高中数学导数的概念及其意义

合集下载

高中数学 导数及其应用知识归纳

高中数学  导数及其应用知识归纳

导数及其应用知识归纳一、导数的概念1. 导数的物理意义:瞬时速率一般的,函数()y f x =在0x x =处的瞬时变化率是000()()limx f x x f x x∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即0()f x '=000()()lim x f x x f x x ∆→+∆-∆。

2. 导数的几何意义:切线斜率曲线的切线通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。

容易知道,割线n PP 的斜率是 00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即0000()()lim ()n x n f x f x k f x x x ∆→-'==- 3. 导函数当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数。

()y f x =的导函数有时也记作y ',即 0()()()lim x f x x f x f x x∆→+∆-'=∆ 二、导数的计算1. 基本初等函数的导数公式① 若()f x x α=,则1()f x x αα-'=;② 若()sin f x x =,则()cos f x x '=;③ 若()cos f x x =,则()sin f x x '=-;④ 若()x f x a =,则()ln xf x a a '=; ⑤ 若()x f x e =,则()xf x e '=; ⑥ 若()log x a f x =,则1()ln f x x a'=; ⑦ 若()ln f x x =,则1()f x x '=. 2. 导数的运算法则[()()]()()()()f x g x f x g x f x g x '''•=•+•2()()()()()[]()[()]f x f xg x f x g x g x g x ''•-•'= 3. 复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数,则有(())()y f g x g x '''=•三、导数在研究函数中的应用1. 函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增;如果()0f x '<,那么函数()y f x =在这个区间单调递减。

导数是高二上册吗知识点

导数是高二上册吗知识点

导数是高二上册吗知识点高等数学中的导数是高中数学的内容,通常在高二上学期开始学习。

导数是微积分的一个重要概念,用于研究函数的变化率和函数的局部性质。

在本文中,我们将介绍导数的定义、求导法则以及一些应用。

一、导数的定义在数学中,导数描述了函数在某一点上的变化率。

对于函数f(x),它在点x处的导数可以用极限来定义:f'(x) = lim┬(h→0)⁡〖(f(x+h)-f(x))/h〗其中,f'(x)表示函数f(x)在点x处的导数。

这个定义可以直观地理解为,当x在无限接近于给定点时,函数f(x)在该点的斜率逐渐趋近于某个特定值。

二、求导法则求导法则是计算函数导数的一套规则和方法,便于我们在实际应用中进行计算。

以下是常见的求导法则:1. 基本导数法则:a. 常数导数法则:如果c是一个常数,那么dc/dx = 0。

b. 幂函数导数法则:对于函数f(x) = x^n,其中n是一个实数,则f'(x) = nx^(n-1)。

c. 指数函数导数法则:对于函数f(x) = a^x,其中a是一个正实数且不等于1,则f'(x) = ln(a) * a^x。

d. 对数函数导数法则:对于函数f(x) = logₐ(x),其中a是一个正实数且不等于1,则f'(x) = 1/(x * ln(a))。

2. 导数的四则运算法则:a. 和差法则:(f(x) ± g(x))' = f'(x) ± g'(x)。

b. 积法则:(f(x) * g(x))' = f'(x) * g(x) + f(x) * g'(x)。

c. 商法则:(f(x) / g(x))' = (f'(x) * g(x) - f(x) * g'(x)) / (g(x))^2。

3. 复合函数导数法则:如果y = f(g(x)),则y' = f'(g(x)) * g'(x)。

高中数学导数

高中数学导数

高中数学导数1. 介绍导数是高中数学中非常重要的概念之一。

它是微积分的基础,用来描述函数的变化率。

在高中数学中,我们主要学习一元函数的导数,即只有一个自变量的函数的导数。

本文将介绍导数的定义、性质、求导法则以及一些应用。

2. 导数的定义在数学中,函数 f(x) 在 x=a 处的导数,记作f’(a) 或者dy/dx|_(x=a),定义如下:如果极限$$\\lim_{h \\to 0} \\frac{f(a+h)-f(a)}{h}$$存在,那么称其为函数 f(x) 在 x=a 处的导数。

导数可以理解为函数 f(x) 在某一点的瞬时变化率。

也可以说,导数表示了函数曲线上某一点的切线斜率。

3. 导数的性质导数具有一些重要的性质:3.1 线性性质如果函数 f(x) 和 g(x) 在 x=a 处的导数都存在,那么对于任意常数 c,有如下性质:•求和规则:(f+f)′(f)=f′(f)+f′(f)•常数倍规则:(ff)′(f)=ff′(f)这意味着导数运算是一个线性运算。

3.2 乘积法则如果函数 f(x) 和 g(x) 在 x=a 处的导数都存在,那么乘积法则表示:$$(f \\cdot g)'(a) = f'(a) \\cdot g(a) + f(a) \\cdot g'(a)$$3.3 商法则如果函数 f(x) 和 g(x) 在 x=a 处的导数都存在,并且g(a) ≠ 0,那么商法则表示:$$\\left(\\frac{f}{g}\\right)'(a) = \\frac{f'(a) \\cdot g(a) -f(a) \\cdot g'(a)}{(g(a))^2}$$3.4 复合函数的链式法则如果函数 f(x) 在 x=a 处可导,且函数 g(x) 在 x=f(a) 处可导,那么复合函数 g(f(x)) 在 x=a 处的导数为:$$(g \\circ f)'(a) = g'(f(a)) \\cdot f'(a)$$3.5 反函数的导数如果函数 y=f(x) 在 x=a 处可导且导数不为零,并且 f(x) 在x=a 处的反函数存在,那么反函数 f^(-1)(x) 在 y=f(a) 处的导数为:$$\\left(f^{-1}\\right)'(f(a)) = \\frac{1}{f'(a)}$$4. 求导法则求导法则是导数计算中常用的方法。

高中数学导数

高中数学导数

高中数学导数
导数是高中数学中非常基础的一个知识点,它在数学和其他领域中有着广泛的应用。

下面将通过以下几个列表对导数进行详细介绍。

一、导数的定义
1. 函数在某一点的导数表示函数在该点的变化率,可以用极限的概念来表示。

2. 导数也可以表示为函数在某一点的切线斜率,即切线的斜率越大,则函数在该点的导数越大。

二、导数的求法
1. 使用导数的定义式,即求出一段极小的区间内函数的平均变化率的极限,这可以用极限的概念来表示。

2. 利用导数的性质进行求导,如求和、差、积、商等。

3. 利用基本函数的导数公式,如多项式、幂函数、指数函数、对数函数、三角函数等。

三、导数的应用
1. 导数可以用于求极值,即函数取得最大值或最小值的点。

2. 导数可以用于解决曲线的渐近线问题,如求水平渐近线和垂直渐近线。

3. 导数可以用于解决函数图像的凹凸性问题,即函数在凹还是凸的区间。

四、常见的导数公式
1. 常数函数的导数为零。

2. 幂函数的导数为 $n*x^{n-1}$。

3. 指数函数 $a^x$ 的导数为 $a^x\ln(a)$。

4. 对数函数 $\ln(x)$ 的导数为 $\frac{1}{x}$。

5. 三角函数的导数公式:
$\sin(x)$ 的导数为 $\cos(x)$;
$\cos(x)$ 的导数为 $-\sin(x)$;
$\tan(x)$ 的导数为 $\sec^2(x)$。

以上就是导数的基本概念和应用。

导数是高中数学中的重要内容,我们需要掌握导数的求法和基本公式,并熟练应用导数解决问题。

高中数学导数3篇

高中数学导数3篇

高中数学导数第一篇:导数的定义及性质导数是微积分中的重要概念之一,它在数学、物理、工程等领域都有广泛的应用。

导数的定义和性质是学习导数的重要基础,本文将对导数的定义和性质进行详细介绍。

一、导数的定义导数是函数在某一点的变化率,它表示函数在该点附近的变化趋势。

导数的定义如下:设函数y=f(x),x0为区间I内的一点,若极限f(x0 + Δx)-f(x0)Δx→0------- = kΔx存在,且与x0的取值有关,则称k为函数f(x)在点x0处的导数,记为f'(x0)或y'(x0),即f'(x0)=lim ──────(x→x0)Δx→0 Δx其中,Δx表示自变量x的增量,即x-x0。

从几何上来看,导数就是函数图像在某一点切线的斜率。

二、导数的性质导数存在的充分条件是函数在该点连续。

导数也具有一些基本的性质,如下:1. 常数函数的导数为0对于常数函数y=c,其导数为dy/dc=lim [(c+Δc)-c]/Δc=0即常数函数的导数恒为0。

2. 幂函数的导数对于幂函数y=x^n,其导数为dy/dx=lim [(x+Δx)^n-x^n]/Δx=lim [x^n+(n*x^(n-1))*Δx+O(Δx^2)-x^n]/Δx=(n*x^(n-1))即幂函数y=x^n的导数为n*x^(n-1)。

3. 求和、差、积的导数对于函数y=u(x)+v(x)的导数,有dy/dx=[u(x)+v(x)]'=[u(x)]'+[v(x)]'对于函数y=u(x)-v(x)的导数,有dy/dx=[u(x)-v(x)]'=[u(x)]'-[v(x)]'对于函数y=u(x)*v(x)的导数,有dy/dx=[u(x)*v(x)]'=u(x)*[v(x)]'+v(x)*[u(x)]'4. 商的导数对于函数y=u(x)/v(x)的导数,有dy/dx=[u(x)/v(x)]'=[u(x)*v'(x)-v(x)*u'(x)]/[v(x)]^2其中,v(x)≠0。

高中数学导数的定义与求解

高中数学导数的定义与求解

高中数学导数的定义与求解在高中数学中,导数是一个重要的概念,它用于描述函数的变化率,并广泛应用于微积分和其他相关学科中。

本文将介绍导数的定义及其求解方法。

一、导数的定义导数描述了函数在某一点处的变化率。

设函数f(x)在点x=a处可导,那么它的导数f'(a)定义为:f'(a) = lim(h→0) [f(a+h) - f(a)] / h其中lim表示极限运算,h表示自变量x的增量。

二、导数的几何意义函数的导数在几何上有直观的解释:它等于函数曲线在对应点处的切线斜率。

换句话说,导数给出了函数曲线在特定点上的“陡峭程度”。

三、导数的求解方法1. 基本导数公式对于一些基本的函数,我们可以利用导数的基本定义和一些特殊公式来求导。

以下是一些常见函数的导数:- 常数函数导数:f(x) = C (其中C为常数) 的导数为0。

- 幂函数导数:f(x) = x^a (其中a为实数) 的导数为 f'(x) = a * x^(a-1)。

- 指数函数导数:f(x) = e^x 的导数为 f'(x) = e^x。

- 对数函数导数:f(x) = ln(x) 的导数为 f'(x) = 1 / x。

2. 导数的四则运算法则利用导数的四则运算法则,我们可以更方便地求解复杂函数的导数。

下面是一些常见的四则运算法则:- 和差法则:若函数 f(x) 和 g(x) 都在点 x 处可导,则它们的和(差)的导数为:[f(x) ± g(x)]' = f'(x) ± g'(x)。

- 积法则:若函数 f(x) 和 g(x) 都在点 x 处可导,则它们的乘积的导数为:[f(x) * g(x)]' = f'(x) * g(x) + f(x) * g'(x)。

- 商法则:若函数 f(x) 和 g(x) 都在点 x 处可导,并且g(x) ≠ 0,则它们的商的导数为:[f(x) / g(x)]' = [f'(x) * g(x) - f(x) * g'(x)] / [g(x)]^2。

高中数学导数的定义及求导公式解题技巧

高中数学导数的定义及求导公式解题技巧

高中数学导数的定义及求导公式解题技巧导数是高中数学中的重要概念,它描述了函数在某一点处的变化率。

理解导数的定义以及掌握求导公式是解决各类导数题目的关键。

本文将介绍导数的定义及求导公式,并通过具体的题目分析和解答,帮助读者掌握解题技巧。

一、导数的定义导数的定义是函数在某一点处的变化率,用数学符号表示为f'(x)或dy/dx。

导数可以理解为函数图像上某一点处的切线斜率,也可以表示为函数的瞬时变化率。

对于函数y=f(x),若在点x处导数存在,则导数的定义为:f'(x) = lim(x→0) (f(x+h) - f(x))/h其中lim表示极限,h表示x的增量。

这个定义告诉我们,导数可以通过求函数在某一点的极限来计算。

二、求导公式在高中数学中,我们常用的函数求导公式有以下几种:1. 常数函数的导数为0:f(x) = c,则f'(x) = 0,其中c为常数。

2. 幂函数的导数:f(x) = x^n,则f'(x) = nx^(n-1),其中n为正整数。

3. 指数函数的导数:f(x) = a^x,则f'(x) = ln(a) * a^x,其中a为常数。

4. 对数函数的导数:f(x) = log_a(x),则f'(x) = 1/(x * ln(a)),其中a为常数。

5. 三角函数的导数:f(x) = sin(x),则f'(x) = cos(x);f(x) = cos(x),则f'(x) = -sin(x);f(x) = tan(x),则f'(x) = sec^2(x)。

以上是常用的求导公式,掌握它们可以帮助我们快速求解各类导数题目。

三、解题技巧在解题过程中,我们可以运用导数的定义和求导公式来解决各类导数题目。

下面通过具体的题目来说明解题技巧。

题目一:求函数f(x) = 2x^3 - 3x^2 + 4x - 5在点x=2处的导数。

解析:根据求导公式,我们可以依次求出每一项的导数,然后将它们相加。

高中数学导数知识点总结

高中数学导数知识点总结

高中数学导数知识点总结一、导数的基础1. 导数的定义- 导数表示函数在某一点的切线斜率。

- 符号表示:$f'(x)$ 或 $\frac{df}{dx}$。

2. 极限表达- 导数可以用极限表达:$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$。

3. 几何意义- 导数的几何意义是曲线在某一点的切线斜率。

二、导数的计算1. 基本导数公式- 常数函数:$(C)' = 0$。

- 幂函数:$(x^n)' = nx^{n-1}$(其中n为实数)。

- 指数函数:$(a^x)' = a^x \ln(a)$(其中a > 0且a ≠ 1)。

- 对数函数:$(\ln(x))' = \frac{1}{x}$。

- 三角函数:- $(\sin(x))' = \cos(x)$- $(\cos(x))' = -\sin(x)$- $(\tan(x))' = \sec^2(x)$2. 导数的运算法则- 和/差的导数:$(u \pm v)' = u' + v'$。

- 乘积的导数:$(uv)' = u'v + uv'$。

- 商的导数:$(\frac{u}{v})' = \frac{u'v - uv'}{v^2}$。

3. 链式法则- 如果有一个复合函数$g(f(x))$,则其导数为:$(g(f(x)))' = g'(f(x)) \cdot f'(x)$。

三、高阶导数1. 高阶导数的定义- 第二导数:函数的导数的导数,表示为$f''(x)$。

- 更高阶导数:同理,可以计算第三导数、第四导数等。

2. 高阶导数的计算- 通过重复应用导数的基本运算法则来计算。

四、导数的应用1. 切线问题- 利用导数求曲线在某一点的切线方程。

高中数学选择性必修二 5 1 2导数的概念及其几何意义(知识梳理+例题+变式+练习)(含答案)

高中数学选择性必修二 5 1 2导数的概念及其几何意义(知识梳理+例题+变式+练习)(含答案)

5.1.2导数的概念及其几何意义要点一 导数的概念1.平均变化率:对于函数y =f (x ),设自变量x 从x 0变化到x 0+Δx ,则把Δy Δx =f (x 0+Δx )-f (x 0)Δx 叫做函数y =f (x )从x 0到x 0+Δx 的平均变化率.2.导数:如果Δx →0时,平均变化率Δy Δx 无限趋近于一个确定的值,即ΔyΔx 有极限,则称y =f (x )在x =x 0处可导,并把这个确定的值叫做y =f (x )在x =x 0处的导数(也称瞬时变化率),记作f ′(x 0)或y ′|0x x = ,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →f (x 0+Δx )-f (x 0)Δx . 【重点小结】(1)当Δx ≠0时,比值Δy Δx 的极限存在,则f(x)在x =x 0处可导;若ΔyΔx的极限不存在,则f(x)在x =x 0处不可导或无导数.(2)在x =x 0处的导数的定义可变形为f ′(x 0)=lim Δx →0 f (x 0-Δx )-f (x 0)-Δx 或f ′(x 0)=lim x →x 0 f (x )-f (x 0)x -x 0.要点二 导数的几何意义对于曲线y =f (x )上的点P 0(x 0,f (x 0))和P (x ,f (x )),当 点P 0趋近于点P 时,割线P 0P 趋近于确定的位置,这个确定位置的直线P 0T 称为点P 0处的切线.割线P 0P 的斜率是k =f (x )-f (x 0)x -x 0.当点P 无限趋近于点P 0时,k 无限趋近于切线P 0T 的斜率.因此,函数f (x )在x =x 0处的导数就是切线P 0T 的斜率k ,即k =li m Δx →0f (x 0+Δx )-f (x 0)Δx 【重点总结】(1)曲线的切线与割线①曲线的切线是由割线绕一点转动,当另一点无限接近这一点时割线趋于的直线. ②曲线的切线就是割线趋近于某一确定位置的直线,体现了无限趋近的思想. (2)曲线的切线与导数①函数f(x)在x =x 0处有导数,则在该点处函数f(x)表示的曲线必有切线,且导数值是该切线的斜率. ②函数f(x)表示的曲线在点(x 0,f(x 0))处有切线,但函数f(x)在该点处不一定可导,如f(x)=3x 在x =0处有切线,但不可导.曲线的切线并不一定与曲线只有一个交点,可以有多个,甚至可以有无穷多个.与曲线只有一个公共点的直线也不一定是曲线的切线. 要点三 导函数对于 函数y =f (x ),当x =x 0时,f ′(x 0)是一个确定的数,当x 变化时,f ′(x )便是一个关于x 的函数,我们称它为函数y=f(x)的导函数(简称为导数),即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx【重点总结】函数在某点处的导数与导函数的区别(1)函数在某点处的导数是一个定值,导函数是一个函数.(2)函数f(x)在x0处的导数就是导函数f ′(x)在x=x0处的函数值.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)函数f(x)在x=x0处有意义,则f′(x0)存在.()(2)直线与曲线相切,则直线与已知曲线只有一个公共点.()(3)导函数f′(x)的定义域与函数f(x)的定义域相等.()(4)曲线f(x)=x2在原点(0,0)处的切线方程为y=0.()【答案】(1)×(2)×(3)×(4)√2.若函数f(x)=-3x-1,则f′(x)=()A.0 B.-3xC.3 D.-3【答案】D【解析】k=li mΔx→0-3(x+Δx)-1-(-3x-1)Δx=-3.3.设曲线y=x2+x-2在点M处的切线斜率为3,则点M的坐标为() A.(0,-2) B.(1,0)C.(0,0) D.(1,1)【答案】B【解析】设点M(x0,y0),∴k=limΔx→0(x0+Δx)2+(x0+Δx)-2-(x20+x0-2)Δx=2x0+1,令2x0+1=3,∴x0=1,则y0=0.故选B.4.如图,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)=________.【答案】2【解析】点(5,f(5))在切线y=-x+8上,∴f(5)=-5+8=3.且f′(5)=-1,∴f(5)+f′(5)=2.题型一 求函数在某点处的导数【例1】(1)已知函数f (x )=2x 2+4x ,则f ′(3)=________. 【答案】(1)16【解析】(1)Δy =2(3+Δx )2+4(3+Δx )-(2×32+4×3) =12Δx +2(Δx )2+4Δx =2(Δx )2+16Δx , ∴Δy Δx =2(Δx )2+16Δx Δx=2Δx +16. ∴f ′(3)=li m Δx →0(2Δx +16)=16.(2)已知函数f (x )=2x 2+4x ,若f ′(x 0)=12,则x 0=________. 【答案】(2)2【解析】(2)根据导数的定义f ′(x 0)=li m Δx →0ΔyΔx =li m Δx →f (x 0+Δx )-f (x 0)Δx=li m Δx →2(x 0+Δx )2+4(x 0+Δx )-(2x 20+4x 0)Δx=li m Δx →04x 0·Δx +2(Δx )2+4ΔxΔx =li m Δx →(4x 0+2Δx +4)=4x 0+4,∴f ′(x 0)=4x 0+4=12,解得x 0=2.【方法归纳】用导数定义求函数在某一点处的导数的三个步骤 (1)作差Δy =f (x 0+Δx )-f (x 0). (2)作比Δy Δx =f (x 0+Δx )-f (x 0)Δx .(3)取极限f ′(x 0)=li m Δx →0ΔyΔx. 简记为一差、二比、三极限.【跟踪训练1】已知函数f (x )=x +1x,则f ′(1)=________.【答案】0【解析】f ′(1)=lim Δx →f (1+Δx )-f (1)Δx=lim Δx →0⎣⎡⎦⎤(1+Δx )+11+Δx -(1+1)Δx=lim Δx →0⎝⎛⎭⎫Δx +11+Δx -1Δx=lim Δx →0⎝⎛⎭⎫1-11+Δx =0题型二 求曲线的切线方程【例2】已知曲线y =13x 3,求曲线在点P (3,9)处的切线方程.【解析】由y =13x 3,得y ′=li m Δx →0 ΔyΔx =li m Δx →013(x +Δx )3-13x 3Δx=13li m Δx →3x 2Δx +3x (Δx )2+(Δx )3Δx=13li m Δx →[3x 2+3xΔx +(Δx )2]=x 2, y ′|x =3=32=9,即曲线在P (3,9)处的切线的斜率等于9. 由直线的点斜式方程可得,所求切线方程为y -9=9(x -3), 即9x -y -18=0.【变式探究】本例条件不变,求曲线过点M (1,0)的切线方程.【解析】设切点坐标为⎝⎛⎭⎫x 0,13x 30,由例2知切线方程为:y -13x 30=x 20(x -x 0) ∵切线过点(1,0), ∴-13x 30=x 20(1-x 0)即23x 30-x 20=0,解得x 0=0或x 0=32. ∴切点坐标为(0,0)或⎝⎛⎭⎫32,98,∴切线方程为:y =0或y -98=94⎝⎛⎭⎫x -32. 即y =0或9x -4y -9=0. 设切点,写出切线方程,已知点代入,求切点. 【方法归纳】1.求曲线上某点切线方程的三个步骤2.过曲线外的点P (x 1,y 1)求曲线的切线方程的步骤 (1)设切点为Q (x 0,y 0).(2)求出函数y =f (x )在点x 0处的导数f ′(x 0).(3)利用Q 在曲线上和f ′(x 0)=k PQ ,解出x 0,y 0及f ′(x 0). (4)根据直线的点斜式方程,得切线方程为y -y 0=f ′(x 0)(x -x 0). 【跟踪训练2】已知曲线C :y =x 3.(1)求曲线C 上横坐标为1的点处的切线方程;(2)试问(1)中的切线与曲线C 是否还有其他的公共点?若有,求出公共点的坐标;若没有,说明理由. 【解析】将x =1代入曲线C 的方程得y =1,所以切点为(1,1). Δy Δx =(1+Δx )3-13Δx =3Δx +3(Δx )2+(Δx )3Δx=3+3Δx +(Δx )2, 当Δx 趋近于0时,ΔyΔx趋近于3,所以y ′|x =1=3.故所求切线方程为y -1=3(x -1),即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)2(x +2)=0,解得x 1=1,x 2=-2.从而求得公共点为(1,1),(-2,-8).故(1)中的切线与曲线C 的公共点除切点(1,1)外,还有点(-2,-8). 题型三 导数几何意义的应用 探究1 求切点坐标【例3】已知曲线y =x 2+6的切线分别符合下列条件,求切点. (1)平行于直线y =4x -3; (2)垂直于直线2x -y +5=0. 【解析】设切点坐标为(x 0,y 0).f ′(x )=li m Δx →f (x +Δx )-f (x )Δx=li m Δx →0 (x +Δx )2+6-(x 2+6)Δx=li m Δx →0(2x +Δx )=2x .∴过(x 0,y 0)的切线的斜率为2x 0.(1)∵切线与直线y =4x -3平行,∴2x 0=4,x 0=2,y 0=x 20+6=10, 即过曲线y =x 2+6上点(2,10)的切线与直线y =4x -3平行. (2)∵切线与直线2x -y +5=0垂直,∴2x 0×2=-1,得x 0=-14,y 0=9716,即过曲线y =x 2+6上点⎝⎛⎭⎫-14,9716的切线与直线2x -y +5=0垂直. 【方法归纳】求满足某条件的曲线的切点坐标的步骤(1)先设切点坐标(x 0,y 0); (2)求导函数f ′(x ); (3)求切线的斜率f ′(x 0);(4)由斜率间的关系列出关于x 0的方程,解方程求x 0; (5)点(x 0,y 0)在曲线f (x )上,将(x 0,y 0)代入求y 0得切点坐标.探究2 与曲线的切点相关的问题【例4】已知直线l 1为曲线y =x 2+x -2在(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2. (1)求直线l 2的方程;(2)求由直线l 1,l 2和x 轴围成的三角形面积.【解析】(1)y ′=lim Δx →0(x +Δx )2+(x +Δx )-2-x 2-x +2Δx=lim Δx →02xΔx +(Δx )2+ΔxΔx=lim Δx →0(2x +Δx +1)=2x +1.所以y ′|x =1=2×1+1=3,所以直线l 1的方程为y =3(x -1),即y =3x -3.设直线l 2过曲线y =x 2+x -2上的点B (b ,b 2+b -2), 则l 2的方程为y =(2b +1)x -b 2-2.因为l 1⊥l 2,则有2b +1=-13,b =-23,B ⎝⎛⎭⎫-23,-209,所以直线l 2的方程为y =-13x -229.(2)解方程组⎩⎪⎨⎪⎧y =3x -3,y =-13x -229,得⎩⎨⎧x =16,y =-52.所以直线l 1和l 2的交点坐标为⎝⎛⎭⎫16,-52. l 1,l 2与x 轴交点的坐标分别为(1,0),⎝⎛⎭⎫-223,0. 所以所求三角形的面积S =12×253×52=12512.(1)先由已知求出l 1的斜率,再由l 1⊥l 2,求出l 2的斜率,进而求出切点坐标,得出l 2的方程. (2)求出l 1与l 2的交点坐标,l 1,l 2与x 轴的交点,求出直线l 1,l 2和x 轴围成的三角形的面积. 【方法归纳】利用导数的几何意义处理综合应用题的两种思路(1)与导数的几何意义相关的题目往往涉及解析几何的相关知识,如直线的方程、直线间的位置关系等,因此要综合应用所学知识解题.(2)与导数的几何意义相关的综合问题解题的关键是函数在某点处的导数,已知切点可以求斜率,已知斜率也可以求切点,切点的坐标是常设的未知量.【跟踪训练3】(1)已知y =f (x )的图象如图所示,则f ′(x A )与f ′(x B )的大小关系是( ) A .f ′(x A )>f ′(x B ) B .f ′(x A )=f ′(x B ) C .f ′(x A )<f ′(x B )D .f ′(x A )与f ′(x B )大小不能确定 【答案】A【解析】由y =f (x )的图象可知,k A >k B ,根据导数的几何意义有f ′(x A )>f ′(x B ).故选A.(2)曲线f (x )=x 3在点(a ,a 3)(a ≠0)处的切线与x 轴,直线x =a 围成的三角形的面积为16,则a =________.【答案】(2)±1【解析】(2)因为f ′(a )=li m Δx →(a +Δx )3-a 3Δx =3a 2,所以曲线在点(a ,a 3)处的切线方程为y -a 3=3a 2(x -a ).令y =0,得切线与x 轴的交点为⎝⎛⎭⎫23a ,0,由题意知三角形面积为12⎪⎪⎪⎪a -23a ·|a 3|=12×⎪⎪⎪⎪a 3·|a 3|=16a 4=16.∴a 4=1,即a =±1. 【易错辨析】求切线方程时忽略“过”与“在”的差异致错【例5】已知抛物线y =x 2+x +1,则过抛物线原点的切线方程为________. 【答案】3x -y =0或x +y =0【解析】设切点坐标为(x 0,y 0),则f ′(x 0)=lim Δx →(x 0+Δx )2+(x 0+Δx )+1-(x 20+x 0+1)Δx=lim Δx →0(2x 0+1+Δx )=2x 0+1,所以斜率k =2x 0+1,故所求的切线方程为y -y 0=(2x 0+1)(x -x 0),将(0,0)及y 0=x 20+x 0+1代入上式得:-(x 20+x 0+1)=-x 0(2x 0+1), 解得x 0=1或x 0=-1,所以k =3或k =-1,所以切线方程为y =3x 或y =-x , 即3x -y =0或x +y =0. 【易错警示】 1.出错原因把原点当作切点,易求的是在原点处的切线方程. 2.纠错心得(1)看清楚求的是原点处的切线,还是过原点的切线. (2)过原点的切线,原点不一定是切点,需设切点为(x 0,y 0).一、单选题1.设()f x 在0x x =处可导,则()()000lim2h f x h f x h h→+--=( ). A .()02f x ' B .()012f x ' C .()0f x ' D .()04f x '【答案】C 【分析】根据导数的定义即可求解. 【解析】解:∵()f x 在0x 处可导, ∵()()()0000lim2h f x h f x h f x h→+--'=,故选:C.2.函数()y f x =在0x x =处的导数可表示为0x x y =',即( ). A .()()()000f x f x x f x =+∆-' B .()()()0000lim x f x f x x f x ∆→'=+∆-⎡⎤⎣⎦ C .()()()0000lim x f x x f x f x x∆→+∆-'=∆D .()()()000f x x f x f x x+∆-'=∆【答案】C 【分析】结合导数定义直接选择即可. 【解析】x x y ='是()0f x '的另一种记法,根据导数的定义可知C 正确.故选:C3.若函数()f x 在0x x =处可导,则()()000limh f x h f x h→+-的结果( ).A .与0x ,h 均无关B .仅与0x 有关,而与h 无关C .仅与h 有关,而与0x 无关D .与0x ,h 均有关【答案】B 【分析】根据导数的定义即可求解. 【解析】 解:因为()()()0000limh f x h f x f x h→+-'=,所以结果仅与0x 有关,而与h 无关, 故选:B.4.设()f x 为可导函数,且满足0(1)(12)lim12x f f x x→--=-,则'(1)f 为( )A .1B .1-C .2D .2-【答案】B 【分析】利用导数的定义进行求解. 【解析】 因为0(1)(12)lim12x f f x x →--=-,所以20(1)(12)lim =12x f f x x→---,即20(12)(1)lim12x f x f x-→--=--所以'(1)1f =-. 故选:B.5.已知函数f (x )可导,且满足0(3)l (m 2i 3)x f f x x∆→-+∆=∆,则函数y =f (x )在x =3处的导数为( )A .-1B .-2C .1D .2【分析】根据导数的定义即可得到答案. 【解析】 由题意,()()()()()003333lim lim3x x f f x f x f f xx∆→∆→-+∆+∆-=-=-∆'∆,所以()32f '=-.故选:B.6.已知函数()f x 的图像如图所示,()f x '是()f x 的导函数,则下列结论正确的是( )A .()()()()310132f f f f '<-'<< B .()()()()310312f f f f -''<<< C .()()()()310312f f f f '<-'<< D .()()()()310132f f f f ''<<-< 【答案】B 【分析】结合图象,判断出()()()()310,3,,12f f f f ''-的大小关系. 【解析】由题图可知函数()f x 的图像在1x =处的切线的斜率比在3x =处的切线的斜率大,且均为正数,所以()()031f f ''<<. AB 的斜率为()()3131f f --,其比在1x =处的切线的斜率小,但比在3x =处的切线的斜率大,所以()()()()310312f f f f -''<<<. 故选:B7.已知函数()2ln 8f x x x =+,则()()121lim x f x f x∆→+∆-∆的值为( )A .20-B .10-C .10D .20【分析】根据导数的定义可得()()()0121lim 21x f x f f x∆→+∆='-∆,再用求导公式可得()28f x x'=+,代入1x =即可得解. 【解析】因为()2ln 8f x x x =+,所以()28f x x'=+, 所以()()()()()020121121lim2lim 21202x x f x f f x f f xx∆→∆→+∆-+∆-=∆'==∆.故选:D8.下列说法正确的是( )A .曲线的切线和曲线有且只有一个交点B .过曲线上的一点作曲线的切线,这点一定是切点C .若()0f x '不存在,则曲线()y f x =在点()()00,x f x 处无切线D .若曲线()y f x =在点()()00,x f x 处有切线,但()0f x '不一定存在 【答案】D 【分析】根据瞬时变化率和导数的基本概念对各选项逐一判断即可. 【解析】对于A ,曲线的切线和曲线除有一个公共切点外,还可能有其他的公共点,故A 错误;对于B ,过曲线上的一点作曲线的切线,由于曲线的切线和曲线除有一个公共切点外,还可能有其他的公共点,所以这个点不一定是切点,故B 错误;对于C ,()0f x '不存在,曲线()y f x =在点()()00,x f x 处切线的斜率不存在,但切线可能存在,故C 错误; 对于D ,曲线()y f x =在点()()00,x f x 处有切线,但切线斜率可能不存在,所以()0f x '不一定存在,故D 正确. 故选:D二、多选题9.已知函数()f x 的图象如图所示,()f x '是()f x 的导函数,则下列数值的排序正确的是( )A .()()32f f ''<B .()()()332f f f '<-C .()()()232f f f '<-D .()()320f f -<【答案】AB 【分析】根据导数的几何意义可得()()23f f ''>,记()()22A f ,,()()33B f ,,作直线AB ,根据两点坐标求出直线AB 的斜率,结合图形即可得出()()()323f f f '->. 【解析】由函数的图象可知函数()f x 是单调递增的,所以函数图象上任意一点处的导函数值都大于零,并且由图象可知,函数图象在2x =处的切线斜率1k 大于在3x =处的切线斜率2k ,所以()()23f f ''>; 记()()22A f ,,()()33B f ,,作直线AB ,则直线AB 的斜率()()()()323232f f k f f -==--,由函数图象,可知120k k k >>>,即()()()()23230f f f f ''>->>. 故选:AB10.(多选题)若函数f (x )在x =x 0处存在导数,则000()()limh f h x f x h→+-的值( )A .与x 0有关B .与h 有关C .与x 0无关D .与h 无关【答案】AD 【分析】由导数的定义进行判定. 【解析】由导数的定义,得:'0000()()lim()h f x f x f x hh →-=+,即函数f (x )在x =x 0处的导数与x 0有关,与h 无关. 故选:AD.11.甲、乙两个学校同时开展节能活动,活动开始后两学校的用电量()W t 甲(单位:kW h ⋅),()W t 乙(单位:kW h ⋅)与时间t (单位:h )的关系如图所示,则一定有( )A .甲校比乙校节能效果好B .甲校的用电量在[]00,t 上的平均变化率比乙校的用电量在[]00,t 上的平均变化率小C .两学校节能效果一样好D .甲校与乙校在活动期间的用电量总是一样大 【答案】AB 【分析】根据切线斜率的实际意义判断AC 选项的正确性.根据平均变化率的知识确定B 选项的正确性.根据图象判断用电量是否“总是一样大”,由此判断D 选项的正确性. 【解析】由图可知,对任意的()100,t t ∈,曲线()W t 甲在1t t =处的切线斜率的绝对值比曲线()W t 乙在1t t =处的切线斜率的绝对值大,所以甲校比乙校节能效果好,A 正确,C 错误; 由图可知,()() 000W t W t -甲甲()()000W t W t -<乙乙,则甲校的用电量在[]00,t 上的平均变化率比乙校的用电量在[]00,t 上的平均变化率小,B 正确;由于曲线()W t 甲和曲线()W t 乙不重合,故D 错误. 故选:AB.12.(多选)设()f x 在0x 处可导,下列式子中与()0f x '相等的是( ) A .()()0002lim2x f x f x x x∆→--∆∆B .()()000limx f x x f x x x∆→+∆--∆∆C .()()0002limx f x x f x x x∆→+∆-+∆∆D .()()0002limx f x x f x x x∆→+∆--∆∆【答案】AC 【分析】利用导数的定义对各选项逐一分析计算并判断作答. 【解析】 对于A ,()()()()()000000202222lim lim 22x x f x f x x f x x x f x x f x x x ∆→∆→--∆-∆+∆--∆'==∆∆,A 满足; 对于B ,()()()()()000000202lim 2lim 22x x f x x f x x f x x x f x x f x x x ∆→∆→+∆--∆-∆+∆--∆'==∆∆,B 不满足; 对于C ,()()()00002limx f x x f x x f x x∆→+∆-+∆'=∆,C 满足;对于D ,()()()()()000000302232lim 3lim 33x x f x x f x x f x x x f x x f x x x∆→∆→+∆--∆-∆+∆--∆'==∆∆,D 不满足. 故选:AC第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题13.某生物种群的数量Q 与时间t 的关系近似地符合10()9tt e Q t e =+.给出下列四个结论:①该生物种群的数量不会超过10;②该生物种群数量的增长速度先逐渐变大后逐渐变小; ③该生物种群数量的增长速度与种群数量成正比; ④该生物种群数量的增长速度最大的时间()02,3t ∈. 根据上述关系式,其中所有正确结论的序号是__________. 【答案】①②④ 【分析】对解析式上下同时除以t e ,结合反比例函数模型可判断①正确;对10()9tt e Q t e =+求导,()Q t '即为该生物种群数量的增长速度与时间的关系式,结合导函数特征和对勾函数模型可判断③错,②④正确 【解析】1010()991t t t e Q t e e ==++,因为0te >,故()911,t e+∈+∞,()100,1091t e ∈+,故该生物种群的数量不会超过10,①正确;由()28109090()()89191t tt t t t e e Q t Q t e e e e=⇒'=+++=+,显然该生物种群数量的增长速度与种群数量不成正比,③错;因为81tt e e +为对勾函数模型,故81tt e e+≥,当且仅当9t e =时取到等号,故811890t t e e++整体先增加后减小,当()03ln92,t =∈时,()Q t '最大,故②④正确, 综上所述,①②④正确, 故答案为:①②④ 14.若02)(=f x ',则00Δ0()(Δ)lim2Δx f x f x x x→-+=________.【答案】1- 【分析】利用导数的定义进行求解. 【解析】00Δ0()(Δ)lim2Δx f x f x x x→-+00Δ0(Δ)()1lim 2Δx f x x f x x →+-=- '01()2f x =-1=-.故答案为1-.15.已知函数f (x ),则()1f '=________. 【答案】12 【分析】根据导数的定义即可得到答案. 【解析】()()()001111lim lim 21x x f x f f x x →→+∆-'====∆+∆+.故答案为:12.16.函数()f x 在R 上可导,且()02f '=,x y R ∀∈,,若函数()()()f x y f x f y +=成立,则()0f =________.【答案】1 【分析】令0y =,则有()()()0f x f x f =,再根据条件即可求出答案. 【解析】解:令0y =,则有()()()0f x f x f =,()02f '=, ()f x ∴不恒为0, ()01f ∴=,故答案为:1.四、解答题17.已知2()f x x =,利用2'(1)11,(1)2,Δ0.03f f x ====,求(1.03)f 的近似值. 【答案】1.06 【分析】将'(1)1,(1)2,Δ0.03f f x ===代入'000()()()f x x f x f x x +∆≈+⋅∆中计算即可得到答案.【解析】由'000()()()f x x f x f x x +∆≈+⋅∆,可知'(1.03)(1)(1)0.03120.03 1.06f f f ≈+⨯=+⨯=.18.已知某产品的总成本函数为22C Q Q =+,总成本函数在0Q 处导数()0f Q '称为在0Q 处的边际成本,用()0MC Q 表示.求边际成本(500)MC 并说明它的实际意义.【答案】(500)1002MC =,其实际意义是:此时多生产1件产品,成本要增加1002. 【分析】利用导数的定义计算即可. 【解析】设500Q =时,产量的改变量为Q ∆,22(500)2(500)(5002500)C Q Q Q Q ∆+∆++∆-+⨯=∆∆ 1002Q =∆+,则0(500)lim (1002)1002Q MC Q ∆→=∆+=,即产量为500时的边际成本为1002,其实际意义是:此时多生产1件产品,成本要增加1002.。

高考数学复习知识点讲解教案第15讲 导数的概念及其意义、导数的运算

高考数学复习知识点讲解教案第15讲 导数的概念及其意义、导数的运算
0
− e ,即 =
= e,所以 e, 1 ,

.
e
由曲线 = ln 的对称性,知另一条切线的方程为 =

− .
e
[总结反思]
(1)曲线 = 在点 0 , 0 处的切线方程为 − 0 = ′ 0 − 0 ;
(2)注意曲线过某点的切线和曲线在某点处的切线的区别.
1.变化率与导数
(1)
概念
几何意

平均变化率:
0 +Δ − 0
Δ
对于函数 = ,把比值
=________________叫作函数
= 从
Δ
Δ
平均
0 到0 + Δ的_______变化率
斜率
函数 = 在区间[0 , 0 + Δ]上对应的图象的两端点连线的_______

=− +1
sin
π
3.[教材改编] 曲线 =
在点 π, 0 处的切线方程为______________.

[解析] 由题得′ =
则切线方程为 =
cos −sin
,∴
2
1

π
切线的斜率 = ′|=π =
− π ,即 =


π
+ 1.
1
− ,
π
题组二 常错题
◆ 索引:求导时不能掌握复合函数的求导法则;混淆′ 0 与[ 0 ]′;忽视
2
2cos

2
2sin
= 2cos 2.
5.已知
=
2

−8
+ 3′ 2 ,则 2 =_____.

导数概念讲解高中数学

导数概念讲解高中数学

导数概念讲解高中数学导数是高中数学中非常重要的概念之一。

它与函数的变化率和切线有着密切的关系,被广泛应用于各个领域,如物理学、经济学和工程学等。

导数的概念可以通过求函数的斜率来理解。

对于给定函数f(x),在某一点x 处的导数表示函数在该点的斜率。

具体而言,导数可以用以下公式表示:f'(x) = lim(h→0)[f(x+h) - f(x)]/h其中,lim代表极限运算,h表示自变量x的增量。

这个公式的意义是,在极限情况下,当h趋近于0时,函数f(x)在x点的变化率可以用斜率来近似表示。

通过导数,我们可以研究函数的变化规律。

导数为正表示函数在该点上升,为负表示函数在该点下降,为零表示函数取得极值。

此外,导数还可以帮助我们求解函数的最大值和最小值,以及确定函数的凹凸性。

导数还与切线密切相关。

对于函数f(x),在给定点x处的导数就是函数曲线在该点的切线的斜率。

这意味着,通过求导,我们可以得到函数曲线在任意点的切线方程。

这一概念在物理学中尤为重要,因为它可以帮助我们理解物体在运动中的速度和加速度。

在实际应用中,导数有着广泛的用途。

例如,在经济学中,通过求函数的导数,我们可以确定生产函数的边际产出率,从而找到最优的生产方案。

在物理学中,导数可以用来描述物体的运动轨迹和力学性质。

在工程学中,导数可以用来优化设计和预测系统的性能。

总之,导数是高中数学中一个非常重要的概念。

它不仅可以帮助我们理解函数的变化规律和切线性质,还可以应用于各个领域的实际问题中。

因此,对于学习数学的学生来说,深入理解和掌握导数的概念是至关重要的。

高中数学导数知识点归纳总结

高中数学导数知识点归纳总结

高中数学导数知识点归纳总结1.导数的定义-函数f在a点可导的充分必要条件是:存在一个常数k,使得当自变量趋于a时,函数值与f(a)之差与自变量与a之差的比值的极限等于k。

这个常数k就是函数f在a点的导数。

- 导数的定义公式为:f'(x) = lim (f(x + △x) - f(x))/△x(△x→0)2.导数的基本运算法则- 常数法则:如果c是常数,那么dc/dx = 0-乘法法则:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)-除法法则:(f(x)/g(x))'=(f'(x)g(x)-f(x)g'(x))/g(x)^2- 链式法则:如果y = f(u)且u = g(x),那么dy/dx = dy/du *du/dx3.导数与函数的关系-函数f在点x=a处可导,则函数f在点x=a处连续。

-可导函数必定在其可导区间内连续,但是连续函数未必可导。

-导数存在的充分必要条件是函数在该点连续且有极限。

4.常见函数的导数- 幂函数:y = x^n,则y' = nx^(n-1)- 指数函数:y = a^x,则y' = a^x * ln(a)- 对数函数:y = ln(x),则y' = 1/x- 三角函数:sin x的导数是cos x,cos x的导数是-sin x,tan x 的导数是sec^2x5.导数的几何意义-导数表示函数在其中一点上的切线的斜率。

-导数的绝对值表示函数在该点的变化速率,正表示增加,负表示减小。

6.导数的应用-求函数的极值点:对导数函数进行分析,找到其零点。

-求函数的单调区间:根据导数的正负性,确定函数在哪些区间上是增函数或减函数。

-求函数的最大值最小值:结合极值点和边界点来进行判断。

-求曲线的切线和法线:根据导数和函数在其中一点上的数值来确定切线和法线的斜率。

7.高阶导数和导数的计算-高阶导数表示对函数的导数进行多次求导的结果。

高中数学知识点总结-导数的定义及几何意义

高中数学知识点总结-导数的定义及几何意义

导数的定义及几何意义1.xx f x x f x f x ∆-∆+=→∆)()(lim )(0000/叫函数)(x f y =在0x x →处的导数,记作0|/x x y = 。

注:①函数应在点0x 的附近有定义,否则导数不存在。

②在定义导数的极限式中,x ∆趋近于0可正、可负、但不为0,而y ∆可能为0。

③xy ∆∆是函数)(x f y =对自变量x 在x ∆范围内的平均变化率,它的几何意义是过曲线)(x f y =上点(0x ,)(0x f )及点(0x +x ∆,)(00x x f ∆+)的割线斜率。

④导数xx f x x f x f x ∆-∆+=→∆)()(lim )(0000/是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在0x 点处变化的快慢程度,它的几何意义是曲线)(x f y =上点(0x ,)(0x f )处的切线的斜率。

⑤若极限xx f x x f x ∆-∆+→∆)()(lim 000不存在,则称函数)(x f y =在点0x 处不可导。

⑥如果函数)(x f y =在开区间),(b a 内每一点都有导数,则称函数)(x f y =在开区间),(b a 内可导;此时对于每一个x ∈),(b a ,都对应着一个确定的导数)(/x f ,从而构成了一个新的函数)(/x f ,称这个函数)(/x f 为函数)(x f y =在开区间),(b a 内的导函数,简称导数;导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求一个函数在给定点的导数,就是求导函数值。

[举例1]若2)(0/=x f ,则kx f k x f k 2)()(lim 000--→等于: (A) -1 (B) -2 (C) 1 (D) 1/2解析:∵2)(0/=x f ,即k x f k x f k ---+→-)()]([lim 000=2⇒kx f k x f k 2)()(lim 000--→=-1。

高中数学 新高考 复习试卷讲义 第3章 §3.1 导数的概念及其意义、导数的运算

高中数学 新高考 复习试卷讲义 第3章 §3.1 导数的概念及其意义、导数的运算

§3.1导数的概念及其意义、导数的运算考试要求 1.了解导数的概念、掌握基本初等函数的导数.2.通过函数图象,理解导数的几何意义.3.能够用导数公式和导数的运算法则求简单函数的导数,能求简单的复合函数(形如f(ax +b))的导数.知识梳理1.导数的概念(1)函数y=f(x)在x=x0处的导数记作或.f′(x0)=limΔx→0ΔyΔx=.(2)函数y=f(x)的导函数(简称导数)f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx.2.导数的几何意义函数y=f(x)在x=x0处的导数的几何意义就是曲线y=f(x)在点P(x0,f(x0))处的切线的,相应的切线方程为.3.基本初等函数的导数公式基本初等函数导函数f(x)=c(c为常数)f′(x)=______f(x)=xα(α∈R,且α≠0)f′(x)=______f(x)=sin x f′(x)=______f(x)=cos x f′(x)=______f(x)=a x(a>0,且a≠1)f′(x)=______f(x)=e x f′(x)=______f(x)=log a x(a>0,且a≠1)f′(x)=______f (x )=ln xf ′(x )=_____4.导数的运算法则若f ′(x ),g ′(x )存在,则有 [f (x )±g (x )]′= ; [f (x )g (x )]′= ;⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0); [cf (x )]′= . 5.复合函数的定义及其导数复合函数y =f (g (x ))的导数与函数y =f (u ),u =g (x )的导数间的关系为y x ′= ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 常用结论1.区分在点处的切线与过点处的切线(1)在点处的切线,该点一定是切点,切线有且仅有一条. (2)过点处的切线,该点不一定是切点,切线至少有一条. 2.⎣⎡⎦⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0). 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)与曲线只有一个公共点的直线一定是曲线的切线.( ) (3)f ′(x 0)=[f (x 0)]′.( ) (4)(cos 2x ) ′=-2sin 2x .( ) 教材改编题1.若函数f (x )=3x +sin 2x ,则( ) A .f ′(x )=3x ln 3+2cos 2x B .f ′(x )=3x +2cos 2x C .f ′(x )=3x ln 3+cos 2xD .f ′(x )=3xln 3-2cos 2x2.函数f (x )=e x +1x在x =1处的切线方程为 .3.已知函数f (x )=x ln x +ax 2+2,若f ′(e)=0,则a = .题型一 导数的运算例1 (1)(多选)下列求导正确的是( ) A .[(3x +5)3]′=9(3x +5)2 B .(x 3ln x )′=3x 2ln x +x 2 C.⎝⎛⎭⎫2sin x x 2′=2x cos x +4sin x x 3 D .(2x +cos x )′=2x ln 2-sin x(2)已知函数f (x )的导函数为f ′(x ),且满足f (x )=x 3+x 2f ′(1)+2x -1,则f ′(2)等于( ) A .1 B .-9 C .-6 D .4听课记录:______________________________________________________________ ________________________________________________________________________ 思维升华 (1)求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.(2)抽象函数求导,恰当赋值是关键,然后活用方程思想求解. (3)复合函数求导,应由外到内逐层求导,必要时要进行换元. 跟踪训练1 (1)(多选)下列求导运算正确的是( ) A .若f (x )=sin(2x +3),则f ′(x )=2cos(2x +3) B .若f (x )=e-2x +1,则f ′(x )=e-2x +1C .若f (x )=xe x ,则f ′(x )=1-x e xD .若f (x )=x ln x ,则f ′(x )=ln x +1(2)函数f (x )的导函数为f ′(x ),若f (x )=x 2+f ′⎝⎛⎭⎫π3sin x ,则f ⎝⎛⎭⎫π6= . 题型二 导数的几何意义 命题点1 求切线方程例2 (1)(2023·大同模拟)已知函数f (x )=2e 2ln x +x 2,则曲线y =f (x )在点(e ,f (e))处的切线方程为( )A .4e x -y +e 2=0B .4e x -y -e 2=0C .4e x +y +e 2=0D .4e x +y -e 2=0(2)(2022·新高考全国Ⅱ)曲线y =ln|x |过坐标原点的两条切线的方程为__________,____________.命题点2 求参数的值(范围)例3 (1)(2022·重庆模拟)已知a 为非零实数,直线y =x +1与曲线y =a ln(x +1)相切,则a =________.(2)(2022·新高考全国Ⅰ)若曲线y =(x +a )e x 有两条过坐标原点的切线,则a 的取值范围是 .听课记录:______________________________________________________________ ________________________________________________________________________ 思维升华 (1)处理与切线有关的问题,关键是根据曲线、切线、切点的三个关系列出参数的方程:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上. (2)注意区分“在点P 处的切线”与“过点P 的切线”.跟踪训练2 (1)曲线f (x )=x 2+x -2e x 在(0,f (0))处的切线方程为( )A .y =3x -2B .y =3x +2C .y =-3x -2D .y =-3x +2(2)(2023·泸州模拟)已知曲线y =a cos x x 在点⎝⎛⎭⎫π,-a π处的切线方程为y =2π2x +b ,则a 的值是( )A.4π B .-2 C .-4π D .2 题型三 两曲线的公切线例4 (1)若直线l :y =kx +b (k >1)为曲线f (x )=e x -1与曲线g (x )=eln x 的公切线,则l 的纵截距b 等于( )A .0B .1C .eD .-e(2)(2023·晋中模拟)若两曲线y =ln x -1与y =ax 2存在公切线,则正实数a 的取值范围是( ) A .(0,2e] B.⎣⎡⎭⎫12e -3,+∞ C.⎝⎛⎦⎤0,12e -3 D .[2e ,+∞)听课记录:______________________________________________________________ ________________________________________________________________________ 思维升华 公切线问题,应根据两个函数在切点处的斜率相等,且切点既在切线上又在曲线上,列出有关切点横坐标的方程组,通过解方程组求解.或者分别求出两函数的切线,利用两切线重合列方程组求解.跟踪训练3 (1)已知定义在(0,+∞)上的函数f (x )=x 2-m ,h (x )=6ln x -4x ,设两曲线y =f (x )与y =h (x )在公共点处的切线相同,则m 等于( ) A .-3 B .1 C .3 D .5(2)已知f (x )=e x -1,g (x )=ln x +1,则f (x )与g (x )的公切线有( ) A .0条 B .1条 C .2条 D .3条。

高中数学导数的定义

高中数学导数的定义

高中数学导数的定义
高中数学导数的定义:
1、什么是导数
高中数学导数是一种数学的概念,它旨在检验函数的变化趋势。

对函
数f(x),它的导数f'(x)是指函数f(x)的变化率,即随着变量x
的变化,函数的变化的趋势成为函数f'(x)的变化。

2.定义
高中数学中导数的公式定义是:如果函数f(x)在极限$x_0$处有定义,则它的极限$\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}$,若此极限
存在,则称此极限为函数f(x)在x处的导数,记做f'(x_0).
3.应用
高中数学导数在数学中有很多应用,如通过导数研究函数的斜率、切
线和单调性等,及函数最值,还可用来求解微分方程等。

4.常用公式
(1)求一阶导数的公式:$\frac{dy}{dx}=\frac{f(x+h)-f(x)}{h}$;
(2)求二阶导数的公式:$\frac{d^2y}{dx^2}=\frac{f''(x)=\frac{f(x+h)-2f(x)+f(x-h)}{h^2}}$;
(3)链式律:$\frac{d}{dx}[f(g(x))]=f'(g(x))g'(x)$.
5.性质
高中数学导数也有一些性质,如可加法性质和乘法性质:
(1)可加法性质:$\frac{d}{dx}(f(x)+g(x))
=\frac{df}{dx}+\frac{dg}{dx}$;
(2)可乘法性质:$\frac{d}{dx}(f(x)g(x))
=f(x)\frac{dg}{dx}+g(x)\frac{df}{dx}$。

完整版)高中数学导数知识点归纳总结

完整版)高中数学导数知识点归纳总结

完整版)高中数学导数知识点归纳总结导数的定义:对于函数y=f(x),在点x处的导数f'(x)定义为:f'(x)=\lim_{\Delta x\to 0}\frac{\Delta y}{\Deltax}=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}其中,$\Delta x$表示自变量的增量,$\Delta y$表示函数值的增量。

函数的连续性和可导性的关系:如果函数y=f(x)在点x处可导,则它在该点处必然连续。

但是,反过来并不成立,即函数在某点处连续并不一定可导。

导数的几何意义:函数y=f(x)在点x处的导数f'(x)表示曲线在该点处的切线的斜率。

因此,切线方程为:y-y_0=f'(x_0)(x-x_0)其中,$y_0=f(x_0)$表示曲线在点$(x_0,y_0)$处的纵坐标。

导数的四则运算法则:对于任意可导函数f(x)和g(x),有以下四则运算法则:1.$(f+g)'(x)=f'(x)+g'(x)$2.$(f-g)'(x)=f'(x)-g'(x)$3.$(fg)'(x)=f'(x)g(x)+f(x)g'(x)$4.$\left(\frac{f}{g}\right)'(x)=\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}$其中,除法的分母$g(x)$不能为0.导数的应用:导数可以用来求函数的单调性、极值和最值。

函数单调递增的条件是导数大于0,函数单调递减的条件是导数小于0.函数在极值点处的导数为0,但反之不一定成立。

函数的最值可以通过求导数来确定。

注①:若点x是可导函数f(x)的极值点,则f'(x)=0.但反过来不一定成立。

对于可导函数,其一点x是极值点的必要条件是若函数在该点可导,则导数值为零。

高中数学导数知识点归纳总结

高中数学导数知识点归纳总结

高中导数知识点归纳一、根本概念1. 导数的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值x x f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限xx f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数。

()f x 在点0x 处的导数记作xx f x x f x f y x x x ∆-∆+='='→∆=)()(lim )(00000 2 导数的几何意义:〔求函数在某点处的切线方程〕函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-3.根本常见函数的导数:①0;C '=〔C 为常数〕 ②()1;n n x nx-'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '= ⑥()ln x x a a a '=;⑦()1ln x x '=; ⑧()1l g log a a o x e x'=. 二、导数的运算1.导数的四则运算:法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦常数与函数的积的导数等于常数乘以函数的导数: ).())((''x Cf x Cf =(C 为常数)法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学导数的概念及其意义
导数(Derivative)概念及意义
一、导数的定义
1、导数的定义
导数是一种描述曲线的变化率的度量,它表示的是做一个变量的变化
的大小和另一个变量的变化的方向以及变化的变化率之间的关系。

2、导数的计算公式
导数的计算公式为:y’=limΔx→0 (f(x+Δx)-f(x))/Δx,其中f(x)表示函数,Δx表示x在很小的量度上的变动值。

3、导数的形式表示
导数的形式有两种:一种是函数的图象,用斜率来表示;另一种是用
函数的微分式表示。

二、导数的意义
1、导数的实际意义
导数的实际意义是曲线某一点上的斜率,它表示曲线在该点处的变化率,也就是曲线在该点处的微小位移对应的函数值的变化率。

2、导数的数学意义
数学意义上,导数是一种尺度,也是一种衡量函数变化率的标准,它可以实现曲线的斜率变化规律,从而发现函数的性质,如果曲线的斜率变化率是恒定的,就可以称这种曲线为等差线。

3、导数的应用
导数的应用非常广泛,目前主要在图形科学、机器学习、控制理论和金融计算等领域。

相关文档
最新文档