五年级奥数平面图形面积的计算
五年级奥数——平面图形面积计算
年 级授课日期 授课主题 第4讲——平面图形面积计算教学内容i.检测定位本讲所指平面图形面积计算主要指多边形及其组合图形面积的计算.这些图形面积计算一般都可以转化成三角形、长方形、平行四边形和梯形的面积计算,后者的计算公式都是我们在课内已经学过并且应该熟记的.主要的技巧在于如何将一般多边形及其组合图形“转化”为基本图形.【例1】在梯形中阴影部分面积是150平方厘米,求梯形面积.分析与解 已知梯形上、下底长分别为15厘米和25厘米,令梯形高为h ,则由已知三角形面积为150平方厘米,有 h ⨯⨯=1521150,得).(20厘米=h 所以,梯形面积S 为.40020251521(平方厘米))(=⨯+⨯=S 随堂练习1如图2-4,已知平行四边形面积是48平方厘米,求阴影部分面积.【例2】如图3-4是两个完全相同的直角三角形叠在一起,求阴影部分的面积.(单位:分米)分析与解 如图3-4,由于①+②的面积和②+③的面积相等,所以可以得出:①与③的面积相等,题目要求③的面积,其实只要求①的面积即可.所以 (分米);53-8==EF23)815(÷⨯+=S2313÷⨯=).(5.19239平方分米=÷=答:阴影部分的面积是19.5平方分米.【例3】如图4-4,将长为9厘米、宽为6厘米的长方形划分成四个三角形,其面积分别为1S 、2S 、3S 、4S ,且4321S S S S +==,求4S .分析与解 设长方形面积为S ,则 )(54694321S S S S S +++==⨯=所以.184321=+==S S S S设x BE =,.y DF =则有 x S ⨯⨯==921181, .621182y S ⨯⨯== 解得 4=x ,.6=y 从而,2=EC ,.3=FC所以 332213=⨯⨯=S , ).(153184平方厘米=-=S随堂练习2如图5-4,四边形ABCD 是直角梯形,其中ADE BC AB AD ∆===厘米,且厘米,厘米,15812、CDF DEBF ∆及四边形的面积相等,求三角形EBF 的面积.【例4】如图6-4,.904625︒=∠=∠====D B CD AB CF AE 厘米,厘米,厘米,厘米,求四边形AFCE 的面积.分析与解 四边形AFCE 是不规则四边形,连结AC ,则AC 将四边形AFCE 分成两个三角形(AFC ∆、CEA ∆).这两个三角形的面积利用已知条件可求.AB 是AFC ∆底边上的高,所以 ;平方厘米)(6622121=⨯⨯=⨯⨯=∆AB FC S AFC CD 是AE CEA 底边∆上的高,所以).(10452121平方厘米=⨯⨯=⨯⨯=∆CD AE S CEA 所以, 四边形AFCE 的面积CEA AFC S S ∆∆+=).(16106平方厘米=+=随堂练习3如图7-4,四边形ABCD 中,,厘米,厘米,厘米,厘米,︒=∠=∠====901512105D B DC FC AB AE 求四边形AFCE 的面积.【例5】如图4-8,求长方形中阴影部分的面积.(单位:厘米)分析与解 阴影部分的三个三角形高相等,那么它们的面积和就是它们的底的和乘高除以 2. .75215021015(平方厘米)=÷=÷⨯答:阴影部分的面积和是75平方厘米.【例6】如图9-4,平行四边形ABCD 的边长厘米10=BC ,直角三角形BCE 的直角边CE 长为8厘米.已知阴影部分的面积比三角形FEG 的面积大10平方厘米.求CF 的长.分析与解 因为直角三角形BCE 与平行四边形ABCD 共有梯形BCFG .所以平行四边形ABCD 的面积比直角三角形BCE 的面积大10平方厘米.由已知可知CF 垂直AD ,所以,1021+⨯=⨯CE BC BC CF 即 .50108102110=+⨯⨯=⨯CF 所以.5(厘米)=CF随堂练习4如图10-4,正方形ABCD 的边长为12厘米,已知.2倍长度的是EC DE 求:(1)DEF ∆的面积;(2)CF 的长.玩一玩只剩一个如图,一个三角形的棋盘放着15个棋子,一开始随意取走一个棋子,出现一个空格.然后按以下规则开始跳棋子:棋子A 越过它的临格中的棋子B 跳到棋子B 另一侧相邻的空格中,并将B “吃”掉.按以上规则不断跳下去,每跳一步少一个棋.请问:能否跳到最后还剩一个棋子?请你玩一玩.图中的数是位子的编号,先不要看答案,自己动手画一张如图所示的棋盘,并在每个棋盘中放一枚棋子(可利用围棋子),然后按规则任意取走一个棋子,开始游戏.若有困难,可先看提示,继续游戏,最后再看方案.答案 能.先取走1号、3号、5号位置上的棋子,依次从6号、10号、14号位置中的棋子起跳,经过13步可将棋盘中13个子“吃”掉.方案1 取走1号6→1,13→6,11→13,14→12,2→9,7→2,1→4,10→3,4→3,12→14,15→13,13→6,6→1(止于1号位)方案2 取走3号10→3,13→6,7→9,2→7,11→4,15→13,12→14,3→10,4→6,10→3,1→6,14→5,6→4(止于4号位)方案3 取走5号14→5,7→9,3→8,10→3,1→6 , 2→7 ,11→4,12→14,6→13,14→12,4→13,12→14,15→13(止于13号位) ii.针对培养1. 一块玉米地的形状如图所示,它的面积是_________平方米.2. 三个正方形如图所示放置,中心都重合,它们的边长依次是1厘米、3厘米、5厘米,那么图中阴影部分的面积是__________平方厘米.3. 如图,,,610==EC BC 直角三角形EDF 的面积比直角三角形FAB 的面积小5,那么长方形ABCD 的面积是__________4. 如图,正方形ABCD 的边长是9厘米,它的内部有一个内接三角形BFE ,厘米,厘米,24==DF AE 求三角形BFE 的面积.5. 如图,四边形ABCD 的两条对角线互相垂直相交于O ,厘米,厘米,54==BD AC 求四边形ABCD 的面积.6. 如图,四边形ABCD 中,厘米,厘米,,,3745,90==︒=∠︒=∠=∠AD BC BCD D B 求四边形ABCD 的面积.7. 如图由两个完全相同的梯形重叠在一起而组成,求图中阴影部分的面积.(单位:厘米)8. 如图,求阴影部分的面积.(单位:厘米)9. 如图,长方形的长为12厘米,宽为8厘米,图中阴影部分的面积与空白部分的面积哪个大?10. 如图,三角形ABC 的周长是30厘米,三角形内一点到三角形三条边的距离都是3厘米,求三角形ABC 的面积.11. 如图,已知正方形甲的边长为5厘米,正方形乙的边长为4厘米,那么图中阴影部分的面积是多少?12. 如图,ABCD 是长为8厘米、宽为6厘米的长方形,AF 长是4厘米,求阴影部分(三角形AEF )的面积.13. 如图,长方形ABCD 与三角形EBC 重叠,已知三角形EFD 的面积比三角形ABF 的面积大6平方厘米,且厘米,厘米,64==BC CD 求ED 的长.。
最新五年级奥数平面几何图形的面积计算
3.五一班同学数学考试平均成绩91.5分,事后复查发现计算成绩时将一位同学的98分误作89分计算了。经重新计算,全班的平均成绩是91.7分,五一班有多少名同学?
加拿大beadworks公司就是根据年轻女性要充分展现自己个性的需求,将世界各地的珠类饰品汇集于“碧芝自制饰品店”内,由消费者自选、自组、自制,这样就能在每个消费者亲手制作、充分发挥她们的艺术想像力的基础上,创作出作品,达到展现个性的效果。
例5.下页左图是一块长方形草地,长方形的长是16,宽是10,中间有两条道路,一条是长方形,一条是平行四边形,那么,有草部分(阴影部分)的面积有多大?(单位:米)
练习与思考
1.求图中阴影部分的面积。
2.求图中阴影部分的面积。
3.下左图的长方形中,三角形ADE与四边形DEBF和三角形CDF的面积分别相等,求三角形DEF的面积。
我们从小学、中学到大学,学的知识总是限制在一定范围内,缺乏在商业统计、会计,理财税收等方面的知识;也无法把自己的创意准确而清晰地表达出来,缺少个性化的信息传递。对目标市场和竞争对手情况缺乏了解,分析时采用的数据经不起推敲,没有说服力等。这些都反映出我们大学生创业知识的缺乏;
4.四中平等四边形ABCD的边BC长10厘米,直角三角形BCE的直角边EC长8厘米,已知阴影部分的面积比三角形EFG的面积大10平方厘米,求CF的长。
5.图中三角形的高为4,面积为16;长方形的宽为6,长方形的面积是三角形面积的多少倍?
6.如图,长方形的长是8,宽是6,A和B是宽的中点,求长方形内阴影部分的面积。
第17讲平面图形的计算(一)
例1.图中的甲和乙都是正方形,求阴影部分的面积。(单位:厘米)
例2.计算右图的面积。(单位:厘米)
小学五年奥数-平面图形的面积
平面图形的面积【试金石】例1如右图,已知一个四边形ABCD的两条边的长度AD=7,BC=3,三个角的度数:角B和角D是直角,角A是45°,求这个四边形的面积。
(单位;厘米)【针对性训练】如右图,已知一个四边形ABCD的两条边的长度AD=14厘米,BC=6厘米,三个角的度数:角B和角D是直角,角A是45°,求这个四边形的面积。
【试金石】例2右图中长方形的长是20厘米,宽是12厘米,求它的内部阴影部分的面积。
答:阴影部分的面积是120平方厘米。
【针对性训练】图中长方形的长是8米,宽是6米,A和B是宽的中点,求长方形内部阴影部分的面积。
【试金石】例3右图中,有四条线段的长度已经知道,还有两个角是直角,那么四边形ABCD(阴影部分)的面积是多少?(单位:分米)【针对性训练】右图中,有四条线段的长度已经知道,还有两个角是直角,那么四边形ABCD(阴影部分)的面积是多少?【试金石】例4如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米,求阴影部分的面积。
【针对性训练】如右图,甲、乙两图形都是正方形,它们的边长分别是6厘米和8厘米,求阴影部分的面积。
【试金石】例5【针对性训练】【试金石】【针对性训练】【智能提速训练营】1、如图,已知BD长是2厘米,DC长是3厘米,E是AD的中点,如果三角形ABD的面积是5平方厘米,那么三角形DEC的面积是多少?2、如图,已知平行四边形ABCD的面积是60平方分米,E、F分别是AB、AD边上的中点,图中阴影部分的面积是多少平方分米?3、如图,在平行四边形ABCD中,AE=ED,BF=FC,CG=GD,平行四边形ABCD的面积是阴影三角形EFG的多少倍?4、如图,BD=6厘米,BC=15厘米,△ABD的面积是24平方厘米,△ADC 的面积是多少平方厘米?5、右图中,有四条线段的长度已经知道,还有两个角是直角,那么四边形ABCD(阴影部分)的面积是多少?(单位:厘米)6、如图,梯形的面积是70平方厘米,上底8厘米,下底12厘米,阴影部分的面积是多少平方厘米?7、如图,四边形ABCD是平行四边形,DC=CE,如果△BCE的面积是15平方厘米,那么梯形ABED的面积是多少平方厘米?8、如图,平行四边形的面积是60平方厘米,阴影三角形的面积是多少平方厘米?9、如图,正方形ABCD的边长是4厘米,CG=3厘米,长方形DEFG的长DG=5厘米,那么它的宽DE是多少厘米?10、如图,四边形ABCD内有一点O,O点到四条边的垂线长都是4厘米,已知四边形的周长是36厘米,四边形ABCD的面积是多少平方厘米?11、如图,已知ABFE是平行四边形,ABCD是长方形,且AD=6厘米,AB=3厘米,CO=2厘米,阴影部分的面积是多少平方厘米?12、一个长方形被两条直线分成四个长方形,其中三个的面积分别是20平方米、25平方米和30平方米,阴影部分的面积是多少平方米?13、如右图,已知正方形ABCD和正方形CEFG,且正方形ABCD每边长为10厘米,求图中阴影(三角形BFD)部分的面积。
完整版)五年级奥数平面图形面积计算
完整版)五年级奥数平面图形面积计算五年级奥数第六讲——平面图形面积的计算一、知识要点1.基本平面图形特征及面积公式正方形:特征:四条边相等,四个角都是直角,有四条对称轴。
面积公式:S=边长的平方长方形:特征:对边相等,四个角都是直角,有二条对称轴。
面积公式:S=长×宽平行四边形:特征:两组对边平行且相等,对角相等,相邻的两个角之和为180°,容易变形。
面积公式:S=底边×高三角形:特征:两边之和大于第三条边,两边之差小于第三条边,三个角的内角和是180°,具有稳定性。
面积公式:S=底边×XXX÷2梯形:特征:只有一组对边平行,中位线等于上下底和的一半。
面积公式:S=(上底+下底)×高÷22.基本解题方法:由两个或多个简单的基本几何图形组合成的组合图形,要计算这样的组合图形面积,先根据图形的基本关系,再运用分解、组合、平移、割补、添辅助线等几种方法将图形变成基本图形分别计算。
典型例题】例1】已知平行四边形的面积是28平方厘米,求阴影部分的面积。
例2】求图中阴影部分的面积。
例3】如图所示,甲三角形的面积比乙三角形的面积大6平方厘米,求CE的长度。
例4】两条对角线把梯形ABCD分割成四个三角形。
已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?练与拓展】1.计算下面图形的面积。
2.下面的梯形中,阴影部分面积是150平方厘米,求梯形的面积。
3.正方形ABCD的边长是12厘米,已知DE是EC长度的2倍,求三角形DEF的面积和CF的长。
4.平行四边形ABCD的边长BC=10厘米,直角三角形BCE的直角边EC长8厘米,已知阴影部分的面积比三角形EFG的面积大10平方厘米,求CF的长。
5.正方形ABCD的面积是100平方厘米,AE=8厘米,请计算以下图形的面积。
1.在一块长80米、宽30米的长方形地上,修了宽为2米和3米的两条小路,求草地的面积。
小学奥数 几何类 几何图形周长和面积的基本计算 基本图形的面积计算.题库版
小学数学平面图形计算公式:1 、正方形:周长=边长×4;面积=边长×边长2 、正方体:表面积=棱长×棱长×6;体积=棱长×棱长×棱长3 、长方形:周长=(长+宽)×2;面积=长×宽4 、长方体:表面积(长×宽+长×高+宽×高)×2;体积=长×宽×高 5、 三角形:面积=底×高÷2 6 平行四边形:面积=底×高 7 梯形:面积=(上底+下底)×高÷2模块一、基本公式的应用【例 1】 如图,两个正方形边长分别是5厘米和4厘米,图中阴影部分为重叠部分。
则两个正方形的空白部分的面积相差多少平方厘米?【考点】基本图形的面积计算 【难度】2星 【题型】解答 【关键词】2007年,第12届,华杯赛,五年级,决赛,第9题,10分【解析】 5×5-4×4=9(平方厘米),两个正方形的空白部分的面积相差9平方厘米。
【答案】9平方厘米【巩固】 如图12,边长为4cm 的正方形将边长为3cm 的正方形遮住了一部分,则空白部分的面积的差等于 2cm 。
【考点】基本图形的面积计算 【难度】2星 【题型】填空 【关键词】2009年,第7届,希望杯,4年级,初赛,19题【解析】 空白部分的面积差等于两个正方形的面积差,即⨯-⨯=44337(平方厘米)。
【答案】7平方厘米【例 2】 在一个正方形水池的四周,环绕着一条宽2米的路(如图),这条路的面积是120平方米,那么水池的面积是______ 平方米。
例题精讲知识点拨4-2-1.基本图形的面积计算水池【考点】基本图形的面积计算【难度】2星【题型】填空【关键词】2003年,第1届,希望杯,4年级,初赛,19题【解析】四个边角的面积和为2×2×4=16,则水池的边长为:104÷2÷4=13,所以水池的面积是:13×13=169平方米。
奥数教程5年级-第四讲平面图形面积计算
奥数教程5第四讲 平面图形面积计算 例题1在梯形中阴影部分面积是150平方厘米,上底15厘米,下底25厘米,求梯形面积。
随堂练习1如图,已知平行四边形面积是48平方厘米,求阴影部分面积。
梯形的上底5厘米,高6厘米。
例题2如图,将长为9厘米,宽为6厘米的长方形,划分成四个三角形,其面积分别为S1、S2、S3、S4,且S1=S2=S3+S4,求S4。
随堂练习2如图,四边形ABCD 是直角梯形,其中AD=12厘米,AB=8厘米,BC=15厘米,且△ADC 、四边形DEBF 及△CDF 的面积相等,求三角形EBF 的面积。
例题3如图,AE=5厘米,CF=2厘米,AB=6厘米,CD=4厘米,∠B=∠D=90度,求四边形AFCE 的面积。
A BE DF C A E BFCD随堂练习3如图,四边形ABCD 中,AE=5厘米,AB=10厘米,FC=12厘米,DC=15厘米,∠B=∠D=90度,求四边形AFCE 的面积。
例题4如图,在大正方形ABCD 里有一个内接长为6厘米,宽为1厘米的长方形,而且长方形的对称轴与正方形的对角线重合,求正方形的面积。
随堂练习4如图,正方形的面积为18.75平方厘米,在正方形内有两条平行于对角线的线段,将正方形平均分为面积相等的三份,求平行线段AB 的长。
例题5如图,平行四边形ABCD 的边长BC=10厘米,直角三角形BCE 的的直角边EC 长8厘米。
已知△BAG 和△FDC 面积的和比三角形FEG 的面积大10平方厘米,求CF 的长。
AEDB F CA H D ECBFGB A A D BCG F E随堂练习5 如图,正方形ABCD 的边长是12厘米,已知DE 是EC 的长度的2倍。
求 1) △DEF 的面积 2) CF 的长。
例题6 如图,长方形ABCD 与三角形EBC 重叠。
已知三角形EFD 的面积比ABF 的面积大6平方厘米,且CD=4厘米,BC=6厘米。
求ED 的长。
随堂练习6如图,ABCD 是长方形,长是5厘米,宽4厘米。
小学五年级奥数-平面图形面积
五年级思维第三讲基础知识:ah1.三角形面积公式:S=122.平行四边形(含正方形,长方形)面积公式:S=ah3.等底等高的三角形面积相等,等底等高的平行四边形面积相等4.解题思路:将难以求解的图形进行拆分,利用等积变换化为可求解图形求解例题:例1.如图1,每一个小方格的面积都是1平方厘米,那么粗线围成的图形的面积是多少平方厘米?例2.每个小方格面积是1平方厘米,那么下面三张图的面积之和是多少平方厘米?例3.如图,如果每一个小三角形的面积是1平方厘米,那么三角形ABC的面积是多少平方厘米?例4.如图2,如果每一个三角形的面积都是1平方厘米,那么四边形ABCD的面积是多少平方厘米?例5.把同一个三角形的三条边分别五等分,七等分,适当连接这些分点,便得到了若干个面积相等的小三角形。
已知下方左图中粗线围成的面积为294,那么下方右图粗线围成的面积是多少平方分米?例6.如图,三角形ABC 和DEF 是两个完全相同的等腰直角三角形,其中DF 长9厘米,CF 长3厘米,那么阴影部分的面积是多少平方厘米?例7.如图,大正方形的边长是10厘米。
连接大正方形的各边中点得小正方形,将小正方形每边三等分,再将三等分点和正方形中心和一个顶点相连,那么图中阴影部分面积总和等于多少平方厘米?例8.已知一个四边形的两条边长度和三个角,那么这个四边形的面积是多少?B E例9.如图,两个形状和大小都一样的直角三角形ABC 与DEF 如图放置,它们的面积都是2011平方厘米,而每一个直角三角形直角的顶点都恰好落在另一个直角三角形的斜边上。
这两个直角三角形的重叠部分是一个长方形,那么四边形ADEC 的面积是多少平方厘米?例10.如图所示,在任意凸四边形ABCD 中取各边的中点,并与它相对的一个顶点连结,那么所围成的中央四边形面积与周围那四个阴影三角形的面积总和相等吗?为什么?作业题:1.在面积为1平方米的正六边形中,连结相隔一个顶点的各对顶点,则阴影部分的面积是多少平方米?2.如图的大正方形由三十六个面积为1平方分米的小正方形拼成。
五年级奥数平面图形的面积
学生课程讲义例题1在梯形中阴影部分面积是150平方厘米,上底15厘米,下底25厘米,求梯形面积。
随堂练习1如图,已知平行四边形面积是48平方厘米,求阴影部分面积。
梯形的上底5厘米,高6厘米。
例题2如图,将长为9厘米,宽为6厘米的长方形,划分成四个三角形,其面积分别为S1、S2、S3、S4,且S1=S2=S3+S4,求S4。
随堂练习2如图,四边形ABCD 是直角梯形,其中AD=12厘米,AB=8厘米,BC=15厘米,且△ADC 、四边形DEBF 及△CDF 的面积相等,求三角形EBF 的面积。
A D例题3如图,AE=5厘米,CF=2厘米,AB=6厘米,CD=4厘米,∠B=∠D=90度,求四边形AFCE 的面积。
随堂练习3如图,四边形ABCD 中,AE=5厘米,AB=10厘米,FC=12厘米,DC=15厘米,∠B=∠D=90度,求四边形AFCE 的面积。
例题4如图,在大正方形ABCD 里有一个接长为6厘米,宽为1厘米的长方形,而且长方形的对称轴与正方形的对角线重合,求正方形的面积。
A EBF CDAEDB FC AH D E C B F G随堂练习4如图,正方形的面积为18.75平方厘米,在正方形有两条平行于对角线的线段,将正方形平均分为面积相等的三份,求平行线段AB 的长。
例题5如图,平行四边形ABCD 的边长BC=10厘米,直角三角形BCE 的的直角边EC 长8厘米。
已知△BAG 和△FDC 面积的和比三角形FEG 的面积大10平方厘米,求CF 的长。
随堂练习5如图,正方形ABCD 的边长是12厘米,已知DE 是EC 的长度的2倍。
求 1) △DEF 的面积 2) CF 的长。
例题6如图,长方形ABCD 与三角形EBC 重叠。
已知三角形EFD 的面积比ABF 的面积大6平方厘米,且CD=4厘米,BC=6厘米。
求ED 的长。
B A A D B C G F EA B C F DE E随堂练习6如图,ABCD 是长方形,长是5厘米,宽4厘米。
五年级奥数平面图形的面积计算
7.如下图,梯形ABCD的面积等于72平 方厘米,AB=4厘米,DC=8厘米。求三 角形ABD的面积。
五年级奥数平面图形的面积计算
8.在下图中,阴影部分的面积是 21平方厘米,直角梯形的面积是 多少平方厘米?
五年级奥数平面图形的面积计算
ห้องสมุดไป่ตู้
单位:厘米
谢谢观赏
五年级奥数平面图形的面积计算
此课件下载可自行编辑修改,供参考! 感谢你的支持,我们会努力做得更好!
谢谢
五年级奥数平面图形的面积计算
五年级奥数平面图形的面积计算
求下面组合图形的面积:
单位:厘米
五年级奥数平面图形的面积计算
求下图中阴影部分的面积:
五年级奥数平面图形的面积计算
单位:厘米
求下图中阴影部分的面积:
五年级奥数平面图形的面积计算
单位:厘米
应用题:
1. 一块梯形木板面 积为9.2平方米,中 位线长2.3米,求梯 形木板的高是多少?
五年级奥数平面图形的面积计算
应用题:
2. 一个梯形的上底为6 厘米,下底为9厘米,面 积为45平方厘米,它的 高是多少厘米?
五年级奥数平面图形的面积计算
应用题:
3. 已知梯形的面积是 21平方米,高6米,下底 长4米,求上底长多少?
五年级奥数平面图形的面积计算
应用题:
4. 某梯形上底与下 底的和为100米,面积 为1500平方米,它的 高是多少米?
五年级第学1期
五年级奥数平面图形的面积计算
五年级奥数平面图形的面积计算
△ADE 五年级奥数平面图形的面积计算
五年级奥数平面图形的面积计算
5.正方形ABCD的边长是12厘米,已知DE是EC长度的2倍, 求:(1)三角形的DEF的面积.(2)CF的长.
小学五年奥数-平面图形的面积
小学五年奥数-平面图形的面积平面图形的面积【试金石】例1如右图,已知一个四边形ABCD的两条边的长度AD=7,BC=3,三个角的度数:角B和角D是直角,角A是45°,求这个四边形的面积。
(单位;厘米)【针对性训练】如右图,已知一个四边形ABCD的两条边的长度AD=14厘米,BC=6厘米,三个角的度数:角B和角D是直角,角A是45°,求这个四边形的面积。
【试金石】例2右图中长方形的长是20厘米,宽是12厘米,求它的内部阴影部分的面积。
答:阴影部分的面积是120平方厘米。
【针对性训练】图中长方形的长是8米,宽是6米,A和B是宽的中点,求长方形内部阴影部分的面积。
【试金石】例3右图中,有四条线段的长度已经知道,还有两个角是直角,那么四边形ABCD(阴影部分)的面积是多少?(单位:分米)【针对性训练】右图中,有四条线段的长度已经知道,还有两个角是直角,那么四边形ABCD(阴影部分)的面积是多少?【试金石】例4如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米,求阴影部分的面积。
【针对性训练】如右图,甲、乙两图形都是正方形,它们的边长分别是6厘米和8厘米,求阴影部分的面积。
【试金石】例5【针对性训练】【试金石】【针对性训练】【智能提速训练营】1、如图,已知BD长是2厘米,DC长是3厘米,E是AD的中点,如果三角形ABD的面积是5平方厘米,那么三角形DEC的面积是多少?2、如图,已知平行四边形ABCD的面积是60平方分米,E、F分别是AB、AD边上的中点,图中阴影部分的面积是多少平方分米?3、如图,在平行四边形ABCD中,AE=ED,BF=FC,CG=GD,平行四边形ABCD的面积是阴影三角形EFG的多少倍?4、如图,BD=6厘米,BC=15厘米,△ABD的面积是24平方厘米,△ADC 的面积是多少平方厘米?5、右图中,有四条线段的长度已经知道,还有两个角是直角,那么四边形ABCD(阴影部分)的面积是多少?(单位:厘米)6、如图,梯形的面积是70平方厘米,上底8厘米,下底12厘米,阴影部分的面积是多少平方厘米?7、如图,四边形ABCD是平行四边形,DC=CE,如果△BCE的面积是15平方厘米,那么梯形ABED的面积是多少平方厘米?8、如图,平行四边形的面积是60平方厘米,阴影三角形的面积是多少平方厘米?9、如图,正方形ABCD的边长是4厘米,CG=3厘米,长方形DEFG的长DG=5厘米,那么它的宽DE是多少厘米?10、如图,四边形ABCD内有一点O,O点到四条边的垂线长都是4厘米,已知四边形的周长是36厘米,四边形ABCD的面积是多少平方厘米?11、如图,已知ABFE是平行四边形,ABCD是长方形,且AD=6厘米,AB=3厘米,CO=2厘米,阴影部分的面积是多少平方厘米?12、一个长方形被两条直线分成四个长方形,其中三个的面积分别是20平方米、25平方米和30平方米,阴影部分的面积是多少平方米?13、如右图,已知正方形ABCD和正方形CEFG,且正方形ABCD 每边长为10厘米,求图中阴影(三角形BFD)部分的面积。
五年级奥数图形面积计算题
平面图形的面积计算
例1:如果用铁丝围成如下图一样的平行四边形,需要用多少厘米铁丝?(单位:厘米)
例2:已知大正方形的边长是5厘米,小正方形的边长是4厘米,求阴影部分的面积。
例3:如图,ABCD 是边长为4分米的正方形,长方形DEFG 的
长是5分米,求长方形DEFG 的宽。
例4:如图,已知四边形ABCD 被它的两条对角线
分成四个三角形,其中甲的面积是1,乙的面积是2,丙的面积是3,求丁的面积。
思维点拨:可以利用蝴蝶原理解决,甲×丙=丁×乙。
蝴蝶原理:任意的一个四边形,两对角线连接, 相对的两块面积乘积相等。
A
B
C D
E 甲丁乙
丙
两条对角线把梯形ABCD 分割成四个三角形,已知两个三角形的面积,求另两个三角形的面积。
A
B F
F
A
E
D
C
B
A
B
C
D
O
48
练习:
1,如右图,长方形ABCD 中,BE=4厘米,CE=3厘米,长方形的面积是多少平方厘米。
2、一个等腰直角三角形,最长的边是20厘米,这个三角形的面积是多少平方厘米。
3、如下图,是一块长方形草地,长方形的长是16米,宽是10米,中间有两条宽2米的道路,一条是长方形,一条是平行四边形,那么有草部分(阴影部分)的面积有多大
4、如图,求四边形的面积是是 平方厘米。
(单位:厘米)
C
D
45°
3
7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级奥数第六讲
———平面图形面积的计算
一、知识要点
1. 基本平面图形特征及面积公式
特征
面积公式
正方形
①四条边都相等。
②四个角都是直角。
③有四条对称轴。
S=aa 长方形
①对边相等。
②四个角都是直角。
③有二条对称轴。
S=ab 平行四边形
①两组对边平行且相等。
②对角相等,相邻的两个角之和为180° ③平行四边形容易变形。
S=ah 三角形
①两边之和大于第三条边。
②两边之差小于第三条边。
③三个角的内角和是180°。
④有三条边和三个角,具有稳定性。
S=ah ÷2
梯形
①只有一组对边平行。
②中位线等于上下底和的一半。
S=(a+b)h ÷
2 2. 基本解题方法:
由两个或多个简单的基本几何图形组合成的组合图形,要计算这样的组合图形面积,先根据图形的基本关系,再运用分解、组合、平移、割补、添辅助线等几种方法将图形变成基本图形分别计算。
【典型例题】
【例1】 已知平行四边表的面积是28平方厘米,
求阴影部分的面积。
【练一练】如果用铁丝围成如下图一样的 平行四边形,需要用多少厘米铁丝? (单位:厘米)
【例2】求图中阴影部分的面积。
(单位:厘米)
【练一练】下图中甲和乙都是正方形,求阴影部分的面积。
(单位:厘米)
【例3】如图所示,甲三角形的面积比
乙三角形的面积大6平方厘米,求CE 的长度。
【练一练】平行四边形ABCD 的边长 BC=10厘米,直角三角形BCE 的直角 边EC 长8厘米,已知阴影部分的面积比 三角形EFG 的面积大10平方厘米。
求CF
的长。
【例4】两条对角线把梯形ABCD 分割成四个三角形。
已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?(单位:厘米)
【练一练】下面的梯形ABCD 中,下底是 上底的2倍,E 是AB 的中点,求梯形ABCD 的面积是三角形EDB 面积的多少倍?
【练一练】
【练一练】计算下面图形的面积。
一个长方形的草坪,中间有两个人行道。
高是14 求草坪的面积。
(单位:厘米) 32
28 B
【练习与拓展】
1.
3.
求图中阴影部分的面积。
单位:厘米
2.
5.
4. 梯形ABCD 的面积是45平方厘米,
高6厘米。
三角AED 的面积是 5平方厘米,BC=10 厘米,求阴影部分 的面积。
6.求图形中梯形ABCD 的面积。
(单位:厘米)
下面的梯形中,阴影部分面积是150平方厘米,求梯形
的面积。
正方形ABCD 的边长是12厘米,已知DE 是EC 长度的2倍,求: (1) 三角形DEF 的面积。
(2) CF 的长。
正方形ABCD 的面积是100
平方厘米,AE=8厘米,CF=6厘米,求阴影部分的面积。
1、如下图,在一块长80米、宽30米的长方形地上,修了两条宽分别为2米和3米的小路,其余的地方做草地,你知道草地的面积有多大吗?
2、一个平行四边形的底是3分米,高是2分米,如果它的底和高同时扩大到原来的2倍后,面积变成( )平方分米,是原来面积的( )倍?
4、如下图,是一块长方形草地,长方形的长是16米,宽是10米,中间有两条宽2米的道路,一条是长方形,一条是平行四边形,那么有草部分(阴影部分)的面积有多大?
5、如图,一个三角形的底长5米,如果底延长1米,那么面积就增加2平方米。
问原来的三角形的面积是多少平方米
6、如图,是一张长方形卡纸和一张三角形卡纸重叠在一起的图形。
已知长方形卡纸的面积比三角形卡纸的面积小16平方厘米,求DE 的长度。
7.右图是两个相同的直角三角形叠在一起,求阴影部分的面积。
(单位:厘米)
1米
6 8 A C
B D E。