考查了长方体的平面展开图,长方体的体积与表面积公式,解题关键是掌握立体图形与平面展开图之间的关系,从图中得到长方体的长、宽、高.7.(2022秋•鼓楼区期末)某校要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示.(1)求阴影部分的面积(用含a的代数式表示).(2)当a=20时,π取3时,求阴影部分的面积.【分析】(1)先求出两个长方形的面积,再减去半圆的面积,即可得出阴影部分的面积;(2)把x=20,π取3代入(1)中的结论,即可得出答案.【解答】解:(1)由图可知上面的长方形的面积为6×(a﹣2﹣4)=6a﹣36,下面的长方形的面积为4×(a﹣2)=4a﹣8,∴两个长方形的面积之和为10a﹣44,∵半圆的直径为4+6=10,∴半圆的面积为π•52÷2=12.5π,∴阴影部分的面积为10a﹣44﹣12.5π;(2)当a=20,π取3时,10a﹣44﹣12.5π=10×20﹣44﹣12.5×3=200﹣44﹣37.5=118.5,∴阴影部分的面积为118.5.【点评】本题主要考查代数式求值,关键是要牢记长方形和圆的面积公式.8.(2022秋•海门市期末)如图所示的运算程序中,若开始输入x的值为3,则第2023次输出的结果是()A.﹣4B.﹣2C.﹣3D.﹣6【分析】按运算程序先计算,通过计算结果找出规律,利用规律得结论.【解答】解:输入x=3,∵3是奇数,∴输出3﹣5=﹣2.输入x=﹣2,∵﹣2是偶数,∴输出﹣2×=﹣1.输入x=﹣1,∵﹣1是奇数,∴输出﹣1﹣5=﹣6.输入x=﹣6,∵﹣6是偶数,∴输出﹣6×=﹣3.输入x=﹣3,∵﹣3是奇数,∴输出﹣3﹣5=﹣8.输入x=﹣8,∵﹣8是偶数,∴输出﹣8×=﹣4.输入x=﹣4,∵﹣4是偶数,∴输出﹣4×=﹣2.输入x=﹣2,∵﹣2是偶数,∴输出﹣2×=﹣1.输入x=﹣1,∵﹣1是奇数,∴输出﹣1﹣5=﹣6...依次类推,除去第一次输入,输出分别以﹣2、﹣1、﹣6、﹣3、﹣8、﹣4循环.∴2023÷6=337.....1.故第2023次输出的结果是﹣2.故选:B.【点评】本题主要考查了代数式的求值,通过输入输出的计算得到规律是解决本题的关键.二.同类项(共5小题)9.(2022秋•惠山区校级期末)请写出3ab2的一个同类项.【分析】根据题意,写出一个含有字母a,b且a的指数为1,b的指数为2的单项式即可求解.【解答】解:写出3ab2的一个同类项可以是ab2,故答案为:ab2(答案不唯一).【点评】本题考查了同类项的定义,掌握同类项的定义是解题的关键.所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.10.(2022秋•句容市校级期末)已知两个单项式a3b m与﹣3a n b2是同类项,则m﹣n=.【分析】根据同类项的定义直接可得到m、n的值.【解答】解:因为两个单项式a3bm与﹣3anb2是同类项,可得:m=2,n=3,所以m﹣n=2﹣3=﹣1,故答案为:﹣1【点评】本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项.11.(2022秋•高邮市期末)下列两个单项式中,是同类项的是()A.3与x B.2a2b与3ab2C.xy2与2xy D.3m2n与nm2【分析】根据同类项的定义,逐项判断即可求解.【解答】解:A、3与x不是同类项,故本选项不符合题意;B、2a2b与3ab2不是同类项,故本选项不符合题意;C、xy2与2xy不是同类项,故本选项不符合题意;D、3m2n与nm2是同类项,故本选项符合题意;故选:D.【点评】本题考查了同类项的定义.熟练掌握所含字母相同且相同字母的指数也相同的项是同类项是解题的关键.12.(2022秋•秦淮区期末)若代数式﹣2x2y m与x n y3是同类项,则代数式m n=.【解答】解:代数式﹣2x2ym与xny3是同类项,可得m=3,n=2,所以mn=32=9,故答案为:9.【点评】本题考查了同类县的定义,要注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.13.(2022秋•镇江期末)下列各组中,不是同类项的是()A.2x与﹣x B.﹣5mn与nmC.0.2p2q与D.a3b5与7a5b3【分析】根据同类项的定义进行判断即可.【解答】解:根据“所含的字母相同,且相同字母的指数也相同的项是同类项”可知,a3b5与7a5b3不是同类项,因此选项D符合题意,故选:D.【点评】本题考查同类项,理解“所含的字母相同,且相同字母的指数也相同的项是同类项”是正确判断的前提.三.合并同类项(共12小题)14.(2022秋•泰兴市期末)多项式x2﹣2kxy﹣3y2+6xy﹣8化简后不含xy项,则k=.【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变可得:﹣2k+6=0,再解即可.【解答】解:由题意得:﹣2k+6=0,解得:k=3,故答案为:3.【点评】此题主要考查了合并同类项,关键是掌握合并同类项法则.15.(2022秋•广陵区校级期末)合并同类项:(1)5m+2n﹣m﹣3n(2)3a2﹣1﹣2a﹣5+3a﹣a2【分析】根据合并同类项法则解答即可.【解答】解:(1)原式=(5﹣1)(2﹣3)n=4m﹣n;(2)原式=(3﹣1)a2+(3﹣2)a﹣(1+5)=2a2+a﹣6.【点评】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.16.(2022秋•江阴市期末)计算7a﹣3a等于()A.4a B.a C.4D.10a【分析】合并同类项即可.【解答】解:7a﹣3a=4a,故选:A.【点评】本题考查合并同类项,掌握合并同类项法则是正确解答的前提.17.(2022秋•徐州期末)下列运算正确的是()A.2x+x=2x2B.2x+3y=5xy C.4x﹣2x=2D.3x2﹣2x2=x2【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,计算即可.【解答】解:2x+x=3x,故A选项不符合题意;2x+3y不能合并同类项,故B选项不符合题意;4x﹣2x=2x,故C选项不符合题意;3x2﹣2x2=x2,故D选项符合题意,故选:D.【点评】本题考查了合并同类项,熟练掌握合并同类项的法则是解题的关键.18.(2022秋•邗江区期末)若﹣4x5y+4x2n+1y=0,则常数n的值为.【分析】根据同类项“相同字母的指数相同”列式求解即可.【解答】解:根据题意可知,﹣4x5y与4x2n+1y是同类项,∴2n+1=5,解得n=2.故答案为:2.【点评】本题主要考查了合并同类项的知识,熟练掌握同类项的定义是解题关键.19.(2022秋•江都区期末)若单项式与7a x+5b2与﹣a3b y﹣2的和是单项式,则x y=.【分析】利用同类项的定义求得x,y的值,再代入运算即可.【解答】解:∵单项式与7ax+5b2与﹣a3by﹣2的和是单项式,∴单项式与7ax+5b2与﹣a3by﹣2是同类项,∴x+5=3,y﹣2=2,∴x=﹣2,y=4.∴xy=(﹣2)4=16.故答案为:16.【点评】本题主要考查了合并同类项,利用同类项的定义求得x,y的值是解题的关键.20.(2022秋•秦淮区期中)合并同类项:(1)2a﹣5b﹣3a+b;(2)3x2+6x+5﹣4x2+7x﹣6【分析】(1)合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;(2)合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【解答】解:(1)2a﹣5b﹣3a+b=(2﹣3)a+(1﹣5)b=﹣a﹣4b;(2)3x2+6x+5﹣4x2+7x﹣6=(3﹣4)x2+(6+7)x+(5﹣6)=﹣x2+13x﹣1.【点评】本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.21.(2022秋•射阳县校级期末)已知多项式﹣2x2+5kxy﹣3y2﹣15xy+10中不含xy项,则k=【分析】先化简多项式,再根据“不含xy项”求k即可.【解答】解:﹣2x2+5kxy﹣3y2﹣15xy+10=﹣2x2+(5k﹣15)xy﹣3y2+10,∵多项式﹣2x2+5kxy﹣3y2﹣15xy+10中不含xy项,∴5k﹣15=0,∴k=3.故答案为:3.【点评】本题考查了整式加减运算,熟练掌握运算法则是关键.22.(2022秋•广陵区校级期末)多项式x2﹣3mxy﹣3y2+6xy﹣8中不含xy项,则常数m的值是.【分析】先去掉括号,再合并同类项,根据已知得出﹣3m+6=0,再求出即可.【解答】解:x2﹣3mxy﹣3y2+6xy﹣8=x2﹣3mxy+6xy﹣3y2﹣8=x2+(﹣3m+6)xy﹣3y2﹣8,∵多项式中不含xy项,∴﹣3m+6=0,解得:m=2,故答案为:2.【点评】本题考查了去括号法则,合并同类项法则,多项式等知识点,能根据题意得出﹣3m+6=0是解此题的关键.23.(2021秋•滨湖区期末)定义:若x﹣y=m,则称x与y是关于m的相关数.(1)若5与a是关于2的相关数,则a=.(2)若A与B是关于m的相关数,A=3mn﹣5m+n+6,B的值与m无关,求B的值.【分析】(1)根据相关数的定义得到5﹣a=2,从而得到a的值;(2)根据相关数的定义得到A﹣B=m,从而B=(3n﹣6)m+n+6,根据B的值与m无关得到3n﹣6=0,求出n的值,从而得到B的值.【解答】解:(1)∵5﹣a=2,∴a=3,故答案为:3;∴3mn﹣5m+n+6﹣B=m,∴B=3mn﹣5m+n+6﹣m=3mn﹣6m+n+6=(3n﹣6)m+n+6,∵B的值与m无关,∴3n﹣6=0,∴n=2,∴B=2+6=8.答:B的值为8.【点评】本题考查了合并同类项,新定义问题,掌握与m无关就合并同类项后让m前面的系数等于0是解题的关键.24.(2022秋•锡山区校级期中)已知整式﹣x2+2y﹣mx+5﹣nx2+6x﹣20y的值与字母x的取值无关.求m2﹣2mn﹣n3的值.【分析】代数式合并得到最简结果,令x的二次项与x的一次项系数为0,求出m与n的值,代入所求式子中计算即可得到结果.【解答】解:﹣x2+2y﹣mx+5﹣nx2+6x﹣20y=(﹣1﹣n)x2+(6﹣m)x+5﹣18y,∵整式﹣x2+2y﹣mx+5﹣nx2+6x﹣20y的值与字母x的取值无关,∴﹣1﹣n=0,6﹣m=0,解得n=﹣1,m=6,∴m2﹣2mn﹣n3===.【点评】本题考查了整式的混合运算,掌握合并同类项法则是解答本题的关键.25.(2022秋•仪征市校级月考)合并同类项(1)5m+2n﹣m﹣3n;(2)a2﹣b2﹣a2+4ab﹣4b2.【分析】(1)直接合并同类项进而得出答案;(2)直接合并同类项得出答案.【解答】解:(1)5m+2n﹣m﹣3n=(5﹣1)m+(2﹣3)n=4m﹣n;(2)a2﹣b2﹣a2+4ab﹣4b2=a2﹣a2+4ab﹣b2﹣4b2=(1﹣1)a2+4ab+(﹣1﹣4)b2=﹣5b2+4ab.【点评】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.一.选择题(共6小题)1.(2022秋•邗江区校级期末)下列各式中,与x2y是同类项的是()A.xy2B.2xy C.﹣x2y D.3x2y2【分析】根据:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结合选项进行判断即可.【解答】解:x2y与﹣x2y所含字母相同,并且相同字母的指数也相同,是同类项.故选:C.【点评】本题考查了同类项,熟练掌握同类项的定义是解题的关键.2.(2022秋•苏州期末)按图示的程序计算,若开始输入的x为正整数,最后输出的结果为40,则x的值是()A.1或4B.2或12C.1或4或13D.2或4或12【分析】根据运算程序列出方程求出x,然后把求出的x的值当作计算结果继续求解,直至x不是正整数为止.【解答】解:∵最后输出的结果为40,∴3x+1=40,解得:x=13,当3x+1=13,解得:x=4,当3x+1=4,解得:x=1,当3x+1=1,解得:x=0(舍去),综上,则x的值是1或4或13.故选:C.【点评】本题主要考查代数式求值,该题难点在于最后输出的结果40对应的x的值有可能不是第一次输入x的值.3.(2022秋•海门市期末)已知a﹣b=2,则代数式2b﹣2a+3的值是()【分析】先把2b﹣2a+3变形为﹣2(a﹣b)+3,然后把a﹣b=2代入计算即可.【解答】解:当a﹣b=2时,原式=﹣2(a﹣b)+3=﹣2×2+3=﹣4+3=﹣1,故选:A.【点评】本题考查了代数式求值:先根据已知条件把代数式进行变形,然后利用整体代入进行求值.4.(2022秋•惠山区校级期末)下列计算正确的是()A.3a+2b=5ab B.9a﹣3a=6C.3a+a=3a2D.3a2b+5a2b=8a2b【分析】根据合并同类项的法则进行运算即可判断.【解答】解:A、3a与2b,不是同类项,不能进行加减运算,此选项错误,不符合题意;B、9a﹣3a=6a,此选项错误,不符合题意;C、3a+a=4a,此选项错误,不符合题意;D、3a2b+5a2b=8a2b,此选项正确,符合题意;故选:D.【点评】本题考查合并同类项,解题的关键是掌握合并同类项的运算法则,合并同类项时,系数相加减,字母及其指数不变.5.(2022秋•南京期末)计算3a2﹣a2的结果是()A.3B.2C.2a2D.4a2【分析】根据合并同类项法则解答即可.【解答】解:3a2﹣a2=2a2.故选:C.【点评】本题考查合并同类项,掌握同类项的定义以及合并同类项法则是正确解答的前提.6.(2022秋•玄武区校级期末)如果|m|=2,n2=36,|m﹣n|=n﹣m.那么代数式m+n的值是()A.4,8B.﹣4,﹣8C.﹣4,8D.4,﹣8【分析】根据|m|=2,|m﹣m|=n﹣m,求出m,n的值计算即可.【解答】解:∵|m|=2,n2=36,|m﹣n|=n﹣m,∴m=±2,n=6,当m=2时,m+n=8,当m=﹣2时,m+n=4,【点评】本题考查了绝对值的意义,掌握绝对值的意义是解题的关键.二.填空题(共7小题)7.(2022秋•鼓楼区校级期末)若单项式与2x3y n的和仍是单项式,则m+n=.【分析】根据和是单项式,可得它们是同类项,在根据同类项,可得m、n的值,根据有理数的加法法则,可得答案.【解答】解:∵单项式与2x3yn的和仍是单项式,∴单项式与2x3yn是同类项,∴m=3,n=2,m+n=3+2=5,故答案为:5.【点评】本题考查了合并同类项,掌握同类项的定义是解答本题的关键.8.(2022秋•仪征市期末)若a2+3a=﹣5,则2a2+6a﹣2的值为.【分析】先根据已知条件式得到2a2+6a=﹣10,然后把2a2+6a=﹣10整体代入所求式子中进行求解即可.【解答】解:∵a2+3a=﹣5,∴2a2+6a﹣2=2(a2+3a)﹣2=﹣10﹣2=﹣12,故答案为:﹣12.【点评】本题主要考查了代数式求值,利用整体代入的思想求解是解题的关键.9.(2022秋•兴化市期末)若3x m+1y3与﹣5x3y n是同类项,则﹣m n=.【分析】根据同类项的定义得出m+1=3,n=3,求出m,n的值,再代入求出答案即可.【解答】解:∵3xm+1y3与﹣5x3yn是同类项,∴m+1=3,n=3,∴m=2,∴﹣mn=﹣23=﹣8.故答案为:﹣8.【点评】本题考查了同类项的定义,能根据同类项的定义求出m、n的值是解此题的关键.10.(2022秋•姜堰区期末)如果代数式x2﹣2x﹣5的值等于5,那么代数式﹣2x2+4x﹣3的值是.【分析】根据代数式x2﹣2x﹣5的值等于5,求出x2﹣2x的值,利用整体思想,代入﹣2x2+4x﹣3中进行计算即可.∴x2﹣2x=10,∴﹣2x2+4x﹣3=﹣2(x2﹣2x)﹣3=﹣2×10﹣3=﹣23;故答案为:﹣23.【点评】本题考查代数式求值.解题的关键是利用整体思想,代入求值.11.(2022秋•常州期末)若3a m b2与﹣a2b n+3是同类项,则mn=.【分析】根据同类项是所含字母相同且相同字母的指数也相同,可得答案.【解答】解:由3amb2与﹣a2bn+3是同类项是同类项可得:m=2,n+3=2,解得m=2,n=﹣1,所以mn=2×(﹣1)=﹣2.故答案为:﹣2.【点评】本题考查了同类项,同类项定义中的两个“相同”:所含字母相同、相同字母的指数相同,是易混点,因此成了中考的常考点.12.(2022秋•兴化市期末)如果x2﹣3x﹣3=0,那么代数式2x2﹣6x﹣8的值是.【分析】由题意可知;x2﹣3x=3,然后由等式的性质可知2x2﹣6x=6,然后代入计算即可.【解答】解:∵x2﹣3x﹣3=0,∴x2﹣3x=3,∴2x2﹣6x=6,∴2x2﹣6x﹣8=6﹣8=﹣2.故答案为:﹣2.【点评】本题主要考查的是求代数式的值,依据等式的性质求得2x2﹣6x=6是解题的关键.13.(2022秋•玄武区校级期末)已知2a﹣3b=﹣1,则1﹣4a+6b=.【分析】根据2a﹣3b=﹣﹣,求出4a﹣6b的值是多少,即可求出1﹣4a+6b的值.【解答】解:∵2a﹣3b=﹣1,∴1﹣4a+6b=1﹣2(2a﹣3b)=1﹣2×(﹣1)=1+2=3故答案为:3.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.三.解答题(共4小题)14.(2021秋•宜兴市期中)若多项式mx3﹣2x2+4x﹣3﹣3x3+6x2﹣nx+6化简后不含x的三次项和一次项,【分析】先将关于x的多项式合并同类项.由于其不含三次项及一次项,即系数为0,可以先求得m,n,再代入(m﹣n)2021进行计算,即可得出答案.【解答】解:mx3﹣2x2+4x﹣3﹣3x3+6x2﹣nx+6=(m﹣3)x3+4x2+(4﹣n)x+3,∵该多项式化简后不含x的三次项和一次项,∴m﹣3=0,4﹣n=0,∴m=3,n=4,∴(m﹣n)2021=﹣1.【点评】此题考查了多项式及代数式求值,解答本题必须先合并同类项,在多项式中不含哪项,即哪项的系数之和为0.15.(2021秋•泗阳县期中)合并同类项:(1)4m﹣7n﹣2m+3n;(2)3a2﹣1﹣2a﹣5+3a﹣a2.【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【解答】解:(1)4m﹣7n﹣2m+3n=(4m﹣2m)+(3n﹣7n)=(4﹣2)m+(3﹣7)n=2m﹣4n;(2)3a2﹣1﹣2a﹣5+3a﹣a2.=(3a2﹣a2)+(3a﹣2a)+(﹣1﹣5)=(3﹣1)a2+(3﹣2)a﹣(1+5)=2a2+a﹣6.【点评】本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.16.(2021秋•丹阳市期中)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b),“整体思想”是一种重要的数学思想方法,它在多项式的化简与求值中应用极为广泛.(1)尝试应用:把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣(a﹣b)2+7(a﹣b)2,其结果是;(2)已知x2﹣2y=1,求﹣3x2+6y+5的值.【分析】(1)把(a﹣b)2看成一个整体,根据合并同类项的法则化简即可;(2)把x2﹣2y=1看成一个整体,整体代入求值即可.故答案为:9(a ﹣b )2;(2)∵x2﹣2y =1,∴原式=﹣3(x2﹣2y )+5=﹣3+5=2.【点评】本题考查了合并同类项,代数式求值,考查整体思想,把x2﹣2y =1看成一个整体,整体代入求值是解题的关键.17.(2021秋•广陵区校级月考)化简:(1)﹣3x 2y +3xy 2﹣2xy 2+2x 2y ;(2)2a 2﹣5a +a 2+6+4a ﹣3a 2.【分析】合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变,据此计算即可.【解答】解:(1)﹣3x2y+3xy2﹣2xy2+2x2y =(﹣3x2y+2x2y )+(3xy2﹣2xy2)=﹣x2y+xy2;(2)2a2﹣5a+a2+6+4a ﹣3a2=(2a2+a2﹣3a2)+(4a ﹣5a )+6=﹣a+6.【点评】本题考查了合并同类项法则的应用,熟记合并同类项法则是解答本题的关键.一、单选题【分析】根据同类项的定义,逐项判断即可求解.【详解】解:A 、3与x 不是同类项,故本选项不符合题意;B 、22a b 与23ab 不是同类项,故本选项不符合题意;C 、2xy 与2xy 不是同类项,故本选项不符合题意;D 、23m n 与2nm 是同类项,故本选项符合题意; 故选:D【点睛】本题考查了同类项的定义.熟练掌握所含字母相同且相同字母的指数也相同的项是同类项是解题的关键. 2.(2023秋·江苏无锡·七年级统考期末)计算73a a −等于( )【答案】A【分析】合并同类项即可得出结果.【详解】解:734−=a a a ;故选A .【点睛】本题考查合并同类项.熟练掌握合并同类项法则,是解题的关键. 3.(2023秋·江苏无锡·七年级校联考期末)下列计算正确的是( )A .2527a a a +=B .22287x y yx x y −=C .32y y −=D .235a b ab +=【答案】B【分析】结合选项进行合并同类项,然后选择正确选项.【详解】解:A 、527a a a +=,原式计算错误,故本选项错误;B 、22287x y yx x y −=,计算正确,故本选项正确;C 、32y y y −=,计算错误,故本选项错误;D 、2a 和3b 不是同类项,不能合并,故本选项错误.故选B .【点睛】本题考查了合并同类项的知识,解答本题的关键是掌握合并同类项的法则.【答案】A【分析】先把方程233a b c +−=的左右两边同乘以3得到3699a b c +−=,然后再同方程5675a b c −+=相减即可得到答案.【详解】解:∵233a b c +−=,∴3699a b c +−=①,又∵5675a b c −+=②,∴②-①得:212164a b c −+=−,∴682a b c −+=−,【点睛】本题考查了代数式求值,解题的关键是运用所给的代数式变换并进行四则运算得出所求的代数式.二、填空题【答案】5【分析】根据同类项的定义:所含字母相同,且相同字母的指数也相同的两个单项式是同类项,求出,a b 的值,代入计算即可.【详解】解:∵2a x y −与312b x y 的和是单项式,∴2a x y −与312b x y 是同类项, ∴32a b ==,,∴325a b +=+=.故答案为:5.【点睛】本题考查了同类项的定义,出,a b 的值是解题的关键.【答案】4【分析】根据单项式223m x y 与322n x y 的差仍是单项式,可知223m x y 与322n x y 是同类项,由此确定m ,n 的值,即可求解.【详解】解:由题意知223m x y 与322n x y 是同类项, 由同类项相同字母的指数相同可得3m =,22n =,即3m =,1n =,所以314m n +=+=,故答案为:4.【点睛】本题考查单项式、同类项、代数式求值等,解题的关键判断出223m x y 与322n x y 是同类项.7.(2023秋·江苏无锡·七年级校联考期末)若224m x y −与32n x y −是同类项,则m n −=_____.【分析】根据同类项定义得到3m =,2n =,代入计算可得.【详解】解:∵224m x y −与32n x y −是同类项, ∴23m −=,2n =,∴5m =,∴523m n −=−=,故答案为:3.【点睛】此题考查了同类项的定义:含有相同的字母,且相同字母的指数也分别相等的项是同类项,熟记同类项的定义是解题的关键.8.(2023秋·江苏无锡·七年级江苏省锡山高级中学实验学校校考期末)请写出23ab 的一个同类项______.【答案】2ab (答案不唯一)【分析】根据题意,写出一个含有字母,a b 且a 的指数为1,b 的指数为2的单项式即可求解.【详解】解:写出23ab 的一个同类项可以是2ab ,故答案为:2ab (答案不唯一).【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.所含字母相同,并且相同字母的指9.(2023秋·江苏盐城·七年级统考期末)若23x y −=,则代数式249x y −−的值等于______.【答案】3−【分析】将代数式249x y −−整理为2(2)9x y −−,然后代入求值即可.【详解】解:∵23x y −=,∴2492(2)92393x y x y −−=−−=⨯−=−.故答案为:3−.【点睛】本题主要考查了代数式求值,将代数式249x y −−整理为2(2)9x y −−是解题关键. 10.(2023秋·江苏盐城·七年级统考期末)若关于x 的多项式223247x mx x +−+与多项式32351x x x −+−相加后不含x 的二次项,则m 的值为______.【答案】1【分析】将两个多项式相加后,然后合并同类项,令含2x 的项的系数化为0即可.【详解】223247x mx x +−++32351x x x −+− =−+−+32232236x x m x x()=−−−+3232236x x m x令220m −=,解得:1m =故答案为:1.【点睛】本题考查了合并同类项,熟练掌握合并同类项的方法进行求解是解题的关键. 11.(2023春·江苏·七年级专题练习)已知关于x 的整系数二次三项式2ax bx c ++,当x 取1、6、8、12时,某同学算得这个二次三项式的值分别是0、15、35、100.经验算,只有一个是错误的,这个错误的结果是____________.【答案】15【分析】根据所给的值,6x =和12x =具有倍数关系,由此可知,这两个结果是解题的突破,因此6x =和12x =的结果中必有一个是错误的,假设当6x =的结果是正确的,36615a b c ++=①,1a b c ++=②,可得1475a b +=,不符合题意,由此即可求解.【详解】∵6x =时215ax bx c ++=,12x =时2100ax bx c ++=,∴36615a b c ++=,14412100a b c ++=,∴4(366)460a b c ++=,∴4043b c +=−,∵二次三项式2ax bx c ++的系数是整数,∴6x =和12x =的结果中必有一个是错误的,当6x =时,215ax bx c ++=,∴36615a b c ++=①,当1x =时,21ax bx c ++=时,∴1a b c ++=②,−①②得,35514a b +=, ∴1475a b +=,∵二次三项式2ax bx c ++的系数是整数,∴6x =时,215ax bx c ++=的结果是错误的.故答案为:15【点睛】本题考查整数的运算,熟练掌握代数式求值的方法,观察所给的数可知6x =和12x =的结果是解题的关键.三、解答题 12.(2023秋·江苏扬州·七年级校考期末)合并同类项:(1)523m n m n +−−(2)2231253a a a a −−−+−【答案】(1)4m-n;(2) 226a a +−【分析】(1)合并同类项即可得到答案;(2)将多项式合并同类项.【详解】(1)5234m n m n m n +--=,(2)2223125326a a a a a a ---+-=+-.【点睛】此题考查整式的加减法计算,将多项式中的同类项合并. 13.(2023秋·七年级单元测试)如图,一块长方形铁片,从中挖去直径分别为x cm ,y cm 的四个半圆.(1)用含x 、y 的式子表示剩下的面积.(2)当x =6,y =2时,剩下铁片的面积是多少平方厘米?(结果保留π)。
七年级上册合并同类项练习题
七年级上册合并同类项练习题同类项是指具有相同字母指数的代数式。
在代数式中,我们可以通过合并同类项简化和解决问题。
本文将为七年级学生提供一些合并同类项的练习题,帮助他们巩固这一重要的代数概念。
题目1:合并同类项:求和将以下两个代数式的同类项相加,并简化结果。
1. 3x + 2x2. 4y - 3y解答:1. 同类项3x和2x可以相加,结果为5x。
所以,3x + 2x = 5x。
2. 同类项4y和-3y可以相加,结果为y。
所以,4y - 3y = y。
题目2:合并同类项:求差将以下两个代数式的同类项相减,并简化结果。
1. 5m - 3m2. 7n + 2n解答:1. 同类项5m和-3m可以相减,结果为2m。
所以,5m - 3m = 2m。
2. 同类项7n和2n可以相减,结果为5n。
所以,7n + 2n = 9n。
题目3:合并同类项:混合运算将以下三个代数式的同类项相加或相减,并简化结果。
1. 2p + 3p - 4p2. 5q - 2q + q3. 4r + 7r - 2r + 3r解答:1. 同类项2p、3p和-4p可以相加,结果为p。
所以,2p + 3p - 4p = p。
2. 同类项5q、-2q和q可以相加,结果为4q。
所以,5q - 2q + q = 4q。
3. 同类项4r、7r、-2r和3r可以相加,结果为12r。
所以,4r + 7r - 2r + 3r = 12r。
题目4:合并同类项:含有常数项将以下两个代数式的同类项相加,并简化结果。
1. 8 + 5a - 2 + 7a2. 3 - 2b - 4 - b解答:1. 同类项5a和7a可以相加,结果为12a。
常数项8和-2也可以相加,结果为6。
所以,8 + 5a - 2 + 7a = 6 + 12a。
2. 同类项-2b和-b可以相加,结果为-3b。
常数项3和-4也可以相加,结果为-1。
所以,3 - 2b - 4 - b = -1 - 3b。
代数式难题汇编及答案解析
代数式难题汇编及答案解析一、选择题1.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1 B.1 C.﹣2 D.2【答案】A【解析】【分析】先将(x+1)(x+n)展开得出一个关于x的多项式,再将它与x2+mx-2作比较,即可分别求得m,n的值.【详解】解:∵(x+1)(x+n)=x2+(1+n)x+n,∴x2+(1+n)x+n=x2+mx-2,∴12n m n+=⎧⎨=-⎩,∴m=-1,n=-2.故选A.【点睛】本题考查了多项式乘多项式的法则以及类比法在解题中的运用.2.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a,用含a的式子表示这组数的和是()A.2a2-2a B.2a2-2a-2 C.2a2-a D.2a2+a【答案】C【解析】【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n=2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n=2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∵250=a ,∴2101=(250)2•2=2a 2, ∴原式=2a 2-a . 故选:C . 【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n =2n+1-2.3.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a ,较短直角边为b ,则ab 的值是( )A .4B .6C .8D .10【答案】A 【解析】 【分析】根据勾股定理可以求得a 2+b 2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab 的值. 【详解】解:根据勾股定理可得a 2+b 2=9, 四个直角三角形的面积是:12ab×4=9﹣1=8, 即:ab=4. 故选A . 考点:勾股定理.4.下列运算正确的是( ) A .21ab ab -= B 93=±C .222()a b a b -=-D .326()a a =【答案】D 【解析】 【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式. 【详解】 解:A 项,2ab ab ab -=,故A 项错误;B 项,93=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==. 故选D 【点睛】 本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.5.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .40【答案】B 【解析】试题解析:第(1)个图形中面积为1的正方形有2个, 第(2)个图形中面积为1的图象有2+3=5个, 第(3)个图形中面积为1的正方形有2+3+4=9个, …, 按此规律,第n 个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n +个, 则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个. 故选B .考点:规律型:图形变化类.6.下列运算正确的是() A .336a a a += B .632a a a ÷=C .()235aaa -⋅=- D .()336a a =【答案】C 【解析】 【分析】分别求出每个式子的值,3332a a a +=,633a a a ÷=,()235a a a -⋅=-,()339a a =再进行判断即可. 【详解】解:A: 3332a a a +=,故选项A 错; B :633a a a ÷=,故选项B 错; C :()235a aa -⋅=-,故本选项正确;D.:()339a a =,故选项D 错误.故答案为C. 【点睛】本题考查了同底数幂的乘除,合并同类项,幂的乘方和积的乘方的应用;掌握乘方的概念,即求n 个相同因数的乘积的运算叫乘方,乘方的结果叫做幂;分清()22nn a a -=,()2121n n a a ++-=-.7.若352x y a b +与2425y x a b -是同类项.则( ) A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩【答案】B 【解析】 【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值. 【详解】由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B . 【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.8.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( ) A .23b B .26bC .29bD .236b【答案】C 【解析】 【分析】根据完全平方公式的形式(a±b)2=a2±2ab+b2可得出缺失平方项.【详解】根据完全平方的形式可得,缺失的平方项为9b2故选C.【点睛】本题考查了整式的加减及完全平方式的知识,掌握完全平方公式是解决本题的关键.9.在长方形内,若两张边长分别为和()的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形总未被这两张正方形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为,图2中阴影部分的面积和为,则关于,的大小关系表述正确的是()A.B.C.D.无法确定【答案】A【解析】【分析】利用面积的和差分别表示出,,利用整式的混合运算计算他们的差即可比较.【详解】=(AB-a)·a+(CD-b)(AD-a)=(AB-a)·a+(AD-a)(AB-b)=(AB-a)(AD-b)+(CD-b)(AD-a)=(AB-a)(AD-b)+(AB-b)(AD-a)∴-=(AB-a)(AD-b)+(AB-b)(AD-a)-(AB-a)·a-(AD-a)(AB-b)=(AB-a)(AD-a-b)∵AD<a+b,∴-<0,故选A.【点睛】此题主要考查此题主要考查整式的运算,解题的关键是熟知整式的乘法法则.10.如图1所示,有一张长方形纸片,将其沿线剪开,正好可以剪成完全相同的8个长为a ,宽为b 的小长方形,用这8个小长方形不重叠地拼成图2所示的大正方形,则大正方形中间的阴影部分面积可以表示为( )A .2()a b - B .29bC .29aD .22a b -【答案】B 【解析】 【分析】根据图1可得出35a b =,即53a b =,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +,阴影部分的面积即为正方形的面积与长方形面积的差.【详解】解:由图可知,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b + ∴阴影部分的面积为:22(2)8(2)a b ab a b +-=- ∵35a b =,即53a b =∴阴影部分的面积为:222(2)()39b b a b -=-=故选:B . 【点睛】本题考查的知识点是完全平方公式,根据图1得出a ,b 的关系是解此题的关键.11.按如图所示的运算程序,能使输出y 的值为1的是( )A .a =3,b =2B .a =﹣3,b =﹣1C .a =1,b =3D .a =4,b =2【答案】A 【解析】【分析】根据题意,每个选项进行计算,即可判断. 【详解】解:A 、当a =3,b =2时,y =12a -=132-=1,符合题意; B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意; C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意; D 、当a =4,b =2时,y =12a -=142-=12,不符合题意. 故选:A . 【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.12.若35m =,34n =,则23m n -等于( )A .254B .6C .21D .20【答案】A 【解析】 【分析】根据幂的运算法则转化式子,代入数值计算即可. 【详解】解:∵35m =,34n =, ∴222233(3)3253544-==÷÷÷==m n m n m n, 故选:A . 【点睛】本题考查了同底数幂的除法和幂的乘方的逆用,熟练掌握同底数幂的除法和幂的乘方的运算法则是解题的关键.13.已知a +b +c =1,22223+-+=a b c c ,则ab 的值为( ). A .1 B .-1C .2D .-2【答案】B 【解析】 【分析】将a +b +c =1变形为a +b =1- c ,将22223+-+=a b c c 变形为222221+=+--a b c c ,然后利用完全平方公式将两个式子联立即可求解. 【详解】∵22223+-+=a b c c∴()222221=12+=--+-a b c c c ∵a +b +c =1 ∴1+=-a b c ∴()()221+=-a b c ∴()2222+=+-a b a b 展开得222222++=+-a b ab a b ∴1ab =- 故选B . 【点睛】本题考查完全平方公式的应用,根据等式特点构造完全平方式是解题的关键.14.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠:例如,购买A 类会员年卡,一年内健身20次,消费1500100203500+⨯=元,若一年内在该健身俱乐部健身的次数介于50-60次之间,则最省钱的方式为( ) A .购买A 类会员年卡 B .购买B 类会员年卡 C .购买C 类会员年卡 D .不购买会员年卡【答案】C 【解析】 【分析】设一年内在该健身俱乐部健身x 次,分别用含x 的代数式表示出购买各类卡所需消费,然后将x=50和x=60分别代入各个代数式中比较大小即可得出结论. 【详解】解:设一年内在该健身俱乐部健身x 次,由题意可知:50≤x≤60 则购买A 类会员年卡,需要消费(1500+100x )元; 购买B 类会员年卡,需要消费(3000+60x )元; 购买C 类会员年卡,需要消费(4000+40x )元; 不购买会员卡年卡,需要消费180x 元;当x=50时,购买A 类会员年卡,需要消费1500+100×50=6500元;购买B 类会员年卡,需要消费3000+60×50=6000元;购买C类会员年卡,需要消费4000+40×50=6000;不购买会员卡年卡,需要消费180×50=9000元;6000<6500<9000当x=60时,购买A类会员年卡,需要消费1500+100×60=7500元;购买B类会员年卡,需要消费3000+60×60=6600元;购买C类会员年卡,需要消费4000+40×60=6400;不购买会员卡年卡,需要消费180×60=10800元;6400<6600<7500<10800综上所述:最省钱的方式为购买C类会员年卡故选C.【点睛】此题考查的是用代数式表示实际意义,掌握实际问题中各个量之间的关系是解决此题的关键.15.如图,是一个运算程序的示意图,若开始输入x的值为81,则第2018次输出的结果是( )A.3 B.27 C.9 D.1【答案】D【解析】【分析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【详解】第1次,13×81=27,第2次,13×27=9,第3次,13×9=3,第4次,13×3=1,第5次,1+2=3,第6次,13×3=1,…,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2018是偶数,∴第2018次输出的结果为1.故选D . 【点睛】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.16.下列运算中正确的是( ) A .2235a a a += B .222(2)4a b a b +=+ C .236236a a a ⋅= D .()()22224a b a b a b -+=-【答案】D 【解析】 【分析】根据多项式乘以多项式的法则,分别进行计算,即可求出答案. 【详解】A 、2a+3a=5a ,故本选项错误;B 、(2a+b )2=4a 2+4ab+b 2,故本选项错误;C 、2a 2•3a 3=6a 5,故本选项错误;D 、(2a-b )(2a+b )=4a 2-b 2,故本选项正确. 故选D . 【点睛】本题主要考查多项式乘以多项式.注意不要漏项,漏字母,有同类项的合并同类项.17.已知多项式x -a 与x 2+2x -1的乘积中不含x 2项,则常数a 的值是( ) A .-1 B .1C .2D .-2【答案】C 【解析】分析:先计算(x ﹣a )(x 2+2x ﹣1),然后将含x 2的项进行合并,最后令其系数为0即可求出a 的值.详解:(x ﹣a )(x 2+2x ﹣1) =x 3+2x 2﹣x ﹣ax 2﹣2ax +a =x 3+2x 2﹣ax 2﹣x ﹣2ax +a =x 3+(2﹣a )x 2﹣x ﹣2ax +a 令2﹣a =0,∴a =2. 故选C .点睛:本题考查了多项式乘以多项式,解题的关键是熟练运用运算法则,本题属于基础题型.18.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是 ( )A .30B .20C .60D .40【答案】A【解析】【分析】 设大正方形的边长为x ,小正方形的边长为y ,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解.【详解】设大正方形的边长为x ,小正方形的边长为y ,则2260x y -=,∵S 阴影=S △AEC +S △AED =11()()22x y x x y y -+-g g =1()()2x y x y -+g =221()2x y - =1602⨯ =30.故选A.【点睛】 此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.19.计算(0.5×105)3×(4×103)2的结果是( )A .13210⨯B .140.510⨯C .21210⨯D .21810⨯ 【答案】C【解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质进行计算.解:(0.5×105)3×(4×103)2=0.125×1015×16×106=2×1021.故选C .本题考查同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.20.下列运算正确的是( )A .x 3+x 5=x 8B .(y+1)(y-1)=y 2-1C .a 10÷a 2=a 5D .(-a 2b)3=a 6b 3【答案】B【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.【详解】A、x3+x5,无法计算,故此选项错误;B、(y+1)(y-1)=y2-1,正确;C、a10÷a2=a8,故此选项错误;D、(-a2b)3=-a6b3,故此选项错误.故选:B.【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题的关键.。
初一合并同类项经典练习题
秋季周末班是学习的大好时机, 可以在这学期里, 学习新知识, 总结旧知识, 查漏补缺, 巩固提高。
在这个收获的季节, 祝你学习轻松愉快.秋季周末班是学习的大好时机,可以在这学期里,学习新知识,总结旧知识,查漏补缺,巩固提高。
在这个收获的季节,祝你学习轻松愉快.代数式(复习课)一、典型例题代数式求值例1 当时, 求代数式的值。
例2 已知是最大的负整数, 是绝对值最小的有理数, 求代数式的值。
例3已知, 求代数式的值。
合并同类项例1.合并同类项(1)(3x-5y)-(6x+7y)+(9x-2y)(2)2a-[3b-5a-(3a-5b)](3)(6m2n-5mn2)-6(m2n-mn2)解: (1)(3x-5y)-(6x+7y)+(9x-2y)=3x-5y-6x-7y+9x-2y (正确去掉括号)=(3-6+9)x+(-5-7-2)y (合并同类项)=6x-14y(2)2a-[3b-5a-(3a-5b)] (应按小括号, 中括号, 大括号的顺序逐层去括号)=2a-[3b-5a-3a+5b] (先去小括号)=2a-[-8a+8b] (与时合并同类项)=2a+8a-8b (去中括号)=10a-8b(3)(6m2n-5mn2)-6(m2n-mn2) (注意第二个括号前有因数6)=6m2n-5mn2-2m2n+3mn2 (去括号与分配律同时进行)=(6-2)m2n+(-5+3)mn2 (合并同类项)=4m2n-2mn2例2. 已知: A=3x2-4xy+2y2, B=x2+2xy-5y2求:(1)A+B (2)A-B (3)若2A-B+C=0, 求C。
解: (1)A+B=(3x2-4xy+2y2)+(x2+2xy-5y2)=3x2-4xy+2y2+x2+2xy-5y2(去括号)=(3+1)x2+(-4+2)xy+(2-5)y2(合并同类项)=4x2-2xy-3y2(按x的降幂排列)(2)A-B=(3x2-4xy+2y2)-(x2+2xy-5y2)=3x2-4xy+2y2-x2-2xy+5y2 (去括号)=(3-1)x2+(-4-2)xy+(2+5)y2 (合并同类项)=2x2-6xy+7y2 (按x的降幂排列)(3)∵2A-B+C=0∴C=-2A+B=-2(3x2-4xy+2y2)+(x2+2xy-5y2)=-6x2+8xy-4y2+x2+2xy-5y2 (去括号, 注意使用分配律)=(-6+1)x2+(8+2)xy+(-4-5)y2 (合并同类项)=-5x2+10xy-9y2 (按x的降幂排列)例3. 计算:(1)m2+(-mn)-n2+(-m2)-(-0.5n2)(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an) (3)化简: (x-y)2-(x-y)2-[(x-y)2-(x-y)2]解: (1)m2+(-mn)-n2+(-m2)-(-0.5n2)=m2-mn-n2-m2+n2 (去括号)=(-)m2-mn+(-+)n2 (合并同类项)=-m2-mn-n2 (按m的降幂排列)(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)=8an+2-2an-3an-an+1-8an+2-3an (去括号)=0+(-2-3-3)an-an+1 (合并同类项)=-an+1-8an(3)(x-y)2-(x-y)2-[(x-y)2-(x-y)2] [把(x-y)2看作一个整体]=(x-y)2-(x-y)2-(x-y)2+(x-y)2 (去掉中括号)=(1--+)(x-y)2 (“合并同类项”)=(x-y)2例4求3x2-2{x-5[x-3(x-2x2)-3(x2-2x)]-(x-1)}的值, 其中x=2。
五年级数学上册综合算式专项练习题代数式的合并
五年级数学上册综合算式专项练习题代数式的合并五年级数学上册综合算式专项练习题——代数式的合并一、加减法在代数式中,我们经常会遇到需要合并同类项的情况。
同类项是指具有相同的字母部分和相同的指数的项。
合并同类项的过程就是将具有相同字母和指数的项进行加减运算,得到一个新的代数式。
例题1:合并同类项将下列代数式中的同类项合并,并写出结果。
2x + 3x - x + 5解析:首先,我们可以看到2x、3x和-x都是x的项,它们的指数都是1,因此它们是同类项。
2x + 3x - x + 5合并同类项得:(2 + 3 - 1)x + 5= 4x + 5所以,结果是4x + 5。
例题2:合并同类项将下列代数式中的同类项合并,并写出结果。
4y - 2 + 3y + 7y解析:首先,我们可以看到4y、3y和7y都是y的项,它们的指数都是1,因此它们是同类项。
4y - 2 + 3y + 7y合并同类项得:(4 + 3 + 7)y - 2= 14y - 2所以,结果是14y - 2。
二、乘法在代数式中,我们还经常会遇到要合并同类项并进行乘法运算的情况。
两个同类项相乘的结果是将它们的系数相乘,字母部分和指数保持不变。
例题3:合并同类项并进行乘法运算将下列代数式中的同类项合并,并写出结果。
5x(2 + 3) - 2x(3 - x)解析:首先,我们可以看到5x和2x都是x的项,它们的指数都是1,因此它们是同类项。
5x(2 + 3) - 2x(3 - x)合并同类项得:(5 + (-2))x(2 + 3 - (3 - x))= 3x(2 + 3 - (3 - x))= 3x(5 - (3 - x))= 3x(5 - 3 + x)= 3x(2 + x)所以,结果是3x(2 + x)。
例题4:合并同类项并进行乘法运算将下列代数式中的同类项合并,并写出结果。
3a(a + 2) - 4a(4 - a)解析:首先,我们可以看到3a和(-4a)都是a的项,它们的指数都是1,因此它们是同类项。
合并同类项与整理式子练习题整理复杂的代数式
合并同类项与整理式子练习题整理复杂的代数式在数学中,代数式是由数字、字母和运算符号组成的数学表达式。
处理复杂的代数式是解决代数问题和方程的关键步骤之一。
本文将介绍合并同类项和整理式子的练习题,帮助读者掌握这一重要技巧。
一、简单的合并同类项考虑以下代数式子:2x + 3x - 5x合并同类项即将具有相同变量的项进行合并。
在这个例子中,变量为x的项有3个,因此我们可以将它们合并为一个项:2x + 3x - 5x = (2 + 3 - 5)x = 0x = 0所以,答案是0。
二、合并有不同系数的同类项现在我们来考虑另一个代数式子:3x^2 + 2x - 5x^2 - 4这个式子中有两个x^2的项,我们可以将它们合并为一个项,同时保留前面的系数:3x^2 + 2x - 5x^2 - 4 = (3 - 5)x^2 + 2x - 4 = -2x^2 + 2x - 4所以,答案是-2x^2 + 2x - 4。
三、合并涉及更多变量的同类项接下来我们考虑一个稍微复杂一点的例子:2x^2y - 3xy + 4x^2y + xy这个式子中涉及了两个变量x和y。
我们可以将具有相同变量的项进行合并:2x^2y - 3xy + 4x^2y + xy = (2x^2y + 4x^2y) + (-3xy + xy) = 6x^2y - 2xy所以,答案是6x^2y - 2xy。
四、整理含有括号的复杂代数式在代数式中,有时我们会遇到含有括号的复杂式子。
例如:(3x + 2)(2x - 5)我们可以使用分配律将括号内的项分别与括号外的项相乘,然后合并同类项:(3x + 2)(2x - 5) = 3x * 2x + 3x * (-5) + 2 * 2x + 2 * (-5) = 6x^2 - 15x + 4x - 10最后,合并同类项得到:6x^2 - 15x + 4x - 10 = 6x^2 - 11x - 10所以,答案是6x^2 - 11x - 10。
(易错题精选)初中数学代数式难题汇编及答案解析
(易错题精选)初中数学代数式难题汇编及答案解析一、选择题1.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( )A .1B .2C .3D .4【答案】D【解析】【分析】根据同类项的概念求解.【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项, n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.2.下列计算正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 6C .(a 2)3=a 6D .(ab )2=ab 2【答案】C【解析】试题解析:A.a 2与a 3不是同类项,故A 错误;B.原式=a 5,故B 错误;D.原式=a 2b 2,故D 错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.3.下列运算正确的是( )A .21ab ab -=B 3=±C .222()a b a b -=-D .326()a a =【答案】D【解析】【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.【详解】解:A 项,2ab ab ab -=,故A 项错误;B 3=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.故选D【点睛】本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.4.下列运算正确的是( )A .232235x y xy x y +=B .()323626ab a b -=-C .()22239a b a b +=+D .()()22339a b a b a b +-=- 【答案】D【解析】【分析】根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可.【详解】A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意;B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意;D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意. 故选D .【点睛】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.5.下列各式中,计算正确的是( )A .835a b ab -=B .352()a a =C .842a a a ÷=D .23a a a ⋅= 【答案】D【解析】【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.【详解】解:A 、8a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、()326a a =,故选项B 不合题意;C 、844a a a ÷=,故选项C 不符合题意;D 、23a a a ⋅=,故选项D 符合题意.故选:D .【点睛】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.6.下列运算正确的是()A .336a a a +=B .632a a a ÷=C .()235a a a -⋅=-D .()336a a = 【答案】C【解析】【分析】分别求出每个式子的值,3332a a a +=,633a a a ÷=,()235aa a -⋅=-,()339a a =再进行判断即可.【详解】解:A: 3332a a a +=,故选项A 错;B :633a a a ÷=,故选项B 错;C :()235a a a -⋅=-,故本选项正确;D.:()339a a =,故选项D 错误. 故答案为C.【点睛】本题考查了同底数幂的乘除,合并同类项,幂的乘方和积的乘方的应用;掌握乘方的概念,即求n 个相同因数的乘积的运算叫乘方,乘方的结果叫做幂;分清()22n n a a -=,()2121n n a a ++-=-.7.下列运算正确的是( )A .2m 2+m 2=3m 4B .(mn 2)2=mn 4C .2m•4m 2=8m 2D .m 5÷m 3=m 2【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算后即可解答.【详解】选项A ,2m 2+m 2=3m 2,故此选项错误;选项B ,(mn 2)2=m 2n 4,故此选项错误;选项C ,2m •4m 2=8m 3,故此选项错误;选项D,m5÷m3=m2,正确.故选D.【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题关键.8.下列命题正确的个数有()①若 x2+kx+25 是一个完全平方式,则 k 的值等于 10;②一组对边平行,一组对角相等的四边形是平行四边形;③顺次连接平行四边形的各边中点,构成的四边形是菱形;④黄金分割比的值为≈0.618.A.0 个B.1 个C.2 个D.3 个【答案】C【解析】【分析】根据完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定即可一一判断;【详解】①错误.x2+kx+25是一个完全平方式,则 k 的值等于±10 ②正确.一组对边平行,一组对角相等,可以推出两组对角分别相等,即可判断是平行四边形;③错误.顺次连接平行四边形的各边中点,构成的四边形是平行四边形;④正确.黄金分割比的值为≈0.618;故选C.【点睛】本题考查完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定等知识,解题的关键是熟练掌握基本知识.9.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a,用含a的式子表示这组数的和是()A.2a2-2a B.2a2-2a-2 C.2a2-a D.2a2+a【答案】C【解析】【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n=2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n=2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2-a.故选:C.【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1-2.10.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110 B.158 C.168 D.178【答案】B【解析】根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4−0,22=4×6−2,44=6×8−4,∴m=12×14−10=158.故选C.11.如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是()A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2+2ab+b2C .(a ﹣b )2=a 2﹣2ab +b 2D .a (a ﹣b )=a 2﹣ab【答案】A【解析】【分析】 分别计算出两个图形中阴影部分的面积即可.【详解】图1阴影部分面积:a 2﹣b 2,图2阴影部分面积:(a +b )(a ﹣b ),由此验证了等式(a +b )(a ﹣b )=a 2﹣b 2,故选:A .【点睛】此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.12.图(1)是一个长为2a ,宽为2()b a b >的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .abB .2()a b +C .2()a b -D .22a b -【答案】C【解析】【分析】 图(2)的中间部分是正方形,边长为a-b ,根据图形列面积关系式子即可得到答案.【详解】中间部分的四边形是正方形,边长为:a+b-2b=a-b ,∴面积是2()a b -,故选:C.【点睛】此题考查完全平方公式的几何背景,观察图形得到线段之间的关系是解题的关键.13.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为( )A .42B .43C .56D .57【答案】B【解析】【分析】 根据题意得出得出第n 个图形中菱形的个数为n 2+n+1;由此代入求得第⑧个图形中菱形的个数.【详解】第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n 个图形中菱形的个数为:n 2+n+1;第⑥个图形中菱形的个数62+6+1=43.故选B .【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.14.已知x=2y+3,则代数式9-8y+4x 的值是( )A .3B .21C .5D .-15【答案】B【解析】【分析】直接将已知变形进而代入原式求出答案.【详解】解:∵x=2y+3∴x-2y=3∴98494(2y x y x -+=--⨯)=9-4(-3)=21故选:B【点睛】此题主要考查了整式的加减以及代数式求值,正确将原式变形是解题关键.15.计算1.252 017×2?01945⎛⎫ ⎪⎝⎭的值是( )A.45B.1625C.1 D.-1【答案】B【解析】【分析】根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【详解】原式=1.252017×(45)2017×(45)2=(1.25×45)2012×(45)2=16 25.故选B.【点睛】本题考查了积的乘方,利用同底数幂的乘法底数不变指数相加得出积的乘方是解题关键.16.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1【答案】B【解析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,,…,,下边三角形的数字规律为:1+2,,…,,∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.17.若55+55+55+55+55=25n,则n的值为()A.10 B.6 C.5 D.3【答案】D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n,∴55×5=52n,则56=52n,解得:n=3.故选D.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.18.若(x+4)(x﹣1)=x2+px+q,则()A.p=﹣3,q=﹣4 B.p=5,q=4C.p=﹣5,q=4 D.p=3,q=﹣4【答案】D【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:∵(x+4)(x﹣1)=x2+3x﹣4∴p=3,q=﹣4故选:D.【点睛】考查整式的运算,解题的关键是熟练运用整式的运算法则.19.若x2+2(m+1)x+25是一个完全平方式,那么m的值()A.4 或-6 B.4 C.6 或4 D.-6【答案】A【解析】【详解】解:∵x2+2(m+1)x+25是一个完全平方式,∴△=b2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m2+2m-24=0,解得m1=4,m2=-6,所以m的值为4或-6.故选A.20.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.18【答案】C【解析】【分析】观察第1个、第2个、第3个图案中的三角形个数,从而可得到第n个图案中三角形的个数为2(n+1),由此即可得.【详解】∵第1个图案中的三角形个数为:2+2=4=2×(1+1);第2个图案中的三角形个数为:2+2+2=6=2×(2+1);第3个图案中的三角形个数为:2+2+2+2=8=2×(3+1);……∴第n个图案中有三角形个数为:2(n+1)∴第7个图案中的三角形个数为:2×(7+1)=16,故选C.【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.。
七年级数学上册《代数运算规则》的八种常考题型
七年级数学上册《代数运算规则》的八种常考题型本文档旨在介绍七年级数学上册中关于代数运算规则的八种常考题型。
以下是具体内容:1. 合并同类项合并同类项是代数运算中的基本技巧。
在题型中,通常会给出一些代数式,要求将其中的同类项进行合并化简。
例如:题目:将代数式2x + 3y + x - 2y进行合并同类项。
解析:将所有含有x的项相加得到3x,将所有含有y的项相加得到y,所以合并后的结果是3x + y。
2. 分配律的应用分配律在代数运算中十分重要。
在题型中,常常会涉及到分配律的应用。
例如:题目:计算2(x + 3)。
解析:根据分配律,2(x + 3)等于2*x + 2*3,即2x + 6。
3. 四则运算四则运算是代数运算的基础。
在题型中,会出现加法、减法、乘法和除法运算。
例如:题目:计算3x + 2y - (x - y)。
解析:先进行括号内部的计算,得到3x + 2y - x + y。
然后合并同类项,得到2x + 3y。
4. 求解方程求解方程是代数运算的重要内容之一。
在题型中,会出现需要求解未知数的方程。
例如:题目:解方程2x + 3 = 7。
解析:将等式两边都减去3,得到2x = 4。
然后将等式两边都除以2,得到x = 2。
5. 求解不等式求解不等式也是代数运算的一部分。
在题型中,会出现需要求解不等式的情况。
例如:题目:求解不等式2x + 5 > 9。
解析:首先将等式两边都减去5,得到2x > 4。
然后将不等式两边都除以2,得到x > 2。
6. 代数式的展开代数式的展开意味着将一个带有括号的代数式展开成多项式。
在题型中,会出现需要展开代数式的情况。
例如:题目:展开代数式(x + 3)(2x - 4)。
解析:根据分配律,展开后的结果是x * 2x + x * (-4) + 3 * 2x + 3 * (-4)。
经过合并同类项后得到2x^2 + 2x - 12。
7. 代数式的因式分解代数式的因式分解是将一个多项式分解成乘积的形式。
八年级数学上册综合算式专项练习代数式的合并同类项
八年级数学上册综合算式专项练习代数式的合并同类项在数学学习的过程中,我们经常会遇到代数式的合并同类项的问题。
合并同类项是指将具有相同字母部分的代数式进行合并,从而简化表达式,使其更加简洁明了。
本文将针对八年级数学上册综合算式专项练习代数式的合并同类项进行详细讨论。
首先,我们来看一个简单的例子:2x + 3y + 4x - 5y。
这个代数式中有两个变量x和y,我们需要将具有相同字母部分的项进行合并。
根据合并同类项的原则,同一个变量的系数相加即可,而字母部分保持不变。
因此,我们可以将2x和4x合并,得到6x;将3y和-5y合并,得到-2y。
最终简化后的表达式为6x - 2y。
接下来,我们来看一个稍微复杂一些的例子:3a + 2b - 4a - b + 5. 这个代数式中同样有两个变量a和b,我们需要将具有相同字母部分的项进行合并。
首先,我们可以将3a和-4a合并,得到-a(或者写成-1a);将2b和-b合并,得到b;最后我们将5视为没有变量的项,与其他项合并。
最终简化后的表达式为-a + b + 5。
在实际应用中,有时候我们会遇到更多的变量和更复杂的代数式。
这时候,我们仍然可以按照相同的原则进行合并。
不同变量的项之间不可以合并,只有具有相同字母部分的项才能进行合并。
例如:2x + 3y - 4z + 5x - 2z + 6y。
这个代数式中有三个变量x、y和z。
我们可以将2x和5x合并,得到7x;将3y和6y合并,得到9y;将-4z和-2z合并,得到-6z。
最终简化后的表达式为7x + 9y - 6z。
需要注意的是,合并同类项时,我们只考虑字母部分是否相同,而不考虑系数的正负。
系数的正负只是该项的符号,对于合并同类项来说并没有影响。
综上所述,合并同类项是代数式求解中的重要步骤,它可以使代数式更加简洁明了,便于我们进一步进行计算和解题。
合并同类项的原则是将具有相同字母部分的项进行合并,而字母部分保持不变。
代数式难题汇编含答案解析
代数式难题汇编含答案解析一、选择题1.如果(x 2+px +q )(x 2-5x +7)的展开式中不含x 2与x 3项,那么p 与q 的值是( ) A .p =5,q =18B .p =-5,q =18C .p =-5,q =-18D .p =5,q =-18【答案】A【解析】试题解析:∵(x 2+px+q )(x 2-5x+7)=x 4+(p-5)x 3+(7-5p+q )x 2+(7-5q )x+7q , 又∵展开式中不含x 2与x 3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.故选A .2.下列运算正确的是( )A .21ab ab -=B 3=±C .222()a b a b -=-D .326()a a =【答案】D【解析】【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.【详解】解:A 项,2ab ab ab -=,故A 项错误;B 3=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.故选D【点睛】本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.3.下列运算正确的是( )A .232235x y xy x y +=B .()323626ab a b -=-C .()22239a b a b +=+D .()()22339a b a b a b +-=-【答案】D【解析】根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可.【详解】A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意;B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意;D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意. 故选D .【点睛】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.4.观察等式:232222+=-;23422222++=-;2345222222+++=-⋅⋅⋅已知按一定规律排列的一组数:502、512、522、⋅⋅⋅、992、1002.若502a =,用含a 的式子表示这组数的和是( )A .222a a -B .2222a a --C .22a a -D .22a a +【答案】C【解析】【分析】根据题意,一组数:502、512、522、⋅⋅⋅、992、1002的和为250+251+252+…+299+2100==a +(2+22+…+250)a ,进而根据所给等式的规律,可以发现2+22+…+250=251-2,由此即可求得答案.【详解】250+251+252+…+299+2100=a +2a +22a + (250)=a +(2+22+…+250)a ,∵232222+=-, 23422222++=-,2345222222+++=-,…,∴2+22+…+250=251-2,∴250+251+252+…+299+2100=a +(2+22+…+250)a=a +(251-2)a=a +(2 a -2)a=2a 2-a ,故选C.本题考查了规律题——数字的变化类,仔细观察,发现其中哪些发生了变化,哪些没有发生变化,是按什么规律变化的是解题的关键.5.观察下列图形:()它们是按一定规律排列的,依照此规律,那么第7个图形中共有五角星的个数为() A.20B.21C.22D.23【答案】C【解析】【分析】设第n个图形共有a n(n为正整数)个五角星,根据各图形中五角星个数的变化可找出变化规律“a n=3n+1(n为正整数)”,再代入n=7即可得出结论.【详解】解:设第n个图形共有a n(n为正整数)个五角星,∵a1=4=3×1+1,a2=7=3×2+1,a3=10=3×3+1,a4=13=3×4+1,…,∴a n=3n+1(n为正整数),∴a7=3×7+1=22.故选:C.【点睛】本题考查了规律型:图形的变化类,根据各图形中五角星个数的变化,找出变化规律“a n=3n+1(n为正整数)”是解题的关键.6.下列运算正确的是()A.x3+x5=x8 B.(y+1)(y-1)=y2-1 C.a10÷a2=a5 D.(-a2b)3=a6b3【答案】B【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.【详解】A、x3+x5,无法计算,故此选项错误;B、(y+1)(y-1)=y2-1,正确;C、a10÷a2=a8,故此选项错误;D、(-a2b)3=-a6b3,故此选项错误.故选:B.本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题的关键.7.如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm时停下,则它停的位置是()A.点F B.点E C.点A D.点C【答案】A【解析】分析:利用菱形的性质,电子甲虫从出发到第1次回到点A共爬行了8cm(称第1回合),而2014÷8=251……6,即电子甲虫要爬行251个回合,再爬行6cm,所以它停的位置是F点.详解:一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,从出发到第1次回到点A共爬行了8cm,而2014÷8=251……6,所以当电子甲虫爬行2014cm时停下,它停的位置是F点.故选A.点睛:本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.8.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.18【答案】C【解析】【分析】观察第1个、第2个、第3个图案中的三角形个数,从而可得到第n个图案中三角形的个数为2(n+1),由此即可得.【详解】∵第1个图案中的三角形个数为:2+2=4=2×(1+1);第2个图案中的三角形个数为:2+2+2=6=2×(2+1);第3个图案中的三角形个数为:2+2+2+2=8=2×(3+1);……∴第n 个图案中有三角形个数为:2(n+1)∴第7个图案中的三角形个数为:2×(7+1)=16,故选C.【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.9.如果多项式4x 4+ 4x 2+ A 是一个完全平方式,那么A 不可能是( ).A .1B .4C .x 6D .8x 3【答案】B【解析】【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案.【详解】∵4x 4+ 4x 2+1=(2x+1)2,∴A=1,不符合题意,∵4x 4+ 4x 2+ 4不是完全平方式,∴A=4,符合题意,∵4x 4+ 4x 2+ x 6=(2x+x 3)2,∴A= x 6,不符合题意,∵4x 4+ 4x 2+8x 3=(2x 2+2x )2,∴A=8x 3,不符合题意.故选B .【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.10.若35m =,34n =,则23m n -等于( ) A .254 B .6C .21D .20 【答案】A【解析】【分析】根据幂的运算法则转化式子,代入数值计算即可.【详解】解:∵35m =,34n =, ∴222233(3)3253544-==÷÷÷==m n m n m n , 故选:A .【点睛】 本题考查了同底数幂的除法和幂的乘方的逆用,熟练掌握同底数幂的除法和幂的乘方的运算法则是解题的关键.11.若x 2+2(m+1)x+25是一个完全平方式,那么m 的值( )A .4 或-6B .4C .6 或4D .-6【答案】A【解析】【详解】解:∵x 2+2(m+1)x+25是一个完全平方式,∴△=b 2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m 2+2m-24=0,解得m 1=4,m 2=-6,所以m 的值为4或-6.故选A.12.5. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(-10%)(+15%)万元B .(1-10%)(1+15%)万元C .(-10%+15%)万元D .(1-10%+15%)万元【答案】B【解析】列代数式.据3月份的产值是a 万元,用a 把4月份的产值表示出来a (1-10%),从而得出5月份产值列出式子a 1-10%)(1+15%).故选B .13.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠: 会员年卡类型办卡费用(元) 每次收费(元) A 类1500 100 B 类3000 60 C 类 4000 40例如,购买A 类会员年卡,一年内健身20次,消费1500100203500+⨯=元,若一年内在该健身俱乐部健身的次数介于50-60次之间,则最省钱的方式为( )A .购买A 类会员年卡B .购买B 类会员年卡C .购买C 类会员年卡D .不购买会员年卡【答案】C【解析】【分析】设一年内在该健身俱乐部健身x 次,分别用含x 的代数式表示出购买各类卡所需消费,然后将x=50和x=60分别代入各个代数式中比较大小即可得出结论.【详解】解:设一年内在该健身俱乐部健身x 次,由题意可知:50≤x≤60则购买A 类会员年卡,需要消费(1500+100x )元;购买B 类会员年卡,需要消费(3000+60x )元;购买C 类会员年卡,需要消费(4000+40x )元;不购买会员卡年卡,需要消费180x 元;当x=50时,购买A 类会员年卡,需要消费1500+100×50=6500元;购买B 类会员年卡,需要消费3000+60×50=6000元;购买C 类会员年卡,需要消费4000+40×50=6000;不购买会员卡年卡,需要消费180×50=9000元;6000<6500<9000当x=60时,购买A 类会员年卡,需要消费1500+100×60=7500元;购买B 类会员年卡,需要消费3000+60×60=6600元;购买C 类会员年卡,需要消费4000+40×60=6400;不购买会员卡年卡,需要消费180×60=10800元;6400<6600<7500<10800综上所述:最省钱的方式为购买C 类会员年卡故选C .【点睛】此题考查的是用代数式表示实际意义,掌握实际问题中各个量之间的关系是解决此题的关键.14.若多项式x 2+mx +4能用完全平方公式分解因式,则m 的值可以是( ) A .4B .﹣4C .±2D .±4【答案】D【解析】【分析】利用完全平方公式因式分解2222=()a ab b a b ±+±计算即可.【详解】解:∵x 2+mx +4=(x ±2)2,即x 2+mx +4=x 2±4x +4,∴m =±4.故选:D .【点睛】本题要熟记完全平方公式,尤其是两种情况的分类讨论.15.图(1)是一个长为2a ,宽为2()b a b >的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .abB .2()a b +C .2()a b -D .22a b -【答案】C【解析】【分析】 图(2)的中间部分是正方形,边长为a-b ,根据图形列面积关系式子即可得到答案.【详解】中间部分的四边形是正方形,边长为:a+b-2b=a-b ,∴面积是2()a b -,故选:C.【点睛】此题考查完全平方公式的几何背景,观察图形得到线段之间的关系是解题的关键.16.按如图所示的运算程序,能使输出y 的值为1的是( )A .a =3,b =2B .a =﹣3,b =﹣1C .a =1,b =3D .a =4,b =2【答案】A【解析】【分析】 根据题意,每个选项进行计算,即可判断.【详解】解:A 、当a =3,b =2时,y =12a -=132-=1,符合题意; B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意;C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意;D 、当a =4,b =2时,y =12a -=142-=12,不符合题意. 故选:A .【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.17.下面的图形都是由同样大小的棋子按照一定的规律组成,其中第①个图形有1颗棋子,第②个图形有6颗棋子,第③个图形有15颗棋子,第④个图中有28颗棋子,…,则第6个图形中棋子的颗数为( )A .63B .64C .65D .66【答案】D【解析】【分析】 根据图形中棋子的个数找到规律,从而利用规律解题.【详解】解:∵通过观察可以发现:第1个图形中棋子的个数为()11211=⨯⨯-;第2个图形中棋子的个数为()62221=⨯⨯-;第3个图形中棋子的个数为()153231=⨯⨯-;第4个图形中棋子的个数为()284241=⨯⨯-;L L第n 个图形中棋子的个数为()21n n -∴第6个图形中棋子的个数为()626166⨯⨯-=.故选:D【点睛】本题考查了图形变化规律的问题,能找出第n个图形棋子的个数的表达式是解题的关键.18.计算(-2)2009+(-2)2010的结果是()A.22019 B.22009 C.-2 D.-22010【答案】B【解析】(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009,故选B.19.若x+y=3+22,x﹣y=3﹣22,则22-的值为()x yA.42B.1 C.6 D.3﹣22【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y=3+22,x﹣y=3﹣22,∴22()()(322)(322)-=+-=+-=1.x y x y x y故选:B.【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.20.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为6cm,宽为5cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长之和等于()A.19cm B.20cm C.21cm D.22cm【答案】B【解析】【分析】根据图示可知:设小长方形纸片的长为a 、宽为b ,有:26a b +=(cm),则阴影部分的周长为:2(62)2(52)2(6)2(5)-+-+-+-b b a a ,计算即可求得结果.【详解】解:设小长方形纸片的长为a 、宽为b ,由图可知:26a b +=(cm),阴影部分的周长为:2(62)2(52)2(6)2(5)-+-+-+-b b a a ,化简得:444(2)-+a b ,代入26a b +=得:原式=44−4×6=44−24=20(cm),故选:B .【点睛】本题主要考查整式加减的应用,关键分清图形②如何用小长方形纸片的长和宽表示.。
初中合并同类项计算题(3篇)
第1篇一、题目1. 计算:3a - 2a + 4b - 5b + 6c - 7c2. 计算:2(x + 3) - 5(x - 2) + 4x3. 计算:3(2x - 4y + 5z) - 4(3x + 2y - z)4. 计算:-5(x - 2y + 3z) + 6(x + 4y - 2z) - 2(x - 3y + 5z)5. 计算:2a^2 + 3ab - 5b^2 + 4a^2 - 2ab + b^26. 计算:-3x^2 + 2x - 5y^2 + 4x^2 + 3y - 2x7. 计算:4(x^2 - 3xy + 2y^2) - 3(x^2 + 2xy - y^2)8. 计算:-2(a^2 - 3ab + 2b^2) + 5(a^2 + 4ab - b^2)9. 计算:3(2x^2 - 5xy + 3y^2) - 4(3x^2 + 2xy - 2y^2)10. 计算:-4(a^2 - 2ab + 3b^2) + 3(a^2 + 5ab - 4b^2)二、解答1. 首先合并同类项,即合并含有相同字母的项:3a - 2a + 4b - 5b + 6c - 7c = (3 - 2)a + (4 - 5)b + (6 - 7)c = a - b - c所以,计算结果为:a - b - c2. 首先去括号,然后合并同类项:2(x + 3) - 5(x - 2) + 4x = 2x + 6 - 5x + 10 + 4x= (2x - 5x + 4x) + (6 + 10)= x + 16所以,计算结果为:x + 163. 首先去括号,然后合并同类项:3(2x - 4y + 5z) - 4(3x + 2y - z) = 6x - 12y + 15z - 12x - 8y + 4z= (6x - 12x) + (-12y - 8y) + (15z + 4z)= -6x - 20y + 19z所以,计算结果为:-6x - 20y + 19z4. 首先去括号,然后合并同类项:-5(x - 2y + 3z) + 6(x + 4y - 2z) - 2(x - 3y + 5z) = -5x + 10y - 15z + 6x + 24y - 12z - 2x + 6y - 10z= (-5x + 6x - 2x) + (10y + 24y + 6y) + (-15z - 12z - 10z)= -x + 40y - 37z所以,计算结果为:-x + 40y - 37z5. 首先合并同类项:2a^2 + 3ab - 5b^2 + 4a^2 - 2ab + b^2 = (2a^2 + 4a^2) + (3ab - 2ab) + (-5b^2 + b^2)= 6a^2 + ab - 4b^2所以,计算结果为:6a^2 + ab - 4b^26. 首先合并同类项:-3x^2 + 2x - 5y^2 + 4x^2 + 3y - 2x = (-3x^2 + 4x^2) + (2x - 2x) + (-5y^2 + 3y)= x^2 + 3y - 5y^2所以,计算结果为:x^2 + 3y - 5y^27. 首先去括号,然后合并同类项:4(x^2 - 3xy + 2y^2) - 3(x^2 + 2xy - y^2) = 4x^2 - 12xy + 8y^2 - 3x^2 - 6xy + 3y^2= (4x^2 - 3x^2) + (-12xy - 6xy) + (8y^2 + 3y^2)= x^2 - 18xy + 11y^2所以,计算结果为:x^2 - 18xy + 11y^28. 首先去括号,然后合并同类项:-2(a^2 - 3ab + 2b^2) + 5(a^2 + 4ab - b^2) = -2a^2 + 6ab - 4b^2 + 5a^2 + 20ab - 5b^2= (-2a^2 + 5a^2) + (6ab + 20ab) + (-4b^2 - 5b^2)= 3a^2 + 26ab - 9b^2所以,计算结果为:3a^2 + 26ab - 9b^29. 首先去括号,然后合并同类项:3(2x^2 - 5xy + 3y^2) - 4(3x^2 + 2xy - 2y^2) = 6x^2 - 15xy + 9y^2 -12x^2 - 8xy + 8y^2= (6x^2 - 12x^2) + (-15xy - 8xy) + (9y^2 + 8y^2)= -6x^2 - 23xy + 17y^2所以,计算结果为:-6x^2 - 23xy + 17y^210. 首先去括号,然后合并同类项:-4(a^2 - 2ab + 3b^2) + 3(a^2 + 5ab - 4b^2) = -4a^2 + 8ab - 12b^2 + 3a^2 + 15ab - 12b^2= (-4a^2 + 3a^2) + (8ab + 15ab) + (-12b^2 - 12b^2)= -a^2 + 23ab - 24b^2所以,计算结果为:-a^2 + 23ab - 24b^2通过以上解答,我们可以看到合并同类项的计算方法。
合并同类项练习题 (答案)
合并同类项练习题①已知-2x2m 1y3与5x7y n-1是同类项,那么m+n= 。
答案:7解析:根据同类项定义,相同字母的指数相同,2m+1=7,3=n-1,得出m=3,n=4所以m+n=7②已知n是个正整数,如果2axⁿ + 3x²+1是一个单项式,那么aⁿ= 。
答案:2.25解析:根据单项式定义2axⁿ + 3x²不能存在,即这个单项式是1。
所以n=2,2a=-3,即a=-1.5。
所以aⁿ=(-1.5)ⁿ=2.25③多项式ax³-7x²+ax²-7x+7+bx²-x³ 是一个一次多项式,那么a²b=。
答案:6解析:合并同类项得(a-1)x³+(a+b-7)x²-7x+7根据最高项的次数是1,所以三次项(a-1)x³不存在,a-1=0,即a=1二次项(a+b-7)x²也不存在,所以a+b-7=0,b=6。
所以a²b=6④已知x=-1234,计算x²+2x³-x(1+2x²)+10的值。
但是计算时漏掉了负号把-1234当成1234,算出的结果是1521532。
那么正确的结果是。
答案:1524000解析:先合并同类项x²+2x³-x(1+2x²)+10=x²-x+10由于x²的值不变,正确的应该比错误答案多1234×2=2468所以答案是1521532+2468=1524000⑤已知|a-2|与|b+1|互为相反数,求3b³+3ab²+3b²-ab²-2a²b-2ab²-b³的值。
答案:9解析:根据|a-2|+|b+1|=0 可知a=2,b=-1先合并同类项3b³+3ab²+3b²-ab²-2a²b-2ab²-b³=2b³+3b²-2a²b把a=2,b=-1代入,2b³+3b²-2a²b=-2+3+8=9⑥已知x+2y=5,求(-2x-4y+8)³+(x-3)²-x²-12y+7的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数式及合并同类项一、知识梳理1.代数式的概念 用运算符号....把数.或表示数的字母....连接而成的式子..叫做代数式,单独的一个数或字母也..........是代数式......2.代数式的书写规则3a ⨯应记为:33a a ⋅或; 33a a ÷应记为:; 17322a a 应记为: 3.单项式、多项式及整式的定义 单项式:由数与字母....的积.构成的代数式叫做单.项式..; ★. 特别地:单独的一个数或一个字母也是单项式;.................★ 单项式的系数:通常..指单项式中数字因数....; ★ 单项式的次数:单项式中所有字母的指数之和;..........多项式:几个单项式的和.....组成多项式; 整式:单项式和多项式统称为整式;4.同类项(1)定义:含有相同字母....,并且相同字母....的次数也相同的项.......,叫做同类项. 几个常数项也是同类项............ (2)合并同类项的法则 :系数相加,所得的结果作为系数,字母和字母的指数不变(一变两不变).5.去括号和添括号法则(1)去括号和前面的符号:()a b c d -+--=_____________________; ()a b c d --+--=____________________;(2)添括号和前面的符号:a b c d -+--= +(_____________________); a b c d -+--= -(_____________________);二、典例剖析【课前热身】1.三个连续偶数,设中间数为n ,则它们分别为_______,_______,__________2.用含n (n 为整数)的代数式表示:(1)偶数:________________; (2)奇数:________________; 3. 某校共有学生a 人,其中女学生占45%,女生有_____人,男生有______人4. 电影院第一排有a 个座位,后面每排比前一排多一个座位,则电影院第n 排有___________个座位5. 培育水稻新品种,如果第1代得到120粒种子,并且从第一代起,以后各代的每一粒种子都得到下一代的120粒种子,到第n 代可以得到这种新品种的种子_______________粒.6. 一个屋顶的某一斜面是等腰梯形,最上面一层铺了瓦片21块,往下每一层多铺一块,则第5层铺瓦_____________块,第n 层铺瓦______________块.7.某处细菌在培养过程中,每30分钟分裂一次(一个分裂成两个),经过4小时,这种细菌由1个可繁殖成______________个.8.“抗击非典”活动中,甲、乙、丙三家企业捐款,已知甲捐了a 万元,乙比甲的2倍少5万元,丙比甲多6万元,则捐款总额为______________万元,当a =30时,捐款总额为_____________万元.9.用代数式表示下列各数:(数字表示法)(1)一个两位数,十位为x ,个位为y ,求这个数._________________(2)若一个三位数的百位数字为a ,十位数字为b ,个位数字为c ,则此三位数为___________10.有一个三位数m ,一个两位数n ,组成一个五位数: (1)m 在n 的左边:____________ ;(2)n 在m 的左边:______________11. x 减去5的差与x 加上2的和的商_____________;x 与5的差比x 与2的和___________12. a ,b 两数的立方和;____________; a ,b 两数和的立方:_____________13. a 与b 的和除a 与b 的差:________________;例1:(08四川巴中)在长为a m ,宽为b m 的一块草坪上修了一条1m 宽的笔直小路,则余下草坪的面积可表示为 ____ 2m ;现为了增加美感,把这条小路改为宽恒为1m 的弯曲小路(如图6),则此时余下草坪的面积为 _______ 2m .例2:下列语句正确的是( )A. 13不是代数式 B. 0是代数式 C. r C π2=是一个代数式 D. 3a 不是单项式★变式训练★2a b -的系数为_______,次数为____________;例3:下列各题的两项是同类项的是___________________(1)20.5x y 2与-3yx (2)2m n 与212mn -(3)253⨯与235⨯ (4)2abc 与22ab c - (5)22a bc 与22ab c - (6)24与2π例4:合并同类项: (1)a b b a 31213-++- (2)35486422-+++-+a ax ax a ax★变式训练★三角形一边为a +3,另一边为a +7,它的周长是2a +b +23,求第三边( ) A .b -13 B .2a +13 C .b +13 D .a +b -13例5:先化简,再求值:(1) 已知01)12(2=++-y x ,求代数式)2(2)22(222222y xy x y xy x x +--+--+的值.(2) []{}b a b ac b a 3)(352325+-----,其中1,3,2-=-=-=c b a .★变式训练★ 先化简,再求值:22225[(32)2(3)]x x x x x x +---+,其中21-=x .例6:(1)已知01223344555)12(a x a x a x a x a x a x +++++=-.求:①543210a a a a a a +++++的值;② 012345a a a a a a -+-+-的值;③024a a a ++的值;④135a a a ++的值;(2) 如果734=-b a ,并且1923=+b a ,求b a 214-的值 (3) 当435zy x ==时,代数式y z y x 532++的值等于_______ __★变式训练★1.已知为常数,其中e d c b a e dx cx bx ax y ,,,,357++++=,当1x =时,23=y ;当1x =-时,35-=y .求e 的值.2. 如果x+2y+3z=10, 4x+3y+2z=15,则x+y+z=__________.3.若222=+-b a b a ,求ba ba b a b a 483622+-+-+的值例7:已知m y x 251-与1321-n x y 和仍是单项式,则=n m .★变式训练★已知32n m a与332b n m -是同类项,且229y xy ax A +-=,223y bxy x B +-=.求:[]{})(232A B A B A -+--.例8:如果关于x 的多项式:-2x 2+mx +nx 2-5x -1的值与x 的取值无关,求m 、n 的值.★变式训练★代数式23332333x y-10x +6x y+3x +3x y+6yx +7x ﹣的值( ). A .与x 、y 都有关. B .只与x 有关.C .只与y 有关.D .与x 、y 都无关.三、创新探究(名书·名校·中考·培优·竞赛)★1.若a.b.c 是自然数,且a <b,a +b=719,c -a=923,则a +b +c 的所有可能性中最大一个值是____________。
★2.已知一个三位数,十位上的数为a ,十位上的数比个位上的数的41多1,百位上的数是十位上的数的二倍,用代数式表示这个三位数是________________.3.已知y=ax 7+bx 5+cx 3+dx+e. 当x=2时,y=23; 当x= -2时, y= -35. 那么e =______.★4.(2007“创新杯”邀请赛)已知m 2+2mn=13,3mn +2n 2=21,求2m 2+13mn +6n 2-44的值.★5.已知0=++c b a ,求4)11()11()11(++++++ba c a cbc b a 的值1.2a ba b-+的意义是( ) A .a 与b 差的2倍除以a 与b 的和 B .a 的2倍与b 的差除以a 与b 和的商 C .a 的2倍与b 的差除a 与b 的和 D .a 与b 的2倍的差除以a 与b 和的商2. “x 与5的差的一半”表示为___________,z y x -+-的相反数是___________3. 若2x 2+3x+7的值是9,那么代数式4x 2+6x -11的值为___________4. 在多项式5m 2n 3-32m 2n 3中,5m 2n 3与-32m 2n 3都含有字母_______,并且_______都是二次,_______都是三次.因此5m 2n 3与-32m 2n 3是_______.5.当k =__________时,多项式x 2-3kxy -3y 2-31xy -8中不含xy 项.6.已知72=-mn m ,22-=-n mn ,求22n m -与222n mn m +-的值.7.(2010∙培优)已知m 是绝对值最小的有理数,且y m b a22+-与23b a x 的差仍是单项式,试求代数式2x 2-3xy +6y 2-3mx 2+mxy -9mny 2的值.反馈栏家长签字家长意见及建议。