5立体图形的体积

合集下载

五年级下册数学长方体、正方体的体积教案精选5篇

五年级下册数学长方体、正方体的体积教案精选5篇

五年级下册数学长方体、正方体的体积教案精选5篇长方体的体积教学设计篇一一、教材分析:本课内容来自人教版小学数学五年级下册第三单元《长方体和正方体》。

长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。

学生以前虽然接触过长方体和正方体,但只是直观形象的认识,要上升到理性认识还有一定难度。

本单元前几课时已经认识了长方体和正方体的特征,学习了表面积的计算,。

这节课要在此基础上掌握体积的概念和常用的'体积单位,学会长方体和正方体的体积计算,掌握公式的意义和用法。

这是下一步学习体积单位进率的基础,更是以后学习容积的基础。

因此,长方体和正方体的体积计算必须掌握熟练。

二、教学目标:1、结合具体操作,引导学生探索并掌握长方体、正方体体积的计算公式,并能熟练地运用公式解决一些实际问题。

2、通过探索活动,培养学生的分析、概括能力,发展学生的空间观念。

3、培养学生数学的应用意识。

重点:掌握长方体、正方体体积的计算方法,并运用公式解决实际问题。

难点:理解体积公式的意义。

三、教法与学法学生是学习的主体,在儿童的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者,好奇心促使他们什么事都要自己去动手尝试。

而他们的思维特点又一般都是从感性认识开始,然后形成表象,再通过一系列的思维活动,上升到理性认识。

因此要引导学生通过自己的探索、实践,独立地发现问题、思考问题、解决问题,才能真正对所学内容有所领悟,进而内化为己有,使教学收到事半功倍的教学效果。

为了实现教学目标,本课以学生动手操作,合作交流与探究为主,教师同时配合多媒体课件演示,指导学生自主学习。

四、教学过程(一)激情引趣,揭示课题。

任何新知识都是以原有知识体系为依托,因此在复习中我设计了如下内容来为新课做好铺垫。

1.什么叫体积,常用的体积单位有哪些?用学具手势或其他方式描述出1立方厘米,1立方分米,1立方米分别有多大。

空间立体体积的计算方法(1)

空间立体体积的计算方法(1)

数学积分求体积方法概述摘要:定积分在大学数学学习及应用中起着非常重要的作用,一直以来定积分问题就是大学数学学习的重点,也是本科及研究生入学考试重点考察的内容之一,在我们的生活中起着很重要的作用!空间立体体积的计算在日常生活和学习中是十分重要的,对于规则的立体,中学里已有一些求解公式,对于不规则的立体,则需要用高等数学积分法加以解决。

本文总结了几种常见的利用积分求立体体积的方法及案例,通过所学积分学知识建立了更为普遍的立体体积的求解方法和计算公式,同时也介绍了相关的物理方法,并从具体的例题入手充分挖掘了空间立体体积计算的一些思想和方法。

关键词:积分; 空间立体体积; 积分区域; 被积函数引言空间立体体积的计算是生活中常见的问题,对于规则的空间立体体积的计算在中学时就有具体的计算公式,但对于不规则的空间立体体积则难以计算。

本文就主要针对各种形状的空间立体研究计算其体积的简便方法。

其实很多文献对空间立体体积的计算问题都进行了讨论,文献[1]就基本上包括了此问题的所有积分计算方法,并给出了相应的计算公式。

文献[2]-[9]分别从不同方面对各种方法进行了细致说明,并对个别特例进行了深入分析,给出了特殊的积分计算方法。

文献[10]则主要是对部分方法做出了总结,并列出了大量相关例题辅助理解。

以上文献充分体现出积分思想在解题中应用广泛,特别是在计算空间立体体积领域。

如果我们能够在积分学的基础上掌握空间立体体积的计算方法,则能使一些复杂的问题简单化,还易让人接受。

所以我们要分析掌握积分法,以便于解决与此相关的各种复杂问题,特别是各种空间立体体积的计算问题。

空间立体体积的计算是高等数学积分法在几何上的主要应用,其主要思想是将体积表示成定积分或重积分,研究空间立体,确定积分区域及被积函数,然后综合考虑立体特征、积分区域及被积函数特点,选择恰当的积分方法,使空间立体体积的计算简单明了。

本文在上述文献的基础上,总结了中学常见的空间立体体积的计算方法。

常用立体图形体积公式

常用立体图形体积公式

常用的立体图形体积公式:
长方体:V=abc(长方体体积=长×宽×高)
正方体:V=a³(正方体体积=棱长×棱长×棱长)
圆柱(正圆):V=πr²×h【圆柱(正圆)体积=圆周率×底半径×底半径×高】圆锥(正圆):V=πr²×h÷3【圆锥(正圆)体积=圆周率×底半径×底半径×高÷3】
角锥:V=rS×h÷3【角锥体积=底面积×高÷3】
柱体:V=sh(柱体体积=底面积×高)
表面积的公式
1、柱体
(1)棱柱
每个面的面积相加
)特殊长方体、正方体(
长方体:S=2(ab+ah+bh)
正方体:S=6a^2
(2)圆柱
S=2πr^2+2πrh
2、锥体
(1)棱锥
每个面的面积相加
(2)圆锥
S=πr^2+πrl
3、台体
(1)棱台
每个面的面积相加
(2)圆台
S=πr^2+πr′ ^2+πrl+πr′ l
4、球
S=4πr^2
提问人的追问2010-03-07 08:00 请问台体是什么呀??
回答人的补充2010-03-07 09:49。

立体图形的知识点整理

立体图形的知识点整理

立体图形的知识点整理一、长方体、正方体都有6个面,12条棱,8个顶点。

正方体是特殊的长方体。

二、圆柱的特征:一个侧面、两个底面、无数条高。

三、圆锥的特征:一个侧面、一个底面、一个顶点、一条高。

四、表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。

五、体积:物体所占空间的大小叫做物体的体积。

容器所能容纳其它物体的体积叫做容器的容积。

六、圆柱和圆锥三种关系:①等底等高:体积1︰3②等底等体积:高1︰3③等高等体积:底面积1︰3七、等底等高的圆柱和圆锥:①圆锥体积是圆柱的1/3,②圆柱体积是圆锥的3倍,③圆锥体积比圆柱少2/3,④圆柱体积比圆锥多2倍。

八、等底等高的圆柱和圆锥:锥1、差2、柱3、和4。

九、立体图形公式推导:【1】圆柱的侧面展开后得到一个什么图形?这个图形的各部分与圆柱有何关系?(圆柱侧面积公式的推导过程)①圆柱的侧面展开后一般得到一个长方形。

②长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。

③因为:长方形面积=长×宽,所以:圆柱侧面积=底面周长×高。

④圆柱的侧面展开后还可能得到一个正方形。

正方形的边长=圆柱的底面周长=圆柱的高。

【2】我们在学习圆柱体积的计算公式时,是把圆柱转化成以前学过的一种立体图形(近似的)进行推导的,请你说出这种立体图形的名称以及它与圆柱体有关部分之间的关系?①把圆柱分成若干等份,切开后拼成了一个近似的长方体。

②长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。

③因为:长方体体积=底面积×高,所以:圆柱体积=底面积×高。

即:V=Sh。

【3】请画图说明圆锥体积公式的推导过程?①找来等底等高的空圆锥和空圆柱各一只。

②将圆锥装满沙子,倒入圆柱中,发现三次正好装满,将圆柱里的沙子倒入圆锥中,发现三次正好倒完。

③通过实验发现:圆锥的体积等于和它等底等高的圆柱体积的三分之一;圆柱的体积等于和它等底等高的圆锥体积的三倍。

立体图形的基本知识与计算方法

立体图形的基本知识与计算方法

立体图形的基本知识与计算方法一、立体图形的概念与分类1.立体图形的定义:立体图形是具有三维空间的图形,它包括长度、宽度和高度三个维度。

2.立体图形的分类:a)几何体:根据面的形状和结构,几何体可以分为以下几种类型:•单体几何体:如球体、立方体、圆柱体、圆锥体等;•复合几何体:如长方体、棱柱、棱锥等;•旋转体:如圆环、圆台等。

b)非几何体:如圆柱面、圆锥面、球面等。

二、立体图形的计算方法1.体积的计算:a)单体几何体的体积计算公式:•球体:V = (4/3)πr³;•立方体:V = a³;•圆柱体:V = πr²h;•圆锥体:V = (1/3)πr²h。

b)复合几何体的体积计算公式:•长方体:V = lwh;•棱柱:V = Bh;•棱锥:V = (1/3)Bh。

c)旋转体的体积计算公式:•圆柱面:V = πR²h;•圆锥面:V = (1/3)πR²h;•球面:V = (4/3)πR³。

2.表面积的计算:a)单体几何体的表面积计算公式:•球体:S = 4πr²;•立方体:S = 6a²;•圆柱体:S = 2πrh + 2πr²;•圆锥体:S = πrl + πr²。

b)复合几何体的表面积计算公式:•长方体:S = 2(lw + lh + wh);•棱柱:S = 2(B + Ph);•棱锥:S = 2(B + P)。

c)旋转体的表面积计算公式:•圆柱面:S = 2πRh + 2πR²;•圆锥面:S = πrl + πR²;•球面:S = 4πR²。

三、立体图形的性质与特点1.立方体:立方体有六个面,均为正方形,对角线相等,体积和表面积的计算公式如上所述。

2.球体:球体是一种对称的立体图形,体积和表面积的计算公式如上所述。

3.圆柱体:圆柱体由两个平行的圆形底面和一个侧面组成,体积和表面积的计算公式如上所述。

【典型习题系列】人教版小学数学五年级下册典型习题系列之第三单元长方体和正方体的体积部分(原卷版)

【典型习题系列】人教版小学数学五年级下册典型习题系列之第三单元长方体和正方体的体积部分(原卷版)

五年级数学下册典型例题系列之第三单元长方体和正方体的体积部分(原卷版)编者的话:《2021-2022学年五年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。

典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。

专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。

本专题是第三单元长方体和正方体的体积部分。

本部分内容考察长方体和正方体的体积,编排从易到难,考点划分较多,共划分为十个考点,建议作为本章重点内容进行讲解,欢迎使用。

【考点一】直接求长方体和正方体的体积及反求。

【方法点拨】1.长方体的体积= 长×宽×高 V=abh长= 体积÷宽÷高 a=V÷b÷h宽= 体积÷长÷高 b=V÷a÷h高= 体积÷长÷宽 h= V÷a÷b2.正方体的体积= 棱长×棱长×棱长 V=a×a×a = a³读作“a的立方”表示3个a相乘,(即a·a·a)3.长方体或正方体底面的面积叫做底面积。

(横截面积相当于底面积,长相当于高)。

4.长方体的体积= 长×宽×高 = 底面积×高5.正方体的体积= 棱长×棱长×棱长=底面×棱长6.长(正)方体的体积用字母表示:V=Sh【典型例题1】某纸盒厂生产一种正方体纸板箱,棱长40厘米,它的体积是多少立方分米?【典型例题2】一个长2分米,宽4分米,高5分米的长方体木块,这个木块的体积是多少立方分米?【对应练习1】一个正方体玻璃容器的棱长是15厘米,体积是多少立方厘米?【对应练习2】希望小学有一间长10米,宽6米,高3.5米的教室。

立体图形的表面积和体积

立体图形的表面积和体积
明确表面积和体积的概念,会计算立
体图形的表面积和体积。 2、熟练掌握几种立体图形的表面积和体 积的计算公式。 3、形成初步的空间观念,运用所学知识 灵活解决生活中的实际问题。
学习提示 1、各种立体图形的表面积和体积 公式是什么?用字母怎样表示? 2、可以用文字、图表、图形、框 架图等自己喜欢的方式进行整理。
二、看图列式不计算求体积
12平方分米 24 32平方米 平 方 米
6 分 米
8米
24×8
1 12×6× 3
2 2
7分米
3 分 米
8 分 米
.
3.14 × 32 ×7
3.14 ×(6÷2)2 ×8
二、生活中的数学问题
1、 一个长方体的鱼池,长10米,宽6米, 深是2米。 ①这个这个鱼池的占地面积是多少平方米? 求底面面积 ②在池内的侧面和池底铺上瓷砖,瓷砖的面 积是多少平方米? 侧面(4个)+底面 ③鱼池内放满水后能盛放多少立方米的水? 求容积
算法(公式) 图形
项目
表面积
体积
一个立体图形所有面的面积总和叫做它的表面积。
一个立体图形所占空间的大小叫做它的体积。
a
h b
V= abh V=
a
3
a
a a
h
s
s
1
h
V= sh V=
3
sh
V = sh
正方体、长方体和圆柱有什 么相似的地方呢?
动画
va
V=abh
3
1 V= sh 3
下面的几种情况,你来判断一下分别求 得是什么?
1、油漆柱子的面积(圆柱的侧面积) 2、给教室粉刷白灰
(长方体6个面去掉上面,去掉门窗面积)

立体图形的体积计算

立体图形的体积计算
分割成无数个相同高度的圆柱体,再求和得到体积。 圆锥体体积公式推导:通过将圆锥体分割成无数个相同高度的圆锥体,再求和得到体积。 长方体体积公式推导:通过将长方体分割成无数个相同大小的小长方体,再求和得到体积。 球体体积公式推导:通过将球体分割成无数个相同大小的球壳,再求和得到体积。
圆柱体的体积计算 可以通过底面积乘 以高来实现,也可 以通过积分来求解。
圆柱体的体积计算在 日常生活和工程中有 着广泛的应用,如计 算圆柱形物体的容积 、液体容量等。
圆柱体的体积计算是 立体几何中一个重要 的知识点,对于理解 三维空间和立体图形 的性质具有重要意义 。
圆锥体的体积公式:V=1/3πr²h 圆锥体的体积计算方法:先求出底面积和高,再代入公式计算 圆锥体的体积计算实例:以实际题目为例,演示如何计算圆锥体的体积 圆锥体的体积计算注意事项:强调计算过程中需要注意的事项,如单位统一等
立体图形的体积计算
汇报人:XX
目录
立体图形的种类
立体图形体积计算 的基本公式
立体图形体积计算 的应用
立体图形体积计算 的注意事项
立体图形体积计算 的练习题
立体图形的种类
长方体的体积公式:V=a×b×c,其中a、b、c分别为长方体的长、宽、高。
体积计算中需要注意的要点:长、宽、高的尺寸单位需要统一,计算时按照顺序进行乘法运 算。
一个圆柱体的体积是 314立方厘米,它的底 面积是314平方厘米, 它的高是多少厘米?
一个圆锥体的体积是 12.56立方厘米,它的 底面积是12.56平方厘 米,它的高是多少厘米?
计算正方体的体积:边长为6cm,求体积。 计算长方体的体积:长为8cm,宽为4cm,高为3cm,求体积。 计算圆柱体的体积:底面半径为4cm,高为5cm,求体积。 计算圆锥体的体积:底面半径为6cm,高为8cm,求体积。

小学五年级-奥数-体积问题

小学五年级-奥数-体积问题

=五年级奥数题(立体图形的体积)1、小学数学奥林匹克决赛)一个长方体木块,从下部和上部分别截去高为3厘米和2厘米的长方体后,便成为一个正方体,表面积减少了120平方厘米,原来长方体的体积是立方厘米.2(1)有一个正方体,如果高增加4cm,就成为一个长方体,这个长方体的表面积正好比原正方体的表面积增加80平方cm,求原正方体的体积。

(2)一个长方体的高如果增加2cm,就成为一个正方体,这时表面积就比原来增加了48平方cm。

原来长方体的体积是多少?3(第六届“迎春杯”决赛)一个长方体的各条棱长的和是48厘米,并且它的长是宽的2倍,高与宽相等,那么这个长方体的体积是______ 立方厘米.4、(第十届迎春杯刊赛)一个长方体的表面积是33.66平方分米,其中一个面的长是2.3分米,宽是2.1分米,它的体积是_____立方分米.(结果以分数形式出现)5、在棱长为3cm的正方体木块的每个面的中心上打一个直穿木块的洞,洞口呈边长为1cm的正方形(见右图)。

求挖洞后木块的体积。

6(第三届华杯赛复赛)如图,从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长为2厘米的正方形,然后沿虚线折叠成长方体容器.这个容器的体积是多少立方厘米?7.一个长方体的棱长总和是48cm,己知长是宽的1.5倍,宽是高的2倍,求它的体积。

8.一个正方体木块的表面积是96平方cm,把它锯成体积相等的8个正方体小木块,每个小木块的表面积是多少?1.解答:所成立方体的棱长为:120÷(3+2)÷4=6(厘米),所以原长方体的体积为:6×6×(6+3+2)=396(立方厘米)。

3解答:依题意,这个长方体的长、宽、高之和是48÷4=12(厘米),于是它的宽与高都等于12÷(2+1+1)=3(厘米),它的长是3× 2=6厘米.所以这个长方体的体积是6×3×3=54(立方厘米).4解答:长方体的高是: (33.66-2.1×2.3×2)÷2÷(2.1+2.3)= 30/11(分米).长方体的体积是2.1×2.3 ×=(立方分米).5.解答:33-12×3×3+2×13=20cm3。

第四讲立体图形的体积 小学数学五年级下册 竞赛试题及答案 人教版

第四讲立体图形的体积 小学数学五年级下册 竞赛试题及答案 人教版

第四讲立体图形的体积小学数学五年级下册竞赛试题及答案人教版基础班练习四1.(第三届小数报数学竞赛预赛)一个正方体的棱长扩大a倍,那么它的体积扩大__倍.解答:它的体积扩大a×a×a倍.2.如右图,有一个圆柱和一个圆锥,它们的高和底面直径都标在图上,单位是厘米.那么,圆锥体积与圆柱体积的比是多少?解答:圆锥的体积是,圆柱的体积是.所以,圆锥体积与圆柱体积的比是.3.(第三届华杯赛复赛)如图,从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长为2厘米的正方形,然后沿虚线折叠成长方体容器.这个容器的体积是多少立方厘米?解答:容器的底面积是:(13—4)×(9—4)=45(平方厘米),高为2厘米,所以容器的体积是:45×2=90(立方厘米).4.(第七届小数报数学竞赛决赛)一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是72平方厘米.在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块.这时水面高多少厘米?解答:把放入铁块后的玻璃杯看作一个底面如右图的新容器,底面积是:72—6×6=36(平方厘米),水的体积是:72×2.5=180(立方厘米),后来水面的高为:180÷36=5(厘米).5.用一块长30厘米,宽20厘米的长方形铁皮做圆柱形容器的侧面,再用另一块铁皮做底,问怎样做才能使这个圆柱形容器的容积为最大?6.(第二届希望杯第1试)如果一个边长为2厘米的正方体的体积增加208立方厘米后仍是正方形,则边长增加______厘米。

解答:边长为2厘米的正方体的体积是2×2×2=8立方厘米,增加208后是8+208=216立方厘米。

因为216=6×6×6,所以边长增加了6-2=4厘米。

提高班练习四1.(第三届小数报数学竞赛预赛)一个正方体的棱长扩大a倍,那么它的体积扩大__倍.解答:它的体积扩大a×a×a倍.2.有大、中、小3个正方形水池,它们的内边长分别是6厘米、3厘米、2厘米.把两堆碎石分别沉没在中、小水池的水里,两个水池的水面分别升高了6米和4米.如果将这两堆碎石都沉没在大水池的水里,大水池的水面升高了多少厘米。

五年级上册奥数试题-第9讲.立体图形的体积(含解析)人教版

五年级上册奥数试题-第9讲.立体图形的体积(含解析)人教版

1.掌握立体图形的体积计算常用公式.2.掌握求不规则立体图形体积的常用方法.本讲立体图形的体积计算,与第七讲的立体图形的表面积,是姐妹篇.对于小学几何而言,立体图形的体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试(比如仁华的入学考试,几乎每年必考)都很重视对立体图形的考查.其中,尤其要以“不规则立体图形的体积”为考查重点.立体图形的体积计算常用公式:立体图形示例体积公式相关要素长方体V abh=V Sh=三要素:a、b、h二要素:S、h正方体3V a=V Sh=一要素:a二要素:S、h 第9讲立体图形的体积圆柱体V=Sh二要素:S (或r 、d 、C ) 和h圆锥体V=13Sh 二要素:S 、h不规则形体的体积常用方法:一、 化虚为实法 二、 切片转化法 三、 先补后去法 四、 实际操作法 五、 画图建模法【例 1】 (第五届《小数报》数学竞赛决赛)一个长方体的宽和高相等,并且都等于长的一半(如图).将这个长方体切成12个小长方体,这些小长方体的表面之和为600平方分米.求这个大长方体的体积.【分析】 设大长方体的宽(高)为a 分米,则长为2a ,右(左)面积为2a ,其余面的面积为22a ,根据题意, 22222862600a a a ⨯++⨯= 所以225a =,5a =. 大长方体的体积2555250=⨯⨯⨯=(立方分米).[铺垫] (第十五届“迎春杯”决赛)把一根长2.4米的长方体木料锯成5段(如图),表面积比原来增加了96平方厘米.这根木料原来的体积是_____立方厘米.2.4米[分析] 96812÷=(平方厘米),122402880⨯=(立方厘米).所以这根木料原来的体积为2880立方厘米.【例 2】 (第九届“祖冲之杯”数学邀请赛)有一个长方体的盒子,从里面量长40厘米,宽12厘米,高7厘米,在这个盒子里放长5厘米,宽4厘米,高3厘米的长方体木块.最多可放 块.【分析】 下图表明34⨯的长方形可以填满712⨯的长方形.于是534⨯⨯的长方体可以填满40712⨯⨯的长方体,即盒子中最多可放这种长方体40712(534)56⨯⨯÷⨯⨯=(个).规则立体图形体积的计算444433333[巩固](第九届“迎春杯”数学竞赛决赛)把1个棱长是3厘米的正方体分割成若干个小的正方体,这些小正方体的棱长必须是整厘米数.如果这些小正方体的体积不要求都相等,那么最少可分割成个小正方体.[分析]因为小正方体的棱长只可能是2厘米或1厘米.必须分割出棱长是2厘米的小正方体才能使数量减少.显然,棱长是3厘米的正方体只能切割出一个棱长为2厘米的小正方体,剩余部分再切割出33322227819+=(个)⨯⨯-⨯⨯=-=个棱长是1厘米的小正方体,这样总共可以分割成11920小正方体.现有一张长40厘米、宽20厘米的长方形铁皮,请你用它做一只深是5厘米的长方体无盖铁皮盒(焊接处及铁皮厚度不计,容积越大越好),你做出的铁皮盒容积是多少立方厘米?【分析】如图,在4020⨯的长方形铁皮的四角截去边长5厘米的正方形铁皮,然后焊接成长方形无盖铁皮盒.这个铁皮盒的长405530=--=(厘米).宽205510=--=(厘米),高5=(厘米). 体积301051500=⨯⨯=(立方厘米).如图,在4020⨯长方形铁皮的左侧两角上割下 边长5厘米的正方形(二块),紧密焊接到右侧的中间部分,这样做成的无盖铁皮盒的长40535=-=(厘米),宽205510=--=(厘米), 高5=(厘米),体积351051750=⨯⨯=(立方厘米).如图,在4020⨯的长方形铁皮的左右两侧各割 下一条宽为5厘米的长方形铁皮(共二块),分 别焊到上、下的中间部分,这样做成的无盖铁 皮盒的长40555520=----=(厘米), 宽20=(厘米),高5=(厘米),体积202052000=⨯⨯=(立方厘米). 因此,最后一种容积最大.[铺垫] (第三届“华杯赛”复赛)如图从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长2厘米的正方形,然后,沿虚线折叠成长方体容器.这个容器的体积是多少立方厘米?[分析] 容器的底面积是(134)(94)45-⨯-=(平方厘米),高为2厘米,所以容器的体积是,45290⨯=(立方厘米).【例 3】 (第七届“华杯赛”决赛)用大小相等的无色透明玻璃小正方体和红色玻璃小正方体拼成一个大正方体1111ABCD A B C D -(如图),大正方体内的对角线1AC ,1BD ,1CA ,1DB 所穿的小正方体都是红色玻璃小正方体,其它部分都是无色透明玻璃小正方体,小红正方体共用了401个,问:无色透明小正方体用了多少个?D 1C 1B 1A 1D CBA【分析】 1AC 、1BD ,1CA ,1DB ,四条对角线都穿过在正中央的那个小正方体.除此而外,每条对角线穿过相同的小正方体,所以每条对角线穿过401111014-+=个小正方体这就表明大正方体的每条边由101个小正方体组成.因此大正方体由3101个小正方体组成,其中无色透明的小正方体有310140110303014011029900-=-=. 即用了1029900个无色透明的小正方体.【例 4】 小明用若干个大小相同的正方体木块堆成一个几何体,这个几何体从正面看如下图左,从上面看如下图右.那么这个几何体至少用了 块木块.【分析】 这道题很多同学认为答案是26块.这是受思维定势的影响,认为右图中每一格都要至少放一块.其实,有些格不放,看起来也是这样的.如右图,带阴影的3块不放时,小正方体块数最少,为23块.[拓展] 右图是由22个小正方体组成的立体图形,其中共有多少个大大小小的正方体?由两个小正方体组成的长方体有多少个?[分析] 正方体只可能有两种:由1个小正方体构成的正方体,有22个;由8个小正方体构成的222⨯⨯的正方体,有4个. 所以共有正方体22426+=(个). 由两个小正方体组成的长方体,根据摆放的方向可分为下图所示的上下位、左右位、前后位三种,其中上下位有13个,左右位有13个,前后位有14个,共有13131440++=(个).【例 5】 有黑白两种颜色的正方体积木,把它摆成右图所示的形状,已知相邻(有公共面)的积木颜色不同,标A 的为黑色,图中共有黑色积木多少块?【分析】 分层来看,如下图(切面平行于纸面)共有黑色积木17块.A不规则立体图形体积的计算[拓展]这个图形,是否能够由112⨯⨯的长方体搭构而成?[分析]每一个112⨯⨯的长方体无论怎么放,都包含了一个黑色正方体和一个白色正方体,而黑色积木有17块,白色积木有15块,所以该图形不能够由112⨯⨯的长方体搭构而成.【例 6】一个酒瓶里面深30cm,底面内直径是10cm,瓶里酒深15cm.把酒瓶塞紧后使其瓶口向下倒立这时酒深25cm.酒瓶的容积是多少?(π取3)253015【分析】观察前后,酒瓶中酒的总量没变,即瓶中液体体积不变.当酒瓶倒过来时酒深25cm,因为酒瓶深30cm,这样所剩空间为高5cm的圆柱,再加上原来15cm 高的酒即为酒瓶的容积.酒的体积:101015π375π22⨯⨯=瓶中剩余空间的体积1010 (3025)π125π22-⨯⨯=酒瓶容积:375π125π500π1500(ml)+==[巩固]输液100毫升,每分钟输毫升.如图,请你观察第12分钟时图中的数据,问:整个吊瓶的容积是多少毫升?[分析]100毫升的吊瓶在正放时,液体在100毫升线下方,上方是空的,容积是多少不好算.但倒过来后,变成圆柱体,根据标示的格子就可以算出来.由于每分钟输毫升,12分钟已输液2.51230⨯=(毫升),因此开始输液时液面应与50毫升的格线平齐,上面空的部分是50毫升的容积.所以整个吊瓶的容积是10050150+=(毫升).【例 7】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深10厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【分析】8010(8016)12.5⨯÷-=,因为12.512>,所以此时水已淹没过铁块,8010(8016)1232⨯--⨯=,32800.4÷=,所以现在水深为120.412.4+=厘米[铺垫]一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深8厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?[分析] 根据等积变化原理:用水的体积除以水的底面积就是水的高度.(法1):808(8016)6406410⨯÷-=÷=(厘米);(法2):设水面上升了x 厘米.根据上升部分的体积=浸入水中铁块的体积列方程为:8016(8)x x =+,解得:2x =,8210+=(厘米). (提问“圆柱高是15厘米”,和“高为12厘米的长方体铁块”这两个条件给的是否多余?)[拓展] 一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深13厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【分析】 玻璃杯剩余部分的体积为80(1513)160⨯-=立方厘米,铁块体积为1612192⨯=立方厘米,因为160192<,所以水会溢出玻璃杯,所以现在水深就为玻璃杯的高度15厘米总结铁块放入玻璃杯会出现三种情况①放入铁块后,水深不及铁块高.②放入铁块后,水深比铁块高但未溢出玻璃杯,③水有溢出玻璃杯.小故事 教师可以在此穿插一个关于阿基米德测量黄金头冠的体积的故事.一天国王让工匠做了一顶黄金的头冠,不知道工匠有没有掺假,必须知道黄金头冠的体积是多少,可是又没有办法来测量.(如果知道体积,就可以称一下纯黄金相应体积的重量,再称一下黄金头冠的重量,就能知道是否掺假的结果了)于是,国王就把测量头冠体积的任务交给他的大臣阿基米德.(小朋友们,你们能帮阿基米德解决难题吗?)阿基米德苦思冥想不得其解,就连晚上沐浴时还在思考这个问题. 当他坐进水桶里,看到水在往外满溢时,突然灵感迸发,大叫一声:“我找到方法了……”,就急忙跑出去告诉别人,大家看到了一个还光着身子的阿基米德.他的方法是:把水桶装满水,当把黄金头冠放进水桶,浸没在水中时,所收集的溢出来的水的体积正是头冠的体积.【例 8】 (武汉明心杯数学挑战赛)如图所示,一个555⨯⨯的立方体,在一个方向上开有115⨯⨯的孔,在另一个方向上开有215⨯⨯的孔,在第三个方向上开有315⨯⨯的孔,剩余部分的体积是多少?表面积为多少?【分析】 求体积:开了315⨯⨯的孔,挖去31515⨯⨯=,开了115⨯⨯的孔, 挖去11514⨯⨯-=;开了215⨯⨯的孔, 挖去215(22)6⨯⨯-+=,剩余部分的体积是:555(1546)100⨯⨯-++=.(另解)将整个图形切片,如果切面平行于纸面,那么五个切片分别如图:得到总体积为:22412100⨯+=. 求表面积:表面积可以看成外部和内部两部分.外部的表面积为55612138⨯⨯-=,内部的面积可以分为前 后、左右、上下三个方向,面积分别为()22515121320⨯⨯+⨯-⨯-⨯=、 ()2153513132⨯⨯+⨯-⨯-=、()2151511214⨯⨯+⨯-⨯-=,所以总的表面积为 138203214204+++=.(另解)运用类似于三视图的方法,记录每一方向上的不同位置上的裸露正方形个数: 前后方向:32上下方向:30 左右方向:40总表面积为()⨯++=.2323040204 Array[巩固]一个由125个同样的小正方体组成的大正方体,从这个大正方体中抽出若干个小正方体,把大正方体中相对的两面打通,右图就是抽空的状态.右图中剩下的小正方体有多少个?[分析]解法一:(用“容斥原理”来解)由正面图形抽出的小正方体有5525⨯=个,由侧面图形抽出的小正方体有5525⨯=个,由底面图形抽出的小正方体有4520⨯=个,正面图形和侧面图形重合抽出的小正方体有1221228⨯+⨯+⨯=个,正面图形和底面图形重合抽出的小正方体有⨯+⨯+⨯=个,三个面的⨯+⨯=个,底面图形和侧面图形重合抽出的小正方体有121122713227图形共同重合抽出的小正方体有4个.根据容斥原理,252520877452++---+=,所以共抽出了52个小正方体.1255273-=,所以右图中剩下的小正方体有73个.注意这里的三者共同抽出的小正方体是4个,必须知道是哪4块,这是最让人头疼的事.但你可以先构造空的两个方向上共同部分的模型,再由第三个方向来穿过“花墙”.这里,化虚为实的思想方法很重要.解法二:(用“切片法”来解)可以从上到下切五层,得:(1)从上到下五层,如图:(2)或者,从右到左五片,如图:请注意这里的挖空的技巧是:先认一种方向.比如:从上到下的每一层,首先都应该有第一层的空四块的情况,即——如果挖第二层:第(1)步,把中间这些位置的四块挖走如图:第(2)步,把从右向左的两块成线地挖走.(请注意挖通的效果就是成线挖去),如图:第(3)步,把从前向后的一块(请注意跟第二层有关的只是一块!)挖成线!如图:总结一下“切片法”: 全面打洞(例如本题,五层一样)挖块成线(例如本题,在前一次的基层上,一条线一条线地挖). 这里体现的思想方法是:化整为零,有序思考!【例10】 如图,已知A 、B 、C 分别是相邻的三条棱的中点.沿三个中点连成一个正三角形,把原来的立方体切掉一角.如果原来的立方体棱长为8,求:⑴切掉的小部分的体积是多少?⑵剩下的大部分的体积是多少?【分析】 本题应用相关体积公式.⑴2111244103323V Sh ==⨯⨯⨯=锥⑵3185013V V =-=剩锥⑴教师可以沿三个不相邻的顶点再切一下,求小的图形与大的图形的体积各是多少?小的是:21118885323⨯⨯⨯=;大的是:24263.⑵教师可以提问:去掉一个角上的部分后,它的体积是原立方体体积的几分之几?【例11】 如图,是一个正方体,将正方体的A 、C 、B '、D '四个顶点两两连接就构成一个正四面体,已知正方体的边长为3,求正四面体的体积.D′C′B′A′DC BA【分析】 这个正四面体可以看作由正方体切掉A '、C '、B 、D 四个角后得到的,如图所示:B C AD′D′D′D′C′B′B′B′B′A′DC CBA AA A所以正四面体的体积1133343332718932⎛⎫=⨯⨯-⨯⨯⨯⨯⨯=-= ⎪⎝⎭.【例12】 如图是一个四棱锥的展开图,该展开图由正三角形和正方形构成,其中正方形的面积为8平方厘米,那么该四棱锥的体积为多少?【分析】 知道四棱锥的底面面积,只要知道四棱锥的高就能求得四棱锥的体积.将四棱锥沿对角线和顶点构成的平面剖开,剖面是一个三角形.该三角形的斜边等于正方形的对角线,直角边等于正方形和等边三角形的边长,所以三角形是一个等腰直角三角形,它的高等于对角线的一半,根据对称性,这条高也等于四棱锥的高.本题,我们要想知道四棱锥的高,如果仅仅通过操作法,可能无法准确得知.我们隆重推出“画图建模法”,比如:请注意在一个正方体中如何作等边三角形,这一经验,会让我们“类比联想”到,如何让四个等边三角形围绕一个正方形,得到四棱锥.另外,这个四棱锥的高正好等于原正方体棱长的一半.根据小正方形面积是8推得,大正方形面积是小正方形的2倍, 所以大正方形面积是16,所以大正方体的边长是4. 所以小正方体的棱长为2. 即四棱锥的高度为2.四棱锥的体积为168233⨯÷=立方厘米.1.(第十一届“迎春杯”)有一个长方体,长是宽的2倍,宽是高的3倍;长的12与高的13之和比宽多1厘米.这个长方体的体积是 立方厘米.【分析】 长的12即宽,所以高的13就是1厘米,高是3厘米,宽是339⨯=厘米,长是9218⨯=厘米,体积是3918486⨯⨯=(立方厘米).2. (第六届“华杯赛”决赛口试)某工人用薄木板钉成一个长方体的邮件包装箱,并用尼龙编织条(如图所示)在三个方向上的加固.所用尼龙编织条分别为365厘米,405厘米,485厘米.若每个尼龙加固时接头重叠都是5厘米.问这个长方体包装箱的体积是多少立方米?【分析】 长方体中高+宽1(3655)1802=-=, ⑴高+长1(4055)2002=-=, ⑵长+宽1(4855)2402=-=, ⑶⑵-⑴:长-宽20=, ⑷ ⑷+⑶:长130=,从而宽110=, 代入⑴得高70=. 所以长方体体积为701101301001000⨯⨯=(立方厘米) 1.001=(立方米)3. 有三个大小一样的正方体,将接触的面用胶粘接在一起成图示的形状,表面积比原来减少了16平方厘米.求所成形体的体积.【分析】 三个小正方体拼接成图中的样子,减少了小正方体的4个侧面正方形的面积,表面积减少了16平方厘米,每个正方形侧面为1644÷=平方厘米,每个正方体棱长为2厘米,三个小正方体体积(即所成形体的体积)是33224⨯=立方厘米.4. 一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是______.【分析】 由已知条件知,第二个图上部空白部分的高为752cm -=,从而水与空着的部分的比为4:22:1=,由图1知水的体积为104⨯,所以总的容积为()4022160÷⨯+=立方厘米. 5.有许多相同的立方体,每个立方体的六个面上都写着同一个数字(不同的立方体可以写相同的数字)先将写着2的立方体与写着1的立方体的三个面相邻,再将写着3的立方体写着2的立方体相邻(见左下图).依这样构成右下图所示的立方体,它的六个面上的所有数字之和是多少?高宽长33223323322323111111【分析】 第一层如下图,第二层、第三层依次比上面一层每格都多1(见下图).765434565第三层654323454第二层第一层343212345上面的9个数之和是27,由对称性知,上面、前面、右面的所有数之和都是27.同理,下面的9个数之和是45,下面、左面、后面的所有数之和都是45.所以六个面上所有数之和是(2745)3216+⨯=.6.把一个长方体形状的木料分割成3小块,使这3小块的体积相等.已知这长方体的长为15厘米,宽为12厘米,高为9厘米.分割时要求只能锯两次,如图1就是一种分割线的图.除这种分割的方法外,还可有其他不同的分割方法,请把分割线分别画在图2的各图中.图1图2【分析】 分割方法很多,如图3,给出以下9种分割方法:图3低地的价值加州海岸的一座城市中,所有适合建筑的土地在不断的开发中都已经被开发,并予以利用,城市的地皮不断飙升着。

五年级图形知识点归纳总结

五年级图形知识点归纳总结

五年级图形知识点归纳总结在五年级的数学学习中,图形是一个重要的知识点。

通过学习图形的性质、分类和特征等内容,可以帮助学生提高空间意识和观察能力。

本文将对五年级图形知识点进行归纳总结,以帮助学生更好地理解和掌握这些内容。

一、平面图形1.1 三角形三角形是由三条边和三个内角组成的图形。

根据边长的不同,可以分为等边三角形、等腰三角形和普通三角形。

根据角度的不同,可以分为锐角三角形、钝角三角形和直角三角形。

三角形的内角和为180度。

1.2 矩形矩形是由四条边和四个内角组成的图形,相邻的内角互补,即相邻的内角和为180度。

矩形所有内角均为直角,且对立边相等。

矩形的周长可以通过公式:周长 = 2×(长+宽) 计算。

1.3 正方形正方形是一种特殊的矩形,它的四条边和四个内角都相等。

正方形的周长可以通过公式:周长 = 4×边长计算。

1.4 圆形圆形是由一条闭合曲线组成的图形,其中任意两点到圆心的距离相等,这个距离被称为半径。

圆形的周长可以通过公式:周长= 2×π×半径或周长= π×直径计算,其中π取3.14。

二、立体图形2.1 立方体立方体是由六个正方形的面组成的立体图形。

它有八个顶点、十二条边和六个面。

立方体的体积可以通过公式:体积 = 边长 ×边长 ×边长计算。

2.2 正方体正方体是一种特殊的立方体,它的六个面都是正方形。

正方体的体积可以通过公式:体积 = 边长 ×边长 ×边长计算。

2.3 圆柱体圆柱体是由一个圆形底面和一个平行于底面的圆形顶面以及连接两个底面的侧面组成的立体图形。

圆柱体的体积可以通过公式:体积 = 圆面积 ×高计算。

2.4 圆锥体圆锥体是由一个圆形底面和一个顶点连接底面上所有点的侧面组成的立体图形。

圆锥体的体积可以通过公式:体积 = 圆锥底面积 ×高 ÷ 3 计算。

2.5 球体球体是由所有离球心距离相等的点构成的立体图形。

北师大版小学数学六年级下册 总复习2-5 立体图形的表面积和体积 教学课件

北师大版小学数学六年级下册 总复习2-5  立体图形的表面积和体积 教学课件
上课时衣着要整洁,不得穿无袖背心、吊带 上衣、超短裙、拖鞋等进入教室。
尊敬谢老师,服谢从任课老师大管理。 家
不做与课堂教学无关的事,保持课堂良好纪 律秩序。
听课时有问题,应先举手,经教师同意后, 起立提问。
上课期间离开教室须经老师允许后方可离开。
上课必须按座位表就坐。
5×5×6=150(平方厘米) 答:做出这个化妆品盒至少需要150平方厘米纸板。
一个游泳池从里面量长是80米,宽是60米,深是
2.5米,在它的内壁四周和底部涂抹水泥,如果每平
方米需要水泥6千克,那么一共需要水泥多少千克?
(80×2.5×2+60×2.5×2+80×60)×6
=(400+300+4800)×6 =5500×6 =33000(千克) 答:一共需要水泥33000千克。
变,则体积扩大到原来的( 4 )倍。
7.把12立方分米的水倒入一个长3分米、宽2分米、
高4分米的长方体玻璃缸内,水面距缸口有( 2 ) 分米。
8.一个正方体的棱长总和是60厘米,那么它的表
面积是( 150 )平方厘米,体积是( 125 )立方厘米。
9.把一根长48厘米的铁丝做成一个长方体的框架
(接头处不计)。已知长、宽、高的比为3∶2∶1, 则这个长方体最大一个面的面积是( 24 )平方 厘米。
10.一个圆柱的侧面展开图是正方形,已知它的底 面周长是31.4厘米,则它的高是( 31.4 )厘米。
二、我是聪明的小法官
1.两个圆柱的侧面积相等,它们的底面周长也一
定相等。 ( × )
2.正方体、长方体、圆柱体都可以用它们各自
的底面积乘高求得体积。( √ )
3.圆柱体的底面半径扩大到原来的2倍,高也扩大

立体图形的体积

立体图形的体积

圆锥体的体积公式:V=1/3*π*r^2*h 其中,V表示圆锥体的体积,π表示圆周率,r表示圆锥体的底面半径,h表示圆锥体的高
圆锥体的体积计算公式适用于所有圆锥体,无论其底面是圆形、椭圆形还是其他形状
圆锥体的体积计算公式在实际生活中有很多应用,例如计算圆锥形物体的体积、计算圆锥形物体的重量等
球体的体积公式: V=4/3πr^3
立体图形的表面积 可以通过计算其各 个面的面积之和得 到。
PART THREE
立方体的体积计算公式为:V=a^3,其中a为立方体的边长 立方体的体积可以通过测量其边长来计算 立方体的体积也可以通过其对角线长度来计算,公式为:V=(对角线长度/2)^3 立方体的体积还可以通过其表面积和密度来计算,公式为:V=表面积*密度
XXX,a click to unlimited possibilities
汇报人:XXX
CONTENTS
PART ONE
PART TWO
立体图形是三维空间中的图形,具有长度、宽度和高度三个维度。 立体图形可以分为两类:有规则的立体图形和无规则的立体图形。 有规则的立体图形包括:立方体、圆柱体、球体等。 无规则的立体图形包括:不规则形状的物体、自然物体等。
长方体的体积计算公式为:V=abc a、b、c分别表示长方体的长、宽、高 长方体的体积等于长、宽、高的乘积 长方体的体积计算公式适用于所有长方体
圆柱体的体积公式:V=πr^2h 其中,V代表体积,π代表圆周率,r代表半径,h代表高 圆柱体的体积可以通过公式计算得出 圆柱体的体积计算公式在实际生活中有广泛的应用
其中,V表示球体 的体积,r表示球 体的半径
球体的体积与半径 的关系:半径越大 ,体积越大
球体的体积与表面 积的关系:体积越 大,表面积越大

五年级几何体的表面积与体积的计算完整

五年级几何体的表面积与体积的计算完整

五年级几何体的表面积与体积的计算(可以直接使用,可编辑实用优秀文档,欢迎下载)空间与图形教师辅导讲义——立体图形的知识与应用知识要点长方体、正方体、圆柱体、圆锥体的表面积及体积1.表面积:物体表面面积的总和,叫做物体的表面积。

表面积通常用S 表示。

常用面积单位是平方千米、平方米、平方分米、平方厘米。

2.体积:物体所占空间的大小,叫做物体的体积。

体积通常用V 表示。

常用体积单位是立方米、立方分米、立方厘米。

3.容积:箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积或容量。

常用容积单位是升、毫升。

4.体积与容积单位之间的换算:1立方分米=l 升,1立方厘米=l 毫升。

5.体积和容积的异同点 容积的计算方法跟体积的计算方法相同,但要从容器的里面量长、宽、高,而计算体积要从物体的外面量长、宽、高。

计量体积用体积单位,计量容积除了用体积单位外,还可以用容积单位升和毫升。

6. 立体图形的表面积、侧面积和体积计算公式相同点不同点 面棱顶点面的特点 面的大小 棱长 长方体6个12条8个6个面一般都是长方形,也可能有两个相对的面是正方形相对的面的面积相等每一组互相平行的四条棱的长度相等正方体6个12条8个6个面都是相等的正方形6个面的面积都相等12条棱长的长度都相等精典题型分析1、一个零件形状大小如下图:算一算,它的体积是多少立方厘米,表面积是多少平方厘米。

(单位:厘米)练习:学校生物小组做了一个昆虫箱(如图)。

昆虫箱的上、下、左、右面是木板,前、后面装纱网。

①制作这样一个昆虫箱,至少需要多少平方厘米的木板?②制作这样一个昆虫箱,至少需要多少平方厘米的纱网?2、在一个长15分米,宽12分米的长方体水箱中,有10分米深的水。

如果在水中沉入一个棱长为30厘米的正方体铁块,那么,水箱中水深多少分米?练习1:一个长方体的玻璃缸内有一些水,水面距离上沿0.6分米(如图)。

准备在缸内放入一块体积是60立方分米的假山石(假山石能全部浸在水中),水会溢出吗?如果会溢出,溢出多少立方分米?练习2:一个正方体玻璃容器,从里面量棱长是2dm。

立体形的表面积与体积知识点总结

立体形的表面积与体积知识点总结

立体形的表面积与体积知识点总结在几何学中,我们研究的不仅仅是平面图形,还包括立体形状。

对于立体形状,我们需要了解表面积与体积的概念和计算方法。

本文将对立体形的表面积与体积的知识点进行总结。

一、立体形的表面积1. 什么是表面积?立体形的表面积是指该立体形所覆盖的总面积。

对于正多面体而言,表面积由各个面的面积之和组成。

2. 立体形的表面积计算方法(1)长方体的表面积 = 2×(长×宽 + 长×高 + 宽×高)(2)正方体的表面积 = 6×(边长×边长)(3)圆柱体的表面积 = 2×圆底面积 + 圆周长×高(4)圆锥体的表面积 = 圆底面积 + 直角三角形的面积(底边为圆周长,斜边为斜高)(5)球体的表面积= 4×π×半径×半径3. 表面积计算的注意事项在计算立体形的表面积时,需要注意单位的一致性。

对于长方体和正方体等边长单位相同的立体形,可以直接进行计算。

对于圆柱体、圆锥体以及球体等弧长、半径的单位应相一致,若不同需要进行转换。

二、立体形的体积1. 什么是体积?立体形的体积是指该立体形所占据的空间大小。

对于规则立体形而言,体积由底面积乘以高度得到。

2. 立体形的体积计算方法(1)长方体的体积 = 长×宽×高(2)正方体的体积 = 边长×边长×边长(3)圆柱体的体积= π×半径×半径×高(4)圆锥体的体积= 1/3×π×半径×半径×高(5)球体的体积= 4/3×π×半径×半径×半径3. 体积计算的注意事项计算立体形的体积时,同样需要注意单位的一致性。

对于立方体等边长单位相同的立体形,可以直接进行计算。

对于圆柱体、圆锥体以及球体等弧长、半径的单位应相一致,若不同需要进行转换。

立体图形的体积

立体图形的体积

长方体的体积:
长方体的体积正好等于它的长、宽、高的乘积。
高 厘 米 3
长5厘米
长方体的体积=长×宽×高
正方体的体积:
因为正方体是长、宽、 高都相等的长方体,所以
棱长4厘米 棱 长 厘 米 4
正方体的体积=棱长×棱长×棱长
圆柱的体积:
长方体的底面积等于圆柱的 底面积
高等于圆柱的 ,


=底面积×高 长方体体积=底面积×高 圆柱体积
=
圆锥的体积:
圆锥的体积正好等 于与它等底等高的圆柱 体积的三分之一。
即 V 圆锥 1 V 3 圆柱
1 Sh 3
因为 V圆柱=Sh
所以 V 圆锥
像这些形状不规则的物体,怎么求它们的体积呢?
西 红 柿
土 豆

石 块
课堂活动(容器壁厚忽略不计)
一、动手操作用已学的立体图形体积公式求物体的体积:
学习目标 学习目标
1. 加深学生对已学过的体积公式的理解和掌握,能 正确计算物体的体积。 2. 进一步了解体积计算公式的推导过程以及相互之 间的联系,使学生对所学知识进一步系统化,进一步培 养学生的空间观念和渗透转化的数学思想。
3. 充分让学生参与学习的过程,培养学生之间相互合 作、动手操作,解决生活中的数学问题的能力。
讨论:1、它们的体积公式分别是什么? 2、这些体积公式有什么联系?
3、这些公式是怎样推导出来的?
ห้องสมุดไป่ตู้
h a b a a
a r
h
h r
立体图形的体积计算公式:
长方体体积 正方体体积 圆柱体体积 圆锥体体积
V=abh V=sh V=sh
V=a³ V=∏r²h V=sh V=sh
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:立体图形的体积(第六2单元第5课时)主备人:总第个教案
教学过程设计
注:二次备课用红笔在电子稿上修改
问题,下面让我们一起走进生活。

(点击课件)
1.一个长方体汽油桶,长是3.6分米,宽是2分米,高5分米,用它来装汽油,最多装多少升?
2.一个沙坑长5 米,宽2米,现在要往沙坑里填0.4米厚的沙,如果每立方米沙重1.5吨,需要多少吨沙子?
3. 在晒谷场上有一个圆锥形小麦堆,底面周长是12.56米,高1.2米。

这堆小麦的体积是多少立方米?
如果每立方米小麦约重700千克,这堆小麦约重多少吨?(得数保留一位小数)
把这些小麦装进一个圆柱形粮囤中,粮囤的底面积是 2.4平方米,高2米,请你算算粮囤能装下晒谷场上的这堆小麦吗?(你能想出几种不同的方法吗?)
(四)极限联想
师:从立体王国中出来,让我们展开思维的翅膀,到知识的天空中翱翔,迎接新的挑战吧。

1、看画面,听录音:把如图所示的三角板以长8
厘米的直角边为轴旋转,想象一下,旋转起来的图
形是什么形状?你能求出它的体积吗?
2、一块长方形铁皮,长5
分米,宽3分米,象右图
那样从4个角剪掉边长是
0.5分米的正方形,然后做成盒子。

这个
盒子的容积有多少升?
课堂作业:练习十九第13-16题
板书设计:立体图体积形的
① V长=abh
② V正=a立方 V=S底h
③ V圆=S圆h
④ V圆锥=V圆柱=Sh
课外作业:练习十九第17题
教后反思:
注:二次备课用红笔在电子稿上修改。

相关文档
最新文档