2015年秋新人教版九年级数学上册期中考试综合考试测试卷(第 10 周)
新人教版数学九年级上册期中考试试题(含答案)
新人教版数学九年级上册期中考试试题(含答案)一、选择题(本大题10小题,每小题3分,共30分)1.下面四个图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.关于一元二次方程x2﹣2x﹣1=0根的情况,下列说法正确的是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根3.用配方法解方程x2﹣2x﹣7=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=6 C.(x﹣1)2=8 D.(x﹣2)2=8 4.把一元二次方程(x﹣3)2=5化为一般形式,二次项系数;一次项系数;常数项分别为()A.1,6,4 B.1,﹣6,4 C.1,﹣6,﹣4 D.1,﹣6,9 5.已知二次函数y=2x2﹣12x+19,下列结果中正确的是()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1D.当x<3时,y随x的增大而增大6.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1C.y=3(x+2)2﹣1 D.y=3(x+2)2+17.若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为()A.﹣4 B.6 C.8 D.128.已知二次函数y=(x﹣1)2﹣4,当y<0时,x的取值范围是()A.﹣3<x<1 B.x<﹣1或x>3 C.﹣1<x<3 D.x<﹣3或x>1 9.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.710.小敏用一根长为8cm的细铁丝围成矩形,则矩形的最大面积是()A.4cm2B.8cm2C.16cm2D.32cm2二、填空题(本大题6小题,每小题4分,共24分)11.已知两个数的差为3,它们的平方和是65,设较小的数为x,则可列出方程,化成一般形式为.12.已知方程x2+2x﹣3=0的两根为a和b,则ab=.13.二次函数y=3x2+1和y=3(x﹣1)2,以下说法:①它们的图象开口方向、大小相同;②它们的对称轴都是y轴,顶点坐标都是原点(0,1);③当x>0时,它们的函数值y都是随着x的增大而增大;④它们与坐标轴都有一个交点;其中正确的说法有.14.抛物线y=ax2+bx+c与x轴的公共点是(﹣2,0),(6,0),则此抛物线的对称轴是.15.函数y=x2﹣2x+2的图象顶点坐标是.16.点P(﹣2,3)关于x轴对称点的坐标是,关于原点对称点的坐标是,关于y轴的对称点的坐标是;三、解答题(本大题2小题,共18分)17.解方程:x2﹣6x+5=0(配方法)18.已知抛物线y=x2+bx+c的图象经过点(﹣1,0),点(3,0);求抛物线函数解析式.19.参加足球联赛的每两队之间都要进行一场比赛,共要比赛21场,共有多少个队参加足球联赛?20.为进一步提升企业产品竞争力,某企业加大了科研经费的投入,2016年该企业投入科研经费5000万元就,2018年投入科研经费7200万元,假设该企业这两年投入科研经费的年平均增长率相同.(1)求这两年该企业投入科研经费的年平均增长率;(2)若该企业科研经费的投入还将保持相同的年平均增长率,请你预算2019年该企业投入科研经费多少万元.21.某同学练习推铅球,铅球推出后在空中飞行的轨迹是一条抛物线,铅球在离地面1米高的A处推出,达到最高点B时的高度是2.6米,推出的水平距离是4米,铅球在地面上点C处着地(1)根据如图所示的直角坐标系求抛物线的解析式;(2)这个同学推出的铅球有多远?22.已知:关于x的方程x2+2kx+k2﹣6=0(1)证明:方程有两个不相等的实数根;(2)如果方程有一个根为2,试求2k2+8k+2018的值.23.某店销售台灯,成本为每个30元,销售大数据分析表明:当每个台灯售价为40元时,平均每月售出600个;若售价每下降1元,其月销售量就增加200个.(1)未降价之前,该店每月台灯总盈利为元;(2)降价后,设该店每个台灯应降价x元,则每个台灯盈利元,平均每月可售出个;(用含x的代数式进行表示)(3)为迎接“双十一”,该店决定降价促销,在库存为1210个台灯的情况下,若预计月获利恰好为8400元,求每个台灯的售价.24.在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时,点Q从点B出发沿BC边向点C以每秒2cm的速度移动,如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:(1)当运动开始后1秒时,求△DPQ的面积;(2)当运动开始后秒时,试判断△DPQ的形状;(3)在运动过程中,存在这样的时刻,使△DPQ以PD为底的等腰三角形,求出运动时间.25.如图,抛物线y=与x轴交于A、B两点,△ABC为等边三角形,∠COD=60°,且OD=OC.(1)A点坐标为,B点坐标为;(2)求证:点D在抛物线上;(3)点M在抛物线的对称轴上,点N在抛物线上,若以M、N、O、D为顶点的四边形为平行四边形,请直接写出点M的坐标.参考答案与试题解析一.选择题(共10小题)1.下面四个图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:B.2.关于一元二次方程x2﹣2x﹣1=0根的情况,下列说法正确的是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【分析】根据根的判别式,可得答案.【解答】解:a=1,b=﹣2,c=﹣1,△=b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8>0,一元二次方程x2﹣2x﹣1=0有两个不相等的实数根,故选:C.3.用配方法解方程x2﹣2x﹣7=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=6 C.(x﹣1)2=8 D.(x﹣2)2=8 【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程变形得:x2﹣2x=7,配方得:x2﹣2x+1=8,即(x﹣1)2=8,故选:C.4.把一元二次方程(x﹣3)2=5化为一般形式,二次项系数;一次项系数;常数项分别为()A.1,6,4 B.1,﹣6,4 C.1,﹣6,﹣4 D.1,﹣6,9 【分析】根据一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项可得答案.【解答】解:化简方程,得x2﹣6x+4=0,二次项系数;一次项系数;常数项分别为1,﹣6,4,故选:B.5.已知二次函数y=2x2﹣12x+19,下列结果中正确的是()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1D.当x<3时,y随x的增大而增大【分析】根据二次函数的性质对各选项分析判断后利用排除法求解.【解答】解:∵二次函数y=2x2﹣12x+19=2(x﹣3)2+1,∴开口向上,顶点为(3,1),对称轴为直线x=3,有最小值1,当x>3时,y随x的增大而增大,当x<3时,y随x的增大而减小;故C选项正确.故选:C.6.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1C.y=3(x+2)2﹣1 D.y=3(x+2)2+1【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式写出抛物线解析式即可.【解答】解:抛物线y=3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(﹣2,﹣1),所得抛物线为y=3(x+2)2﹣1.故选:C.7.若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为()A.﹣4 B.6 C.8 D.12【分析】根据(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4,根据一元二次方程根与系数的关系,即两根的和与积,代入数值计算即可.【解答】解:∵x1、x2是方程x2﹣3x﹣2=0的两个实数根.∴x1+x2=3,x1•x2=﹣2.又∵(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4.将x1+x2=3、x1•x2=﹣2代入,得(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4=(﹣2)+2×3+4=8.故选:C.8.已知二次函数y=(x﹣1)2﹣4,当y<0时,x的取值范围是()A.﹣3<x<1 B.x<﹣1或x>3 C.﹣1<x<3 D.x<﹣3或x>1 【分析】先求出方程(x﹣1)2﹣4=0的解,得出函数与x轴的交点坐标,根据函数的性质得出答案即可.【解答】解:∵二次函数y=(x﹣1)2﹣4,∴抛物线的开口向上,当y=0时,0=(x﹣1)2﹣4,解得:x=3或﹣1,∴当y<0时,x的取值范围是﹣1<x<3,故选:C.9.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.7【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x﹣1)场球,第二个球队和其他球队打(x﹣2)场,以此类推可以知道共打(1+2+3+…+x﹣1)场球,然后根据计划安排15场比赛即可列出方程求解.【解答】解:设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.10.小敏用一根长为8cm的细铁丝围成矩形,则矩形的最大面积是()A.4cm2B.8cm2C.16cm2D.32cm2【分析】本题考查二次函数最小(大)值的求法.【解答】解:设矩形的长为x,则宽为,矩形的面积=()x=﹣x2+4x,S最大===4,故矩形的最大面积是4cm2.故选:A.二.填空题(共6小题)11.已知两个数的差为3,它们的平方和是65,设较小的数为x,则可列出方程x2+(x+3)2=65 ,化成一般形式为x2+3x﹣28=0 .【分析】首先表示出两个数字进而利用勾股定理列出方程再整理即可.【解答】解:设较小的数为x,则另一个数字为x+3,根据题意得出:x2+(x+3)2=65,整理得出:x2+3x﹣28=0.故答案为:x2+(x+3)2=65,x2+3x﹣28=0.12.已知方程x2+2x﹣3=0的两根为a和b,则ab=﹣3 .【分析】直接根据根与系数的关系求解.【解答】解:根据题意得ab=﹣3.故答案为:﹣3.13.二次函数y=3x2+1和y=3(x﹣1)2,以下说法:①它们的图象开口方向、大小相同;②它们的对称轴都是y轴,顶点坐标都是原点(0,1);③当x>0时,它们的函数值y都是随着x的增大而增大;④它们与坐标轴都有一个交点;其中正确的说法有①.【分析】根据a的值可以判定开口方向和开口大小,利用顶点式直接找出对称轴和顶点坐标,利用对称轴和开口方向确定y随着x的增大而增大对应x的取值范围.【解答】解:①因为a=3>0,它们的图象都是开口向上,大小是相同的,故此选项正确;②y=3x2+1对称轴是y轴,顶点坐标是(0,1),y=3(x﹣1)2的对称轴是x=1,顶点坐标是(1,0),故此选项错误;③二次函数y=3x2+1当x>0时,y随着x的增大而增大;y=3(x﹣1)2当x>1时,y随着x的增大而增大,故此选项错误;④它们与x轴都有一个交点,故此选项错误;综上所知,正确的有①.故答案是:①.14.抛物线y=ax2+bx+c与x轴的公共点是(﹣2,0),(6,0),则此抛物线的对称轴是x =2 .【分析】因为点(﹣2,0),(6,0)的纵坐标都为0,所以可判定是一对对称点,把两点的横坐标代入公式x=求解即可.【解答】解:∵抛物线与x轴的交点为(﹣2,0),(6,0),∴两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x==2,即x=2.故答案是:x=2.15.函数y=x2﹣2x+2的图象顶点坐标是(1,1).【分析】根据二次函数解析式,进行配方得出顶点式形式,即可得出顶点坐标.【解答】解:y=x2﹣2x+2=x2﹣2x+1+1=(x﹣1)2+1,∵抛物线开口向上,当x=1时,y最小=1,∴顶点坐标是(1,1).故答案为:(1,1).16.点P(﹣2,3)关于x轴对称点的坐标是(﹣2,﹣3),关于原点对称点的坐标是(2,﹣3),关于y轴的对称点的坐标是(2,3);【分析】利用关于原点对称点的坐标性质以及关于x轴、y轴对称的点的坐标性质分别得出答案.【解答】解:点P(﹣2,3)关于原点的对称点的坐标为:(2,﹣3),关于x轴的对称点的坐标为(﹣2,﹣3),关于y轴的对称点的坐标为(2,3).故答案为:(﹣2,﹣3);(2,﹣3);(2,3).三.解答题(共9小题)17.解方程:x2﹣6x+5=0(配方法)【分析】利用配方法解方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得x2﹣6x=﹣5,等式两边同时加上一次项系数一半的平方32.得x2﹣6x+32=﹣5+32,即(x﹣3)2=4,∴x=3±2,∴原方程的解是:x1=5,x2=1.18.已知抛物线y=x2+bx+c的图象经过点(﹣1,0),点(3,0);求抛物线函数解析式.【分析】直接利用交点式写出抛物线的解析式.【解答】解:抛物线的解析式为y=(x+1)(x﹣3),即y=x2﹣2x﹣3.19.参加足球联赛的每两队之间都要进行一场比赛,共要比赛21场,共有多少个队参加足球联赛?【分析】设共有x个队参加比赛,则每队要参加(x﹣1)场比赛,根据共要比赛28场,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设共有x个队参加比赛,则每队要参加(x﹣1)场比赛,根据题意得:=21,整理得:x2﹣x﹣42=0,解得:x1=7,x2=﹣6(不合题意,舍去).答:共有7个队参加足球联赛.20.为进一步提升企业产品竞争力,某企业加大了科研经费的投入,2016年该企业投入科研经费5000万元就,2018年投入科研经费7200万元,假设该企业这两年投入科研经费的年平均增长率相同.(1)求这两年该企业投入科研经费的年平均增长率;(2)若该企业科研经费的投入还将保持相同的年平均增长率,请你预算2019年该企业投入科研经费多少万元.【分析】(1)设这两年该企业投入科研经费的年平均增长率为x,根据2016年及2018年投入科研经费,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据2019年投入科研经费=2018年投入科研经费×(1+增长率),即可求出结论.【解答】解:(1)设这两年该企业投入科研经费的年平均增长率为x,根据题意得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2.答:这两年该企业投入科研经费的年平均增长率为20%.(2)7200×(1+20%)=8640(万元).答:2019年该企业投入科研经费8640万元.21.某同学练习推铅球,铅球推出后在空中飞行的轨迹是一条抛物线,铅球在离地面1米高的A处推出,达到最高点B时的高度是2.6米,推出的水平距离是4米,铅球在地面上点C处着地(1)根据如图所示的直角坐标系求抛物线的解析式;(2)这个同学推出的铅球有多远?【分析】(1)设抛物线的解析式为y=a(x﹣4)2+2.6,由待定系数法求出其解即可;(2)当y=0时代入(1)的解析式,求出其解即可.【解答】解:(1)设抛物线的解析式为y=a(x﹣4)2+2.6,由题意,得1=a(0﹣4)2+2.6,解得:a=﹣0.1.故y=﹣0.1(x﹣4)2+2.6.答:抛物线的解析式为:y=﹣0.1(x﹣4)2+2.6;(2)由题意,得当y=0时,﹣0.1(x﹣4)2+2.6=0,解得:x1=+4,x2=﹣+4<0(舍去),故x=+4.答:这个同学推出的铅球有(+4)米远.22.已知:关于x的方程x2+2kx+k2﹣6=0(1)证明:方程有两个不相等的实数根;(2)如果方程有一个根为2,试求2k2+8k+2018的值.【分析】(1)计算判别式的中得到△=24,然后根据判别式的意义得到结论;(2)把x=2代入方程k2+4k=2,再把2k2+8k+2018表示为2(k2+4k)+2018,然后利用整体代入的方法计算.【解答】(1)证明:△=(2k)2﹣4(k2﹣6)=24>0,所以方程有两个不相等的实数根;(2)把x=2代入方程得4+4k+k2﹣6=0,所以k2+4k=2,所以2k2+8k+2018=2(k2+4k)+2018=2×2+2018=2022.23.某店销售台灯,成本为每个30元,销售大数据分析表明:当每个台灯售价为40元时,平均每月售出600个;若售价每下降1元,其月销售量就增加200个.(1)未降价之前,该店每月台灯总盈利为6000 元;(2)降价后,设该店每个台灯应降价x元,则每个台灯盈利(40﹣x)元,平均每月可售出[(40﹣x)×200+600] 个;(用含x的代数式进行表示)(3)为迎接“双十一”,该店决定降价促销,在库存为1210个台灯的情况下,若预计月获利恰好为8400元,求每个台灯的售价.【分析】(1)根据总盈利=单件获利乘以销量列出代数式;(2)根据“当每个台灯售价为40元时,平均每月售出600个;若售价每下降1元,其月销售量就增加200个”列出代数式(3)设每个台灯的售价为x元.根据每个台灯的利润×销售数量=总利润列出方程并解答;【解答】解:(1)依题意得:未降价之前,该店每月台灯总盈利为600×(40﹣30)=6000元.故答案是:6000.(2)降价后,设该店每个台灯应降价x元,则每个台灯盈利(x﹣30)元,平均每月可售出[(40﹣x)×200+600]个故答案为:(x﹣30),[(40﹣x)×200+600].(2)设每个台灯的售价为x元.根据题意,得(x﹣30)[(40﹣x)×200+600]=8400,解得x1=36(舍),x2=37.当x=36时,(40﹣36)×200+600=1400>1210;当x=37时,(40﹣37)×200+600=1200<1210;答:每个台灯的售价为37元.24.在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时,点Q从点B出发沿BC边向点C以每秒2cm的速度移动,如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:(1)当运动开始后1秒时,求△DPQ的面积;(2)当运动开始后秒时,试判断△DPQ的形状;(3)在运动过程中,存在这样的时刻,使△DPQ以PD为底的等腰三角形,求出运动时间.【分析】(1)根据运动时间求出PA,BQ,利用分割法求△DPQ的面积即可.(2)分别求出表示出DP2,PQ2,DQ2,进而得到PQ2+DQ2=DP2,得出答案;(3)假设运动开始后第x秒时,满足条件,则有QP=QD,表示出QP2,QD2,列出等式,构建方程方程,求出方程的解,根据时间大于0秒小于6秒,即可解答.【解答】解:(1)经过1秒时,AP=1,BQ=2,∵四边形ABCD是矩形,∴∠A=∠B=∠C=90°,AB=CD=6cm,BC=AD=12cm,∴PB=6﹣1=5(cm),CQ=BC﹣BQ=12﹣2=10(cm),∴S△DPQ=S矩形ABCD﹣S△ADP﹣S△PBQ﹣S△DCQ=72﹣×1×12﹣×6×2﹣×6×10=30(cm2).(2)当t=秒时,AP=,BP=6﹣=,BQ=×2=3,CQ=12﹣3=9,∴在Rt△DAP中,DP2=DA2+AP2=122+()2=,在Rt△DCQ中,DQ2=DC2+CQ2=62+92=117,在Rt△QBP中,QP2=QB2+BP2=32+()2=,∴DQ2+QP2=117+=,∴DQ2+QP2=DP2,∴△DPQ为直角三角形;(3)假设运动开始后第x秒时,满足条件,则:QP=QD,∵OP2=PB2+BQ2=(6﹣x)2+(2x)2,QD2=QC2+CD2=(12﹣2x)2+62,∴(12﹣2x)2+62=(6﹣x)2+(2x)2,整理,得:x2+36x﹣144=0,解得:x=﹣18±6,∵0<6﹣18<6,∴运动开始后第6﹣18秒时,△DPQ是以PD为底的等腰三角形.25.如图,抛物线y=与x轴交于A、B两点,△ABC为等边三角形,∠COD=60°,且OD=OC.(1)A点坐标为(2,0),B点坐标为(5,0);(2)求证:点D在抛物线上;(3)点M在抛物线的对称轴上,点N在抛物线上,若以M、N、O、D为顶点的四边形为平行四边形,请直接写出点M的坐标.【分析】(1)y=,令y=0,解得:x=2或5,即可求解;(2)证明△OAC≌△DBC(SAS),则BD=OA=2,∠OBD=60°,即可求解;(3)分OD是平行四边形的边、OD是平行四边形的对角线两种情况,分别求解.【解答】解:(1)y=,令y=0,解得:x=2或5,故答案为:(2,0)、(5,0);(2)连接CD、BD,由(1)知:OA=2,AB=3,等边三角形ABC的边长为3,∵△ABC为等边三角形,∴AC=BC,∠ACB=60°=∠CAB,∴∠CAO=120°,∵∠COD=60°,且OD=OC,则△OCD为等边三角形,∴OD=CD=CO,则∠OCD=60°=∠OCA+∠ACD,而∠ACB=60°=∠ACD+∠DCB,∴∠OCA=∠DCB,而CO=CD,CA=CB,∴△OAC≌△DBC(SAS),∴BD=OA=2,∠CBD=∠CAO=120°,而∠CBO=60°,∴∠OBD=60°,则y D=﹣BD sin∠OBD=﹣2×=﹣,故点D的坐标为(4,﹣),当x=4时,y==﹣,故点D在抛物线上;(3)抛物线的对称轴为:x=,设点M(,s),点N(m,n),n=m2﹣m+5,①当OD是平行四边形的边时,当点N在对称轴右侧时,点O向右平移4个单位,向下平移个单位得到D,同样点M向右平移4个单位,向下平移个单位得到N,即:+4=m,s﹣=n,而n=m2﹣m+5,解得:s=则点M(,);当点N在对称轴左侧时,同理可得:点M(,);②当OD是平行四边形的对角线时,则4=+m,﹣=n+s,而n=m2﹣m+5,解得:s=,故点M的坐标为:(,)或(,)或(,).新九年级上学期期中考试数学试题(含答案)一、选择题(每小题3分,共36分)1.下列说法错误的是()A.直径是弦B.最长的弦是直径C.垂直弦的直径平分弦D.经过三点可以确定一个圆2.已知⊙O的半径为1,且圆心O到直线l的距离是2,则直线l与圆的位置关系是()A.相交B.相切C.相离D.无法确定3.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位4.如图,PA,PB分别与⊙O相切于点A,B,连接AB.∠APB=60°,AB=7,则PA的长是()A.5 B.6 C.7 D.85.如图,已知⊙O的半径为13,弦AB的长为24,则圆心O到AB的距离为()A.3 B.4 C.5 D.66.如图,⊙O中,OC⊥AB,∠BOC=50°,则∠ADC的度数是()A.24°B.25°C.29°D.30°7.在△ABC中,已知AB=AC=5cm,BC=8cm,D是BC的中点,以D为圆心作一个半径为3cm的圆,则下列说法正确的是()A.点A在⊙D外B.点A在⊙D上C.点A在⊙D内D.无法确定8.点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°9.根据下列表格的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解为x的取值范围是()A.3<x<3.23 B.3.23<x<3.24C.3.24<x<3.25 D.3.25<x<3.2610.阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为()A.(60°,4)B.(45°,4)C.(60°,2)D.(50°,2)11.如图,在△ABC中,AB=8cm,BC=4cm,∠ABC=30°,把△ABC以点B为中心按逆时针方向旋转,使点C旋转到AB边的延长线上的点C′处,那么AC边扫过的图形图中阴影部分)的面积是()A.20πcm2B.(20π+8)cm2C.16πcm2D.(16π+8)cm2 12.如图,在直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P为直线y=﹣x+3上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)13.150°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是cm.14.如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为.15.点A(2,y1)、B(3,y2)是二次函数y=x2﹣2x+1的图象上两点,则y1与y2的大小关系为y1y2(填“>”、“<”、“=”).16.一个直角三角形的两边长分别为3,4,则此三角形的外接圆半径是.17.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m =0的解为.18.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为.19.⊙O的半径为5cm,AB、CD是⊙O的两条弦,AB∥CD,AB=8cm,CD=6cm.那么求得AB和CD之间的距离为.20.如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为弧AN的中点,P是直径MN上一动点,则PA+PB的最小值为.三、解答题(本大题共6小题,21--22每小题6分、23--26每小题6分,共40分)21.(6分)如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)22.(6分)已知:二次函数y=ax2+bx+c(a>0)的图象与x轴交于A(1,0)、B(5,0),抛物线的最小值为﹣4.求:(1)二次函数的解析式.(2)直接回答:当x取什么值时,y的值小于0.23.(7分)如图,已知CD是⊙O的直径,弦AB⊥CD,垂足为点M,点P是上一点,且∠BPC=60°.试判断△ABC的形状,并说明你的理由.24.(7分)如图所示,AB是⊙O的直径,C为的中点,CD⊥AB于点D,交AE于点F,连接AC,求证:AF=CF.25.(7分)如图,O是∠MAN的边AN上一点,以OA为半径作⊙O,交∠MAN的平分线于点D,DE⊥AM于E.(1)求证:DE是⊙O的切线;(2)连接OE,若∠EDA=30°,AE=1,求OE的长.26.(7分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.参考答案一、选择题1.下列说法错误的是()A.直径是弦B.最长的弦是直径C.垂直弦的直径平分弦D.经过三点可以确定一个圆【分析】根据弦的定义,以及经过不在同一直线上的三点可以作一个圆可判断和垂径定理分别得出即可.【解答】解:A.直径是弦,根据弦的定义是连接圆上两点的线段,∴故此选项正确,但不符合题意,B.最长的弦是直径,根据直径是圆中最长的弦,∴故此选项正确,但不符合题意,C.垂直弦的直径平分弦,利用垂径定理即可得出,故此选项正确,但不符合题意,D.经过三点可以确定一个圆,利用经过不在同一直线上的三点可以作一个圆,故此选项错误,符合题意,故选:D.【点评】此题考查了弦的定义、确定圆的条件、垂径定理等知识点的应用,关键是能根据这些定理进行说理和判断.2.已知⊙O的半径为1,且圆心O到直线l的距离是2,则直线l与圆的位置关系是()A.相交B.相切C.相离D.无法确定【分析】判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.【解答】解:∵⊙O的半径为1,圆心O到直线L的距离为2,∴r=1,d=2,∴d>r,∴直线与圆相离,故选:C.【点评】本题考查直线由圆位置关系,记住.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r是解题的关键.3.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位【分析】根据“左加右减,上加下减”的原则进行解答即可.【解答】解:抛物线y=x2向左平移2个单位可得到抛物线y=(x+2)2,抛物线y=(x+2)2,再向下平移3个单位即可得到抛物线y=(x+2)2﹣3.故平移过程为:先向左平移2个单位,再向下平移3个单位.故选:B.【点评】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.4.如图,PA,PB分别与⊙O相切于点A,B,连接AB.∠APB=60°,AB=7,则PA的长是()A.5 B.6 C.7 D.8【分析】根据切线长定理得到PA=PB,则判断△PAB为等边三角形,从而得到PA=AB=7.【解答】解:∵PA,PB分别与⊙O相切于点A,B,∴PA=PB,∵∠APB=60°,∴△PAB为等边三角形,∴PA=AB=7.故选:C.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等边三角形的判定与性质.5.如图,已知⊙O 的半径为13,弦AB 的长为24,则圆心O 到AB 的距离为( )A .3B .4C .5D .6【分析】过O 作OC ⊥AB 于C ,连接OA ,根据垂径定理求出AC ,根据勾股定理求出OC 即可.【解答】解:过O 作OC ⊥AB 于C ,连接AC ,∴AC =BC =AB =12,在Rt △AOC 中,由勾股定理得:OC ===5.故选:C .【点评】本题考查了垂径定理和勾股定理的应用,作辅助线构造直角三角形是解题的关键.6.如图,⊙O 中,OC ⊥AB ,∠BOC =50°,则∠ADC 的度数是( )A .24°B .25°C .29°D .30°【分析】由OC ⊥AB ,推出=,可得∠ADC =∠COB =25°.【解答】解:∵OC ⊥AB ,∴=,∴∠ADC =∠COB =25°,故选:B .【点评】本题考查垂径定理,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.在△ABC中,已知AB=AC=5cm,BC=8cm,D是BC的中点,以D为圆心作一个半径为3cm的圆,则下列说法正确的是()A.点A在⊙D外B.点A在⊙D上C.点A在⊙D内D.无法确定【分析】连结AD,根据等腰三角形的性质得到AD⊥BC,在Rt△ABD中,AB=5cm,BD=BC=4cm,根据勾股定理可计算出AD=3cm,然后根据点与圆的位置关系的判定方法可判断点A在⊙D上.【解答】解:连结AD,如图,∵AB=AC,D是BC的中点,∴AD⊥BC,BD=BC=4cm在Rt△ABD中,AB=5cm,BD=4cm,∴AD==3cm,∵⊙D的半径为3cm,∴点A在⊙D上.故选:B.【点评】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.也考查了等腰三角形的性质和勾股定理.8.点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°【分析】利用圆周角定理以及圆内接四边形的性质得出∠BAC的度数.【解答】解:如图所示:∵O是△ABC的外心,∠BOC=80°,∴∠A=40°,∠A′=140°,故∠BAC的度数为:40°或140°.故选:C.【点评】此题主要考查了圆周角定理以及圆内接四边形的性质,利用分类讨论得出是解题关键.9.根据下列表格的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解为x的取值范围是()A.3<x<3.23 B.3.23<x<3.24C.3.24<x<3.25 D.3.25<x<3.26【分析】根据函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=0的根,再根据函数的增减性即可判断方程ax2+bx+c=0一个解的范围.【解答】解:函数y=ax2+bx+c的图象与x轴交点的横坐标就是方程ax2+bx+c=0的根,函数y=ax2+bx+c的图象与x轴的交点的纵坐标为0;由表中数据可知:y=0在y=﹣0.03与y=0.09之间,对应的x的值在3.25与3.26之间,即3.25<x<3.26.故选:D.【点评】本题考查了用函数图象法求一元二次方程的近似根,是中考的热点问题之一.掌握函数y=ax2+bx+c的图象与x轴的交点与方程ax2+bx+c=0的根的关系是解决此题的关。
2015届新人教版九年级数学上期中试题及答案
海淀区九年级第一学期期中练习2014.11数学试卷答案及评分参考阅卷须知:1. 为便于阅卷,本试卷答案中有关解答题的推导步骤写的较为详细,阅卷时,只要考生将主要过程正确写出即可.2. 若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3. 评分参考中所注分数,表示考生正确做到此步应得的累加分数.二、填空题(本题共16分,每小题4分)9. 5 ;10. 4 ;11. >;12. 30°或60°.(注:每个答案2分)三、解答题(本题共30分,每小题5分)13.(本小题满分5分)解:∵131a ,b ,c ===-, …………………………………………………………………1分 ∴2341(1)=13>0∆=-⨯⨯-. … ……………………………………………………2分∴x == ∴12x . ……………………………………………………5分 14.(本小题满分5分)证明:∵∠DAB =∠EAC ,∴∠DAB +∠BAE =∠EAC+∠BAE .∴∠DAE =∠BAC . ………………………………………………………………1分 在△BAC 和△DAE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,,, ∴△BAC ≌△DAE . ………………………………………………………………4分 ∴BC =DE . ………………………………………………………………………5分15.(本小题满分5分)解:设二次函数的解析式为()225y a x =-+ (0)a ≠.……………………………1分 ∵二次函数的图象经过点(0,1).∴()21025a =-+.………………………………………………………………2分 ∴1a =-. …………………………………………………………………………4分 ∴二次函数的解析式为241y x x =-++.………………………………………5分16. (本小题满分5分)解:∵四边形ABCD 内接于⊙O ,∴∠ADC +∠ABC =180°. …………………………………………………………1分 ∵∠ABC =130°,∴∠ADC =180°-∠ABC =50°. …………………………………………………2分∴∠AOC =2∠ADC =100°. ………………………………………………………3分 ∵OA=OC ,∴∠OAC =∠OCA . ……………………………………………………………4分∴∠OAC =1(180)402AOC -∠= . ……………………………………………… 5分 17. (本小题满分5分)解:依题意,得 21420m m -+=. ……………………………………………………2分∴2241m m -=-. ………………………………………………………………3分 ∴()()2222132213245154+=m m m m m --++=-+=-+=. …………5分18. (本小题满分5分)解:设每期减少的百分率为x .…………………………………………………… ……1分 由题意,得()24501288x -=. ……………………………………………… ………2分 解方程得 115x =,295x =. ………………………………………………… ……3分 经检验,915x =>不合题意,舍去;15x = 符合题意. ……………… …………4分 答:每期减少的百分率为20%. ……………………………………………… ………5分四、解答题(本题共20分,每小题5分)19. (本小题满分5分)解:(1)3. …………………………………………………………………………… 2分(2)小丁随机选择该月1日至15日中的某一天到达该市,则到达该市的日期有15种不同的选择,在其中任意一天到达的可能性相等. ……………3分 由图可知,其中有9天空气质量优良. ………………………………… ……4分所以,P (到达当天空气质量优良)93155==. …………………… ………5分20. (本小题满分5分)解:(1)∵0a ≠,∴原方程为一元二次方程. ∴()234(3)a a ∆=--⨯⨯- ………………………………………………1分 ()23a =+.∵()230≥a +.∴此方程总有两个实数根. …………………………………………………2分(2)解原方程,得 11x =-,23x a=. ……………………………………………3分 ∵此方程有两个负整数根,且a 为整数,∴1a =-或3-. …………………………………………………………………4分 ∵12x x ≠,∴3a ≠-.∴1a =-. ………………………………………………………………………5分21. (本小题满分5分)(1)证明:连接OC .∵OC=OD ,∠D =30°,∴∠OCD =∠D = 30°.…………………………………1分∵∠G =30°,∴∠DCG =180°-∠D -∠G =120°.∴∠GCO =∠DCG -∠OCD =90°.∴OC ⊥CG .又∵OC 是⊙O 的半径.∴CG 是⊙O 的切线.……………………………………2分(2)解:∵AB 是⊙O 的直径,CD ⊥AB , ∴132CE CD ==. ………………………………………………………3分 ∵在Rt △OCE 中,∠CEO =90°,∠OC E =30°, ∴12OE OC =,222OC OE CE =+. 设OE x =,则2OC x =.∴()22223x x =+.解得x =∴OC = ………………………………………………………………4分∴OF =在△OCG 中,∵∠OCG =90°,∠G =30°,∴2OG OC ==∴GF GO OF =-= ……………………………………………………5分22. (本小题满分5分)答:(1)53. …………………………………………………………………………………1分(2)12, ………………………………………………………………………………2分3,2,4--或2,3,4--.(写出一个即可)…………………………………………3分(3)11或4.(每个答案各1分) ……………………………………………………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. (本小题满分7分)解:(1)∵ 抛物线2(1)y x m x m =---(0)m >与x 轴交于A 、B 两点,∴ 令0y =,即 2(1)0x m x m ---=.解得 11x =-,2x m =. …………………………………………………1分 又∵ 点A 在点B 左侧,且0m >,∴ 点A 的坐标为(1,0)-. …………………………………………………2分(2)由(1)可知点B 的坐标为(0)m ,.∵抛物线与y 轴交于点C ,∴点C 的坐标为(0,)m -. ……………………………………………………3分 ∵0m >,∴1AB m =+,OC m =. ∵15△ABC S =,∴1(1)152m m +=. ∴6m =-或5m =.∵0m >, ∴5m =.∴抛物线的表达式为245y x x =--. ………………………4分(3)由(2)可知点C 的坐标为(0,5)-.∵直线l :y kx b =+(0)k <经过点C ,∴5b =-. ………………………………………5分 ∴直线l 的解析式为5y kx =-(0)k <. ∵2245(2)9y x x x =--=--,∴当点D 在抛物线顶点处或对称轴左侧时,新函数的最小值为9-,不符合题意. 当点D 在抛物线对称轴右侧时,新函数的最小值有可能大于8-. 令8y =-,即2458x x --=-.解得 11x =(不合题意,舍去),23x =. ∴抛物线经过点(3,8)-.当直线5y kx =-(0)k <经过点(3,8)-时,可求得1k =-.…………………6分 由图象可知,当10k -<<时新函数的最小值大于8-. ………………………7分24.(本小题满分7分)解:(1)①30°. …………………………………………………………………………1分②不改变,∠BDC 的度数为30.方法一:由题意知,AB=AC=AD .∴点B 、C 、D 在以A 为圆心,AB 为半径的圆上.…………………………2分 ∴∠BDC=12∠BAC =30.……………………………………………………3分 方法二:由题意知,AB=AC=AD . ∵AC =AD ,∠CAD =α,∴1801=9022ADC C αα-==- ∠∠.…………………………………2分 ∵AB=AD ,∠BAD =60α+,∴()18060120160222ADB B ααα-+-====- ∠∠. ∴11(90)(60)3022BDC ADC ADB αα=-=---=∠∠∠.…………3分(2)过点A 作AM ⊥CD 于点M ,连接EM .∴90AMC ∠=. 在△AEB 与△AMC 中,AEB AMC B ACD AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△AEB ≌△AMC . ………………………………………………………4分 ∴AE AM =,BAE CAM ∠=∠.∴60EAM EAC CAM EAC BAE BAC ∠=∠+∠=∠+∠=∠=.∴△AEM 是等边三角形.∴EM AM AE ==. …………………………………………………………5分 ∵AC AD =,AM CD ⊥ , ∴CM DM =. 又90DEC ∠=,∴EM CM DM ==.∴AM CM DM ==. …………………………………………………………6分 ∴点A 、C 、D 在以M 为圆心,MC 为半径的圆上.∴90CAD α=∠= . …………………………………………………………7分 25. (本小题满分8分)解: (1)(0,10). …………………………………………………………………1分(2)连接BP 、OP ,作PH ⊥OA 于点H .∵5,b =PH ⊥OA , ∴152OH AH OA ===.∵OQ =8,∴3QH OQ OH =-=.在Rt △QHP 中,22229PQ QH PH PH =+=+.在Rt PHO △中,2222225PO OH PH PH BP =+=+=.在Rt △BQP 中,22222(25)(9)16BQ BP PQ PH PH =-=+-+=. ∴4BQ =.……………………………………………………………………3分(3)①1≥a .……………………………………………………………………………4分……………………………………………………………………………5分 解:∵△BQP是等腰直角三角形,PQ =∴半径BP = 又∵2(,)P a a ,∴2242OP a a =+=. 即42200a a +-=.解得2a =±.∵0a >,∴2a =. ……………………………………………………………………………6分 ∴(2,4)P .如图,作BM y ⊥轴于点M ,则△QBM ≌△PQH . ∴2MQ PH ==,MB QH ===∴1B . …………………………………7分若点Q 在OH上,由对称性可得2B . ……………………………8分综上,当PQ =B点坐标为或.。
最新人教版九年级数学上学期期中考试试卷【含答题卡、参考答案】
A
B
C
D
6.把抛物线 y x2 向右平移 2 个单位,再向下平移 3 个单位,即得到抛物线( )
A、 y x 22 3
B、 y x 22 3
C、 y x 22 3
D、 y x 22 3
7.抛物线 y x2 x 1与 x 轴的公共点个数是( )
第 20 题图
( ) 20.(8 分)已知抛物线 y x2 bx c 经过点 A 1, 0 , B (0,5) .
(1)求抛物线的解析式; (2)设(1)中抛物线与 X 轴的另一交点为 C,抛物线的顶点为 D,试求出点 C、D 的坐标和△BCD 的面积.
(1)(10 分)购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过 20 件,单价 为 160 元;如果一次性购买多于 20,那么每增加 1 件,购买的所有服装的单价降低 2 元,但单价不 得低于 100 元,按此优惠,小哲同学一次性购买这种服装付了 4800 元,请问他购买了多少件这种服 装?
P 为原点,直线 PC 为 x 轴建立适当的平面直角坐标系解决下列问题. (1)求水平距离 PC 的长; (2)求出球的飞行路线所在抛物线的解析式; (3)判断小明这一杆能否把高尔夫球从 P 点直接打入球洞 A ,并说明理由.
第 22 题图
(图 1)
(图 2) 第 23 题图
(图 3)
23.(10 分)(1)如图 1, △ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE=90°,求证: △ACD≌△BCE.
(1)画出△ABC 绕点 B 逆时针旋转 90°后得到的△ A1BC1 ,其中 A、C 的对应点是 A1 、 C1 . (2)平移△ABC,使得 A 点落在 x 轴上,B 点落在 y 轴上,画出平移后的△ A2 B2C2 ,写出 A、B、 C 的对应点是 A2 、 B2 、 C2 的坐标.
人教版九年级上册数学期中考试试题含答案
人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是中心对称图形的是A .B .C .D .2.将方程23610x x -+=化成一元二次方程的一般形式,其中二次项系数、一次项系数和常数项分别是()A .3,6,1-B .3,6,1C .3,16-D .3,1,63.抛物线()221y x =--的顶点坐标是()A .()2,1-B .()2,1--C .()2,1D .()2,1-4.关于x 的方程2420x x m -++=有一个根为1,-则另一个根为()A .2B .2-C .5D .5-5.将二次函数213y x =的图象向右平移1个单位,再向上平移3个单位,所得图象的解析式为()A .()21133y x =-+B .()21133y x =++C .()21y x 133=--D .()21133y x =+-6.“双十一”即指每年的11月11日,是指由电子商务代表的在全中国范围内兴起的大型购物促销狂欢日.2017年双十一淘宝销售额达到1682亿元.2019年双十一淘宝交易额达2684亿元,设2017年到2019年淘宝双十一销售额年平均增长率为,x 则下列方程正确的是A .()168212684x +=B .()1682122684x +=C .()2168212684x +=D .()()216821168212684x x +++=7.如图,ABC 中,90,40ACB ABC ︒︒∠=∠=.将ABC 绕点B 逆时针旋转得到A BC ''△,使点C 的对应点C '恰好落在边AB 上,则CAA '∠的度数是()A .50︒B .70︒C .110︒D .120︒8.若无论x 取何值,代数式()()13x m x m +--的值恒为非负数,则m 的值为()A .0B .12C .13D .19.已知二次函数2(,,y ax bx c a b c =++是实数,且0a ≠)的图象的对称轴是直线2x =,点()11,A x y 和点2(),z B x y 为其图象上的两点,且12y y <()A .若120,x x -<则1240x x +-<B .若120,x x -<则1240x x +->C .若120,x x ->则()1240a x x +->D .若120,x x ->则()1240a x x +-<10.关于x 的二次函数22(81)8y mx m x m =+++的图像与x 轴有交点,则m 的范围是()A .116m <-B .116m ≥-且0m ≠C .116m =-D .116m >-且0m ≠二、填空题11.点(1,4)M -关于原点对称的点的坐标是_______________________.12.若关于x 的一元二次方程2320x x m -+=有两个相等的实数根;则m 的值为__________.13.如图,四边形ABCE 是О 的内接四边形,D 是CB 延长线上的一点,40,ABD ∠=︒那么AOC ∠的度数为_______________________o14.如图,把小圆形场地的半径增加6m 得到大圆形场地,场地面积扩大了一倍,则小圆形场地的半径为________________________.m 15.已知二次函数2(,,y ax bx c a b c =++为常数,0,0a c ≠>)上有五点()()1,01,(),p t n -、、()()2,3,0t 、;有下列结论:①0b >;②关于x 的方程20ax bx c ++=的两个根是1-和3;③20p t +<;④()(4m am b a c m +≤--为任意实数).其中正确的结论_______________(填序号即可).16.如图,四边形ABCD 的两条对角线,AC BD 所成的锐角为60,10AC BD += ,则四边形ABCD 的面积最大值为_______________________.三、解答题17.解方程:260x x +-=.18.10月11日,2020中国女超联赛在昆明海堙基地落幕,最终武汉车都江大队夺得冠军.本赛季共有x 支球队参加了第一阶段的比赛,每两队之间进行一场比赛,第一阶段共进行了45场比赛,求x 的值.19.如图,AD=CB ,求证:AB=CD .20.如图,已知,,A B C 均在O 上,请用无刻度的直尺作图.(1)如图1,若点D 是AC 的中点,试画出B Ð的平分线;(2)若42A ∠= ,点D 在弦BC 上,在图2中画出一个含48 角的直角三角形.21.已知二次函数243y x x =-+-(1)若33x -≤≤,则y 的取值范围为_(直接写出结果);(2)若83y -≤≤-,则x 的取值范围为(直接写出结果);(3)若()()12,,1,A m y B m y +两点都在该函数的图象上,试比较1y 与2y 的大小.22.某公司经过市场调查,整理出某种商品在某个月的第天的售价与销量的相关信息如下表:第x 天售价(元件)日销售量(件)130x ≤≤60x +30010x-已知该商品的进价为40元/件.设销售该商品的日销售利润为y 元.(1)求y 与x 的函数关系式;(2)问销售该商品第几天时,日销售利润最大,最大日销售利润为多少元?(3)问在当月有多少天的日销售利润不低于5440元.请直接写出结果.23.如图,已知格点ABC 和点O .(1)A B C '''V 和ABC 关于点O 成中心对称,请在方格纸中画出A B C '''V (2)试探究,以点A ,O ,C ',D 为顶点的四边形为平行四边形的D 点有__________个.24.(问题背景)(1)如图1,Р是正三角形ABC 外一点,30APB ∠= ,则222PA PB PC +=小明为了证明这个结论,将PAB ∆绕点A 逆时针旋转60,请帮助小明完成他的作图;(迁移应用)(2)如图2,在等腰Rt ABC ∆中,,90BA BC ABC =∠= ,点P 在ABC ∆外部,使得45BPC ∠= ,若 4.5PAC S = ,求PC ;(拓展创新)(3)如图3,在四边形ABCD 中,//,AD BC 点E 在四边形ABCD 内部.且,DE EC =90,DEC ∠= 135AEB ∠=︒,3,4,AD BC ==直接写出AB 的长.25.已知抛物线()2:0C y ax bx c a =++>,顶点为()0,0.(1)求,b c 的值;(2)如图1,若1,a P =为y 轴右侧抛物线C 上一动点,过P 作直线PN x ⊥轴交x 轴于点,N 交直线1:22l y x =+于点M ,设点P 的横坐标为m ,当2PM PN =时,求m 的值;(3)如图2,点()00,P x y 为y 轴正半轴上一定点,点,A B 均为y 轴右侧抛物线C 上两动点,若APO BPy ∠=∠,求证:直线AB 经过一个定点.参考答案1.B 【分析】根据中心对称图形的概念解答即可.【详解】解:A 、不是中心对称图形.故错误;B 、是中心对称图形.故正确;C 、不是中心对称图形.故错误;D 、不是中心对称图形.故错误.故选:B .【点睛】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.A 【分析】根据一元二次方程的定义判断即可;【详解】∵方程23610x x -+=,∴二次项系数为3,一次项系数为-6,常数项为1;故答案选A .【点睛】本题主要考查了一元二次方程的一般形式,准确分析判断是解题的关键.3.D 【分析】根据抛物线的解析式即可得.【详解】抛物线()221y x =--的顶点坐标是()2,1-,故选:D .【点睛】本题考查了求二次函数的顶点坐标,熟练掌握二次函数的顶点坐标的求法是解题关键.4.C 【分析】根据一元二次方程根与系数的关系求解.【详解】解:设原方程的另一根为x ,则:4141x --+=-=,∴x=4+1=5,故选C .【点睛】本题考查一元二次方程的应用,根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题关键.5.A 【分析】根据函数图象的平移方法判断即可;【详解】二次函数213y x =的图象向右平移1个单位,再向上平移3个单位,可得:()21133y x =-+;故答案选A .【点睛】本题主要考查了二次函数图象的平移,准确分析判断是解题的关键.6.C 【分析】根据一元二次方程增长率问题模型()1na xb +=列式即可.【详解】由题意,增长前为1682a =,增长后2684b =,连续增长2年,代入得()2168212684x +=;故选:C .【点睛】本题考查了一元二次方程在增长率问题中的应用,熟练掌握基本模型,理解公式,找准各数量是解决问题的关键.7.D 【分析】由余角的性质,求出∠CAB=50°,由旋转的性质,得到40ABA '∠=︒,AB A B '=,然后求出BAA '∠,即可得到答案.【详解】解:在ABC 中,90,40ACB ABC ︒︒∠=∠=,∴∠CAB=50°,由旋转的性质,则40ABA '∠=︒,AB A B '=,∴1(18040)702BAA '∠=⨯︒-︒=︒,∴''50+70=120CAA CAB BAA ∠=∠+∠=︒︒︒;故选:D .【点睛】本题考查了旋转的性质,三角形的内角和定理,以及余角的性质,解题的关键是掌握所学的性质,正确求出70BAA '∠=︒.8.B 【分析】先利用多项式乘多项式的法则展开,再根据代数式(x +1−3m )(x−m )的值为非负数时△≤0以及平方的非负性即可求解.【详解】解:(x +1−3m )(x−m )=x 2+(1−4m )x +3m 2−m ,∵无论x 取何值,代数式(x +1−3m )(x−m )的值恒为非负数,∴△=(1−4m )2−4(3m 2−m )=(1−2m )2≤0,又∵(1−2m )2≥0,∴1−2m =0,∴m =12.故选:B .【点睛】本题考查了多项式乘多项式,二次函数与一元二次方程的关系,偶次方非负数的性质,根据题意得出(x +1−3m )(x−m )的值为非负数时△≤0是解题的关键.9.D 【分析】根据二次函数的性质和题目中的条件,可以判断选项中的式子是否正确;【详解】∵二次函数2(,,y ax bx c a b c =++是实数,且0a ≠)的图象的对称轴是直线2x =,点()11,A x y 和点2(),z B x y 为其图象上的两点,且12y y <,∴若a >0,1x <2<2x ,则可能出现124+-x x >0,故A 错误;若a <0,122x x <<,则1240x x +-<,故B 错误;若0a >,12x x >,则1240x x +-<,则()1240a x x +-<,故C 错误;若0a >,12x x >,则1240x x +-<,则()1240a x x +-<,若0a <,12x x >,则1240x x +->,则()1240a x x +-<,故D 正确;故答案选D .【点睛】本题主要考查了二次函数的性质,二次函数图象上点的坐标特征,准确分析计算是关键.10.B 【详解】试题分析:二次函数图象与x 轴有交点,则△=b 2-4ac≥0,且m≠0,列出不等式则可.由题意得2(81)8800m m m m ⎧+-⨯≥⎨≠⎩,解得116m ≥-且0m ≠,故选B.考点:该题考查函数图象与坐标轴的交点判断点评:当△=b 2-4ac >0时图象与x 轴有两个交点;当△=b 2-4ac=0时图象与x 轴有一个交点;当△=b 2-4ac <0时图象与x 轴没有交点.同时要密切注意11.()1,4-【分析】由关于原点对称的点的坐标特征可以得到解答.【详解】解:∵关于原点对称的点的坐标特征为:x x y y =-⎧⎨=-''⎩,由题意得:x=1,y=-4,∴14x y -''=⎧⎨=⎩,∴点M(1,−4)关于原点对称的点的坐标是(-1,4),故答案为(-1,4).【点睛】本题考查图形变换的坐标表示,熟练掌握关于原点对称的点的坐标特征是解题关键.12.13【分析】根据关于x 的一元二次方程2320x x m -+=有两个相等的实数根,得出关于m 的方程,求解即可.【详解】解:∵关于x 的一元二次方程2320x x m -+=有两个相等的实数根,∴△=b 2-4ac=(-2)2-4×3m=0,解得m=13,故答案为:13.【点睛】本题考查了根的判别式,掌握知识点是解题关键.13.80【分析】先根据补角的性质求出∠ABC 的度数,再由圆内接四边形的性质求出∠AEC 的度数,由圆周角定理即可得出∠AOC 的度数.【详解】解:∵∠ABD =40°,∴∠ABC =180°−∠ABD =180°−40°=140°,∵四边形ABCE 为⊙O 的内接四边形,∴∠AEC =180°−∠ABC =180°−140°=40°,∴∠AOC =2∠AEC =2×40°=80°.故答案为:80.【点睛】本题考查的是圆周角定理及圆内接四边形的性质,掌握圆内接四边形的性质和圆周角定理是解答此题的关键.14.6【分析】根据等量关系“大圆的面积=2×小圆的面积”可列方程求解;【详解】设小圆的半径为xm ,则大圆的半径为()6x m +,根据题意得:()2262x x ππ+=,即2212362x x x ++=,解得:16x =+,26x =-(舍去);故答案是:6.【点睛】本题主要考查了一元二次方程的应用,准确分析计算是解题的关键.15.①②④【分析】由抛物线的对称性可知对称轴为0212x +==,可得0p =,即1x =-,3x =是方程20ax bx c ++=的两个根,再根据题目当中给出的条件,代入解析式判断求解即可;【详解】当0x =和2x =时,y t =,∴对称轴为0212x +==,∴当1x =-,3x =时,y 的值相等,∴0p =,∴1x =-,3x =是方程20ax bx c ++=的两个根,故②正确;∵当0x =时,y t =,且c >0,∴t c =>0,∴202p t t +=+>0,故③错误;∵2x =,y t =>0,3x =,0y =,∴在对称轴的右边,y 随x 的增大而减小,∴a <0,∵12bx a =-=,∴2b a =->0,故①正确;∵当3x =时,0y =,∴930a b c ++=,∴30a c +=,∴3c a =-,∴443a c a a a --=-+=-,∵顶点坐标为()1,n ,a <0,∴2am bm c a b c ++≤++,∴2am bm a b +≤+,∴2am bm a +≤-,∴24am bm a c +≤--,故④正确;综上所述:结论正确的是①②④;故答案是:①②④.【点睛】本题主要考查了二次函数图象性质,熟练掌握二次函数图像上点的特征是解题的关键.16.4【分析】根据四边形面积公式,S =12AC×BD×sin60°,根据sin60°=2得出S =12x (10−x )×2,再利用二次函数最值求出即可.【详解】解:∵AC 与BD 所成的锐角为60°,∴根据四边形面积公式,得四边形ABCD 的面积S =12AC×BD×sin60°,设AC =x ,则BD =10−x ,所以S =12x (10−x )×32=34-(x−5)2+2534,所以当x =5,S 有最大值4.【点睛】此题主要考查了四边形面积公式以及二次函数最值,利用二次函数最值求出四边形的面积最大值是解决问题的关键.17.12x =,23x =-【分析】利用因式分解法解方程.【详解】解:()()230x x -+=∴20x -=或30x +=,∴12x =,23x =-.【点睛】本题考查一元二次方程的解法,选择合适的解法是关键.18.10【分析】因为每两队之间进行一场比赛,所以x 支球队之间共进行()112x x -场比赛,由此建立等式计算即可.【详解】()11452x x -=解得10x =或9-0,x > 10,x ∴=答:x 的值为10.【点睛】本题考查了一元二次方程的应用,解题关键在于读懂题意,得出总场数与球队数之间的关系.19.证明见解析.【详解】试题分析:由在同圆中,弦相等,则所对的弧相等和等量加等量还是等量求解.试题解析:∵AD =BC ,,AD BC= ,AD BDBC BD +=+∴ ,AD CD=∴AB =CD .20.(1)见解析;(2)见解析【分析】(1)根据题意连接OD 并延长交劣弧AC 于E 即可得解;(2)延长AD 交圆于M ,连接BO 并延长交圆于N ,即可得到;【详解】解:()1连接OD 并延长交劣弧AC 于E ,连接EB 即为所求:()2延长AD 交圆于,M 连接BO 并延长交圆于,N 连接;,,MN MB BMN ∆即为所求;.【点睛】本题主要考查了利用圆周角定理、垂径定理作图,准确分析判断是解题的关键.21.(1)241y -≤≤;(2)10x -≤≤或45x ≤≤;(3)32m >时21y y <,32m =时21y y =,32m <时21y y >【分析】(1)根据题意得出二次函数的对称轴,再利用已知的x 的取值范围计算即可;(2)分别令3y =-和8y =-,计算即可;(3)分别表示出1y 和2y ,分别令21y y -的取值计算即可;【详解】解:(1)∵243y x x =-+-,33x -≤≤,∴二次函数的对称轴22bx a =-=,∴最小值:当3x =-时,24y =-,最大值:当2x =时,1y =;故:241y -≤≤.(2)∵243y x x =-+-,83y -≤≤-,令3y =-,得0x =或4;令8y =-,得-1x =或5;∴10x -≤≤或45x ≤≤.()3A B 、两点都在该函数图象上,2143y m m ∴=-+-,()()22214132y m m m m =-+++-=-+,2132y y m -=-,令210y y ->,即21y y >,此时32m <,令210y y -=,即21y y =,此时32m =,令210y y -<,即21y y <,此时32m >,综上32m >时21y y <,32m =时21y y =,32m <时21y y >.【点睛】本题主要考查了二次函数的性质,准确分析计算是解题的关键.22.(1)y=2101006000x x -++;(2)第五天日销售利润最大,最大日销售利润为6250元;(3)14天【分析】(1)根据日销售利润等于单件利润乘以销售量即可得解;(2)化二次函数一般式为顶点式,即可判断求解;(3)根据题意列不等式求解即可;【详解】解:(1)()()604030010=+--y x x ,2101006000x x =-++;(2)当130x ≤≤时,2101006000=-++y x x ()21056250=--+x ,∵10a =-<0,∴二次函数开口向下,由题可知:函数对称轴为5x =,∴当5x =时,最大值为6250;答:第五天日销售利润最大,最大日销售利润为6250元.(3)∵2101006000=-++y x x ()21056250=--+x ,当5400y ≥时,()210562505400--+≥x ,解得:414x -≤≤,∵130x ≤≤,∴共有14天.【点睛】本题主要考查了二次函数的应用,准确分析计算是解题的关键.23.(1)见解析;(2)3【分析】(1)根据中心对称的作法,找出对称点,即可画出图形;(2)根据平行四边形的判定,画出使以点A 、O 、C′、D 为顶点的四边形是平行四边形的点即可.【详解】解:(1)作射线AO,BO,CO,在射线上截取A′O=AO,B′O=BO,C′O=CO,顺次连接'''''',A B B C C A,,'''为所求,如图所示△A B C(2)平行四边形AOC′D1,平行四边形AOD2C′,平行四边形AD3OC′∴以点A,O,C',D为顶点的四边形为平行四边形的D点有3个故答案为:3【点睛】此题考查了作图-旋转变换,用到的知识点是中心对称、平行四边形的判定,关键是掌握中心对称的作法,作平行四边形时注意画出所有符合要求的图形.24.(1)见解析;(2)3;(3)5【分析】(1)根据旋转的定义和性质解答;(2)由题意可以得到PBC MBA ∆≅∆,由此可得90AMP ∠= 和PC=AM ,最后由△PAC 的面积等于4.5可以求得PC 的值;(3)根据三角形的性质解答.【详解】(1)如图,作60PAP AP AP ∠=︒'=',,连结P C ',则P AC '△即为所求作的图形:(2)作线段BM 垂直于BP 交PC 延长线于点.M 连接,AM 45,90BPM PBM ∠=︒∠=BPM △为等腰直角三角形,,BP BM ∴=90ABM MBC ABC PBM PBC MBC∠+∠=∠==∠=∠+∠,PBC ABM ∴∠=∠在PBC ∆与MBA ∆中:PB BMPBC ABM BC BA=⎧⎪∠=∠⎨⎪=⎩()PBC MBA SAS ∴∆≅∆90AMP =∴∠21122PAC S PC AM PC ∆∴=⋅=3PC ∴=(3)5.证明如下:如图,将AED 顺时针旋转90︒至FEC ,则ADE FCE ∠=∠,AD FC =,//,90AD BC DEC ∠=︒ ,90ADE BCE ∴∠+∠=︒,即90FCE BCE FCB ∠+∠=∠=︒FCB ∴△为直角三角形,其中3FC AD ==,4BC =,由勾股定理得5BF =,又 旋转角为90︒,即90AEF ∠=︒,则360135BEF AEB AEF ∠=︒-∠-∠=︒,即AEB FEB ∠=∠,在AEB △与FEB 中,AE AFAEB FEB BE BE=⎧⎪∠=∠⎨⎪=⎩∴()AEB FEB SAS △△≌5AB BF ∴==【点睛】本题考查三角形的应用,熟练掌握三角形全等的判定和性质、旋转的意义和性质、等腰三角形和直角三角形的性质是解题关键.25.(1)0,0b c ==;(2)1712m +=或43;(3)见解析【分析】(1)利用二次函数顶点式,代入顶点即可求解;(2)利用二次函数解析式和一次函数解析式,用m 去表示P 、M 点的纵坐标,再利用2PM PN =列出等量关系式即可求解m ;(3)作A 点关于二次函数对称轴的对称点M ,设()2,A p ap 则()2,M p ap -,由已知和中垂线定理可得MPO OPA BPy ∠=∠=∠,即可得M 、P 、B 再同一条直线上,设:PM y kx b =+,代入P 、M 坐标求PM 解析式,再联立抛物线解析式,可表示B 、M 坐标,同理的求直线AB 解析式,根据一次函数解析式可知AB 恒过()00,y .【详解】()1解:设()2y a x h k=-+0,0h k == 代入上式2y ax ∴=0,0b c ∴==()2P Q 在抛物线上,M 在直线上()21,,,22P m m M m m ⎛⎫∴+ ⎪⎝⎭2,PM PN = 2211222m m m ∴+-=解得12m =或43或1-P 为y 轴右侧抛物线C 上一动点0,m ∴>综上1712m =或43()3取A 点关于y 轴的对称点M ,抛物线关于y 轴对称M ∴点在抛物线上.连,MP 设()2,A p ap ,则()2,M p ap -MPO OPA BPy∠=∠=∠ M P B ∴、、三点共线()00,P y 设:PM y kx b=+20ap pk by b⎧=-+⎨=⎩解得200y ap y x y p -=+联立直线BM 与抛物线C ,得:22000ap y ax x y p -+-=2B M ap yx x ap-∴+=-,M x p =- 0B y x ap∴=代入抛物线002,y y B ap ap ⎛⎫ ⎪⎝⎭同理可求200:y ap BA y x y p+=-恒经过定点()00,y -【点睛】本题主要考查一次函数与二次函数综合、一次函数的图像性质、图形对称、等腰三角形三线合一等.本题综合性较强,对各涉及知识点掌握要求较高.特别注意两函数交点需满足各函数解析式.。
2015届人教版九年级上期中质量监测数学试题及答案
小池初级中学2014-2015学年第一学期期中质量监测九年级数学试题(考试形式:闭卷 全卷共两大题24小题 卷面满分:120分 考试时间:120分钟)一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号。
本大题共15题,每题3分,计45分)1.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下 ( )A .小明的影子比小强的影子长B .小明的影子比小强的影子短C .小明的影子和小强的影子一样长D .无法判断谁的影子长 2.下列图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是( )3.关于x 的一元二次方程01)1(22=-++-a x x a 有一个根为0,则a 的值是( ) A .±1 B.-1 C.1 D.04.不能判定四边形ABCD 是平行四边形的条件是( )A .∠A=∠C ∠B=∠D B.AB ∥CD AD=BC C .AB ∥CD ∠A=∠C D.AB ∥CD AB=CD 5.三角形两边长分别为3和6,第三边是方程2680x x -+=的解,则这个三角形的周长是( ) A. 11 B. 13 C. 11或13 D. 不能确定6.如图,已知MB=ND,∠MBA=∠NDC ,下列哪个条件不能判定△MAB ≌△NCD.( )A .∠M=∠N B .AB=CD C .AM=CN D .AM ∥CN7.顺次连结等腰梯形各边中点得到的四边形是 ( ) A 、矩形 B 、菱形 C 、正方形 D 、平行四边形( ) 8.用配方法解方程2x 2+ 3 = 7x 时,方程可变形为( ) A .(x – 72 )2 = 374B .(x – 72 )2= 434C .(x – 74 )2 = 116D .(x – 74 )2= 25169.摄影兴趣小组的学生,将自己拍摄的照片向本组其他成员各赠送一张,全组共互赠了182张,若全组有x 名学生,则根据题意列出的方程是( ) A .x (x +1)=182 B .x (x -1)=182C .2x (x +1)=182D .0.5x (x -1)=18210、如图∠AOP=∠BOP=15°,PC ∥OA 交OB 于C ,PD ⊥OA 垂足为D ,若PC=4,则PD=( ) A.4 B.3 C.2 D.1N MEACDB11.如图,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将ΔBCE 绕点C 顺时针方向旋转90°得到ΔDCF ,连接EF ,若∠BEC=60°,则∠ EFD 的度数为( ) A .10° B .15° C .20° D .25°12.如图,在Rt⊿ABC 中,∠C=90°, ∠B=22.5°, DE 垂直平分AB 交BC 于E, 若BE=22, 则AC=( )A.1B.2C.3D.413.设a 和b 是方程220090x x +-=的两个实数根,则22a a b ++的值为( )A.2006B.2007C. 2008D.200914.如图,在等腰梯形ABCD 中,AB ∥CD ,AD=BC=acm ,∠A=60°,BD 平分∠ABC ,则这个梯形的周长是( ) A.4a cm B.5a cm C.6a cm D.7a cm15.小红按某种规律写出4个方程:①220x x ++=;②2230x x ++=;③2340x x ++=;④2450x x ++=.按此规律,第五个方程的两个根为( ) A.-2、3 B.2、-3 C.-2、-3 D.2、3二、解答题(本大题共9小题,共75分)16.(6分)画右边几何体的三种视图(注意符合三视图原则)17、(6分)已知,AB 和DE 是直立在地面上的两根立柱,AB=5m ,某一时刻AB 在阳光下的投影BC=3m 。
人教版九年级上册数学期中考试试卷及答案详解
人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A .B .C .D .2.一元二次方程x 2﹣5x +6=0的解为()A .x 1=2,x 2=﹣3B .x 1=﹣2,x 2=3C .x 1=﹣2,x 2=﹣3D .x 1=2,x 2=33.二次函数2(1)(0)y a x b a =-+≠的图像经过点(0,2),则a+b 的值是()A .-3B .-1C .2D .34.如图所示,△ABC 内接于⊙O ,∠C =45°.AB =4,则⊙O 的半径为()A .B .4C .D .55.如图,ABC 和111A B C 关于点E 成中心对称,则点E 坐标是()A .() 3,1--B .() 3,3--C .()3,0-D .()4,1--6.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠部分自变量和对应的函数值如表:x …-10245…y 1…01356…y 2…-159…当y 2>y 1时,自变量x 的取值范围是A .-1<x <2B .4<x <5C .x <-1或x >5D .x <-1或x >47.已知如图,PA 、PB 切O 于A 、B ,MN 切O 于C ,交PB 于N ;若7.5PA cm =,则PMN 的周长是()A .7.5cmB .10cmC .15cmD .12.5cm8.如图,Rt △ABC 中,∠BAC=90°,AB=AC ,将△ABC 绕点C 顺时针旋转40°得到△A'B'C ,CB'与AB 相交于点D ,连接AA',则∠B'A'A 的度数为()A .10°B .15°C .20°D .30°9.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E .F 分别在BC 和CD上,下列结论:①CE=CF ;②∠AEB=75︒;③BE+DF=EF ;④正方形对角线AC=1+,其中正确的序号是()A .①②④B .①②C .②③④D .①③④10.已知二次函数2y x bx 1=-+,当b 从1-逐渐变化到1的过程中,它所对应的抛物线位置也随之变动.下列关于抛物线的移动方向的描述中,正确的是()A .先往左上方移动,再往左下方移动B .先往左下方移动,再往左上方移动C .先往右上方移动,再往右下方移动D .先往右下方移动,再往右上方移动二、填空题11.若关于x 的方程220x ax +-=有一个根是1,则a =_________.12.将抛物线y =x 2+1向下平移3个单位长度得到的抛物线的解析式为__________.13.由于受“一带一路”国家战略策略的影响,某种商品的进口关税连续两次下调,由4000美元下调至2560美元,则平均每次下调的百分率为_____.14.如图,直线AB ,CD 相交于点O ,∠AOC=30°,半径为1cm 的的圆心P 在射线OA 上,且与点O 的距离为6cm ,以1cm/s 的速度沿由A 向B 的方向移动,那么与直线CD 相切时,圆心P 的运动时间为_____.15.如图,在△ABC 中,AB=10,AC=8,BC=6,经过点C 且与边AB 相切的动圆与CB ,CA 分别相交于点E ,F ,则线段EF 长度的最小值是_____.16.如图,在矩形ABCD 中,4AB =,2AD =,点E 在CD 上,1DE =,点F 在边AB 上一动点,以EF 为斜边作Rt EFP ∆.若点P 在矩形ABCD 的边上,且这样的直角三角形恰好有两个,则AF 的值是__________.三、解答题17.解下列方程(1)2450x x --=(2)()22(3)33x x -=-18.图①,图②,图③均为4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长都为1.线段AB 的端点均在格点上.按要求在图①,图②,图③中画图.(1)在图①中,以线段AB 为斜边画一个等腰直角三角形,且直角的顶点为格点;(2)在图②中,以线段AB 为斜边画一个直角三角形,使其面积为2,且直角的顶点为格点;(3)在图③中,画一个四边形,使所画四边形是中心对称图形,不是轴对称图形,且其余两个顶点均为格点.19.为响应“美丽台州,美化环境”的号召,某校开展“美丽台州,清洁校园”的活动,该校经过精心设计,在绿化工作中设计一块170m2的矩形场地,矩形的长比宽的2倍长3m ,则这块矩形场地的长和宽各是多少米?20.如图,已知AB 是⊙O 中一条固定的弦,点C 是优弧AB 上一个动点(点C 不与A ,B 重合).(1)设∠ACB 的角平分线与劣弧AB 交于点P ,试猜想点P 在弧AB 上的位置是否会随点C 的运动而发生变化?请说明理由;(2)如图②,设A′B′=8,⊙O 的半径为5,在(1)的条件下,四边形ACBP 的面积是否为定值?若是定值,请求出这个定值;若不是定值,试确定四边形A′C′B′P′的面积的取值范围.21.一座拱桥的轮廓是抛物线型(如图所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图所示),其表达式是2y ax c =+的形式.请根据所给的数据求出a ,c 的值.(2)求支柱MN 的长度.(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.22.如图①,在△ABC 中,∠BAC=90°,AB=AC ,点E 在AC 上(且不与点A ,C 重合),在△ABC 的外部作△CED ,使∠CED=90°,DE=CE ,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .(1)请直接写出线段AF ,AE 的数量关系;(2)将△CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论.23.如图,已知AB是⊙O的直径,C是圆周上的动点,P是优弧ABC的中点.(1)如图①,求证:OP∥BC;(2)如图②,PC交AB于点D,当△ODC是等腰三角形时,求∠PAO的度数.24.定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它的相关函数为()()1010x xyx x⎧-+<⎪=⎨-≥⎪⎩.(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;(2)已知二次函数21 42y x x=-+-.①当点B(m,32)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤x≤3时,求函数21 42y x x=-+-的相关函数的最大值和最小值;(3)在平面直角坐标系中,点M ,N 的坐标分别为(﹣12,1),(92,1),连结MN .直接写出线段MN 与二次函数24y x x m =-++的相关函数的图象有两个公共点时m 的取值范围.答案与详解1.C 【分析】根据把一个图形绕某一点旋转180 ,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】A 、不是轴对称图形,是中心对称图形,故此选项错误;B 、是轴对称图形,不是中心对称图形,故此选项错误;C 、是轴对称图形,是中心对称图形,故此选项正确;D 、不是轴对称图形,不是中心对称图形,故此选项错误;故选C .【点睛】此题主要考查了轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.D 【分析】利用因式分解法解方程.解:(x ﹣2)(x ﹣3)=0,x ﹣2=0或x ﹣3=0,∴x 1=2,x 2=3.故选:D .【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.3.C 【分析】根据二次函数图象上点的坐标特征,把点(0,2)直接代入解析式即可得到答案.【详解】∵二次函数2(1)(0)y a x b a =-+≠的图象经过点(0,2),∴22(01)a b =⋅-+,∴2a b +=.故选:C .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.4.A 【详解】试题解析:连接OA ,OB .45,C ∠=︒ 90AOB ∴∠=︒,∴在Rt AOB △中,OA OB ==点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.5.A【分析】先求出△ABC和△A1B1C1中对应的两点坐标,连接此两点坐标则E点必在其中点上,求出其中点坐标即可.【详解】由图可知:因为B、B1点的坐标分别是:B(-5,1)、B1(-1,-3),所以BB1的中点坐标为(512--,132-),即(-3,-1),则点E坐标是(-3,-1),故选A.【点睛】本题考查了坐标与图象变化-旋转,用到的知识点是图形旋转对称的性质等,图形旋转后时,其旋转中心必是其对应点连线的中点坐标.6.D【分析】利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x<4时,y1>y2,从而得到当y2>y1时,自变量x的取值范围.【详解】∵当x=0时,y1=y2=0;当x=4时,y1=y2=5;∴直线与抛物线的交点为(-1,0)和(4,5),而-1<x<4时,y1>y2,∴当y2>y1时,自变量x的取值范围是x<-1或x>4.故选D.【点睛】本题考查了二次函数与不等式:对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.7.C【分析】已知MN、PA、PB是⊙O的三条切线,于是可得MA=MC、NC=NB、PA=PB;从而可得△PMN的周长用AP、BP来表示,代入数值即可求解.【详解】∵直线PA、PA、MN分别于圆相切于点A、B、C,∴MA=MC,NC=NB,PA=PB,∴△PMN的周长=PM+PN+MN=PM+AM+PN+BN=PA+PB=7.5+7.5=15.故选C.【点睛】考查圆的切线的性质定理,关键是掌握切线长定理;8.C【分析】先确定旋转角∠A′CA,根据旋转的性质A′C=AC,可求∠AA′C,∠B′A′C要求的∠B′A′A=∠B′A′C-∠AA′C即可.【详解】∵将△ABC绕点C顺时针旋转40°得到△A'B'C,∴∠A′CA=40º,∵A′C=AC,∴∠AA′C=180-40=702︒︒︒,∵∠BAC=∠B′A′C==90°,∴∠B′A′A=∠B′A′C-∠AA′C=90º-70º=20º.故选择:C .【点睛】本题考查图形旋转的性质和等腰三角形的性质等问题,掌握旋转的性质和等腰三角形的性质,会找旋转角,会利用等腰三角形求∠AA′C ,找到∠B′A′A 与∠AA′C 的关系是解题关键.9.A【分析】根据三角形的全等的判定和性质可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,根据三线合一的性质,可判定AC ⊥EF ,然后分别求得AG 与CG 的长,继而求得答案.【详解】∵四边形ABCD 是正方形,∴AB=AD=BC=DC ,∵△AEF 是等边三角形,∴AE=AF ,在Rt △ABE 和Rt △ADF 中,AB AD AE AF =⎧⎨=⎩,∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF ,AE=AF ,∵BC=DC ,∴BC-BE=CD-DF ,∴CE=CF ,故①正确;∵CE=CF ,∴△ECF 是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=180°-60°-45°=75°,故②正确;如图,连接AC ,交EF 于G 点,∵AE=AF,CE=CF,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,故③错误;∵△AEF是边长为2的等边三角形,∠ACB=∠ACD=45°,AC⊥EF,∴EG=FG=1,∴AG=AE•sin60°3232=⨯=CG=112EF=,∴31;故④正确.综上,①②④正确故选:A.【点睛】本题考查了正方形的性质,等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,线段垂直平分线的判定和性质以及解直角三角形.注意准确作出辅助线是解此题的关键.10.C【分析】先分别求出当b=-1、0、1时函数图象的顶点坐标即可得出答案.【详解】当b=-1时,此函数解析式为:y=x2+x+1,顶点坐标为:13 24⎛⎫- ⎪⎝⎭,;当b=0时,此函数解析式为:y=x2+1,顶点坐标为:(0,1);当b=1时,此函数解析式为:y=x2-x+1,顶点坐标为:13 24⎛⎫ ⎪⎝⎭,.故函数图象应先往右上方移动,再往右下方移动.故选C .【点睛】本题考查的是二次函数的图象与几何变换,解答此题的关键是熟练掌握二次函数的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭.11.1【分析】根据一元二次方程的解的定义,把x=1代入方程得到关于a 的一次方程,然后解此一次方程即可.【详解】解:把x=1代入方程220x ax +-=得1+a-2=0,解得a=1.故答案是:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.y =x 2﹣2【分析】根据抛物线平移的规律(左加右减,上加下减)求解.【详解】抛物线y =x 2+1向下平移3个单位得到的解析式为y =x 2+1﹣3,即y =x 2﹣2.故答案为y =x 2﹣2.【点睛】本题考查了二次函数图象与几何变换,掌握“左加右减,上加下减”的平移规律是解题的关键.13.20%.【分析】设平均每次下调的百分率为x,则第一次下调后的关税为4000(1-x),第二次下调的关税为40002(1)x -,根据题意可列方程为40002(1)x -=2560求解即可.【详解】解:设平均每次下调的百分率为x,根据题意得:(1)x =2560,40002解得:1x=0.2=20%,2x=1.8=180%(舍去),即:平均每次下调的百分率为20%.故答案是:20%.【点睛】本题主要考查一元二次方程的实际应用,根据已知条件列出方程是解题的关键.14.4秒或8秒【分析】⊙P与CD相切应有两种情况,一种是在射线OA上,另一种在射线OB上,设对应的圆的圆心分别在M,N两点.当P在M点时,根据切线的性质,在直角△OME中,根据30度的角所对的直角边等于斜边的一半,即可求得OM的长,进而求得PM的长,从而求得由P 到M移动的时间;根据ON=OM,即可求得PN,也可以求得求得由P到M移动的时间.【详解】①当⊙P在射线OA上,设⊙P于CD相切于点E,P移动到M时,连接ME.∵⊙P与直线CD相切,∴∠OEM=90°,∵在直角△OPM中,ME=1cm,∠AOC=30°,∴OM=2ME=2cm,则PM=OP-OM=6-2=4cm,∵⊙P以1cm/s的速度沿由A向B的方向移动,∴⊙P移动4秒时与直线CD相切;②当⊙P的圆移动到直线CD的右侧,同理可求ON=2则PN=6+2=8cm.∴⊙P移动8秒时与直线CD相切.故答案为:4秒或8秒.【点睛】本题主要考查了切线的性质和直角三角形的性质,注意已知圆的切线时,常用的辅助线是连接圆心与切点,本题中注意到分两种情况讨论是解题的关键.15.4.8【详解】设EF的中点为P,⊙P与AB的切点为D,连接PD,连接CP,CD,则有PD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形PC+PD=EF,由三角形的三边关系知,PC+PD>CD;只有当点P在CD上时,PC+PD=EF有最小值为CD的长,即当点P在直角三角形ABC的斜边AB的高CD上时,EF=CD有最小值,由直角三角形的面积公式知,此时CD=BC·AC÷AB=4.8.故答案为:4.8.考点:切线的性质;垂线段最短;勾股定理的逆定理16.0或1113AF <<或4【详解】【分析】在点F 的运动过程中分别以EF 为直径作圆,观察圆和矩形矩形ABCD 边的交点个数即可得到结论.【解答】当点F 与点A 重合时,以EF 为斜边Rt EFP ∆恰好有两个,符合题意.当点F 从点A 向点B 运动时,当01AF <<时,共有4个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当1AF =时,有1个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当1113AF <<时,有2个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当113AF =时,有3个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当1143AF <<时,有4个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当点F 与点B 重合时,以EF 为斜边Rt EFP ∆恰好有两个,符合题意.故答案为0或1113AF <<或4【点评】考查圆周角定理,熟记直径所对的圆周角是直角是解题的关键.注意分类讨论思想在数学中的应用.17.(1)1251x x ,==-;(2)12932x x ==,【分析】(1)利用因式分解法解方程得出答案;(2)移项变形,利用因式分解法解方程得出答案.【详解】(1)2450x x --=,因式分解得:()()510x x -+=,解得:1251x x ,==-;(2)()22(3)33x x -=-,移项得:()22(3)330x x ---=,因式分解得:()()3290x x --=,∴30x -=或290x -=,解得:12932x x ==,.【点睛】本题主要考查了因式分解法解方程,正确掌握一元二次方程的解法是解题关键.18.(1)见解析;(2)见解析;(3)见解析【分析】(1)作AB 的垂直平分线,垂直平分线在端点处的点即为顶点;(2)如下图所示,满足面积条件和直角条件;(3)以AB 为对角线,绘制平行四边形即可【详解】(1)如下图,过线段AB 作垂直平分线,与网络交于格点C ,则点C 为等腰直角三角形顶点根据勾股定理,可求得,根据勾股定理逆定理,可得△ABC 是直角三角形,满足条件(2)图形如下:根据勾股定理,可求得:10,2,BC=22根据勾股定理逆定理,可判断△ACB是直角三角形面积=122×22=2,成立(3)平行四边形满足是中心对称图形,不是轴对称图形,图形如下:(答案不唯一)【点睛】本题考查格点问题,解题过程中,一方面需要结合几何特征,另一方面,还要敢于尝试19.这块矩形场地的长是23米、宽是10米.【分析】阅读试题,理解含义,分清题意,找出等量关系设矩形场地的宽为x米,则矩形场地的长为(2x+3)米,利用面积得:x(2x+3)=170,解方程要检验,负根舍去,最后作答即可.【详解】设这块矩形场地的宽为x米,则矩形场地的长为(2x+3)米,由面积得:x(2x+3)=170,因式分解得:(2x+17)(x-10)=0,∴x=10,x=-172(舍),∴2x+3=23,答:这块矩形场地的长是23米、宽是10米.【点睛】本题考查面积问题应用题,抓住矩形的长比宽的2倍长3m 来设元,抓住一块170m 2的矩形场地列方程是解题关键,掌握列方程解应用题的步骤与要求,分析题意,恰当设元,列出方程,解方程,检验,作答.20.(1)不变化,理由见详解;(2)8<S 四边形A′C′B′P′≤40【分析】(1)由∠ACP=∠BCP 得 AP BP=,P 为 AB 的中点,P 在弧AB 上的位置不动,p 点不变化,(2)四边形ACBP 的面积不是定值,连接OA ,OB ,OP ,OP 交AB 于D ,由 AP BP =,OP 为半径,由垂经定理知OP ⊥AB ,AB=BD ,由勾股定理得OD=,进而S △APB =12AB DP ,当PC 为直径时,S △ABC 最大=12AB DC 则0<S △ABC ≤32即可求出S 四边形ACBP =S △ABC +S △PAB =S △ABC +8的范围,即S 四边形A′C′B′P′的范围.【详解】(1)∵∠ACB 的角平分线与劣弧AB 交于点P ,∴∠ACP=∠BCP ,∴ AP BP=,∴P 为 AB 的中点,∴P 在弧AB 上的位置不动,为此不随点C 的运动而发生变化,P 点不变化.(2)四边形ACBP 的面积不是定值,连接OA ,OB ,OP ,OP 交AB 于D ,由 AP BP=,OP 为半径,∴OP ⊥AB ,AB=BD=4,OA=5,∴由勾股定理得3==,∴DP=OP-OD=5-3=2,∴S △APB =1182822AB DP =⨯⨯= ,当PC 为直径时,交AB 于点D ,则CD=PC-PD=10-2=8,S △ABC 最大=11883222AB DC =⨯⨯= ,0<S △ABC ≤32,S 四边形ACBP =S △ABC +S △PAB =S △ABC +8,8<S 四边形ACBP ≤40,即8<S 四边形A′C′B′P′≤40.【点睛】本题考查了圆周角定理,垂径定理,三角形面积,勾股定理等内容,熟练掌握圆周角定理是解题关键.21.(1)y=-350x 2+6;(2)5.5米;(3)一条行车道能并排行驶这样的三辆汽车.【解析】试题分析:(1)根据题目可知A .B ,C 的坐标,设出抛物线的解析式代入可求解.(2)设N 点的坐标为(5,y N )可求出支柱MN 的长度.(3)设DN 是隔离带的宽,NG 是三辆车的宽度和.做GH 垂直AB 交抛物线于H 则可求解.试题解析:(1)根据题目条件,A 、B 、C 的坐标分别是(-10,0)、(0,6)、(10,0).将B 、C 的坐标代入2y ax c =+,得6,0100.c a c =⎧⎨=+⎩解得3650a c =-=.∴抛物线的表达式是23650y x =-+.(2)可设N (5,N y ),于是2356 4.550N y =-⨯+=.从而支柱MN 的长度是10-4.5=5.5米.(3)设DE 是隔离带的宽,EG 是三辆车的宽度和,则G 点坐标是(7,0)(7=2÷2+2×3).过G 点作GH 垂直AB 交抛物线于H ,则23176335050H y =-⨯+=+>.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.22.(1)AE ;(2)AE ,证明见解析.【详解】解:(1)如图①中,∵四边形ABFD 是平行四边形,∴AB=DF ,∵AB=AC ,∴AC=DF ,∵DE=EC ,∴AE=EF ,∵∠DEC=∠AEF=90°,∴△AEF 是等腰直角三角形,∴AE .(2)如图②中,连接EF ,DF 交BC 于K .∵四边形ABFD 是平行四边形,∴AB ∥DF ,∴∠DKE=∠ABC=45°,∴EKF=180°﹣∠DKE=135°,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE ,∵∠DKC=∠C ,∴DK=DC ,∵DF=AB=AC ,∴KF=AD ,在△EKF 和△EDA 中,{EK DKEKF ADE KF AD=∠=∠=,∴△EKF ≌△EDA ,∴EF=EA ,∠KEF=∠AED ,∴∠FEA=∠BED=90°,∴△AEF 是等腰直角三角形,∴AE.23.(1)证明见详解;(2)36º或1807︒.【分析】(1)连接PC ,由 AP PC=得AOP COP ∠=∠,利用△AOP ≌△COP ,得出∠APO=∠CPO ,由OA=OP 得∠APO=∠OAP ,由∠PCB=∠OAP 得∠PCO=∠PCB 即可;(2)如图,△OCD 是等腰三角形①当OD=CD 时,连接BC ,OP ,设∠BOC=∠DCO=xº,∠BDC=∠BOC+∠DCO=2xº,由(1)知OP ∥BC ,∠POD=∠OBC ,易证△POD ≌ΔOBC ,BC=OD=CD ,∠OBC=∠OCB=∠CDB=2xº,∠BAC+∠OBC+∠OCB=180º即x+2x+2x=180;②当OC=CD 时由OP ∥BC ,∠OPC=∠DCB ,由OP=OC ,∠OCP=∠OPC=∠DCB ,设∠OCP=∠OPC=DCB=yº,∠OCB=∠OCD+∠DCB=2xº,∠OBC=∠OCB=2xº,∠ODC 是ΔCDB 的外角,得∠COD=∠ODC=3xº,由∠OCD+∠COD+∠ODC=180º即x+3x+3x=180.【详解】(1)连接PC ,∵ AP PC =,∴AOP COP ∠=∠,在△AOP 和△COP 中,,,,OP OP AOP COP OA OC =⎧⎪∠=∠⎨⎪=⎩∴△AOP ≌△COP ,∴∠APO=∠CPO ,∵OA=OP ,∴∠APO=∠OAP ,又∵∠PCB=∠OAP ,∴∠PCO=∠PCB ,∴OP ∥BC,(2)如图,△OCD 是等腰三角形,①当OD=CD 时,连接BC ,OP ,设∠BOC=∠DCO=xº,∠BDC=∠BOC+∠DCO=2xº,由(1)知OP ∥BC ,∴∠POD=∠OBC,∵OP=OC,∴∠OPD=∠OCD=BOC=xº,∴△POD≌ΔOBC,∴BC=OD=CD,∴∠OBC=∠OCB=∠CDB=2xº,∠BAC+∠OBC+∠OCB=180º,x+2x+2x=180,x=36,∠PAB=∠PCB=36º,②当OC=CD时由OP∥BC,∠OPC=∠DCB,OP=OC,∠OCP=∠OPC=DCB,设∠OCP=∠OPC=DCB=yº,∠OCB=∠OCD+∠DCB=2xº,∠OBC=∠OCB=2xº,∠ODC是ΔCDB的外角,∠ODC=∠DCB+∠DBC=3xº,∠COD=∠ODC=3xº,在ΔOCD中,∠OCD+∠COD+∠ODC=180º,x+3x+3x=180,x=1807,∴∠PAB=∠PCB=1807︒,综合∠PAO=36º或1807︒.【点睛】不本题考查园中平行与等腰三角形中角度问题,掌握圆心角、圆周角、弧的关系,会利用全等三角形证相关的结论,会证等腰三角形,利用内角与外角关系,求角的度数,本题是一道有关圆的综合应用题,作出恰当的辅助线是解答本题的关键.24.(1)1;(2)①m =2m或m =2﹣;②最大值为432,最小值为﹣12;(3)﹣3<n ≤﹣1或1<n ≤54.【分析】(1)函数y =ax ﹣3的相关函数为3(0)3(0)ax x y ax x -+<⎧=⎨-≥⎩,将然后将点A (﹣5,8)代入y =﹣ax +3求解即可;(2)二次函数2142y x x =-+-的相关函数为2214(0)214(0)2x x x y x x x ⎧-+<⎪⎪=⎨⎪-+-≥⎪⎩,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可;②当﹣3≤x <0时,2142y x x =-+-,然后可此时的最大值和最小值,当0≤x ≤3时,函数2142y x x =-+-,求得此时的最大值和最小值,从而可得到当﹣3≤x ≤3时的最大值和最小值;(3)首先确定出二次函数24y x x n =-++的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围.【详解】解:(1)函数y =ax ﹣3的相关函数为3(0)3(0)ax x y ax x -+<⎧=⎨-≥⎩,将点A (﹣5,8)代入y =﹣ax +3得:5a +3=8,解得:a =1.(2)二次函数2142y x x =-+-的相关函数为2214(0)214(0)2x x x y x x x ⎧-+<⎪⎪=⎨⎪-+-≥⎪⎩;①当m <0时,将B (m ,32)代入2142y x x =-+得213422m m -+=,解得:m=2+(舍去)或m =2当m ≥0时,将B (m ,32)代入2142y x x =-+-得:213422m m -+-=,解得:m=2+或m =2.综上所述:m =2m或m =2.②当﹣3≤x <0时,2142y x x =-+,抛物线的对称轴为x =2,此时y 随x 的增大而减小,∴此时y 的最大值为432.当0≤x ≤3时,函数2142y x x =-+-,抛物线的对称轴为x =2,当x =0有最小值,最小值为﹣12,当x =2时,有最大值,最大值y =72.综上所述,当﹣3≤x ≤3时,函数2142y x x =-+-的相关函数的最大值为432,最小值为﹣12;(3)如图1所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有1个公共点.所以当x =2时,y =1,即﹣4+8+n =1,解得n =﹣3.如图2所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有3个公共点∵抛物线24y x x n =-++与y 轴交点纵坐标为1,∴﹣n =1,解得:n =﹣1,∴当﹣3<n ≤﹣1时,线段MN 与二次函数24y x x n =-++的相关函数的图象恰有2个公共点.如图3所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有3个公共点.∵抛物线24y x x n =-++经过点(0,1),∴n =1.如图4所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有2个公共点.∵抛物线24y x x n =--经过点M (﹣12,1),∴14+2﹣n =1,解得:n =54,∴1<n ≤54时,线段MN 与二次函数24y x x n =-++的相关函数的图象恰有2个公共点.综上所述,n 的取值范围是﹣3<n ≤﹣1或1<n ≤54.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数24y x x n =-++的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值是解题的关键.。
人教版九年级数学上册期中考试卷附答案【精华版】
九年级(上)期中数学试卷一、选择题.1.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形2.正方形具备而菱形不具备的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.每条对角线平分一组对角3.如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限.若反比例函数y=的图象经过点B,则k的值是()A.1 B.2 C.D.4.若x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,则a的值为()A.1或4 B.﹣1或﹣4 C.﹣1或4 D.1或﹣45.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:26.在一个不透明的布袋中,有大小、形状完全相同,颜色不同的15个球,从中摸出红球的概率为,则袋中不是红球的个数为()A.10 B.15 C.5 D.27.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A .B .C .D .8.如图,正比例函数y 1=k 1x 的图象与反比例函数y 2=的图象相交于A ,B 两点,其中点A 的横坐标为2,当y 1>y 2时,x 的取值范围是( )A .x <﹣2或x >2B .x <﹣2或0<x <2C .﹣2<x <0或0<x <2D .﹣2<x <0或x >2二、填空题.9.正方形的对称轴有 条. 10.已知方程3x 2﹣19x+m=0的一个根是1,那么它的另一个根是 ,m= .11.一水塘里有鲤鱼、鲫鱼、鲢鱼共10 000尾,一渔民通过多次捕捞实验后发现,鲤鱼、鲫鱼出现的频率分别是31%和42%,则这个水塘里大约有鲢鱼 尾.12.已知AD 是△ABC 的角平分线,点E 、F 分别是边AB ,AC 的中点,连接DE ,DF ,在不再连接其他线段的前提下,要使四边形AEDF 成为菱形,还需添加一个条件,这个条件可以是 (答案不唯一).13.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D 、E .若AD=3,DB=2,BC=6,则DE 的长为 .14.一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有 个.15.设函数y=与y=x﹣1的图象的交点坐标为(a,b),则﹣的值为.三、解答题.(本大题共8小题,共75分)16.用适当方法求解下列方程:(1)x2+2x﹣3=0(2)2x2﹣x﹣1=0.17.已知关于x的方程x2+(2m﹣1)x+4=0有两个相等的实数根,求m的值.18.如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC的交点为O,连接DE.(1)求证:△ADE≌△CED;(2)求证:DE∥AC.19.请将如图所示实物的三视图画在规定位置内.20.小莉和小慧用如图所示的两个转盘做游戏,转动两个转盘各一次,若两次数字和为奇数,则小莉胜;若两次数字和为偶数,则小慧胜.这个游戏对双方公平吗?试用列表法或树状图加以分析.21.如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米,那么道路的宽度应该是多少?22.如图,△ABC中,BD是角平分线,过D作DE∥AB交BC于点E,AB=5cm,BE=3cm,则EC的长为cm.23.如图,在平面直角坐标系中,O为原点,一次函数与反比例函数的图象相交于A(2,1)、B (﹣1,﹣2)两点,与x轴交于点C.(1)分别求反比例函数和一次函数的解析式(关系式);(2)连接OA,求△AOC的面积.九年级(上)期中数学试卷参考答案与试题解析一、选择题.1.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形【考点】命题与定理.【分析】利用特殊四边形的判定定理对个选项逐一判断后即可得到正确的选项.【解答】解:A、一组邻边相等的平行四边形是菱形,故选项错误;B、正确;C、对角线垂直的平行四边形是菱形,故选项错误;D、两组对边平行的四边形才是平行四边形,故选项错误.故选:B.【点评】本题考查了命题与定理的知识,解题的关键是牢记特殊的四边形的判定定理,难度不大,属于基础题.2.正方形具备而菱形不具备的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.每条对角线平分一组对角【考点】正方形的性质;菱形的性质.【专题】常规题型.【分析】正方形具有矩形和菱形的性质,故根据正方形和菱形的性质即可解题.【解答】解:(1)平行四边形的对角线互相平分,所以菱形和正方形对角线均互相平分,故本选项错误;(2)菱形和正方形的对角线均互相垂直,故本选项错误;(3)正方形对角线相等,而菱形对角线不相等,故本选项正确;(4)对角线即角平分线是菱形的性质,正方形具有全部菱形的性质,所以本选项错误.故选 C.【点评】本题考查了勾股定理在直角三角形中的运用,考查了正方形和菱形的性质,熟悉掌握菱形、正方形的性质是解本题的关键.3.如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限.若反比例函数y=的图象经过点B ,则k 的值是( )A .1B .2C .D .【考点】反比例函数图象上点的坐标特征;等边三角形的性质.【分析】首先过点B 作BC 垂直OA 于C ,根据AO=2,△ABO 是等边三角形,得出B 点坐标,进而求出反比例函数解析式.【解答】解:过点B 作BC 垂直OA 于C ,∵点A 的坐标是(2,0),∴AO=2,∵△ABO 是等边三角形,∴OC=1,BC=,∴点B 的坐标是(1,), 把(1,)代入y=, 得k=.故选C .【点评】此题主要考查了反比例函数的综合应用、等边三角形的性质以及图象上点的坐标特点等知识,根据已知表示出B 点坐标是解题关键.4.若x=﹣2是关于x 的一元二次方程x 2﹣ax+a 2=0的一个根,则a 的值为( )A .1或4B .﹣1或﹣4C .﹣1或4D .1或﹣4【考点】一元二次方程的解.【专题】计算题.【分析】将x=﹣2代入关于x 的一元二次方程x 2﹣ax+a 2=0,再解关于a 的一元二次方程即可.【解答】解:∵x=﹣2是关于x 的一元二次方程x 2﹣ax+a 2=0的一个根,∴4+5a+a 2=0,∴(a+1)(a+4)=0,解得a 1=﹣1,a 2=﹣4,故选:B.【点评】本题主要考查了一元二次方程的解的定义,解题关键是把x的值代入,再解关于a的方程即可.5.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.【点评】此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF∽△BCF是解题关键.6.在一个不透明的布袋中,有大小、形状完全相同,颜色不同的15个球,从中摸出红球的概率为,则袋中不是红球的个数为()A.10 B.15 C.5 D.2【考点】概率公式.【分析】设红球有x个,根据概率公式求出红球的个数,再用总的个数减去红球的个数,即可得出答案.【解答】解:设红球有x个,根据题意得: =,解得:x=5,则袋中不是红球的个数为15﹣5=10(个);故选A.【点评】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是( )A .B .C .D .【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得主视图为长方形,中间有两条垂直地面的虚线.故选A .【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.8.如图,正比例函数y 1=k 1x 的图象与反比例函数y 2=的图象相交于A ,B 两点,其中点A 的横坐标为2,当y 1>y 2时,x 的取值范围是( )A .x <﹣2或x >2B .x <﹣2或0<x <2C .﹣2<x <0或0<x <2D .﹣2<x <0或x >2【考点】反比例函数与一次函数的交点问题.【专题】压轴题.【分析】先根据反比例函数与正比例函数的性质求出B 点坐标,再由函数图象即可得出结论.【解答】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A 、B 两点关于原点对称,∵点A 的横坐标为2,∴点B 的横坐标为﹣2,∵由函数图象可知,当﹣2<x <0或x >2时函数y 1=k 1x 的图象在y 2=的上方,∴当y 1>y 2时,x 的取值范围是﹣2<x <0或x >2.故选D .【点评】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y 1>y 2时x 的取值范围是解答此题的关键.二、填空题.9.正方形的对称轴有 4 条. 【考点】轴对称的性质.【分析】根据正方形的轴对称性作出图形以及对称轴,即可得解.【解答】解:如图,正方形对称轴为经过对边中点的直线,两条对角线所在的直线,共4条. 故答案为:4.【点评】本题考查了轴对称的性质,熟记正方形的对称轴是解题的关键.10.已知方程3x 2﹣19x+m=0的一个根是1,那么它的另一个根是,m= 16 .【考点】一元二次方程的解;根与系数的关系.【专题】方程思想.【分析】把方程的一个根代入方程,可以求出字母系数的值,然后根据根与系数的关系,由两根之和求出方程的另一个根.【解答】解:把1代入方程有:3﹣19+m=0∴m=16.设方程的另一个根是x ,有两根之和有:x+1=∴x=.故答案分别是:,16.【点评】本题考查的是一元二次方程的解,把已知根代入方程可以求出字母系数的值,根据根与系数的关系可以求出方程的另一个根.11.一水塘里有鲤鱼、鲫鱼、鲢鱼共10 000尾,一渔民通过多次捕捞实验后发现,鲤鱼、鲫鱼出现的频率分别是31%和42%,则这个水塘里大约有鲢鱼2700 尾.【考点】利用频率估计概率.【分析】根据频率、频数的关系:频数=频率×数据总和,可分别求鲤鱼,卿鱼的尾数,再根据各小组频数之和等于数据总和,可求鲢鱼的尾数.【解答】解:根据题意可得这个水塘里有鲤鱼10000×31%=3100尾,鲫鱼10000×42%=4200尾,鲢鱼10000﹣3100﹣4200=2700尾.【点评】本题是对频率、频数灵活运用的综合考查,各小组频数之和等于数据总和,各小组频率之和等于1.频率、频数的关系:频率=频数数据总和.12.已知AD是△ABC的角平分线,点E、F分别是边AB,AC的中点,连接DE,DF,在不再连接其他线段的前提下,要使四边形AEDF成为菱形,还需添加一个条件,这个条件可以是AB=AC或∠B=∠C或AE=AF (答案不唯一).【考点】菱形的判定.【专题】压轴题;开放型.【分析】菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.【解答】解:由题意知,可添加:AB=AC.则三角形是等腰三角形,由等腰三角形的性质知,顶角的平分线与底边上的中线重合,即点D是BC的中点,∴DE,EF是三角形的中位线,∴DE∥AB,DF∥AC,∴四边形ADEF是平行四边形,∵AB=AC,点E,F分别是AB,AC的中点,∴AE=AF,∴平行四边形ADEF为菱形.【点评】本题考查了菱形的判定.利用了三角形的中位线的性质和平行四边形的判定和性质、等腰三角形的性质.也可添加∠B=∠C或AE=AF.13.如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE的长为3.6 .【考点】相似三角形的判定与性质.【分析】根据平行线得出△ADE∽△ABC,根据相似得出比例式,代入求出即可.【解答】解:∵AD=3,DB=2,∴AB=AD+DB=5,∵DE∥BC,∴△ADE∽△ABC,∴,∵AD=3,AB=5,BC=6,∴,∴DE=3.6.故答案为:3.6.【点评】本题考查了相似三角形的性质和判定,关键是求出相似后得出比例式,题目比较典型,难度适中.14.一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有 5 个.【考点】由三视图判断几何体.【专题】图表型.【分析】根据三视图的知识,主视图是由3个小正方形组成,而左视图是由4个小正方形组成,故这个几何体的底层最少有3个小正方体,第2层最少有2个小正方体.【解答】解:综合左视图和主视图,这个几何体的底层最少有2+1=3个小正方体,第二层最少有2个小正方体,因此组成这个几何体的小正方体最少有3+2=5个,故答案为5.【点评】本题考查了由几何体判断三视图,意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案.15.设函数y=与y=x﹣1的图象的交点坐标为(a,b),则﹣的值为﹣.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】把交点坐标代入2个函数后,得到2个方程,求得a,b的解,整理求得﹣的值即可.【解答】解:∵函数y=与y=x﹣1的图象的交点坐标为(a,b),∴b=,b=a﹣1,∴=a﹣1,a2﹣a﹣2=0,(a﹣2)(a+1)=0,解得a=2或a=﹣1,∴b=1或b=﹣2,∴﹣的值为﹣.故答案为:﹣.【点评】本题主要考查反比例函数与一次函数的交点问题;得到2个方程判断出a,b的值是解决本题的关键.三、解答题.(本大题共8小题,共75分)16.用适当方法求解下列方程:(1)x2+2x﹣3=0(2)2x2﹣x﹣1=0.【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】(1)利用因式分解法解方程;(2)利用因式分解法解方程.【解答】解:(1)(x+3)(x ﹣1)=0,x+3=0或x ﹣1=0,所以x 1=﹣3,x 2=1;(2)(2x+1)(x ﹣1)=0,2x+1=0或x ﹣1=0,所以x 1=﹣,,x 2=1.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).17.已知关于x 的方程x 2+(2m ﹣1)x+4=0有两个相等的实数根,求m 的值.【考点】根的判别式.【分析】先根据一元二次方程有两个相等的实数根得出△=0即可得到关于m 的方程,解方程求出m 的值即可.【解答】解:∵x 2+(2m ﹣1)x+4=0有两个相等的实数根,∴△=(2m ﹣1)2﹣4×4=0,解得m=﹣或m=.【点评】本题考查的是一元二次方程根的判别式,根据题意得出关于m 的方程是解答此题的关键.18.如图,四边形ABCD 是矩形,把矩形沿AC 折叠,点B 落在点E 处,AE 与DC 的交点为O ,连接DE .(1)求证:△ADE ≌△CED ;(2)求证:DE ∥AC .【考点】翻折变换(折叠问题);全等三角形的判定与性质;矩形的性质.【专题】证明题.【分析】(1)根据矩形的性质和折叠的性质可得BC=CE=AD,AB=AE=CD,根据SSS可证△ADE≌△CED(SSS);(2)根据全等三角形的性质可得∠EDC=∠DEA,由于△ACE与△ACB关于AC所在直线对称,可得∠OAC=∠CAB,根据等量代换可得∠OAC=∠DEA,再根据平行线的判定即可求解.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD,又∵AC是折痕,∴BC=CE=AD,AB=AE=CD,在△ADE与△CED中,,∴△ADE≌△CED(SSS);(2)∵△ADE≌△CED,∴∠EDC=∠DEA,又∵△ACE与△ACB关于AC所在直线对称,∴∠OAC=∠CAB,∵∠OCA=∠CAB,∴∠OAC=∠OCA,∴2∠OAC=2∠DEA,∴∠OAC=∠DEA,∴DE∥AC.【点评】本题考查了翻折变换(折叠问题),矩形的性质,以及全等三角形的判定与性质,正确证明三角形全等是关键.19.请将如图所示实物的三视图画在规定位置内.【考点】作图-三视图.【分析】分别画出从几何体的正面、左边、上面看所得到的视图即可.【解答】解:如图所示:.【点评】此题主要考查了作三视图,关键是注意几何体看得见部分的轮廓线画成实线,被其他部分遮挡而看不见的部分的轮廓线化成虚线.20.小莉和小慧用如图所示的两个转盘做游戏,转动两个转盘各一次,若两次数字和为奇数,则小莉胜;若两次数字和为偶数,则小慧胜.这个游戏对双方公平吗?试用列表法或树状图加以分析.【考点】游戏公平性;列表法与树状图法.【分析】游戏是否公平,关键要看是否游戏双方赢的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【解答】解:这个游戏对双方公平.理由如下:1 2 3 42 2+1=3 2+2=4 2+3=5 2+4=63 3+1=4 3+2=5 3+3=6 3+4=74 4+1=5 4+2=6 4+3=7 4+4=8从表中可以看出,总共有12种结果,每种结果出现的可能性相同,而两数和为奇数的结果有6种.∴P小莉=.因此,这个游戏对双方公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.21.如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米,那么道路的宽度应该是多少?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的种植花草部分是一个长方形,根据长方形的面积公式列方程求解即可.【解答】解:设道路的宽应为x米,由题意有(22﹣x)(17﹣x)=300,解得:x1=37(舍去),x2=2.答:修建的路宽为2米.【点评】此题主要考查了一元二次方程的应用,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.22.如图,△ABC中,BD是角平分线,过D作DE∥AB交BC于点E,AB=5cm,BE=3cm,则EC的长为 4.5 cm.【考点】相似三角形的判定与性质.【专题】计算题.【分析】根据平行的条件可以证明△CDE∽△CAB,DE=BE,根据相似三角形的对应边的比相等,就可以求出EC的长.【解答】解:∵BD平分∠ABC,∴∠ABD=∠DBC.∵DE∥AB,∴∠ABD=∠BDE.∴∠DBC=∠BDE.∴DE=BE=3cm.∵DE∥AB,∴△CDE∽△CAB.∴.∴.解得EC=4.5cm.【点评】根据相似三角形的对应边的比相等,可以把本题转化为方程问题进行解决.23.如图,在平面直角坐标系中,O为原点,一次函数与反比例函数的图象相交于A(2,1)、B (﹣1,﹣2)两点,与x轴交于点C.(1)分别求反比例函数和一次函数的解析式(关系式);(2)连接OA,求△AOC的面积.【考点】反比例函数与一次函数的交点问题;待定系数法求一次函数解析式;待定系数法求反比例函数解析式;三角形的面积.【分析】(1)设一次函数解析式为y 1=kx+b (k ≠0);反比例函数解析式为y 2=(a ≠0),将A (2,1)、B (﹣1,﹣2)代入y 1得到方程组,求出即可;将A (2,1)代入y 2得出关于a 的方程,求出即可;(2)求出C 的坐标,根据三角形的面积公式求出即可.【解答】解:(1)设一次函数解析式为y 1=kx+b (k ≠0);反比例函数解析式为y 2=(a ≠0), ∵将A (2,1)、B (﹣1,﹣2)代入y 1得:, ∴,∴y 1=x ﹣1;∵将A (2,1)代入y 2得:a=2,∴;答:反比例函数的解析式是y 2=,一次函数的解析式是y 1=x ﹣1.(2)∵y 1=x ﹣1,当y 1=0时,x=1,∴C (1,0),∴OC=1,∴S △AOC =×1×1=.答:△AOC 的面积为.【点评】本题考查了对一次函数与反比例函数的交点,三角形的面积,用待定系数法求一次函数、反比例函数的解析式的应用,通过做此题培养了学生的计算能力,题目具有一定的代表性,是一道比较好的题目.。
人教版九年级数学上册期中测试卷含答案【新】
第一学期期中测试题九年级数学一 选择题:本大题同12小题,每小题3分,共36分。
1.在下列电视台的图标中,是中心对称图形的是( )2.A(2,-3)关于原点对称的点在( )A.第一象限B.第二象限C.第三象限D.第三象限 3.下列方程是关于x 的一元二次方程的是( ) A.ax 2+bx+c=0 B.2112=+xx C.x 2+2x=x2-1 D.3(x+1)2=2(x+1)4.下列函数中,是二次函数的是( ) A.y=1-2x B.y=2(x-1)2+4 C.y=21(x-1)(x+4) D.y=(x-2)2-x 25.如图,△ABC 和△DCE 都是直角三角形,其中一个三角形是由另一个三角形旋转得到的,下列叙述中错误的是( )A.旋转中心是点CB.顺时针旋转角是900C.旋转中心是点B,旋转角是∠ABCD.既可以是逆时针旋转又可以是顺时针旋转第5题图 第6题图6.如图,CE 是圆O 的直径,⊙O 的直径,AB 为⊙O 的弦,EC ⊥AB,垂足为D,下面结论正确的有( ) ①AD=BD;②弧AC=弧BC ;③弧AE=弧BE ;④OD=CD.A.1个B.2个C.3个D.4个7.如图,⊙O 的两条弦AE 、BC 相交于点D,连接AC 、BE 、OA 、OB ,若∠ACB=600.则下列结论正确的是( )A.∠AOB=600B.∠ADB=600C.∠AEB=600D.∠AEB=300第7题图 第8题图 第9题图 8.一元二次方程x2-mx+2m=0有两个相等的实数根,则m 等于( )A.0或8B.0C.8D.2 9.如图所示,抛物线顶点坐标是P(1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A.x>1B.x<1C.x>3D.x<3 10.如图,⊙O 的直径AB 垂直于弦CD,垂足是E,∠A=22.50,OC=4,CD 的长为( ) A.22 B.24 C.4 D.8 11.二次函数y=ax 2+bx+c 的图象如图,点(1,,0)在函数图象上,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值大于或等于零的数有( )A.1个B.2个C.3个D.4个第11题图 第12题图12.如图所示,MN 是⊙O 的直径,弦AB ⊥MN,垂足为点D,连接AM,AN,点C 为弧AN 上一点,且弧AC=弧AM,连接CM 交AB 于点E,交AN 于点F.现给出以下结论:①AD=BD;②∠MAN=900;③弧AM=弧BM ;④∠ACM+∠ANM=∠MOB ;⑤AE=21MF.其中正确结论的个数是( ) A.2个 B.3个 C.4个 D.5个二填空题:本大题6小题,每小题3分,共18分。
人教版九年级上册数学期中考试试卷附答案
人教版九年级上册数学期中考试试题一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.有下列说法:①直径是圆中最长的弦;②圆的两条平行弦所夹的弧相等;③任意一个三角形有且只有一个外接圆;④平分弦的直径垂直于弦.其中正确的个数有()A.1个B.2个C.3个D.4个3.如图,AB 是O 的直径,点C ,D 为O 上的点.若20CAB ∠=︒,则D ∠的度数为()A.70°B.100°C.110°D.140°4.如图,课外生物小组的试验园地是长20米,宽15米的长方形.为了便于管理,现要在中间开辟一横两纵等宽的小道(如图),要使种植面积为252平方米,则小道的宽为()A.5米B.1米C.2米D.3米5.点()112,P y -,()222,P y ,()334,P y 均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是()A.231y y y >>B.213y y y >=C.132y y y =>D.123y y y =>6.如图,在ABC 中,90ACB ∠=︒,将ABC 绕点A 顺时针旋转90︒,得到ADE ,连接BD ,若AC =1DE =,则线段BD 的长为()A.3B.C.D.7.定义运算:a☆b=ab 2﹣ab﹣1.例如:3☆4=3×42﹣3×4﹣1.则方程1☆x=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根8.如图,△ABC 中,∠C=90°,BC=5,⊙O 与△ABC 的三边相切于点D、E、F,若⊙O 的半径为2,则△ABC 的周长为()A.14B.20C.24D.309.如图,A ,B ,C 是⊙O 上的三个点,如果∠AOB =140°,那么∠ACB 的度数为()A.55︒B.70︒C.110︒D.140︒10.小明晚饭后出门散步,行走的路线如图所示.则小明离家的距离h 与散步时间t 之间的函数关系可能是()A B C D二、填空题11.在平面直角坐标系中,点P(﹣3,1)关于坐标原点中心对称的点P′的坐标是____.12.有一种流感病毒,刚开始有2人患了流感,经过两轮传染后共有128人患流感,如果设每轮传染中平均一个人传染x 个人,那么可列方程为________.13.已知x a =是方程2350x x --=的根,则代数式2426a a -+的值为_____.14.如图,在半径为1的扇形AOB 中,AOB 90∠= ,点P 是弧AB 上任意一点(不与点A,B 重合)OC AP ⊥,OD BP ⊥,垂足分别为C,D,则CD 的长为________.15.如图,点O 为△ABC 的内心,将∠ABC 平移使顶点B 与点O 重合,两边与AC 分别交于点D 和E.若7AC =,则△ODE 的周长是________.16.如图,将一副三角板中含30°角的三角板AOB 放置在平面上不动,另一个含45°角的三角板COD 绕着它们相同的直角顶点О旋转一周,在旋转过程中,当AB 与CD 平行时,DOB ∠的度数是_________.17.在平面直角坐标系xOy 中,A(2,1),B(4,1),将抛物线2y x =沿x 轴向右平移m(0m >)个单位长度后,使其与线段AB(含端点)有交点,那么m 的取值范围是____.三、解答题18.(1)()22360x +-=(2)23610x x -+=(3)()2362x x -=-(4)()()2221321280x x +-+-=19.如图,已知△ABC三个顶点坐标分别是A(1,3),B(4,1),C(4,4).(1)请按要求画图:①画出△ABC向左平移5个单位长度后得到的△A1B1C1;②画出△ABC绕着原点O顺时针旋转90°后得到的△A2B2C2.(2)请写出直线B1C1与直线B2C2的交点坐标.20.某小区有一个半径为3m的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心1m处达到最大高度为3m,且各个方向喷出的水柱恰好在喷水池中心的装饰物处汇合,以水平方向为x轴,喷水池中心为原点建立如图所示的平面直角坐标系.(1)求水柱所在抛物线对应的函数关系式;(2)王师傅在喷水池维修设备期间,喷水池意外喷水,如果他站在与池中心水平距离为2m 处,通过计算说明身高1.8m的王师傅是否被淋湿?21.已知PA,PB分别与⊙O相切于点A,B,∠APB=80°,C为⊙O上一点.(1)如图①,求∠ACB的大小;(2)如图②,AE为⊙O的直径,AE与BC相交于点D.若AB=AD,求∠EAC的大小.22.如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BOC绕点C按逆时针旋转得到△ADC,连接OD,OA.(1)求∠ODC的度数;(2)若OB=2,OC=3,求AO的长.23.某文具连锁店专售一款钢笔,每支钢笔的成本为20元/支,销售中发现,该钢笔每天的销售量y(支)与销售单价x(元/支)之间存在如图所示的关系,由于武汉疫情的爆发,该文具连锁店店主决定从每天获得的利润中抽出200元捐献给武汉.(1)求y 与x 之间的函数关系式.(2)当销售单价为多少元时,文具店获利最大?最大利润是多少?(3)为了保证捐款后每天剩余利润为550元,这款钢笔的销售单价是多少?24.△ABC 与△DCE 都是等边三角形,△DCE 绕点C 逆时针旋转,直线BD,AE 交于点F.(1)如图1,当点A、C、D 在同一条直线上时,∠AFB 的度数为,线段AE 与BD 的数量关系为.(2)将图1中的△DCE 绕着点C 逆时针旋转到如图2的位置,CE 与DF 交于点H,求∠AFB 的度数,判断线段AE 与BD 的数量关系,并证明你的结论.(3)若2AC =4CD =,当△DCE 绕点C 逆时针旋转一周时,请直接写出BD 长的取值范围.25.如图,二次函数23y ax bx =++的图像与x 正半轴相交于点B,负半轴相交于点A,其中A点坐标是(-1,0),B点坐标是(3,0).(1)求此二次函数的解析式;轴于点D,交线段BC于点(2)如图1,点P在第一象限的抛物线上运动,过点P作PD xE,线段BC把△CPD分割成两个三角形的面积比为1∶2,求P点坐标;(3)如图2,若点H在抛物线上,点F在x轴上,当以B、C、H、F为顶点的四边形是平行四边形时,请直接写出点F的坐标.参考答案1.D【解析】根据中心对称图形和轴对称图形的定义,即可求解.在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.【详解】解:A、既不是中心对称图形,又不是轴对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、既不是中心对称图形,又不是轴对称图形,故本选项不符合题意;D、既是轴对称图形又是中心对称图形,故本选项符合题意;故选:D.【点睛】本题主要考查了中心对称图形和轴对称图形的定义,熟练掌握轴对称图形的关键是寻找对称轴,图形关于对称轴折叠后可完全重合;中心对图形是寻找对称中心,图形绕对称中心旋转180 后与自身重合是解题的关键.2.C【解析】【分析】根据圆的性质、垂径定理、三角形的外接圆等性质逐项进行判断即可.【详解】解:①直径是圆中最长的弦;故①正确,符合题意;②圆的两条平行弦所夹的弧相等;故②正确,符合题意;③任意一个三角形有且只有一个外接圆;故③正确,符合题意;④平分弦(非直径)的直径垂直于弦;故④错误,不符合题意;其中正确的有3个,故选:C.【点睛】本题考查了三角形的外接圆,垂径定理,圆心角、弧、弦的关系等知识,解题关键是熟记相关性质,准确进行判断.3.C【解析】【分析】先得出∠ACB=90°,再计算出∠B,根据圆内接四边形对角互补得出结果【详解】解:∵AB 是直径∴∠ACB=90°,∠CAB=20°∴∠B=70°∵四边形ADCB 是圆内接四边形∴∠B+∠D=180°∴∠D=110°故选:C【点睛】本题考查圆周角定理、圆内接四边的性质.熟练记忆定理、性质是关键.灵活使用相应的定理性质是重点.4.B【解析】【分析】设小道的宽为x 米,则种植区域可看成长为()202x -米、宽为()15x -米的长方形,根据长方形的面积公式结合种植面积为252平方米,即可得出关于x 的一元二次方程,解方程并检验即可得出结论.【详解】解:设小道的宽为x 米,根据题意得:()()20215252x x --=,整理得:225240x x -+=,()()1240,x x ∴--=10x ∴-=或240,x -=解得:121,24x x ==,经检验24x =不合题意,舍去,取1x =.答:小道的宽为1米.故选:B .【点睛】本题考查了一元二次方程的应用,掌握利用一元二次方程解决图形面积问题是解题的关键.5.B【解析】【分析】根据二次函数解析式得出的图象的开口向下,对称轴是直线1x =,然后根据二次函数的图象的性质进行判断即可.【详解】∵()22211y x x c x c =-++=--++,∴这个二次函数的图象开口向下,对称轴是直线1x =.∵()112,P y -关于对称轴的对称点为()14,y ,点3P 的坐标是()34,y ,∴13y y =,∵2P ,3P 都在这个二次函数的图象的对称轴的右侧,124<<,∴23y y >,∴213y y y >=,故选:B.6.B【解析】先根据旋转的性质可知:DE=BC=1,AB=AD,再应用勾股定理求出AB 的长;又由旋转的性质可得∠BAD=90°,最后再用勾股定理求解即可.【详解】解:由旋转的性质得到:,ABC ADE V V ≌∠BAD=90°∴AE=AC=,BC=DE=1,AB=AD ,∵∠ACB=90°∴AB=AD=3=在Rt△BAD 中,根据勾股定理得:=故填B.7.A【解析】根据新定义得出方程210x x --=,再利用根的判别式即可确定答案.【详解】解:由新定义得:x 2﹣x﹣1=0,∵Δ=(﹣1)2﹣4×1×(﹣1)=5>0,∴方程有两个不相等的实数根,故选:A.8.D【解析】设AD=x,由切线长定理得AE=x,根据题意可得四边形OECF为正方形,则CE=CF=2,BD=BF=3,在直角三角形ABC中,利用勾股定理求出x,然后求其周长.【详解】解:连接OE、OF,设AD=x,由切线长定理得AE=x,∵⊙O与Rt△ABC的三边分别点D、E、F,∴OE⊥AC,OF⊥BC,∴四边形OECF为正方形,∵⊙O的半径为2,BC=5,∴CE=CF=2,BD=BF=3,∴在Rt△ABC中,∵AC2+BC2=AB2,即(x+2)2+52=(x+3)2,解得x=10,∴△ABC的周长为12+5+13=30.故选:D.9.C【解析】在弧AB 上取一点D,连接AD,BD,利用圆周角定理可知12ADB AOB ∠=∠,再利用圆内接四边形的性质即可求出∠ACB 的度数.【详解】如图,在弧AB 上取一点D,连接AD,BD,则111407022ADB AOB ∠=∠=⨯︒=︒∴180********ACB ADB ∠=︒-∠=︒-︒=︒故选C10.C【解析】可将小明的运动过程分成三段,O 点到A 点,A 点到B 点,B 点到O 点,然后分析每段运动过程对应的图像,并作出选择.【详解】如上图可将小明的运动过程分成三段,O点到A点,A点到B点,B点到O点,当小明由O点到A点时:h随着t的增加而增加,当小明由A点到B点时:随着t的增加h不变,当小明由B点到O点时:h随着t的增加而减小,所以函数图像变化趋势为,先增加,再不变,最后减小,故C选项与题意相符,故选:C.【点睛】本题考查根据实际问题分析与之对应的函数图像,能够将实际问题进行分段分析,并将每一段对应的函数图像画出是解决本题的关键.11.(3,-1)【解析】根据关于原点对称的点的坐标特点解答即可.【详解】解:∵点P的坐标为(−3,1),∴和点P关于原点中心对称的点P′的坐标是(3,−1),故填:(3,-1).【点睛】本题考查的是关于原点对称的点的坐标特点,掌握两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(−x,−y)是解题的关键.12.2(1+x)2=128.【分析】此题的等量关系为:经过两轮传染后的人数=128,列方程即可.【详解】解:设每轮传染中平均一个人传染x个人,根据题意得:2(1+x)2=128.故答案为:2(1+x)2=128.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是得到两轮传染数量关系,从而可列方程求解.13.-6【解析】【分析】利用一元二次方程解的定义得到a2-3a=5,再把4-2a2+6a变形为4-2(a2-3a),然后利用整体代入的方法计算即可.【详解】把x a=代入方程2350x xa a--=,则235--=,得2350-=,所以a a22-+=--=-⨯=-.42642(3)4256a a a a【点睛】本题考查一元二次方程解的定义,解题的关键是掌握一元二次方程解的定义.14.2【解析】连接AB,如图,先计算出,再根据垂径定理得到AC=PC,BD=PD,则可判断CD为△PAB 的中位线,然后根据三角形中位线定理求解.【详解】解:连接AB,如图,∵OA=OB=1,∠AOB=90°,∵OC⊥AP,OD⊥BP,∴AC=PC,BD=PD,∴CD 为△PAB 的中位线,∴CD=12AB=2..【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了三角形的中位线定理.15.7【解析】【分析】连接AO 和CO,证明DA=DO,EO=EC 后,将△ODE 的周长转化为了AC 的长即可求解.解:如图,连接AO和CO,由平移可得:OD∥AB,OE∥BC,∴∠BAO=∠OAD,∠BCO=∠COE,∵点O是ABC的内心,∴AO、CO分别平分∠BAC和∠BCA,∴∠BAO=∠OAD,∠BCO=∠OCE∴∠OAD=∠AOD,∠OCE=∠COE,∴DA=DO,EC=EO,∴ODE的周长为:DO+EO+DE=DA+DE+EC=AC=7.故答案为:7.【点睛】本题主要考查了三角形的内心、平移的性质、平行线的性质、等腰三角形的判定等知识,掌握三角形的内心是三角形三条角平分线的交点是解题关键,学生需要通过作辅助线构造等腰三角形,将△ODE三条边转化到同一条直线上完成求解,此题考查了学生对所学知识点的理解与掌握的程度,其中用到了转化的思想.16.165°【解析】如图,延长BO交CD于E,根据三角板各角度数和平行线性质证得∠OEC=∠B=60°,根据三角形外角性质求得∠DOE的度数,再根据邻补角定义求解∠DOB即可.【详解】解:如图,延长BO交CD于E,由三角板可知∠B=60°,∠D=45°,∵AB∥CD,∴∠OEC=∠B=60°,∵∠OEC=∠DOE+∠D,∴∠DOE=∠OEC﹣∠D=60°﹣45°=15°,∴∠DOB=180°﹣∠DOE=180°﹣15°=165°,故答案为:165°.【点睛】本题考查平行线的性质、三角形的外角性质、邻补角定义,熟知三角板各角的度数,熟练掌握平行线的性质和三角形的外角性质是解答的关键.17.1≤m≤5或m≤0.【解析】将抛物线y=x 2沿x 轴向右平移m(m>0)个单位长度后,得到y=(x-m)2,求得其经过点A、B 时m 的值,然后根据图象求得即可.【详解】解:将抛物线y=x 2沿x 轴向右平移m(m>0)个单位长度后,得到y=(x-m)2,把A(2,1)代入得1=(2-m)2,解得m=3或1,把B(4,1)代入得1=(4-m)2,解得m=3或5,∴使y=(x-m)2与线段AB(含端点)没有交点时,m 的取值范围是1≤m≤5或m≤0.故答案为1≤m≤5或m≤0.【点睛】本题考查了二次函数图象与几何变换,二次函数图象上点的坐标特征,数形结合是解题的关键.18.(1)14x =,28x =-(2)133x =,233x =(3)11x =,23x =(4)无实数解【解析】【分析】采用直接开平方法、配方法、因式分解法即可求解.【详解】(1)2(2)360x +-=2(2)36x +=26x +=±,即14x =,28x =-;(2)23610x x -+=23(21)2x x -+=22(1)3x -=1x -=即1x =2x =(3)2(3)62x x-=-2(3)2(3)x x -=-2(3)2(3)0x x -+-=(3)(32)0x x --+=(3)(1)0x x --=即11x =,23x =;(4)2221321()()280x x +-+-=2()221280x -+-=2(140)21x ++=,∵2210()x +≥,∴2(140)21x ++>,∴原方程无实数解.【点睛】本题考查了用直接开平方法、配方法、因式分解法求解一元二次方程的解的知识,熟练掌握配方法是解答本题的关键.19.(1)①作图见试题解析;②作图见试题解析;(2)(﹣1,﹣4).【解析】【分析】(1)利用网格找出点A、B、C 平移后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(2)分别找到A、B、C 旋转后的对应点,顺次连接可得△A 2B 2C 2;(3)由图形可知交点坐标;【详解】解:(1)如图所示:△A 1B 1C 1即为所求;(2)如图所示:△A 2B 2C 2,即为所求;(3)由图形可知:交点坐标为(﹣1,﹣4).考点:1.作图-旋转变换;2.两条直线相交或平行问题;3.作图-平移变换.20.(1)()23134y x =--+(0<x<3);(2)不会被淋湿,理由见解析【解析】【分析】(1)根据顶点坐标可设二次函数的顶点式,代入点(3,0),求出a 值,此题得解;(2)利用二次函数图象上点的坐标特征,求出当2x =时的函数值,由此即可得出结论.【详解】(1)设水柱所在抛物线(第一象限部分)的函数表达式为()213y a x =-+(a≠0),将(3,0)代入()213y a x =-+,得:4a+3=0,解得:34a =-,∴水柱所在抛物线的函数表达式为()23134y x =--+(0<x<3).(2)当2x =时,有()23213 2.254-⨯-+=,∵2.25 1.8>∴不会被淋湿.【点睛】本题考查的知识点是二次函数的实际应用,掌握二次函数的图象及其性质是解此题的关键.21.(1)∠ACB=50°(2)∠EAC=20°【解析】【分析】(1)连接OA、OB,根据切线性质和∠P=80°,得到∠AOB=100°,根据圆周角定理得到∠C=50°;(2)连接CE,证明∠BCE=∠BAE=40°,根据等腰三角形性质得到∠ABD=∠ADB=70°,由三角形外角性质得到∠EAC=20°.(1)连接OA、OB,∵PA,PB是⊙O的切线,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣80°=100°,∠AOB=50°;由圆周角定理得,∠ACB=12(2)连接CE,∵AE为⊙O的直径,∴∠ACE=90°,∵∠ACB=50°,∴∠BCE=90°﹣50°=40°,∴∠BAE=∠BCE=40°,∵AB=AD,∴∠ABD=∠ADB=70°,∴∠EAC=∠ADB﹣∠ACB=20°.【点睛】本题考查了圆的切线,圆周角,等腰三角形,三角形外角,熟练掌握圆的切线性质,圆周角定理及推论,等腰三角形的性质,三角形外角性质,是解决问题的关键.22.(1)60°;【解析】【分析】(1)由题意根据旋转的性质得到△ODC为等边三角形即可求出∠ODC的度数;(2)根据题意先得出∠ADO=90°,进而在Rt△AOD中,利用勾股定理即可求得AO的长.【详解】解:(1)由旋转的性质得,CD=CO,∠ACD=∠BCO,∵∠ACB=60°,∴∠DCO=60°,∴△OCD为等边三角形,∴∠ODC=60°;(2)由旋转的性质得,AD=OB=2,∵△OCD为等边三角形,∴OD=OC=3,∵∠BOC=150°,∠ODC=60°,∴∠ADO=90°,在Rt△AOD 中,由勾股定理得:AO =【点睛】本题主要考查旋转的性质以及勾股定理,由题意得出∠ADO=90°并依据勾股定理进行分析是解题的关键.23.(1)10400=-+y x ,且040x <<(2)销售单价为30元时,文具店获利最大,最大为1000元(3)钢笔的销售单价为35元或者25元【解析】【分析】(1)设直线解析式为y=kx+b,根据已知点的坐标求出直线的解析式即可求解;(2)设利润为w,根据题意有:2106008000w x =-+-,化为顶点式为:210(30)1000w x =--+,即可作答;(3)设捐款后的利润为W,则W 为原利润w 减去捐款后所得利润,根据题意有:210(30)800550x --+=,解方程即可求解.(1)根据图像可知直线经过点(30,100)、(35,50),则设直线解析式为y=kx+b,且x>0,y>0,则有:301003550k b k b +=⎧⎨+=⎩,解得:10400k b =-⎧⎨=⎩,设直线解析式为10400=-+y x ,且040x <<,即y 与x 之间的函数关系式为10400=-+y x ,且040x <<;(2)设利润为w,根据题意有:(20)(10400)(20)w y x x x =-=-+-,整理得:2106008000w x =-+-,化为顶点式为:210(30)1000w x =--+,则可知当x=30时,利润w 最大,且最大值为1000元,即销售单价为30元时,文具店获利最大,最大为1000元;(3)设捐款后的利润为W,则W 为原利润w 减去捐款后所得利润,即W=w-200,则有2220010(30)100020010(30)800W w x x =-=--+-=--+,根据题意有:210(30)800550x --+=,解得x=35或者25,则钢笔的销售单价为35元或者25元.【点睛】本题考查了一次函数的应用、根据坐标点求解一次函数解析式、二次函数的应用以及一元二次方程的应用,明确题意是解答本题的关键.24.(1)60︒,AE BD =;(2)120AFB ∠=︒,AE BD =;(3)44BD ≤≤【解析】【分析】(1)先判断出ACE BCD ∠=∠,进而判断出ACE BCD △≌△,得出AE BD =,CAE CBD ∠=∠,再用三角形的内角和求出AFB ∠的度数;(2)先判断出ACE BCD ∠=∠,进而判断出ACE BCD △≌△,得出AE BD =,CAE CBD ∠=∠,再用三角形的内角和求出AFB ∠的度数;(3)利用三角形的三边关系判断出CB CD BD +>,CD BC BD ->,即可得出结论(1)解:∵ABC 是等边三角形,∴AC BC =,60BAC ACB ∠=∠=︒.∵ECD 是等边三角形,∴CE CD =,60DCE ∠=︒,∴60ACB DCE ∠=∠=︒,∴ACB BCE DCE BCE ∠+∠=∠+∠,即ACE BCD ∠=∠.在ACE 和BCD △中,AC BCACE BCD CE CD⎧⎪∠∠⎨⎪⎩===,∴ACE BCD SAS ≌(),∴AE BD =,CAE CBD ∠=∠,在ABF 中,()180AFB BAF ABF ∠=︒-∠+∠()180BAF CBF ABC =︒-∠+∠+∠()180BAC ABC =︒-∠+∠()1806060=︒-︒+︒60=︒,∴60AFB ∠=︒.故答案为:60︒,AE BD =;(2)解:120︒,AE BD =。
人教版数学九年级上册期中考试数学试卷附答案
人教版九年级上册期中考试数学试卷一、选择题(10小题,每小题4分共40分)1.(4分)下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(4分)抛物线y=﹣2x2+1的对称轴是()A.直线B.直线C.y轴D.直线x=23.(4分)抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位4.(4分)用配方法解方程x2+2x﹣5=0时,原方程应变形为()A.(x+1)2=6B.(x﹣1)2=6C.(x+2)2=9D.(x﹣2)2=95.(4分)如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°6.(4分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k>﹣1且k≠0C.k<1D.k<1且k≠07.(4分)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y28.(4分)已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<4B.k≤4C.k<4且k≠3D.k≤4且k≠39.(4分)已知,α、β是关于x的一元二次方程x2+4x﹣1=0的两个实数根,则α+β的值是()A.﹣4B.4C.4或﹣4D.﹣10.(4分)如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.二、填空题(6小题,每小题4分共24分)11.(4分)一元二次方程2x2=3x的根是.12.(4分)坐标平面内的点P(m,﹣2)与点Q(3,n)关于原点对称,则m+n=.13.(4分)已知抛物线y=ax2﹣2ax+c与x轴一个交点的坐标为(﹣1,0),则一元二次方程ax2﹣2ax+c=0的根为.14.(4分)某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是.15.(4分)如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC ⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为.16.(4分)已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①abc>0,②a﹣b+c <0,③2a=b,④4a+2b+c>0,⑤若点(﹣2,y1)和(﹣,y2)在该图象上,则y1>y2.其中正确的结论是(填入正确结论的序号).三、解答题(6小题,共86分)17.(10分)解方程(1)2x2+3=7x(2)4(x+3)2=(x﹣1)2.18.(10分)二次函数中y=ax2+bx﹣3的x、y满足表:x…﹣10123…y…0﹣3﹣4﹣3m…(1)求该二次函数的解析式;(2)求m的值并直接写出对称轴及顶点坐标.19.(10分)如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(1)旋转中心是点,旋转角度是度;(2)若连结EF,则△AEF是三角形;并证明;(3)若四边形AECF的面积为25,DE=2,求AE的长.20.(10分)已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度).(1)作出△ABC绕点A顺时针方向旋转90°后得到的△A1B1C1,并直接写出C1点的坐标;(2)作出△ABC关于原点O成中心对称的△A2B2C2,并直接写出B2的坐标.21.(10分)在“全民阅读”活动中,某中学对全校学生中坚持每天半小时阅读的人数进行了调查,2012年全校坚持每天半小时阅读有1000名学生,2013年全校坚持每天半小时阅读人数比2012年增加10%,2014年全校坚持每天半小时阅读人数比2013年增加340人.(1)求2014年全校坚持每天半小时阅读学生人数;(2)求从2012年到2014年全校坚持每天半小时阅读的人数的平均增长率.22.(10分)关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2.(1)求k的取值范围;(2)如果x1+x2﹣x1x2<﹣1且k为整数,求k的值.23.(12分)某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(单位:元)与售价x(单位:元/件)之间的函数解析式.(2)当销售价定为45元时,计算月销售量和销售利润.(3)当销售价定为多少元时会获得最大利润?求出最大利润.24.(14分)抛物线y=ax2+bx﹣4与x轴交于A,B两点,(点B在点A的右侧)且A,B 两点的坐标分别为(﹣2,0)、(8,0),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交BD于点M.(1)求抛物线的解析式;(2)当点P在线段OB上运动时,试探究m为何值时,四边形CQMD是平行四边形?(3)在(2)的结论下,试问抛物线上是否存在点N(不同于点Q),使三角形BCN的面积等于三角形BCQ的面积?若存在,请求出点N的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(10小题,每小题4分共40分)1.(4分)(2013•黑龙江)下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是中心对称图形,也是轴对称图形,故本选项正确.故选D.2.(4分)(2012•兰州)抛物线y=﹣2x2+1的对称轴是()A.直线B.直线C.y轴D.直线x=2【分析】已知抛物线解析式为顶点式,可直接写出顶点坐标及对称轴.【解答】解:∵抛物线y=﹣2x2+1的顶点坐标为(0,1),∴对称轴是直线x=0(y轴),故选C.3.(4分)(2012•兰州)抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位【分析】根据“左加右减,上加下减”的原则进行解答即可.【解答】解:抛物线y=x2向左平移2个单位可得到抛物线y=(x+2)2,抛物线y=(x+2)2,再向下平移3个单位即可得到抛物线y=(x+2)2﹣3.故平移过程为:先向左平移2个单位,再向下平移3个单位.故选:B.4.(4分)(2016春•招远市期中)用配方法解方程x2+2x﹣5=0时,原方程应变形为()A.(x+1)2=6B.(x﹣1)2=6C.(x+2)2=9D.(x﹣2)2=9【分析】把常数项﹣5移项后,应该在左右两边同时加上一次项系数2的一半的平方.【解答】解:由原方程,得x2+2x=5,x2+2x+1=5+1,(x+1)2=6.故选:A.5.(4分)(2015•德州)如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°【分析】根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.【解答】解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C.6.(4分)(2009•成都)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k>﹣1且k≠0C.k<1D.k<1且k≠0【分析】根据根的判别式及一元二次方程的定义得出关于k的不等式组,求出k的取值范围即可.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴,即,解得k>﹣1且k≠0.故选B.7.(4分)(2012•泰安)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a 上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2【分析】根据二次函数的对称性,可利用对称性,找出点A的对称点A′,再利用二次函数的增减性可判断y值的大小.【解答】解:∵函数的解析式是y=﹣(x+1)2+a,如右图,∴对称轴是x=﹣1,∴点A关于对称轴的点A′是(0,y1),那么点A′、B、C都在对称轴的右边,而对称轴右边y随x的增大而减小,于是y1>y2>y3.故选A.8.(4分)(2011•襄阳)已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<4B.k≤4C.k<4且k≠3D.k≤4且k≠3【分析】分为两种情况:①当k﹣3≠0时,(k﹣3)x2+2x+1=0,求出△=b2﹣4ac=﹣4k+16≥0的解集即可;②当k﹣3=0时,得到一次函数y=2x+1,与x轴有交点;即可得到答案.【解答】解:①当k﹣3≠0时,(k﹣3)x2+2x+1=0,△=b2﹣4ac=22﹣4(k﹣3)×1=﹣4k+16≥0,k≤4;②当k﹣3=0时,y=2x+1,与x轴有交点.故选B.9.(4分)(2016秋•台江县校级期中)已知,α、β是关于x的一元二次方程x2+4x﹣1=0的两个实数根,则α+β的值是()A.﹣4B.4C.4或﹣4D.﹣【分析】根据根与系数的关系即可得出α+β的值,此题得解.【解答】解:∵α、β是关于x的一元二次方程x2+4x﹣1=0的两个实数根,∴α+β=﹣=﹣4.故选A.10.(4分)(2015•安徽)如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q 两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.【分析】由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b﹣1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b﹣1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,即可进行判断.【解答】解:∵一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,∴方程ax2+(b﹣1)x+c=0有两个不相等的根,∴函数y=ax2+(b﹣1)x+c与x轴有两个交点,又∵﹣>0,a>0∴﹣=﹣+>0∴函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,∴A符合条件,故选A.二、填空题(6小题,每小题4分共24分)11.(4分)(2011秋•鄱阳县期末)一元二次方程2x2=3x的根是x1=0,或x2=.【分析】移项得2x2﹣3x=0,把方程的左边分解因式得2x2﹣3x=0,使每个因式等于0,就得到两个一元一次方程,求出方程的解即可.【解答】解:∵2x2=3x,∴2x2﹣3x=0,x(2x﹣3)=0,2x2﹣3x=0x=0或2x﹣3=0,∴x1=0或x2=,故答案为:x1=0或x2=.12.(4分)(2016秋•台江县校级期中)坐标平面内的点P(m,﹣2)与点Q(3,n)关于原点对称,则m+n=﹣1.【分析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”求出m、n的值,然后相加计算即可得解.【解答】解:∵点P(m,﹣2)与点Q(3,n)关于原点对称,∴m=﹣3,n=2,所以,m+n=﹣3+2=﹣1.故答案为:﹣1.13.(4分)(2015秋•巢湖市期中)已知抛物线y=ax2﹣2ax+c与x轴一个交点的坐标为(﹣1,0),则一元二次方程ax2﹣2ax+c=0的根为﹣1,3.【分析】将x=﹣1,y=0代入抛物线的解析式可得到c=﹣3a,然后将c=﹣3a代入方程,最后利用因式分解法求解即可.【解答】解法一:将x=﹣1,y=0代入y=ax2﹣2ax+c得:a+2a+c=0.解得:c=﹣3a.将c=﹣3a代入方程得:ax2﹣2ax﹣3a=0.∴a(x2﹣2x﹣3)=0.∴a(x+1)(x﹣3)=0.∴x1=﹣1,x2=3.解法二:已知抛物线的对称轴为x==1,又抛物线与x轴一个交点的坐标为(﹣1,0),则根据对称性可知另一个交点坐标为(3,0);故而ax2﹣2ax+c=0的两个根为﹣1,3故答案为:﹣1,3.14.(4分)(2014•泰州一模)某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是20%.【分析】设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是25(1﹣x),第二次后的价格是25(1﹣x)2,据此即可列方程求解.【解答】解:设该药品平均每次降价的百分率为x,由题意可知经过连续两次降价,现在售价每盒16元,故25(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去),故该药品平均每次降价的百分率为20%.15.(4分)(2015•长春)如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为1.【分析】先利用配方法得到抛物线的顶点坐标为(1,1),再根据矩形的性质得BD=AC,由于AC的长等于点A的纵坐标,所以当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,从而得到BD的最小值.【解答】解:∵y=x2﹣2x+2=(x﹣1)2+1,∴抛物线的顶点坐标为(1,1),∵四边形ABCD为矩形,∴BD=AC,而AC⊥x轴,∴AC的长等于点A的纵坐标,当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,∴对角线BD的最小值为1.故答案为1.16.(4分)(2015•贺州)已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①abc>0,②a﹣b+c<0,③2a=b,④4a+2b+c>0,⑤若点(﹣2,y1)和(﹣,y2)在该图象上,则y1>y2.其中正确的结论是②④(填入正确结论的序号).【分析】由图象可先判断a、b、c的符号,可判断①;由x=﹣1时函数的图象在x轴下方可判断②;由对称轴方程可判断③;由对称性可知当x=2时,函数值大于0,可判断④;结合二次函数的对称性可判断⑤;可得出答案.【解答】解:∵二次函数开口向下,且与y轴的交点在x轴上方,∴a<0,c>0,∵对称轴为x=1,∴﹣=1,∴b=﹣2a>0,∴abc<0,故①、③都不正确;∵当x=﹣1时,y<0,∴a﹣b+c<0,故②正确;由抛物线的对称性可知抛物线与x轴的另一交点在2和3之间,∴当x=2时,y>0,∴4a+2b+c>0,故④正确;∵抛物线开口向下,对称轴为x=1,∴当x<1时,y随x的增大而增大,∵﹣2<﹣,∴y1<y2,故⑤不正确;综上可知正确的为②④,故答案为:②④.三、解答题(6小题,共86分)17.(10分)(2016秋•台江县校级期中)解方程(1)2x2+3=7x(2)4(x+3)2=(x﹣1)2.【分析】(1)先把方程化为一般式,然后利用因式分解法解方程;(2)先把方程两边开方得到2(x+3)=±(x+1),然后解一次方程即可.【解答】解:(1)2x2﹣7x+3=0,(2x﹣1)(x﹣3)=0,2x﹣1=0或x﹣3=0,所以x1=,x2=3;(2)解:2(x+3)=±(x+1),所以x1=﹣7,x2=﹣.18.(10分)(2015秋•南开区期中)二次函数中y=ax2+bx﹣3的x、y满足表:x…﹣10123…y…0﹣3﹣4﹣3m…(1)求该二次函数的解析式;(2)求m的值并直接写出对称轴及顶点坐标.【分析】(1)设一般式y=ax2+bx+c,再取三组对应值代入得到关于a、b、c的方程组,然后解方程组即可;(2)先把一般式化为顶点式,然后根据二次函数的性质求解.【解答】解:(1)设抛物线解析式为y=ax2+bx+c,把(﹣1,0),(0,﹣3),(1,﹣4)代入得,解得a=1,b=﹣2,c=﹣3,所以抛物线解析式为y=x2﹣2x﹣3;(2)y=x2﹣2x﹣3=(x﹣1)2﹣4,所以抛物线的对称轴为直线x=1,顶点坐标为(1,﹣4).19.(10分)(2015•新泰市校级模拟)如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(1)旋转中心是点A,旋转角度是90度;(2)若连结EF,则△AEF是等腰直角三角形;并证明;(3)若四边形AECF的面积为25,DE=2,求AE的长.【分析】(1)根据旋转变换的定义,即可解决问题.(2))根据旋转变换的定义,即可解决问题.(3)根据旋转变换的定义得到△ADE ≌△ABF ,进而得到S 四边形AECF =S 正方形ABCD =25,求出AD 的长度,即可解决问题.【解答】解:(1)如图,由题意得:旋转中心是点A ,旋转角度是90度.故答案为A 、90.(2)由题意得:AF=AE ,∠EAF=90°,∴△AEF 为等腰直角三角形.故答案为等腰直角.(3)由题意得:△ADE ≌△ABF ,∴S 四边形AECF =S 正方形ABCD =25,∴AD=5,而∠D=90°,DE=2,∴.20.(10分)(2016秋•青海期中)已知:△ABC 在坐标平面内,三个顶点的坐标分别为A (0,3),B (3,4),C (2,2).(正方形网格中,每个小正方形的边长是1个单位长度).(1)作出△ABC 绕点A 顺时针方向旋转90°后得到的△A 1B 1C 1,并直接写出C 1点的坐标;(2)作出△ABC 关于原点O 成中心对称的△A 2B 2C 2,并直接写出B 2的坐标.【分析】(1)利用旋转的性质得出对应点位置进而得出答案;(2)利用关于原点对称点的性质得出对应点位置进而得出答案.【解答】解:(1)如图所示:△A 1B 1C 1,即为所求,C 1(1,1);(2)如图所示:△A 2B 2C 2,即为所求,B 2(﹣3,﹣4).21.(10分)(2015秋•和县期末)在“全民阅读”活动中,某中学对全校学生中坚持每天半小时阅读的人数进行了调查,2012年全校坚持每天半小时阅读有1000名学生,2013年全校坚持每天半小时阅读人数比2012年增加10%,2014年全校坚持每天半小时阅读人数比2013年增加340人.(1)求2014年全校坚持每天半小时阅读学生人数;(2)求从2012年到2014年全校坚持每天半小时阅读的人数的平均增长率.【分析】(1)根据题意,先求出2013年全校的学生人数就可以求出2014年的学生人数;(2)根据增长后的量=增长前的量×(1+增长率).设平均每年的增长率是x,列出方程求解即可.【解答】解:(1)由题意,得2013年全校学生人数为:1000×(1+10%)=1100人,∴2014年全校学生人数为:1100+340=1440人;(2)设从2012年到2014年全校坚持每天半小时阅读的人数的平均增长率为x,根据题意得:1000(1+x)2=1440,解得:x=0.2=20%或x=﹣2.2(舍去).答:从2012年到2014年全校坚持每天半小时阅读的人数的平均增长率为20%.22.(10分)(2011•南充)关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2.(1)求k的取值范围;(2)如果x1+x2﹣x1x2<﹣1且k为整数,求k的值.【分析】(1)方程有两个实数根,必须满足△=b2﹣4ac≥0,从而求出实数k的取值范围;(2)先由一元二次方程根与系数的关系,得x1+x2=﹣2,x1x2=k+1.再代入不等式x1+x2﹣x1x2<﹣1,即可求得k的取值范围,然后根据k为整数,求出k的值.【解答】解:(1)∵方程有实数根,∴△=22﹣4(k+1)≥0,解得k≤0.故K的取值范围是k≤0.(2)根据一元二次方程根与系数的关系,得x1+x2=﹣2,x1x2=k+1,x1+x2﹣x1x2=﹣2﹣(k+1).由已知,得﹣2﹣(k+1)<﹣1,解得k>﹣2.又由(1)k≤0,∴﹣2<k≤0.∵k为整数,∴k的值为﹣1或0.23.(12分)(2016秋•台江县校级期中)某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(单位:元)与售价x(单位:元/件)之间的函数解析式.(2)当销售价定为45元时,计算月销售量和销售利润.(3)当销售价定为多少元时会获得最大利润?求出最大利润.【分析】(1)利用已知表示出每件的利润以及销量进而表示出总利润即可;(2)将x=45代入求出即可求出月销售量和销售利润;(3)利用配方法求出二次函数最值即可得出答案.【解答】解:(1)由题意可得:y=(x﹣30)[600﹣10(x﹣40)],=﹣10x2+1300x﹣30000;(2)当x=45时,600﹣10(x﹣40)=550(件),y=﹣10×452+1300×45﹣30000=8250(元);(3)y=﹣10x2+1300x﹣30000,=﹣10(x﹣65)2+12250,故当x=65(元),最大利润为12250元.24.(14分)(2016秋•台江县校级期中)抛物线y=ax2+bx﹣4与x轴交于A,B两点,(点B在点A的右侧)且A,B两点的坐标分别为(﹣2,0)、(8,0),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交BD于点M.(1)求抛物线的解析式;(2)当点P在线段OB上运动时,试探究m为何值时,四边形CQMD是平行四边形?(3)在(2)的结论下,试问抛物线上是否存在点N(不同于点Q),使三角形BCN的面积等于三角形BCQ的面积?若存在,请求出点N的坐标;若不存在,请说明理由.【分析】(1)直接将A、B两点的坐标代入抛物线的解析式中,列方程组可求a、b的值,写出解析式即可;(2)先求点C和D的坐标,求直线BD的解析式,根据横坐标m表示出点Q和M的纵坐标,由MQ∥CD,根据一组对边平行且相等的四边形是平行四边形,证明MQ=CD即可,因此列等式:(﹣m+4)﹣(m2﹣m﹣4)=4﹣(﹣4),求m即可;(3)要使三角形BCN的面积等于三角形BCQ的面积,可先判断四边形CQBM是平行四边形,解得M点到BC的距离与Q到BC的距离相等,所以过M或Q点的与直线BC平行的直线与抛物线的交点即为所求,列方程组可得结论.【解答】解:(1)将A(﹣2,0),B(8,0)代入抛物线y=ax2+bx﹣4得:,解得:,∴抛物线的解析式:y=x2﹣x﹣4;(2)当x=0时,y=﹣4,∴C(0,﹣4),∴OC=4,∵四边形DECB是菱形,∴OD=OC=4,∴D(0,4),设BD的解析式为:y=kx+b,把B(8,0)、D(0,4)代入得:,解得:,∴BD的解析式为:y=﹣x+4,∵l⊥x轴,∴M(m,﹣m+4)、Q(m,m2﹣m﹣4),如图1,∵MQ∥CD,∴当MQ=DC时,四边形CQMD是平行四边形,∴(﹣m+4)﹣(m2﹣m﹣4)=4﹣(﹣4),化简得:m2﹣4m=0,解得m1=0(不合题意舍去),m2=4,∴当m=4时,四边形CQMD是平行四边形;(3)如图2,要使三角形BCN的面积等于三角形BCQ的面积,N点到BC的距离与Q到BC的距离相等;设直线BC的解析式为:y=kx+b,把B(8,0)、C(0,﹣4)代入得:,解得:,∴直线BC的解析式为:y=x﹣4,由(2)知:当P(4,0)时,四边形DCQM为平行四边形,∴BM∥QC,BM=QC,得△MFB≌△QFC,分别过M、Q作BC的平行线l1、l2,所以过M或Q点的斜率为的直线与抛物线的交点即为所求,当m=4时,y=﹣m+4=﹣×4+4=2,∴M(4,2),当m=4时,y=m2﹣m﹣4=×16﹣×4﹣4=﹣6,Q(4,﹣6),①设直线l1的解析式为:y=x+b,∵直线l1过Q点时,∴﹣6=×4+b,b=﹣8,∴直线l1的解析式为:y=x﹣8,则,=x﹣8,解得x1=x2=4(与Q重合,舍去),②∵直线l2过M点,同理求得直线l2的解析式为:y=x,则,=x,x2﹣x﹣16=0,解得x1=4+4,x2=4﹣4,代入y=x,得,,则N1(4+4,2+2),N2(4﹣4,2﹣2),故符合条件的N的坐标为N1(4+4,2+2),N2(4﹣4,2﹣2).。
人教版九年级上册数学期中考试试卷带答案
人教版九年级上册数学期中考试试题一、单选题1.下列图形,是中心对称图形但不是轴对称图形的是()A .B .C .D .2.若关于x 的一元二次方程22(2)40m x x m --+-=的常数项为0,则m 的值等于()A .2B .−2C .±2D .−43.若关于x 的一元二次方程2(3)410k x x -++=有两个不相等的实数根,则k 的取值范围是()A .7k <B .7k <,且3k ≠C .7k ≤,且3k ≠D .7k >4.一次函数y ax b =+的图象如图所示,则二次函数2y ax bx =+的图象可能是()A .B .B .C .D .5.已知二次函数2286y x x =-+的图象交x 轴于,A B 两点.若其图象上有且只有123,,P P P 三点满足123ABP ABP ABP S S S m === ,则m 的值是()A .1B .32C .2D .46.如图,将ABC 绕点A 逆时针旋转55︒得到ADE ,若70E ∠=︒且AD BC ⊥于点F ,则DAE ∠的度数为()A .65︒B .70︒C .80︒D .75︒7.往直径为52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm =,则水的最大深度为()A .8cmB .10cmC .16cmD .20cm8.如图,A ,B ,C 是半径为1的⊙O 上的三个点,若ABCAB =30°,则∠ABC 的度数为()A .95°B .100°C .105°D .110°9.如图,⊙O 是正六边形ABCDEF 的外接圆,点P 在⊙O 上(P 不与A ,B 重合),则∠APB 的度数为()A .60°B .60°或120°C .30°D .30°或150°10.某数学复习课上,数学老师用几何画板上画出二次函数y =ax 2+bx+c (a≠0)图象如图所示,四名同学根据图象,说出下列结论:李佳:abc <0:王宁:2a ﹣b <0:孙浩:b 2>4ac 一帆:点(﹣3,y 1),(1,y 2)都在抛物线上,则有y 1>y 2,你认为其中正确的结论有()A .4个B .3个C .2个D .1个二、填空题11.已知关于x 的一元二次方程230ax bx +-=的一个解是1x =-,则2021a b -+=____.12.已知二次函数22y x x k =++的图象的顶点在x 轴上方,则实数k 的取值范围是_____.13.当﹣1≤x≤3时,二次函数y =x 2﹣4x+5有最大值m ,则m =_____.14.如图,在平面直角坐标系中,平行四边形ABCD 的顶点A 、B 在x 轴上,顶点D 在y 轴上,点A 的坐标为(2,0)-,点C 的坐标为(6,4).一条直线经过点(0,2)F -.且将平行四边形ABCD 分割成面积相等的两部分,则此直线的表达式是____________.15.如图,四边形ABCD 是O 的内接四边形,150ADC ∠=︒,弦2AC =,则O 的半径等于______.16.将半径为9cm 的扇形围成一个圆锥的侧面,若扇形的圆心角是120︒,则该圆锥底面的半径为______cm .17.如图,在Rt ABC 中,90,30,2ACB BAC BC ︒︒∠=∠==,边AB 上有一动点P ,将ABC 绕点C 逆时针旋转90︒得DEC ,点P 的对应点为P ',连接PP ',则PP '长的最小值为_________.18.如图,将△ABC 绕点A 顺时针旋转60°得到△AED ,若线段AB =5,则BE 的长度为__________.三、解答题19.如图,P 是正方形ABCD 内一点,2,3,1PA PB PD ===,将线段AP 以点A 为旋转中心逆时针旋转90︒得到线段'AP ,连接DP '下列结论:①AP D '△可以由APB △绕点A 逆时针旋转90︒得到;②点P 与P '的距离为2;③135APD ∠=︒;④5ABCD S =+正方形2APB S =+ __________(填序号).20.解方程:(1)2230x x +-=.(2)()2326x x +=+21.在下面的网格中,每个小正方形的边长均为1,ABC 的三个顶点都是网格线的交点,已知B ,C 两点的坐标分别为(3,0),(1,1)---.(1)请在图中画出平面直角坐标系,并直接写出点A 的坐标;(2)将ABC 绕着坐标原点顺时针旋转90︒,画出旋转后的A B C '''V ;(3)设(,)P a b 为ABC 边上一点,在A B C '''V 上与点P 对应的点是P ',则点P '坐标为__________;(4)在上述旋转过程中,点A 所经过的路径长为____________.22.“杂交水稻之父”——袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水稻亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.(1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;(2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.23.如图,在平行四边形ABCD 中,12AD =,以AD 为直径的O 与BC 相切于点E ,连接OC ,若OC AB =.(1)求EC 得长度?(2)求线段AB BE ,与弧AE 围成的图形(阴影部分)的面积?24.如图,等边三角形ABC ,点O 在AB 上,以点O 为圆心,OA 为半径作O ,交AC 于点D ,作DE BC ⊥于点E ,连接BD .(1)求证:DE 是O 的切线;(2)若O 的半径6R =,且:3:2AD DC =时,求BD 的长度.25.某服装厂生产A 品种服装,每件成本为67元,向外批发时,要求批发件数x 为10的正整数倍,且100x ≥;零售商到此服装厂一次性批发A 品牌服装,批发单价为y 元,y 与x 之间满足如图所示的函数关系.(1)求y 与x 的函数关系式;(2)零售商到此服装一次性批发A 品牌服(100350)x x ≤≤件,服装厂的利润为w 元,问x 为何值时,w 最大?最大值是多少?(3)零售商到此服装厂一次性批发A 品牌服装件数x 在什么范围时?可使服装厂获利不低于4420元,请直接写出结果.26.如图,在半面直角坐标系中,抛物线212y x bx c =-++与x 轴交于点A 、B ,其中点A 的坐标为(4,0)-,与y 轴交于点(0,2)C .(1)求抛物线的解析式;∥轴,交AC于点E,过D (2)若点D为抛物线上AC上方的一个动点,过点D作DE y作DF DE⊥,交直线AC于点F,以DE、DF为边作矩形DEGF,设矩形DEGF的周长为l,求l的最大值;(3)点P是x轴上一动点,将线段PC绕点P旋转90︒得到PQ,当点Q刚好落在抛物线上时,请直接写出点Q的坐标.参考答案1.C【详解】解:A、既不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、既是轴对称图形,又是中心对称图形,故本选项不合题意;C、不是轴对称图形,是中心对称图形,故本选项符合题意;D、不是中心对称图形,是轴对称图形,故本选项不合题意.故选:C.2.B【分析】首先找到该方程的常数项,然后由“常数项是0”列出关于m的方程,通过解该方程来求m 的值.【详解】解:∵关于x 的一元二次方程22(2)40m x x m --+-=的常数项为0,∴240m -=且20m -≠,解得=2m -.故选:B .3.B【分析】利用一元二次方程的定义和判别式的意义得到k-3≠0且Δ=42-4(k-3)×1>0,然后解不等式组即可.【详解】解:根据题意得k-3≠0且Δ=42-4(k-3)×1>0,解得k <7且k≠3.故选:B .4.D【解析】根据一次函数图像经过的象限以及与坐标轴的交点可知:00a b <,>,由此可知二次函数开口方向,坐标轴情况,依此判断即可.【详解】解:观察一次函数图像可知00a b <,>,∴二次函数2y ax bx =+开口向下,对称轴02b x a=->,故选:D .5.C【解析】由题意易得点123,,P P P 的纵坐标相等,进而可得其中有一个点是抛物线的顶点,然后问题可求解.【详解】解:假设点A 在点B 的左侧,∵二次函数2286y x x =-+的图象交x 轴于,A B 两点,∴令0y =时,则有20286x x =-+,解得:121,3x x ==,∴()()1,0,3,0A B ,∴312AB =-=,∵图象上有且只有123,,P P P 三点满足123ABP ABP ABP S S S m === ,∴点123,,P P P 的纵坐标的绝对值相等,如图所示:∵()22286222y x x x =-+=--,∴点()12,2P -,∴112222ABP m S ==⨯⨯= ;故选C .6.D【解析】由旋转的性质可得55BAD ∠=︒,70C E ∠=∠=︒,由直角三角形的性质可得20DAC ∠=︒,DAE BAC BAD DAC ∠=∠=∠+∠求解即可.【详解】∵将ABC 绕点A 逆时针旋转55︒得到ADE ,∴55BAD ∠=︒,70C E ∠=∠=︒,∵AD BC ⊥,∴907020DAC ∠=︒-︒=︒,∴552075DAE BAC BAD DAC ∠=∠=∠+∠=︒+︒=︒.故选:D .【点睛】本题考查了旋转的性质,掌握旋转的性质是解决本题的关键.7.C【解析】【分析】过点O 作OD ⊥AB 于D ,交⊙O 于E ,连接OA ,根据垂径定理即可求得AD 的长,又由⊙O 的直径为52cm ,求得OA 的长,然后根据勾股定理,即可求得OD 的长,进而求得油的最大深度DE 的长.【详解】解:过点O 作OD ⊥AB 于D ,交⊙O 于E ,连接OA ,由垂径定理得:11482422AD AB cm ==⨯=,∵⊙O 的直径为52cm ,∴26OA OE cm ==,在Rt AOD ∆中,由勾股定理得:O m D c =,∴261016DE OE OD cm =-=-=,∴油的最大深度为16cm ,故选:C .【点睛】本题主要考查了垂径定理的知识.此题难度不大,解题的关键是注意辅助线的作法,构造直角三角形,利用勾股定理解决.8.C【解析】【分析】连接OB,OC,根据勾股定理逆定理可得∠AOB=90°,∠ABO=∠BAO=45°,根据圆周角定理可得∠COB=2∠CAB=60°,∠OBC=∠OCB=60°,由此可求得答案.【详解】解:如图,连接OB,OC,∵OA=OB=1,AB∴OA2+OB2=AB2,∴∠AOB=90°,又∵OA=OB,∴∠ABO=∠BAO=45°,∵∠CAB=30°,∴∠COB=2∠CAB=60°,又∵OC=OB,∴∠OBC=∠OCB=60°,∴∠ABC=∠ABO+∠OBC=105°,故选:C.【点睛】本题考查了勾股定理的逆定理,等腰三角形的性质,圆周角定理,熟练掌握圆周角定理是解决本题的关键.9.D【解析】【分析】连接OA,OB,构造圆心角,分两种情况,利用同弧所对的圆周角是圆心角的一半求得答案即可.【详解】解:连接OA ,OB ,如图所示:∵六边形ABCDEF 是正六边形,∴∠AOB =3606︒=60°,当点P 不在弧AB 上时,∠APB =12∠AOB =30°,当点P 在弧AB 上时,∠APB =180°﹣12∠AOB =180°﹣30°=150°,故选D .【点睛】本题考查了正多边形和圆以及圆周角定理的知识,解题的关键是正确的构造圆心角.10.B【解析】【分析】根据二次函数的性质结合图象逐项分析可得解.【详解】解:对称轴在左侧,故ab 同号,c <0,故李佳:abc <0正确;函数对称轴:x =2ba -<﹣1,解得:2a <b ,故王宁:2a ﹣b <0正确;函数和x 轴有两个交点,b 2﹣4ac >0,故孙浩:b 2>4ac 正确;x =﹣3时,y 1<0,而x =1时,y 2>0,故一帆:点(﹣3,y 1),(1,y 2)都在抛物线上,则有y 1>y 2错误;故选B .【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.11.2018【解析】【分析】根据解的含义将1x =-代入230ax bx +-=可得到a b -+的值,然后代入2021a b -+求解即可.【详解】解:∵关于x 的一元二次方程230ax bx +-=的一个解是1x =-,∴30a b --=,即3a b -+=-,∴代入2021202132018a b -+=-=.故答案为:2018.【点睛】此题考查了一元二次方程解的含义,代数式求值问题,解题的关键是将1x =-代入230ax bx +-=求出a b -+的值.12.1k >【解析】【分析】根据题意得到24<0b ac ∆=-,然后代入求解即可.【详解】解:∵二次函数22y x x k =++的图象的顶点在x 轴上方,∴1>0a =,∴函数图像开口向上,∴图像与x 轴没有交点,∴24<0b ac ∆=-,即2241<0k -⨯⨯,解得:1k >.故答案为:1k >.【点睛】此题考查了二次函数与一元二次方程判别式的关系,解题的关键是熟练掌握根据题意得出24<0b ac ∆=-.13.10【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以求得m 的值,本题得以解决.【详解】∵二次函数y =x 2﹣4x+5=(x ﹣2)2+1,∴该函数开口向上,对称轴为x =2,∵当﹣1≤x≤3时,二次函数y =x 2﹣4x+5有最大值m ,∴当x =﹣1时,该函数取得最大值,此时m =(﹣1﹣2)2+1=10,故答案为:10.14.=22y x -##22y x=-+【解析】当直线过对角线AC 的中点时,可以证明直线一定将平行四边形的面积分割成面积相等的两部分,只要求得对角线AC 的中点坐标,用待定系数法即可求得直线的解析式.【详解】解:如图,连接AC ,设点E 为AC 的中点,设过点EF 的直线交平行四边形的对边AB 、CD 于点H 、G ,下面证明直线EF 必平分平行四边形的面积∵四边形ABCD 是平行四边形∴AB ∥CD∴∠GCE=∠HAE ,∠CGE=∠AHE∵E 为AC 的中点∴△CGE ≌△AHE∴CGEAHE S S = ∵12CDA ABC ABCD S S S == 平行四边形∴12CGE AHE ABC HBCG EHBC EHBC ABCD S S S S S S S =+=+==四边形四边形四边形平行四边形即过平行四边形对角线中点的直线必平分这个平行四边形的面积分别过点E 、C 作EM ⊥x 轴于点M 、CN ⊥x 轴于点N ,则EM ∥CN ∴1AM EA MN EC==∴AM=MN ,即M 为AN 的中点∴EM 为△CAN 的中位线∴12EM CN =∵A(-2,0),C(6,4)∴OA=2,ON=6,CN=4∴AN=OA+ON=2+6=8,EM=2∴AM=4∴OM=AM-OA=2∴M(2,0),E(2,2)设过点F 、E 的直线解析式为y=kx+b(k≠0)则有222b k b =-⎧⎨+=⎩,解得:22k b =⎧⎨=-⎩所以直线EF 的解析式为y=2x−2故答案为:=22y x -【点睛】本题考查了平行四边形的性质,平行线分线段成比例定理,三角形中位线定理,待定系数法求一次函数解析式等知识,掌握过平行四边形对角线中点的直线必平分这个平行四边形的面积是问题的关键和难点.15.2【分析】连接OA,OC,由圆内接四边形可求得∠ABC的度数,由圆周角定理可得∠AOC=60°,即可证得△OAC为等边三角形,进而可求解.【详解】解:连接OA,OC,∵四边形ABCD是⊙O的内接四边形,∴∠ADC+∠ABC=180°,∵∠ADC=150°,∴∠ABC=30°,∴∠AOC=2∠ABC=60°,∵OA=OC,∴△OAC为等边三角形,∴OA=AC=2,即⊙O的半径为2.故答案为:2.【点睛】本题主要考查圆内接四边形的性质,等边三角形的判定与性质,圆周角定理,证明△OAC 为等边三角形是解题的关键.16.3【解析】【分析】首先根据题意求出扇形的面积,可得围成的圆锥的侧面积,然后根据圆锥侧面积公式即可求出圆锥底面的半径.【详解】解:∵扇形的半径为9cm ,圆心角是120︒,∴扇形的面积21209==27360ππ︒⨯⨯︒,∴由扇形围成的圆锥的侧面积为27π,∴设圆锥底面的半径为r ,∴927r ππ⨯=,解得:3r =故答案为:3.【点睛】此题考查了扇形的面积公式,圆锥的侧面积公式,解题的关键是熟练掌握扇形的面积公式,圆锥的侧面积公式.17【解析】【分析】连接PC ,P C ',根据题意得出PP C ' 是等腰直角三角形,可得到当PC 长最小时PP '的长度最小,然后根据垂线段最短求解即可.【详解】解:如图所示,连接PC ,P C ',作CH AB ⊥于点H ,∵将ABC 绕点C 逆时针旋转90︒得DEC ,点P 的对应点为P ',∴DCP ACP '∠=∠,∵90ACP DCP ∠+∠=︒,∴90DCP DCP '∠+∠=︒,即90PCP '∠=︒,又∵PC P C '=,∴PP C ' 是等腰直角三角形,∴PP '=,∴当PC 长最小时PP '的长度最小,∴当CP AB ⊥时,即H 点与P 点重合时,CP 长最小,即PP '的长度最小,∵90,30,2ACB BAC BC ︒︒∠=∠==,∴24AB BC ==,∴AC ==∴1122BC AC AB CH ⨯⨯=⨯⨯,即112422CH ⨯⨯=⨯⨯,解得:CH =∴PP '===.【点睛】此题考查了三角形旋转变换,全等三角形的性质,垂线段最短以及勾股定理等知识,解题的关键是根据题意得到CP AB ⊥时PP '的长度最小.18.5【解析】【分析】根据旋转的性质和等边三角形的性质解决问题.【详解】∵将△ABC 绕点A 顺时针旋转60°得到△AED ,∴∠BAE=60°,AB=AE ,∴△BAE 是等边三角形,∴BE=5.故答案为5.【点睛】本题考查了旋转的性质,解题关键是明确旋转前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①旋转中心;②旋转方向;③旋转角度.19.①③④【解析】【分析】①证明()P AD PAB SAS '≅ ,则可知①正确;②连接点P 与点P ',证出P AP '△为等腰直角三角形,进而得到P P '==故②错误;③由P AP '△为等腰直角三角形可得45P PA '∠=︒,由P AD PAB '≅ 可得3P D P B ''==,根据勾股定理可得P DP ' 为直角三角形,且90DPP '∠=︒,即可得到135APD APP DPP ''∠=∠+∠=︒,故③正确;④将△APD 绕点A 顺时针旋转90°得到△ABE ,连接PE ,过点A 作AH ⊥PE 交于H ,先得到D 、P 、E 三点共线,再利用等腰直角三角形的性质得到,在Rt △DAH 中,利用勾股定理可得25AD =+5ABCD S =+正方形⑤过P 点作PF ⊥AB 于F ,设AF=x ,可得2222AP AF PB BF -=-即)2222223x x -=-,解方程求x ,再利用勾股定理求出PF =12APB S AB AF == 【详解】解:①∵四边形ABCD 是正方形,∴,90AD AB DAB =∠=︒,∵线段AP 以点A 为旋转中心逆时针旋转90︒得到线段'AP ,∴90,P AP PA P A ''∠=︒=,∴90P AD DAP BAP '∠=︒-∠=∠,∴()P AD PAB SAS '≅ ,∴AP D '△可以由APB △绕点A 逆时针旋转90︒得到,正确;②连接点P 与点P ',∵90,2P AP PA P A ''∠=︒==,∴P AP '△为等腰直角三角形,∴P P '==,故点P 与P '的距离为2错误;③由②知P AP '△为等腰直角三角形,P P '=∴45P PA '∠=︒,∵P AD PAB '≅ ,∴3P D P B ''==,∵1DP =,∴222DP P P PD '+=,∴P DP ' 为直角三角形,且90DPP '∠=︒,∴4590135APD APP DPP ''∠=∠+∠=︒+︒=︒,④将△APD 绕点A 顺时针旋转90°得到△ABE ,连接PE ,过点A 作AH ⊥PE 交于H ,∴,90AP AE PAE =∠=︒,∴∠APE=45°,由③知∠DPA=135°,∴13545180DPA APE ∠+∠=︒+︒=︒,∴D 、P 、E 三点共线,∵AP=AE=2,△APE 为等腰直角三角形,∴,∴在Rt △DAH 中,(2222215AD DH AH =+=+=+,∴25ABCD S AD ==+正方形⑤由④知,25AD =+∴AB AD ==,过P 点作PF ⊥AB 于F ,设AF=x ,∵2,3AP PB ==,∴2222AP AF PB BF -=-即)2222223x x -=-,解得:x =,∴PF ==,∴12APB S AB AF = ,故2APB S =+ 故答案为:①③④.【点睛】本题是四边形综合题,主要考查了正方形的性质,旋转的性质,勾股定理,添加恰当辅助线是解本题的关键.20.(1)123,1x x =-=;(2)123,1x x =-=-【解析】【分析】根据因式分解法解一元二次方程即可【详解】(1)2230x x +-=()()310x x +-=解得123,1x x =-=(2)()2326x x +=+()232(3)0x x +-+=()()3320x x ++-=解得123,1x x =-=-【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.21.(1)作图见解析,A 点坐标为(2,3)-;(2)作图见解析;(3)(,)b a -;(4【解析】【分析】(1)根据B ,C 两点的坐标分别为(3,0),(1,1)---建立平面直角坐标系,即可得解;(2)根据旋转的性质作图即可;(3)根据(2)中图形得出A '的坐标,进行推导计算即可;(4)先计算出OA ,再根据弧长公式计算即可;【详解】(1)如图,A 点坐标为(2,3)-;(2)如图,A B C '''V 为所作;(3)∵()2,3A -,()3,2A ',∴(,)P a b 对应点的坐标P '(,)b a -;故答案是(,)b a -.(4)如图,OA ==,∴点A 所经过的路径长为901802π= ;故答案是:2.【点睛】本题主要考查了作图旋转变换,弧长公式和勾股定理,准确计算是解题的关键.22.(1)20%;(2)能【解析】【分析】(1)设亩产量的平均增长率为x ,依题意列出关于x 的一元二次方程,求解即可;(2)根据(1)求出的平均增长率计算第四阶段亩产量即可.【详解】解:(1)设亩产量的平均增长率为x ,根据题意得:()270011008x +=,解得:10.220%x ==,2 2.2x =-(舍去),答:亩产量的平均增长率为20%.(2)第四阶段的亩产量为()1008120%1209.6⨯+=(公斤),∵1209.61200>,∴他们的目标可以实现.23.(1)3EC =;(2) 459S π=-阴影【解析】【分析】(1)连接OE ,过点C 作CF AD ⊥于点F ,首先根据题意得到四边形OECF 为矩形,然后得出12OF DF OD ==求解即可;(2)根据题意得出=ABEO OAE S S S -阴影梯形扇形,然后代入求解即可.【详解】(1)连接OE ,过点C 作CF AD ⊥于点F ,∵四边形ABCD 为平行四边形,∴AB CD =,AD BC ∥,∴180EOD OEC ∠+∠=︒,∵O 与BC 相切于点E ,∴OE BC ⊥,∴90OEC ∠=︒∴1809090EOD ∠=︒-︒-︒,∵CF AD⊥∴90CFO ∠=︒∴四边形OECF 为矩形,∴EC OF =,∵AB OC =,AB CD =,∴OC CD=∵CF OD ⊥,∴1113222OF DF OD AD ===⨯=∴3EC =;(2)由(1)知:90AOE EOD ∠=∠=︒,6==OA OE ∵四边形ABCD 为平行四边形,∴12BC AD ==,∴1239BE BC EC =-=--∵=ABEOOAE S S S -阴影梯形扇形∴21906(69)64592360S ππ⨯=⨯+⨯-=-阴影.【点睛】此题考查了圆切线的性质,矩形的性质和判定,几何图形中求阴影部分面积等知识,解题的关键是熟练掌握圆切线的性质,矩形的性质和判定,割补法求几何图形面积.24.(1)见解析;(2)BD =【解析】【分析】(1)连接OD ,易证OD//BC ,可得DE ⊥OD ,由此得出结论;(2)由已知易得AOD △是等边三角形,从而可得AD=OA=6,进而求出DC=4,在DEC Rt △中,30EDC ∠=︒,由此求出EC 、DE ,进而在t R BDE △中由勾股定理即可求出BD .【详解】解:(1)连接OD ,如图,∵ABC 是等边三角形,∴A C∠=∠∵OA OD =,∴A ODA ∠=∠,∴C ODA∠=∠∴//OD BC ,∴ODE DEC∠=∠∵DE BC ⊥,∴90DEC ∠=︒∴90ODE ∠=︒,即DE BC⊥又∵OD 是O 的半径,∴DE 是O 的切线(2)∵ABC 是等边三角形,∴AC BC =,60A C ∠=∠=︒∵OA OD =,∴AOD △等边三角形∴6AD OA R ===∵:3:2AD DC =,∴4DC =,∴6410AC BC ==+=在DEC Rt △中,906030EDC ∠=︒-︒=︒,∴122EC DC ==∴DE ===在t R BDE △中,1028BE BC EC =---=∴BD ===【点睛】本题考查了切线的性质,等腰三角形的性质和判定,等边三角形的性质,平行线的性质的应用,证明切线是解题关键.证明圆的切线的一般思路:1、连半径,证垂直;2、作垂线,证半径.25.(1)()11101003001080(300)y x x y x ⎧=-+≤≤⎪⎪⎨⎪=>⎪⎩;(2)x 为210或220时,w 最大,最大值是4620元;(3)170260x ≤≤或340x ≥【解析】【分析】(1)利用待定系数法求解即可;(2)根据利润=(单售价-成本)×数量,分两种情况:当100300x ≤≤以及当300350x <≤,分别求出利润的最大值,再进行比较即可;(3)根据题意结合函数性质解不等式即可求出答案.【详解】(1)当100300x ≤≤时,设y 与x 的函数关系式为:y kx b =+,根据题意得:10010030080k b k b +=⎧⎨+=⎩解得:110110k b ⎧=-⎪⎨⎪=⎩,∴111010y x =-+,当300x >时,由图像可知:80y =,∴y 与x 的函数关系式为:()11101003001080(300)y x x y x ⎧=-+≤≤⎪⎪⎨⎪=>⎪⎩;(2)分两种情况:①当100300x ≤≤时,221111106743(215)4622.5101010w x x x x x ⎛⎫=-+-=-+=--+ ⎪⎝⎭∵1010-<,图像开口向下,∴w 有最大值,∵批发件数x 为10的正整数倍,∴当210x =或220时,w 最大,21(220215)4622.5=462010w =--+最大(元),②当300350x <≤时,(8067)13w x x =-=,∴当350x =时,w 最大,133504550w =⨯=最大(元),∵46204550>,∴x 为210或220时,w 最大,答:零售商一次性批发A 品牌服装()100350x x ≤≤件,当x 为210或220时,w 最大,最大值是4620元;(3)①当100300x ≤≤时,21111067431010w x x x x ⎛⎫=-+-=-+ ⎪⎝⎭,2143442010x x -+=,整理得:(170)(260)0x x --=,解得:170x =或260x =,1010-< ,∴函数图象开口向下,获利不低于4420元,170260x ∴≤≤,②当300x >时,(8067)13w x x =-=,134420x ≥,解得:340x ≥,综上,170260x ≤≤或340x ≥.【点睛】本题考查二次函数的应用,用待定系数法求函数解析式以及解不等式,根据题意找出关系式是解决本题的关键.26.(1)抛物线的解析式为213222y x x =--+;(2)l 的最大值为12;(3)1Q ⎝⎭,2Q ⎝⎭,3Q ⎝⎭,45922Q ⎛-+- ⎝⎭【解析】【分析】(1)将(4,0)(0,2)A C -、代入212y x bx c =-++求解即可得出答案;(2)由待定系数法求出直线AC 解析式,设点D 的横坐标为t ,即可表示出D 、E 、F 三点坐标,即可表示出矩形长宽,可表示矩形周长,即可求出最值;(3)分两种情况:当逆时针旋转90︒落在抛物线上和顺时针旋转90︒落在抛物线上,求出Q 点所在直线,与二次函数联立即可求出Q 的坐标.【详解】(1)将(4,0)(0,2)A C -、代入212y x bx c =-++得:1164022b c c ⎧-⨯-+=⎪⎨⎪=⎩,解得:322b c ⎧=-⎪⎨⎪=⎩,∴抛物线的解析式为213222y x x =--+;(2)设直线AC 解析式为y kx b '=+,将(4,0)(0,2)A C -、代入得:1,22k b ='=,∴直线AC 解析式为122y x =+,设点D 的横坐标为t ,则有213,222D t t t ⎛⎫--+ ⎪⎝⎭,1,22E t t ⎛⎫+ ⎪⎝⎭,∵DF DE ⊥,∴DE y ∥轴,∴DF x ∥轴,∴D ,F 的纵坐标相同,∴22133,222F t t t t ⎛⎫----+ ⎪⎝⎭,∴2213112222222DE t t t t t ⎛⎫=--+-+=-- ⎪⎝⎭,2234DF t t t t t =---=--,∴矩形DEGF 的周长为222()3123(2)12l DE DF t t t =+=--=-++,∴当2t =-时,l 的最大值为12;(3)当逆时针旋转90︒落在抛物线上时,如下图:设(,)Q x y ,(,0)P m ,2x m y m =-⎧∴⎨=-⎩,2x y ∴+=-,即Q 在2y x =--上,2132222y x x y x ⎧=--+⎪⎨⎪=--⎩,解得:x y ⎧⎪⎪⎨⎪⎪⎩x y ⎧=⎪⎪⎨⎪=⎪⎩,11322Q ⎛---+∴ ⎪ ⎪⎝⎭,21322Q ⎛-- ⎝⎭,当顺时针旋转90︒落在抛物线上时,如下图:2x m y m =+⎧⎨=⎩,2y x ∴=-,即Q 在2y x =-上,2132222y x x y x ⎧=--+⎪⎨⎪=-⎩,解得:5292x y ⎧-=⎪⎪⎨-⎪=⎪⎩或5292x y ⎧-=⎪⎪⎨-+⎪=⎪⎩,3Q ∴⎝⎭,4Q ⎝⎭.【点睛】本题考查二次函数的综合应用,掌握用待定系数法求函数解析式以及矩形的性质是解题的关键.。
人教版九年级数学上册期中考试数学试卷及答案(含知识点)
九年级上数学期中考试卷附参考答案 姓名一.填空题(每题4分,共40分)1.三角形的三条 交于一点,这点到三角形各边的距离相等;2.方程26)7)(5(-=-+x x ,化成一般形式是 ,其二次项的系数和一次项系数的和是 ;3.命题:“对顶角相等”的逆命题是 ,它是一个 命题。
(填“真”“假”);4.等腰直角三角形的两边长为2cm 和7cm ,则它的周长为 ; 5.在横线上填适当的数,使等式成立22_____)(_____6+=++x x x ;6.如果方程03)1(2=--+x k x 的一个根是1,那么k 的值是 ,另一个根是 ; 7.一张桌子摆放若干碟子,从三个 方向上看,三种视图如下图所示, 则这张桌子上共有 个碟子;8.在平行四边形ABCD 中,对角线AC 长为10cm ,∠CAB=30°, AB= 6cm ,则平行四边形ABCD 的面积为___________2cm ;9.等腰梯形的上、下底分别为6cm 、8cm ,且有一个角为60°,则它的腰为___________cm ; 10.等腰直角三角形斜边上的中线长为4cm ,则其面积为 __________; 二.选择题(每小题3分,共24分)11.到三角形各顶点的距离相等的点是三角形 ( )(A ) 三边的垂直平分线的交点 (B ) 三条高的交点 (C ) 三条角平分线的交点 (D ) 三条中线的交点12.顺次连接四边形各边中点所得四边形一定是 ( ) (A )平行四边形 (B )矩形 (C ) 菱形 (D )正方形13.两条对角线垂直且相等的四边形是 ( ) (A )矩形 (B )菱形 (C )正方形 (D ) 以上答案均不正确14.下列命题中,不正确的是 ( )(A )顺次连结菱形各边中点所得的四边形是矩形 (B )有一个角是直角的菱形是正方形 (C )对角线相等且垂直的四边形是正方形(D )有一个角是60°的等腰三角形是等边三角形 15.下列方程中,为一元二次方程的是 ( ) (A ) 32-=y x (B )3122=+x(C )11322+=-+x x x (D ) 02=x 16.小明从正面观察下图所示的两个物体,看到的是 ( )A BC D17.如图5,在宽为20m ,长为30m.根据图中数据,计算耕地的面积为(A ) 600m 2 (B ) 551m 2 (C ) 550 m 2 (D ) 500m 218.一元二次方程0412=+-x x 的根的情况是 ( )(A )有两个相等的实数根 (B )有两个不相等的实数根 (C ) 无实数根(D )不能确定三.用指定的方法解方程:(每题5分,共20分)(19)022=-x x (因式分解法) (20)0322=--x x (用配方法)(21)08922=+-x x (用公式法) (22)22)32()2(+=-x x (用合适的方法)俯视图主视图左视图图5四.解答题: 23.(6分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利44元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出5件。
人教版九年级数学上册学期期中考试试卷.docx
初中数学试卷马鸣风萧萧2015 年秋季学期期中考试九年级数学试卷命题人:黄昌军注意事项 :1. 本试卷共二大题 24 小题,卷面满分 120 分,考试时间 120 分钟;2. 本试卷分试题卷和答题卡两部分,请将各题答案答在答题卡上每题对应的答题区域内,答在试题卷上无效;考试结束,只上交答题卡 .一、选择题 .(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号 .本大题共 15 小题,每小题 3 分,计 45 分)1.一元二次方程 3x 2-2x-1=0 的二次项系数、一次项系数、常数项分别为()A.3, 2,1B. -3, 2, 1C. 3,-2, -1D.-3 , -2, -1 B2.二次函数 y=2(x+3) 2)-1 的图象的顶点所在象限是(A. 第一象限B. 第二象限C.第三象限D. 第四象限CA3.下列一元二次方程中,没有实数根的是( )B ′2B.2A. 4x -5x+2=0 x -6x+9=0 C. 5x 2-4x-1=0D. 3x 2-4x+1=04. 如图,将△ ABC 绕着点 C 顺时针旋转 50°后得到△ A ′B ′C . A ′若∠ A=40°.∠ B ′=110,°则∠ BCA ′的度数是( )第 14题A . 110°B .80°C .40°D . 30°第 4 题5.若 x 1, x 2 是一元二次方程 x 2-3x-4=0 的两个根,则 x 1+x 2 等于()A. -3B.3C. 1D.46.将二次函数 y=x 2+1 的图象向上平移 2 个单位,再向右平移 1 个单位后的函数解析式为()A.y=(x-1) 2-1B. y=(x+1) 2-1C. y=(x+1) 2+3D. y=(x-1) 2+37.一元二次方程 x 2-8x-1=0 配方后可变形为()22 =15C.22A. ( x+4) =17B. (x+4) ( x-4) =17 D. ( x-4) =15 8.抛物线 y=3x 2, y= -3x 2, y=x 2 +3 共有的性质是()A. 开口向上B. 对称轴是 y 轴C. 都有最高点D.y 随 x 的增大而增大22)9.已知 x +y -4x+6y+13=0 ,则代数式 x+y 的值为(A.-1B. 1C. 5D.3610.对二次函数 y= -(x+2) 2-3,描述错误的是( )A. 图象开口向下B. 关于直线 x=2 对称C. 函数有最大值为 -3D.图象与 x 轴无交点11.学校要组织足球比赛,赛制为单循环形式(每两队之间赛一场),计划安排21 场比赛,应邀请多少个球 队参赛?设邀请 x 个球队参赛,根据题意,下面所列方程正确的是( )A. x221B.x( x 1) 21C.x 221D. x(x1) 212212. 股票每天的涨、跌幅均不能超过 10%,即当涨了原价的 10%后,便不能再涨,叫做涨停;当跌了原价的票股价的平均增长率为x,则 x 满足的方程是()A. (1 x) 211B. (1 x)210C. 1 2x 11 D . 1 2x 1010 9 10 913. 下列四个函数图象中,当x>0 时, y 随 x 的增大而减小的是()y y y yx x x x O O O OA B C D14. 在同一坐标系中,一次函数y=ax+b 与二次函数2)y=ax +b 的大致图象是(y y y yx x x xO O O OA B C D15.如图,在Rt△ ABC 中,∠ ACB=90 o,∠ A=30 o,BC=2 ,将△ ABC 绕点 C 按顺时针方向旋转n 度后,得到△ EDC,此时,点 D 在 AB 边上,斜边DE 交 AC 边于点 F,则 n 的大小和图中阴影部分的面积分别为()A. 30 ,2B. 60,2C. 60,360, 3D.2二、解答题(本大题共9 小题,共75 分)16.( 6 分)解方程: x( x 3) x 3第15题17.( 6 分)如图,不用量角器,在方格纸中画出△ABC 绕点 B 顺时针方向旋转90°后得到的△ A 1BC 1 .18.( 7 分)已知一个二次函数y=ax 2+bx+c 的图象如图所示,请求出这个二次函数的解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙升学校九年级数学期中考试综合测试卷(2015秋)
(考试时间:90分钟 满分:150分)
班级: 座号: 姓名: 分数:
一.选择题(共10小题,满分40分,每小题4分)
1.(4分)下列方程是一元二次方程的是( )
A .x 2+2x ﹣y=3
B .
C .(3x 2﹣1)2﹣3=0
D .x 2﹣8=x 2.(4分)一元二次方程x 2﹣8x ﹣1=0配方后可变形为( )
A .(x+4)2=17
B .(x+4)2=15
C .(x ﹣4)2=17
D .(x ﹣4)2=15
3.(4分)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x ,下面所列的方程中正确的是( )
A .560(1+x )2=315
B .560(1﹣x )2=315
C .560(1﹣2x )2=315
D .560(1﹣x 2
)=315
2
5.(4分)抛物线y=﹣x +2kx+2与x 轴交点的个数为( )
A .0个
B .1个
C .2个
D .以上都不对
6.(4分)在平面直角坐标系中,把点P (﹣3,2)绕原点O 顺时针旋转180°,所得到的对应点P ′的坐标为( )
A .(3,2)
B .(2,﹣3)
C .(﹣3,﹣2)
D .(3,﹣2) 7.(4分)下列图形中既是轴对称图形又是中心对称图形的是( )
A .
B .
C .
D .
8.(4分)如图,已知⊙O 的直径AB ⊥CD 于点E ,则下列结论一定错误的是( )
(第 8 题图) (第 9 题图) (第 13 题图) (第 14 题图) (第 15 题图)(第 16 题图)
A .CE=DE
B .
AE=OE C
.
=
D .△OC
E ≌△ODE 9.(4分)如图所示,在⊙O 中,,∠A=30°,则∠B=( )
A .150°
B .75°
C .60°
D .15°
10.(4分)在△ABC 中,∠A=90°,AB=3cm ,AC=4cm ,若以A 为圆心3cm 为半径作⊙O ,则BC 与⊙O 的位置关系是( )
A .相交
B .相离
C .相切
D .不能确定
二.填空题(共6小题,满分30分,每小题5分)
11.(5分)若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为.
12.(5分)抛物线y=x2+2x+3的顶点坐标是.
13.(5分)如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF=.
14.(5分)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为.
15.(5分)如图,AD是⊙O的直径,弦BC⊥AD于E,AB=BC=12,则OC=.
16.(5分)如图,四边形ABCD是⊙O的内接四边形,若∠C=130°,则∠BOD=°.三.解答题(共9小题,满分81分,每小题9分)
17.(7分)解方程:x2﹣3x+2=0.
18.(9分)如图,已知二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,6),对称轴为直线x=2,求二次函数解析式并写出图象最低点坐标.
19.(9分)如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,求∠BAB′的度数.
20.(9分)已知点A(2a+2,3﹣3b)与点B(2b﹣4,3a+6)关于坐标原点对称,求a与b的值.21.(7分)如图,AB、CD为⊙O的直径,=,求证:BD=CE.
22.(9分)如图,在Rt△ABC中,∠C=90°,AC=10,BC=24,⊙O的半径为6,当圆心O与C重合时,试判断⊙O与AB的位置关系.
23.(11分)天水“伏羲文化节”商品交易会上,某商人将每件进价为8元的纪念品,按每件9元出售,每天可售出20件.他想采用提高售价的办法来增加利润,经实验,发现这种纪念品每件提价1元,每天的销售量会减少4件.
(1)写出每天所得的利润y(元)与售价x(元/件)之间的函数关系式.
(2)每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?
24.(9分)在平面直角坐标系xOy中,已知A(﹣1,5),B(4,2),C(﹣1,0)三点.
(1)点A关于原点O的对称点A′的坐标为,点B关于x轴的对称点B′的坐标
为,点C关于y轴的对称点C的坐标为.
(2)求(1)中的△A′B′C′的面积.
25.(10分)如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E 在边AC上,且满足ED=EA.
(1)求∠DOA的度数;
(2)求证:直线ED与⊙O相切.。