七年级数学有理数测试题---16(已打印)

合集下载

七年级有理数测试卷【含答案】

七年级有理数测试卷【含答案】

七年级有理数测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. -3/4C. πD. √52. 两个有理数相乘,结果仍为有理数的是:A. 2/3 4/5B. 2/3 √2C. -3/4 πD. √5 √53. 下列哪个数是整数?A. -3/4B. 2.5C. 3D. √94. 两个负数相乘的结果是:A. 正数B. 负数C. 零D. 无法确定5. 下列哪个数是正有理数?A. -3/4B. 2.5C. -3D. √9二、判断题(每题1分,共5分)1. 所有的整数都是有理数。

()2. 两个有理数相加,结果仍为有理数。

()3. 0是有理数。

()4. 两个正数相乘的结果是负数。

()5. 所有的无理数都是实数。

()三、填空题(每题1分,共5分)1. 3/4 + 2/4 = ________2. -5 -2 = ________3. 2 3 = ________4. 4/5 5/4 = ________5. | -3 | = ________四、简答题(每题2分,共10分)1. 解释什么是有理数。

2. 举例说明两个有理数相乘,结果仍为有理数。

3. 解释什么是整数。

4. 举例说明两个负数相乘的结果。

5. 解释什么是正有理数。

五、应用题(每题2分,共10分)1. 计算下列各题的值:a) 2/3 + 1/6b) -3/4 2/52. 判断下列各题的符号:a) -5 -2b) 2 33. 计算下列各题的绝对值:a) |-5|b) |2 3|六、分析题(每题5分,共10分)1. 分析两个有理数相乘,结果仍为有理数的原因。

2. 分析两个负数相乘的结果为正数的原因。

七、实践操作题(每题5分,共10分)1. 使用计算器计算下列各题的值:a) 2/3 + 1/6b) -3/4 2/52. 使用计算器计算下列各题的绝对值:a) |-5|b) |2 3|八、专业设计题(每题2分,共10分)1. 设计一个实验,验证两个有理数相乘,结果仍为有理数的性质。

【精选】七年级数学有理数综合测试卷(word含答案)

【精选】七年级数学有理数综合测试卷(word含答案)

一、初一数学有理数解答题压轴题精选(难)1.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣4|=0;(1)点A表示的数为________;点B表示的数为________;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离=________;乙小球到原点的距离=________;当t=3时,甲小球到原点的距离=________;乙小球到原点的距离=________;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.________【答案】(1)-2;4(2)3;2;5;2;能.理由:当0<t≤2时,t+2=4-2t解之:当t>2时,t+2=2t-4解之:t=6∴当或6时,甲乙两小球到原点的距离相等.【解析】【解答】解:(1)∵a、b满足|a+2|+|b﹣4|=0,∴a+2=0且b-4=0解之:a=-2且b=4,∵在数轴上A点表示数a,B点表示数b,∴点A表示的数是-2,点B表示的数是4.故答案为:-2,4.(2)当0<t≤2时,甲小球距离原点为(t+2)个单位长度;乙小球距离原点为(4-2t)个单位长度;当t>2时,甲小球距离原点为(t+2)个单位长度;乙小球距离原点为(2t-4)个单位长度;①当t=1时,甲小球到原点的距离为:1+2=3;乙小球到原点的距离为4-2×1=2;当t=3时,甲小球到原点的距离为:3+2=5;乙小球到原点的距离为2×3-4=2;故答案为:3,2;5,2【分析】(1)利用几个非负数之和为0,则每一个数都是0,建立关于a,b的方程组,解方程组求出a,b的值,就可得到点A,B所表示的数。

【精选】人教版七年级上册数学 有理数单元测试卷 (word版,含解析)

【精选】人教版七年级上册数学 有理数单元测试卷 (word版,含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上的点表示的数为,点表示的数为,点到点、点的距离相等,动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,设运动时间为 ( 大于秒.(1)点表示的数是________.(2)求当等于多少秒时,点到达点处?(3)点表示的数是________(用含字母的式子表示)(4)求当等于多少秒时,、之间的距离为个单位长度.【答案】(1)1(2)解:[6-(-4)]÷2=10÷2=5(秒)答:当t=5秒时,点P到达点A处.(3)2t-4(4)解:当点P在点C的左边时,2t=3,则t=1.5;当点P在点C的右边时,2t=7,则t=3.5.综上所述,当t等于1.5或3.5秒时,P、C之间的距离为2个单位长度.【解析】【解答】解:(1)依题意得,点C是AB的中点,故点C表示的数是: =1. 故答案是:1;( 3 )点P表示的数是2t-4.故答案是:2t-4;【分析】(1)根据x c=可求解;(2)根据数轴上两点间的距离等于两点坐标之差的绝对值可求得AB的距离,再根据时间=路程÷速度可求解;(3)根据题意可得点P表示的数=点P运动的距离+X B可求解;(4)由题意可分两种情况讨论求解:① 当点P在点C的左边时,由题意可列关于t的方程求解;② 当点P在点C的右边时,同理可求解.2.认真阅读下面的材料,完成有关问题:材料:在学习绝对值时,我们已了解绝对值的几何意义,如|5-3|表示5、3在数轴上对应的两点之间的距离;又如|5+3|=|5-(-3)|,所以|5+3|表示5、-3在数轴上对应的两点之间的距离。

因此,一般地,点A,B在数轴上分别表示有理数a,b,那么A,B之间的距离(也就是线段AB的长度)可表示为|a-b|。

因此我们可以用绝对值的几何意义按如下方法求的最小值;即数轴上x与1对应的点之间的距离,即数轴上x与2对应的点之间的距离,把这两个距离在同一个数轴上表示出来,然后把距离相加即可得原式的值.设A、B、P三点对应的数分别是1、2、x.当1≤x≤2时,即P点在线段AB上,此时;当x>2时,即P点在B点右侧,此时= PA+PB=AB+2PB>AB;当x <1时,即P点在A点左侧,此时=PA+PB=AB+2PA>AB;综上可知,当1≤x≤2时(P点在线段AB上),取得最小值为1.请你用上面的思考方法结合数轴完成以下问题:(1)满足的x的取值范围是________。

【精选】人教版七年级上册数学 有理数综合测试卷(word含答案)

【精选】人教版七年级上册数学 有理数综合测试卷(word含答案)

一、初一数学有理数解答题压轴题精选(难)1.如图,数轴的单位长度为1,点,,,是数轴上的四个点,其中点,表示的数是互为相反数.(1)请在数轴上确定原点“O”的位置,并用点表示;(2)点表示的数是________,点表示的数是________,,两点间的距离是________;(3)将点先向右移动4个单位长度,再向左移动2个单位长度到达点,点表示的数是________,在数轴上距离点3个单位长度的点表示的数是________.【答案】(1)解:距离A点和B点的距离相等的点即AB的中点,点 .如图所示,点即为所求.(2);5;9(3);或1【解析】【解答】解:(2)点表示的数是,点表示的数是5,所以,两点间的距离是 .故答案为9.( 3 )如图,将点先向右移动4个单位长度是0,再向左移动2个单位长度到达点,得点表示的数是 .到点距离3个单位长度的点表示的数是-2-3= 或-2+3=1.故答案为,或1.【分析】(1)由点A和点B表示的数互为相反数,因此原点到点A和点B的距离相等,可得到原点的位置。

(2)先再数轴上标出数,可得到点M和点N表示的数,再求出点M,N之间的距离。

(3)利用数轴上点的平移规律:左减右加,可得到点C表示的数,与点C距离3个单位长度表示的数为-2±3,计算可求解。

2.如图,为原点,数轴上两点所对应的数分别为,且满足关于的整式与之和是是单项式,动点以每秒个单位长度的速度从点向终点运动.(1)求的值.(2)当时,求点的运动时间的值.(3)当点开始运动时,点也同时以每秒个单位长度的速度从点向终点运动,若,求的长.【答案】(1)解:因为m、n满足关于x、y的整式-x41+m y n+60与2xy3n之和是单项式所以所以m=-40,n=30.(2)解:因为A、B所对应的数分别为-40和30,所以AB=70,AO=40,BO=30,当点P在O的左侧时:则PA+PO=AO=40,因为PB-(PA+PO)=10, PB=AB-AP=70-4t所以70-4t-40=10所以t=5.当点P在O的右侧时:因为PB<PA所以PB-(PA+PO)<0,不合题意,舍去(3)解:①如图1,当点P在点Q左侧时,因为AP=4t,BQ=2t,AB=70所以PQ=AB-(AP+BQ)=70-6t又因为PQ= AB=35所以70-6t=35所以t= ,AP= = ,②如图2,当点P在点Q右侧时,因为AP=4t,BQ=2t,AB=70,所以PQ=(AP+BQ)-AB=6t-70,又因为PQ= AB=35所以6t-70=35所以t=所以AP= =70.【解析】【分析】(1)根据单项式的次数相同,列方程即可得到答案;(2)分情况讨论:当点P在O的左侧时:当点P在O的右侧时.即可得到答案.(3)结合题意分别计算:①如图1,当点P在点Q左侧时,如图2,当点P在点Q右侧时.3.数轴上从左到右有A,B,C三个点,点C对应的数是10,AB=BC=20.(1)点A对应的数是________,点B对应的数是________.(2)动点P从A出发,以每秒4个单位长度的速度向终点C移动,同时,动点Q从点B 出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.①用含t的代数式表示点P对应的数是________,点Q对应的数是________;②当点P和点Q间的距离为8个单位长度时,求t的值.【答案】(1)﹣30;﹣10(2)4t﹣30,t﹣10;t的值为4或【解析】【解答】解:(1)∵AB=BC=20,点C对应的数是10,点A在点B左侧,点B 在点C左侧,∴点B对应的数为10﹣20=﹣10,点A对应的数为﹣10﹣20=﹣30.故答案为:﹣30;﹣10.(2)①当运动时间为t秒时,点P对应的数是4t﹣30,点Q对应的数是t﹣10.故答案为:4t﹣30;t﹣10.②依题意,得:|t﹣10﹣(4t﹣30)|=8,∴20﹣3t=8或3t﹣20=8,解得:t=4或t=.∴t的值为4或.【分析】(1)由AB,BC的长度结合点C对应的数及点A,B,C的位置关系,可得出点A,B对应的数;(2)①由点P,Q的出发点、运动方向及速度,可得出运动时间为t秒时点P,Q对应的数;②由①结合PQ=8,可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.4.已知数轴上点A对应的数是,点B对应的数是一只小虫甲从点A出发,沿着数轴由A向B以每秒2个单位的速度爬行,到B点运动停止;另一只小虫乙从点B出发,沿着数轴由B向A以每秒4个单位的速度爬行,到A点运动停止,设运动时间为t. (1)若小虫乙到达A点后在数轴上继续作如下运动:第1次向左爬行2个单位,第2次向右爬行4个单位,第3次向左爬行6个单位,第4次向右爬行8个单位,,依此规律爬下去,求它第10次爬行后,所停点对应的数:(2)用含t的代数式表示甲、乙的距离S;(3)当甲、乙相距40个单位长度时,求运动时间t;(4)若点Q是线段BA延长线上一点,QB的中点为M,QA的三等分点为N,当点Q运动时,探究是否为定值?如果是,请求出这个定值;如果不是,请说明理由. 【答案】(1)解:第10次爬行所对应的数为(2)解:当甲、乙相遇时,秒时,甲、乙相遇;当甲到达B点是,秒;当乙到达A点时,秒;①当时,甲、乙距离;②当时,甲、乙距离;③当时,乙到达A点,此时甲、乙距离 .(3)解:①当时,,;②当时,,;③当时,,;综上,运动时间t为,或20.(4)解:设点Q对应的数是a,则M表示的数是,①当N为靠近Q点三等分点时,N表示的数是,,故当N为靠近Q点三等分点时,是定值,定值为20;②当N为靠近A点三等分点时,N表示的数是,,故当N为靠近A点三等分点时,不是定值.【解析】【分析】(1)向左爬行用减法,向右爬行用加法,列出式子求出结果即可;(2)分三种情况,相遇前、相遇后和乙到达A点后,分别在数轴上找出数量关系列出式子即可;(3)借助第二问的结论,令求出t的值即可;(4)设点Q表示的数为a,用a的代数式表示出M和N表示的数,进而用t的式子表示出BN和QM的长,求出的值,如果结果中不含有a,则式子为定值;反之则不是定值.5.如图,数轴的单位长度为1.(1)如果点B,D表示的数互为相反数,那么图中点A、点D表示的数分别是________、________;(2)当点B为原点时,在数轴上是否存在点M,使得点M到点A的距离是点M到点D 的距离的2倍,若存在,请求出此时点M所表示的数;若不存在,说明理由;(3)在(2)的条件下,点A、点C分别以2个单位长度/秒和0.5个单位长度同时向右运动,同时点P从原点出发以3个单位长度/秒的速度向左运动,当点A与点C之间的距离为3个单位长度时,求点P所对应的数是多少?【答案】(1)-4;2(2)解:存在,如图:当点M在A,D之间时,设M表示的数为x,则x﹣(﹣2)=2(4﹣x)解得:x=2,当点M在A,D右侧时,则x﹣(﹣2)=2(x﹣4),解得:x=10,所以点M 所表示的数为2或10(3)解:设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,①﹣2+2t﹣(3+0.5t)=3,解得:t=6,所以P点对应运动的单位长度为:3×6=18,所以点P表示的数为﹣18.②3+0.5t﹣(﹣2+2t)=3,解得:t= ,所以P点对应运动的单位长度为:3× =4,所以点P表示的数为﹣4.答:点P表示的数为﹣18或﹣4.【解析】【解答】解:(1)∵点B,D表示的数互为相反数,∴点B为﹣2,D为2,∴点A为﹣4,故答案为:﹣4,2;【分析】(1)由数轴上表示的互为相反数的两个数,分别位于原点的两侧,并且到原点的距离相等得出BD的中点就是原点,进而即可得出点A,C所表示的数;(2)存在,如图:分类讨论:当点M在A,D之间时,设M表示的数为x ,则AM=x-(-2),DM=4-x,根据AM=2DM列出方程,求解即可;当点M在A,D右侧时,AM=x-(-2),DM=x-4,根据AM=2DM列出方程,求解即可;(3)设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,① 追击前根据两点间的距离公式列出方程3+0.5t﹣(﹣2+2t)=3 求解算出t的值,进而根据即可算出点P所表示的数;② 追击后根据两点间的距离公式列出方程﹣2+2t﹣(3+0.5t)=3求解算出t的值,进而根据即可算出点P所表示的数,综上所述即可得出答案。

(数学试卷七年级)有理数测试题及答案.pdf

(数学试卷七年级)有理数测试题及答案.pdf

(数学试卷七年级)有理数测试题及答案.pdf 选择题.
1.下列说法正确的个数是()
①一个有理数不是整数就是分数②一个有理数不是正数就是负数
③一个整数不是正的,就是负的④一个分数不是正的,就是负的
A1
B2
C3
D4
2.a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列()
A-b<-a<a<b
B-a<-b<a<b
C-b<a<-a<b
D-b<b<-a<a
3.下列说法正确的是()
①0是绝对值最小的有理数②相反数大于本身的数是负数
③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小
A①②
B①③
C①②③
D①②③④
5.若a+b<0,ab<0,则()
Aa>0,b>0
Ba<0,b<0
Ca,b两数一正一负,且正数的绝对值大于负数的绝对值
Da,b两数一正一负,且负数的绝对值大于正数的绝对值
6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()
A0.8kg
B0.6kg
C0.5kg
D0.4kg
7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()
A()5m
B[1-()5]m
C()5m
D[1-()5]m
8.若ab≠0,则的取值不可能是()
A0
B1
C2
D-2
答案:选择题:1-8:BCADDBCB。

七年级数学有理数测试题

七年级数学有理数测试题

D.
a0
b
_b _0 _1 _a
5. 如果一个有理数的绝对值是正数 , 那么这个数必定 ( )
图 1-1
A. 是正数 B. 不是 0 C. 是负数 D. 以上都不对
6. 下列说法正确的是 ( )
一定是负数 ;
B. │a│一定是正数 ;
C.│ a│一定不是负数 ;
│a│一定是负数
7. 如果一个数的平方等于它的倒数 , 那么这个数一定是 ( )
19. 22
1 8 ( 2) 2 =_______
2
20. 数轴上表示— 5 和表示— 14 的两点之间的距离是 21. 计算 ( 1)2008 ( 1)2009
22.若 a、 b互为相反数, c、 d互为倒数,则(
a
b)3
4
3(cd )
三、解答题 :( 共 54 分) 学会观察 23.(8 分 ) 写出绝对值大于 3 且不大于 7 的所有整数, 并指出其中的最大数和 最小数
D.±1
取近似值 , 保留三个有效数字 , 结果是 ( )
;
下列运算正确的是 ( )
÷(-2) 2=1;
B.
3
1
1
2
8
3
27
C.
13 5
25
D.
35
1
3
3 ( 3.25) 6 3.25 32.5
4
4
10. 若│ x│=2, │y│ =3, 则│ x+y│的值为 ( )
或 1 D. 以上都不对
11.计算 ( 1) ( 9) A . 1 B .1
4 、关注过程,引导探究创新,数学教学不仅要使学生获得基础知识和基 本技能,而且要着力引导学生进行自主探索,培养自觉发现新知识、新规律的能力。

完整版)初一数学有理数专项练习题

完整版)初一数学有理数专项练习题

完整版)初一数学有理数专项练习题1.选择题(本题满分30分,每题2分)1.下列说法中,正确的个数是()选项:A.1个B.2个C.3个D.4个正确答案:C.3个解析:①一个有理数不是整数就是分数,错误;②一个有理数不是正的,就是负的,错误;③一个整数不是正的,就是负的,正确;④一个分数不是正的,就是负的,错误。

2.在有理数中,绝对值等于它本身的数有()选项:A.1个B.2个C.3个D.无穷多个正确答案:A.1个解析:只有0的绝对值等于它本身。

3.下列说法中正确的是()选项:A.π的相反数是314.B.符号不同的两个数一定是互为相反数C.若x和y互为相反数,则x yD.一个数的相反数一定是负数正确答案:C.若x和y互为相反数,则x+y=0解析:A错误,π的相反数是-π;B错误,符号相反的两个数互为相反数;C正确;D错误,0的相反数是0.4.下列正确的式子是()选项:A.-|﹣|>0 B.-(-4)=-|﹣4| C.-3>-π D.-3.14>-π正确答案:B.-(-4)=-|﹣4|解析:A错误,-|﹣|=-1;B正确;C错误,-3<0<-π;D 错误,-3.14<0<-π。

5.若a+b<0,ab>0,则()选项:A.a>0,b>0 B.a,b两数一正一负,且正数的绝对值大于负数的绝对值C.a,b两数一正一负,且负数的绝对值大于正数的绝对值 D.a<0,b<0正确答案:B.a,b两数一正一负,且正数的绝对值大于负数的绝对值解析:由ab>0可知,a和b符号相同,由a+b<0可知,a和b一正一负,又因为正数的绝对值大于负数的绝对值,故选B。

6.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()选项:A.0.8kg B.0.6kg C.0.5kg D.0.4kg正确答案:B.0.6kg解析:两袋面粉的质量相差的最大值为0.2+0.3=0.5kg,故选B。

人教版数学七年级有理数测试题(含答案)

人教版数学七年级有理数测试题(含答案)

人教版数学七年级有理数测试题(含答案)人教版数学七年级有理数测试题本试卷考查范围为人教版数学七年级教材有理数部分,推荐测试时长为60分钟,总分100分。

一、选择题(每小题3分,共30分)1、下列说法正确的是()A。

整数就是正整数和负整数B。

负整数的相反数就是非负整数C。

有理数中不是负数就是正数D。

零是整数,但不是正整数2、下列各对数中,数值相等的是()A。

-27与(-2)7B。

-32与(-3)2C。

-3×23与-32×2D。

-( -3)2与-( -2)33、在-5,-10,-3.5,-0.01,-2,-212各数中,最大的数是()A。

-12B。

-1C。

-0.01D。

-54、若其中至少有一个正数的5个有理数的积是负数,那么这五个因数中,正数的个数是()A。

1B。

2或4C。

5D。

1和35、绝对值大于或等于1,而小于4的所有的正整数的和是()A。

8B。

7C。

6D。

56、计算:(-2)100+(-2)101的是()A。

2100B。

-1C。

-2D。

-21007、若a为有理数,则|a|+2|-a|=()A。

2|a|B。

-2|a|C。

|a|D。

3|a|8、如果一个数的平方与这个数的差等于0,那么这个数只能是()A。

-1B。

1或-1C。

1D。

09、我国最长的河流长江全长约为6300千米,用科学记数法表示为()A。

6.3×103千米B。

63×102千米C。

0.63×104千米D。

6.3×106千米10、规定a☺b=(-2)a×2b,a>0且b>0,则下列说法正确的是()A。

当a=3,b=3时,a☺b=64B。

当a=2,b=4时,a☺b=128C。

原式可以写成a☺b=(-1)a×2a+b的形式。

D。

a☺b的值有可能为负数,也有可能为1.二、填空题(每小题3分,共15分)11、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么地下第一层记作-1;数-2的实际意义为“地下第几层”。

(好题)初中数学七年级数学上册第二单元《有理数及其运算》测试题(答案解析)(4)

(好题)初中数学七年级数学上册第二单元《有理数及其运算》测试题(答案解析)(4)

一、选择题1.我们常用的十进制数,如312639210610?3109,=⨯⨯⨯+++我国古代《易经》一书记载,远古时期,人们通过在绳子上打结来记录数量,如图,一位母亲在从右到左依次排列的绳子上打结,并采用七进制(如32125132757173=⨯⨯+⨯++)用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A .1435天B .565天C .13天D .465天 2.如图是今年1月7日的天气预报中山西太原的天气预报图,这天山西太原的气温为-22~-9℃,太原这天的最高气温与最低气温的温差是( )A .13℃B .31℃C .-13℃D .-31℃ 3.计算:(-3)-(-5)=____________.( )A .2B .-2C .-8D .8 4.“全民行动,共同节约”,我国14亿人口如果都响应国家号召每人每年节约1度电,一年可节的1400000000度,这个数用科学记数法表示,正确的是( )A .81410⨯B .91.410⨯C .100.1410⨯D .101.410⨯ 5.有理数a ,b 在数轴上的对应点如图,下列式子:①0a b >>;②b a >;③0ab <;④a b a b ->+;⑤1a b<-,其中错误的个数是( )A .1B .2C .3D .4 6.若21||(1)02x y -++=,则23x y +的值是( ) A .34 B .34- C .54- D .547.已知a ,b ,c 为非零的实数,且不全为正数,则a b c a b c++的所有可能结果的绝对值之和等于( )A .5B .6C .7D .88.如图,有理数a 、b 在数轴上对应的点如图所示,则-a b 的结果是( )A .2-B .1-C .0D .1 9.下列各式一定成立的是( ) A .()22=a a - B .()33a a =-C .22 a a -=-D .33a a = 10.34-的倒数是( ) A .34 B .43- C .43 D .34- 11.我国古代著作《九章算术》在世界数学史上首次正式引入负数,若气温升高3C ︒时,气温变化记作C 3︒+,那么气温下降10C ︒时,气温变化记作( )A .C 13︒-B .10C ︒- C .7C ︒-D .C 7︒+12.如图,有理数a ,b ,c ,d 在数轴上的对应点分别是A ,B ,C ,D ,若5b d +=,则a c +( )A .大于5B .小于5C .等于5D .不能确定二、填空题13.规定*是一种运算符号,且*2a b ab a =-,则计算()4*2*3-=_______. 14.“数形结合”思想在数轴上得到充分体现,如在数轴上表示数5和2-的两点之间的距离,可列式表示为()52--,或25--;表示数x 和3-的两点之间的距离可列式表示为()33x x --=+.已知31239x x y y ++-+++-=,则x y +的最大值为______.15.计算()()1248-÷-⨯,结果是_________. 16.数轴上的两点A 与B 表示的是互为相反数的两个数,且点A 在点B 的右边,A 、B 的两点间的距离为12个单位长度,则点A 表示的数是___.17.如果|a -2|+(b +3)2=0,那么a +b =____________.18.国家统计局刚刚发布数据,初步核算,2020年全年国内生产总值为1015986亿元,将1015986科学记数法可以表示为___.19.为了求231001222...2+++++的值,可令231001222...+2S =++++,则23410122222...+2S =++++,因此10122S S -=,所以10121S =-,即231001011222...221+++++=-,仿照以上推理计算2100133...3++++的值是___________20.有理数a 、b 在数轴上的位置如图所示,则|a -b |-|b |化简的结果为:____.三、解答题21.设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※.(1)计算20210※和()20212-※的值. (2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立. 22.计算(1)42212()(2)3-+⨯÷-;(2)1211()7821336---⨯ 23.计算:2021251(1)32(4)36⨯-+-÷-⨯.24.计算:(1)2151()()32624+-÷-; (2)(﹣2)3×(﹣2+6)﹣|﹣4|. 25.计算:231111(2)23⎛⎫--+⨯÷- ⎪⎝⎭ 26.计算:()2411236⎡⎤--⨯--⎣⎦【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数×73+百位上的数×72+十位上的数×7+个位上的数.【详解】解:1×73+4×72+3×7+5=1×343+4×49+3×7+5=343+196+21+5=565(天).故选:B .【点睛】考查了有理数的混合运算,本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.2.A解析:A【分析】根据题意列出算式,计算即可求值.【详解】根据题意得:()922=-9+22=13--- ,故选:A .【点睛】本题考查了有理数的加减法,熟练掌握运算法则是解题的关键.3.A解析:A【分析】根据有理数的减法运算法则计算即可.【详解】解:(-3)-(-5)=-3+5=2故选:A .【点睛】本题考查了有理数的减法运算法则,解题的关键是熟练掌握有理数的减法运算法则. 4.B解析:B【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:1400000000=1.4×109,故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.C解析:C【分析】先由数轴得a <0<b ,且|a|>|b|,再逐个序号判断即可.【详解】解:如图:由数轴可得:a <0<b ,且|a|>|b|①由a <0<b 可知,a >0>b 不正确;②由|a|>|b|可知|b|>|a|不正确;③由a ,b 异号,可知ab <0正确;④由b >0,可知a-b >a+b 不正确;⑤由a <0<b ,|a|>|b|,则1a b<-,正确; ∴错误的有3个;故选:C .【点睛】本题考查了借助数轴进行的有理数的相关运算,明确相关运算法则并数形结合,是解题的关键. 6.B解析:B【分析】根据非负数的性质求出x 、y 的值,然后代入代数式,根据有理数的乘方运算进行计算即可得解.【详解】解:由题意得,x-12=0,y+1=0, 解得x=12,y=-1, 所以,x 2+y 3=(12)2+(-1)3=14-1=34-. 故选:B .【点睛】 本题考查了代数式求值,有理数的乘方,非负数的性质:几个非负数的和为0时,这几个非负数都为0.7.A解析:A【分析】分,,a b c 中有一个正数两个负数、有两个正数一个负数、都是负数三种情况,从而可求出a b c a b c++的所有可能结果,再求出它们的绝对值之和即可得. 【详解】由题意,分以下三种情况:(1)当,,a b c 中有一个正数两个负数时,不妨设0,0,0a b c ><<, 则1111a a b a b c a b c b c c--++=++=--=-; (2)当,,a b c 中有两个正数一个负数,不妨设0,0,0a b c >><, 则1111a a b a b c a b c b c c -++=++=+-=; (3)当,,a b c 都是负数时, 则1113a a b a b c a b c b cc ---++=++=---=-; 综上,a b c a b c++的所有可能结果为1,1,3--, 因此,它们的绝对值之和为1131135-++-=++=,故选:A .【点睛】本题考查了化简绝对值、有理数的加减运算,依据题意,正确分情况讨论是解题关键. 8.A解析:A【分析】先确定出a 、b 表示的数,然后依据有理数的运算法则进行判断即可【详解】解:根据数轴所示,a 、b 表示的数分别是-1,1,a -b =-1-1=-2,故选:A .【点睛】本题考查了数轴的认识和有理数的减法,确定出a 、b 表示的数,依据减法法则进行计算是解题的关键.9.A解析:A【分析】根据乘方的运算和绝对值的意义来进行判断即可.【详解】A 、()22a a -= ,故该选项正确;B 、()33a a -=- ,故该选项错误;C 、22a a -= ,故该选项错误;D 、当a <0时,3a <0,3a >0,故该选项错误;故选:A .【点睛】此题考查的知识点是绝对值,有理数的乘方,注意乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行,注意任何数的绝对值为非负数. 10.B解析:B【分析】根据乘积是1的两数互为倒数可得答案.【详解】 解:34-的倒数是43-. 故选:B .【点睛】 本题主要考查了倒数,正确把握倒数的定义是解题的关键.11.B解析:B【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】解:如果温度升高3℃记作+3℃,那么温度下降10℃记作-10℃.故选:B .【点睛】本题考查了正数和负数的知识,解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12.A解析:A【分析】根据数轴,判断出数轴上的点表示的数的大小,进而可得结论【详解】解:由数轴可得,a >d ,c >b ,∴a+c >b+d∵b+d=5∴a+c >5故选:A【点睛】本题考查数轴、有理数加法法则以及有理数的大小比较,属于中等题型.二、填空题13.-16【分析】按照新定义转化算式然后计算即可【详解】根据题意==-2==-16故答案为:-16【点睛】本题考查了新定义运算解题关键是把新定义运算转化为有理数计算并准确计算解析:-16.【分析】按照新定义转化算式,然后计算即可.【详解】根据题意,2*3232(2)-=-⨯-⨯-=64-+=-2,()4*2*3-=()4*24(2)24-=⨯--⨯=88--=-16故答案为:-16.【点睛】本题考查了新定义运算,解题关键是把新定义运算转化为有理数计算,并准确计算. 14.4【分析】根据题意分别得到和的最小值结合得到=4=5根据x 和y 的范围得到x+y 的最大值【详解】解:由题意可得:表示x 与-3的距离和x 与1的距离之和表示y 与-2的距离和y 与3的距离之和∴当-3≤x≤1解析:4【分析】 根据题意分别得到31x x ++-和23y y ++-的最小值,结合31239x x y y ++-+++-=得到31x x ++-=4,23y y ++-=5,根据x 和y 的范围得到x+y 的最大值.【详解】解:由题意可得:31x x ++-表示x 与-3的距离和x 与1的距离之和,23y y ++-表示y 与-2的距离和y 与3的距离之和,∴当-3≤x≤1时,31x x ++-有最小值,且为1-(-3)=4,当-2≤x≤3时,23y y ++-有最小值,且为3-(-2)=5, ∵31239x x y y ++-+++-=, ∴31x x ++-=4,23y y ++-=5,∴x+y 的最大值为:1+3=4,故答案为:4.【点睛】本题考查了数轴上两点之间的距离,绝对值的意义,,用几何方法借助数轴来求解,数形结合是解答此题的关键.15.【分析】根据有理数的乘除混合运算法则计算即可【详解】解:原式=×=故答案为:【点睛】本题主要考察了有理数的乘除混合运算解题的关键是熟练掌握有理数的乘除混合运算法则 解析:116【分析】根据有理数的乘除混合运算法则计算即可.【详解】解:原式=12×18=116, 故答案为:116. 【点睛】 本题主要考察了有理数的乘除混合运算,解题的关键是熟练掌握有理数的乘除混合运算法则.16.6【分析】先由条件判定这两个数是6和-6然后根据点A 在点B 的右边即可确定点A 表示的数【详解】解:∵AB 之间的距离是12且A 与B 表示的是互为相反数的两个数∴这两个数是6和-6∵点A 在点B 的右边∴点A 表 解析:6【分析】先由条件判定这两个数是6和-6,然后根据点A 在点B 的右边即可确定点A 表示的数.【详解】解:∵A ,B 之间的距离是12,且A 与B 表示的是互为相反数的两个数,∴这两个数是6和-6,∵点A 在点B 的右边,∴点A 表示的数是6.故答案是:6.【点睛】本题考查了相反数及数轴上两点间的距离,只有符号不同的两个数叫做互为相反数.17.【分析】利用绝对值和平方式的非负性求出a 和b 的值即可算出结果【详解】解:∵且∴即∴故答案是:【点睛】本题考查绝对值和平方式的非负性解题的关键是掌握绝对值和平方式的非负性解析:1-【分析】利用绝对值和平方式的非负性求出a 和b 的值,即可算出结果.【详解】解:∵20a -≥,()230b +≥,且()2230a b -++=,∴20a -=,30b +=,即2a =,3b =-,∴()231a b +=+-=-.故答案是:1-.【点睛】本题考查绝对值和平方式的非负性,解题的关键是掌握绝对值和平方式的非负性. 18.【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;当原数的绝对值<解析:61.01598610⨯【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1015986=61.01598610⨯,故答案为:61.01598610⨯.【点睛】此题考察科学记数法,注意n 的值的确定方法,当原数大于10时,n 等于原数的整数数位减1,按此方法即可正确求解.19.【分析】利用题中的方法求出原式的值即可;【详解】设①把①式两边都乘以3得:②由②-①得:即;故答案为【点睛】本题主要考查了有理数的乘方运算准确分析计算是解题的关键 解析:101312- 【分析】利用题中的方法求出原式的值即可;【详解】设2100133...3=++++M ①,把①式两边都乘以3,得:231013333...3=++++M ②,由②-①得:101231M =-,即101312M -=; 故答案为101312-. 【点睛】本题主要考查了有理数的乘方运算,准确分析计算是解题的关键.20.【分析】根据数轴上点的位置判断出绝对值里式子的正负利用绝对值的代数意义化简计算即可得到结果【详解】解:根据题意得:a <0<b ∴原式==故答案为:【点睛】本题考查了数轴和绝对值解答此题的关键是明确绝对 解析:a -【分析】根据数轴上点的位置判断出绝对值里式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【详解】解:根据题意得:a <0<b∴0a b -<原式=b a b --=a -故答案为:a -【点睛】本题考查了数轴和绝对值,解答此题的关键是明确绝对值里的数值是正是负,然后根据绝对值的性质进行化简.三、解答题21.(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一)【分析】(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算;(2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;(3)按照题意要求写一组具体的,,a x y 的值再验算即可.【详解】解:(1)根据题意得:202102021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;(2)因为0y <,所以30y ->,所以()()232|3|236y y y y -=⨯-=⨯-=-※;(3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+,所以,()a x y a x a y +=+※※※不成立.【点睛】本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可.22.(1)139-;(2)1272. 【分析】(1)原式先计算乘方,再进行乘除运算,最后计算加减即可得到答案;(2)原式无根据乘法分配律把括号展开,再计算乘法,最后计算加减即可得到答案.【详解】解:(1)42212()(2)3-+⨯÷- =411292--⨯⨯=419--=139-; (2)1211()7821336---⨯ =121178+78+7821336-⨯⨯⨯ =112+26+132- =1+272=1272. 【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则解答此题的关键.23.-2【分析】先算乘方,再算乘除,最后计算加减.【详解】解:原式=()()511321636⨯-+÷-⨯=512 36 --⨯=51 33 --=62 3-=-.【点睛】本题考查含乘方的有理数混合运算,熟练掌握有关的运算顺序和运算法则是解题关键.24.(1)-8;(2)-36【分析】(1)除法转化为乘法,再利用乘法分配律展开,进一步计算即可;(2)先计算乘方和绝对值、括号内的减法,再计算乘法,最后计算减法即可.【详解】解:(1)原式=215()(24) 326+-⨯-=﹣16﹣12+20=﹣8;(2)(﹣2)3×(﹣2+6)﹣|﹣4|=(﹣8)×4﹣4=﹣32﹣4=﹣36.【点睛】本题考查了有理数的混合运算,解题关键是熟练的运用有理数的运算法则进行计算.25.15 16 -【分析】先算乘方,再算乘除,最后算加减;同级运算应按照从左到右的顺序进行计算;如果有括号,要先做括号内的运算;【详解】原式111(1)(8)23=--+⨯÷-3111()238=--⨯⨯-1116=-+1516=-【点睛】本题考查了有理数的混合运算,有理数的混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算应按照从左到右的顺序进行计算;如果有括号,要先做括号内的运算;26.16【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号先算括号里面的;【详解】 解:原式()11711291716666=--⨯-=-+⨯=-+=. 【点睛】此题要注意正确掌握运算顺序以及符号的处理.。

七年级数学有理数测试题及答案

七年级数学有理数测试题及答案

有理数测试题A一、选择题:本大题共6小题,每小题3分,共18分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 在有理数中,有( ) A.绝对值最大的数 B.绝对值最小的数 C.最大的数 D.最小的数2. 计算1(7)(5)(3)(5)23--++---+的结果为( ) A .173- B .273- C .1123 D .1123-3. 下列说法错误的是( )A.绝对值等于本身的数只有1B .平方后等于本身的数只有0、1C .立方后等于本身的数是1,0,1-D .倒数等于本身的数是1-和14. 下列结论正确的是( )A.数轴上表示6的点与表示4的点相距10 B.数轴上表示+6的点与表示-4的点相距10 C.数轴上表示-4的点与表示4的点相距10 D.数轴上表示-6的点与表示-4的点相距10 5. 下列说法中不正确的是( )A.0既不是正数,也不是负数 B .0不是自然数 C .0的相反数是零 D .0的绝对值是0 6. 下列计算中,正确的有( ) (1)(5)(3)8-++=- (2)0(5)5+-=+ (3)(3)(3)0-+-= (4)512()()663++-=A .0个B .1个C .2个D .3个二、填空题:本大题共10小题,每小题3分,共30分,把答案填写在题中横线上. 7. 平方得25的数是_____,立方得64-的数是_____. 8. 若00xy z ><,,那么xyz =______0.9. 某冷库的温度是16-℃,下降了5℃,又下降了4℃,则两次变化后的冷库的温度是______. 10. 已知130a b ++-=,则____________a b ==.11. 2-的倒数是_____;23-的倒数是______;213-的倒数是______. 12. 如果a b 、互为倒数,那么5ab -=______.13. 2112(2)_____(3)()3_____33-⨯-=⨯-÷-⨯=;.14. 用算式表示:温度由4-℃上升7℃,达到的温度是______.15. 若三个有理数的乘积为负数,在这三个有理数中,有_____个负数.16. 151653_____50.2_____--=⨯=;;若m n 、互为相反数,则1m n -+=_____ 三、运算题:本大题共4小题,共20分,解答应写出必要的计算过程、推演步骤或文字说明.17.(本小题5分) 计算:211(10.5)2(3)3⎡⎤⎡⎤--⨯⨯--⎣⎦⎢⎥⎣⎦18.(本小题5分) 确定下列各式和的符号 (1)(1)(2)-+- (2)(101)(100)-++(3)0(0.1)+- (4)1223-+19.(本小题5分) 计算下列各题 (1)(-7)+(-4); (2)3+(-12); (3)(-2)+2; (4)0+(-7); (5)113423⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭.班级______________________________________ 姓名____________________ 考场号________________ 考号_______________----------------------------------------------------密---------------------------------封--------------------------------线------------------------------------------------20.(本小题5分)52555(2)4757123÷--⨯-÷四、应用题:本大题共2小题,共16分,解答应写出必要的计算过程、推演步骤或文字说明. 21.(本小题8分) 一条南北走向的公路,规定向南为正.怎样表示向北36千米?向南48千米?向北12.5千米?20-千米是什么意思?+25千米是什么意思?22.(本小题8分) 若数轴上的点A 和点B 表示两个互为相反数的数,并且这两个数间的距离为8.4,求A 点和B 点表示的数是什么.(A>B)五、合情推理题:本大题共2小题,共16分,解答应写出必要的计算过程、推演步骤或文字说明. 23.(本小题8分) 先用计算器求出215222、25、35、45的值,你发现了怎样的规律,你能否用这个规律求228595、的结果吗?24.(本小题8分) 如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的矩形.如此进行下去,试利用图形揭示的规律计算:11111111248163264128256+++++++.有理数测试题A答案一、选择题:本大题共6小题,每小题3分,共18分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. D2. D3. B4. C5. A6. B二、填空题:本大题共10小题,每小题3分,共30分,把答案填写在题中横线上.7. 9 >8. 5,3-9. 0.8-10. 5-11. 2412. 0, 2.8-13. 互为相反数14. -215. n a-,n a16.2 1515三、运算题:本大题共4小题,共20分,解答应写出必要的计算过程、推演步骤或文字说明.17.(本小题5分) 3.18.(本小题5分)1 48 -19.(本小题5分) 70-20.(本小题5分) (1)-1的相反数是1,数轴上表示为下图:(2)12的相反数是-12,数轴上表示为下图:(3)0的相反数是0,数轴上表示为下图:(4)2的相反数的相反数是2,数轴上表示为下图:四、应用题:本大题共2小题,共16分,解答应写出必要的计算过程、推演步骤或文字说明.21.(本小题8分) 1422.(本小题8分) (1)31℃ (2)计算.5日为28℃,6日为25℃,7日为31℃,8日为26℃,9日为22℃.因此九月7日气温最高 (3)图略五、合情推理题:本大题共2小题,共16分,解答应写出必要的计算过程、推演步骤或文字说明.23.(本小题8分)25525624.(本小题8分)2004312-沁园春·雪 <毛泽东>北国风光,千里冰封,万里雪飘。

人教版七年级上册数学《有理数》测试题(含答案)

人教版七年级上册数学《有理数》测试题(含答案)

七年级数学单元测试题(一)有理数1、选择题(每题3分, 共30分)A 、有一种记分方法:以80分为准, 88分记为+8分, 则某同学得分为74分, 应记为( )A 、+74 分 B.分 C.+6分 D.分B 、下列各数中, 最小的正数是( )3、 B.0 C 、1 D 、24、下列说法中正确的是( )A.0可以用数轴上的点来表示B.数轴上所有的点都表示有理数C.数轴上找不到既不表示正数也不表示负数的点D.数轴上表示的点一定在原点的右边A 、4.2的相反数是( )A 、 B. C.2 D.B 、若, 则和的关系为( )和相等 B.和互为相反数A 、C.和相等或互为相反数 D.以上答案都不对B 、下列计算, 正确的是( )B.7、C. D 、8、与)()(y x ---相等的式子是( )8、 B. C. D.9、下列说法错误的是( )一个数同1相乘, 仍得这个数 B.一个数同相乘, 得原数的相反数9、C 、互为相反数的数的积为1 D 、一个数同0相乘, 得010、计算31327⨯÷-的结果是( ) 10、 B.27 C. D.311、计算223)2(5)3(--+-的值为( )二、A.2 B.5 C. D.11、填空题(每题4分, 共24分)12、比较大小: .13、1030这个数用科学记数法可表示为 .14、12的相反数与7-的绝对值的和是 .数轴上点A, B 的位置如图所示, 若点A 左侧有一点C 满足AB=AC, 则点C 表示的数为 .15、一个数的倒数是, 这个数是 .三、若是的相反数, =5, 则的值为 .解答题一(每题6分, 共18分)17、计算: 18、计算19、计算:四、解答题二(每题7分, 共21分)20、检查5袋水泥的质量, 把超过标准质量的克数记为正数, 不足标准质量的克数记为负数, 记录结果如下表所示:水泥编号1 2 3 4 5 与标准质量的差 100+ 50- +80 70- 30-(1)用绝对值判断最接近标准质量的是几号水泥;质量最大的水泥比质量最小的水泥重多少克?如图, 在数轴上有三个点A.B.C, 请回答下列问题:若将点B 沿数轴向左移动3个单位长度, 则此时A.B.C 三个点所表示的数中哪个数最小? 最小的数是多少?若将点A 沿数轴向右移动4个单位长度, 则此时A 、B 、C 三个点所表示的数中哪个数最小?最小的数是多少?22.已知, 互为相反数, , 互为倒数, 的绝对值为2, 求的值.23、解答题三(每题9分, 共27分)(1)小虫从某点A出发, 在一直线上来回爬行, 假定向右爬行的路程记为正数, 向左爬行的路程记为负数, 爬行的各段路程依次为(单位:):, , , , , , .(2)小虫最后是否回到出发点A?小虫离开原点最远是多少厘米?在爬行过程中, 如果每爬行1奖励一粒芝麻, 则小虫一共得到多少粒芝麻?先阅读并填空, 再解答问题:(1)我们知道, , ,(2), .(3)作含有的式子表示你所发现的规律: .计算: +….(1)现有一组有规律排列的数: 1, , 2, , 3, , 1, , 2, , 3, , …, 其中1, , 2, , 3, 这六个数按此规律重复出现.(2)第50个数是什么?把从第1个数开始的前2025个数相加, 结果是多少?从第1个数起, 把连续若干个数的平方加起来, 如果和为510, 则共有多少个数的平方相加?有理数参考答案一、DCADC DCCCD二、> 12. 13. 14. 15. 16.或三、解: 原式18、解: 原式)55()1220(+-++-= )212523(75-+==08+- 2775⨯= =8- 25=19、解: 原式四、(2)解: (1)因为5袋水泥中与标准质量的差的绝对值最小的是5号水泥, 所以最接近标准质量的是5号水泥;21、质量最大的是1号水泥, 比标准质量多100, 质量最小的是4号水泥, 比标准质量少, 所以质量最大的水泥比质量最小的水泥重(1)解: 点A 表示, 点B 表示, 点C 表示3(2)将点B 沿数轴向左移动3个单位长度后表示, 此时点B 表示的数最小, 是. 将点A 沿数轴向右移动4个单位长度后表示0, 此时点B 表示的数最小, 是解: 由, 互为相反数, 则;由、互为倒数, 则;由的绝对值为2, 则当时, 原式;当时, 原式.4)2()10()2(3-=-⨯+--⨯=五、解: (1)所以小虫最后回到出发点A.(2)第一次爬行距离原点是cm 5;第二次爬行距离原点是)(235cm =-;第三次爬行距离原点是)(12102cm =+;第四次爬行距离原点是)(4812cm =-; 第五次爬行距原点是)(2264cm =-=-;第六次爬行距离原点是)(10122cm =+-; 第七次爬行距离原点是)(01010cm =-;从上面可以看出小虫离开原点最远是12.cm 小虫爬行的总路程为:24、, 所以小虫一共得到54粒芝麻.(2)解: (1);(3)111+-n n (4)原式816161414121(21-+-+-=+…)2024120221-+)2024121(21-= 40481020=1012255= (2)解: (1)因为……2, 所以第50个数是(3)因为……3, , , 所以从第1个数开始的前2025个数相加, 结果是2. , ……6, 且, , 所以共有111个数的平方相加.。

最新七年级有理数检测题(Word版 含答案)

最新七年级有理数检测题(Word版 含答案)

有.请说明理由.
【答案】 (1)1
(2)1 或-5
(3)6
(4)解:∵ |a-3|+|a﹣6|表示 a 到 3 与 a 到 6 的距离的和,
∴ 当 3≤a≤6 时,|a-3|+|a-6|=
=3,
当 a>6 或 a<3 时,|a-3|+|a﹣6|>3,
∴ |a-3|+|a﹣6|有最小值,最小值为 3.
故答案为 , 或 1. 【分析】(1)由点 A 和点 B 表示的数互为相反数,因此原点到点 A 和点 B 的距离相等,
可得到原点的位置。
(2)先再数轴上标出数,可得到点 M 和点 N 表示的数,再求出点 M,N 之间的距离。
(3)利用数轴上点的平移规律:左减右加,可得到点 C 表示的数,与点 C 距离 3 个单位 长度表示的数为-2±3,计算可求解。
2.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点 A、B 在数轴上对应 的数分别为 a、b,则 A、B 两点间的距离表示为 AB=|a﹣b|.根据以上知识解题: (1)点 A 在数轴上表示 3,点 B 在数轴上表示 2,那么 AB=________. (2)在数轴上表示数 a 的点与﹣2 的距离是 3,那么 a=________. (3)如果数轴上表示数 a 的点位于﹣4 和 2 之间,那么|a+4|+|a﹣2|=________. (4)对于任何有理数 x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没
②当点 P 是线段 AQ 的三等分点时,求 t 的值. 【答案】 (1)9;-3+2t (2)解:①根据题意,得:(1+2)t=12, 解得:t=4, ∴ -3+2t=-3+2×4=5, 答:当 t=4 时,点 P 与点 Q 重合,此时点 P 表示的数为 5; ②P 与 Q 重合前:

初一有理数试题及答案

初一有理数试题及答案

初一有理数试题及答案一、选择题(每题2分,共10分)1. 下列各数中,其相反数是它本身的数是()A. 0B. -1C. 1D. 22. 绝对值是它本身的数是()A. 0B. -3C. 3D. -23. 若a > 0,b < 0,且|a| > |b|,则a + b()A. 一定大于0B. 一定小于0C. 一定等于0D. 无法确定4. 下列运算中,结果为正数的是()A. -3 + 2B. -4 - 1C. -5 × 2D. 3 × 45. 若|a| = 3,|b| = 2,且a > b,则a - b的值是()A. 1B. 3C. 5D. -1二、填空题(每题2分,共10分)6. 一个数的相反数是-8,这个数是______。

7. 绝对值不大于2的所有整数有______。

8. 两个负数相比较,绝对值大的反而______。

9. 若a = -2,b = 3,则a + b = ______。

10. 若|-x| = 5,则x = ______。

三、计算题(每题5分,共20分)11. 计算下列各题,并写出计算过程:(1) (-2) × 3 + 5(2) (-3) - (-4)(3) 6 - (-7) - 512. 根据题目所给条件,求出下列各题的值:(1) 若|a| = 4,a = -a,求a的值。

(2) 若a = -2,b = 3,求a - b的值。

四、解答题(每题15分,共30分)13. 某商店在一天内卖出了10件商品,每件商品的利润是5元。

如果商店的总利润是100元,那么商店亏损了多少元?14. 某工厂计划生产一批零件,每生产一个零件需要2分钟,如果工厂一天工作8小时,那么一天能生产多少个零件?五、结束语本试题涵盖了初一有理数的基本概念、运算规则以及实际应用问题。

通过这些题目,学生可以检验自己对有理数的理解和运算能力。

希望同学们能够认真完成,不断提升自己的数学素养。

人教版七年级数学上册第1章《有理数-有理数除法》课后测试题(附答案)

人教版七年级数学上册第1章《有理数-有理数除法》课后测试题(附答案)

人教版七年级数学上册第1章《有理数-有理数除法》课后测试题(附答案)第一课时一.选择题1.计算(-16)÷8的结果等于( )A .12B .-2C .3D .-1的运算结果是( ) A .-12 B .12 C .-2 D .23.两个不为零的有理数相除,如果交换它们的位置,商不变,那么() A .两数相等 B .两数互为相反数C .两数互为倒数D .两数相等或互为相反数A .-1B .1C .118D .- 118A .−−a −bB .−a −bC .−a bD .a −b6.已知a 、b 为有理数,且ab >0,则 a |a | + b |b | + ab|ab | 的值是() A .3 B .-1 C .-3 D .3或-1二.填空题三.解答题11.化简下列分数.12.计算:答案:1.B 2.C 3.D 解析:交换它们的位置,商不变则两数相等或互为相反数.4.C=−−a −b .−a −b ab |a ||b ||ab |7.-1解析:∵a 、b 互为相反数,∴a=.∴原式=−b b =−1.10.>,<解析:∵|a |a =1,∴|a|=a .∴a >0.∵a |a | =-1,∴|a|=-1.∴a <0.11.解:(1)原式=-3;(2)原式(3)原式=6×5=30;12.解:(1)原式=0;第二课时一.选择题1.计算-1-2×(-3)的结果等于( )A .5B .-5C .7D .-7 2.计算:12-7×(-4)+8÷(-2)的结果是( ) A .-24 B .-20 C .6 D .36 3.计算2×(-9)-18×(16 - 12 )的结果是( )A .24B .-12C .-9D .64.某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元,这个公司去年平均每月的盈亏(精确到0.001万元)是( )A .盈利3.7万元B .亏损0.008万元C .盈利0.308万元D .亏损0.308万元A .1B .-1C .-11D .116.蜗牛在井里距井口1米处,它每天白天向上爬行30cm ,但每天晚上又下滑20cm .蜗牛爬出井口需要的天数是( )A .8天B .9天C .10天D .11天二.填空题7.(1+ 13 )÷(13 -1)× 38 = .三.解答题11.阅读下列材料:解法一:原式=50÷13 -50÷14 +50÷112 =50×3-50×4+50×12=550.故原式=300.上述得出的结果不同,肯定有错误的解法,你认为解法______是错误的.在正确的解法中,你认为解法最简捷.然后,请你解答下列问题:12.计算题(1)6-|-12|÷(-3).(2)(-48)÷8-(-25)×(-6)答案:1.A 2.D 3.B4.C解析:根据题意列式-1.5×3+2×3+1.7×4-2.3×2=-4.5+6+6.8-4.6=-9.1+12.8=3.7(万元).3.7÷12≈0.308(万元).所以这个公司去年平均每月盈利约0.308万元.5.B6.A解析:∵30cm=0.3m,20cm=0.2m,∴蜗牛每天向上实际爬0.3-0.2=0.1米,蜗牛最后一天可以爬出井,在此之前它要爬1-0.3=0.7(米),∴蜗牛要先爬7天,加上最后一天,总共是8天.11.解:上述得出的结果不同,肯定有错误的解法,我认为解法一是错误的.在正确的解法中,你认为解法三最简捷;原式的倒数为(16 − 314 +23 −27 )÷(−142 )=(16 − 314 +23 −27 )×(-42)=-7+9-28+12=-14, 则原式=-114 .12.解:(1)原式=6-12÷(-3)=6+4=10.。

七年级有理数检测题(Word版 含答案)

七年级有理数检测题(Word版 含答案)

一、初一数学有理数解答题压轴题精选(难)1.通过学习绝对值,我们知道的几何意义是数轴上表示数在数轴上的对应点与原点的距离,如:表示在数轴上的对应点到原点的距离. ,即表示、在数轴上对应的两点之间的距离,类似的, ,即表示、在数轴上对应的两点之间的距离;一般地,点,在数轴上分别表示数、,那么,之间的距离可表示为 .请根据绝对值的几何意义并结合数轴解答下列问题:(1)数轴上表示和的两点之间的距离是________;数轴上、两点的距离为,点表示的数是,则点表示的数是________.(2)点,,在数轴上分别表示数、、 ,那么到点 .点的距离之和可表示为_ (用含绝对值的式子表示);若到点 .点的距离之和有最小值,则的取值范围是_ __.(3)的最小值为_ __.【答案】(1)2;1或7(2)|x+1|+|x-2||-1≤x≤2(3)3【解析】【解答】解:(1)数轴上表示2和4的两点之间的距离是4-2=2;数轴上P、Q两点的距离为3,点P表示的数是4,则点Q表示的数是4-3=1或4+3=7;( 2 )A到B的距离与A到C的距离之和,可表示为|x+1|+|x-2|,∵|x-3|+|x+2|=7,当x<-1时,|x+1|+|x-2|=2-x-x-1=1-2x无最小值,当-1≤x≤2时,|x+1|+|x-2|=x+1+2-x=3,当x>2时,x+1+x-2=2x-1>3,故若A到点B、点C的距离之和有最小值,则x的取值范围是-1≤x≤2;(3)原式=|x-1|+|x-4|.当1≤x≤4时,|x-1|+|x-4|有最小值为|4-1|=3故答案为:(1)2,1或7;(2)|x+1|+|x-2|,-1≤x≤2;(3)3【分析】(1)根据数轴上两点间的距离的求法“数轴上两点间的距离即数轴上表示两个点的数的差的绝对值.”可求解;(2)同理可求解;(3)由(2)中求得的x的取值范围去绝对值,然后合并同类项即可求解.2.如图,AB=12cm,点C在线段AB上,AC=3BC,动点P从点A出发,以4cm/s的速度向右运动,到达点B之后立即返回,以4cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动,到达点B之后立即返回,以1cm/s的速度向左运动.设它们同时出发,运动时间为t秒,当第二次重合时,P、Q两点停止运动.(1)AC=________cm,BC=________cm;(2)当t=________秒时,点P与点Q第一次重合;当t=________秒时,点P与点Q第二次重合;(3)当t为何值时,AP=PQ?【答案】(1)9;3(2)3;(3)解:在点P和点Q运动过程中,当AP=PQ时,存在以下三种情况:①点P与点Q第一次重合之前,可得:2×4t=9+t,解得t= ;②点P与点Q第一次重合后,P、Q由点B向点A运动过程中,可得:2×[12-(4t-12)]=12-(t-3),解得t= ;③当点P运动到点A,继续由点A向点B运动,点P与点Q第二次重合之前,可得:2×(4t-24)=12-(t-3),解得t=7.故当t为秒、秒或7秒时,AP=PQ.【解析】【解答】(1)∵AB=12cm,AC=3BC∴AC= AB=9,BC=12-9=3.故答案为:9;3.(2)设运动时间为t,则AP=4t,CQ=t,由题意,点P与点Q第一次重合于点B,则有4t-t=9,解得t=3;当点P与点Q第二次重合时有:4t+t=12+3+24,解得t= .故当t=3秒时,点P与点Q第一次重合;当t= 秒时,点P与点Q第二次重合.故答案为:3;.【分析】(1)由题目中AB=12cm,点C在线段AB上,AB=3BC,可直接求得;(2)根据运动过程,两点重合时他们走过距离之间的关系列方程即可求得;(3)满足AP=PQ,则2AP=AQ,在整个运动过程中正确的位置存在三处,依次分析列出方程即可求得.3.数轴上从左到右有A,B,C三个点,点C对应的数是10,AB=BC=20.(1)点A对应的数是________,点B对应的数是________.(2)动点P从A出发,以每秒4个单位长度的速度向终点C移动,同时,动点Q从点B 出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.①用含t的代数式表示点P对应的数是________,点Q对应的数是________;②当点P和点Q间的距离为8个单位长度时,求t的值.【答案】(1)﹣30;﹣10(2)4t﹣30,t﹣10;t的值为4或【解析】【解答】解:(1)∵AB=BC=20,点C对应的数是10,点A在点B左侧,点B 在点C左侧,∴点B对应的数为10﹣20=﹣10,点A对应的数为﹣10﹣20=﹣30.故答案为:﹣30;﹣10.(2)①当运动时间为t秒时,点P对应的数是4t﹣30,点Q对应的数是t﹣10.故答案为:4t﹣30;t﹣10.②依题意,得:|t﹣10﹣(4t﹣30)|=8,∴20﹣3t=8或3t﹣20=8,解得:t=4或t=.∴t的值为4或.【分析】(1)由AB,BC的长度结合点C对应的数及点A,B,C的位置关系,可得出点A,B对应的数;(2)①由点P,Q的出发点、运动方向及速度,可得出运动时间为t秒时点P,Q对应的数;②由①结合PQ=8,可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.4.已知,数轴上点A和点B所对应的数分别为,点P为数轴上一动点,其对应的数为.(1)填空: ________ , ________ .(2)若点 P到点 A、点 B 的距离相等,求点 P 对应的数.(3)现在点 A、点 B分别以 2 个单位长度/秒和 0.5 个单位长度/秒的速度同时向右运动,点 P以 3 个单位长度/秒的速度同时从原点向左运动.当点 A与点 B之间的距离为2个单位长度时,求点 P所对应的数是多少?【答案】(1)-1;3(2)解:依题可得:PA=|x+1|,PB=|3-x|,∵点P到点A、点B的距离相等,∴PA=PB,即|x+1|=|3-x|,解得:x=1,∴点P对应的数为1.(3)解:∵点A、点B 速度分别以 2 个单位长度/秒、 0.5 个单位长度/秒的速度同时向右运动,∴A点对应的数为2t-1,点B对应的数为3+0.5t,①当点A在点B左边时,∵AB=2,∴(3+0.5t)-(2t-1)=2,解得:t=,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴×3=4,∴P点对应的数为:-4.②当点A在点B右边时,∵AB=2,∴(2t-1)-(3+0.5t)=2,解得:t=4,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴4×3=12,∴P点对应的数为:-12.【解析】【解答】解:(1)∵(a+1)2+|b-3|=0,∴,解得:.故答案为:-2;3.【分析】(1)根据平方和绝对值的非负性列出方程,解之即可得出答案.(2)根据题意可得PA=|x+1|,PB=|3-x|,再由PA=PB得|x+1|=|3-x|,解之即可得出点P对应的数.(3)根据题意可得A点对应的数为2t-1,点B对应的数为3+0.5t,分情况讨论:①当点A 在点B左边时,②当点A在点B右边时,由AB=2分别列出方程,解之得出t值,再由P 点的速度得出点P对应的数.5.如图:在数轴上点表示数,点表示数,点表示数,是最大的负整数,且、满足与互为相反数.(1) ________, ________, ________.(2)若将数轴折叠,使得点与点重合,则点与数________表示的点重合;(3)点、、开始在数轴上运动,若点以每秒2个单位长度的速度向左运动,同时,点和点分别以每秒1个单位长度和3个单位长度的速度向右运动,假设秒钟过后,若点与点之间的距离表示为,点与点之间的距离表示为 .①请问:的值是否随着时间变化而改变?若变化,说明理由;若不变,请求其值.②探究:在(3)的情况下,若点、向右运动,点向左运动,速度保持不变,值是否随着时间的变化而改变,若变化,请说明理由;若不变,请求其值.【答案】(1)解:-3;-1;5;(2)3;(2)3(3)解:① ,,.故的值不随着时间的变化而改变;② ,,.当时,原式,的值随着时间的变化而改变;当时,原式,的值不随着时间的变化而改变.【解析】【解答】(1)∵,∴,,解得,,∵是最大的负整数,∴ .故答案为:-3,-1,5.(2) ,对称点为, .故答案为:3.【分析】(1)由非负数的性质可求出a、c,最大的负整数是-1,故b=-1;(2)折叠后AC重合,A、C的中点即为对称点,再根据对称点求出跟B重合的数;(3)①用速度乘以时间表示出运动路程,可得到和的表达式,再判断的值是否与t相关即可;②同理求出和的表达式,再计算,分情况讨论得出结果.6.已知多项式,次数是b,3a与b互为相反数,在数轴上,点A 表示数a,点B表示数b.(1)数轴上A、B之间的距离记作,定义:设点C在数轴上对应的数为x,当时,直接写出x的值.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.(3)若小蚂蚁甲从点A处以1个单位长度秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t. 【答案】(1)解:由多项式的次数是6可知,又3a和b互为相反数,故 .当C在A左侧时,,,;在A和B之间时,,点C不存在;点C在B点右侧时,,,;故答案为:或8.(2)解:依题意得:.点P对应的有理数为 .(3)解:甲、乙两小蚂蚁均向左运动,即时,此时,,,解得,;甲向左运动,乙向右运动时,即时,此时,,依题意得,,解得, .答:甲、乙两小蚂蚁到原点的距离相等时经历的时间是秒或8秒【解析】【分析】(1)根据题意可得a=−2,b=6;然后分当C在A左侧时,在A和B之间时,点C在B点右侧时,三种情况用x表示出|CA|和|CB|的长度,利用“|CA|+|CB|=12”列出方程即可求出答案;(2)向左运动记为负,向右运动记为正,由点P所表示的数依次加上每次运动的距离列出算式,进而根据有理数加减法法则算出答案;(3)分甲、乙两小蚂蚁均向左运动,即时,甲向左运动,乙向右运动时,即时两种情况,根据到原点距离相等列出方程求解即可.7.如图,在数轴上点A表示数−20,点C表示数30,我们把数轴上两点之间的距离用表示两点的大写字母一起标记.比如,点A与点B之间的距离记作AB,点B与点C之间的距离记作BC…(1)点A与点C之间的距离记作AC,则AC的长为________;若数轴上有一点D满足CD=AD,则D点表示的数为________;(2)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A、C在数轴上运动,点A、C 的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t秒.①若点A向右运动,点C向左运动,AB=BC,求t的值________;②若点A向左运动,点C向右运动,2AB−m×BC的值不随时间t的变化而改变,则2AB−m×BC的值为________(直接写出答案).【答案】(1)50;5(2)10或;-45.【解析】【解答】(1)解:∵A表示的数为-20,C表示的数为30,∴AC=30-(-20)=50;∵CD=AD∴点D为AC的中点∴D所表示的数为 =5,故答案为50;5(2)解:①根据题意,A所表示的数为-20+2t,C所表示的数为30-3t,B 所表示的数为1+t,AB=|-20+2t-(1+t)|=|-21+t|,BC=|30-3t-(1+t)|=|29-4t|,∵AB=BC∴|-21+t|=|29-4t|,-21+t=29-4t,解得t=10,-21+t=4t-29解得t= .∴当AB=BC时,t=10或.②根据题意,A所表示的数为-20-2t,B所表示的数为1+t,C所表示的数为30+3t,AB=1+t-(-20-2t)=21+3t,BC=30+3t-(1+t)=29+2t,∴2AB-m×BC=2(21+3t)-m×(29+2t)=42+6t-29m-2mt,∵2AB-m×BC的值不随时间t的变化而改变,∴6t-2mt=0,∴m=3,∴42+6t-29m-2mt=-45,∴2AB-m×BC=-45.故答案为-45.【分析】(1)在数轴上表示两点所组成的线段长度用右边点所表示的数减去左边点所表示的数即可.(2)当数轴上想表示两个点之间的距离,根据绝对值的意义可用绝对值进行处理.动点在数轴上运动,在已知运动的方向和速度之后,就可以利用原来所在的数如果向右移动就加上向右移动的距离,如果向左移动,就减去向左移动的距离.8.观察数轴,充分利用数形结合的思想.若点A,B在数轴上分别表示数a,b,则A,B两点的距离可表示为AB= .根据以上信息回答下列问题:已知多项式的次数是b,3a与b互为相反数,在数轴上,点O是数轴原点,点A表示数a,点B表示数b.设点M在数轴上对应的数为 .(1)A,B两点之间的距离是________.(2)若满足AM = BM,则 ________.(3)若A,M两点之间的距离为3,则B,M两点之间的距离是________.(4)若满足AM + BM =12,则 ________.(5)若动点M从点A出发第一次向左运动1个单位长度,在此新位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照此规律不断地左右运动,当运动了2019次时,则点M所对应的数 ________.【答案】(1)8(2)2(3)5或11(4)-4或8(5)-1012【解析】【分析】(1)先根据多项式的次数的定义求出b,进而利用3a与b互为相反数的关系求出a,然后根据数轴上两点间的距离公式列式计算即可;(2)利用两点之间的距离公式分别列出表示线段AM和BM的代数式,然后根据AM=BM 建立方程求解即可;(3)根据两点间的距离公式,分点M在点A的左侧和右侧两种情况分别列出表示线段AM的代数式,然后由已知条件AM=3建立方程,从而求出m的值,进而根据两点间的距离公式求出BM;(4)根据两点间的距离公式,分点M在点A的左侧和B的右侧两种情况分别列出表示线段AM和BM的代数式,然后利用AM + BM =12列方程求解;(5)可知点A连续运动两次实质上是向右移动1个单位长度,当运动了2018次时,实际上向右移动了1009个单位长度,则当运动第2019次时,则点M所对应的数为-2+1009-2019,得解。

初一有理数练习题(打印版)

初一有理数练习题(打印版)

初一有理数练习题(打印版)### 初一有理数练习题#### 一、选择题1. 下列各数中,是正数的是()A. -3B. 0C. 5D. -52. 若a > 0,b < 0,则a + b的值()A. 一定大于0B. 一定小于0C. 可能大于0D. 可能小于03. 绝对值是它本身的数是()A. 所有数B. 正数和0C. 负数D. 没有#### 二、填空题1. 若|a| = 5,则a = _______。

2. 两个负数相加,和为_______。

3. 若-a > 0,则a是_______。

#### 三、计算题1. 计算下列各题,并写出计算过程:- (-2) + 3- 4 - (-5)- 0 - (-7)2. 化简下列各数的绝对值:- |-8|- |0|- |-(-5)|#### 四、解答题1. 某商店一天的营业额为500元,亏损了200元,求这一天的净收入。

2. 某同学在数学竞赛中答对了8题,每题得10分,答错了2题,每题扣5分,请问他最后的得分是多少?#### 五、应用题1. 某工厂一天生产了100个零件,其中10个不合格,求合格率。

2. 某班有50名学生,其中30人喜欢打篮球,20人喜欢踢足球,问喜欢打篮球的学生占全班的比例是多少?答案:#### 一、选择题1. C2. D3. B#### 二、填空题1. ±52. 负数3. 负数#### 三、计算题1.- (-2) + 3 = 1- 4 - (-5) = 9- 0 - (-7) = 72.- |-8| = 8- |0| = 0- |-(-5)| = 5#### 四、解答题1. 净收入 = 营业额 - 亏损 = 500 - 200 = 300元2. 得分 = 答对得分 - 答错扣分= (8 × 10) - (2 × 5) = 80 - 10 = 70分#### 五、应用题1. 合格率 = (合格零件数 / 总零件数) × 100% = (100 - 10) / 100 × 100% = 90%2. 比例 = 喜欢打篮球的学生数 / 全班学生数 = 30 / 50 = 0.6,即60%请同学们认真完成以上练习题,以巩固和提高对有理数的理解和运用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数测试题一、认真填一填1、12-的绝对值的相反数是 。

2、数轴上与2-这个点的距离等于6个单位长度的点所表示的数是 。

3、(1)--的相反数是 。

|1|--的相反数是 。

4、绝对值小于2008的所有整数的和为 。

5、若三个有理数的乘积为负数,则在这三个有理数中,有个负数.6、12064900精确到十万位的近似数是 .7、._____)1()1(212=-+-+n n (n 为正整数) 8、0.2-的倒数是 ;23-的相反数是 ; 9、 如果a b 、互为倒数,那么5ab -= .10、 若00xy z ><,,那么xyz = 0.11、如果一个数的绝对值是10,那么这个数是 .12、 近似数5.3万精确到 位;近似数5.27×610精确到 位。

13、 -836 000 000可用科学计数法表示为 ;一个数用科学计数法表示为5.27×610则这个数是 。

14、用四舍五入法把0.07902精确到千分位为 .15、31277⎛⎫÷- ⎪⎝⎭= .16、某地气温开始是6℃,一会儿升高4℃,再过一会儿又下降11℃,这时气温是 .17、一个数的相反数的倒数是113-,这个数是 .18、若│a -│=5,则a= .19、用科学记数法表示13040000≈ ,(保留3个有效数字).20、李斌同学利用暑假外出旅游一周,已知这一周各天的日期之和是126,那么李斌同学回家的日期是 号.21、若|a+2|+()23-b =0,则ba +a ()3b ⋅-= . 22、绝对值小于3.9的整数有 个.23、在数轴上,与表示-5的点距离为4的点所表示的数是 。

24、平方得81的数是 .绝对值等于81的数是 。

25、若2x -与2(3)y +互为相反数,则x+y= .26、计算:(1-2)×(2-3)×(3-4)×……×(100-101)= .27、用四舍五入法把4.036精确到0.01的近似值是 ,把4.036精确到个位的近似值是 。

28、绝对值不大于2012的所有负整数的和为 。

29、在-7与13之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是 。

30、规定521a b a b ⊗=+-,则(4)6-⊗的值为 。

31、已知a =3,b =2,且ab <0,则a b -= 。

二、精心选一选32、若 |x | =-x ,则x 一定是…………………………………( )(A ) 负数, (B )正数, (C ) 负数或0 , (D ) 0.33、下列说法正确的是…………………………………………( )(A )一个数的绝对值一定是正数,(B ) 任何正数一定大于它的倒数,(C ) a 的相反数的绝对值与a 的绝对值的相反数相等(D ) 绝对值最小的有理数是034、已知数a <0,ab <0,化简|a -b -3|-|4+b -a|的结果是…( )(A )-1 (B )1 (C )7 (D )-735、比-3.1大的非正整数的个数是…………………………..( )(A ) 2 (B )3 (C )4 (D ) 536、下列说法正确的是………………………………………….( )A .所有的整数都是正数B .不是正数的数一定是负数C .0不是最小的有理数D .正有理数包括整数和分数37、下列说法正确的是………………………………………..( )A .积比每个因数大B .绝对值不相等的异号两数相加,取较大加数的符号,并用较大的数减去较小的数C .绝对值与本身相等的数是0,1±D .100个1-相加得100-38、在2),2(,)2(,222------中,负数的个数是………..( )A 、 l 个B 、 2个C 、 3个D 、 4个39、下列有理数大小关系判断正确的是……………………..( )a A 、101)91(-->-- B 、100-> C 、33+<- D 、01.01->- 40、有理数a 、b 在数轴上的位置如图1-1所示,那么下列式子中成立的是……… ………………………………………………….( )A .a>bB .a<bC .ab>0D .0a b >41、下列各项判断正确的是………………………………………( )A .a+b 一定大于a -b;B .若-ab<0,则a 、b 异号;C .若a ³=b ³,则a=b;D .若a ²=b ²,则a=b42、下列运算正确的是……………………………………………( ) A .-2²÷(-2)²=1; B . 31128327⎛⎫-=- ⎪⎝⎭C .1352535-÷⨯=-D . 133( 3.25)6 3.2532.544⨯--⨯=-43、若a=-2×3²,b=(-2×3)²,c=-(2×3)²,则下列大小关系中正确的是………………………………………………..( )A .a>b>0B .b>c>a;C .b>a>cD .c>a>b44、若│x │=2,│y │=3,则│x+y │的值为…………………( )A .5B .5-C .5或1D .以上都不对45、若0<m<1,m 、m2、1m 的大小关系是…………………………( )A .m<m2<1m ;B .m2<m<1m ;C .1m <m<m2;D .1m <m2<m46、|2|--的相反数是…………………………………………….( )A .2B .21C .-21D .-247、有理数a 、b 在数轴上的表示如图所示,那么…………….( )A .-b >aB .-a <bC .b >aD .∣a ∣>∣b ∣48、下列运算正确的是……………( )A . 224-=B . 31128327⎛⎫-=- ⎪⎝⎭C .81)21(3-=-D .6)2(3-=- 49、绝对值小于6的所有整数的和与积分别是………………..( )A .0,0B .0,30C .-20,120D .-20,-12050、人体正常体温平均为36.5℃,如果某温度高于36.5℃,那么高出的部分记为正;如果温度低于36.5℃,那么低于的部分记为负.国庆假期间某同学在家测的体温为38.2℃应记为( )A .+38.2℃B .+1.7℃C .- 1.7℃D .1.7℃51、2008年9月27日,神舟七号航天员翟志刚完成中国历史上第一次太空行走,他相对地球行走了5 100 千米路程,用科学记数法表示为 … ………………………………………………….( )A .51×10²米B .5.1×10³米C . 5.1×10米D .0.51×10米52、比较数的大小,下列结论错误的是………………………..( )A .–5 <–3B .2 >–3 >0C .11<0<32- D .111>>543--- 53、下列说法正确的是…………………………………………..( )A .平方是本身的数是正数B .立方是本身的数是±1C .绝对值是它本身的数是正数D .倒数是它本身的数是±154、若||a =a ,则a 是…………………………………………….( )A .负数B .正数C .非负数D .非正数55、若000a b c ><<,,,则ab c +为……………………………( )A .正数B .负数C .零D .无法确定56、已知一个数的倒数的相反数为135,则这个数为…………( ) A .165 B .516 C .165- D .516-57、下列说法中,错误的是…………………………………..( )A .一个非零数与其倒数之积为1B .一个数与其相反数商为-1C .若两个数的积为1,则这两个数互为倒数D .若两个数的商为-1,则这两个数互为相反数58、下列数据是近似数的是……………………………………..( )A .小白数学得了90分B . 小明身高约173cmC .数学课本有86页D .初一(1)班有65名同学59、 若π是圆周率,则下列各式正确的是………………………( )A .722->π B . 227π= C .227π< D .π=3.141660、下列运算过程正确的是……………………………………..( )A .(3)(4)34-+-=-+-=…B .(3)(4)34-+-=-+=…C .(3)(4)34---=-+=…D .(3)(4)34---=--=…61、若a 、b 互为相反数,则下面四个等式中一定成立的是…..( )A .a +b =0B .a +b =1C .0a b +=D .0a b +=62、下列各式计算正确的是…………………………………….( )A .2(4)16--=- B .826(16)(2)--⨯=-+⨯-C .6565445656⎛⎫÷⨯=÷⨯ ⎪⎝⎭D .20132014(1)(1)11-+-=-+ 63、列判断正确的是……………………………………………..( )A .两个负有理数,大的离原点远B .两个有理数,绝对值大的离原点远C .a 是正数D .-a 是负数64、如果a b c +=,且a 、b 都大于c ,那么a 、b 一定是……..( )A .同为负数B .一个正数一个负数C .同为正数D .一个负数一个是零65、a ,b 是有理数,它们在数轴上的对应点的位置如下图所示:把,,,a a b b --按照从小到大的顺序 排列…………………………………………………………( )(A )-b <-a <a <b (B )a <-b <b <-a(C )-b <a <-a <b (D )a <-b <-a <b三、细心地计算下列各题.66、1.05.125)412.143318(⨯-⨯÷⨯- 67、12111110|11101211|-+-68、2234.0)2.1()211(922÷---⨯ 69、5]36)65121197(45[÷⨯+--70、)32()87()12787431(-+-÷-- 71、)41()35(12575)125(72-⋅-+⨯--⨯72、()()43223133213423-⨯⎥⎥⎦⎤⎢⎢⎣⎡---⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛- 73、4131211-+-74、()1-⎪⎭⎫ ⎝⎛-÷2131 75、)78(875.3-⨯÷-77、32)412()3()5.1(2-+---- 78、)314321(24-+-⨯-79、)115(3)511(13)511(5-÷--⨯+-⨯-80、-1 ×[(-2)-3²-)71(135-÷]-2 81、1564358-÷⨯82、22128(2)2⎛⎫-⨯-+÷- ⎪⎝⎭ 83、100()()222---÷3)2(32-+⎪⎭⎫ ⎝⎛-÷84、2012201313(2)(0.5)(6)714-⨯-+-⨯ 85、322012111()()(1)(2)(1)2216⎡⎤--÷--⨯-÷-⎢⎥⎣⎦86、222121(3)242433⎛⎫⎛⎫-÷⨯-+-⨯- ⎪ ⎪⎝⎭⎝⎭ 87、)12()4332125(-⨯-+88、 335(12)(2)5⎡⎤---+-⨯÷-⎢⎥⎣⎦ 89、5311520654⎛⎫⎛⎫⎛⎫⨯-⨯+⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭―(―3)90、6322112(0.5)(2)(3)0.5338⎡⎤---÷⨯-----⎣⎦91、 2531(1)1(7)768-÷-⨯⨯- 92、32520.2524113⎡⎤⨯--÷-++-⎢⎥⎣⎦()()()四、解答题93、已知|1|a +与|4|b -互为相反数,求b a 的值。

相关文档
最新文档