命题的概念及四种命题的关系
四种命题及其关系

四种命题及其关系本节课主要讲解了命题的概念及其结构,命题是能够判断真假的陈述句,其中真命题为真实陈述,假命题为虚假陈述。
需要注意的是,不是任何语句都是命题,只有能够判断真假的陈述句才是命题。
命题通常可以改写成“若p,则q”的形式,其中p为命题的条件,q为命题的结论。
类型二:四种命题及其关系本节课还介绍了四种命题及其关系,包括原命题、逆命题、否命题和逆否命题。
其中,逆命题和否命题是互为逆命题的,逆否命题和原命题是互为逆否命题的。
需要注意的是,四种命题之间的真假关系并不总是有必然联系,只有互为逆否命题的两个命题同真同假。
因此,在判断命题真假时需要仔细分析其结构和关系。
本课程介绍了命题的概念和结构,以及四种命题及其关系。
命题是能够判断真假的陈述句,其中真命题为真实陈述,假命题为虚假陈述。
需要注意的是,只有能够判断真假的陈述句才是命题,而命题通常可以改写成“若p,则q”的形式,其中p 为命题的条件,q为命题的结论。
四种命题包括原命题、逆命题、否命题和逆否命题,其中逆命题和否命题是互为逆命题的,逆否命题和原命题是互为逆否命题的。
需要注意的是,四种命题之间的真假关系并不总是有必然联系,只有互为逆否命题的两个命题同真同假。
因此,在判断命题真假时需要仔细分析其结构和关系。
判断下列语句中哪些是命题,是命题的判断其是真命题还是假命题。
1) 末位是5的整数能被5整除。
2) 平行四边形的对角线相等且互相平分。
3) 两直线平行,则斜率相等。
4) 在三角形ABC中,若∠A=∠B,则sinA=sinB。
5) 余弦函数是周期函数吗?举一反三:变式1】判断下列语句是否为命题?若是,判断其真假。
1) x>1;2) 当x=1时,x>1;3) 你是男生吗?4) 求证:π是无理数。
变式2】下列语句中是命题的是()A。
|x+a|B。
{0}∈NC。
元素与集合D。
真子集变式3】判断下列语句是否是命题。
1) 这是一棵大树。
2) sin30°=1/2.3) x+1>0;4) 梯形是平行四边形。
高考数学专题知识突破:考点2 命题及其关系、充分条件与必要条件

考点二命题及其关系、充分条件与必要条件知识梳理1.命题的概念可以判断真假、用文字或符号表述的语句,叫作命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及相互关系(1) 四种命题命题表述形式原命题若p,则q逆命题若q,则p否命题若非p,则非q逆否命题若非q,则非p(2) 四种命题间的逆否关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件;(2)如果p⇒q,q⇒p,则p是q的充要条件.(3) 如果p q,q p,那么称p是q的充分不必要条件.(4) 如果q p,p q,那么称p是q的必要不充分条件.(5) 如果p q,且q p,那么称p是q的既不充分也不必要条件.典例剖析题型一四种命题及其相互关系例1命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”答案 B解析将原命题的条件与结论互换即得逆命题,故原命题的逆命题为“若一个数的平方是正数,则它是负数”.变式训练命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数答案 C解析由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x +y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数”,故选C.解题要点 1.写一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.2.一些常见词语的否定例2有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.答案②③解析①原命题的否命题为“若a≤b,则a2≤b2”,错误.②原命题的逆命题为:“若x,y互为相反数,则x+y=0”,正确.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,正确.变式训练下列有关命题的说法正确的是________.(填序号)①命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”;②若一个命题是真命题,则其逆命题也是真命题;③命题“存在x∈R,使得x2+x+1<0”的否定是“对任意x∈R,均有x2+x+1<0”;④命题“若x=y,则sin x=sin y”的逆否命题为真命题.答案 ④解析 命题“若x 2=1,则x =1”的否命题为“若x 2≠1,则x ≠1”,所以①不正确;原命题与逆命题不等价,所以②不正确;命题“存在x ∈R ,使得x 2+x +1<0”的否定是“对任意x ∈R ,均有x 2+x +1≥0”,所以③不正确;命题“若x =y ,则sin x =sin y ”是真命题,所以逆否命题为真命题,④正确.解题要点 1.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.2.根据“原命题与逆否命题是等价的,逆命题与否命题也是等价的”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.题型二 充分条件与必要条件例3 已知p :“a ,b ,c 成等比数列”,q :“b =ac ”,那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 D解析 若a ,b ,c 成等比数列,则有b 2=ac ,所以b =±ac ,所以充分性不成立.当a =b =c =0时,b =ac 成立,但此时a ,b ,c 不成等比数列,所以必要性不成立,所以p 是q 的既不充分也不必要条件.变式训练 在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件答案 A解析 由正弦定理,知a ≤b ⇔2R sin A ≤2R sin B (R 为△ABC 外接圆的半径)⇔sin A ≤sinB . 例4 设函数f (x )=log 2x ,则“a >b ”是“f (a )>f (b )”的________(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)条件.答案 必要不充分解析 因为f (x )=log 2x 在区间(0,+∞)上是增函数,所以当a >b >0时,f (a )>f (b );反之,当f (a )>f (b )时,a >b .故“a >b ”是“f (a )>f (b )”的必要不充分条件.变式训练 设x ∈R ,则“x >1”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案 A解析 由不等式220x x +->得(2)(1)0x x +->,即2x <-或1x >,所以由1x >可以得到不等式220x x +->成立,故充分性成立;但由220x x +->不一定得到1x >,所以必要性不成立,即“x >1”是“220x x +->”的充分而不必要条件.解题要点 1.充要条件问题应首先弄清问题中条件是什么,结论是什么,再进一步判断条件与结论的关系,解题过程分为三步:①确定条件是什么,结论是什么;②尝试从条件推结论,从结论推条件;③确定条件和结论是什么关系.2.充要条件的三种判断方法(1) 定义法:根据p q ,q p 进行判断; (2) 集合法:根据p 、q 成立的对象的集合之间的包含关系进行判断;(3) 等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.当堂练习1. 设p :1<x <2,q :2x >1,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.设,a b ∈R , 则 “2()0a b a -<”是“a b <”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A .若α,β垂直于同一平面,则α与β平行B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面4.已知i 是虚数单位,a ,b ∈R ,得“a =b =1”是“(a +b i)2=2i ”的 条件.5.U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅” 条件.课后作业一、 选择题1.下列语句中命题的个数是( )①2<1;②x <1;③若x <2,则x <1;④函数f (x )=x 2是R 上的偶函数.A.0B.1C.2D.32.“x =1”是“x 2-2x +1=0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件3.“1<x <2”是“x <2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.设p :x <3,q :-1<x <3,则p 是q 成立的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”6.若m ∈R, 命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( )A .若方程x 2+x -m =0有实根,则m >0B .若方程x 2+x -m =0有实根,则m ≤0C .若方程x 2+x -m =0没有实根,则m >0D .若方程x 2+x -m =0没有实根,则m ≤07.已知命题p :若x =-1,则向量a =(1,x )与b =(x +2,x )共线,则在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .2C .3D .48.设α,β是两个不同的平面,m 是直线且m ⊂α.“m ∥β”是“α∥β”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题9.x ≠3或y ≠5是x +y ≠8的____________条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)10.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.11.(1)“x >y >0”是“1x <1y”的________条件. (2) 设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的________条件.12.下列命题:①“若k >0,则方程x 2+2x +k =0有实根”的否命题;②“若1a >1b,则a <b ”的逆命题;③“梯形不是平行四边形”的逆否命题,其中是假命题的是________.13.“m <14”是“一元二次方程x 2+x +m =0有实数解”的____________条件.当堂练习答案1. 答案 A解析 当1<x <2时,2<2x <4,∴p ⇒q ;但由2x >1,得x >0,∴q p ,故选A.2答案 A解析 由(a -b )a 2<0⇒a ≠0且a <b ,∴充分性成立;由a <b ⇒a -b <0,当0=a <b 时 (a -b )·a 2<0,必要性不成立;故选A.3.答案 D解析 对于A ,α,β垂直于同一平面,α,β关系不确定,A 错;对于B ,m ,n 平行于同一平面,m ,n 关系不确定,可平行、相交、异面,故B 错;对于C ,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C 错;对于D ,若假设m ,n 垂直于同一平面,则m ∥n ,其逆否命题即为D 选项,故D 正确.4.答案 充分不必要条件解析 当a =b =1时,(a +b i)2=(1+i)2=2i ;当(a +b i)2=2i 时,得⎩⎪⎨⎪⎧a 2-b 2=0,ab =1, 解得a =b =1或a =b =-1,所以“a =b =1”是“(a +b i)2=2i ”的充分不必要条件.5.答案 充要条件解析 若存在集合C 使得A ⊆C ,B ⊆∁U C ,则可以推出A ∩B =∅;若A ∩B =∅,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.课后作业答案二、 选择题1.答案 D2.答案 A解析 解x 2-2x +1=0得x =1,所以“x =1”是“x 2-2x +1=0”的充要条件.3.答案 A4.答案 C解析 ∵x <3-1<x <3,但-1<x <3⇒x <3,∴p 是q 的必要不充分条件,故选C.5.答案 C解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题,故选C. 6.答案 D解析 原命题为“若p ,则q ”,则其逆否命题为“若q ,则p ”.∴所求命题为“若方程x 2+x -m =0没有实根,则m ≤0”.7.答案 B解析 向量a ,b 共线⇔x -x (x +2)=0⇔x =0或x =-1,∴命题p 为真,其逆命题为假,故在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为2.8.答案 B解析 m ⊂α,m ∥βα∥β,但m ⊂α,α∥β⇒m ∥β,∴m ∥β是α∥β的必要而不充分条件. 二、填空题9.答案 必要不充分解析 设p :x =3且y =5,q :x +y =8,显然p 是q 的充分不必要条件,∴p 是q 的必要不充分条件,即x ≠3或y ≠5是x +y ≠8的必要不充分条件.10.答案 2解析 其中原命题和逆否命题为真命题,逆命题和否命题为假命题.11.答案 (1)充分不必要 (2)充要解析 (1)1x <1y⇒xy ·(y -x )<0, 即x >y >0或y <x <0或x <0<y .所以x >y >0 ⇒1x <1y ,但反过来1x <1y, 所以是充分不必要条件.(2) 构造函数f (x )=x |x |,则f (x )在定义域R 上为奇函数.因为f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以函数f (x )在R 上单调递增,所以a >b ⇔f (a )>f (b )⇔a |a |>b |b |. 所以是充要条件.12.答案 ①②解析 对于①其否命题为“若k ≤0,则方程x 2+2x +k =0无实根”,为假命题;②的逆命题为“若a <b ,则1a >1b”,为假命题;③中原命题为真命题,故其逆否命题也为真命题. 13.答案 充分不必要解析 x 2+x +m =0有实数解等价于Δ=1-4m ≥0,即m ≤14,因为m <14⇒m ≤14,反之不成立. 故“m <14”是“一元二次方程x 2+x +m =0有实数解”的充分不必要条件.。
四种命题以及相互关系

原命题若p 则q 否命题若┐p 则┐q逆命题若q 则p逆否命题若┐q 则┐p互为逆否互逆否互为逆否互互逆否互四种命题的形式1、命题什么叫命题?其中,判断为真的语句,叫真命题,判断为假的语句,叫假命题。
命题的结构?(条件+结论)如果…,那么…。
问题1:我是你的老师。
真X >15 不是命题 全等三角形的面积相等。
真 3是10的约数吗? 不是命题 两直线平行,同位角相等。
真 上课请不要讲话 不是命题 注:(1)疑问句,祈使句,感叹句不是命题。
(2)要判断一个语句是不是命题,关键是能不能判断真假。
(3)判断命题真假的方法有:逻辑推理法、要证明命题是假命题,只需要举出满足条件,不满足结论的例子即可;要证明命题为真,就需要证明满足命题的条件,就一定能推出命题的结论。
2、推出关系如果α成立可以推出β成立,那么就说由α可以推出β,记作:α=>β,换言之,α=>β表示以α为条件、β为结论的命题是真命题。
如果α成立不能推出β成立,记作:α≠>β,换言之,α≠>β表示以α为条件、β为结论的命题是假命题。
3、四种命题形式问题2:判断下列命题的真假,你能发现各命题之间有什么关系?①如果两个三角形全等,那么它们的面积相等; (如果α,那么β) ②如果两个三角形的面积相等,那么它们全等; (如果β,那么α) ③如果两个三角形不全等,那么它们的面积不相等; (如果α,那么β) ④如果两个三角形的面积不相等,那么它们不全等; (如果β,那么α) 注:1 两个命题为互逆命题或互否命题,它们的真假性没有关系2两个命题为互为逆否命题,它们的真假性相同3若原命题为真,它的逆命题和否命题可以为真也可以为假;4在同一个命题的四种命题中,真命题的个数要么是0个,要么是2个,要么是4个。
例1.写出命题“若a=0,则ab=0”的逆命题、否命题、逆否命题,并判断各命题的真假。
例2.写出命题“两直线平行,同位角相等”的逆命题、否命题、逆否命题,并判断各命题的真假。
高中数学命题的基本概念

高中数学命题的基本概念一、命题的基本概念命题:可以判断真假的陈述句叫做命题。
也就是说,判断一个语句是不是命题关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件。
真命题:判断为真的语句叫做真命题。
假命题:判断为假的语句叫做假命题。
命题的否定:就是对命题的结论加以否定。
原命题逆命题否命题逆否命题若,则若,则若,则若,则另一个命题的结论和条件,那么我们就把这样的两个命题叫做互逆命题。
一般地,对于是互逆命题的两个命题,其中一个命题叫做原命题,另一个命题叫做原命题的逆命题。
一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的的条件和结论的否定,那么我们把这样的两个命题叫做互否命题。
其中一个命题叫做原命题,另一个命题叫做原命题的否命题。
一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论和条件的否定,那么我们把这样的两个命题叫做互为逆否命题。
其中一个命题叫做原命题,另一个命题叫做原命题的逆否命题。
四种命题的相互关系图三、充分条件和必要条件的概念1、若,我们就说是的充分条件,是的必要条件。
2、一般地,如果既有,又有,就记作。
此时,我们说是的充分必要条件,简称充要条件。
3、一般地,若p⇒q,但q ≠>p,则称p是q的充分但不必要条件;若p≠>q,但q ⇒ p,则称p是q的必要但不充分条件;若p≠>q,且q ≠>p,则称p是q的既不充分也不必要条件。
四、重要结论1、互为逆否命题的两个命题真值相同:原命题与它的逆否命题等价;否命题与逆命题等价。
2、对于充分条件、必要条件的判定,我们需要将命题转化为集合,充分利用集合的关系进行判定,可以更加直观形象。
3、命题的否定和否命题是两个不同的概念。
典型例题知识点一:命题的基本概念以及四种命题的相互关系例1、判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数是素数,则是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?(5);(6)平面内不相交的两条直线一定平行;(7)明天下雨。
四种命题及其关系

四种命题及其关系一、四种命题的概念1. 原命题- 定义:若用p表示条件,q表示结论,则原命题为“若p,则q”,例如“若x = 1,则x^2=1”。
2. 逆命题- 定义:将原命题的条件和结论互换得到的命题,即“若q,则p”。
对于上面的例子,其逆命题为“若x^2=1,则x = 1”。
3. 否命题- 定义:将原命题的条件和结论都进行否定得到的命题,即“若¬ p,则¬q”。
对于“若x = 1,则x^2=1”,其否命题为“若x≠1,则x^2≠1”。
4. 逆否命题- 定义:将逆命题的条件和结论都进行否定得到的命题,即“若¬ q,则¬p”。
对于“若x = 1,则x^2=1”,其逆否命题为“若x^2≠1,则x≠1”。
二、四种命题之间的关系1. 原命题与逆命题- 关系:原命题的条件和结论是逆命题的结论和条件,它们之间是互逆的关系。
原命题为真时,逆命题不一定为真。
例如原命题“若a = 0,则ab=0”是真命题,其逆命题“若ab = 0,则a = 0”是假命题(因为当b = 0时,a可以不为0)。
2. 原命题与否命题- 关系:原命题与否命题是互否的关系,原命题为真时,否命题不一定为真。
例如原命题“若x>2,则x>1”是真命题,其否命题“若x≤slant2,则x≤slant1”是假命题。
3. 原命题与逆否命题- 关系:原命题与逆否命题是同真同假的关系。
例如原命题“若a = b,则a^2=b^2”是真命题,其逆否命题“若a^2≠ b^2,则a≠ b”也是真命题;原命题“若x = 1且y = 2,则x + y=3”是真命题,其逆否命题“若x + y≠3,则x≠1或y≠2”也是真命题。
4. 逆命题与否命题- 关系:逆命题与否命题是互为逆否的关系,所以它们也是同真同假的关系。
例如对于原命题“若p,则q”,其逆命题“若q,则p”和否命题“若¬ p,则¬q”,若逆命题为真,则否命题也为真;若逆命题为假,则否命题也为假。
命题和四种命题

真命题
4)两个内角等于45°旳三角形是等腰三角形 真命题
“若p则q”形式旳命题
命题“若整数a是素数,则a是奇数。”具
有“若p则q”旳形式。 p
q
一般,我们把这种形式旳命题中旳p叫做命题旳条
件,q叫做命题旳结论。
“若p则q”形式旳命题是命题旳一种形式而不是 唯一旳形式,也可写成“假如p,那么q” “只要p,就有 q”等形式。
例3.把下列命题改写成“若p则q”旳形 式,并判断真假
(1)垂直于同一种直线旳两条直线 假命题
平行
(2)负数旳平方是负数.
真命题
(3)对顶角相等
真命题
1.1.2 四种命题及其关系
• 下列命题中②,③,④与命题①有何关系? • ①假如两个三角形全等,那么它们旳面积相等; • ②假如两个三角形旳面积相等,那么它们全等;
例如:若a=0,则ab=0否命题为:
若a≠0,则ab≠0.
观察命题①与命题④旳条件和结论之间分别 有什么关系?
•①假如两个三角形全等,那么它们旳面积相等; •④假如两个三角形旳面积不相等,那么它们不全等;
我们发觉 ④旳条件恰好是①旳 ④旳结论恰好是①旳
结论旳否定, 条件旳否定.
像这么旳两个命题叫做互为逆否命题,其中 一种叫原命题,另一种叫原命题旳逆否命题。
正面 词语 否定
等于 不小于 不等于 不不小于
不不小于
不不不小 于
是 都是 不是 不都是
正面 词语 否定
全 至少有一种 能 P或q P且q
不全 一种也没有 不能 非p且 非p或 非q 非q
例1.写出下列命题旳逆命题、否命题与逆否
命题并判断真假
1原命题:若x2 3x 2 0,则x 2
四种命题及四种命题间的相互关系

1.判一判(正确的打“√”,错误的打“×”) (1)两个互逆命题的真假性相同.( ) ) )
(2)若两个命题为互否命题,则它们的真假性肯定不相同.( (3)对于一个命题的四种命题,可以一个真命题也没有.( 【解析】(1)错误.两个互逆命题的真假性没有关系.
原命题:若a>b,则a+c>b+c真 逆命题:若a+c>b+c,则a>b真
题的真假没有关系。
原命题:若四边形是正方形,则四边形两对角线垂直。 真 逆命题:若四边形两对角线垂直,则四边形是正方形。假 原命题:若a>b,则ac2>bc2 假 逆命题:若ac2>bc2,则a>b 真
假 原命题:若四边形对角线相等,则四边形是平行四边形。 逆命题:若四边形是平行四边形,则四边形对角线相等。 假
一个命题的条件和结论,分别是另一个命题的结论
和条件,这两个命题就叫做互逆命题。其中一个叫做
原命题,则另一个叫做原命题的逆命题。
原命题:若p,则q
它的逆命题:若q,则p.
例如: 原命题: 若a>b,则a+c>b+c . 它的逆命题:若a+c>b+c,则a>b.
什么叫互否命题?
一个命题的条件和结论,分别是另一个命题的条件
“正难则反”的处理原则:在证明某一个命题的真假性有 困难时,可以证明它的逆否命题为真(假)命题,来间接地证 明原命题为真(假)命题.
【变式训练】证明:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若 f(a)+f(b)≥f(-a)+f(-b),则a+b≥0. 【解题指南】由于原命题不易证明,可转化为证明其逆否命题为真命题 . 【证明】原命题的逆否命题为“已知函数f(x)是(-∞,+∞)上的增函 数,a,b∈R,若a+b<0, 则f(a)+f(b)<f(-a)+f(-b)”.
高二数学四种命题的相互关系

反馈练习
用反证法证明,若(x-a)(x-b)≠0,则x ≠a且x ≠b. x=a 或_________, x=b 证明 假设_________
(x-a)(x-b)=0 x=a 由于____________ 时,_________________,
与 (x-a)(x-b)≠_______, (x-a)(x-b)=0 又_________
分析:搞清四种命题的定义及其关系,注意“且” “或”的 否定为“或” “且”。 解:逆命题:若m+n≤0,则m≤0或n≤0。 (真) (真) (假)
否命题:若m>0且n>0, 则m+n>0.
逆否命题:若m+n>0, 则m>0且n>0.
小结:在判断四种命题的真假时,只需判断两种命题的 真假。因为逆命题与否命题真假等价,逆否命题与原命 题真假等价。
与(x-a)(x-b)≠0矛盾,
所以假设不成立,
从而______________________. x ≠a且 x ≠b
例 1
用反证法证明:圆的两条不是直径 的相交弦不能互相平分。
A O
已知:如图,在⊙O中,弦AB、 CD交于点P,且AB、CD不是直径. 求证:弦AB、CD不被P平分.
D
证明:假设弦AB、CD被P平分,
分析:“当c>0时”是大前提,写其它命题时应该保留。 原命题的条件是“a>b”, 结论是“ac>bc”。 解:逆命题:当c>0时,若ac>bc, 则a>b. (真) (真) (真)
否命题:当c>0时,若a≤b, 则ac≤bc.
逆否命题:当c>0时,若ac≤bc, 则a≤b.
例2 若m≤0或n≤0,则m+n≤0。写出其逆命题、 否命题、逆否命题,并分别指出其假。
(完整)四种命题、四种命题间的相互关系

四种命题四种命题间的相互关系1、四种命题的概念,写出某个命题的逆命题、否命题和逆否命题.2、四种命题之间的关系以及真假性之间的联系。
3、会用命题的等价性解决问题.【核心扫描】:1、结合命题真假的判定,考查四种命题的结构。
(重点)2、掌握四种命题之间的相互关系.(重点)3、等价命题的应用。
(难点)1、四种命题的概念(1)互逆命题:对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这样的两个命题叫做互逆命题。
其中一个命题叫原命题,另一个叫做原命题的逆命题。
若原命题为“若p,则q”,则逆命题为“若q,则P”。
(2)互否命题:对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的否命题。
也就是说,若原命题为“若p,则q”则否命题为“若非p,则非q".(3)互为逆否命题:对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题.也就是说,若原命题为“若p,则q",则逆否命题为若非q,则非p.任何一个命题的结构都包含条件和结论,通过条件和结论的不同变换都可以得到这个命题的逆命题、否命题和逆否命题,因而任何一个命题都有逆命题、否命题和逆否命题。
2、四种命题的相互关系3、四种命题的真假性(1)四种命题的真假性,有且仅有下面四种情况:(2)四种命题的真假性之间的关系:①两个命题互为逆否命题,它们有相同的真假性.②两个命题为互逆命题或互否命题,它们的真假性没有关系.在四种命题中,真命题的个数可能会有几种情况?因为原命题与逆否命题,逆命题和否命题互为逆否命题,它们同真同假,所以真命题的个数可能为0,2,4.一般地,用p和q分别表示原命题的条件和结论,用非p和非q分别表示p与q的否定,则四种命题的形式可表示为:原命题:若P,则q;逆命题:若q,则p;否命题:若非P,则非q;逆否命题:若非q,则非 p.(1)关于四种命题也可叙述为:①交换命题的条件和结论,所得的新命题就是原命题的逆命题;②同时否定命题的条件和结论,所得的新命题就是原命题的否命题;③交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题.(2)已知原命题,写出它的其他三种命题:首先,将原命题写成“若p,则q”的形式,然后找出条件和结论,再根据定义写出其他命题.然后,对于含有大前提的命题,在改写时大前提不动。
命题的概念命题的四种形式及关系命题的否定和否命题的区别

一、命题的概念1、命题:把语言、符号或式子表达的,可以判断真假的陈述句称为命题;2、真命题、假命题:判断为真的语句称为真命题,判断为假的语句称为假命题。
注意:1、并不是所有的语句都是命题,只有能够判断真假的语句才是命题。
2、如果一个语句是命题,则它是真命题或是假命题,二者必具其一。
二、命题的否定与否命题有什么区别1.命题的否定只否定该命题的结论,而否命题则否定原命题的条件和结论。
比如:“若a>0.则a+b>0”这个命题的否定是“存在a>0,使得a+b<=0”,否命题是“存在a<=0,使得a+b<=0”;在大学阶段,“只否定命题结论”的说法不一定正确,根据真值表,在A为假命题的情况下,非(A=>B)与A=>非B并不是逻辑相等的。
参考:滑铁卢大学数学教材对于“若A则B”式命题的否定为“A且非B”。
2.一个命题与它的否定形式是完全对立的。
两者之间有且只有一个成立。
数学中常用到反证法,要证明一个命题,只需要证明它的否定形式不成立就可以了。
而对于否命题,它是否成立和原命题是否成立没有直接关系。
三、举例命题的否定与否命题的易错题1、写出“若a,b都是正数,则a+b大于等于2√ab.”的否命题。
解答:若a,b不都是正数,则a+b大于等于2√ab.。
评注:“都是正数”的否定是“不都是正数”而不是“都不是正数”.如果把“a,b都是正数”理解成“a是正数且b是正数”,则其否定也可写成“a不是正数或b不是正数”。
2、写出“两个奇数的和是偶数”的否命题与命题的否定。
解答:否命题:若两个数不全是奇数,则它们的和不是偶数。
命题的否定:两个奇数的和不是偶数。
评注:(1)“两个奇数的和是偶数”意思是“有两个数全是奇数,则它们的和是偶数”。
(2)“是偶数”的否定是“不是偶数”,而不是“是奇数”。
3、写出下列命题的否定:(1)有些常数数列不是等比数列。
(2)平行四边形是菱形。
解答:(1)任意一个常数数列都是等比数列。
1.2 命题及其关系、充分条件与必要条件

2 -a<0 且 1>0 a
,故方程有两个负根,符合题意.
综上知:当 a≤1 时,方程 ax2+2x+1=0 至少有一个负根. 必要性:若方程 ax2+2x+1=0 至少有一个负根. 当 a=0 时,方程为 2x+1=0 符合题意. 当 a≠0 时,方程 ax2+2x+1=0 应有一正一负根或两个负根.
思维启迪 首先分清条件和结论, 然后根据充要条件的
定义进行判断.
解
(1)在△ABC 中,∠A=∠B⇒sin A=sin B,反之,
若 sin A=sin B, 因为 A 与 B 不可能互补(因为三角形三 个内角和为 180° ),所以只有 A=B.故 p 是 q 的充要条 件. (2)易知,綈 p:x+y=8,綈 q:x=2 且 y=6,显然 綈 q⇒綈 p,但綈 p⇒綈 q,即綈 q 是綈 p 的充分不必要 条件,根据原命题和逆否命题的等价性知,p 是 q 的充 分不必要条件. (3)显然 x∈A∪B 不一定有 x∈B,但 x∈B 一定有 x∈A∪B,所以 p 是 q 的必要不充分条件. (4)条件 p:x=1 且 y=2,条件 q:x=1 或 y=2, 所以 p⇒q 但 q⇒p,故 p 是 q 的充分不必要条件.
已知推出条件成立是必要性. (2)证明分为两个环节,一是充分性;二是必要性.证 明时,不要认为它是推理过程的“双向书写”,而应该 进行由条件到结论,由结论到条件的两次证明. (3)证明时易出现必要性与充分性混淆的情形,这就要 分清哪是条件,哪是结论.
变式训练 3 求证: 方程 x2+ax+1=0 的两实根的平方 和大于 3 的必要条件是|a|> 3,这个条件是其充分条 件吗?为什么?
题型三
充要条件的证明
例 3 求证:关于 x 的方程 ax2+2x+1=0 至少有一个 负根的充要条件是 a≤1. 思维启迪
四种命题之间的相互关系

原命题:若p 则q 逆命题:若q 则p 否命题:若? p 则? q 逆否命题:若? q 则? p
? 观察与思考
1)若f (x)是正弦函数,则 f (x)是周期函数。 2)若f (x)是周期函数,则 f (x)是正弦函数。 3)若f (x)不是正弦函数,则 f (x)不是周期函数。 4)若f (x)不是周期函数,则 f (x)不是正弦函数。
例:证明:若p 2 +q2 =2,则p+q ? 2
巩固练习;P 9练习
小结:
1、本节内容: (1)四种命题的关系 (2)四种命题的真假关系
(3) 一种思想
作业:P 10 A组 3(2)、4
2.四种命题真假的个数可能为( 答:0个、2个、4个。
)个。
如:原命题:若A∪B=A, 则A∩B=φ。 逆命题:若A∩B=φ,则A∪B=A。 否命题:若A∪B≠A,则A∩B≠φ。 逆否命题:若A∩B≠φ,则A∪B≠A。
(假) (假) (假) (假)
例题讲解
例1:设原命题是:当c>0时,若a>b, 则ac>bc. 写出它的逆命题、否命题、逆否命题。 并分别判断它们的真假。
分析:搞清四种命题的定义及其关系,注意“且” “或”的 否定为“或” “且”。
解:逆命题:若m+n≤0 ,则m≤0或n≤0。 否命题:若m>0且n>0, 则m+n>0.
(真) (真)
逆否命题:若m+n>0, 则m>0且n>0.
(假)
小结:在判断四种命题的真假时,只需判断两种命题的 真假。因为逆命题与否命题真假等价,逆否命题与原命 题真假等价。
四种命题 四种命题间的相互关系

否命题:若 m·n≥0,则方程 mx2-x+n=0 没有实数 根,假命题.
逆否命题:若方程 mx2-x+n=0 没有实数根,则 m·n ≥0,真命题.
(2)逆命题:若一条直线经过圆心,且平分弦所对的 弧,则这条直线是弦的垂直平分线,真命题.
否命题:若一条直线不是弦的垂直平分线,则这条直 线不过圆心或不平分弦所对的弧,真命题.
3.四种命题真假性之间的关系 (1)两个命题互为逆否命题时,它们有相同的真假性; (2)两个命题为互逆命题或互否命题时,它们的真假 性没有关系.
温馨提示 在四种命题中,真命题的个数可能为 0,2,4 个,不 会出现奇数个.
1.下列判断中不正确的是( ) A.命题“若 A∩B=B,则 A∪B=A”的逆否命题 为真命题 B.“矩形的两条对角线相等”的否命题为假命题 C.“已知 a,b,m∈R,若 am2<bm2,则 a<b”的逆 命题是真命题 D.“若 x∈N*,则(x-1)2>0”是假命题
解析:A 中,逆否命题“若 A∪B≠A,则 A∩B≠B” 是真命题,正确;B 中,否命题“不是矩形的四边形的两 条对角线不相等”是假命题,正确;C 中,逆命题“已知 a,b,m∈R,若 a<b,则 am2<bm2”是假命题.所以 C 错误,符合题意.D 中,因为 x=1 时,(1-1)2=0,所以 是假命题,正确.
答案:C
2.命题“若 a>b,则 2a>2b-1”的否命题为 ___________________________________________. 解析:否命题为“若¬ p,则¬ q”,则否命题为“若 a≤b,则 2a≤2b-1”. 答案:“若 a≤b,则 2a≤2b-1”
3.下列命题: ①“等边三角形三内角都为 60°”的逆命题; ②“若 k>0,则 x2+2x-k=0 有实根”的逆否命题; ③“全等三角形的面积相等”的否命题; ④“若 ab≠0,则 a≠0”的否命题; 其中真命题的序号为________. 解析:①逆命题“三内角都为 60°的三角形为等边 三角形”,真命题;②逆否命题“若 x2+2x-k=0 没有实 根,则 k≤0”,因为Δ=4+4k<0,所以 k<-1,满足 k
命题、四种命题及其关系

逆否命题:若一个三角形的角不相等,则这个三角形的边也不相等。 这是真命题。
(3)奇函数的图象关于原点对称 (3)逆命题:图象关于原点对称的函数是奇函数。 这是真命题。 否命题:不是奇函数的函数的图象不关于原点对称。 这是真命题。 逆否命题:图象不关于原点对称的函数不是奇函数。 这是真命题。
特称命题 p :
x0 M,p(x0 )
它的否定 p :
x M,p(x)
第一章 常用逻辑用语
1.1 命题及其关系
1.1.1 命题
1.1.2 四种命题
(一)命题的特征: (1)是陈述句
(二)命题的结构: 若p,则q
(2)可判真假
题型一:命题的判断(真/假) 题型二:改写命题的结构形式(若p,则q) 题型三:真假命题的应用
p且 q ﹁p或﹁q p或 q
例题:用否定的形式填空: (1)a > 0; a≤0。 (2)a ≥0或b<0; a<0且b≥0。 (3)a、b都是正数;a、b不都是正数。 (4)A是B的子集; A不是B的子集。 结论:(1)“或”的否定为“且”,
(2)“且”的否定为“或”, (3)“都”的否定为“不都”。
(1)若a,b都是偶数,则a+b是偶数 真命题 (2)若m>0,则方程x2+x-m=0有实数根. 真命题 (1)逆命题:若a+b是偶数,则a,b都是偶数 假命题
否命题: 若a,b不都是偶数,则a+b不是偶数 假命题 逆否命题: 若a+b不是偶数,则a,b不都是偶数 真命题 (2)逆命题:若方程x2+x-m=0有实数根,则m>0 否命题: 若m≤0,则方程x2+x-m=0无实数根 逆否命题: 若方程x2+x-m=0无实数根,则m≤0 假命题
四种命题及其相互关系

则x 2 0, 所以x 2 y 2 0,
也就是说 x 2 y 2 0.
因此,原命题的逆否命 题为真命题, 从而原命题也是真命题 .
当直接证明某一命题为真命题有困难 时,可以通过证明它的逆否命题为真 命题,来间接证明原命题为真命题。
2,奇函数的图像关于原点对称
观察与思考
?
(1)如果两个三角形全等,那么它们的面积相等.
(2)如果两个三角形的面积相等,那么它们全等.
(3)如果两个三角形不全等,那么它们的面积不相等.
(4)如果两个三角形的面积不相等,那么它们不全等.
问题;命题(1)与命题(2)的条件与结论之间有什 么关系?同样,命题(1)与命题(3)、命题(1)与 命题(4)的条件与结论之间有什么关系
例题讲解
练一练
例1.判断下列说法是否正确。
1)一个命题的逆命题为真,它的逆否命 题不一定为真; 2)一个命题的否命题为真,它的逆命题 一定为真。 3)一个命题的原命题为假,它的逆命题 一定为假。 4)一个命题的逆否命题为假,它的否命 题为假。 (对)
(对) (错) (错)
例题讲解
例2 证明:若x2 y2 0, 则x y 0.
原命题: 若p 则q 逆命题: 若q 则p
否命题:若 p 则 q
逆否命题:若 q 则 p
观察与思考
?
(1)如果两个三角形全等,那么它们的面积相等.
(2)如果两个三角形的面积相等,那么它们全等.
(3)如果两个三角形不全等,那么它们的面积不相等.
(4)如果两个三角形的面积不相等,那么它们不全等.
方法三:反证法,证明命题的否定(若p, 则┐q)为假命题,从而间接地证明了命题 (若p,则q)为真命题。
命题的四种形式及关系

命题的四种形式及关系1. 什么是命题?在逻辑学中,命题是一个陈述句,它可以被判断为真或假。
命题是逻辑推理的基本单位,通过对命题的分析和组合,我们可以进行有效的推理和论证。
2. 命题的四种形式2.1 简单命题简单命题是最基本的命题形式,它不能再被分解为更小的命题。
简单命题通常用一个字母或一个词来表示,例如:P、Q、R等。
简单命题可以是真(True)或假(False)。
例如,“太阳从东方升起”这个陈述就是一个简单命题,它可以被判断为真。
2.2 复合命题复合命题由多个简单命题通过逻辑运算符连接而成。
常见的逻辑运算符有:•否定(Negation):表示取反关系,用符号”¬“表示。
•合取(Conjunction):表示与关系,用符号”∧“表示。
•析取(Disjunction):表示或关系,用符号”∨“表示。
•条件(Implication):表示蕴含关系,用符号”→“表示。
•双条件(Biconditional):表示等价关系,用符号”↔“表示。
例如,命题”P并且Q”可以表示为P∧Q,命题”P或者Q”可以表示为P∨Q。
2.3 合取范式合取范式是一种复合命题的标准形式,它由多个简单命题的合取构成。
合取范式通常用括号和逻辑运算符来表示。
例如,命题”(P∨Q)并且(¬R)“就是一个合取范式。
在合取范式中,每个简单命题都是一个子命题,并通过逻辑运算符连接起来。
2.4 析取范式析取范式是另一种复合命题的标准形式,它由多个简单命题的析取构成。
析取范式通常用括号和逻辑运算符来表示。
例如,命题”(P∧¬Q)或者R”就是一个析取范式。
在析取范式中,每个简单命题都是一个子命题,并通过逻辑运算符连接起来。
3. 命题的关系3.1 等价关系两个命题被称为等价关系,如果它们具有相同的真值表。
换句话说,两个等价的命题在所有情况下都具有相同的真假值。
等价关系可以用双条件符号”↔“来表示。
例如,命题”P并且Q”和命题”Q并且P”是等价命题,可以表示为P∧Q ↔ Q∧P。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2:请将下列命题改写成“若p,则q”的形式 (1)垂直于同一条直线的两平面平行; (2)负数的立方是负数; (3)奇函数的图像必过原点; (4)同弧所对的圆周角不相等; (5)当abc=0时,a=0且b=0且c=0;
引例2:写出下列命题的条件和结论: (1)同位角相等,两直线平行; (2)两直线平行,同位角相等; (3)同位角不相等,两直线不平行; (4)两直线不平行,同位角不相等。
一.命题的定义及其分类。 1.定义:我们把用语言、符号或式子表达的, 可以判断真假的陈述句叫做命题。
问题3:如果将(2)、(4)、(5)、(9)这四个命题 分类,该如何分类?
(2)垂直于同一条直线的两条直线平行。 (4)大角所对的边大于小角所对的边。 (5)x+y是无理数,则x,y也都是有理数。 (9)x≥0,则|x|=x。
问题6:如果我用p和q分别表示原名题的条件 和结论,用┐p和┐q分别表示p和q的否定, 那么四种命题的形式该如何表示?
(二)四种命题的表示: 原命题 若 p则 q
逆命题
否命题 逆否命题
若 q则 p
若┐p则┐q 若┐q则┐p
问题7:请你从上面四个命题中任取两个说明 它们的关系。
(三)四种命题的基本关系:
2.在两个命题中,如果第一个命题的条件 和结论分别是另外一个命题的条件的否定和 结论的否定,那么这两个命题叫做互否命题, 如果把其中一个叫做原命题,那么另一个叫 做原命题的否命题。
3.在两个命题中,如果第一个命题的条件和 结论分别是另外一个命题的结论的否定和条件 的否定,那么这两个命题叫做互为逆否命题, 如果把其中一个叫做原命题,那么另一个叫 做原命题的逆否否命题。
命题及四种命题的基本关系
引例1:请将下列语句分类。 (1)矩形难道不是平行四边形么? (2)垂直于同一条直线的两条直线平行。 (3)一个数不是合数就是质数么? (4)大角所对的边大于小角所对的边。 (5)x+y是无理数,则x,y也都是有理数。 (6)求证x∈R,则x2+x+1=0无实根。 (7)y=2x+1。 (8)x>0。 (9)x≥0,则|x|=x。
例3:写出下列命题的逆命题,否命题和 逆否命题: (1)负数的平方是正数; (2)矩形的两条对角线相等; (3)课本p5练习1第3题
问题8:写出一个命题的逆命题,否命题和 逆否命题的关键是什么?
写出一个命题的逆命题,否命题和逆否命题 的关键是:找出形成这个命题的条件和结论。
问题1:如果将(2)、(4)、(5)、(7)、(8)、(9) 五个语句再继续分类,该如何分类?
(2)垂直于同一条直线的两条直线平行。 (4)大角所对的边大于小角所对的边。 (5)x+y是无理数。 (9)x≥0,则|x|=x。
问题2:我们把像(2)、(4)、(5)、(9)这样的 语句称作命题,那么命题该怎么定义?
问题4:判断一个命题真假的关键是什么? 若x=4,则2x>0;
讲授:“若x=4,则2x>0”,它具有“若┄, 则┄”的格式。在本章中,我们只研究具有 这种格式的命题。其中x=2是命题的条件我 们用小写英文字母p表示,其中2x>0是命题 的结论我们用小写英文字母q表示。
4.命题的一种结构:若p,则q。
讨论:请同学们讨论这四个命题之间的关系。
问题5:如果我们把命题(1)叫做原命题; (2)叫做逆命题;(3)叫做否命题; (4)叫做逆否命题,那么它们该如何进行 严格的定义?
二.四种命题的概念。 (一)四种命题的定义: 1.在两个命题中,如果第一个命题的条件 (或题设)是第二个命题的结论,且第一个命 题的结论是第二个命题的条件,那么这两个命 题叫做互逆命题,如果把其中一个叫做原命题 那么另一个叫做原命题的逆命题。
2.命题的分类——真假命题。 (1)真命题:判断为真的命题; (2)假命题:判断为假的命题。
例1:下列语句中哪些是命题,那些不是命题? 1.3>2; 2.5是15的约数; 3.这是一棵大树; 4.π是无限不循环小数; 5.x+5=8; 6.x<a;
问题3:判断一个语句是否是命题的条件是 什么?
3.判断命题的条件:陈述句和可判断。