第一节 函数及其表示
高中数学必修一 第1讲函数及其表示
第4讲 函数及其表示基础梳理1.函数的基本概念(1)函数的定义:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么称f :A →B 为从集合A 到集合B 的一个函数,记作:y =f (x ),x ∈A .(2)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫自变量,x 的取值范围A 叫做定义域,与x 的值对应的y 值叫函数值,函数值的集合{f (x )|x ∈A }叫值域.值域是集合B 的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据.2.函数的三种表示方法 表示函数的常用方法有:解析法、列表法、图象法.3.映射的概念一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.两个防范(1)解决函数问题,必须树立优先考虑函数的定义域的良好习惯.(2)用换元法解题时,应注意换元后变量的范围.考向一 相等函数的判断【例1】下列函数中哪个与函数)0(≥=x x y 是同一个函数( )A y =( x )2B y=x x 2C 33x y =D y=2x 【例2】x x y 2=与⎩⎨⎧-∞∈-+∞∈=).0,(,);,0(,)(t t t t x f 是相同的函数吗? 考向二 求函数的定义域高中阶段所有基本初等函数求定义域应注意:(1)分式函数中分母不为0;(2)开偶次方时,被开方数大于等于0;(3)对数函数的真数大于0(如果底数含自变量,则底数大于0且不为1);(4)0次幂的底数不为0。
(5)正切函数2ππ+≠k x【例1】►求函数x x x x f -+--=4lg 32)(的定义域。
第一章 函数
第一讲函数及其表示知识梳理考点一 函数定义域一、 具体函数的定义域例1、(2015•湖北)函数()256lg 3x x f x x -+=+-的定义域为( )A .()2,3B .(]24,C .()(]23,3,4 D .()(]136-,3,例2、(2019•江苏)函数y =的定义域是 .例3、已知函数函数()1lg 4f x x ⎛⎫=- ⎪⎝⎭的定义域_______________.变式练习1. (山东)函数()f x =的定义域为( )A .()0,2B .(]02,C .()2+∞,D .[)2+∞,2. (2018秋•宜昌期中)函数()012f x x ⎛⎫=- ⎪⎝⎭的定义域为( )A .B .[)2+-∞,C .112+22⎡⎫⎛⎫-∞⎪ ⎪⎢⎣⎭⎝⎭,,D .1+2⎛⎫∞⎪⎝⎭,3. (2020•广东学业考试)函数()f x =的定义域是( )A .4+3⎛⎫∞ ⎪⎝⎭,B .53⎛⎫∞ ⎪⎝⎭-,C .4533⎛⎫ ⎪⎝⎭,D .4533⎛⎤⎥⎝⎦,4. (2013•山东)函数()f x =的定义域为( )A .(]30-,B .(]31-,C .(](]33-∞--,,0 D .()(]3-∞-,-3,15. (2017•深圳一模)函数y = )A .()2-,1B .[]2-,1C .()01,D .(]01,6. 已知函数()()lg tan 1f x x =-则()f x 的定义域是________________.二、 抽象函数定义域例1、(2019•西湖区校级模拟)已知函数()f x 的定义域为()11-,,则 函数()()11g x f f x x ⎛⎫=-- ⎪⎝⎭的定义域为( )A .()1,2B .()0,2C .()01,D .()11-,例2、(2019秋•辛集市校级月考)已知函数()21f x -的定义域为()0,1,则函数()13f x - 的定义域是( ) A .112⎛⎫⎪⎝⎭,B .103⎛⎫ ⎪⎝⎭,C .()11-,D .203⎛⎫⎪⎝⎭,例3、(2019秋•景德镇期中)若函数()y f x =的定义域为[]11-,,则()||1y f x =-的 定义域为( )A .[]11-,B .[]10-,C .[]01,D .[]22-,例4、已知()f x 是定义域在[)1+-∞,上的单调增函数,则不等式()222x x f e f -⎛⎫≥- ⎪⎝⎭ 的解集是_________. 变式练习1. (2019秋•崂山区校级期中)已知函数()y f x =的定义域为[]6-,1, 则函数()()212f xg x x +=+的定义域是( )A .()(]22-∞--,,3B .(]11-,3C .722⎡⎤--⎢⎥⎣⎦,D .[﹣,﹣2)(]2-,2. 已知函数()24y f x =-的定义域是[]15-,,则函数2x f ⎛⎫⎪⎝⎭的定义域是______________.3. 函数)1(+x f 的定义域[)32,-∈x ,求)21(+xf 的定义域.4. 设函数()2342||xf x e x +=-++,则不等式()()253f x f x -<-成立的x 的 取值范围是__________________.5. (2019秋•河南月考)已知函数f (x )的定义域是[]1,4,则函数()2()1x f g x x =-的定义域为( )A .[)(]01,1,2B .()0,2C .[]0,2D .()()0112,,6. (2019秋•城关区校级期中)已知函数()1f x +的定义域为[]21-,,则 函数()()122g x f x x =+--的定义域为( ) A .[]1,4 B .[]03, C .[)(]12,2,4 D .[)(]123,2,三、已知函数定义域求参例1、函数25lg 4y kx kx ⎛⎫=++ ⎪⎝⎭的定义域为R ,则实数k 的取值范围是 .例2、已知函数y =[]3-,6,求实数a b ,的值.例3、已知函数()2f x ax bx =+是定义在[]1a a -,2上的偶函数,那么a b +的值是例4、已知()f x 是定义在()4-,4上的奇函数,它在定义域内单调递减,若a 满足()()1230f a f a -+-<.求a 的取值范围.变式练习1. 已知函数()2log 21a y ax x =++.(1)若此函数的定义域为R ,求a 的取值范围;(2)若此函数的定义域为(()22+-∞-+∞,,求a 的值.2. 已知函数()f x =(Ⅰ)若()f x 的定义域为R ,试求a 的取值范围.(Ⅱ)若()f x 在[]2,3上有意义,试求a 的取值范围.3. 已知函数()22lg1a xy x a -=-+的定义域为集合A ,若4A ∉,则实数a 的取值集合是 .4. 已知()f x 是偶函数,且()f x 在[)0+∞,上是增函数,如果()()12f ax f x +≤-在112x ⎡⎤∈⎢⎥⎣⎦,上恒成立,则实数a 的取值范围是_________________.考点二 抽象函数的解析式例1、 已知()y f x =是一次函数,且有()1615f f x x =-⎡⎤⎣⎦,则()f x 的解析式为 .例2、已知函数)14fx =-,则()f x 的解析式为 .例3、已知函数22113f x x x x ⎛⎫+=++ ⎪⎝⎭,求()f x 的解析式,及 ()3f 及()2f 的值.变式练习1. (1)已知()f x 是一次函数,且()94f f x x =+⎡⎤⎣⎦,求()f x 的解析式.(2)已知()f x 为二次函数,且()02f =,()()11f x f x x +-=-,求()f x .2. 若)1fx =+()f x 的解析式为( )A .()2f x x x =-B .()()20f x x x x =-≥C .()()21f x x x x =-≥D .()2f x x x =+3. 已知()2211x f x x -=+,则()f x 的解析式为( )A .()21x f x x =+B .()221xf x x=-+ C .()221xf x x =+ D .()21xf x x =-+4. 若)1f x =+则()3f = ;()f x = .5. 已知函数()1221x f x x -=-+,则()f x =( ) A .2x +1﹣2x ﹣1B .2x +1﹣2x +1C .2x ﹣1﹣2x +1 D .2x ﹣1﹣2x ﹣16. 若函数()f x 对于任意实数x 恒有()()231f x f x x --=-,则()f x 等于( ) A .1x +B .1x -C .21x +D .33x +考点三 分段函数一、 求函数值例1、(2015•新课标Ⅱ)设函数()()211log 2121x x x f x x -⎧+-<⎪=⎨≥⎪⎩,,,则()()22log 12f f -+=( )A .3B .6C .9D .12例2、(2020•汉中二模)设()[]210(6)10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,,,则()5f 的值为( )A .10B .11C .12D .13例3、已知()()sin 023202x x f x f x x π⎧≤⎪⎪=⎨⎪-+>⎪⎩,,,则53f ⎛⎫⎪⎝⎭的值为 . 变式练习1. (2017秋•抚顺期末)若()()()200x x f x x x ⎧≥⎪=⎨-<⎪⎩,,,则()2f f -=⎡⎤⎣⎦( )A .2B .3C .4D .52.(2019•西湖区校级模拟)已知函数()()()3log 020x x x f x x >⎧⎪=⎨≤⎪⎩,,,则19f f ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦的值为 .3.(2017春•普宁市校级月考)已知()()sin 08520x x f x f x x π⎧≥⎪=⎨⎪++<⎩,,则()2016f -的值为( )A .810B .809C .808D .8064.(2019•深圳模拟)已知函数()()22log 0log 0x x a x x f x a x x ⎧>⎪=⎨+-<⎪⎩,,()01a a >≠且,若()()21224f f +-=,则a =二、求参数或自变量的值或范围例1、(2019•全国)已知()2200x x f x x x <⎧=⎨≥⎩,,,若()()20f a f +-=,则a = .例2、(2018·全国卷Ⅰ)设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]-∞,-1B .()0+∞,C .()10-,D .()0-∞,例3、(2017·全国卷Ⅲ)设函数f (x )=()+1020x x x f x x ≤⎧=⎨>⎩,,则满足()1+12f x fx ⎛⎫-> ⎪⎝⎭的x 的 取值范围是________.例4、(上海)设()()201x a x f x x a x x ⎧-≤⎪=⎨++>⎪⎩,,,若()0f 是()f x 的最小值,则a 的 取值范围为( )A .[]1-,2B .[]10-,C .[]12,D .[]02,变式练习1. (2019•佛山模拟)已知函数()()2cos f n n n π=,且()()1n a f n f n =++,则123100=a a a a +++⋅⋅⋅+( ) A .0B .100C .100-D .102002. (江苏)已知函数()21010x x f x x ⎧+≥=⎨<⎩,,,则满足不等式()()212f x f x ->的x 的范围是 .3. (2018秋•苏州期末)已知函数()2211222x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,,,,若()3f x =,则x = .4. (2018秋•罗湖区校级月考)若函数()1sin x af x x x x a ⎧-<⎪=⎨⎪≥⎩,,,的值域是[]1-,1,则实数a 的取值范围是( )A .2π⎛⎤-∞- ⎥⎝⎦,B .(]1-∞-,C .[11]-,D .(][)11+-∞-∞,,家庭作业1. (2020•郑州二模)设函数y =A ,函数()ln 3y x =-的定义域为B ,则AB =( )A .()3-∞,B .()83--,C .{}3D .[)-3,3 2. 函数f (x )的定义域为12⎛⎫⎪⎝⎭,3,则()lg 1f x +的定义域为( )A .()0+∞,B .12⎛⎫⎪⎝⎭,3C .1100100⎛⎫ ⎪⎝⎭,D.100⎫⎪⎪⎝⎭3. 已知函数()f x 满足()()1120f f x x x x x⎛⎫+-=≠ ⎪⎝⎭,则()2f -=( )A .72-B .92C .72 D .92-4. (2015•新课标Ⅰ)函数()()12221log 11x x f x x x -⎧-≤⎪=⎨-+>⎪⎩,,,且()3f a =-,则()6f a -=( )A .74-B .54-C .34-D .14-5. (2020•焦作一模)已知函数()1212log 18212x x x f x x ⎧+≤<⎪=⎨⎪≤≤⎩,,.若()()()f a f b a b =<,则ab 的最小值为( ) AB .12CD6.已知函数()()2lg 3f x mx mx m =--+的定义域为R ,则实数m 的取值范围为 .7.(江苏)已知函数()21010x x f x x ⎧+≥=⎨<⎩,,,则满足不等式()()212f x f x ->的x 的范围是 .8.(2017春•双辽市校级月考)已知函数()()()()2211222x x f x x x xx +≤-⎧⎪=-<<⎨⎪≥⎩ (1)在坐标系中作出函数的图象; (2)若()12f a =,求a 的取值集合.第二讲 单调性考点梳理考点一:单调函数的定义自左向右看图象是上升的自左向右看图象是下降的考点二:复合函数单调性形如()()x g f y =类的函数叫做复合函数同增异减:“同增”指内层函数和外层函数单调性相同时,整体为单调递增函数;“异减”指内层函数和外层函数单调性不同时,整体为单调递减函数. (1)当()0≠x f 时,函数()x f 和()x f 1单调性相反; (2)当()x f 非负时,函数()x f 和()x f 单调性相同.考点三:单调性的性质1.增+增=增,增-减=增,减+减=减,减-增=减2.()()x f k x g ⋅=,当0>k 时,()()x g x f ,单调性相同;当0<k 时,()()x g x f ,单调性相反3.奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点的区间上单调性相反题型一.判断单调性例1、 下列函数()x f 中,满足“对任意()0,,21∞-∈x x ,当21x x <时,都有()()21x f x f <”的是( )A .()x x f 24-=B .()21-=x x f C .()222--=x x x f D .()x x f -=例2、已知四个函数的图象如图所示,其中在定义域内具有单调性的函数是( )A .B .C .D .例3、性质①()()R x x f x f ∈=-,;②在()∞+,0对任意()2121,x x x x ≠,都有()()()[]02121<--x f x f x x .下列函数中,性质①②均满足的是( )A .13+-=x y B .⎪⎩⎪⎨⎧<--≥+--=0,10,122x x x x x x yC .114-=x y D .()x x x y -+=1lg2变式训练1.下列函数既是偶函数,又在()∞+,0上为减函数的是( ) A.1-=x y B .xy 1ln= C .xxy --=22 D .⎪⎩⎪⎨⎧<->+=0,20,222x x x x x x y2.设函数()x f y =在R 上为增函数,则下列结论一定正确的是( ) A .()x f y 1=在R 上为减函数 B .()x f y =在R 上为增函数 C .()[]2x f y =在R 上为增函数 D .()x f y -=在R 上为减函数题型二.求单调区间例1、画出下列函数的图像,并写出其单调区间.① ()21+-=x x f ; ②()2.-=x x x f ; ③()⎩⎨⎧>+-≤+=0,220,12x x x x x f例2、设函数()⎪⎩⎪⎨⎧><++-≤≤-=20,1220,12x x x x x x x f 或则函数()x f 的单调递增区间为( )A .()()2,1,0,∞-B .()()2110,,,C .(][]1,0,0,∞-D .()()2,1,0,∞-变式训练1.如果函数()x f y =在区间I 上是增函数,且函数()xx f y =在区间I 上是减函数,那么称函数()x f y =是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数()542+-=x x x f 是区间I上的“缓增函数”,则“缓增区间”I 为( )A .[)∞+,2 B .[]52, C .[]50, D .[]20,2.函数()R x x f y ∈=,的图象如图所示,则函数()()x f x g ln -=的单调减区间是( )A .⎥⎦⎤ ⎝⎛e 10,B .⎥⎦⎤⎢⎣⎡1,1e C .[)∞+,1 D .⎥⎦⎤⎝⎛e 10,和[)∞+,1题型三.单调性的运用应用(一) 比较函数值或自变量的大小例1、已知函数()x f 的图象关于直线1=x 对称,当112>>x x 时,()()[]()01212<--x x x f x f 恒成立,设()()e f c f b f a ==⎪⎭⎫⎝⎛-=,2,21,则c b a ,,的大小关系为( ) A .b a c >> B .a b c >> C .b c a >>D .c a b >>2、已知函数()x x x f 2sin -=,且()3.022,31log ,23ln f c f b f a =⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=,则以下结论正确的是( ) A .b a c >> B .b c a >> C .c b a >> D .c a b >>变式训练1.定义在R 上的函数()x f 满足:①()1-=x f y 的图象关于直线1=x 对称;②对任意的(]0,,21∞-∈x x ,当21x x ≠时,不等式()()02121>--x x x f x f 成立。
第1讲 函数及其表示
上一页
返回导航下一页来自第二章 函数概念与基本初等函数
24
(3)(解方程组法)因为 2f(x)+f(-x)=2x,① 将 x 换成-x 得 2f(-x)+f(x)=-2x,② 由①②消去 f(-x),得 3f(x)=6x, 所以 f(x)=2x. 【答案】 (1)f(x)=lgx-2 1(x>1) (2)f(x)=x2-x+3 (3)f(x)=2x
上一页
返回导航
下一页
第二章 函数概念与基本初等函数
7
二、教材衍化 1.下列四个图形中,不是以 x 为自变量的函数的图象是( )
答案:C
上一页
返回导航
下一页
第二章 函数概念与基本初等函数
8
2.下列哪个函数与 y=x 相等 A.y=xx2
C.y= x2 答案:D
() B.y=2log2x D.y=(3 x)3
上一页
返回导航
下一页
第二章 函数概念与基本初等函数
13
函数的定义域(多维探究) 角度一 求函数的定义域
(2020·陕西汉中一模)函数 f(x)= 4-1 x2+ln(2x+1)的定义域为
A.-12,2 C.-12,2
B.-12,2 D.-12,2
【解析】 由题意可得 mx2+mx+1≥0 对 x∈R 恒成立. 当 m=0 时,1≥0 恒成立;
当 m≠0 时,则mΔ>=0,m2-4m≤0,
解得 0<m≤4. 综上可得 0≤m≤4. 【答案】 [0,4]
上一页
返回导航
下一页
第二章 函数概念与基本初等函数
18
已知函数定义域求参数取值范围,通常是根据已知的定义域将问题转化为方程或不等式 恒成立的问题,然后求得参数的值或范围.
2-1第一节 函数及其表示(2015年高考总复习)
变式思考 ( )
1
(1)下列各组函数中,表示同一个函数的是
x2-1 A.y= 与y=x+1 x-1 1 2 B.y=lgx与y=2lgx C.y= x2-1与y=x-1 D.y=x与y=logaax(a>0且a≠1)
(2)在下列图象中,表示y是x的函数图象的是________.
解析
(1)选项A,B中,定义域不同,选项C中,对应法则不
(2)在平面直角坐标系中画出函数f(x)的图象如右图,令f(x1)= f(x2)=f(x3)=a,则由题意知f(x)=a有三个不相等的实根x1,x2, x3,即函数f(x)的图象与直线y=a的图象有三个交点,由图象可以 看出,只有当2<a<4时,两个图象才有三个交点.这时不妨设 x1<x2<x3,则一定有x2+x3=4,且-1<x1<0,于是3<x1+x2+ x3<4,即x1+x2+x3的取值范围是(3,4).
变式思考 3 ( ) A.4 C.-4
(1)已知函数f(x)=
log3x,x>0, x 2 ,x≤0,
1 则f(f( 9 ))=
1 B.4 1 D.-4
x 3 ,x≤1, (2)已知函数f(x)= -x,x>1,
若f(x)=2,则x=________.
解析
1 1 (1)由题意得f( )=log3 =-2, 9 9
同,只有选项D中的两个函数的三要素相同.故选D. (2)由函数定义可知,自变量x对应唯一的y值,所以③④错 误,①②正确.
答案
(1)D
(2)①②
题型二 【例2】
求函数的解析式
2 (1)已知f( +1)=lgx,求f(x); x
(2)已知f(x)是二次函数且f(0)=2,f(x+1)-f(x)=x-1,求 f(x); 1 (3)已知f(x)+2f(x )=x(x≠0),求f(x).
高考一轮复习教案函数及其表示
第一节函数及其表示1.函数的概念及其表示(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.2.分段函数及其应用了解简单的分段函数,并能简单应用.知识点一函数与映射的概念函数映射两集合A,B设A、B是两个非空的数集设A、B是两个非空的集合对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称f:A→B为从集合A到集合B的一个映射易误提醒易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A到B的一个映射,A、B若不是数集,则这个映射便不是函数.[自测练习]1.下列图形可以表示函数y=f(x)图象的是()知识点二函数的有关概念1.函数的定义域、值域(1)在函数y=f(x),x∈A中,自变量x的取值范围(数集A)叫作函数的定义域;函数值的集合{f(x)|x∈A}叫作函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.2.函数的表示方法表示函数的常用方法有解析法、图象法和列表法.3.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.易误提醒(1)解决函数的一些问题时,易忽视“定义域优先”的原则.(2)误把分段函数理解为几个函数组成.必备方法求函数解析式的四种常用方法(1)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法;函数的实际应用问题多用此法;(3)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围;(4)解方程组法:已知关于f(x)与f或f(-x)的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).[自测练习]2.(2016·贵阳期末)函数f(x)=log2(x+1)的定义域为()A.(0,+∞)B.[-1,+∞)C.(-1,+∞)D.(1,+∞)3.f(x)与g(x)表示同一函数的是()A.f(x)=与g(x)=·B.f(x)=x与g(x)=C.y=x与y=()2D.f(x)=与g(x)=4.若函数f(x)=则f(f(2))=()A.-1B.2C.1D.0考点一函数的定义域问题|函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,归纳起来常见的命题探究角度有:1.求给定函数解析式的定义域;2.已知f(x)的定义域,求f(g(x))的定义域;3.已知定义域确定参数问题.探究一求给定解析式的定义域1.(2015·江西重点中学一联)函数f(x)=+lg(3-x)的定义域是()A.(3,+∞)B.(2,3)C.[2,3)D.(2,+∞)探究二已知f(x)的定义域,求f(g(x))的定义域2.若函数y=f(x)的定义域是[0,3],则函数g(x)=的定义域是()A.[0,1) B.[0,1]C.[0,1)∪(1,9] D.(0,1)探究三已知定义域求参数范围问题3.若函数f(x)=的定义域为R,则a的取值范围为________.函数定义域的三种类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解.(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知函数f(x)的定义域为[a,b],则函数f(g(x))的定义域由不等式a≤g(x)≤b求出.考点二函数解析式的求法|(1)已知f(1-cos x)=sin2x,求f(x)的解析式;(2)已知f(x)是二次函数且f(0)=2,f(x+1)-f(x)=x-1,求f(x)的解析式;(3)已知f(x)+2f=x(x≠0),求f(x)的解析式.函数解析式求法中的一个注意点利用换元法求解析式后易忽视函数的定义域,即换元字母的范围.求下列函数的解析式:(1)已知f=lg x,求f(x);(2)2f(x)-f(-x)=lg(x+1),求f(x).考点三分段函数|1.(2015·高考全国卷Ⅰ)已知函数f(x)=且f(a)=-3,则f(6-a)=()A.-B.-C.-D.-2.(2015·高考全国卷Ⅱ)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点.点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()分段函数“两种”题型的求解策略(1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.(2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.3.分段函数的定义理解不清致误【典例】已知实数a≠0,函数f(x)=若f(1-a)=f(1+a),则a的值为________.[易误点评]本题易出现的错误主要有两个方面:(1)误以为1-a<1,1+a>1,没有对a进行讨论直接代入求解.(2)求解过程中忘记检验所求结果是否符合要求而致误.[防范措施](1)对于分段函数的求值问题,若自变量的取值范围不确定,应分情况求解.(2)检验所求自变量的值或范围是否符合题意求解过程中,求出的参数的值或范围并不一定符合题意,因此要检验结果是否符合要求.[跟踪练习]设函数f(x)=若f(a)+f(-1)=2,则a=()A.-3B.±3C.-1D.±1A组考点能力演练1.(2015·高考陕西卷)设f(x)=则f[f(-2)]=()A.-1 B.C.D.2.(2015·北京朝阳模拟)函数f(x)=+的定义域为()A.[0,+∞)B.(1,+∞)C.[0,1)∪(1,+∞)D.[0,1)3.已知函数f(x)的定义域为(-∞,+∞),如果f(x+2014)=,那么f·f(-7986)=()A.2014B.4C. D.4.(2016·岳阳质检)设函数f(x)=lg,则f+f的定义域为()A.(-9,0)∪(0,9)B.(-9,-1)∪(1,9)C.(-3,-1)∪(1,3)D.(-9,-3)∪(3,9)5.若函数f(x)=的定义域为实数集R,则实数a的取值范围为()A.(-2,2)B.(-∞,-2)∪(2,+∞)C.(-∞,-2]∪[2,+∞)D.[-2,2]6.(2015·陕西二模)若函数f(x)=,则f(f(-99))=________.7.函数y=f(x)的定义域为[-2,4],则函数g(x)=f(x)+f(-x)的定义域为________.8.具有性质:f=-f(x)的函数,我们称为满足“倒负”变换的函数.下列函数:①y=x-;②y=x+;③y=其中满足“倒负”变换的函数是________.9.已知f(x)=x2-1,g(x)=(1)求f(g(2))和g(f(2))的值;(2)求f(g(x))的解析式.10.动点P从单位正方形ABCD的顶点A出发,顺次经过B,C,D绕边界一周,当x 表示点P的行程,y表示P A的长时,求y关于x的解析式,并求f的值.B组高考题型专练1.(2014·高考山东卷)函数f(x)=的定义域为()A.(0,2)B.(0,2]C.(2,+∞)D.[2,+∞)2.(2015·高考湖北卷)函数f(x)=+lg的定义域为()A.(2,3)B.(2,4]C.(2,3)∪(3,4]D.(-1,3)∪(3,6]3.(2015·高考山东卷)设函数f(x)=若f=4,则b=()A.1 B.C. D.4.(2015·高考浙江卷)存在函数f(x)满足:对于任意x∈R都有()A.f(sin2x)=sin x B.f(sin2x)=x2+xC.f(x2+1)=|x+1|D.f(x2+2x)=|x+1|5.(2014·高考四川卷)设f(x)是定义在R上的周期为2的函数,当x∈[-1,1)时,f(x)=则f=________.答案:1.解析:本题考查函数的概念,根据函数的概念,定义域中一个x只能对应一个y,所以排除A,B,C,故选D.2.解析:由x+1>0知x>-1,故选C.答案:C3.解析:选项A,C中的函数定义域不同,选项D的函数解析式不同,只有选项B正确.4.解析:本题考查分段函数、复合函数的求值.由已知条件可知,f(2)=log2=-1,所以f(f(2))=f(-1)=(-1)2+1=2,故选B.答案:B1.解析:本题考查函数的定义域.由题意得解得2<x<3,故选B.答案:B2.解析:依题意得即0≤x<1,因此函数g(x)的定义域是[0,1),故选A..解析:函数f(x)的定义域为R,所以2x2+2ax-a-1≥0对x∈R恒成立,即2x2+2ax-a≥1,x2+2ax-a≥0恒成立,因此有Δ=(2a)2+4a≤0,解得-1≤a≤0.答案:[-1,0] 例1[解](1)f(1-cos x)=sin2x=1-cos2x,令t=1-cos x,则cos x=1-t,t∈[0,2],∴f(t)=1-(1-t)2=2t-t2,t∈[0,2],即f(x)=2x-x2,x∈[0,2].(2)设f(x)=ax2+bx+c(a≠0),由f(0)=2,得c=2,f(x+1)-f(x)=a(x+1)2+b(x+1)-ax2-bx=x-1,即2ax+a+b=x-1,∴即∴f(x)=x2-x+2.(3)∵f(x)+2f=x,∴f+2f(x)=.解方程组得f(x)=-(x≠0).变式1解:(1)令t=+1,则x=,∴f(t)=lg,即f(x)=lg(x>1).(2)∵2f(x)-f(-x)=lg(x+1),∴2f(-x)-f(x)=lg(1-x).解方程组得f(x)=lg(x+1)+lg(1-x)(-1<x<1).1.解析:因为f(x)=f(a)=-3,所以或解得a=7,所以f(6-a)=f(-1)=2-1-1-2=-,选A.答案:A2.解析:由于f(0)=2,f=1+,f=2<f,故排除选项C、D;当点P在BC上时,f(x)=BP+AP=tan x+,不难发现f(x)的图象是非线性的,排除选项A.故选B.答案:B1.[解析]当a>0时,1-a<1,1+a>1,由f(1-a)=f(1+a)可得2-2a+a=-1-a-2a,解得a=-,不合题意;当a<0时,1-a>1,1+a<1,由f(1-a)=f(1+a)可得-1+a-2a=2+2a+a,解得a=-.[答案]-变式解析:因为f(-1)==1,所以f(a)=1,当a≥0时,=1,所以a=1;当a<0时,=1,所以a=-1.故a=±1.答案:D1.解析:由f(-2)=2-2=,∴f[f(-2)]=f=1-=.答案:C2.解析:本题考查函数的定义域.根据函数有意义的条件建立不等式组.要使函数f(x)有意义,则解得x≥0且x≠1,即函数定义域是[0,1)∪(1,+∞),故选C.3.3.解析:f=sin=1,f(-7986)=f(2014-10000)=lg10000=4,则f·f(-7986)=4.答案:B4.解析:利用函数f(x)的定义域建立不等式组求解.要使函数f(x)有意义,则>0,解得-3<x<3.所以要使f+f有意义,则解得所以定义域为(-9,-1)∪(1,9),故选B.答案:B5.解析:函数的定义域为R等价于对?x∈R,x2+ax+1≥0,令f(x)=x2+ax+1,结合二次函数的图象(图略),只需Δ=a2-4≤0即可,解得实数a的取值范围为[-2,2],故选D.6.解析:f(-99)=1+99=100,所以f(f(-99))=f(100)=lg100=2.答案:27.解析:由题意知解得-2≤x≤2.答案:[-2,2]8.解析:对于①,f(x)=x-,f=-x=-f(x),满足题意;对于②,f=+=f(x)≠-f(x),不满足题意;对于③,f=即f=故f=-f(x),满足题意.答案:①③9.解:(1)由已知,g(2)=1,f(2)=3,∴f(g(2))=f(1)=0,g(f(2))=g(3)=2.(2)当x>0时,g(x)=x-1,故f(g(x))=(x-1)2-1=x2-2x;当x<0时,g(x)=2-x,故f(g(x))=(2-x)2-1=x2-4x+3;∴f(g(x))=10.解:当P点在AB上运动时,y=x(0≤x≤1);当P点在BC上运动时,y==(1<x≤2);当P点在CD上运动时,y==(2<x≤3);当P点在DA上运动时,y=4-x(3<x≤4);综上可知,y=f(x)=∴f=.B组高考题型专练1.解析:∵f(x)有意义,∴∴x>2,∴f(x)的定义域为(2,+∞).答案:C2.解析:依题意知,,即,即函数的定义域为(2,3)∪(3,4].答案:C3.解析:f=f=f.当-b<1,即b>时,3×-b=4,解得b=(舍).当-b≥1,即b≤时,2-b=4,解得b=.故选D.答案:D4.解析:本题主要考查函数的概念,即对于任一变量x有唯一的y与之相对应.对于A,当x=或时,sin2x均为1,而sin x与x2+x此时均有两个值,故A、B错误;对于C,当x =1或-1时,x2+1=2,而|x+1|有两个值,故C错误,故选D.答案:D5.解析:∵f(x)的周期为2,∴f=f=f.又∵当x∈[-1,0)时,f(x)=-4x2+2,∴f=-4×2+2=1.答案:1。
05 第二章 第一节 函数及其表示
课时质量评价
考向2 分段函数与方程、不等式
【例3】(1)已知函数f (x)=ቊ2x+x,1,x>x≤0,0.若f (a)+f (1)=0,则实数a的值等于(
)
√A.-3
B.-1
C.1
D.3
A 解析:f (1)=2×1=2,据此结合题意分类讨论:当a>0时,f (a)=2a,由f
(a)+f (1)=0,得2a+2=0,解得a=-1,不满足题意,舍去;当a≤0时,f (a)
B.{x|1<x<3}
C.{x|x<-3}
D.{x|x>3,或-3<x<1}
个函数
对应关系
y=f (x),x∈A
三要素
定义域 值域
__x_的取值范围 与x的值相对应的y的值的集合___{_f_(_x_)|_x_∈__A_}_____
第一节 函数及其表示
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
自查自测 知识点二 函数的表示方法 1.已知函数f(x)由下表给出,则f(3)=__3_.
A.[-5,5]
√B.
-
1 2
,2
C.[-2,3]
D.
1 2
,2
B 解析:因为函数y=f (x)的定义域是[-2,3],所以-2≤2x-1≤3,解得-
12≤x≤2,所以函数y=f
(2x-1)的定义域是
-
1 2
,2
.故选B.
第一节 函数及其表示
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
第一节 函数及其表示
必备知识 落实“四基”
核心考点 提升“四能”
第一节 函数及其表示
文数
课标版
第一节 函数及其表示
教材研读
栏目索引
1.函数与映射的概念
函数
映射
两集合A、B 设A、B是两个① 非空数集
设A、B是两个② 非空集合
对应关系f: 按照某种确定的对应关系f,使对于集合A A→B 中的③ 任意 一个数x,在集合B中都 有④ 唯一确定 的数f(x)与之对应
按某种确定的对应关系f,使对于集合A中的 ⑤ 任意 一个元素x,在集合B中都有 ⑥ 唯一确定 的元素y与之对应
后以x替代g(x),便得f(x)的解析式.
(3)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元
的取值范围.
(4)解方程组法:已知关于f(x)与f
1 x
或f(-x)的表达式,可根据已知条件再
构造出一个等式组成方程组,通过解方程组求出f(x).
栏目索引
2-1 定义在(-1,1)内的函数f(x)满足2f(x)-f(-x)=lg(x+1),求函数f(x)的表达
(3)∵2f(x)+f
1 x
=3x,
①
把①中的x换成
1 x
,得2f
1 x
+f(x)=
3 x
,
②
①×2-②,得3f(x)=6x- 3 ,
x
∴f(x)=2x- 1 (x≠0).
x
栏目索引
方法技巧
求函数解析式的常见方法
(1)待定系数法:若已知函数的类型(如一次函数、二次函数),则可用待
定系数法.
(2)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然
.
答案 (1)f(x)=2x+7 (2)f(x)=x2-1(x≥1)
超实用高考数学专题复习:第三章函数概念及基本初等函数Ⅰ第1节函数及其表示
诊断自测 1.判断下列说法的正误.
(1)函数y=1与y=x0是同一个函数.( ) (2)与x轴垂直的直线和一个函数的图象至多有一个交点.( ) (3)函数 y= x2+1-1 的值域是{y|y≥1}.( ) (4)若两个函数的定义域与值域相同,则这两个函数相等.( )
解析 (1)函数y=1的定义域为R,而y=x0的定义域为{x|x≠0},其定义域不同,故 不是同一函数. (3)由于 x2+1≥1,故 y= x2+1-1≥0,故函数 y= x2+1-1 的值域是{y|y≥0}.
解析 (1)令 x+1=t,则 x=(t-1)2(t≥1),代入原式得 f(t)=(t-1)2+2(t-1) =t2-1,所以 f(x)=x2-1(x≥1). (2)当-1≤x≤0 时,0≤x+1≤1,由已知 f(x)=12f(x+1)=-12x(x+1).
(3)当x∈(-1,1)时,有2f(x)-f(-x)=lg(x+1).① 将x换成-x,则-x换成x,得2f(-x)-f(x)=lg(-x+1).② 由①②消去 f(-x)得,f(x)=23lg(x+1)+13lg(1-x),x∈(-1,1). 答案 (1)x2-1(x≥1) (2)-12x(x+1) (3)23lg(x+1)+13lg(1-x),(-1<x<1)
(3)在 f(x)=2f1x· x-1 中,将 x 换成1x,则1x换成 x,得 f1x=2f(x)· 1x-1,
由f(x)=2f1x· x-1, f1x=2f(x)· 1x-1,
解得 f(x)=23 x+13.
答案
(1)-13
-1
2 (2)lgx-1(x>1)
2 (3)3
x+13
规律方法 求函数解析式的常用方法 (1)待定系数法:若已知函数的类型,可用待定系数法. (2)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值 范围. (3)构造法:已知关于 f(x)与 f1x或 f(-x)的表达式,可根据已知条件再构造出另外一 个等式,通过解方程组求出 f(x). (4)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以 x替代g(x),便得f(x)的表达式.
新课标2023版高考数学一轮总复习第2章函数第1节函数及其表示课件
常见函数类型的定义域 (1)分式中,分母不为 0. (2)偶次方根中,被开方数非负. (3)对于 y=x0,要求 x≠0,负指数的底数不为 0. (4)抽象函数定义域要注意对应法则下的取值范围. (5)对数式中,真数大于 0.
考向 1 分段函数求值 x2-4,x>2,
(1)(2021·浙江卷)已知 a∈R,函数 f(x)=|x-3|+a,x≤2. 若 f(f( 6))=3,则 a=__________.
x2+2x+2,x≤0, (2)设函数 f(x)=-x2,x>0. 若 f(f(a))=2,则 a=________.
AC 解析:对于 A,f(x)=x2-2x-1 的定义域为 R,g(s)=s2- 2s-1 的定义域为 R,定义域相同,对应关系也相同,是同一函数; 对于 B,f(x)= -x3=-x -x的定义域为{x|x≤0},g(x)=x -x的 定义域为{x|x≤0},对应关系不同,不是同一函数;对于 C,f(x)=xx= 1 的定义域为{x|x≠0},g(x)=x10=1 的定义域为{x|x≠0},定义域相同, 对应关系也相同,是同一函数;对于 D,f(x)=x 的定义域为 R,g(x) = x2=|x|的定义域为 R,对应关系不同,不是同一函数.故选 AC.
(√)
(5)函数 y=f(x)的图象可以是一条封闭的曲线.
(×)
2.(2021·安阳模拟)设集合 M={x|0≤x≤2},N={y|0≤y≤2}.下 面的 4 个图形中,能表示从集合 M 到集合 N 的函数关系的有( )
2函数学案
第二章 第一节 函数及其表示大纲要求:函数① 了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.② 在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.③ 了解简单的分段函数,并能简单应用(函数分段不超过三段).④ 理解函数的单调性、最大(小)值及其几何意义;了解函数奇偶性的含义. ⑤ 会运用函数的图像分析函数的性质.典例解析:[例1] 有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0表示同一函数;(2)函数y =f (x )的图象与直线x =1的交点最多有1个; (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;(4)若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________.[例2] (1)已知f ⎝⎛⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ).[例3] (2012·广州调研考试)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ∈(-∞,1),x 2,x ∈[1,+∞),若f (x )>4,则x 的取值范围是______.一、选择题1.已知a 、b 为实数,集合M ={ba ,1},N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .-1B .0C .1D .±12.已知函数f (x )对任意的x 、y ∈R 都有f (x +y )=f (x )+f (y ),且f (2)=4,则f (1)=( ) A .-2 B .1 C .0.5D .23.已知f :x →-sin x 是集合A (A ⊆[0,2π])到集合B ={0,12}的一个映射,则集合A 中的元素个数最多有( )A .4个B .5个C .6个D .7个4.定义x ⊗y =x 3-y ,则h ⊗(h ⊗h )=( ) A .-h B .0 C .hD .h 35.已知函数ƒ(x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0.若ƒ(a )+ƒ(1)=0,则实数a 的值等于( ) A .-3 B .-1 C .1D .36.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( ) A .x -1B .x +1C .2x +1D .3x +3二、填空题7.已知f (x -1x )=x 2+1x2,则函数f (3)=________.8.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,10x ,x ≤0,则f (f (-2))=________.9.设函数ƒ(x )=x 3cos x +1.若ƒ(a )=11,则ƒ(-a )=____. 三、解答题10.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.11.函数f (x )对一切实数x 、y 均有f (x +y )-f (y )=x (x +2y +1)成立,且f (1)=0, (1)求f (0)的值;(2)试确定函数f (x )的解析式.第二章 第二节 函数的定义域和值域大纲要求:1.常见基本初等函数的定义域 (1)分式函数中分母不等于零. (2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R. (4)y =a x ,y =sin x ,y =cos x ,定义域均为R. (5)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫xx ≠k π+π2,k ∈Z .(6)函数f (x )=x 0的定义域为{x |x ≠0}.(7)实际问题中的函数定义域,除了使函数的解析式有意义外,还要考虑实际问题对函数自变量的制约.2.基本初等函数的值域 (1)y =kx +b (k ≠0)的值域是R.(2)y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎩⎨⎧⎭⎬⎫yy ≥4ac -b24a ;当a <0时,值域为⎩⎨⎧⎭⎬⎫yy ≤4ac -b 24a . (3)y =kx (k ≠0)的值域是{y |y ≠0}.(4)y =a x (a >0且a ≠1)的值域是{y |y >0}. (5)y =log a x (a >0且a ≠1)的值域是R. (6)y =sin x ,y =cos x 的值域是[-1,1]. (7)y =tan x 的值域是R. 1.常见基本初等函数的定义域 (1)分式函数中分母不等于零. (2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R. (4)y =a x ,y =sin x ,y =cos x ,定义域均为R. (5)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫xx ≠k π+π2,k ∈Z .(6)函数f (x )=x 0的定义域为{x |x ≠0}.(7)实际问题中的函数定义域,除了使函数的解析式有意义外,还要考虑实际问题对函数自变量的制约.2.基本初等函数的值域 (1)y =kx +b (k ≠0)的值域是R.(2)y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎩⎨⎧⎭⎬⎫yy ≥4ac -b 24a ;当a <0时,值域为⎩⎨⎧⎭⎬⎫yy ≤4ac -b24a . (3)y =kx (k ≠0)的值域是{y |y ≠0}.(4)y =a x (a >0且a ≠1)的值域是{y |y >0}. (5)y =log a x (a >0且a ≠1)的值域是R. (6)y =sin x ,y =cos x 的值域是[-1,1]. (7)y =tan x 的值域是R.[例1] (1)(2012·大连模拟)求函数f (x )=lg (x 2-2x )9-x 2的定义域;(2)已知函数f (2x )的定义域是[-1,1],求f (x )的定义域. [例2] 求下列函数的值域. (1)y =x 2+2x (x ∈[0,3]); (2)y =1-x 21+x 2;(3)y =x +4x (x <0);(4)f (x )=x -1-2x .[例3] (2012·合肥模拟)若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.一、选择题1.函数y =(13)x 2的值域是( )A .(0,+∞)B .(0,1)C .(0,1]D .[1,+∞)2.函数f (x )=log 2(3x -1)的定义域为( ) A .(0,+∞) B .[0,+∞) C .(1,+∞)D .[1,+∞)3.函数y =x (x -1)-lg 1x 的定义域为( )A .{x |x >0}B .{x |x ≥1}C .{x |x ≥1或x <0}D .{x |0<x ≤1}4.下列函数中值域为正实数集的是( ) A .y =-5xB .y =(13)1-xC .y =(12)x -1 D .y =1-2x5.已知函数f (x )=a x -1(a >0,a ≠1)的定义域和值域都是[1,2],则a 的值为( ) A.22B .2 C. 2D.136.设f (x )=⎩⎪⎨⎪⎧x 2, |x |≥1,x , |x |<1,g (x )是二次函数,若f (g (x ))的值域是[0,+∞),则g (x )的值域是( )A .(-∞,-1]∪[1,+∞)B .(-∞,-1]∪[0,+∞)C .[0,+∞)D .[1,+∞) 二、填空题 7.函数y =16-x -x 2的定义域是________.8.函数f (x )=x +x (x -2)的定义域是________.9.设函数f (x )=12(x +|x |),则函数f [f (x )]的值域为________.三、解答题10.求下列函数的定义域: (1)y =25-x 2+lgcos x ; (2)y =log 2(-x 2+2x ).11.设O 为坐标原点,给定一个定点A (4,3),而点B (x,0)在x 轴的正半轴上移动,l (x )表示AB 的长,求函数y =xl (x )的值域.第二章 第三节 函数的单调性与最值大纲要求: 1.单调函数的定义 自左向右看图象逐渐上升自左向右看图象逐渐下降2.单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.二、函数的最值 [例1] 证明函数f (x )=2x -1x在(-∞,0)上是增函数.[例2] (2012·长沙模拟)设函数y =f (x )在(-∞,+∞)内有定义.对于给定的正数k ,定义函数f k (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤k ,k ,f (x )>k ,取函数f (x )=2-|x |.当k =12时,函数f k (x )的单调递增区间为( )A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)[例3] (1)若f (x )为R 上的增函数,则满足f (2-m )<f (m 2)的实数m 的取值范围是________.(2)(2012·安徽高考)若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________.一、选择题1.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ) A .y =x 3 B .y =|x |+1 C .y =-x 2+1D .y =2-|x |2.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)3.函数f (x )=⎩⎪⎨⎪⎧-x +3a , x <0,a x , x ≥0,(a >0且a ≠1)是R 上的减函数,则a 的取值范围是( )A .(0,1)B .[13,1)C .(0,13]D .(0,23]4.下列区间中,函数f (x )=|ln(2-x )|在其上为增函数的是( ) A .(-∞,1] B .[-1,43]C .[0,32)D .[1,2)5.函数y =(12)2x 2-3x +1的递减区间为( )A .(1,+∞)B .(-∞,34)C .(12,+∞)D .[34,+∞)6.已知函数f (x )是定义在(-∞,0)∪(0,+∞)上的偶函数,在(0,+∞)上单调递减,且f (12)>0>f (-3),则方程f (x )=0的根的个数为( )A .0B .1C .2D .3二、填空题7.函数f (x )=log 5(2x +1)的单调增区间是________.8.函数f (x )=⎩⎪⎨⎪⎧1,x >00,x =0-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.9.已知函数f(x)=3-axa-1(a≠1),若f(x)在区间(0,1]上是减函数,则实数a的取值范围是________.三、解答题10.已知函数f(x)对任意的a,b∈R恒有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1.(1)求证:f(x)是R上的增函数;(2)若f(4)=5,解不等式f(3m2-m-2)<3.11.已知f(x)=xx-a(x≠a).(1)若a=-2,试证f(x)在(-∞,-2)内单调递增;(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.12.设奇函数f(x)在[-1,1]上是增函数,f(-1)=-1.若函数f(x)≤t2-2at+1对所有的x ∈[-1,1],a∈[-1,1]都成立,求t的取值范围.第二章 第四节 函数的奇偶性与周期性大纲要求: 一、奇偶性二、周期性 1.周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.2.最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.[例1] (2012·福州质检)设Q 为有理数集,函数f (x )=⎩⎪⎨⎪⎧1,x ∈Q ,-1,x ∈∁R Q ,g (x )=e x -1e x +1,则函数h (x )=f (x )·g (x )( )A .是奇函数但不是偶函数B .是偶函数但不是奇函数C .既是奇函数也是偶函数D .既不是偶函数也不是奇函数[例2] (1)(2012·上海高考)已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________.(2)(2012·烟台调研)设偶函数f (x )在(0,+∞)上为减函数,且f (2)=0,则不等式f (x )+f (-x )x>0的解集为( ) A .(-2,0)∪(2,+∞) B .(-∞,-2)∪(0,2) C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)[例2] (1)(2012·上海高考)已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________.(2)(2012·烟台调研)设偶函数f (x )在(0,+∞)上为减函数,且f (2)=0,则不等式f (x )+f (-x )x>0的解集为( ) A .(-2,0)∪(2,+∞) B .(-∞,-2)∪(0,2) C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)[例3] (2012·浙江高考)设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝⎛⎭⎫32=________.一、选择题1.若奇函数f (x )=3sin x +c 的定义域是[a ,b ],则a +b +c 等于( ) A .3 B .-3 C .0D .无法计算2.设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成 立的是( )A .|f (x )|-g (x )是奇函数B .|f (x )|+g (x )是偶函数C .f (x )-|g (x )|是奇函数D .f (x )+|g (x )|是偶函数3.已知函数y =f (x )是定义在R 上的奇函数,且f (2+x )=f (2-x ),则f (4)=( ) A .4 B .2 C .0D .不确定4.若函数f (x )=x(2x +1)(x -a )为奇函数,则a =( )A.12 B.23 C.34D .15.已知f (x )是定义在R 上的奇函数,且满足f (x +4)=f (x ),则f (8)=( ) A .0 B .1 C .2D .36.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为( ) A .6 B .7 C .8D .9二、填空题7.设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=________. 8.设偶函数f (x )满足f (x )=2x -4(x ≥0),则不等式f (x -2)>0的解集为________.9.设函数f (x )是定义在R 上周期为3的奇函数,若f (1)<1,f (2)=2a -1a +1,则a 的取值范围是________.三、解答题10.设定义在[-2,2]上的奇函数f (x )在区间[0,2]上单调递减,若f (m )+f (m -1)>0,求实数m 的取值范围.11.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0, x =0,x 2+mx , x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.12.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数; (2)当x ∈[2,4]时,求f (x )的解析式; (3)计算f (0)+f (1)+f (2)+…+f (2 012).第二章 第五节 函数的图象大纲要求:一、利用描点法作函数图象其基本步骤是列表、描点、连线,首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性);其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点);最后:描点,连线.二、利用基本函数的图象作图 1.平移变换(1)水平平移:y =f (x ±a )(a >0)的图象,可由y =f (x )的图象向左(+)或向右(-)平移a 个单位而得到.(2)竖直平移:y =f (x )±b (b >0)的图象,可由y =f (x )的图象向上(+)或向下(-)平移b 个单位而得到.2.对称变换(1)y =f (-x )与y =f (x )的图象关于y 轴对称. (2)y =-f (x )与y =f (x )的图象关于x 轴对称. (3)y =-f (-x )与y =f (x )的图象关于原点对称.(4)要得到y =|f (x )|的图象,可将y =f (x )的图象在x 轴下方的部分以 x 轴为对称轴翻折到x 轴上方,其余部分不变.(5)要得到y =f (|x |)的图象,可将y =f (x ),x ≥0的部分作出,再利用偶函数的图象关于y 轴的对称性,作出x <0时的图象.3.伸缩变换(1)y =Af (x )(A >0)的图象,可将y =f (x )图象上所有点的纵坐标变为原来的A 倍,横坐标不变而得到.(2)y =f (ax )(a >0)的图象,可将y =f (x )图象上所有点的横坐标变为原来的1a 倍,纵坐标不变而得到.[例1] 分别画出下列函数的图象: (1)y =|lg x |; (2)y =2x +2;(3)y =x 2-2|x |-1.[例2] (2012·湖北高考)已知定义在区间[0,2]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为( )[例3](2011·新课标全国卷)已知函数y=f(x)的周期为2,当x∈[-1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lg x|的图象的交点共有()A.10个B.9个C.8个D.1个一、选择题1.y=x+cos x的大致图象是()2.方程|x|=cos x在(-∞,+∞)内()A.没有根B.有且仅有一个根C.有且仅有两个根D.有无穷多个根3.若对任意x∈R,不等式|x|≥ax恒成立,则实数a的取值范围是()A.a<-1 B.|a|≤1C.|a|<1 D.a≥14.给出四个函数,分别满足①f(x+y)=f(x)+f(y),②g(x+y)=g(x)·g(y),③h(x·y)=h(x)+h(y),④m(x·y)=m(x)·m(y).又给出四个函数的图象,那么正确的匹配方案可以是()A.①甲,②乙,③丙,④丁B.①乙,②丙,③甲,④丁C.①丙,②甲,③乙,④丁D.①丁,②甲,③乙,④丙5.已知f (x )=⎩⎪⎨⎪⎧x +1,x ∈[-1,0]x 2+1,x ∈(0,1],则如图中函数的图象错误的是( )6.f (x )的定义域为R ,且f (x )=⎩⎪⎨⎪⎧2-x-1(x ≤0)f (x -1)(x >0),若方程f (x )=x +a 有两不同实根,则a的取值范围为( )A .(-∞,1)B .(-∞,1]C .(0,1)D .(-∞,+∞)二、填空题7.已知y =f (x )是R 上的增函数,A (0,-1)、B (3,1)是其图象上两个点,则不等式 |f (x +1)|<1的解集是________.8.已知a >0,且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是________.9.已知函数y =f (x )和y =g (x )在[-2,2]的图象如下图所示:则方程f [g (x )]=0有且仅有________个根,方程f [f (x )]=0有且仅有________个根. 三、解答题10.若方程2a =|a x -1|(a >0,a ≠1)有两个实数解,求实数a 的取值范围.11.(1)已知函数y =f (x )的定义域为R ,且当x ∈R 时,f (m +x )=f (m -x )恒成立,求证y =f (x )的图象关于直线x =m 对称;(2)若函数y =log 2|ax -1|的图象的对称轴是x =2,求非零实数a 的值.第二章第六节幂函数与二次函数大纲要求:幂函数①了解幂函数的概念.②结合函数的图像,了解它们的变化情况.一、常用幂函数的图象与性质二、二次函数1.二次函数的定义形如f(x)=ax2+bx+c(a≠0)的函数叫做二次函数.2.二次函数解析式的三种形式(1)一般式:f(x)=ax2+bx+c(a≠0);(2)顶点式:f(x)=a(x-m)2+n(a≠0);(3)零点式:f(x)=a(x-x1)(x-x2)(a≠0).[例1]已知幂函数f(x)=(m2-m-1)x-5m-3在(0,+∞)上是增函数,则m=________. [例2]已知二次函数f(x)有两个零点0和-2,且它有最小值-1.(1)求f(x)解析式;(2)若g(x)与f(x)图象关于原点对称,求g(x)解析式.[例3]已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数.1.下列函数中,其定义域、值域不同的是( ) A .y =x 12B .y =x -1C .y =x 13D .y =x 22.已知函数y =ax 2+bx +c ,如果a >b >c ,且a +b +c =0,则它的图象是( )3.已知函数f (x )=x 2+bx +c 且f (1+x )=f (-x ),则下列不等式中成立的是( ) A .f (-2)<f (0)<f (2) B .f (0)<f (-2)<f (2) C .f (0)<f (2)<f (-2)D .f (2)<f (0)<f (-2)4.二次函数f (x )=x 2-ax +4,若f (x +1)是偶函数,则实数a 的值为( ) A .-1 B .1 C .-2D .25.若函数f (x )是幂函数,且满足f (4)f (2)=3,则f (12)的值为( )A .-3B .-13C .3D.136.方程x 2+ax -2=0在区间[1,5]上有解,则实数a 的取值范围为( ) A .(-235,+∞)B .(1,+∞)C .[-235,1]D .(-∞,-235]二、填空题7.已知(0.71.3)m <(1.30.7)m ,则实数m 的取值范围是________.8.设n ∈N *,一元二次方程x 2-4x +n =0有整数根的充要条件是n =________. 9.若方程x 2+(k -2)x +2k -1=0的两根中,一根在0和1之间,另一根在1和2之间,则实数k 的取值范围是________.10.已知函数f (x )=2x -x m 且f (4)=-72,(1)求m 的值; (2)求f (x )的单调区间.11.已知二次函数f (x )有两个零点0和-2,且f (x )最小值是-1,函数g (x )与f (x )的图象关于原点对称.(1)求f (x )和g (x )的解析式;(2)若h (x )=f (x )-λg (x )在区间[-1,1]上是增函数,求实数λ的取值范围.12.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R). (1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )={ f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值; (2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围.第二章 第七节 指数与指数函数大纲要求:指数函数① 了解指数函数模型的实际背景.② 理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.③ 理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点,会画底数为2,3,10,1/2,1/3的指数函数的图像.④ 体会指数函数是一类重要的函数模型.[例1] 化简下列各式(其中各字母均为正数).(1)(a 23·b -1)-12·a -12·b 136a ·b 5;(2)⎝⎛⎭⎫2790.5+0.1-2+⎝⎛⎭⎫21027-23-3π0+3748. [例2] (2012·四川高考)函数y =a x -a (a >0,且a ≠1)的图象可能是( )[例3] 已知函数f (x )=⎝⎛⎭⎫23|x |-a .则函数f (x )的单调递增区间为________,单调递减区间为________.一、选择题1.函数y =3x 与y =-3-x 的图象关于( )A .x 轴对称B .y 轴对称C .直线y =x 对称D .原点中心对称2.已知a =5-12,函数f (x )=a x ,若实数m ,n 满足f (m )>f (n ),则实数m ,n 的关系是 ( )A .m +n <0B .m +n >0C .m >nD .m <n3.若a >1,b >0,且a b +a -b =22,则a b -a -b的值为( )A. 6B .2或-2C .-2D .24.已知函数( )f (x )=⎩⎪⎨⎪⎧log 3x ,(x >0)2x (x ≤0),则f (9)+f (0)=( )A .0B .1C .2D .35.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x , 则g (x )=( )A .e x -e -x B.12(e x +e -x ) C.12(e -x -e x )D.12(e x -e -x ) 6.已知函数f (x )=|2x -1|,a <b <c ,且f (a )>f (c )>f (b ),则下列结论中,一定成立的是( )A .a <0,b <0,c <0B .a <0,b ≥0,c >0C .2-a <2cD .2a +2c <2 二、填空题 7.若函数y =2-x +1+m 的图象不经过第一象限,则m 的取值范围是________.8.某电脑公司2010年的各项经营收入中,经营电脑配件的收入为400万元,占全年经营总收入的40%.该公司预计2012年经营总收入要达到1 690万元,且计划从2010年到2012年,每年经营总收入的年增长率相同,2011年预计经营总收入为________万元.9.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1,已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题10.若函数y =a ·2x -1-a2x -1为奇函数.(1)求a 的值; (2)求函数的定义域.第二章 第八节 对数与对数函数大纲要求:对数函数① 理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.② 理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,会画底数为2,10,1/2的对数函数的图像.③ 体会对数函数是一类重要的函数模型; ④ 了解指数函数与对数函数(a >0,且a ≠1)互为反函数.[例1] 求解下列各题.(1)12lg 3249-43lg 8+lg 245=________; (2)若2a =5b =m ,且1a +1b=2,则m =________.[例2] (1)(2012·烟台调研)函数y =ln(1-x )的图象大致为( )(2)(2012·新课标全国卷)当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫22,1C .(1,2)D .(2,2)一、选择题1.若点(a ,b )在y =lg x 图象上,a ≠1,则下列点也在此图象上的是( )A .(1a ,b )B .(10a,1-b )C .(10a,b +1)D .(a 2,2b )2.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( ) A.12xB .2x -2C .log x 12D .log 2x3.已知a =log 23.6,b =log 43.2,c =log 43.6,则( ) A .a >b >c B .a >c >b C .b >a >cD .c >a >b4.函数f (x )=2|log 2x |的图象大致是( )5.函数y =log 2(x 2+1)-log 2x 的值域是( ) A .[0,+∞) B .(-∞,+∞)C .[1,+∞)D .(-∞,-1]∪[1,+∞)6.若不等式x 2-log a x <0在(0,12)内恒成立,则a 的取值范围是( )A .(116,1)B .(0,116)C .(0,1)D .(116,1]二、填空题7.若a >0,23a =49,则23log a =________.8.函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b -a 的最小值为________. 9.已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (4log 7),b =f (12log 3),c =f (0.60.2-),则a ,b ,c 的大小关系是________.三、解答题10.(1)计算:2(lg 2)2+lg 2·lg5+(lg 2)2-lg2+1-3a 9·a -3÷3a 13a 7; (2)已知lg a +lg b =2lg(a -2b ),求ab 的值.11.已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈[13,2]都有|f (x )|≤1成立,试求a的取值范围.第二章 第九节 函数与方程大纲要求:函数与方程结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.[例1] (2012·唐山统考)设f (x )=e x +x -4,则函数f (x )的零点位于区间( )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)[例2] (1)(2012·北京高考)函数f (x )=x 12-⎝⎛⎭⎫12x 的零点的个数为( )A .0B .1C .2D .3[例3] (2011·辽宁高考改编)已知函数f (x )=e x -x +a 有零点,则a 的取值范围是________.一、选择题1.“a <-2”是“函数f (x )=ax +3在区间[-1,2]上存在零点x 0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件2.已知x 0是函数f (x )=11-x +ln x 的一个零点,若x 1∈(1,x 0),x 2∈(x 0,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)>0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)<0,f (x 2)>03.若函数f (x )=x 2+mx +1有两个不同的零点,则实数m 的取值范围是( )A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)4.函数f (x )=x -cos x 在[0,+∞)内( ) A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点5.函数y =f (x )在区间(-2,2)上的图象是连续的,且方程f (x )=0在(-2,2)上仅有一个实根0,则f (-1)·f (1)的值( )A .大于0B .小于0C .等于0D .无法确定6.已知定义在R 上的函数f (x )=(x 2-3x +2)g (x )+3x -4,其中函数y =g (x )的图象是一条连续曲线,则方程f (x )=0在下面哪个范围内必有实数根( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)二、填空题7.已知函数f (x )=⎩⎪⎨⎪⎧2x -1, x >0-x 2-2x x ≤0.若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________. 8.若x 0是方程(12)x =x 13的解,则x 0属于区间________.①(23,1),②(12,23);③(13,12);④(0,13). 9.已知函数f (x )=e x -2x +a 有零点,则a 的取值范围是________. 三、解答题10.判断方程3x -x 2=0的负实数根的个数,并说明理由.11.二次函数f (x )=x 2-16x +q +3.若函数在区间[-1,1]上存在零点,求实数q 的取值范围;12.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0).(1)若g (x )=m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.第二章 第十节 函数模型及其应用大纲要求:函数模型及其应用① 了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.② 了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.1.几种常见的函数模型一、选择题1.某学校开展研究性学习活动,一组同学获得了下面的一组实验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )A .y =2x -2B .y =(12)xC .y =log 2xD .y =12(x 2-1)2.某文具店出售羽毛球拍和羽毛球,球拍每副定价20元,羽毛球每个定价5元,该店制定了两种优惠方法:①买一副球拍赠送一个羽毛球;②按总价的92%付款.现某人计划购买4副球拍和30个羽毛球,两种方法中,更省钱的一种是( )A .不能确定B .①②同样省钱C .②省钱D .①省钱3.某地2002年底人口为500万,人均住房面积为6 m 2,如果该城市人口平均每年增长率为1%.问为使2012年底该城市人均住房面积增加到7 m 2,平均每年新增住房面积至少为________万 m 2.(1.0110≈1.1045)( )A .90B .87C .85D .804.设甲、乙两地的距离为a (a >0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y 和其所用的时间x 的函数图象为( )5.光线通过一块玻璃,其强度要失掉原来的110,要使通过玻璃的光线强度为原来的13以下,至少需要重叠这样的玻璃块数是(lg3=0.477 1)( )A .10B .11C .12D .136.将长度为2的铁丝分成两段,分别围成一个正方形和一个圆,要使正方形与圆的面积之和最小,正方形的周长应为( )A.4π+4B.5π+4 C.7π+4D.8π+4二、填空题7.在不考虑空气阻力的情况下,设火箭的最大速度是v m/s ,燃料的质量为M kg ,火箭(除燃料外)的质量为m kg ,三者之间的函数关系是v =2 000·ln(1+M/m ).当燃料质量是火箭质量的________倍时,火箭的最大速度可达12 km/s. 8.某居民小区收取冬季供暖费,根据规定,住户可以从以下两种方案中任选其一: (1)按照使用面积缴纳,每平方米4元; (2)按照建筑面积缴纳,每平方米3元.李明家的使用面积为60平方米.如果他家选择第(2)种方案缴纳供暖费较少,那么它的建筑面积最多不超过________平方米.第二章 第十一节 变化率与导数、导数的计算大纲要求:导数及其应用(1)导数概念及其几何意义 ① 了解导数概念的实际背景.② 通过函数图像直观理解导数的几何意义. ③ 能根据导数定义,求函数y=C(C 为常数),的导数.④ 能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.常见基本初等函数的导数公式:(C 为常数);, n ∈N+;;;;;;.(a>0,且a ≠1)常用的导数运算法则:法则1 .法则2.法则3 .⑤ 了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).⑥ 了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).⑦会利用导数解决实际问题.[例1] 用定义法求下列函数的导数.(1)y =x 2; (2)y =4x 2.[例2] 求下列函数的导数. (1)y =x 2sin x ;(2)y =e x +1e x -1;[例3] (1)(2011·山东高考)曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( )A .-9B .-3C .9D .15(2)设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( )A .-14B .2C .4D .-12一、选择题1.已知函数f (x )的图象如图所示,f ′(x )是f (x )的导函数,则下列数值排序正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f (3)-f (2)<f ′(2)C .0<f ′(3)<f ′(2)<f (3)-f (2)D .0<f (3)-f (2)<f ′(2)<f ′(3)2.曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9D .153.曲线y =sin x sin x +cos x -12在点M (π4,0)处的切线的斜率为( )A .-12B.12 C .-22D.224.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =( ) A .1 B.12 C .-12D .-15.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为( ) A .1 B. 2 C.22D. 36.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln2(太贝克/年),则M (60)=( )A .5太贝克B .75ln2太贝克C .150ln2 太贝克D .150太贝克二、填空题7.已知f (x )=x 2+2xf ′(1), 则f ′(0)=________.8.已知函数f (x )=-x 3+ax -4(a ∈R),若函数y =f (x )的图象在点P (1,f (1))处的切线的倾斜角为π4,则a =________.9.若曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 三、解答题10.求下列函数的导数. (1)y =x 2sin x ;(2)y =e x +1e x -1;11.[文]设曲线C :y =-ln x (0<x ≤1)在点M (e -t ,t )(t ≥0)处的切线为l .(1)求直线l 的方程;(2)若直线l 与x 轴、y 轴所围成的三角形面积为S (t ),求S (t )的最大值.第二章 第十二节 导数的应用(一)大纲要求: 求函数极值的步骤 (1)确定函数的定义域; (2)求方程f ′(x )=0的根;(3)用方程f ′(x )=0的根顺次将函数的定义域分成若干个小开区间,并形成表格; (4)由f ′(x )=0根的两侧导数的符号来判断f ′(x )在这个根处取极值的情况.[例1] (2012·山东高考改编)已知函数f (x )=ln x +ke x(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值; (2)求f (x )的单调区间.[例2] (2012·江苏高考)若函数y =f (x )在x =x 0处取得极大值或极小值,则称x 0为函数y =f (x )的极值点.已知a ,b 是实数,1和-1是函数f (x )=x 3+ax 2+bx 的两个极值点.(1)求a 和b 的值;(2)设函数g (x )的导函数g ′(x )=f (x )+2,求g (x )的极值点.一、选择题1.函数f (x )=x +eln x 的单调递增区间为( ) A .(0,+∞) B .(-∞,0) C .(-∞,0)和(0,+∞)D .R2.若函数f (x )的导函数f ′(x )=x 2-4x +3,则使得函数f (x +1)单调递减的一个充分不必要条件为x ∈( )A .(0,1)B .[0,2]C .(1,3)D .(2,4)3.函数f (x )的导函数为f ′(x ),若(x +1)·f ′(x )>0,则下列结论中正确的是( ) A .x =-1一定是函数f (x )的极大值点 B .x =-1一定是函数f (x )的极小值点 C .x =-1不是函数f (x )的极值点 D .x =-1不一定是函数f (x )的极值点4.已知函数f (x )=4x +3sin x ,x ∈(-1,1),如果f (1-a )+f (1-a 2)<0成立,则实数a 的取值范围为( )A .(0,1)B .(1,2)C .(-2,-2)D .(-∞,-2)∪(1,+∞)5.若函数f (x )=2x 2-ln x 在其定义域内的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是( )A .[1,+∞)B .[1,32)C .[1,2)D .[32,2)6.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .9二、填空题7.函数f (x )=x 3-3x 2+1在x =________处取得极小值. 8.如图是y =f (x )的导函数的图象,现有四种说法: (1)f (x )在(-3,1)上是增函数;(2)x =-1是f (x )的极小值点;(3)f (x )在(2,4)上是减函数,在(-1,2)上是增函数; (4)x =2是f (x )的极小值点; 以上正确的序号为________.9.若函数f (x )=x 3-px 2+2m 2-m +1在区间(-2,0)内单调递减,在区间(-∞,-2)及(0,+∞)内单调递增,则p 的取值集合是________.三、解答题10.已知函数f (x )=x 3+ax 2+bx +c 在点x 0处取得极小值-5,其导函数y =f ′(x )的图象经过点(0,0),(2,0).(1)求a ,b 的值;(2)求x 0及函数f (x )的表达式.11.设函数f(x)=a2ln x-x2+ax,a>0.(1)求f(x)的单调区间;(2)求所有实数a,使e-1≤f(x)≤e2对x∈[1,e]恒成立.注:e为自然对数的底数.12.设f(x)=ax3+bx+c为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f′(x)的最小值为-12.(1)求a,b,c的值;(2)求函数f(x)的单调递增区间,极大值和极小值,并求函数f(x)在[-1,3]上的最大值与最小值.第二章 第十三节 导数的应用(二)大纲要求:利用导数解决参数问题主要涉及以下方面:(1)已知不等式在某一区间上恒成立,求参数的取值范围:一般先分离参数,再转化为求函数在给定区间上的最值问题求解.(2)已知函数的单调性求参数的取值范围:转化为f ′(x )≥0(或f ′(x )≤0)恒成立的问题.(3)已知函数的零点个数求参数的取值范围:利用函数的单调性、极值画出函数的大致图象,数形结合求解.[例1] 已知函数f (x )=x 2ln x -a (x 2-1),a ∈R.(1)当a =-1时,求曲线f (x )在点(1,f (1))处的切线方程;(2)若当x ≥1时,f (x )≥0成立,求a 的取值范围.[例2] 已知f (x )=ax -ln x ,x ∈(0,e],g (x )=ln x x,其中e 是自然常数,a ∈R. (1)讨论a =1时,函数f (x )的单调性和极值;(2)求证:在(1)的条件下,f (x )>g (x )+12.一、选择题1.若函数f (x )=x 3-32x 2+1,则f (x )( ) A .最大值为1,最小值12B .最大值为1,无最小值C .最小值为12,无最大值 D .既无最大值,又无最小值2.函数f (x )=e x sin x 在区间[0,π2]上的值域为( ) A .[0,e 2π] B .(0,e 2π)C .[0,e 2π)D .(0,e 2π] 3.若函数f (x )=x x 2+a (a >0)在[1,+∞)上的最大值为33,则a 的值为( ) A.33B. 3C.3+1D.3-14.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax (a >12),当x ∈(-2,0)时,f (x )的最小值为1,则a 的值等于( )A.14B.13C.12 D .15.球的直径为d ,其内接正四棱柱体积V 最大时的高为( ) A.22d B.32d C.33d D.23d 6.设动直线x =m 与函数f (x )=x 3、g (x )=ln x 的图象分别交于点M 、N ,则|MN |的最小值为( ) A.13(1+ln3) B.13ln3 C .1+ln3D .ln3-1二、填空题7.函数f (x )=-x 3+mx 2+1(m ≠0)在(0,2)内的极大值为最大值,则m 的取值范围是________.8.用一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的矩形.(如图所示),则围墙的最大面积是________.(围墙厚度不计).9.某商场从生产厂家以每件20元购进一批商品,若该商品零售价为p 元,销量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170p -p 2,则该商品零售价定为________元时利润最大,利润的最大值为________.三、解答题10.已知a 为实数,函数f (x )=(x 2+1)(x +a ).若f ′(-1)=0,求函数y =f (x )在[-32,1]上的最大值和最小值.。
函数的概念与基本初等函数-函数及其表示
函数的概念与基本初等函数第一节 函数及其表示1.函数的有关概念函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y =f (x )是用表格给出,则表格中x 的集合即为定义域.(3)如果函数y =f (x )是用图象给出,则图象在x 轴上的投影所覆盖的x 的集合即为定义域.常见求函数定义域类型:①偶次根式:偶次根式根号内的式字大于等于零,如若y=)(x f ,则0)(≥x f . ②分式:分式分母不为零,即若)()(x g x f y =,则0)(≠x g . ③对数式:对数式真数大于零,即若)(log x f y a =,其中a>0且a≠1,则0)(>x f ④对于)(tan x f y =,则有Z k k x f ∈+≠,2)(ππ抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.2.函数的三要素:定义域、值域和对应关系.3.函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.4.相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.5.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.6.求函数解析式的4种方法及适用条件(1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).。
函数及其表示法
指数表示法
使用指数函数的公式来表示函数,例如 $f(x) = e^x$。
优点
可以方便地表示快速增长或衰减的函数。
3
缺点
对于非指数型函数,可能不适用,且公式较为复 杂。
04 函数的参数表示法
参数方程的概念
参数方程定义
参数方程是一种描述函数关系的 方法,通过引入一个或多个参数, 将自变量和因变量的关系表示出 来。
分段函数的应用
解决实际问题
分段函数常常用于解决一些实际问题,例如利润计算、成本分析、人口统计等。通过分段来表示不同情况下的函数关 系,能够更准确地描述实际问题。
数学建模
在数学建模中,分段函数也经常被用来描述一些复杂的现象或关系。例如,在物理学、生物学、经济学等领域中,分 段函数可以用来描述一些非线性关系或突变现象。
01
Байду номын сангаас
02
03
观察图像形状
通过观察图像的形状,可 以初步判断函数的单调性、 周期性等性质。
分析函数性质
结合函数表达式和图像, 可以分析函数的极值点、 拐点等关键点,从而理解 函数的性质。
比较函数差异
通过比较不同函数的图像, 可以直观地了解它们之间 的差异和联系。
函数图像的应用
解决实际问题
教育与教学
在解决一些实际问题时,如最优化问 题、物理现象模拟等,可以通过绘制 函数图像来直观地理解和分析问题。
优点
简洁明了,易于理解和计算。
缺点
对于复杂的函数,可能难以找到合适的代数表示法。
三角表示法
三角表示法
使用三角函数的公式来表示函数,例如 $f(x) = sin(x) + cos(x)$。
优点
第二章 第一节 函数及其表示
3.函数的表示方法 表示函数常用的方法有:_______、_______和_______. 列表法 图像法 解析法 4.分段函数 (1)若函数在其定义域的不同子集上,因_________不同而分别 对应关系 用几个不同的式子来表示,这种函数称为分段函数. (2)分段函数的定义域等于各段函数的定义域的_____,其值
考向 1 求函数的定义域
2 log5 1)的定义 ( 【典例1】(1)(2013·赣州模拟)函数 x f x 1 x 域是( )
(A)(0,1] (B)[1,2) (C)(0,1) (D)(1,2)
(2)已知函数f(2x)的定义域是[-1,1],则f(x)的定义域为 _______.
x件某产品所用的时间(单位:分钟)为 A件产品用时15分钟,那么C和A的值分别是( )
(A)75,25
(C)60,25
(B)75,16
(D)60,16
(2)(2013·唐山模拟)已知函数 则f(x)-f(-x)>-1的解集为( (A)(-∞,-1)∪(1,+∞) (B)
x 1, 1 x<0, f x x 1,0<x 1, )
1 或f(-x)的解析式求f(x). f( ) x 通常用解方程组法,用 1 或(-x)替代x,构造方程,与原方程 x 构成方程组,解方程组可求f(x).
(3)已知关于f(x)与
【变式训练】(1)求下列函数的解析式:
①已知 求f(x); 2 f ( 1) lg x, x ②2f(x)-f(-x)=lg(x+1),求f(x). 【解析】①令
得 2f x f x lg 1 x , 2 1 由 f x lg x 1 lg 1 x . 3 得-1<x<1, 3 x 1>0, 1 x>0 2 1 f x lg x 1 lg 1 x 1<x< . 1 3 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例 3】 (2019·河南、河北两省重点高中联考)函数 f(x)= 4-4x+ln(x+4)的定义域为________.
解析:要使函数 f(x)有意义,则4x- +44x>≥0,0,得-4<x ≤1,则函数的定义域为(-4,1].
答案:(-4,1]
1.求给定解析式的函数定义域的方法. 求给定解析式的函数的定义域,其实质就是以函数解 析式中所含式子(运算)有意义为准则,列出不等式或不等 式组求解;对于实际问题,定义域应使实际问题有意义. 2.求抽象函数定义域的方法. (1)若已知函数 f(x)的定义域为[a,b],则复合函数 f(g(x))的定义域可由不等式 a≤g(x)≤b 求出. (2)若已知函数 f(g(x))的定义域为[a,b],则 f(x)的定 义域为 g(x)在 x∈[a,b]上的值域.
解析:设 f(x)=ax2+bx+c(a≠0), 由 f(0)=2,得 c=2, f(x+1)-f(x)=a(x+1)2+b(x+1)+2-ax2-bx-2= x-1,即 2ax+a+b=x-1, 所以2aa+=b1=,-1,解得ba==-12,32. 所以 f(x)=12x2-32x+2.
答案:D
【 例 3 】 (2017·全 国 卷 Ⅲ ) 设 函 数 f(x) = x2+ x,1x,>x0≤,0,则满足 f(x)+fx-12>1 的 x 的取值范围是 ________.
解析:由题意知,可对不等式分 x≤0,0<x≤12,x>12 三段讨论.
当 x≤0 时,原不等式为 x+1+x+12>1,解得 x>-14, 所以-14<x≤0.
A→B
一个数 x,在集合 B 元素 x,在集合 B 中 中都有唯__一__确__定___的 都有唯__一__确__定___的元
数 f(x)和它对应 素 y 与之对应
名称
称_f_:__A_→__B__为从集 称_f_:__A_→__B__为从集 合 A 到集合 B 的一 合 A 到集合 B 的一个
个函数
【例 4】 已知函数 f(x)的定义域为(0,+∞),且 f(x) =2f1x· x-1,则 f(x)=________.
解析:在 f(x)=2f1x· x-1 中, 将 x 换成1x,则1x换成 x, 得 f1x=2f(x)· 1x-1, 由f(x)=2f1x· x-1,
1.函数是特殊的映射,是定义在非空数集上的映射. 2.直线 x=a(a 是常数)与函数 y=f(x)的图象有 0 个 或 1 个交点. 3.分段函数无论分成几段,都是一个函数,必须用 分类讨论的思想解决分段函数问题.
1.概念思辨 判 断 下 列 说 法 的 正 误 ( 正 确 的 打 “ √ ”, 错 误 的 打 “×”). (1)函数 y=1 与 y=x0 是同一个函数.( ) (2)对于函数 f:A→B,其值域是集合 B.( ) (3)f(x)= x-3+ 2-x表示一个函数.( ) (4)若两个函数的定义域与值域相同,则这两个函数 相等.( )
解析:(1)函数 y=1 的定义域为 R,而 y=x0 的定义 域为{x|x≠0},其定义域不同,故不是同一函数.
(2)错误.值域 C⊆B,不一定有 C=B. (3)错误.f(x)= x-3+ 2-x中 x 不存在. (4)若两个函数的定义域、对应法则均对应相同时, 才是相等函数. 答案:(1)× (2)× (3)× (4)×
2.教材衍化 (1)(人 A 必修 1·P25B2 改编)若函数 y=f(x)的定义域 为 M={x|-2≤x≤2},值域为 N={y|0≤y≤2},则函数 y =f(x)的图象可能是( )
(2)(人 A 必修 1·P18 例 2 改编)下列函数中,与函数 y =x+1 是相等函数的是( )
A.y=( x+1)2 C.y=xx2+1
考点 1 求函数的定义域(自主演练)
【例 1】 (2019·郑州调研)函数 f(x)=ln x-x 1+x12的
定义域为( )
A.(0,+∞)
B.(1,+∞)
C.(0,1)
D.(0,1)∪(1,+∞)
解析:要使函数 f(x)有意义,则x-x 1>0,解得 x>1, x≥0,
故函数 f(x)=ln x-x 1+x12的定义域为(1,+∞). 答案:B
当 0<x≤12时,原不等式为 2x+x+12>1,显然成立. 当 x>12时,原不等式为 2x+2x-12>1,显然成立. 综上可知,x>-14. 答案:-14,+∞
1.根据分段函数解析式求函数值.首先确定自变量 的值属于哪个区间,其次选定相应的解析式代入求解.
2.已知函数值或函数的取值范围求自变量的值或范 围时,应根据每一段的解析式分别求解,但要注意检验 所求自变量的值或范围是否符合相应段的自变量的取值 范围.
考点 2 求函数解析式(自主演练)
【例 1】 若 f1x=1-x x,则当 x≠0,且 x≠1 时,f(x)
等于( )
1 AБайду номын сангаасx
1 B.x-1
1 C.1-x
D.1x-1
1 解析:f(x)=1-x 1x=x-1 1(x≠0 且 x≠1).
答案:B
【例 2】 已知 f(x)是二次函数且 f(0)=2,f(x+1) -f(x)=x-1,则 f(x)=________.
12+2=3,因此 f[f(1)]=f(3)=3+3-1 2=4.
答案:C
2.(2019·洛阳模拟)设函数 f(x)=xlo2g-2x1,,0x<≥x<22,,若
f(m)=3,则实数 m 的值为( )
A.-2
B.1
C.2
D.8
解析:当 m≥2 时,由 f(m)=m2-1=3,得 m=2. 当 0<m<2 时,由 f(m)=log2m=3,得 m=8(舍). 综上可知,实数 m=2. 答案:C
映射
记法 函数 y=f(x),x∈A 映射 f:A→B
2.函数的定义域、值域 (1)在函数 y=f(x),x∈A 中,x 叫做自变量,x 的取 值范围 A 叫做函数的_定__义__域_;与 x 的值相对应的 y 值叫 做函数值,函数值的_集__合__{_f_(_x_)|_x_∈__A_}叫做函数的_值__域___. (2)如果两个函数的定__义__域__相同,并且对__应__关__系__完全 一致,则这两个函数为相等函数. 3.函数的表示法 表示函数的常用方法有解__析__法__、图象法和列__表__法__.
f1x=2f(x)· 1x-1,
解得 f(x)=23 x+13. 答案:23 x+13
求函数解析式的常用方法 1.待定系数法:若已知函数的类型,可用待定系数 法. 2.换元法:已知复合函数 f(g(x))的解析式,可用换 元法,此时要注意新元的取值范围. 3.构造法:已知关于 f(x)与 f1x或 f(-x)的表达式, 可根据已知条件再构造出另外一个等式,通过解方程组 求出 f(x).
答案:(1)B (2)B
3.典题体验
(1)(2019·日照一中月考)已知 f(x5)=lg x,则 f(2)=
()
A.15lg 2
B.12lg 5
C.13lg 2
D.12lg 3
1 解析:令 x5=2,则 x=25,
所以 f(2)=lg 215=15lg 2.
答案:A
(2)(2018·江苏卷)函数 f(x)= log2x-1的定义域是 ______.
考点 3 分段函数(多维探究) 角度 求分段函数的函数值 【例 1】 (2018·江苏卷)函数 f(x)满足 f(x+4)=f(x)(x ∈R),且在区间(-2,2]上,f(x)=cxo+s π122x,,-0<2<x≤x≤2,0, 则 f(f(15))的值为________.
答案:12x2-32x+2
【例 3】 (2019·东莞综合检测)已知函数 f(x)=ax- b(a>0),且 f(f(x))=4x-3,则 f(2)=________.
解析:易知 f(f(x))=a(ax-b)-b=a2x-ab-b=4x- 3(a>0),
所以aa2b=+4b,=3,解得ab= =21, . 所以 f(x)=2x-1,则 f(2)=3. 答案:3
【例 2】 若函数 y=f(x)的定义域是[0,2],则函数 g(x)=f(x-2x1)的定义域为________.
解析:因为 y=f(x)的定义域是[0,2]. 所以要使 g(x)有意义应满足0x≤-21x≠≤02,, 解得 0≤x<1,所以 g(x)的定义域是[0,1). 答案:[0,1)
解析:由函数 f(x)满足 f(x+4)=f(x)(x∈R),可知函
数 f(x)的周期是 4,所以 f(15)=f(-1)=-1+12=12,所
以
f(f(15))=f(12)=cosπ4=
2 2.
答案:
2 2
【例 2】 设函数 f(x)=32xx,-xb≥,1x.<1,若 ff56=4, 则 b=( )
提醒:当分段函数的自变量范围不确定时,应分类 讨论.
[变式训练]
1.(2019·合肥一模)已知函数 f(x)=x+x-1 2,x>2, x2+2,x≤2,
则 f[f(1)]=( )
A.-12
B.2
C.4
D.11
解析:因为函数 f(x)=x+x-1 2,x>2,所以 f(1)=
x2+2x,x≤2,
3.了解简单的分段函数,