立体几何公理及定理

合集下载

立体几何基本定理与公式

立体几何基本定理与公式

立几基本公式空间直线.1. 空间直线位置分三种:相交、平行、异面.相交直线—共面有且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).(二面角的取值范围[)οο180,0∈θ) (直线与直线所成角(]οο90,0∈θ) (斜线与平面成角()οο90,0∈θ)(直线与平面所成角[]οο90,0∈θ)(向量与向量所成角])180,0[οο∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.5. 两异面直线的距离:公垂线的长度. 一、直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面12方向相同12方向不相同POAa垂直,过一点有且只有一个平面和一条直线垂直.若PA⊥α,a⊥AO,得a⊥PO(三垂线定理),得不出α⊥PO. 因为a⊥PO,但PO不垂直OA.三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.5. ⑴垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上一、平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.五、 棱锥、棱柱.1. 棱柱.⑴①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长) ⑵{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱柱}⊃{正方体}. {直四棱柱}⋂{平行六面体}={直平行六面体}.⑶棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全等的矩形...... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形. (直棱柱定义):棱柱有一条侧棱和底面垂直. ⑷平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和. [注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V S h V ==.正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)PαβθM AB Oii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. 正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ⑵棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.3. 球:⑴球的截面是一个圆面.①球的表面积公式:24R S π=. ②球的体积公式:334R V π=.②圆锥体积:h r V 231π=(r 为半径,h 为高)③锥形体积:Sh V 31=(S 为底面积,h 为高)六. 空间向量.1(1)共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合. (2)共线向量定理:对空间任意两个向量)0(,≠b b a ,a ∥b 的充要条件是存在实数λ(具有唯一性),使λ=.(3)共面向量:若向量a 使之平行于平面α或a 在α内,则a 与α的关系是平行,记作a ∥α. (4)①共面向量定理:如果两个向量b a ,不共线,则向量与向量b a ,共面的充要条件是存在实数对x 、y 使y x +=.②空间任一点...O .和不共线三点......A .、.B .、.C .,则)1(=++++=z y x OC z OB y OA x OP 是PABC 四点共面的充要条件.(简证:→+==++--=AC z AB y AP OC z OB y OA z y OP )1(P 、A 、B 、C 四点共面)注: 是证明四点共面的常用方法.2. 空间向量基本定理:如果三个向量....c b a ,,不共面...,那么对空间任一向量P ,存在一个唯一的有序实数组x 、y 、z ,使c z b y a x p ++=.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z使 z y x ++=(这里隐含x +y+z≠1).注:设四面体ABCD 的三条棱,,,,d AD c AC b AB ===其中Q 是△BCD 的重心,则向量)(31c b a AQ ++=用MQ AM AQ +=即证.3. (1)空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵轴),z 轴是竖轴(对应为竖坐标). ①令a =(a 1,a 2,a 3),),,(321b b b =,则),,(332211b a b a b a b a ±±±=+))(,,(321R a a a a ∈=λλλλλ332211b a b a b a b a ++=⋅a ∥)(,,332211Rb a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔ 0332211=++⇔⊥b a b a b a b a222321a a a ++==(a a =⇒⋅=) 232221232221332211||||,cos b b b a a a b a b a b a b a ba b a ++⋅++++=⋅⋅>=<ρρρρρρ②空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=.(2)法向量:若向量a 所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥a ,如果α⊥那么向量叫做平面α的法向量. (3)用向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α②利用法向量求二面角的平面角定理:设21,n n 分别是二面角βα--l 中平面βα,的法向量,DCBAB则21,n n 所成的角就是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n n 反方,则为其夹角).③证直线和平面平行定理:已知直线≠⊄a 平面α,α∈⋅∈⋅D C a B A ,,且CDE 三点不共线,则a ∥α的充要条件是存在有序实数对μλ⋅使CE CD AB μλ+=.(常设CE CD AB μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交).。

立体几何公理、定理推论汇总

立体几何公理、定理推论汇总

立体几何公理、定理推论汇总一、公理及其推论 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。

符号语言:,,,A l B l A B l ααα∈∈∈∈⇒⊂作用: ① 用来验证直线在平面内;② 用来说明平面是无限延展的。

公理2 如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。

(那么它们有且只有一条通过这个公共点的公共直线)符号语言:P l P l αβαβ∈⇒=∈I I 且作用:① 用来证明两个平面是相交关系;② 用来证明多点共线,多线共点。

公理3 经过不在同一条直线上的三点,有且只有一个平面。

符号语言:,,,,A B C A B C ⇒不共线确定一个平面推论1 经过一条直线和这条直线外的一点,有且只有一个平面。

符号语言:A a A a a αα∉⇒∈⊂有且只有一个平面,使,推论2 经过两条相交直线,有且只有一个平面。

符号语言:a b P a b ααα⋂=⇒⊂⊂有且只有一个平面,使,推论3 经过两条平行直线,有且只有一个平面。

符号语言://a b a b ααα⇒⊂⊂有且只有一个平面,使,公理3及其推论的作用:用来证明多点共面,多线共面。

公理4 平行于同一条直线的两条直线平行(平行公理)。

符号语言://////a b a c c b ⎫⇒⎬⎭图形语言:作用:用来证明线线平行。

二、平行关系 公理4 平行于同一条直线的两条直线平行(平行公理)。

(1)符号语言://////a b a c c b ⎫⇒⎬⎭ 图形语言:线面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

(2)符号语言:////a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭图形语言:线面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

(3)符号语言:////a b a a b βαβα⎫⎪⊂⇒⎬⎪=⎭I图形语言:面面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(4)符号语言://(/,///),a b b b O a a ββαααβ⊂⊂=⎫⎪⇒⎬⎪⎭I 图形语言: 面面平行的判定 如果两个平面垂直于同一条直线,那么这两个平面平行。

立体几何所有的定理大总结(绝对全)

立体几何所有的定理大总结(绝对全)

⽴体⼏何所有的定理⼤总结(绝对全)(⼆)异⾯直线所成⾓1.定义:不同在任何⼀个平⾯内的两条直线或既不平⾏也不相交的两条直线叫异⾯直线。

2.画法:借助辅助平⾯。

1.定义:对于异⾯直线a 和b ,在空间任取⼀点P ,过P 分别作a 和b 的平⾏线1a 和1b ,我们把1a 和1b 所成的锐⾓或者叫做异⾯直线a 和b 所成的⾓。

2.范围:(0°,90°】(★空间两条直线所成⾓范围:【0°,90°】)(三)线⾯⾓1.定义:当直线l 与平⾯α相交且不垂直时,叫做直线l 与平⾯α斜交,直线l 叫做平⾯α的斜线。

设直线l 与平⾯α斜交与点M ,过l 上任意点A ,做平⾯α的垂线,垂⾜为O ,把点O 叫做点A 在平⾯α上的射影,直线OM 叫做直线l 在平⾯α上的射影。

1.定义:把直线l 与其在平⾯α上的射影所成的锐⾓叫做直线l 和平⾯α所成的⾓。

2.范围【0°,90°】(★斜线与平⾯所成⾓范围:【0°,90°】)(三)⼆⾯⾓1.定义:(1)半平⾯:平⾯内的⼀条直线把这个平⾯分成两个部分,其中每⼀个部分叫做半平⾯。

(3)⼆⾯⾓的棱:这⼀条直线叫做⼆⾯⾓的棱。

(4)⼆⾯⾓的⾯:这两个半平⾯叫做⼆⾯⾓的⾯。

(5)⼆⾯⾓的平⾯⾓:以⼆⾯⾓的棱上任意⼀点为端点,在两个⾯内分别作垂直于棱的两条射线,这两条射线所成的⾓叫做⼆⾯⾓的平⾯⾓。

(6)直⼆⾯⾓:平⾯⾓是直⾓的⼆⾯⾓叫做直⼆⾯⾓。

1.定义:从⼀条直线出发的两个半平⾯所组成的图形叫做⼆⾯⾓。

2.表⽰:如下图,可记作α-AB-β或P-AB-Q3.范围为【0°,180°】(五)六种距离1.点到点的距离:两点之间的线段PQ 的长。

2.点到线的距离:过P 点作1PP ⊥l ,交l 于1P ,线段1PP 的长。

3.点到⾯的距离:过P 点作1PP ⊥α,交α于1P ,线段1PP 的长。

高一数学必修2立体几何知识点详细总结

高一数学必修2立体几何知识点详细总结

立体几何一、立体几何网络图:(1)线线平行的判断:⑴平行于同一直线的两直线平行。

⑶如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

⑹如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

⑿垂直于同一平面的两直线平行。

(2)线线垂直的判断:⑺在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

⑻在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。

⑽若一直线垂直于一平面,这条直线垂直于平面内所有直线。

补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。

(3)线面平行的判断:⑵如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

⑸两个平面平行,其中一个平面内的直线必平行于另一个平面。

(4)线面垂直的判断:⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。

⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。

⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。

(5)面面平行的判断:⑷一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。

⒀垂直于同一条直线的两个平面平行。

(6)面面垂直的判断:⒂一个平面经过另一个平面的垂线,这两个平面互相垂直。

二、其他定理:(1)确定平面的条件:①不公线的三点;②直线和直线外一点;③相交直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短。

高中数学立体几何判定定理与性质.docx

高中数学立体几何判定定理与性质.docx

高中立体几何判定定理及性质一、公理及其推论文字语言符号语言图像语言公理 1A l ,B l , A, B如果一条直线上的两l点在一个平面内,那么这条直线上所有的点都在这个平面内。

公理 2作用①用来验证直线在平面内;②用来说明平面是无限延展的如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。

(那么它们有且只有一条通过这个公共点的公共直线)公理 3经过不在同一条直线上的三点,有且只有一个平面推论1经过一条直线和这条直线外的一点,有且只有一个平面推论 2经过两条相交直线,有且只有一个平面推论 3经过两条平行直线,有且只有一个平面公理 4 (平行公理)平行于同一条直线的两条直线平行Pl 且 P lA, B, C 不共线A, B,C 确定一个平面A有且只有一个平面,使 A, aa b P有且只有一个平面,使 a,ba ∥ b有且只有一个平面,使 a,ba ∥ ba ∥ cb ∥c ①用来证明两个平面是相交关系;②用来证明多点共线,多线共点。

用来证明多点共面,多线共面用来证明线线平行二、平行关系文字语言(1)公理 4 (平行公理)平行于同一条直线的两条直线平行(2)线面平行的判定定理如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

(3)线面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

(4)面面平行的判定定理如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行 .符号语言图像语言作用a ∥ ba ∥ cb ∥ ca ∥ ba a ∥bb∥b a ∥ baa ∥b ∥a b O∥ab(5)面面平行的判定如果两个平面垂直于同一条直线,那么这两个平面平行。

OOOO∥(6)面面平行的性质定理如果两个∥a a ∥ b平行平面同时和第三b个平面相交 ,那么它们的交线平行。

( 7)面面平行的性∥质如果两个平面平行 , a ∥那么其中一个平面内a的直线平行于另一个平面。

高中数学立体几何判定定理及性质

高中数学立体几何判定定理及性质

高中立体几何判定定理及性质一、公理及其推论文字语言 符号语言图像语言作用公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。

ααα⊂⇒∈∈∈∈l B A l B l A ,,,①用来验证直线在平面内; ② 用来说明平面是无限延展的公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。

(那么它们有且只有一条通过这个公共点的公共直线)ll P ∈=⋂⇒⋂∈P 且βαβα① 用来证明两个平面是相交关系;② 用来证明多点共线,多线共点。

公理3经过不在同一条直线上的三点,有且只有一个平面 确定一个平面不共线C B A C B A ,,,,⇒用来证明多点共面,多线共面推论1经过一条直线和这αααα⊂∈⇒∉a A A ,使,有且只有一个平面条直线外的一点,有且只有一个平面推论2经过两条相交直线,有且只有一个平面ααα⊂⊂⇒=⋂baPba,使,有且只有一个平面推论3经过两条平行直线,有且只有一个平面ααα⊂⊂⇒baba,使,有且只有一个平面∥公理4 (平行公理)平行于同一条直线的两条直线平行cacbba∥∥∥⇒⎭⎬⎫用来证明线线平行二、平行关系文字语言符号语言图像语言作用(1)公理4 (平行公理)平行于同一条直线的两条直线平行cacbba∥∥∥⇒⎭⎬⎫(2)线面平行的判定定理如果平面外一条直线和这个平面内的一条直线平行,那ααα∥∥ababa⇒⎪⎭⎪⎬⎫⊂⊄么这条直线和这个平面平行。

(3)线面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

baabb∥∥⇒⎪⎭⎪⎬⎫⊂=⋂ββαβ(4)面面平行的判定定理如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.βαααββ∥∥∥⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫⊂⊂=⋂baObaba(5)面面平行的判定如果两个平面垂直于同一条直线,那么这两个平面平行。

1.立体几何中基本概念、公理、定理、推论

1.立体几何中基本概念、公理、定理、推论

立体几何中基本概念、公理、定理、推论1. 三个公理和三条推论:(1)公理1:一条直线的两点在一个平面内,那么这条直线上的所有的点都在这个平面内.这是判断直线在平面内的常用方法.(2)公理2:如果两个平面有一个公共点,它们有无数个公共点,而且这无数个公共点都在同一条直线上.这是判断几点共线(证这几点是两个平面的公共点)和三条直线共点(证其中两条直线的交点在第三条直线上)的方法之一.(3)公理3:经过不在同一直线上的三点有且只有一个平面.推论1:经过直线和直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.公理3和三个推论是确定平面的依据.2. 直观图的画法(斜二侧画法规则):在画直观图时,要注意:(1)使045x o y '''∠=(或0135),x o y '''所确定的平面表示水平平面.(2)已知图形中平行于x 轴和z 轴的线段,在直观图中保持长度和平行性不变,平行于y 轴的线段平行性不变,但在直观图中其长度为原来的一半.3. 公理4:平行于同一直线的两直线互相平行.(即平行直线的传递性)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等. (此定理说明角平移后大小不变) 若无“方向相同”,则这两个角相等或互补.4. 空间直线的位置关系:(1)相交直线――有且只有一个公共点.(2)平行直线――在同一平面内,没有公共点.(3)异面直线――不在同一平面内,也没有公共点.5. 异面直线⑴异面直线定义:不同在任何一个平面内的两条直线叫做异面直线.⑵异面直线的判定:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线.⑶异面直线所成的角:已知两条异面直线a 、b ,经过空间任一点O 作直线a '、b ',使//a a '、//b b ',把a '与b '所成的锐角(或直角)叫做异面直线a 、b 所成的角(或夹角).⑷异面直线所成的角的求法:首先要判断两条异面直线是否垂直,若垂直,则它们所成的角为900;若不垂直,则利用平移法求角,一般的步骤是“作(找)—证—算”.注意,异面直线所成角的范围是π0,2⎛⎤⎥⎝⎦;求异面直线所成角的方法:计算异面直线所成角的关键是平移(中点平移,顶点平移以及补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,以便易于发现两条异面直线间的关系)转化为相交两直线的夹角. ⑸两条异面直线的公垂线:①定义:和两条异面直线都垂直且相交的直线,叫做异面直线的公垂线;两条异面直线的公垂线有且只有一条.而和两条异面直线都垂直的直线有无数条,因为空间中,垂直不一定相交.②证明:异面直线公垂线的证明常转化为证明公垂线与两条异面直线分别垂直.⑹两条异面直线的距离:两条异面直线的公垂线在这两条异面直线间的线段的长度.6. 直线与平面的位置关系:(1)直线在平面内;(2)直线与平面相交.其中,如果一条直线和平面内任何一条直线都垂直,那么这条直线和这个平面垂直.注意:任一条直线并不等同于无数条直线;(3)直线与平面平行.其中直线与平面相交、直线与平面平行都叫作直线在平面外.平面与平面的位置关系:(1)平行――没有公共点;(2)相交――有一条公共直线.7.线面平行、面面平行⑴直线与平面平行的判定定理: 如果不在一个平面(α)内的一条直线(l )和平面(α)内的一条直线(m )平行,那么这条直线(l )和这个平面(α)平行.,,////l m l m l ααα⊄⊂⇒ (作用:线线平行⇒线面平行)⑵直线与平面平行的性质定理:如果一条直线(l )和一个平面(α)平行,经过这条直线(l )的平面(β)和这个平面(α)相交(设交线是m ),那么这条直线(l )和交线(m )平行.//,,//l l m l m αβαβ⊂⋂=⇒ (作用: 线面平行⇒线线平行)⑶平面与平面平行的判定定理:如果一个平面(β)内有两条相交直线(,a b )分别平行于另一个平面(α),那么这两个平面(,βα)平行.,,,//,////a b a b P a b ββααβα⊂⊂⋂=⇒ (作用:线面平行⇒面面平行)推论:如果一个平面(β)内有两条相交直线(,a b )分别平行于另一个平面(α)内的两条直线(,a b ''), 那么这两个平面(,βα)平行.,,,,,//,////a b a b P a b a a b b ββααβα''''⊂⊂⋂=⊂⊂⇒(作用: 线线平行⇒面面平行) ⑷平面与平面平行的性质定理:如果两个平行平面(,αβ)同时与第三个平面(γ)相交(设交线分别是,a b ),那么它们的交线(,a b )平行.//,,//a b a b αβαγβγ⋂=⋂=⇒ (作用: 面面平行⇒线线平行)推论:如果两个平面(,αβ)平行,则一个平面(α)内的一条直线(a )平行于另一个平面(β). //,//a a αβαβ⊂⇒ (作用: 面面平行⇒线面平行)8.线线垂直、线面垂直、面面垂直⑴直线与平面垂直的判定定理:如果一条直线(l )和一个平面(α)内的两条相交直线(,m n )都垂直,那么这条直线(l )垂直于这个平面(α).,,,,l m l n m n m n P l ααα⊥⊥⊂⊂⋂=⇒⊥ (作用: 线线垂直⇒线面垂直)⑵直线与平面垂直的性质定理:如果一条直线(l )和一个平面(α)垂直,那么这条直线(l )和这个平面(α)内的任意一条直线(m )垂直.,l m l m αα⊥⊂⇒⊥ .⑶三垂线定理: 其作用是证两直线异面垂直和作二面角的平面角①定理: 在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.②逆定理:在平面内的一条直线,如果它和这个平面的一条斜线,那么它也和这条斜线在平面内的射影垂直.(作用: 线线垂直⇒线线垂直)⑷平面与平面垂直的判定定理: 如果一个平面(α)经过另一个平面(β)的一条垂线(l ),那么这两个平面(,αβ)互相垂直.,l l βααβ⊥⊂⇒⊥ (作用: 线面垂直⇒面面垂直)⑸平面与平面垂直的性质定理:如果两个平面(,αβ)垂直,那么在一个平面(α)内垂直于它们交线(m )的直线(l )垂直于另一个平面(β).,,,m l l m l αβαβαβ⊥⋂=⊂⊥⇒⊥ (作用: 面面垂直⇒线面垂直)9. 直线和平面所成的角⑴最小角定理:平面的斜线和它在平面内的射影所成的角,是这条斜线和这个平面内任意一条直线所成的角中最小的角.满足关系式:12cos cos cos θθθ=⋅θ是平面的斜线与平面内的一条直线所成的角;1θ是平面的斜线与斜线在平面内的射影所成的角;2θ是斜线在平面内的射影与平面内的直线所成的角.⑵直线和平面所成的角: 平面的一条斜线和它在平面内的射影所成的锐角,叫这条直线和这个平面所成的角. 范围:[0,90]10.二面角⑴二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,每个半平面叫做二面角的面.棱为l ,两个面分别是α、β的二面角记为l αβ--.二面角的范围:[0,]π⑵二面角的平面角:在二面角的棱上取一点,在二面角的面内分别作两条垂直于棱的射线,这两条射线所成的角叫做二面角的平面角.11.空间距离⑴点到平面的距离:一点到它在一个平面内的正射影的距离.⑵直线到与它平行平面的距离:一条直线上的任一点到与它平行的平面的距离.⑶两个平行平面的距离:两个平行平面的公垂线段的长度.⑷异面直线的距离12. 多面体有关概念:(1)多面体:由若干个平面多边形围成的空间图形叫做多面体.围成多面体的各个多边形叫做多面体的面.多面体的相邻两个面的公共边叫做多面体的棱.(2)多面体的对角线:多面体中连结不在同一面上的两个顶点的线段叫做多面体的对角线.(3)凸多面体:把一个多面体的任一个面伸展成平面,如果其余的面都位于这个平面的同一侧,这样的多面体叫做凸多面体.13.棱柱⑴棱柱的定义: 有两个面互相平行,其余每相邻两个面的交线互相平行,这样的多面体叫棱柱.两个互相平行的面叫棱柱的底面(简称底);其余各面叫棱柱的侧面;两侧面的公共边叫棱柱的侧棱;两底面所在平面的公垂线段叫棱柱的高(公垂线段长也简称高).⑵棱柱的分类:侧棱不垂直于底面的棱柱叫斜棱柱.侧棱垂直于底面的棱柱叫直棱柱.底面是正多边形的直棱柱叫正棱柱.棱柱的底面可以是三角形、四边形、五边形……这样的棱柱分别叫三棱柱、四棱柱、五棱柱……⑶棱柱的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等,直棱柱的各个侧面都是矩形,正棱柱的各个侧面都是全等的矩形.②与底面平行的截面是与底面对应边互相平行的全等多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.⑷平行六面体、长方体、正方体:底面是平行四边形的四棱柱是平行六面体.侧棱与底面垂直的平行六面体叫直平行六面体,底面是矩形的直平行六面体叫长方体,棱长都相等的长方体叫正方体.⑸①平行六面体的任何一个面都可以作为底面;②平行六面体的对角线交于一点,并且在交点处互相平分;③平行六面体的四条对角线的平方和等于各棱的平方和;④长方体的一条对角线的平方等于一个顶点上三条棱长的平方和.14.棱锥⑴棱锥的定义: 有一个面是多边形,其余各面是有一个公共顶点的三角形,这样的多面体叫棱锥其中有公共顶点的三角形叫棱锥的侧面;多边形叫棱锥的底面或底;各侧面的公共顶点()S ,叫棱锥的顶点,顶点到底面所在平面的垂线段()SO ,叫棱锥的高(垂线段的长也简称高).⑵棱锥的分类:(按底面多边形的边数)分别称底面是三角形,四边形,五边形……的棱锥为三棱锥,四棱锥,五棱锥…… ⑶棱锥的性质:定理:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积比等于顶点到截面的距离与棱锥高的平方比. 中截面:经过棱锥高的中点且平行于底面的截面,叫棱锥的中截面⑷正棱锥:底面是正多边形,顶点在底面上的射影是底面的中心的棱锥叫正棱锥. ⑸正棱锥的性质:①正棱锥的各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高(叫斜高)也相等。

立体几何三大公理应用超级全面

立体几何三大公理应用超级全面

立体几何三大公理的应用公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3:过不在同一条直线上的三个点,有且只有一个平面。

推论1: 经过一条直线和这条直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4 :平行于同一条直线的两条直线互相平行。

1.如图,在正方体ABCD−A′B′C′D′中,P是B′D′的中点,对角线A′C∩平面AB′D′=Q.求证:A,Q,P三点共线.2.如图所示,在正方体ABCD−A1B1C1D1中,E为AB的中点,F为A1A的中点,求证:(1)E,F,D1,C四点共面;(2)CE,D1F,DA三线共点.3.如图,在正方体ABCD−A1B1C1D1中,设线段A1C与平面ABC1D1交于点Q,求证:B,Q,D1三点共线.4.如图所示,在正方体ABCD−A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.5.如图,正方体ABCD−A1B1C1D1中,E,F分别为C1D1,B1C1的中点.(1)求证:E,F,B,D四点共面;(2)若AC∩BD=P,A1C1∩EF=Q,AC1与平面EFBD交于点R,求证:P,Q,R三点共线.6.在正方体AC1中,E,F分别为D1C1,B1C1的中点,AC∩BD=P,A1C1∩EF=Q,如图.(1)若A1C交平面EFBD于点R,则P,Q,R三点共线.(2)证明DE、BF、CC1三线共点.7.如图,空间四边形ABCD中,H、G分别是AD、CD的中点,E、F分别在AB、BC上,且CFFB =AEEB=13.(1)求证:E、F、G、H四点共面;(2)求证:FG、HE、BD三条直线交于一点.8.已知空间四边形ABCD中,E,H分别是AB,AD的中点,F,G分别是BC,CD上的点,且CFCB =CGCD=23.求证:(1)E,F,G,H四点共面;(2)三条直线EF,GH,AC交于一点.9.如图所示,在空间四边形ABCD中,E,F分别为AB,AD的中点,G,H分别在BC,CD上,且BG︰GC=DH︰HC=1︰2.(1)求证:E,F,G,H四点共面;(2)求证:直线EG、FH、AC交于一点.10.正三棱柱ABC−A1B1C1的棱长都为2,D、E、F分别是AB、A1C1、BC的中点,(1)证明:A1、C1、D、F四点共面;(2)求异面直线B1C与DE所成角余弦值;(3)证明:A1D、C1F、B1B三线共点.11.如图,已知平面α,β,且α∩β=l,设梯形ABCD中,AD//BC,且AB⊂α,CD⊂β,求证:AB,CD,l共点(相交于一点).12.如图所示,四边形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BC=//12AD,BE=//12FA,G,H分别为FA,FD的中点(1)证明:四边形BCHG是平行四边形(2)C,D,F,E四点是否共面?为什么?13.如图,四棱锥P−ABCD中,底面ABCD为矩形,PA⊥底面ABCD,AB=PA=1,AD=√3,E,F分别为棱PD,PA的中点.(1)求证:B、C、E、F四点共面;(2)求异面直线PB与AE所成的角.能力提升一、共线问题例1.若ΔABC所在的平面和ΔA1B1C1所在平面相交,并且直线AA1、BB1、CC1相交于一点O,求证:(1)AB和A1B1、BC和B1C1、AC和A1C1分别在同一平面内;(2)如果AB和A1B1、BC和B1C1、AC和A1C1分别相交,那么交点在同一直线上(如图).例2.点P、Q、R分别在三棱锥A-BCD的三条侧棱上,且PQ∩BC=X,QR∩CD=Z,PR∩BD=Y.求证:X、Y、Z三点共线.例3.已知△ABC三边所在直线分别与平面α交于P、Q、R三点,求证:P、Q、R三点共线。

立体几何公理定理总结

立体几何公理定理总结
立体几何公理定理总结
一.公理
公理1:如果一条直线上两点在一个平面 内,那么这条直线在此平面内.
公理2:过不在一条直线上的三点,有且 只有一个平面.
公理3:如果两个不重合的平面有一个公 共点,那么它们有且只有一条过该点的 公共直线.
公理4:平行于同一条直线的两条直线平 行.
二.空间位置关系
面面平行:
判定:一个平面内的两条相交直线与另一个平 面平行,则这两个平面平行.
性质:如果两个平行平面同时和第三个平面相 交,那么它们的交线平行.
四.垂直
线线垂直:
平面上的判定 如果直线与平面垂直,则该直线与平面内任意
一条直线垂直.
线面垂直:
定义:如果一条直线垂直于一个平面内的任意 一条直线,那பைடு நூலகம்就说这条直线和这个平面垂直.
判定:一条直线与一个平面内的两条相交直线 都垂直,则该直线与此平面垂直.
性质:垂直于同一个平面的两条直线平行.
面面垂直:
定义:两个平面相交,如果它们所成的二面角 是直二面角,就说这两个平面互相垂直.
判定:一个平面经过另一个平面的一条垂线, 则这两个平面垂直.
性质:两个平面互相垂直,则一个平面内垂直 于交线的直线垂直于另一个平面.
线线位置关系:平行、相交、异面. 定理:空间中如果两个角的两边分别对应
平行,那么这两个角相等或互补. 线面位置关系:线在平面内、线与平面相
交、线与平面平行. 面面位置关系:平行、相交.
三.平行
线面平行:
判定:平面外一条直线与此平面内的一条直线 平行,则该直线与此平面平行 .
性质:一条直线与一个平面平行,则过这条直 线的任一平面与此平面的交线与该直线平行.

立体几何——两条直线之间的位置关系(一)

立体几何——两条直线之间的位置关系(一)

立体几何——两条直线之间的位置关系(一)一、知识导学1.平面的基本性质. 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线. 公理3:经过不在同一条直线上的三点,有且只有一个平面. 推论1:经过一条直线和这条直线外的一点,,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.2.空间两条直线的位置关系,包括:相交、平行、异面.3.公理4:平行于同一条直线的两条直线平行. 定理4:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.4.异面直线. 异面直线所成的角;两条异面直线互相垂直的概念;异面直线的公垂线及距离.5.反证法.会用反证法证明一些简单的问题.二、疑难知识导析1.异面直线是指不同在任何一个平面内,没有公共点.强调任何一个平面.2.异面直线所成的角是指经过空间任意一点作两条分别和异面的两条直线平行的直线所成的锐角(或直角).一般通过平移后转化到三角形中求角,注意角的范围.3.异面直线的公垂线要求和两条异面直线垂直并且相交,4.异面直线的距离是指夹在两异面直线之间公垂线段的长度.求两条异面直线的距离关键是找到它们的公垂线.5.异面直线的证明一般用反证法、异面直线的判定方法:如图,如果b,A且A,a,则a与b异面.三、经典例题导讲[例1]在正方体ABCD-A B C D中,O是底面ABCD的中心,M、N分别是棱DD、D C的中点,则直线OM( ).A .是AC和MN的公垂线.B .垂直于AC但不垂直于MN.C .垂直于MN,但不垂直于AC.D .与AC、MN都不垂直.错解:B.错因:学生观察能力较差,找不出三垂线定理中的射影.正解:A.[例2]如图,已知在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且,求证:直线EG,FH,AC相交于一点.错解:证明:、F分别是AB,AD的中点,∥BD,EF=BD,又, GH∥BD,GH=BD,四边形EFGH是梯形,设两腰EG,FH相交于一点T,,F分别是AD.AC与FH交于一点.直线EG,FH,AC相交于一点正解:证明:、F分别是AB,AD的中点,∥BD,EF=BD, 又,GH∥BD,GH=BD,四边形EFGH是梯形,设两腰EG,FH相交于一点T,平面ABC,FH平面ACD,T面ABC,且T面ACD,又平面ABC平面ACD=AC,,直线EG,FH,AC相交于一点T.[例3]判断:若a,b是两条异面直线,P为空间任意一点,则过P点有且仅有一个平面与a,b 都平行.错解:认为正确.错因:空间想像力不够.忽略P在其中一条线上,或a与P确定平面恰好与b平行,此时就不能过P作平面与a平行.正解:假命题.[例4]如图,在四边形ABCD中,已知AB∥CD,直线AB,BC,AD,DC分别与平面α相交于点E,G,H,F.求证:E,F,G,H四点必定共线(在同一条直线上).分析:先确定一个平面,然后证明相关直线在这个平面内,最后证明四点共线.证明∵ AB//CD, AB,CD确定一个平面β.又∵AB ∩α=E,ABβ, Eα,Eβ,即 E为平面α与β的一个公共点.同理可证F,G,H均为平面α与β的公共点.∵两个平面有公共点,它们有且只有一条通过公共点的公共直线,∴ E,F,G,H四点必定共线.点评:在立体几何的问题中,证明若干点共线时,先证明这些点都是某两平面的公共点,而后得出这些点都在二平面的交线上的结论.[例5]如图,已知平面α,β,且α∩β=.设梯形ABCD中,AD∥BC,且ABα,CDβ,求证:AB,CD,共点(相交于一点).分析:AB,CD是梯形ABCD的两条腰,必定相交于一点M,只要证明M在上,而是两个平面α,β的交线,因此,只要证明M∈α,且M∈β即可.证明:∵梯形ABCD中,AD∥BC,∴AB,CD是梯形ABCD的两条腰.∴ AB,CD必定相交于一点,设 AB ∩CD=M.又∵ ABα,CDβ,∴ M∈α,且M∈β.∴ M∈α∩β.又∵α∩β=,∴ M∈,即 AB,CD,共点.点评:证明多条直线共点时,与证明多点共线是一样的.[例6]已知:a,b,c,d是不共点且两两相交的四条直线,求证:a,b,c,d共面.分析:弄清楚四条直线不共点且两两相交的含义:四条直线不共点,包括有三条直线共点的情况;两两相交是指任何两条直线都相交.在此基础上,根据平面的性质,确定一个平面,再证明所有的直线都在这个平面内.证明 1?若当四条直线中有三条相交于一点,不妨设a,b,c相交于一点 A ∴直线d和A确定一个平面α.又设直线d与a,b,c分别相交于E,F,G,则 A,E,F,G∈α.∵ A,E∈α,A,E∈a,∴ aα.同理可证 bα,cα.∴ a,b,c,d在同一平面α内.2?当四条直线中任何三条都不共点时,如图.∵这四条直线两两相交,则设相交直线a,b确定一个平面α.设直线c与a,b分别交于点H,K,则 H,K∈α.又∵ H,K∈c,∴ cα.同理可证 dα.∴ a,b,c,d四条直线在同一平面α内.点评:证明若干条线(或若干个点)共面的一般步骤是:首先由题给条件中的部分线(或点)确定一个平面,然后再证明其余的线(或点)均在这个平面内.本题最容易忽视“三线共点”这一种情况.因此,在分析题意时,应仔细推敲问题中每一句话的含义.[例7]在立方体ABCD-A1B1C1D1中,(1)找出平面AC的斜线BD1在平面AC内的射影;(2)直线BD1和直线AC的位置关系如何?(3)直线BD1和直线AC所成的角是多少度?解:(1)连结BD, 交AC于点O .(2)BD1和AC是异面直线.(3)过O作BD1的平行线交DD1于点M,连结MA、MC,则∠MOA或其补角即为异面直线AC和BD1所成的角.不难得到MA=MC,而O为AC的中点,因此MO⊥AC,即∠MOA=90°,∴异面直线BD1与AC所成的角为90°.[例8] 已知:在直角三角形ABC中,A为直角,PA⊥平面ABC,BD⊥PC,垂足为D,求证:AD⊥PC证明:∵PA ⊥平面ABC∴PA⊥BA又∵BA⊥AC ∴BA⊥平面PAC∴AD是BD在平面PAC内的射影又∵BD⊥PC∴AD⊥PC.(三垂线定理的逆定理)四、典型习题导练1.如图, P是△ABC所在平面外一点,连结PA、PB、PC后,在包括AB、BC、CA的六条棱所在的直线中,异面直线的对数为( )A.2对B.3对C.4对D.6对2. 两个正方形ABCD、ABEF所在的平面互相垂直,则异面直线AC和BF所成角的大小为.3. 在棱长为a的正方体ABCD-A1B1C1D1中,体对角线DB1与面对角线BC1所成的角是,它们的距离是 .4.长方体中,则所成角的大小为_ ___.5.关于直角AOB在定平面α内的射影有如下判断:①可能是0°的角;②可能是锐角;③可能是直角;④可能是钝角;⑤可能是180°的角. 其中正确判断的序号是_____.(注:把你认为正确的序号都填上).6.在空间四边形ABCD中,AB⊥CD,AH⊥平面BCD,求证:BH⊥CD7.如图正四面体中,D、E是棱PC上不重合的两点;F、H分别是棱PA、PB上的点,且与P 点不重合.求证:EF和DH是异面直线.。

高中数学竞赛标准讲义:第12章:立体几何

高中数学竞赛标准讲义:第12章:立体几何

高中数学竞赛标准讲义:第12章:立体几何2021高中数学竞赛标准讲义:第十二章:立体几何一、基础知识公理1 一条直线。

上如果有两个不同的点在平面。

内.则这条直线在这个平面内,记作:a?a.公理2 两个平面如果有一个公共点,则有且只有一条通过这个点的公共直线,即若P∈α∩β,则存在唯一的直线m,使得α∩β=m,且P∈m。

公理3 过不在同一条直线上的三个点有且只有一个平面。

即不共线的三点确定一个平面.推论l 直线与直线外一点确定一个平面.推论2 两条相交直线确定一个平面.推论3 两条平行直线确定一个平面.公理4 在空间内,平行于同一直线的两条直线平行.定义1 异面直线及成角:不同在任何一个平面内的两条直线叫做异面直线.过空间任意一点分别作两条异面直线的平行线,这两条直线所成的角中,不超过900的角叫做两条异面直线成角.与两条异面直线都垂直相交的直线叫做异面直线的公垂线,公垂线夹在两条异面直线之间的线段长度叫做两条异面直线之间的距离.定义2 直线与平面的位置关系有两种;直线在平面内和直线在平面外.直线与平面相交和直线与平面平行(直线与平面没有公共点叫做直线与平面平行)统称直线在平面外.定义3 直线与平面垂直:如果直线与平面内的每一条直线都垂直,则直线与这个平面垂直.定理1 如果一条直线与平面内的两条相交直线都垂直,则直线与平面垂直.定理2 两条直线垂直于同一个平面,则这两条直线平行.定理3 若两条平行线中的一条与一个平面垂直,则另一条也和这个平面垂直.定理4 平面外一点到平面的垂线段的长度叫做点到平面的距离,若一条直线与平面平行,则直线上每一点到平面的距离都相等,这个距离叫做直线与平面的距离.定义5 一条直线与平面相交但不垂直的直线叫做平面的斜线.由斜线上每一点向平面引垂线,垂足叫这个点在平面上的射影.所有这样的射影在一条直线上,这条直线叫做斜线在平面内的射影.斜线与它的射影所成的锐角叫做斜线与平面所成的角.结论1 斜线与平面成角是斜线与平面内所有直线成角中最小的角.定理4 (三垂线定理)若d为平面。

立体几何中的所有结论

立体几何中的所有结论

第九章:直线、平面、简单几何体小结一、重要的概念和定理 1.公理和推论公理1.如果一条直线上的两个点在一个平面内,那么这条直线上的所有点都在 这个平面内。

作用:判断直线在平面内的依据。

公理2.如果两个平面有一个公共点,那么它们还有其它公共点,且这些公共点的集合是通过该公共点的一条直线。

作用:判断两个平面相交和共线的依据。

公理3.经过不在同一直线上的三个点,有且只 有一个平面。

推论1.经过一条直线和这条直线外一点,有且 作用:确定平面的依据。

只有一个平面。

推论2.经过两条相交直线,有且只有一个平面。

推论3.经过两条平行直线,有且只有一个平面。

公理4.同平行于一条直线的两条直线互相平行。

作用:判断平行的依据。

2.概念⑴直线与直线 ①异面直线:不在任何一个平面内的两条直线叫做异面直线。

②异面直线所成角:如果a 、b 是异面直线,经过空间任意一点0作a '∥a ,b '∥b ,那么把a '和b '所成的锐角(或直角)叫做异面直线a 和b 所成的角。

如果两条异面直线所成的角是直角,就称这两条异面直线互相垂直。

显然若设异面直线所成角为α,则0<α≤2π。

③异面直线间的距离:和异面直线都垂直相交的直线叫做两条异面直线的公垂线。

两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离。

⑵直线和平面①直线和平面平行:如果一条直线和一个平面没有公共点,那么就说这条直线和这个平面平行。

②直线和平面垂直:如果一条直线和一个平面内的任何一条直线都垂直,那么就说这条直线和这个平面垂直,这条直线叫做平面的垂线,平面叫做直线的垂面。

③射影:自一点P 向平面α引垂线,垂足P ' 叫做点P 在平面α内的正射影(简称射影)。

如果图形F 上的所有点在一平面内射影构成图形F ',则F '叫做图形F 在这个平面内的射影。

过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面上的射影。

立体几何判定平行垂直的20个判定定理

立体几何判定平行垂直的20个判定定理
范围
空间距离
距离图示
定义
两平行直线间的距离
异面直线间的距离:两条异面直线的公垂线段的长度。
平行直线和平面的距离
平行平面间距离
经过不在同一直线上的三点有且仅有一个平确定一个平面的依据空间角平面图形空间图形异面直线直线和平面两个平面夹角图示定义由一点出发的平面上的射影a与a?所成锐角面角的平面角
平行关系的判定
图示
符号
文字
线//线
(4个)
,
公理4:平行于同一条直线的两条直线互相平行
线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
确定一个平面的依据
空间角
平面图形
空间图形
异面直线
直线和平面
两个平面
夹角图示
定义
由一点出发的两条射线组成的图形
异面直线所成的角:作 , , 所成的角(锐角或直角)为异面直线所成的角
直线与平面所成的角:a’是a在平面上的射影,a与a’所成锐角为直线与平面所成的角。
二面角的平面角:O在棱上,OA在α内,OA⊥棱,OB在β内,OB⊥棱,∠AOB是二面角的平面角。
, ,

面面垂直的性质定理:两个平面垂直,在第一个平面内垂直于交线的直线垂直于另一个平面。
⊥ , b⊥
线面垂直的性质:由线线平行得线面垂直。
⊥ , ⊥
面面平行的性质:由面面平行得线面垂直。
面⊥面
(2个)

面面垂直的判定定理:一个平面经过另外一个平面的垂线,则这两个平面互相垂直。
, ⊥
补充:如果一个平面与另一个平面的垂线平行,那么这两个平面互相垂直。
⊥ ,b⊥
线面垂直的性质定理:如何两条直线都垂直于同一个平面,那么这两条直线平行。

第八章 立体几何初步(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)

第八章 立体几何初步(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)

第八章立体几何初步(公式、定理、结论图表)1.多面体的结构特征名称棱柱棱锥棱台图形底面互相平行且全等多边形互相平行且相似侧棱互相平行且相等相交于一点,但不一定相等延长线交于一点侧面形状平行四边形三角形梯形2.正棱柱、正棱锥的结构特征(1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.3.旋转体的结构特征(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方和正上方观察几何体画出的轮廓线.(2)在画三视图时,重叠的线只画一条,挡住的线要画成虚线.(3)三视图的长度特征:“长对正、高平齐、宽相等”,即正俯同长、正侧同高、俯侧同宽.5.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.6.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.7.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r1+r2)l三者关系S圆柱侧=2πrl――→r′=rS圆台侧=π(r+r′)l――→r′=0S圆锥侧=πrl8.柱、锥、台和球的表面积和体积(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在这个平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.(4)公理2的三个推论推论1:经过一条直线和这条直线外的一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.10.空间直线的位置关系(1)位置关系的分类异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).(3)平行公理(公理4)和等角定理平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.11.空间中直线与平面、平面与平面的位置关系(1)空间中直线与平面的位置关系空间中两个平面的位置关系位置关系图形表示符号表示公共点两平面平行α∥β没有公共点两平面相交斜交α∩β=l有一条公共直线垂直α⊥β且α∩β=a12.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)∵a ∥β,b ∥β,a ∩b =P ,a ⊂α,b ⊂α,∴α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行∵α∥β,α∩γ=a ,β∩γ=b ,∴a ∥b14.直线与平面垂直(1)定义:如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α垂直.(2)判定定理:如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.(3)推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面.(4)直线和平面垂直的性质:①垂直于同一个平面的两条直线平行.②直线垂直于平面,则垂直于这个平面内的任一直线.③垂直于同一条直线的两平面平行.15.直线和平面所成的角(1)平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角.(2)当直线与平面垂直和平行(或直线在平面内)时,规定直线和平面所成的角分别为90°和0°.(3)直线和平面所成角的范围是0°≤θ≤90°.16.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.(3)二面角的范围是0°≤θ≤180°.17.平面与平面垂直(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直.(2)平面与平面垂直的判定定理与性质定理l⊥α<常用结论>1.特殊的四棱柱2.球的截面的性质3.按照斜二测画法得到的平面图形的直观图,其面积与原图形面积的关系如下:5.几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,6.异面直线的判定定理7.等角定理的引申(1)在等角定理中,若两角的两边平行且方向相同或相反,则这两个角相等.(2)在等角定理中,若两角的两边平行且方向一个边相同,一个边相反,则这两个角互补.8.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.9.线、面平行的性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(4)两条直线被三个平行平面所截,截得的对应线段成比例.(5)如果两个平面分别和第三个平面平行,那么这两个平面互相平行.(6)如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行.12.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.<解题方法与技巧>一、空间几何体概念辨析题的常用方法A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线D[A错误.如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.图1图2B错误.如图2,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥.C错误.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.]二、识别三视图的步骤(2)根据三视图的有关定义和规则先确定正视图,再确定俯视图,最后确定侧视图;(3)被遮住的轮廓线应为虚线,若相邻两个物体的表面相交,表面的交线是它们的分界线;对于简单的组合体,要注意它们的组合方式,特别是它们的交线位置.典例2:(1)如图是一个正方体,A,B,C为三个顶点,D是棱的中点,则三棱锥A­BCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)()A B C D(2)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()(1)A(2)A[(1)正视图和俯视图中棱AD和BD均看不见,故为虚线,易知选A.(2)由题意可知,咬合时带卯眼的木构件如图所示,其俯视图为选项A中的图形.]三、由三视图确定几何体的步骤典例3:(1)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4(2)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N 的路径中,最短路径的长度为()A.217B.25C.3D.2(1)C(2)B[(1)在正方体中作出该几何体的直观图,记为四棱锥P­ABCD,如图,由图可知在此四棱锥的侧面中,直角三角形的个数为3,故选C.(2)先画出圆柱的直观图,根据题图的三视图可知点M,N的位置如图1所示.图1图2圆柱的侧面展开图及M,N的位置(N为OP的四等分点)如图2所示,连接MN,则图中MN即为M到N的最短路径.ON=14×16=4,OM=2,∴MN=OM2+ON22 5.故选B.]四、由几何体的部分视图确定剩余视图的方法解决此类问题,可先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入检验.典例4:如图是一个空间几何体的正视图和俯视图,则它的侧视图为()A B C DA [由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A ,故选A.]五、空间几何体的直观图1.用斜二测画法画直观图的技巧在原图形中与x 轴或y 轴平行的线段在直观图中与x ′轴或y ′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线.2.原图形与直观图面积的关系典例5:(1)已知等腰梯形ABCD ,CD =1,AD =CB =2,AB =3,以AB 所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为()A.2B.24C.22D .22(2)如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6cm ,O ′C ′=2cm ,则原图形是()A .正方形B .矩形C .菱形D .一般的平行四边形(1)C (2)C [(1)法一(作图求解):如图,取AB 的中点O 为坐标原点,建立平面直角坐标系,y 轴交DC 于点E ,O ,E 在斜二测画法中的对应点为O ′,E ′,过E ′作E ′F ′⊥x ′轴,垂足为F ′,因为OE =(2)2-12=1,所以O′E′=12,E′F′=24.所以直观图A′B′C′D′的面积为S′=12×(1+3)×24=22,故选C.法二(公式法):由题中数据得等腰梯形ABCD的面积S=12×(1+3)×1=2.由S直观图=24S原图形,得S直观图=24×2=22,故选C.(2)如图,在原图形OABC中,应有OD=2O′D′=2×22=42(cm),CD=C′D′=2cm.所以OC=OD2+CD2=(42)2+22=6(cm),所以OA=OC,由题意得OA綊BC,故四边形OABC是菱形,故选C.]六、求解几何体表面积的类型及求法A.48+πB.48-πC.48+2πD.48-2π(2)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.122πB.12πC.82πD.10π(1)A(2)B[(1)该几何体是正四棱柱挖去了一个半球,正四棱柱的底面是正方形(边长为2),高为5,半球的半径是1,那么该几何体的表面积为S=2×2×2+4×2×5-π×12+2π×12=48+π,故选A.(2)因为过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2×π×(2)2+2π×2×22=12π.]七、求体积的常用方法典例7:(1)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.π2+1B.π2+3C.3π2+1 D.3π2+3(2)如图,已知正方体ABCD ­A 1B 1C 1D 1的棱长为1,则四棱锥A 1­BB 1D 1D 的体积为.(1)A (2)13[(1)由三视图可知该几何体是由底面半径为1,高为3的半个圆锥和三棱锥S­ABC 组成的,如图,三棱锥的高为3,底面△ABC 中,AB =2,OC =1,AB ⊥OC .故其体积V =13×12×π×12×3+13×12×2×1×3=π2+1.故选A.(2)四棱锥A 1­BB 1D 1D 的底面BB 1D 1D 为矩形,其面积S =1×2=2,又四棱锥的高为点A 1到平面BB 1D 1D 的距离,即h =12A 1C 1=22,所以四棱锥的体积V =13×2×22=13.]八、空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.典例8:(1)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为93,则三棱锥D­ABC体积的最大值为()A.123B.183C.243D.543(2)已知直三棱柱ABC­A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.3172B.210C.132D.310(1)B(2)C[(1)如图,E是AC中点,M是△ABC的重心,O为球心,连接BE,OM,OD,BO.因为S△ABC=34AB2=93,所以AB=6,BM=23BE=23AB2-AE2=2 3.易知OM⊥平面ABC,所以在Rt△OBM中,OM=OB2-BM2=2,所以当D,O,M三点共线且DM=OD+OM时,三棱锥D­ABC的体积取得最大值,且最大值V ma x=13S△ABC×(4+OM)=13×93×6=18 3.故选B.(2)如图所示,由球心作平面ABC的垂线,则垂足为BC 的中点M .因为AB =3,AC =4,AB ⊥AC ,所以BC =5.又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA=132,故选C.]九、共点、共线、共面问题的证明方法(1)证明点共线问题:①公理法:先找出两个平面,然后证明这些点都是这两个平面的公共点,再根据基本公理3证明这些点都在交线上;②同一法:选择其中两点确定一条直线,然后证明其余点也在该直线上.(2)证明线共点问题:先证两条直线交于一点,再证明第三条直线经过该点.(3)证明点、直线共面问题:①纳入平面法:先确定一个平面,再证明有关点、线在此平面内;②辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.典例9:(1)以下命题中,正确命题的个数是()①不共面的四点中,其中任意三点不共线;②若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则A ,B ,C ,D ,E 共面;③若直线a ,b 共面,直线a ,c 共面,则直线b ,c 共面;④依次首尾相接的四条线段必共面.A .0B .1C .2D .3(2)如图,正方体ABCD ­A 1B 1C 1D 1中,E ,F 分别是AB 和AA 1的中点.求证:①E ,C ,D 1,F 四点共面;②CE,D1F,DA三线共点.(1)B[①正确,可以用反证法证明,假设任意三点共线,则四个点必共面,与不共面的四点矛盾;②中若点A,B,C在同一条直线上,则A,B,C,D,E不一定共面,故②错误;③中,直线b,c可能是异面直线,故③错误;④中,当四条线段构成空间四边形时,四条线段不共面,故④错误.](2)[证明]①如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又∵A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.②∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,则由P∈直线CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.十、空间两条直线的位置关系典例10:(1)已知a,b,c为三条不同的直线,且a⊂平面α,b⊂平面β,α∩β=c,给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c.其中真命题有.(填序号)(2)如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有(填上所有正确答案的序号).①②③④(1)①③(2)②④[(1)对于①,若c与a,b都不相交,则c∥a,c∥b,从而a∥b,这与a与b是异面直线矛盾,故①正确.对于②,a与b可能异面垂直,故②错误.对于③,由a∥b可知a∥β,又α∩β=c,从而a∥c,故③正确.(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG(图略),GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面,所以在图②④中,GH与MN异面.]十一、平移法求异面直线所成角的步骤典例11:(1)在正方体ABCD­A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD 所成角的正切值为()A.2 2B.32C.52D.72(2)在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.如图,在鳖臑ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成角的余弦值为()A.12B .-12C.32D .-32(1)C (2)A [(1)如图,连接BE ,因为AB ∥CD ,所以异面直线AE 与CD 所成的角等于相交直线AE 与AB 所成的角,即∠EAB .不妨设正方体的棱长为2,则CE =1,BC =2,由勾股定理得BE = 5.又由AB ⊥平面BCC 1B 1可得AB ⊥BE ,所以tan ∠EAB =BE AB =52.故选C.(2)如图,分别取AB ,AD ,BC ,BD 的中点E ,F ,G ,O ,连接EF ,EG ,OG ,FO ,FG ,则EF ∥BD ,EG ∥AC ,所以∠FEG 为异面直线AC 与BD 所成的角.易知FO ∥AB ,因为AB ⊥平面BCD ,所以FO ⊥平面BCD ,所以FO ⊥OG ,设AB =2a ,则EG =EF =2a ,FG =a 2+a 2=2a ,所以∠FEG =60°,所以异面直线AC 与BD 所成角的余弦值为12,故选A.]十二、判定线面平行的四种方法(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α);(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄α,a ⊄β,a ∥α⇒a ∥β).典例12:如图,在四棱锥P ­ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ;(2)求证:GH ∥平面P AD .[证明](1)连接EC ,因为AD ∥BC ,BC =12AD ,E 为AD 中点,所以BC AE ,所以四边形ABCE 是平行四边形,所以O 为AC 的中点.又因为F 是PC 的中点,所以FO ∥AP ,因为FO ⊂平面BEF ,AP ⊄平面BEF ,所以AP ∥平面BEF .(2)连接FH ,OH ,因为F ,H 分别是PC ,CD 的中点,所以FH ∥PD ,因为FH ⊄平面PAD ,PD ⊂平面PAD ,所以FH ∥平面PAD .又因为O 是BE 的中点,H 是CD 的中点,所以OH ∥AD ,因为OH ⊄平面PAD ,AD ⊂平面PAD .所以OH ∥平面P AD .又FH ∩OH =H ,所以平面OHF ∥平面PAD .又因为GH ⊂平面OHF ,所以GH∥平面PAD.十三、判定平面与平面平行的四种方法(1)面面平行的定义,即证两个平面没有公共点(不常用);(2)面面平行的判定定理(主要方法);(3)利用垂直于同一条直线的两个平面平行(客观题可用);(4)利用平面平行的传递性,两个平面同时平行于第三个平面,那么这两个平面平行(客观题可用).注意:谨记空间平行关系之间的转化典例13:已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC 为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD,M,N分别为DB,DC的中点.(1)求证:平面EMN∥平面ABC;(2)求三棱锥A­ECB的体积.[解](1)证明:取BC中点H,连接AH,∵△ABC为等腰三角形,∴AH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,∴AH⊥平面BCD,同理可证EN⊥平面BCD,∴EN ∥AH ,∵EN ⊄平面ABC ,AH ⊂平面ABC ,∴EN ∥平面ABC ,又M ,N 分别为BD ,DC 中点,∴MN ∥BC ,∵MN ⊄平面ABC ,BC ⊂平面ABC ,∴MN ∥平面ABC ,又MN ∩EN =N ,∴平面EMN ∥平面ABC .(2)连接DH ,取CH 中点G ,连接NG ,则NG ∥DH ,由(1)知EN ∥平面ABC ,所以点E 到平面ABC 的距离与点N 到平面ABC 的距离相等,又△BCD 是边长为2的等边三角形,∴DH ⊥BC ,又平面ABC ⊥平面BCD ,平面ABC ∩平面BCD =BC ,DH ⊂平面BCD ,∴DH ⊥平面ABC ,∴NG ⊥平面ABC ,∴DH =3,又N 为CD 中点,∴NG 又AC =AB =3,BC =2,∴S △ABC =12·|BC |·|AH |=22,∴V E ­ABC =V N ­ABC =13·S △ABC ·|NG |=63.十四、证明直线与平面垂直的常用方法(1)利用线面垂直的判定定理.(2)利用“两平行线中的一条与平面垂直,则另一条也与这个平面垂直”.(3)利用“一条直线垂直于两个平行平面中的一个,则与另一个也垂直”.(4)利用面面垂直的性质定理.典例14:如图,在斜三棱柱ABC ­A 1B 1C 1中,底面ABC 是边长为2的正三角形,M 为棱BC 的中点,BB 1=3,AB 1=10,∠CBB 1=60°.(1)求证:AM ⊥平面BCC 1B 1;(2)求斜三棱柱ABC ­A 1B 1C 1的体积.[解](1)证明:如图,连接B 1M ,因为底面ABC 是边长为2的正三角形,且M 为棱BC 的中点,所以AM ⊥BC ,且AM =3,因为BB 1=3,∠CBB 1=60°,BM =1,所以B 1M 2=12+32-2×1×3×cos 60°=7,所以B 1M =7.又因为AB 1=10,所以AM 2+B 1M 2=10=AB 21,所以AM ⊥B 1M .又因为B 1M ∩BC =M ,所以AM ⊥平面BCC 1B 1.(2)设斜三棱柱ABC ­A 1B 1C 1的体积为V ,则V =3VB 1­ABC =3VA ­B 1BC=3×13S △B 1BC ·|AM |=12×2×3×sin 60°×3=92.所以斜三棱柱ABC­A1B1C1的体积为9 2 .十五、证明面面垂直的两种方法(1)定义法:利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题.(2)定理法:利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决,注意:三种垂直关系的转化典例15:(1)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线B[取CD的中点F,DF的中点G,连接EF,FN,MG,GB,BD,BE.∵点N为正方形ABCD的中心,∴点N在BD上,且为BD的中点.∵△ECD是正三角形,∴EF⊥CD.∵平面ECD⊥平面ABCD,∴EF⊥平面ABCD.∴EF⊥FN.不妨设AB=2,则FN=1,EF=3,∴EN=FN2+EF2=2.∵EM=MD,DG=GF,∴MG∥EF,∴MG⊥平面ABCD,∴MG⊥BG.∵MG=12EF=32,BG=CG2+BC2=52,∴BM=MG2+BG2=7.∴BM≠EN.∵BM,EN是△DBE的中线,∴BM,EN必相交.故选B.](2)如图,四棱锥P­ABCD中,△PCD为等边三角形,CD=AD=2AB,E,S,T,Q为CD,P A,PB,AD的中点,∠ABC=∠BCD=∠PEA=90°,平面STRQ∩平面ABCD=RQ.①证明:平面P AE⊥平面STRQ;②若AB=1,求三棱锥Q­BCT的体积.[解]①证明:因为E为CD的中点,CD=2AB,∠ABC=∠BCD=90°,所以四边形ABCE 为矩形,所以AE⊥CD.由已知易得RQ∥CD,所以RQ⊥AE.因为∠PEA=90°,PE∩CD=E,故AE⊥平面PCD,又因为AE⊂平面ABCD.故平面PCD⊥平面ABCD.因为PE⊥CD,所以PE⊥平面ABCD.因为RQ⊂平面ABCD,所以RQ⊥PE.又PE ∩AE =E ,所以RQ ⊥平面PAE .所以平面P AE ⊥平面STRQ .②由①可知,PE ⊥平面ABCD ,又T 是PB 的中点,∴点T 到平面BCQ 的距离为12PE =32,易知S △BCQ =12S 梯形ABCD =12×12×(1+2)×3=334.故三棱锥Q ­BCT 的体积V =13×334×32=38.十六、求点到平面的距离(高)的两种方法(1)定义法:求几何体的高或点到面的距离,经常根据高或距离的定义在几何体中作出高或点到面的距离.其步骤为:一作、二证、三求.如何作出点到面的距离是关键,一般的方法是利用辅助面法,所作的辅助面,一是要经过该点,二是要与所求点到面的距离的面垂直,这样在辅助面内过该点作交线的垂线,点到垂足的距离即为点到面的距离.(2)等体积法:求棱锥的高或点到平面的距离常常利用同一个三棱锥变换顶点及底面的位置,其体积相等的方法求解.典例16:(1)已知∠ACB =90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为.2[如图,过点P 作⊥平面ABC 于O ,则PO 为P 到平面ABC 的距离.再过O 作OE ⊥AC 于E ,OF ⊥BC 于F ,连接PC ,PE ,PF ,则PE ⊥AC ,PF ⊥BC .又PE =PF =3,所以OE =OF ,所以CO 为∠ACB 的平分线,即∠ACO =45°.在Rt △PEC 中,PC =2,PE =3,所以CE =1,所以OE =1,所以PO =PE 2-OE 2=(3)2-12= 2.](2)如图,在三棱锥P ­ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.①证明:PO ⊥平面ABC ;②若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离.[解]①证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知,OP ⊥OB .由OP ⊥OB ,OP ⊥AC ,OB ⊂平面ABC ,AC ⊂平面ABC ,OB ∩AC =O ,知PO ⊥平面ABC .②作CH ⊥OM ,垂足为H .又由①可得OP ⊥CH ,OP ⊂平面POM ,OM ⊂平面POM ,OP ∩OM =O ,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°,所以OM =253,CH =OC ·MC ·sin ∠ACB OM =455.所以点C 到平面POM 的距离为455.十七、求直线和平面所成角的步骤(1)寻找过斜线上一点与平面垂直的直线;(2)连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角;(3)把该角归结在某个三角形中,通过解三角形,求出该角.典例17:(1)在长方体ABCD­A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8B.62C.82D.83C[如图,连接AC1,BC1,AC.∵AB⊥平面BB1C1C,∴∠AC1B为直线AC1与平面BB1C1C所成的角,∴∠AC1B=30°.又AB=BC=2,在Rt△ABC1中,AC1=2sin30°=4.在Rt△ACC1中,CC1=42-(22+22)=22,∴V长方体=AB×BC×CC1=2×2×22=82.](2)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=23,∠BAD=90°.①求证:AD⊥BC;②求异面直线BC与MD所成角的余弦值;③求直线CD与平面ABD所成角的正弦值.[解]①证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.②如图,取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,所以MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在Rt △DAM 中,AM =1,故DM =AD 2+AM 2=13.因为AD ⊥平面ABC ,所以AD ⊥AC .在Rt △DAN 中,AN =1,故DN =AD 2+AN 2=13.在等腰三角形DMN 中,MN =1,可得cos ∠DMN =12MN DM=1326.所以,异面直线BC 与MD 所成角的余弦值为1326.③如图,连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,所以CM ⊥AB ,CM = 3.又因为平面ABC ⊥平面,平面ABC ∩平面ABD =AB ,而CM ⊂平面ABC ,故CM ⊥平面ABD ,所以∠CDM 为直线CD 与平面ABD 所成的角.在Rt △CAD 中,CD =AC 2+AD 2=4.在Rt △CMD 中,sin ∠CDM =CM CD =34.所以,直线CD 与平面ABD 所成角的正弦值为34.十八、转化思想的应用(1)证明线面平行、面面平行可转化为证明线线平行;证明线线平行可以转化为证明线面平行或面面平行.(2)从解题方法上讲,由于线线垂直、线面垂直、面面垂直之间可以相互转化,因此整个解题过程始终沿着线线垂直、线面垂直、面面垂直的转化途径进行.(3)求几何体的体积也常用转化法.如三棱锥顶点和底面的转化,几何体的高利用平行、中点,比例关系的转化等.典例18:如图,在四棱锥P ­ABCD 中,△PAD 是等腰直角三角形,且∠APD =90°,∠ABC =90°,AB ∥CD ,AB =2CD =2BC =8,平面PAD ⊥平面ABCD ,M 是PC 的三等分点(靠近C 点处).(1)求证:平面MBD ⊥平面P AD ;(2)求三棱锥D ­MAB 的体积.[解](1)证明:由题易得BD =AD =42,∴AB 2=AD 2+BD 2,∴BD ⊥AD .∵平面P AD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BD ⊂平面ABCD ,∴BD ⊥平面P AD .又∵BD ⊂平面MBD ,∴平面MBD ⊥平面PAD .(2)过点P 作PO ⊥AD 交AD 于点O (图略),∵平面PAD ⊥平面DAB ,平面PAD ∩平面DAB =AD ,∴PO ⊥平面DAB ,∴点P 到平面DAB 的距离为PO =2 2.∴V D ­MAB =V M ­DAB =13S △DAB ·13PO =13×12×(42)2×13×22=3229.十九、解决平面图形翻折问题的步骤典例19:图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2.图1图2(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.[解](1)证明:由已知得AD∥BE,CG∥BE,所以AD∥CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连接EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°,得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1=3,故DM=2.所以四边形ACGD的面积为4.二十、存在性问题的一般解题方法先假设其存在,然后把这个假设作为已知条件,和题目的其他已知条件一起进行推理论证和计算.在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在;如果得到了一个不合理的结论,则说明不存在.而对于探求点的问题,一般是先探求点的位置,多为线段的中点或某个三等分点,然后给出符合要求的证明.典例20:如图,在四棱锥P­ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.。

立体几何-空间图形的基本关系与公理1

立体几何-空间图形的基本关系与公理1

空间图形的基本关系与公理研究对象:点、线、面的关系 三种语言:文字语言、符合语言、图形语言(看图说话)点线关系:点在线上、点在线外 点面关系:点在面上、点在面外 线线关系:平行、相交、异面线面关系:线面平行、线面相交、线在面内 面面关系:面面平行、面面相交公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。

公理2:不共线的三点,可以确定一个平面。

推论1:直线和直线外的一点可以确定一个平面 推论2:两条平行直线可以确定一个平面。

推论3:两条相交直线可以确定一个平面。

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线(两个平面的交线)。

公理4:平行于同一条直线的两条直线平行(平行的传递性)。

等角定理:空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补。

推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所组成的锐角(或直角)相等。

异面直线a 、b 所成角:过空间任意一点P 分别引两条异面直线a 、b 的平行线1l 、2l ()12//,//a l b l ,这两条相交直线所成的锐角(或直角)就是异面直线a 、b 所成角。

如果两条异面直线所成的角是直角,我们称这两条直线互相垂直,记作a b ⊥。

论证点、线共面的通法之一,即证部分元素确定一个平面,再证余下元素也在平面内。

论证点、线共面的通法之二,即根据确定平面的条件,先证各部分元素分别确定平面,再证这些平面有相同的确定平面的条件,即重合。

点共线、线共点:依据是公理3,如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线(两个平面的交线)。

证明多点共线:通常是过其中两点作一直线,然后证明其他的点在这条直线上,或者根据已知条件设法证明这些点在两个相交平面内,然后根据公理2就得到这些点在两个平面的交线上。

证明多线共点:可把其中一条作为分别过其余两条的两个平面的交线,然后再证另两条直线的交点在此直线上。

必修二立体几何初步公理定理汇总

必修二立体几何初步公理定理汇总
13
直线与平面垂直的性质定理如果两 Nhomakorabea直线垂直于同一个平面,那么这两条直线平行。
14
两个平面平行的判定定理
如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
15
两个平面平行的性质定理
如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行。
16
平面与平面垂直的判定定理
如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
17
平面与平面垂直的性质定理
如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面
4
推论1
经过一条直线和直线外一点,有且只有一个平面。
5
推论2
经过两条相交的直线,有且只有一个平面。
6
推论3
经过两条平行的直线,有且只有一个平面。
7
公理4
平行于同一条直线的两条直线互相平行
8
等角定理
如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两角相等。
9
过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线是异面直线
10
直线与平面平行的判定定理
平面外一条直线与和这个平面内一条直线平行,那么这条直线和这个平面平行。
(线线平行 线面平行)
11
直线与平面平行的性质定理
如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
(线面平行 线线平行)
12
直线与平面垂直的判定定理
如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。
高一数学必修二立体几何初步
公理、推论及定理汇总

高中立体几何 第05讲_几何公理

高中立体几何 第05讲_几何公理

几何公理公理1:A l ∈,B l ∈,且A α∈,B α∈l α⇒⊂.公理2:对任意三个不共线的点A ,B ,C ,存在唯一的平面α,满足A ,B ,C α∈. 公理3:两个不同平面α与β的交集要么是空集,要么是一条直线.例1. 已知ABCD 是空间四边形(即A ,B ,C ,D 四点不共面),E ,F ,G ,H 分别是AB ,BC ,CD ,AD 上的点,且EH 交FG 于点K ,求证B ,D ,K 三点共线.例2. 如图,在平行六面体''''ABCD A B C D -中,E 是棱BC 的中点.画出平面'A EC 与平面''ABB A 的交线.例3. 如图,棱长为1的正方体''''ABCD A B C D -中,E ,F 分别是棱AD ,'BB 的中点,G 是'DD 的四等分点,1'3D G GD =.①画出平面EFG 截该正方体所得的多边形.②平面EFG 与直线CD 的交点为H ,求DH 的长度.例4. (1)平面外一点A 和平面内一点B 决定的直线与平面内不经过点B 的直线互为异面直线.(2)若直线1l 、2l 、3l 两两共面,且三条直线不在同一个平面上.那么,三条直线要么互相平行,要么三条直线交于一点.A BCD E H FG KA'BA定义:位于同一平面,且没有公共点的两条直线称为平行直线.公理4 平行于同一条直线的两条直线互相平行.例5.已知ABCD是空间四边形,E,F,G,H分别是AB,BC,CD,AD的中点.求证:四边形EHGF是平行四边形.例6.如图所示,四面体ABCD中,E,F分别是AB,BC的中点,G,H分别在AD,CD上,且有:2:3DH HC=,:2:3DG GA=.求证:直线EG,FH,BD交于一点.例7.在三棱锥A BCD-中,E,F分别是△ABC和△ACD的重心.求证:EF∥BD.定理空间中如果两个角的对边分别对应平行,那么这两个角相等或互补.例8.如图,四棱柱''''ABCD A B C D-是长方体(即各侧面和底面都是矩形的四棱柱).则其各棱所在的直线中,(1)与直线AB平行的直线有________________________________.与直线AB异面的直线有________________________________.与直线AB垂直的直线有________________________________.(2)若'::AA AD AB=E,F,G,H分别是棱'CC,''C D,'BB,AB的中点,求EF与GH之间的夹角、FH与EG之间的夹角.ABCDEHFGA BC D'A'B'C 'DEFHGBABC DEG FH。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何公理及定理
一、空间点、线、面之间的关系
1、两条直线的位置关系有:
2、两个平面的位置关系有:
公理1、如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

公理2、过不在一条直线上的三点,有且只有一个平面。

推论1、一组平行直线确定唯一一个平面。

推论2、一条直线及直线外一点确定唯一一个平面。

公理3、如果有两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

公理4(平行公理)、平行于同一直线的两直线平行。

二、平行关系
直线与平面平行的判定定理:
平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

直线与平面平行的性质定理:
一条直线与一个平面平行,则过这条直线的任意平面与此平面的交线与该直线平行。

平面与平面平行的判定定理:
一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

平面与平面平行的性质定理:
1、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

2、两平面平行,其中一个平面内的任一直线平行于另一个平面。

3、夹在两个平行平面间的平行线段相等。

4、平行于同一平面的两个平面平行。

三、垂直关系
直线与平面垂直的判定定理:
一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直。

直线与平面垂直的性质定理:
1、垂直于同一个平面的两条直线互相平行。

2、如果一条直线垂直一个平面,那么这条直线垂直于平面内的所有直线。

平面与平面垂直的判定定理:
如果一个平面过另一个平面的垂线,那么这两个平面垂直。

平面与平面垂直的性质定理:
如果两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

三角公式汇总
一、任意角的三角函数
1. ①与α终边相同的角的集合(角α与角β的终边重合):{}
Z k k ∈+⨯=,360|αββ ②终边在x 轴上的角的集合: {}
Z k k ∈⨯=,180| ββ
③终边在y 轴上的角的集合:{}
Z k k ∈+⨯=,90180| ββ ④终边在坐标轴上的角的集合:{}
Z k k ∈⨯=,90| ββ
⑤ 若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 2. 角度与弧度的互换关系:360°=2π 180°=π
弧度与角度互换公式: 1rad =π
180°≈57.30° 1°=180
π
3、弧长公式:r l ⋅=||α
. 扇形面积公式:211
||22
s lr r α=
=⋅扇形 4、三角函数在各象限的符号:(一全二正弦,三切四余弦)
正切、余切
余弦、正割
正弦、余割
5、在角α的终边上任取..
一点),(y x P ,记:22y x r +=,
正弦:r y =
αsin 余弦:r x =αcos 正切:x
y
=αtan 二、同角三角函数的基本关系式 商数关系:α
α
αcos sin tan = 平方关系:1cos sin
22
=+αα,221
1tan cos αα
+=

212sin cos (sin cos )αααα+=+ 212sin cos (sin cos )αααα-=-
三、诱导公式
⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名不变,符号看象限) ⑵
απ
+2、απ
-2
、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看.
成.
锐角时原函数值的符号。

(口诀:函数名改变,符号看象限) 公式组一 公式组二 公式组三 公式组四
sin(2)sin cos(2)cos tan()tan k x x k x x k x x
πππ+=+=+= sin()sin cos()cos x x x x ππ+=-+=-sin()sin cos()cos x x x x
ππ-=-=-
四、和角公式和差角公式
βαβαβαsin cos cos sin )sin(⋅+⋅=+ βαβαβα
sin cos cos sin )sin(⋅-⋅=-
sin(2)sin cos(2)cos x x x x
ππ-=--=
βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαsin sin cos cos )cos(⋅+⋅=-
βαβαβαtan tan 1tan tan )tan(⋅-+=+ β
αβ
αβαtan tan 1tan tan )tan(⋅+-=-
4
2
675cos 15sin -=
=
, tan152-=tan 752=4
2
615cos 75sin +=
= 五、二倍角公式
αααcos sin 22sin = α
α
α2tan 1tan 22tan -=
ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(* 二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)
αα2cos 22cos 1=+ αα2sin 22cos 1=-
2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-
)sin(cos sin 22ϕ++=+x b a x b x a
22sin b a b +=ϕ,2
2cos b a a +=ϕ,a b
=ϕtan .
七、正弦定理
R C
c
B b A a 2sin sin sin ===(R 为AB
C ∆外接圆半径) 八、余弦定理
A bc c b a cos 2222⋅-+=
B ac c a b cos 2222⋅-+=
C ab b a c cos 2222⋅-+=
222cos 2b c a A bc +-=⋅ 222cos 2a c b B ac +-=⋅ 222
cos 2a b c C ab
+-=⋅
九、三角形的面积公式 高底⨯⨯=
∆21
ABC S B ca A bc C ab S ABC
sin 21
sin 21sin 21===∆(两边一夹角) R
abc
S ABC 4=∆(R 为ABC ∆外接圆半径) r c b a S ABC
⋅++=∆2
(r 为ABC ∆内切圆半径)
(1)x
y sin =
与x y cos =的周期是π.
(2))sin(ϕω+=x y 或)cos(ϕω+=x y (0≠ω)的周期ω
π
2=
T .
2tan
x y =的周期为2π(πω
π2=⇒=T T ,
). (3)x y sin =不是周期函数;x y cos =是周期函数.
函数y =Asin (ωx +φ)的振幅|A|,周期2||
T πω=,频率1||2f T ωπ
==,相位;x ωϕ+初相ϕ(即当x
=0时的相位).
(3) 若 o<x<2
,则sinx<x<tanx
16. 几个重要结论:。

相关文档
最新文档