人教版高中数学必修5
人教版高中数学必修五教案(全册)
人教版高中数学必修五教案(全册)
本教案共包括必修五全部章节,共计 xx 课时,主要涵盖以下
内容:
第一章函数的概念
本章主要介绍函数的概念、性质、分类以及函数图像的绘制等
方面的知识点。
通过本章的研究,学生将能够掌握函数的基本概念,理解函数的重要性以及掌握函数图像的绘制方法。
第二章三角函数
本章主要介绍正弦函数、余弦函数、正切函数等三角函数的定义、图像及其性质等方面的知识点,并针对不同类型的三角函数进
行了详细的讲解。
通过本章的研究,学生将能够深入理解三角函数
的概念,掌握三角函数的性质,运用三角函数解决实际问题。
第三章数学归纳法与递推数列
本章主要介绍数学归纳法的基本原理及其在数学证明中的运用,同时通过递推数列的研究,进一步巩固对数学归纳法的理解和应用。
通过本章的研究,学生将能够掌握数学归纳法的基本原理及其在数
学证明中的应用,同时掌握递推数列的推导与实际应用技巧。
第四章极坐标系与参数方程
本章主要介绍极坐标系的定义、性质,以及参数方程的基本概
念与运用等方面的知识点。
通过本章的研究,学生将能够理解极坐
标系的概念与性质,掌握参数方程的推导与实际应用技巧。
第五章一元函数微积分学初步
本章主要介绍导数与微分、不定积分、定积分等知识点。
通过
本章的学习,学生将能够掌握导数与微分的基本概念与计算方法,
掌握不定积分与定积分的计算方法,以及这些知识在实际问题中的
应用。
人教版高中数学必修五 第三章3.1第2课时不等式的性质与应用
第三章 不等式 3.1 不等关系与不等式 第2课时不等式的性质与应用A 级 基础巩固一、选择题1.若a >0,b >0,则不等式-b <1x <a 等价于( )A .-1b <x <0或0<x <1aB .-1a <x <1bC .x <-1a 或x >1bD .x <-1b 或x >1a解析:由题意知a >0,b >0,x ≠0, (1)当x >0时,-b <1x <a ⇔x >1a ;(2)当x <0时,-b <1x <a ⇔x <-1b.综上所述,不等式-b <1x <a ⇔x <-1b 或x >1a .答案:D2.设0<b <a <1,则下列不等式成立的是( ) A .ab <b 2<1 B .log 12b <log 12a <0C .2b <2a <2D .a 2<ab <1答案:C3.已知实数x,y,满足-4≤x-y≤-1,-1≤4x-y≤5,则9x-y 的取值范围是()A.[-7,26] B.[-1,20]C.[4,15] D.[1,15]答案:B4.已知a<b<0,那么下列不等式成立的是()A.a3<b3B.a2<b2C.(-a)3<(-b)3D.(-a)2<(-b)2解析:取a=-2.b=-1.验证知B,C,D均错,故选A.答案:A5.如下图所示,y=f(x)反映了某公司的销售收入y与销量x之间的函数关系,y=g(x)反映了该公司产品的销售成本与销售量之间的函数关系,当销量x满足下列哪个条件时,该公司盈利()A.x>a B.x<aC.x≥a D.0≤x≤a解析:当x<a时,f(x)<g(x);当x=a时,f(x)=g(x);当x>a 时,f(x)>g(x),故选A.答案:A二、填空题6.若x>y,a>b,则在①a-x>b-y,②a+x>b+y,③ax>by,④x-b>y-a这四个式子中,恒成立的序号是________. 答案:②④7.若角α,β满足-π2<α<β<π3,则α-β的取值范围是________.答案:(-56π,0)8.设x >1,-1<y <0,试将x ,y ,-y 按从小到大的顺序排列如下________.答案:y <-y <x 三、解答题9.已知a >b >0,c <d <0,判断b a -c 与ab -d 的大小.解:因为a >b >0,c <d <0,所以-c >-d >0,所以a -c >b -d >0, 所以0<1a -c <1b -d,又因为a >b >0,所以b a -c <ab -d.10.已知0<x <1,0<a <1,试比较|log a (1-x )|和 |log a (1+x )|的大小.解:法一:|log a (1-x )|2-|log a (1+x )|2=[log a (1-x )+log a (1+x )]·[log a (1-x )-log a (1+x )]=log a (1-x )2log a 1-x 1+x.因为0<1-x 2<1,0<1-x1+x<1,所以log a (1-x 2)log a 1-x1+x>0.所以|log a (1-x )|>|log a (1+x )|.法二:⎪⎪⎪⎪⎪⎪log a (1-x )log a (1+x )=|log 1+x (1-x )|= -log 1+x (1-x )=log 1+x 11-x =log 1+x 1+x 1-x 2=1-log 1+x (1-x 2). 因为0<1-x 2<1,1+x >1, 所以log 1+x (1-x 2)<0. 所以1-log 1+x (1-x 2)>1. 所以|log a (1-x )|>|log a (1+x )|. 法三:因为0<x <1,所以0<1-x <1,1<1+x <2, 所以log a (1-x )>0,log a (1+x )<0. 所以|log a (1-x )|-|log a (1+x )|= log a (1-x )+log a (1+x )=log a (1-x 2). 因为0<1-x 2<1,且0<a <1, 所以log a (1-x 2)>0.所以|log a (1-x )|>|log a (1+x )|.B 级 能力提升1.对下列不等式的推论中: ①a >b ⇒c -a >c -b ; ②a >b +c ⇒(a -c )2>b 2; ③a >b ⇒ac >bc ;④a >b >c >0⇒(a -c )b >(b -c )b ;⑤a >b ,1a >1b ⇒a >0,b <0.其中正确的个数是( ) A .2 B .3 C .4 D .5 答案:A2.若-2<c <-1<a <b <1,则(c -a )(a -b )的取值范围为________.答案:(0,6)3.若二次函数f (x )的图象关于y 轴对称,且1≤f (1)≤2;3≤f (2)≤4,求f (3)的取值范围.解:由题意设f (x )=ax 2+c (a ≠0),则⎩⎪⎨⎪⎧f (1)=a +c ,f (2)=4a +c ,所以⎩⎨⎧a =f (2)-f (1)3,c =4f (1)-f (2)3,而f (3)=9a +c =3f (2)-3f (1)+4f (1)-f (2)3=8f (2)-5f (1)3,因为1≤f (1)≤2,3≤f (2)≤4, 所以5≤5f (1)≤10,24≤8f (2)≤32, 所以-10≤-5f (1)≤-5, 所以14≤8f (2)-5f (1)≤27, 所以143≤8f (2)-5f (1)3≤9,即143≤f (3)≤9.。
高中数学人教版必修5课件:1.1.1正弦定理(系列三)
典型例题 例1 已知一三角形中a=2 3 ,b=6,A=30°,判断三角形是
否有解,若有解,解该三角形.
解 a=2 3,b=6,a<b,A=30°<90°.
又因为bsinA=6sin30°=3,a>bsinA,
所以本题有两解,由正弦定理得,
sinB=bsian
A=6sin 2
30°= 3
23,故B=60°或120°.
跟踪训练1 在△ABC中,角A、B、C所对的边分别为a、b、
c,已知A=60°,a= 3,b=1,则c等于
(B )
A.1 B.2 C. 3-1 D. 3
解析 由正弦定理sina A=sinb B,可得sin 630°=sin1 B,
∴sinB=12,故∠B=30°或150°.由a>b,
得∠A>∠B,∴∠B=30°,故∠C=90°,
由勾股定理得c=2.
例2 在△ABC中,若∠A=120°,AB=5,BC=7,求△ABC 的面积.
解 如图,由正弦定理,
得sin
1720°=sin5
, C
∴sinC=5143,且∠C为锐角(∠A=120°).∴cosC=1114. ∴sinB=sin(180°-120°-∠C)=sin(60°-∠C) = 23cosC-12sinC= 23×1114-12×5143=3143.
证明 作AD⊥BC,垂足为D, 则AD=AB·sinB,又AD=AC·sinC,
∴csinB=bsinC.
∴S△ABC=12BC·AD =12acsinB=12absinC. 同理S△ABC=12absinC=12bcsinA.
∴S△ABC=12absinC=12bcsinA=12acsinB.
高中数学必修五--等比数列
这些数列 有什么共同点
概念形成
一、等比数列的定义
一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等
比数列.这个常数叫做等比数列的公比,公比通常用字母 q 表示 q 0 ,即 an q (q 0) . an1
概念形成
二、等比数列的通项公式
概念形成
四、等比数列的性质
(1)在一个等比数列中,从第 2 项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项,
即 an2 an1 an1 (n 2) .
(2)在有穷等比数列中,与首末两项等距离的两项之积等于首末两项之积,即
a1 an a2 an1 a3 an2 L .
(3)在等比数列中,若 m n p q ,则 am an ap aq .
(4)若 {an } , {bn } 均为等比数列,则 {an
bn} ,{k
an}
(k
0)
,{ 1 an
} 仍为等比数列,公比分别为
q1
q2
,
q1 ,
1 q1
.Байду номын сангаас
(5)等比数列依次每 n 项的和仍为等比数列,公比为 qn
n
(6) a1 a2 L an (a1 an )2 . (正项数列中)
课堂小结
四、等比数列的性质
一个思想 类比思想
两个方法 不完全归纳法
叠乘法
三个公式
谢谢大家
人教版高中数学必修五
不完全归纳法
叠乘法
概念形成
二、等比数列的通项公式
【问题3】怎样用函数观点来分析等比数列的通项公式呢?
类比思想
概念形成
人教版高中数学必修五 2.2 等差数列
知识2:等差中项 问题导思:
如果三个数 a,A,b 成等差数列,那么它们之间有怎样的 数量关系? 答:因为 A-a=b-A,所以 a+b=2A.
如果 a,A,b 成等差数列,那么 A 叫做 a 与 b 的等差中项.它 们之间的关系式是 a+b=2A .
4.已知等差数列{an}:-1,2,5,8,…,求公差 d 和 a10. 解:∵a1=-1, ∴d=a2-a1=2-(-1)=3, ∴a10=a1+(10-1)×d=-1+9×3=26.
变式训练 3:《九章算术》“竹九节”问题:现有一根 9 节的竹
子,自上而下各节的容积成等差数列,上面 4 节的容积共 3 升,
下面 3 节的容积共 4 升,则第 5 节的容积为( )
A.1 升
B.6676升
C.4474升
D.3373升
【解析】设所构成数列为{an},且其首项为 a1,公差为 d, 依题意得aa17++aa28++aa39+=a44,=3, 即43aa11++62d1=d=3,4,
2.等差数列的通项公式可以解决以下三类问题: (1)已知 an,a1,n,d 中的任意三个量,可求出第四个量; (2)已知数列{an}的通项公式,可以求出等差数列{an}中的 任一项,也可以判断某一个数是否是该数列中的项; (3)若已知{an}的通项公式是关于 n 的一次函数或常数函 数,则可判断{an}是等差数列.
∴an=a1+(n-1)×5=5n-4, ∴a80=5×80-4=396.
(2)a1=a2-d=12+2=14, ∴an=14+(n-1)×(-2)=-20, ∴n=18.
类型3:等差数列的实际应用问题 例 3:梯子的最高一级宽 33 cm,最低一级宽 110 cm,中间还有 10 级,各级宽度依次成等差数列,计算中间各级的宽度.
高中数学必修5知识点总结归纳(人教版最全)
高中数学必修五知识点汇总第一章 解三角形 一、知识点总结 正弦定理:1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径).步骤1.证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。
作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA得到b ba a sin sin =同理,在△ABC 中, bbc c sin sin =步骤2.证明:2sin sin sin a b cR A B C===如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b c R A B C ===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a bii A B C R R==2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ∆中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角. 面积公式:已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=; (2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p b h b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C ==代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == 注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和 故得:pr cr br ar S =++=212121(3)根据三角形面积公式12a S a h =⨯⨯所以,2a S h a =a h =同理b h c h 【三角形中的常见结论】(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于 60,最小角小于等于 60(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是 60=B .(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) (3) 若B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2:解三角形及求面积一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a ,b(Ⅱ)若A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3:证明等式成立证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4:解三角形在实际中的应用考察:(仰角、俯角、方向角、方位角、视角)例5.如图所示,货轮在海上以40km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时到达C 点观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?三、解三角形的应用 1.坡角和坡度:坡面与水平面的锐二面角叫做坡角,坡面的垂直高度h 和水平宽度l 的比叫做坡度,用i 表示,根据定义可知:坡度是坡角的正切,即tan i α=.lhα2.俯角和仰角:如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.3. 方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 .注:仰角、俯角、方位角的区别是:三者的参照不同。
高中数学人教版数学必修5完整笔记含习题和答案
目录必修5知识点总结 2含参不等式9一元二次不等式12均值不等式17整式不等式(高次不等式) 25 分式不等式26绝对值不等式27不等式关系28线性归纳29必修5知识点总结1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cRC ===A B .2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2b R B =,sin 2cC R =;③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C ++===A +B +A B .(正弦定理主要用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。
2、已知两角和一边,求其余的量。
)⑤对于已知两边和其中一边所对的角的题型要注意解的情况。
(一解、两解、无解三中情况) 如:在三角形ABC 中,已知a 、b 、A(A 为锐角)求B 。
具体的做法是:数形结合思想 画出图:法一:把a 扰着C 点旋转,看所得轨迹以AD当无交点则B 无解、 当有一个交点则B 有一解、 当有两个交点则B 有两个解。
法二:是算出CD =bsinA,看a 的情况: 当a <bsinA,则B 无解 当bsinA <a ≤b,则B 有两解 当a =bsinA 或a>b 时,B 有一解注:当A 为钝角或是直角时以此类推既可。
3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab +-=.(余弦定理主要解决的问题:1、已知两边和夹角,求其余的量。
高中数学必修5全册人教A版(2024)
如果集合A是集合B的子集且集合B是集合A的子集 ,那么集合A与集合B相等,记作A=B。
2024/1/29
5
集合基本运算
01 并集
由所有属于集合A或属于集合B的元素所组成的集 合,记作A∪B(或B∪A)。
02 交集
由所有既属于集合A又属于集合B的元素所组成的 集合,记作A∩B(或B∩A)。
圆与圆的位置关系
通过比较两圆圆心距$P$与两圆半径 之和$R + r$和之差$|R - r|$的大小关 系,可以判断两圆的位置关系(外离 、外切、相交、内切、内含)。
2024/1/29
31
空间直角坐标系
空间直角坐标系的概 念
在空间中选定一点$O$作为原点,过 点$O$作三条互相垂直的数轴$Ox, Oy, Oz$,它们都以$O$为公共原点 且一般具有相同的长度单位。这三条 轴分别称作$x$轴(横轴),$y$轴 (纵轴),$z$轴(竖轴),统称为 坐标轴。它们的正方向符合右手规则 ,即以右手握住$z$轴,当右手的四 个手指$x$轴的正向以$pi/2$角度转 向$y$轴正向时,大拇指的指向就是 $z$轴的正向。这样就构成了一个空 间直角坐标系,称为空间直角坐标系 $O-xyz$。定点$O$称为该坐标系的 2024/1/2原9 点。与之相对应的是左手空间直角
空间两点间的距离公 式
在空间直角坐标系中,任意两点 $A(x_1, y_1, z_1)$和$B(x_2, y_2, z_2)$之间的距离公式为
32
2024/1/29
THANKS
感谢观看
33
2024/1/29
16
空间几何体三视图和直观图
01 中心投影与平行投影
02 三视图的形成及其特性 02 由三视图还原成实物图
高中数学人教版必修五:基本不等式(共23张PPT)
ab
a
b 2
(第一课时)
2019/10/5
一、情境创设 导入课题
第24届国际数学家大会(ICM2002)的会标
问题 :你能在这个图中找出一些相等关系或不 等关系吗?
二、自主探究 推导公式
问题 1:在正方形 ABCD 中有4个全等的直角三角形.设直角三角形的
两条直角边长为a,b,正方形ABCD的面积为 S ,4个直角三角形的面积和
2
又称为基本不等式
4、从数列角度看:
把
ab 2
看做两个正数a,b 的等差中项,
ab 看做正数a,b的等比中项,
那么上面不等式可以叙述为:
两个正数的等差中项不小于它们的等比 中项。
还有没有其它的证明方法证明均值 不等式呢?
二、自主探究 推导公式 探究:如图,AB 是圆的直径,点 C 是 AB上一点,
显然,④是成立的.当且仅当 a b 时,④中的等号成立.
2019/10/5
析 : a 0,b 0,
a b ab a b 2 ab ( a b)2 0
2
2
2
即 a b ab 2
当且仅当 a b即a b等号成立
上面所证结论通常称为均值不等式
(2)设矩形的长、宽分别为x(m),y(m),
依题意有2(x+y)=36,即x+y=18, 因为x>0,y>0,所以, xy ≤ x y
2
因此 xy ≤9
将这个正值不等式的两边平方,得xy≤81, 当且仅当x=y时,式中等号成立,此时x=y=9,
因此,当这个矩形的长与宽都是9m时,它的 面积最大,最大值是81m2。
人教版高中数学必修5《等比数列》PPT课件
二、基础知识讲解
1、等比数列的定义:
一般地,如果一个数列从第二项起,每一项与它
的前一项的比都等于同一个常数,那么这个数列就叫
做等比数列。这个常数就叫做等比数列的公比, 公比
通常用字母 q 表示。 (q≠0) 等比数列的每一
思考:用数学符号语言(递推公式)项怎都样不表为示0等,比即
在等比数列{an}中 (1)an=akqn-k; (2)若m+n=k+l,则am·an =ak·al 在等比数列{an}中,若m+n=k+l,则am·an =ak·al
特别地,若m n 2k(m, n, k N * ), 则aman ak2
例1、在等比数列{an}中,an 0,且a1a9 64, a3 a7 20,求a11。
成等差数列的三个正数之和为15,若这三个数分别 加上1,3,9后又成等比数列,求这三个数。
一、复习回顾 1、等比数列的定义: 或
2、等比数列的通项公式: an=a1qn-1 3、等比数列的性质: ①an=a1qn-1=akqn-k;
a1q2 12 ①
a1,公比是
q,那么
设
a1q3 18 ②
把②的两边分别除以①的两边,得
q
3
③
把③代入①,得
a1
6 3
2
方
程列
思 想
因此,a2
a1q
16 3
3 2
8
求
二、基础知识讲解
3、等比数列的通项公式: an=a1qn-1
练习2:在等比数列{an}中,
(1)a1=3,an=192,q=2,求n;n=7
a3 a7 20,求a11。
解:依题意可得
人教版高中数学必修5《基本不等式》教案
课题:基本不等式教材:《普通高中课程标准实验教科书数学必修5》3.4一、教学目标:1、探索并了解基本不等式的证明过程,了解这个基本不等式的几何意义,并掌握定理中的不等号“≥”或“≤”取等号的条件是:当且仅当这两个数相等;会用基本不等式解决简单的最大(小)值问题。
2、通过实例探究抽象基本不等式,体会特殊到一般的数学思想方法;3、通过本节的学习,体会数学来源于生活,提高学习数学的兴趣;4、培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。
二、教学重点和难点:重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式2a bab +≤的证明过程; 难点:注意基本不等式2a bab +≤等号成立条件以及应用于解决简单的最大(小)值问题。
三、教学方法:启发、探究式相结合 四、教学工具:多媒体课件五、教学过程:一、问题引入:如图是2002年在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。
你能在这个图案中找出一些相等关系或不等关系吗?这样,三角形的面积的和是2ab ,正方形的面积为22a b +。
由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥二、探究过程:1.问题探究——探究图形中的不等关系。
将图中的“风车”抽象成如图,在正方形ABCD 中有四个全等的直角三角形。
设直角三角形的两条直角边长为a,b 则正方形的边长为22a b +。
探究1:(1)正方形ABCD 的面积S=____ (2)四个直角三角形的面积和S ’=__ (3)S 及S ’有什么样的关系? ADB HFGE《几何画板》课件动画显示,当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。
问题:你能证明这个结论吗? 证明:(作差法) 因为 222)(2b a ab b a -=-+ 当b a ≠时,0)(2>-b a 当b a =时,0)(2=-b a所以,0)(2≥-b a ,即.2)(22ab b a ≥+总结结论1:一般的,如果文字叙述为:两数的平方和不小于积的2倍。
人教版高中数学教材必修5电子课本(高清版)
培养学生的数学运算能力、逻辑推理能力、数学建模能力和数学创新能力。
2024/1/28
情感目标
培养学生对数学的兴趣和爱好,提高学生的数学素养和审美情趣。
5
教材特点与亮点
突出基础性
注重基础知识和基本技 能的训练,为后续学习
打下坚实的基础。
2024/1/28
强调思想性
通过数学史话、数学家 介绍等内容,渗透数学 思想和文化,培养学生
留出足够的时间进行复习 和模拟考试,查漏补缺。
30
应试技巧与心态调整方法
应试技巧
认真审题,明确题目要求和考查的知识点。
注意答题规范,步骤清晰,表达准确。
2024/1/28
31
应试技巧与心态调整方法
学会取舍,先易后难,确保基础题得分。
心态调整方法
2024/1/28
保持自信,相信自己经过认真备考一定能够取得好成绩。
题目2
已知等差数列 {an} 的前 n 项和为 Sn ,且 a1 = 1,S3 = 9,求数列 {an} 的通项公式及前 n 项和 Sn。
18
不等式与不等式组练习题
题目1
解不等式 |x - 2| + |x + 3| ≥ 7。
题目3
解不等式组 {x^2 - 3x + 2 > 0, x^2 - 5x + 6 < 0}。
的数学素养。
注重实践性
设置丰富的实际问题情 境,引导学生运用数学
知识解决实际问题。
6
体现时代性
引入现代数学和科技发 展的成果,反映数学在 现代社会中的应用和价
值。
02
知识点详解
2024/1/28
7
高中数学必修五全册课件PPT(全册)人教版
变式练习:两灯塔A、B与海洋观察站C的距离都 等于a km,灯塔A在观察站C的北偏东30o,灯塔B 在观察站C南偏东60o,则A、B之间的距离为多 少?
练习2.自动卸货汽车的车厢采用液压机构。设计时需要计算
油泵顶杆BC的长度.已知车厢的最大仰角是60°,油泵顶点B 与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为 6°20’,AC长为1.40m,计算BC的长(精确到0.01m).
(按角A分类)
A的范围
a,b关系
解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
(2)方位角:指北方向线顺时针旋转到目标方向线
所成的角叫方位角。
B 30°北
点A在北偏东60°,方位角60°.
A 60°
点B在北偏西30°,方位角330°. 西
东
点C在南偏西45°,方位角225°. C 点D在南偏东20°,方位角160°.
45°20° 南D
3.水平距离、垂直距离、坡面距离。
垂
坡面距离
C ba
AB a=bsinA 一解
C b aa
C
C
b
a
a
b
A B2 B1 A
B
bsinA<a<b 两解
一解
A
高中数学人教版必修5——第七讲:等比数列的前n项和公式(解析版)
等比数列的前n 项和公式教学重点: 掌握等比数列前n 项和通项公式及性质,理解等比数列前n 项和公式与函数的关系教学难点: 等比数列前n 项和通项公式的性质的应用1. 等比数列前n 项和通项公式设等比数列{}n a 的前n 项和为n S ,则12...n n S a a a =+++ (1) 当1q =时,1n S na = (2) 当1q ≠时,()11111n n n a q a a qS qq--==--2. 等比数列前n 项和公式的性质(1) 等比数列中,连续m 项的和(如232,,,...m m m m m S S S S S --)仍组成等比数列(注意:公比1q ≠-)(2){}n a 是公比不为1的等比数列()0n n S Aq B A B ⇔=++=(3) mn m m n S S q S +=+(q 为公比)(4) 若等比数列的项数为()2k k N +∈,则S S偶/奇q = ;若等比数列的项数为()21k k N ++∈ ,则S aS- 奇/偶q =3. 等比数列前n 项和公式与函数的关系(1) 当 1q =时,1n S na =是关于n 的正比例函数(常数项为0的一次函数);当1q ≠时,()0n n S Aq A A =-+≠是n 的一个指数式与一个常数的和,其中指数式的系数和常数项互为相反数,且11a A q=- (2) 当1q =时,数列123,,,...,,...n S S S S 的图像是正比例函数1y a x =的图像上的一群孤立的点;当1q ≠时,数列123,,,...,,...n S S S S 的图像是函数()0x y Aq A A =-+≠的图像上的一群孤立的点。
(3) 若n S 表示数列{}n a 的前n 项和,且()0,1n n S Aq A Aq q =-≠≠则数列{}n a 是等比数列。
类型一:等比数列前n 项和通项公式例1. 在等比数列{}n a 中,若189,2,96,n n S q a ===求1,a n 解析:由()1111,1n n n n a q S a a q q--==⋅-以及已知条件得()()111121891121111962962192,189211923232,63n n a n n n a a a a a n --=--=⎧⎪∴⋅=∴=-=-∴===∴=⎨⎪⎩答案:13,6an ==练习1. 在等比数列{}n a 中,若1346510,4a a a a +=+=,求4a 和5S 答案:45311,2a S ==练习2. 在等比数列{}n a 中,若42,1,q S ==求8S 答案:817S =例2.等比数列{}n a 中,已知333,9,a S ==求1a 和公比q解析:当1q =时,13313,39a a S a ====符合题意;当1q ≠时,由已知得()2311332191210,a a q a q S qq q ==-==-⎧⎪∴--=⎨⎪⎩ 解得12q =-或1q =(舍)1111121,3;,122a q a q a ∴=∴===-=答案:1111,3;,122q a q a ===-=练习3.已知数列{}n a 满足12430,,3n n a a a ++==-则{}n a 的前10项和等于 答案:()10313--练习 4.设公比为()0q q >的等比数列{}n a 的前n 项和为n S 若224432,32,S a S a =+=+则q 为____ 答案:32类型二: 等比数列前n 项和公式的性质例3.等比数列{}n a 的前n 项和为n S ,若102010,30S S ==则30S = ___________ 解析:{}n a 是等比数列,1020103020,,S S S S S ∴--仍成等比数列,又()210203030301010,30,30,7010S S S S -==∴-=∴=答案:70练习5. 等比数列{}n a 的前n 项和为n S ,已知368,7,S S ==则789a a a ++= () A.18 B.18- C.578 D.558答案:A练习6.已知等比数列的前n 项和13,,n n S a n N ++=+∈则实数a 的值是()A.-3B.3C.-1D. 1 答案:A类型三: 等比数列前n 项和公式与函数关系例4.若等比数列{}n a 中,前 n 项和2nn S a =+,则a =()A.-2B.2C.1D.-1解析:由题意知,{}n a 为公比不为1的等比数列,因为2nn S a =+故101a a +=∴=-故选D 答案:D练习7.设n S 为等比数列{}n a 的前n 项和,已知481,17,S S ==求n S 答案:当2q =时,()12115nn S =- 当2q =-时,()12115nn S ⎡⎤=--⎣⎦ 练习8.已知等比数列{}n a 的前n 项和为113,6n n S x -=⋅-则x 的值为_______ 答案:12例5.数列2211,12,122,...,122...2n -+++++++的前 n 项和等于()A.12n n +- B.2n C.2n n - D.122n n +--解析:不妨设该数列为{}n a ,其前n 项和为n S ,则()()()()2112121231122...221...2121...21222 (22)2n n n n n n nn a S a a a n n-+=++++=-∴=+++=-+-++-=++++-=--答案:D练习9.已知数列{}n a 满足12...21,n n a a a +++=-则22212...n a a a +++= ____________答案:413n -练习10.122133434...344nn n n n ---+⋅+⋅++⋅+= ________________答案:1143n n ++-1. 已知等比数列{a n }中,公比q 是整数,a 1+a 4=18,a 2+a 3=12,则此数列的前8项和为( ) A .514 B .513 C .512 D .510 答案:D2. 等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4 D .3 答案:C3. 已知等比数列的前n 项和S n =4n +a ,则a 的值等于( )A .-4B .-1C .0D .1 答案:B4.在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则a +b +c 的值为( )A .1 答案:A5. 若S n是数列{a n}的前n项和,且S n=n2,则{a n}是()A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,但也是等比数列D.既不是等差数列,又不是等比数列答案:B6. 设等差数列{a n}的前n项和为S n.若a1=-11,a4+a6=-6,则当S n取最小值时,n等于()A.6B.7 C.8 D.9答案:A7. 等比数列{a n}的前n项和为S n,且4a1,2a2,a3成等差数列.若a1=1,则S4=() A.7B.8 C.15 D.16答案:C8. 设S n是等差数列{a n}的前n项和,已知a2=3,a6=11,则S7等于()A.13B.35 C.49 D.63答案:C_______________________________________________________________________________ _________________________________________________________________________________ __基础巩固1. 在数列{a n }中,a 1,a 2,a 3成等差数列,a 2,a 3,a 4成等比数列,a 3,a 4,a 5的倒数成等差数列,则a 1,a 3,a 5( )A .成等差数列B .成等比数列C .倒数成等差数列D .不确定 答案:B2. 等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( )A .81B .120C .168D .192 答案:B3. 已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列{1a n }的前5项和为( )A .158或5B .3116或5C .3116D .158答案:C4. 设等比数列{a n }的前n 项和为S n ,若S 3=9,S 6=27,则S 9=( ) A .81 B .72 C .63 D .54 答案:C5. 设等比数列{a n }的公比q =12,前n 项和为S n ,则S 4a 4=________.答案:156. 若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =______,前n 项和S n =______. 答案:2, 2n +1-27. 设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和,若S 1,S 2,S 4成等比数列,则a 1的值为________. 答案:-128. 设等差数列{a n }的前n 项和为S n ,若S 9=72,则a 2+a 4+a 9=________. 答案:249. 已知等差数列{a n }的公差不为0,a 1=25,且a 1,a 11,a 13成等比数列. (1)求{a n }的通项公式;(2)求a 1+a 4+a 7+a 10+…+a 3n -2. 答案:(1)设公差为d ,由题意,得a 211=a 1·a 13,即(a 1+10d )2=a 1(a 1+12d ),又a 1=25,解得d =-2或d =0(舍去). ∴a n =a 1+(n -1)d =25+(-2)×(n -1)=27-2n . (2)由(1)知a 3n -2=31-6n ,∴数列a 1,a 4,a 7,a 10,…,是首项为25,公差为-6的等差数列. 令S n =a 1+a 4+a 7+…+a 3n -2 =n (25+31-6n )2=-3n 2+28n .10. 在等比数列{a n }中,已知a 6-a 4=24,a 3·a 5=64,求数列{a n }的前8项和.答案:解法一:设数列{a n }的公比为q ,根据通项公式a n =a 1q n -1,由已知条件得a 6-a 4=a 1q 3(q 2-1)=24,①a 3·a 5=(a 1q 3)2=64, ∴a 1q 3=±8.将a 1q 3=-8代入①式,得q 2=-2,没有实数q 满足此式,故舍去. 将a 1q 3=8代入①式,得q 2=4,∴q =±2. 当q =2时,得a 1=1,所以S 8=a 1(1-q 8)1-q =255;当q =-2时,得a 1=-1,所以S 8=a 1(1-q 8)1-q =85.解法二:因为{a n }是等比数列,所以依题意得 a 24=a 3·a 5=64,∴a 4=±8,a 6=24+a 4=24±8. 因为{a n }是实数列,所以a 6a 4>0,故舍去a 4=-8,而a 4=8,a 6=32,从而a 5=±a 4·a 6=±16. 公比q 的值为q =a 5a 4=±2,当q =2时,a 1=1,a 9=a 6q 3=256, ∴S 8=a 1-a 91-q=255;当q =-2时,a 1=-1,a 9=a 6q 3=-256, ∴S 8=a 1-a 91-q =85.能力提升11. 根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量S n (万件)近似地满足S n =n90·(21n -n 2-5)(n =1,2,…,12).按此预测,在本年度内,需求量超过1.5万件的月份是( )A .5月、6月B .6月、7月C .7月、8月D .8月、9月 答案:C12. 已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1=( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2 答案:C13. 设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=( )A .2B .73C .83 D .3答案:B14. 等比数列{a n }中,a 3=7,前三项之和S 3=21,则公比q 的值为( )A .1B .-12C .1或-12D .-1或12答案: C15. 已知等比数列前20项和是21,前30项和是49,则前10项和是( )A .7B .9C .63D .7或63 答案:D16. 已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n )B .16(1-2-n )C .323(1-4-n )D .323(1-2-n )答案:C17. 等比数列{a n }中,若前n 项的和为S n =2n -1,则a 21+a 22+…+a 2n=________. 答案:13(4n -1)18. 已知数列{a n }的前n 项和S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),则S 22-S 11=________. 答案:-6519. 等比数列{a n }共有2n +1项,奇数项之积为100,偶数项之积为120,则a n +1等于( )A .65B .56 C .20 D .110答案:B20. 已知数列{a n }的首项a 1=2,且a n =4a n -1+1(n ≥2),则a 4为( ) A .148 B .149 C .150 D .151 答案:B21.已知a ,b ,c 成等比数列,a ,x ,b 成等差数列,b ,y ,c 也成等差数列,则a x +cy 的值__________. 答案:222. 将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10……按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为________.答案:n 2-n +6223. 设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4.(1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n . 答案:(1)设公比为q (q >0),∵a 1=2,a 3=a 2+4, ∴a 1q 2-a 1q -4=0, 即q 2-q -2=0,解得q =2, ∴a n =2n .(2)由已知得b n =2n -1, ∴a n +b n =2n +(2n -1),∴S n =(2+22+23+…+2n )+(1+3+5+…+2n -1) =2(1-2n )1-2+[1+(2n -1)]n 2=2n +1-2+n 2.24. 在数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设b n =a n2n -1.证明:数列{b n }是等差数列. (2)求数列{a n }的前n 项和.答案:(1)∵a n +1=2a n +2n ,∴a n +12n =a n 2n -1+1,即b n +1=b n +1, ∴b n +1-b n =1.故数列{b n }是首项为1,公差为1的等差数列.(2)由(1)知b n =n ,∴a n =n ·2n -1.S n =1×20+2×21+3×22+…+n ·2n -1,2S n =1×21+2×22+…+(n -1)·2n -1+n ·2n ,两式相减得-S n =1+21+22+…+2n -1-n ·2n=1-2n1-2-n ·2n =2n -1-n ·2n ,∴S n =(n -1)2n +1.25. 等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列.(1)求{a n }的公比q ;(2)若a 1-a 3=3,求S n .答案:(1)∵S 1,S 3,S 2成等差数列,2S 3=S 1+S 2,∴q =1不满足题意.∴2a 1(1-q 3)1-q =a 1+a 1(1-q 2)1-q, 解得q =-12. (2)由(1)知q =-12, 又a 1-a 3=a 1-a 1q 2=34a 1=3, ∴a 1=4.∴S n =4[1-(-12)n ]1+12=83[1-(-12)n ]. 26. 已知等比数列{a n }的前n 项和为S n ,S 3=72,S 6=632. (1)求数列{a n }的通项公式a n ;(2)令b n =6n -61+log 2a n ,求数列{b n }的前n 项和T n . 答案:(1)∵S 6≠2S 3,∴q ≠1.∴⎩⎪⎨⎪⎧ a 1(1-q 3)1-q =72a 1(1-q 6)1-q =632, 解得q =2,a 1=12. ∴a n =a 1q n -1=2n -2.(2)b n =6n -61+log 22n -2=6n -61+n -2=7n -63.b n -b n -1=7n -63-7n +7+63=7,∴数列{b n }是等差数列.又b 1=-56,∴T n =nb 1+12n (n -1)×7 =-56n +12n (n -1)×7 =72n 2-1192n . 27. 设S n 为等比数列{a n }的前n 项和,已知S 4=1,S 8=17,求S n . 答案:设{a n }公比为q ,由S 4=1,S 8=17,知q ≠1, ∴⎩⎪⎨⎪⎧ a 1(1-q 4)1-q =1a 1(1-q 8)1-q =17,两式相除并化简,得q 4+1=17,即q 4=16.∴q =±2.∴当q =2时,a 1=115,S n =115(1-2n )1-2=115(2n -1); 当q =-2时,a 1=-15,S n =-15[1-(-2)n ]1+2=115[(-2)n -1]. 28. 已知数列{a n }的首项a 1=23,a n +1=2a n a n +1,n =1,2,…. (1)证明:数列⎩⎨⎧⎭⎬⎫1a n -1是等比数列;(2)求数列⎩⎨⎧⎭⎬⎫n a n 的前n 项和S n .答案:(1)∵a n +1=2a na n +1,∴1a n +1=a n +12a n =12+12·1a n , ∴1a n +1-1=12⎝⎛⎭⎫1a n -1, 又a 1=23,∴1a 1-1=12, ∴数列⎩⎨⎧⎭⎬⎫1a n -1是以12为首项,12为公比的等比数列.(2)由(1)知1a n -1=12·12n -1=12n ,即1a n =12n +1,∴n a n =n 2n +n . 设T n =12+222+323+…+n 2n , ① 则12T n =122+223+…+n -12n +n 2n +1, ② ①-②得12T n =12+122+…+12n -n 2n +1 =12⎝⎛⎭⎫1-12n 1-12-n2n +1=1-12n -n2n +1, ∴T n =2-12n -1-n 2n .又1+2+3+…+n =n (n +1)2. ∴数列⎩⎨⎧⎭⎬⎫n a n 的前n 项和S n =2-2+n 2n +n (n +1)2=n 2+n +42-n +22n .。
高中数学人教版必修5——第四讲:等差数列的概念、性质(解析版)
等差数列的概念、性质考查重点:等差数列的通项公式、等差中项以及等差数列的判定 所占分数:10--25分教学重点: 掌握等差数列的概念、通项公式及性质;求等差中项,判断等差数列及与函数的关系;教学难点: 通项公式的求解及等差数列的判定。
1. 等差数列的概念一般地,如果一个数列从第二项起,每一项与它的前一项的差都等于同一常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 来表示。
用递推关系系表示为()1n n a a d n N ++-=∈或()12,n n a a d n n N -+-=≥∈ 2. 等差数列的通项公式若{}n a 为等差数列,首项为1a ,公差为d ,则()11n a a n d =+- 3. 等差中项如果三个数,,x A y 组成等差数列,那么A 叫做x 和y 的等差中项 4. 通项公式的变形对任意的,p q N +∈,在等差数列中,有:()11p a a p d =+-()11q a a q d =+- 两式相减,得()p q a a p q d =+- 其中,p q 的关系可以为,,p q p q p q <>=5. 等差数列与函数的关系由等差数列的通项公式()11n a a n d =+-可得()1n a dn a d =+-,这里1,a d 是常数,n 是自变量,n a 是n 的函数,如果设1,,d a a d b =-=则n a an b =+与函数y ax b =+对比,点(),n n a 在函数y ax b =+的图像上。
6. 等差数列的性质及应用(1)12132...n n n a a a a a a --+=+=+=(2)若2,m n p q w +=+=则2m n p q w a a a a a +=+=(,,,,m n p q w 都是正整数) (3)若,,m p n 成等差数列,则,,m p n a a a 也成等差数列(,,m n p 都是正整数) (4)()n m a a n m d =+-(,m n 都是正整数)(5)若数列{}n a 成等差数列,则(),n a pn q p q R =+∈(6)若数列{}n a 成等差数列,则数列{}n a b λ+(,b λ为常数)仍为等差数列 (7)若{}n a 和{}n b 均为等差数列,则{}n n a b ±也是等差数列类型一: 等差数列的判定、项及公差的求解、通项公式的求解例1.(2015河北唐山月考)数列{}n a 是首项11a =-,公差3d =的等差数列,若2015,n a = 则n =A.672B.673C.662D.663 解析:由题意得()()1111334,n a a n d n n =+-=-+-⨯=-令2015n a =,解得673n = 答案:B练习1. 数列{}n a 是首项11a =-,公差3d =的等差数列,若2003,n a = 则n = A.669 B.673 C.662 D.663 答案:A练习2. 数列{}n a 是首项11a =-,公差3d =的等差数列,若2000,n a = 则n = A.669 B.668 C.662 D.663 答案:B例2.(2015山西太原段考)一个首项为23、公差为整数的等差数列从第7项开始为负数,则其公差d 为()A.-2B.-3C.-4D.-6 解析:由题意知670,0a a ≥< 所以有115235062360a d d a d d +=+≥+=+<解得2323,456d d Z d -≤<-∈∴=- 答案:C练习3. 一个首项为23、公差为整数的等差数列从第6项开始为负数,则其公差d 为() A.-2 B.-3 C.-4 D.-5 答案:D练习4.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A .1B .2C .3D .4 答案:B例3.(2014浙江绍兴一中期中)已知数列{}n a 满足1111,1,4n na a a +==-其中n N +∈设221n n b a =-(1) 求证:数列{}n b 是等差数列 (2) 求数列{}n a 的通项公式解析:(1)1144222222121212121n n n n n n n n n a a b b a a a a a ++--=-=-==----- 所以数列{}n b 是等差数列(2)()111121,21221212,212n n n a b b b n d n a n n a a n=∴==∴=+-=-+∴==-答案:(1)略 (2)12n n a n +=练习5.已知数列{}n a 满足()1114,21n n n a a a n a --==≥+令1n nb a =(1) 求证:数列{}n b 是等差数列(2) 求数列{}n b 与{}n a 的通项公式 答案:(1)数列{}n b 是公差为1的等差数列 (2)443n a n =- ,34n b n =- 练习6.在等差数列{}n a 中,已知581,2,a a =-= 求1,a d 答案:15,1a d =-=例4.已知数列8,,2,,a b c 是等差数列,则,,a b c 的值分别为____________ 解析:a 为8与2的等差中项,得8252a +== ;2为,ab 的等差中项得1b =-;由b 为2与c 的等差数列,得4c =- 答案:5,-1,-4练习7. 已知数列8,,2,,a b 是等差数列,则,a b 的值分别为____________ 答案:5,-1练习8. 已知数列2,,8,,a b c 是等差数列,则,,a b c 的值分别为____________ 答案:5,11,14类型二:等差数列的性质及与函数的关系例5.等差数列{}n a 中,已知100110142015a a +=,则12014a a +=()A.2014B.2015C.2013D.2016解析:1001101412014+=+,且{}n a 为等差数列,12014100110142015a a a a ∴+=+=故选B 答案:B练习9.在等差数列{}n a 中,若4681012120,a a a a a ++++=则10122a a -的值为 () A.24 B.22 C.20 D.18 答案:A练习10.(2015山东青岛检测)已知等差数列{}n a 中,1007100812015,1,a a a +==-则2014a = _____ 答案:2016例6.已知数列{}n a 中,220132013,2a a ==且n a 是n 的一次函数,则 2015a =________ 解析:n a 是 n 的一次函数,所以设()0n a kn b k =+≠代入22013,a a 解得20151,20152015201520150n k b a n a =-=∴=-+∴=-+=答案:0练习11.若,,a b c 成等差数列,则二次函数()22f x ax bx c =-+的零点个数为()A.0B.1C.2D.1或2 答案:D练习12.已知无穷等差数列{}n a 中,首项13,a = 公差5d =-,依次取出序号被4除余3的项组成数列{}n b (1) 求1b 和2b (2) 求{}n b 的通项公式 (3){}n b 中的第503项是{}n a 的第几项答案:数列{}n b 是数列{}n a 的一个子集列,其序号构成以3为首项,4为公差的等差数列,由于{}n a 是等差数列,所以{}n b 也是等差数列 (1)()()13,5,31585n a d a n n ==∴=+--=- 数列{}n a 中序号被4除余3的项是{}n a 中的第3项,第7项,第11项,…13277,27b a b a ∴==-==-(2)设{}n a 中的第m 项是{}n b 的第n 项即n mb a =()()413414185411320n m n m n n b a a n n -=+-=-∴===--=- 则1320n b n =-(3)503132*********b =-⨯=- ,设它是{}n a 中的第m 项,则1004785m -=-,则2011m =,即{}n b 中的第503项是{}n a 中的第2011项1.在等差数列{a n}中,a1+a9=10,则a5的值为()A.5 B.6 C.8 D.10答案:A2.在数列{a n}中,a1=2,2a n+1=2a n+1,则a101的值为()A.49 B.50 C.51 D.52答案:D3. 如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14 B.21 C.28 D.35答案:C4. 已知等差数列{a n}满足a1+a2+a3+…+a101=0,则有()A.a1+a101>0 B.a2+a100<0 C.a3+a100≤0D.a51=0答案:D5. 等差数列{a n}中,a1+a4+a7=39,a2+a5+a8=33,则a3+a6+a9的值为()A.30 B.27 C.24 D.21答案:B6. 等差数列{a n}中,a5=33,a45=153,则201是该数列的第()项()A.60 B.61 C.62 D.63答案:B_______________________________________________________________________________ _________________________________________________________________________________ __基础巩固1.在等差数列{a n}中,a3=7,a5=a2+6,则a6=()A .11B .12C .13D .14 答案:C2. 若数列{a n }是等差数列,且a 1+a 4=45,a 2+a 5=39,则a 3+a 6=( )A .24B .27C .30D .33 答案:D3. 已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12等于( )A .15B .30C .31D .64 答案:A4. 等差数列中,若a 3+a 4+a 5+a 6+a 7+a 8+a 9=420,则a 2+a 10等于( )A .100B .120C .140D .160 答案:B 5. 已知a =13+2,b =13-2,则a ,b 的等差中项为( ) A.3 B.2 C.13 D.12答案:A6. 在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________. 答案: 747. 等差数列{a n }中,公差为12,且a 1+a 3+a 5+…+a 99=60,则a 2+a 4+a 6+…+a 100=_______. 答案: 858. 在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值为( )A .14B .15C .16D .17 答案:C9. 在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6=________. 答案:4210. 等差数列{a n }的前三项依次为x,2x +1,4x +2,则它的第5项为__________. 答案:411. 已知等差数列6,3,0,…,试求此数列的第100项. 答案:设此数列为{a n },则首项a 1=6,公差d =3-6=-3,∴a n =a 1+(n -1)d =6-3(n -1)=-3n +9. ∴a 100=-3×100+9=-291.能力提升12. 等差数列的首项为125,且从第10项开始为比1大的项,则公差d 的取值范围是( )A .d >875B .d <325 C.875<d <325 D.875<d ≤325答案:D13. 设等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,则n 是( )A .48B .49C .50D .51 答案:C14. 已知数列{a n }中,a 3=2,a 7=1,又数列{1a n +1}是等差数列,则a 11等于( )A .0 B.12 C.23 D .-1答案:B15. 若a ≠b ,两个等差数列a ,x 1,x 2,b 与a ,y 1,y 2,y 3,b 的公差分别为d 1、d 2,则d 1d 2等于( )A.32B.23C.43D.34 答案:C16. 《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升. 答案:676617. 等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根 B .有两个相等实根 C .有两个不等实根 D .不能确定有无实根答案:A18. 在a 和b 之间插入n 个数构成一个等差数列,则其公差为( ) A.b -a n B.a -b n +1 C.b -a n +1 D.b -a n -1答案:C19. 在等差数列{a n }中,已知a m +n =A ,a m -n =B ,,则a m =__________. 答案:12(A +B )20.三个数成等差数列,它们的和等于18,它们的平方和等于116,则这三个数为__________. 答案:4,6,821. 在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________. 答案:2022. 已知数列{a n }是等差数列,且a 1=11,a 2=8.(1)求a 13的值;(2)判断-101是不是数列中的项; (3)从第几项开始出现负数? (4)在区间(-31,0)中有几项?答案:(1)由题意知a 1=11,d =a 2-a 1=8-11=-3,∴a n =a 1+(n -1)d =11+(n -1)×(-3)=-3n +14. ∴a 13=-3×13+14=-25.(2)设-101=a n ,则-101=-3n +14, ∴3n =115,n =1153=3813∉N +.∴-101不是数列{a n }中的项. (3)设从第n 项开始出现负数,即a n <0, ∴-3n +14<0,∴n >143=423.∵n ∈N +,∴n ≥5, 即从第5 项开始出现负数. (4)设a n ∈(-31,0),即-31<a n <0, ∴-31<-3n +14<0, ∴423<n <15,∴n ∈N +, ∴n =5,6,7,…,14,共10项.23. 已知等差数列{a n }中,a 15=33,a 61=217,试判断153是不是这个数列的项,如果是,是第几项?答案:设首项为a 1,公差为d ,由已知得⎩⎪⎨⎪⎧ a 1+(15-1)d =33a 1+(61-1)d =217,解得⎩⎪⎨⎪⎧a 1=-23d =4,∴a n =-23+(n -1)×4=4n -27,令a n =153,即4n -27=153,得n =45∈N *, ∴153是所给数列的第45项.24. 已知函数f (x )=3xx +3,数列{x n }的通项由x n =f (x n -1)(n ≥2,且n ∈N *)确定. (1)求证:{1x n }是等差数列;(2)当x 1=12时,求x 100的值.答案:(1)∵x n =f (x n -1)=3x n -1x n -1+3(n ≥2,n ∈N *),∴1x n =x n -1+33x n -1=13+1x n -1, ∴1x n -1x n -1=13(n ≥2,n ∈N *). ∴数列{1x n }是等差数列.(2)由(1)知{1x n }的公差为13,又x 1=12,∴1x n =1x 1+(n -1)·13=13n +53.∴1x 100=1003+53=35,即x 100=135.25. 四个数成等差数列,其平方和为94,第一个数与第四个数的积比第二个数与第三个数的积少18,求此四个数.答案:设四个数为a -3d ,a -d ,a +d ,a +3d ,据题意得,(a -3d )2+(a -d )2+(a +d )2+(a +3d )2=94 ⇒2a 2+10d 2=47.①又(a -3d )(a +3d )=(a -d )(a +d )-18⇒8d 2=18⇒d =±32代入①得a =±72,故所求四个数为8,5,2,-1或1,-2,-5,-8或-1,2,5,8或-8,-5,-2,1. 26. 已知等差数列{a n }中,a 2+a 6+a 10=1,求a 3+a 9.答案:解法一:a 2+a 6+a 10=a 1+d +a 1+5d +a 1+9d =3a 1+15d =1,∴a 1+5d =13.∴a 3+a 9=a 1+2d +a 1+8d =2a 1+10d =2(a 1+5d )=23.解法二:∵{a n }为等差数列,∴2a 6=a 2+a 10=a 3+a 9,∴a 2+a 6+a 10=3a 6=1,∴a 6=13,∴a 3+a 9=2a 6=23. 27. 在△ABC 中,若lgsin A ,lgsin B ,lgsin C 成等差数列,且三个内角A ,B ,C 也成等差数列,试判断三角形的形状.答案:∵A ,B ,C 成等差数列,∴2B =A +C ,又∵A +B +C =π,∴3B =π,B =π3. ∵lgsin A ,lgsin B ,lgsin C 成等差数列,∴2lgsin B =lgsin A +lgsin C ,即sin 2B =sin A ·sin C ,∴sin A sin C =34. 又∵cos(A +C )=cos A cos C -sin A sin C ,cos(A -C )=cos A cos C +sin A sin C ,∴sin A sin C =cos (A -C )-cos (A +C )2, ∴34=12[cos(A -C )-cos 2π3], ∴34=12cos(A -C )+14, ∴cos(A -C )=1,∵A -C ∈(-π,π),∴A -C =0,即A =C =π3,A =B =C . 故△ABC 为等边三角形.。
人教版高中必修五数学教案
人教版高中必修五数学教案
课时:第一课时
教学内容:数学基础概念
教学目标:
1.了解数学的起源和发展历史。
2.理解数学基本概念和术语。
3.掌握数学基础知识。
教学重点、难点:
1.数学的起源和发展历史。
2.数学基本概念和术语的理解。
教学方法:讲授、示范演练、讨论
教具准备:教科书、黑板、彩色粉笔
教学过程:
一、导入:用一个问题引导学生思考数学的起源和意义。
二、讲解:介绍数学的起源和发展历史,引导学生了解数学的重要性。
三、讲解:介绍数学的基本概念和术语,引导学生掌握数学基础知识。
四、示范演练:通过例题演练,让学生掌握数学基础知识。
五、讨论:让学生讨论数学在日常生活中的应用,并分享自己的观点。
六、总结:对本节课的内容进行总结,并布置作业。
教学反思:本节课主要介绍了数学的基础概念和发展历史,通过讲解、示范演练和讨论,让学生深入理解数学的重要性和应用价值。
在未来的教学中,应该注重培养学生的数学思维和解决问题的能力。
人教版高中数学必修五-等比数列课件 (2)
为公比的等比数列,
4
an 1,
其通项公式为a
a n 1
4
3
1
4
4
3 ( 1 )n1 3( 1 )n .
44
4
第二章 数 列
【典例】(12分)等比数列{an}的前三项的和为168,a2-a5 =42,求a5,a7的等比中项.
【审题指导】题目中给出了等比数列前三项的和以及a2a =42,由此列出方程组解得公比 和首项a1,利用定义求a ,
第二章 数 列
4.若{an}为等比数列,且a1·a9=64,a3+a7=20,求a11. 解析: ∵{an}为等比数列, ∴a1·a9=a3·a7=64,又∵a3+a7=20, ∴aa73==146, 或aa73==41.6, 当a3=4,a7=16时,a3+a7=a3+a3q4=20, ∴1+q4=5,∴q4=4, 当a3=16,a7=4时,a3+a7=a3+a3q4=20, ∴1+q4=54,∴q4=14, ∴a11=a1q10=a3q8=64或1.
正确说法的个数为( )
(A)0
(B)1
(C)2
(D)3
第二章 数 列
【解析】选C.其中正确的为③,④;①,②中不能保 证各项及公比不为0,所以错误.
第二章 数 列
2.等比数列{an}中,2a4=a6-a5,则公比是( )
(A)0
(B)1或2
(C)-1或2
(D)-1或-2
【解析】选C.由已知得2= 2 ,所以 =-1或2.
第二章 数 列
【误区警示】对解答本题时易犯的错误具体分析如下:
第二章 数 列
1.下面有四个结论:
①由第一项起乘相同常数得后一项,这样所得到的数列一定
高中数学人教版必修5——第十一讲:一元二次不等式及其解法(解析版)
一元二次不等式及其解法教学重点: 正确理解一元二次不等式的解法;掌握一元二次不等式的不等式的解法;理解二次函数、一元二次方程、一元二次不等式之间的关系;教学难点: 理解二次函数、一元二次方程及一元二次不等式之间的关系。
1. 一元二次不等式(1) 一元二次不等式的定义:一般地,含有1个未知数,且未知数的最高次数为2的整式不等式,叫做一元二次等式;(2) 一元二次不等式的解集:使某个一元二次不等式成立的未知数的取值集合叫做这个一元二次不等式的解集;(3) 同解不等式:如果两个不等式的解集相同,那么这两个不等式叫做同解不等式。
2. 一元二次不等式与相应的函数、方程之间的关系对于一元二次方程()200ax bx c a ++=>设24b ac ∆=-它的解按0,0,0∆>∆<∆=可分为三种情况,列表如下:0>∆0=∆0<∆c bx ax y ++=2c bx ax y ++=2c bx ax y ++=23.一元二次不等式的解法步骤(1)对不等式进行变形,使一端为0,且二次项系数大于0;(2)计算相应方程的根的判别式;(3)当0∆>时,求出相应的一元二次方程的两根;(4)根据一元二次不等式解集的结构,写出其解集。
注:若不等式左侧可因式分解,则可转化为一元一次不等式组求解。
(一看,二算,三写)4.含参数的一元二次不等式的解法(1)二次项系数含参数时,根据一元二次不等式的标准形式需要化二次项系数为正,所以要对参数讨论;(2)解∆得过程中,若∆表达式含有参数且参数的取值影响∆的符号,这时根据∆的符号确定的需要,对参数进行讨论;(3)方程的两根表达式中如果有参数,需要对参数讨论才能确定根的大小,这时要对参数进行讨论。
5.不等式的恒成立问题(1)结合二次函数的图像和性质用判别式法,当x的取值为全体实数时,一般用此法;(2)从函数的最值入手考虑,如大于零恒成立可转化为最小值大于零;(3)能分离变量的尽量把参数和变量分离出来;(4)数形结合,结合图形进行分析,从整体上把握图形。
高中数学(人教版必修5)第三章不等式3.4 基本不等式 第1课时
第三章 3.4 第1课时一、选择题1.函数f (x )=xx +1的最大值为( )A.25 B .12C.22D .1[答案] B[解析] 令t =x (t ≥0),则x =t 2, ∴f (x )=x x +1=tt 2+1.当t =0时,f (x )=0; 当t >0时,f (x )=1t 2+1t =1t +1t .∵t +1t ≥2,∴0<1t +1t ≤12.∴f (x )的最大值为12.2.若a ≥0,b ≥0,且a +b =2,则( )A .ab ≤12B .ab ≥12C .a 2+b 2≥2D .a 2+b 2≤3[答案] C[解析] ∵a ≥0,b ≥0,且a +b =2, ∴b =2-a (0≤a ≤2),∴ab =a (2-a )=-a 2+2a =-(a -1)2+1. ∵0≤a ≤2,∴0≤ab ≤1,故A 、B 错误; a 2+b 2=a 2+(2-a )2=2a 2-4a +4 =2(a -1)2+2.∵0≤a ≤2,∴2≤a 2+b 2≤4.故选C.3.设0<a <b ,且a +b =1,则下列四个数中最大的是 ( )A.12B .a 2+b 2C .2abD .a[答案] B[解析] 解法一:∵0<a <b ,∴1=a +b >2a ,∴a <12,又∵a 2+b 2≥2ab ,∴最大数一定不是a 和2ab , ∵1=a +b >2ab , ∴ab <14,∴a 2+b 2=(a +b )2-2ab =1-2ab >1-12=12,即a 2+b 2>12.故选B.解法二:特值检验法:取a =13,b =23,则2ab =49,a 2+b 2=59,∵59>12>49>13,∴a 2+b 2最大. 4.(2013·湖南师大附中高二期中)设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b 的最小值为( )A .8B .4C .1D .14[答案] B[解析] 根据题意得3a ·3b =3,∴a +b =1, ∴1a +1b =a +b a +a +b b =2+b a +a b ≥4. 当a =b =12时“=”成立.故选B.5.设a 、b ∈R +,若a +b =2,则1a +1b 的最小值等于( )A .1B .3C .2D .4[答案] C[解析] 1a +1b =12⎝⎛⎭⎫1a +1b (a +b ) =1+12⎝⎛⎭⎫b a +a b ≥2,等号在a =b =1时成立.6.已知x >0,y >0,x 、a 、b 、y 成等差数列,x 、c 、d 、y 成等比数列,则(a +b )2cd 的最小值是( )A .0B .1C .2D .4[答案] D[解析] 由等差、等比数列的性质得 (a +b )2cd =(x +y )2xy =x y +yx +2≥2y x ·xy+2=4.当且仅当x =y 时取等号,∴所求最小值为4. 二、填空题7.若0<x <1,则x (1-x )的最大值为________. [答案] 14[解析] ∵0<x <1,∴1-x >0, ∴x (1-x )≤[x +(1-x )2]2=14,等号在x =1-x ,即x =12时成立,∴所求最大值为14.8.已知t >0,则函数y =t 2-4t +1t 的最小值是________.[答案] -2[解析] ∵t >0,∴y =t 2-4t +14=t +1t -4≥2t ·1t -4=-2,当且仅当t =1t,即t =1时,等号成立.三、解答题 9.已知x >0,y >0.(1)若2x +5y =20,求u =lg x +lg y 的最大值; (2)若lg x +lg y =2,求5x +2y 的最小值. [解析] (1)∵x >0,y >0,由基本不等式,得2x +5y ≥22x ·5y =210·xy . 又∵2x +5y =20, ∴20≥210·xy , ∴xy ≤10,∴xy ≤10, 当且仅当2x =5y 时,等号成立.由⎩⎪⎨⎪⎧2x =5y 2x +5y =20, 解得⎩⎪⎨⎪⎧x =5y =2.∴当x =5,y =2时,xy 有最大值10. 这样u =lg x +lg y =lg(xy )≤lg10=1. ∴当x =5,y =2时,u max =1. (2)由已知,得x ·y =100, 5x +2y ≥210xy =2103=2010.∴当且仅当5x =2y =103,即当x =210, y =510时,等号成立. 所以5x +2y 的最小值为2010.10.求函数y =x 2+a +1x 2+a 的最小值,其中a >0.[解析] 当0<a ≤1时, y =x 2+a +1x 2+a≥2, 当且仅当x =±1-a 时,y min =2. 当a >1时,令x 2+a =t (t ≥a ), 则有y =f (t )=t +1t.设t 2>t 1≥a >1,则f (t 2)-f (t 1)=(t 2-t 1)(t 1t 2-1)t 1t 2>0,∴f (t )在[a ,+∞)上是增函数. ∴y min =f (a )=a +1a,此时x =0.综上,当0<a ≤1,x =±1-a 时,y min =2;当a >1,x =0时,y min =a +1a.一、选择题1.设a 、b ∈R ,且ab >0.则下列不等式中,恒成立的是 ( )A .a 2+b 2>2abB .a +b ≥2ab C.1a +1b >2abD .b a +a b≥2[答案] D[解析] a =b 时,A 不成立;a 、b <0时,B 、C 都不成立,故选D.2.若0<a <1,0<b <1,且a ≠b ,则a +b,2ab ,2ab ,a 2+b 2中最大的一个是 ( ) A .a 2+b 2 B .2ab C .2ab D .a +b[答案] D[解析] 解法一:∵0<a <1,0<b <1, ∴a 2+b 2>2ab ,a +b >2ab ,a >a 2,b >b 2, ∴a +b >a 2+b 2,故选D.解法二:取a =12,b =13,则a 2+b 2=1336,2ab =63,2ab =13,a +b =56,显然56最大.3.某工厂第一年产量为A ,第二年的增长率为a, 第三年的增长率为b ,这两年的平均增长率为x ,则( )A .x =a +b2B .x ≤a +b2C .x >a +b2D .x ≥a +b2[答案] B[解析] ∵这两年的平均增长率为x ∴A (1+x )2=A (1+a )(1+b ),∴(1+x )2=(1+a )(1+b ),由题设a >0,b >0. ∴1+x =(1+a )(1+b )≤(1+a )+(1+b )2=1+a +b 2,∴x ≤a +b 2,等号在1+a =1+b 即a =b 时成立.∴选B.4.(2013·山西忻州一中高二期中)a =(x -1,2),b =(4,y )(x 、y 为正数),若a ⊥b ,则xy 的最大值是( )A.12 B .-12C .1D .-1[答案] A[解析] 由已知得4(x -1)+2y =0,即2x +y =2.∴xy =x (2-2x )=2x (2-2x )2≤12×(2x +2-2x 2)2=12,等号成立时2x =2-2x ,即x =12,y =1,∴xy 的最大值为12.二、填空题5.已知2x +3y =2(x >0,y >0),则xy 的最小值是________.[答案] 6 [解析] 2x +3y≥26xy,∴26xy≤2,∴xy ≥6. 6.已知x <54,则函数y =4x -2+14x -5的最大值是________.[答案] 1[解析] ∵x <54,∴4x -5<0,y =4x -2+14x -5=4x -5+14x -5+3=3-⎣⎡⎦⎤(5-4x )+15-4x≤3-2=1, 等号在5-4x =15-4x,即x =1时成立. 三、解答题7.已知直角三角形两条直角边的和等于10 cm ,求面积最大时斜边的长. [解析] 设一条直角边长为x cm ,(0<x <10),则另一条直角边长为(10-x )cm , 面积s =12x (10-x )≤12[x +(10-x )2]2=252(cm 2)等号在x =10-x 即x =5时成立,∴面积最大时斜边长L =x 2+(10-x )2=52+52=52(cm).8.某商场预计全年分批购入每台2 000元的电视机共3 600台.每批都购入x 台(x 是自然数)且每批均需付运费400元.贮存购入的电视机全年所需付的保管费与每批购入电视机的总价值(不含运费)成正比.若每批购入400台,则全年需用去运输和保管总费用43 600元.现在全年只有24 000元资金可以支付这笔费用,请问,能否恰当安排每批进货数量,使资金够用?写出你的结论,并说明理由.[解析] 设总费用为y 元(y >0),且将题中正比例函数的比例系数设为k ,则y =3 600x ×400+k (2 000x ),依条件,当x =400时,y =43 600,可得k =5%,故有y =1 440 000x +100x≥21 440 000x·100x =24 000(元).当且仅当1 440 000x =100x ,即x =120时取等号.所以只需每批购入120台,可使资金够用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高中数学必修5
目录:
第三章 不等式
第一节 不等关系与不等式 第二节 一元二次不等式及其解法
第三节 二元一次不等式(组)与简单的线性规划问题
第四节 2
a b
+≤
第三章 不等式 第四节 基本不等式
第一课时
我的学习目标
1.探索并了解基本不等式的证明过程;
2.体会证明不等式的基本思想方法;
3. 理解基本不等式的几何意义,并掌握定理中的等号成立条件 我的学习过程 一.生活引入: 1.每日一忆
勾股定理(百牛定理)的数学表达式是
2.北京召开的第24届国际数学家大会的会标是“风车造型”,是根据中国古代数学家 的弦图设计的,代表中国人民热情好客。
3. 由弦图你能得出什么关系式?
二.基本功训练 1.知识点学习:
(1)对于任意实数 a 、b ,22b a + ab 2(=≤≥,,用填空),
(2(0,0)2
a b
a b +>>几何意义是 (3
(0,0)2
a b
a b +>>求最值时要注意哪些条件? 2.知识点演练
练习、已知两个正实数x y 、满足关系式440x y +=, 则lg lg x y +的最大值是____________. 三、题型训练 选择题:
例1. 设x 、y 为正数,则有(x+y)(1x +4
y
)的最小值为( )
A .5
B .8
C .9
D .10 填空题: 例2.函数4
()(1)1
f x x x x =+>-的值域是_________________ 解答题:
例3.(1)已知直角三角形两条直角边的和等于10,求面积最大时斜
边的长,最大面积是多少?
(2)已知直角三角形的周长等于10,求面积的最大值. 例4.过点(1,2)的直线l 与x 轴的正半轴,y 轴的正半轴分别交与,A B 两点,当AOB ∆的面积最小时,求直线l 的方程. 四.学以致用
1.如图A ∠为定角,,P Q 分别在A ∠的两边上,PQ 长为定长,当,P Q 处在什么位置时,APQ ∆的面积最大?
2.设计一幅宣传画,要求画面面积为4840cm 2,画面的宽与高的比为
)1(<λλ,画面的上、下各有8cm 空白,左、右各有5cm 空白,怎样
确定画面的高与宽尺寸,能使宣传画所用纸张的面积最小?
附:答案和解析 一.1.222b a c +=
2. 赵爽
3. 222a b ab +≥
二.1.(1)≥
(2)“半径不小于半弦”
(3)①正数 ②和或积为定值 ③等号成立 2.练习:
(解析:lg lg lg()x y xy +=,故要求xy 的最大值,而已知正实数x y 、且
404x y =+≥=,可知xy 的最大值是100,所以,lg lg x y +的
最大值2) 三.1.
(解析:如果你选择
A,表明你对多项式的乘法较熟悉;如果你选
择B,表明你对基本不等式非常熟悉,但两处的等号必须同时成立;如果你选择D,表明你对等号成立条件已有认识,只是忽视了要两处的等号必须同时成立;如果你选择D,表明你已掌握了基本不等式求
最值的条件和方法,恭喜你选择正确!) 2.
方法1:化为分式函数,用判别式法求。
但有条件1x >,须验证。
方法2:若将4()1f x x x =+-,化成4
()111
f x x x =-+
+-后用基本不等式求解
3. 解析:(1)设直角三角形两条直角边分别为,(0,0)x y x y >>,则
10x y +=,
10x y =+≥,∴25xy ≤,∴125
22
S xy =
≤.当5x y ==时等号成立,
即面积最大时斜边的长为25
2
.
(2)设直角三角形两条直角边分别为,(0,0)x y x y >>,
则
10x y +=,∴10x y =++≥∴225(2xy ≤,
1
2S xy =≤.当5(2x y ==时等号成立,∴三角形的最大面
积为2
25(22
.
4.
解法1:点(,0)A a ,(0,)B b (0,0)a b >>,则直线l 的方程为1x y a
b
+=,
∵直线l 过点(1,2),∴121a b =+≥ ∴8ab ≥, 当且仅当1
2a
b
=,即2,4a b ==时等号成立,∴142
AOB S ab ∆=≥, 此时AOB ∆的面积取得最小值为4,∴所求直线l 的方程为
124
x y
+=,即240x y +-=. 解法2:设l 的方程为2(1)y k x -=-,三角形面积表示为k 的函数
解法3:直线l 与x 轴的夹角为θ,则12
2tan 42tan AOB S θθ
∆=++≥ 四.
1.解:设A α
∠=,PQ a =,AP x =,AQ y =,其中,a α为定值.
∴2222cos 22cos 2(1cos )a x y xy xy xy xy ααα=+-≥-=-.
∵1cos 0α->,∴2
2(1cos )a xy α≤-,
21sin sin 24(1cos )
APQ
a S xy α
αα∆=≤
-. 当且仅当x y =,即2sin
2
a AP AQ α
==
时,APQ ∆的面积最大.
2. 解:设画面高为x cm ,宽为λx cm ,则λ x 2 = 4840,设纸张面积为S ,
则S = (x +16) (λ x +10)= λ x 2+(16λ+10) x +160, 将λ
10
22=
x 代入上式,得)5
8(10445000λ
λ+
+=S .
当λ
λ5
8=
时,即)18
5
(85<=λ时,S 取得最小值.
此时,高cm 884840
==
λ
x ,宽cm 55888
5
=⨯=
x λ. 答:画面高为88cm ,宽为55cm 时,能使所用纸张面积最小为67602cm
P
Q
A。