(精选)第11-2章光的衍射作业-答案

合集下载

第二章 光的衍射 习题及答案

第二章 光的衍射  习题及答案

第二章 光的衍射1. 单色平面光照射到一小圆孔上,将其波面分成半波带。

求第к个带的半径。

若极点到观察点的距离r 0为1m ,单色光波长为450nm ,求此时第一半波带的半径。

解:2022r r k k +=ρ 而20λkr r k +=20λk r r k =- 20202λρk r r k =-+将上式两边平方,得422020202λλρk kr r r k++=+ 略去22λk 项,则 λρ0kr k=将cm 104500cm,100,1-80⨯===λr k 带入上式,得 cm 067.0=ρ2. 平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样改变大小。

问:(1)小孔半径满足什么条件时,才能使得此小孔右侧轴线上距小空孔中心4m 的P 点的光强分别得到极大值和极小值;(2)P 点最亮时,小孔直径应为多大?设此时的波长为500nm 。

解:(1)根据上题结论ρρ0kr k =将cm 105cm,400-50⨯==λr 代入,得cm1414.01054005k k k =⨯⨯=-ρ当k 为奇数时,P 点为极大值; k 为偶数时,P 点为极小值。

(2)P 点最亮时,小孔的直径为cm2828.02201==λρr3.波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为0.5mm 和1mm的透光圆环,接收点P 离光阑1m ,求P 点的光强I 与没有光阑时的光强度I 0之比。

解:根据题意 m 1=R 500nmmm 1R mm 5.0R m 121hk hk 0====λr有光阑时,由公式⎪⎪⎭⎫ ⎝⎛+=+=R r R R r r R R k h h 11)(02002λλ得11000110001105005.011620211=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ4100011000110500111620222=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ按圆孔里面套一个小圆屏幕()13221312121212121a a a a a a a a p =+=⎥⎦⎤⎢⎣⎡+-+=没有光阑时210a a =所以4.波长为632.8nm 的平行光射向直径为2.76mm 的圆孔,与孔相距1m 处放一屏。

光的衍射习题(附答案)1

光的衍射习题(附答案)1

光的衍射(附答案)一.填空题1.波长λ=500nm(1nm=109m)的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d=12mm,则凸透镜的焦距f为3m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1≈589nm)中央明纹宽度为4.0mm,则λ2≈442nm(1nm=109m)的蓝紫色光的中央明纹宽度为3.0mm.3.8mm,则4.时,衍射光谱中第±4,±8,…5.6.f7.8.9.λ210.X11.λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1)这两种波长之间有何关系?(2)在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1)由单缝衍射暗纹公式得a sinθ1=1λ1a sinθ2=2λ2=θ2,sinθ1=sinθ2由题意可知θ1代入上式可得λ1=2λ2(2)a sinθ1=k1λ1=2k1λ2(k1=1,2,…)sinθ1=2k1λ2/aa sinθ2=k2λ2(k2=1,2,…)sinθ2=2k2λ2/a=2k1,则θ1=θ2,即λ1的任一k1级极小都有λ2的2k1级极小与之重合.若k212.在单缝的夫琅禾费衍射中,缝宽a=0.100mm,平行光垂直如射在单缝上,波长λ=500nm,会聚透镜的焦距f=1.00m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1=λ13.9m).已(1)(2)所以x1=fλ1/ax2=fλ2/a则两个第一级明纹之间距为Δx=x2?x1=fΔλ/a=0.27cm1(2)由光栅衍射主极大的公式d sinφ1=kλ1=1λ1d sinφ2=kλ2=1λ2且有sinφ=tanφ=x/f=x2?x1=fΔλ/a=1.8cm所以Δx114.一双缝缝距d=0.40mm,两缝宽度都是a=0.080mm,用波长为λ=480nm(1nm=109m)的平行光垂直照射双缝,在双缝后放一焦距f=2.0m的透镜.求:(1)在透镜焦平面的屏上,双缝干涉条纹的间距l;(2)在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹15.(1)(2)λ'=510.3nm(2)a+b=3λ/sinφ=2041.4nmφ'=arcsin(2×400/2041.4)nm(λ=400nm)2φ''=arcsin(2×760/2041.4)nm(λ=760nm)2''?φ2'=25°白光第二级光谱的张角Δφ=φ216.一束平行光垂直入射到某个光栅上,该光栅有两种波长的光,λ1=440nm,λ2=660nm.实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角φ=60°的方向上,求此光栅的光栅常数d.解:由光栅衍射主极大公式得d sinφ=kλ11d sinφ2=kλ2===当两谱线重合时有φ1=φ2即====两谱线第二次重合即是=,k1=6,k2=4由光栅公式可知d sin60°=6λ1∴d==3.05×103mm17.将一束波长λ=589nm(1nm=109m)的平行钠光垂直入射在1厘米内有5000条刻痕的平面衍射(1)(2)18.30°,且第三级是缺级.(1)光栅常数(a+b)等于多少?(2)透光缝可能的最小宽度a等于多少?(3)在选定了上述(a+b)和a之后,求在衍射角–<φ<范围内可能观察到的全部主极大的级次.解:(1)由光栅衍射的主极大公式得a+b==2.4×104cm(2)若第三级不缺级,则由光栅公式得(a+b)sinφ'=3λ由于第三级缺级,则对应于最小可能的a,φ'方向应是单缝衍射第一级暗纹:两式比较,得a sinφ'=λa==8.0×103cm(3)(a+b)sinφ=kλ(主极大)a sinφ=k'λ(单缝衍射极小)(k'=1,2,3,…)因此k=3,6,9,…缺级;又∵k max==4,∴实际呈现出的是k=0,±1,±2级明纹(k=±4在π/2处不可见).19.在通常亮度下,人眼瞳孔直径约为,若视觉感受最灵敏的光波长为λ=480nm(1nm=109m),试问:(1)人眼最小分辨角是多大?(2)在教室的黑板上,画的等号两横线相距2mm,坐在距黑板10m处的同学能否看清?(要有计算过程)20.θ的两条谱λ2当k'=2时,a=d=×2.4μm=1.6μm21.某单色X射线以30°角掠射晶体表面时,在反射方向出现第一级极大;而另一单色X射线,波长为0.097nm,它在与晶体表面掠射角为60°时,出现第三级极大.试求第一束X射线的波长.解:设晶面间距为d,第一束X射线波长为λ1,掠射角θ1=30°,级次k1=1;另一束射线波长为λ2=0.097nm,掠射角θ2=60°,级次k2=3.根据布拉格公式:第一束2d sinθ1=k1λ1第二束2d sinθ2=k2λ2两式相除得λ==0.168nm.1。

第11-2章光的衍射作业-答案

第11-2章光的衍射作业-答案

第11-2章光的衍射作业-答案第11-2章光的衍射作业答案⼀.选择题1. 在单缝衍射实验中,⽤单⾊平⾏光垂直⼊射后,在光屏上产⽣衍射条纹,对于屏上的第⼆级明条纹中⼼,相应的单缝所能分成的半波带数⽬约为( C )(A) 2 (B) 3 (C) 5 (D) 62.⼀束平⾏单⾊光垂直⼊射在光栅上,当光栅常数b+b’为下列情况(b 代表每条缝的宽度) k = 2 、4 、6 等级次的主极⼤均不出现?( A )(A) b+b'=2b (B) b+b'=3b (C) b+b'=4b (D) b+b'=6b3.根据惠更斯-菲涅⽿原理,若已知光在某时刻的波阵⾯为S,则S 的前⽅某点P 的光强度决定于波阵⾯S 上所在⾯积元发出的⼦波各⾃传到P 点的( B )(A)振动振幅之和;(B)振动的相⼲叠加;(C)振动振幅之和的平⽅(D)光强之和。

4.关于光学仪器的分辨率,下列说法正确的是( C )A.与⼊射光波长成正⽐,与透光孔径成正⽐;B.与⼊射光波长成反⽐,与透光孔径成反⽐;C.与⼊射光波长成反⽐,与透光孔径成正⽐;D.与⼊射光波长成正⽐,与透光孔径成反⽐。

5.某元素的特征光谱中,含有波长分别为1450nmλ=和2750nmλ=的光谱线,在光栅光谱中,这两种波长的光谱线有重叠现象,重叠处1λ的谱线级数是( C )(A)3 、6 、9 (B)2 、4 、6( C)5 、10 、15 (D)4 、8 、126. 在图⽰的夫琅和费单缝衍射装置中,将单缝宽度a稍微变窄,同时使会聚透镜L沿y轴正⽅向作微⼩位移,则屏幕C上的中央衍射条纹将( A )(A) 变宽,同时向上移动(B) 变宽,同时向下移动(C) 变宽,不移动(D) 变窄,同时向上移动7. ⽤单⾊光垂直照射光栅,测得第⼀级主极⼤的衍射⾓为030,则在衍射⾓π?π2121<<-范围内能观察到的全部主极⼤的条纹数为 ( B ) (A) 2条 (B) 3条 (C) 4条 (D) 5条⼆.填空题1. 在复⾊光照射下的单缝衍射图样中,某⼀波长单⾊光的第2级明纹位置恰与波长λ=400nm 的单⾊光的第3级明纹位置重合,这光波的波长__560nm__。

光 的 衍 射

光 的 衍 射

第二章光的衍射试题与解答(3)一、选择题1.根据惠更斯—菲涅耳原理,若已知在某时刻的波阵面为S,则S的前方某点P的光强度决定于波阵面S上所有面积元发出的子波各自传到P点的[ ](A) 振动振幅之和(B) 光强之和(C) 振动振幅之和的平方(D) 振动的相干叠加2.在如图所示的单缝夫琅和费衍射装置中,设中央明纹的衍射角范围很小,若使单缝宽度a变为原来的3/2,同时使入射的单色光的波长λ变为原来的3/4,则屏幕上单缝衍射条纹中央明纹的宽度△X变为原来的[ ](A) 3/4 倍(B) 2/3 倍(C) 9/8 倍(D) 1/2倍3.当单色平行光垂直入射时,观察单缝的夫琅和费衍射图样。

设I0表示中央极大(主极大)的光强,θ1表示中央亮条纹的半角宽度。

若只是把单缝的宽度增大为原来的3倍,其他条件不变,则[ ](A) I0增大为原来的9倍,sinθ1 减小为原来的1/3(B) I0增大为原来的3倍,sinθ1 减小为原来的1/3(C) I0增大为原来的3倍,sinθ1 减小为原来的3(D) I0不变,sinθ1 减小为原来的1/34.波长为λ的单色光垂直入射到光栅常数为d、总缝数为N的衍射光栅上。

则第k级谱线的半角宽度△θ[ ](A) 与该谱线的衍射角θ无关(B) 与光栅总缝数N成反比(C) 与光栅常数d成正比(D) 与入射光波长λ成反比5.一平面衍射的光栅具有N条光缝,则中央零级干涉明条纹和一侧第一级干涉明纹之间将出现的暗条纹为[ ](A) N(B) N2(C) N –1(D) N - 2二、填空题1.一物体作余弦振动,振扶为15×10-2 m,圆频率为6 π s-1,初相位为0.5π,则振动方程为x =__________.2.在单缝夫琅和费衍射示意图中,所画出的各条正入射光线间距相等,那么光线1与3在幕上P点相遇时的位相差为________,P点应为_________点3.波长为λ=4800Å的平行光垂直照射到宽度为的a=0.40 mm单缝上,单缝后透镜的焦距为f = 60 cm,当单缝两边缘点A、B射向P点的两条光线在点的位相差为π时,点离透镜焦点O的距离等于_________。

08光的衍射二解答

08光的衍射二解答
L

P
j
o
f
Q
3d d k 30 2 2

5.1 k 1.7
观察到k=0,±,-3, -5共5条明纹
光的衍射(二) 第十一章 光学 3.波长范围在450~650 nm之间的复色平行光垂直照 射在每厘米有5000条刻线的光栅上,屏幕放在透镜的 焦面处,屏上第二级光谱各色光在屏上所占范围的宽 度为35.1 cm.求透镜的焦距f. (1 nm=10-9 m) 解:光栅主极大 d sin k (k 0,1,2,) 1 k xk OQ f tan f tan[sin ( )] d 7
光栅主极大 d sin k
(k 0,1,2,) 1 k xk OQ f tan f tan[sin ( )] d
L
P
Q
a b

o
f
400107 x11 50 tan[sin ( )] 2.00cm 3 1.0 10 7 1 76010 x12 50 tan[sin ( )] 3.81cm 3 1.0 10
6
光的衍射(二)
第十一章 光学
5*.一平面透射多缝光栅,当用波长1=600nm的单 色平行光垂直入射时,在衍射角=30°的方向上可以看 到第2级主极大,并且在该处恰能分辨波长差=5×10-3 nm的两条谱线.当用波长2=400 nm的单色平行光垂直 入射时,在衍射角=30°的方向上却看不到本应出现的 第3级主极大.求光栅常数d和总缝数N,再求可能的缝 宽a。(不作要求) 解: 光栅主极大 d sin k (k 0,1,2,)
d sin j k (k 0,1,2,)
两光明纹重合处
d sin j k11 k22 440k1 660k2

光的衍射习题(附答案)

光的衍射习题(附答案)

光的衍射(附答案)一.填空题1.波长λ = 500 nm(1 nm = 109 m)的单色光垂直照射到宽度a = mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f 为3 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈589 nm)中央明纹宽度为mm,则λ2 ≈ 442 nm(1 nm = 109 m)的蓝紫色光的中央明纹宽度为mm.3.平行单色光垂直入射在缝宽为a = mm的单缝上,缝后有焦距为f = 400 mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×104mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 106 m)的光栅上,用焦距f= m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l = m,则可知该入射的红光波长λ=或633nm.7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于×105rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于μm.8.钠黄光双线的两个波长分别是nm和nm(1 nm = 109 m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 109 m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1 a sinθ2= 2 λ2由题意可知θ1= θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2) a sinθ1= k1λ1=2 k1λ2(k1=1, 2, …)sinθ1= 2 k1λ2/ aa sinθ2= k2λ2(k2=1, 2, …)sinθ2= 2 k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2 k1级极小与之重合.12.在单缝的夫琅禾费衍射中,缝宽a = mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜的焦距f= m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1= λx1 = f tanθ1≈ f sinθ1≈ f λ / a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x2为a sinθ2 = 2 λx2 = f tanθ2≈ f sinθ2≈ 2 f λ / a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx1 = x2x1≈ f (2 λ / a λ / a)= f λ / a=××107/×104) m=.13.在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm,λ2 = 760nm(1 nm = 109 m).已知单缝宽度a = ×102 cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间的距离.(2)若用光栅常数a= ×10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sinφ1= 12(2 k + 1)λ1 =12λ1(取k = 1)a sinφ2= 12(2 k + 1)λ2=32λ2tanφ1= x1/ f,tanφ2= x1/ f由于sinφ1≈ tanφ1,sinφ2≈ tanφ2所以x1= 32f λ1 /ax2= 32f λ2 /a则两个第一级明纹之间距为Δx1= x2x1= 32f Δλ/a = cm(2) 由光栅衍射主极大的公式d sinφ1= k λ1 = 1λ1d sinφ2= k λ2 = 1λ2且有sinφ = tanφ = x / f所以Δx1= x2x1 = fΔλ/a = cm14.一双缝缝距d = mm,两缝宽度都是a = mm,用波长为λ = 480 nm(1 nm =109 m)的平行光垂直照射双缝,在双缝后放一焦距f= m的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹(1) 第k级亮纹条件:d sinθ = kλ第k级亮条纹位置:x1= f tanθ1≈ f sinθ1≈ k f λ / d相邻两亮纹的间距:Δx= x k +1x k = (k + 1) fλ / d k λ / d= f λ / d = ×103 m = mm(2) 单缝衍射第一暗纹:a sinθ1= λ单缝衍射中央亮纹半宽度:Δx= f tanθ1≈ f sinθ1≈ k f λ / d = 12 mm Δx0/ Δx = 5∴双缝干涉第±5级主极大缺级.∴在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d /a= 5指出双缝干涉缺第±5 级主极大,同样可得出结论。

2光的衍射参考答案.doc

2光的衍射参考答案.doc

\L (B)变宽,不移动(D)变窄,不移动=3.64 ,所以 = 3。

《大学物理(下)》作业 No ・2 光的衍射(机械)一选择题1.在如图所示的夫琅和费衍射装置中,将单缝宽度a 稍稍变窄, 同时使会聚透镜L 沿y 轴正方向作微小位移,则屏幕C 上的中央 衍射条纹将 (A) 变宽,同时向上移动 (C)变窄,同时向上移动 [参考解]2 一级暗纹衍射条件:a sin % = Z ,所以中央明纹宽度心中=2/ tan © « 2/ sin= 2/ —。

a衍射角0 = 0的水平平行光线必汇聚于透镜主光轴上,故中央明纹向上移动。

2.在单缝的夫琅和费衍射实验中,若将单缝沿透镜主光轴方向向透镜平移,则屏幕上的衍射条纹(A)间距变大 (C)不发生变化 (B)间距变小(D)间距不变,但明纹的位置交替变化[C ][参考解]单缝沿透镜主光轴方向或沿垂直透镜主光轴的方向移动并不会改变入射到透镜的平行光线的 衍射角,不会引起衍射条纹的变化。

3.波长1=55()0入的单色光垂直入射于光栅常数d=2X10-4cm 的平面衍射光栅上,可能观察到的光 谱线的最大级次为(A) 2(B) 3 (C) 4(D) 5 [B ][参考解] 7T由光栅方程dsin (p = +kA 及衍射角—可知,观察屏可能察到的光谱线的最大级次 2d 2x10" < —= --------------- 2 5500x10"°4.在双缝衍射实验中,若保持双缝Si 和S2的中心之间距离不变,把两条缝的宽度a 略微加宽,则(A) 单缝衍射的中央主极大变宽,其中包含的干涉条纹的数目变少;(B) 单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目不变;(C) 单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变多;(D) 单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变少。

[参考解]参考第一题解答可知单缝衍射的中央主极大变窄,而光栅常数不变,则由光栅方程可知干涉条纹间距不变,故其中包含的干涉条纹的数目变少。

(完整版)光的衍射习题(附答案)

(完整版)光的衍射习题(附答案)

光的衍射(附答案)一.填空题1.波长λ= 500 nm(1 nm = 10−9 m)的单色光垂直照射到宽度a = 0.25 mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f为3 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈589 nm)中央明纹宽度为4.0 mm,则λ2 ≈ 442 nm(1 nm = 10−9 m)的蓝紫色光的中央明纹宽度为3.0 mm.3.平行单色光垂直入射在缝宽为a = 0.15 mm的单缝上,缝后有焦距为f = 400mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×10−4mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 10−6 m)的光栅上,用焦距f= 0.500 m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l= 0.1667 m,则可知该入射的红光波长λ=632.6或633nm.7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于2.24×10−5rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于4.47μm.8.钠黄光双线的两个波长分别是589.00 nm和589.59 nm(1 nm = 10−9 m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 10−9 m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1a sinθ2= 2 λ2由题意可知θ1 = θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2) a sinθ1= k1λ1=2 k1λ2(k1=1, 2, …)sinθ1= 2 k1λ2/ aa sinθ2= k2λ2(k2=1, 2, …)sinθ2= 2 k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2 k1级极小与之重合.12.在单缝的夫琅禾费衍射中,缝宽a = 0.100 mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜的焦距f = 1.00 m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1= λx 1 = f tanθ1≈f sinθ1≈f λ/ a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x2为a sinθ2 = 2 λx 2 = f tanθ2≈f sinθ2≈ 2 f λ/ a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx1= x2− x1≈f (2 λ/ a −λ/ a)= f λ/ a=1.00×5.00×10−7/(1.00×10−4) m=5.00mm.13.在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm,λ2 = 760nm(1 nm = 10−9 m).已知单缝宽度a = 1.0×10−2 cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间的距离.(2)若用光栅常数a= 1.0×10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sinφ1=12(2 k + 1)λ1=12λ1(取k = 1)a sinφ2=12(2 k + 1)λ2=32λ2tanφ1= x1/ f,tanφ2= x1/ f由于 sin φ1 ≈ tan φ1,sin φ2 ≈ tan φ2 所以 x 1 = 32 f λ1 / ax 2 = 32f λ2 / a则两个第一级明纹之间距为Δx 1 = x 2 − x 1 = 32f Δλ / a = 0.27 cm(2) 由光栅衍射主极大的公式d sin φ1 = k λ1 = 1 λ1 d sin φ2 = k λ2 = 1 λ2且有sin φ = tan φ = x / f所以Δx 1 = x 2 − x 1 = f Δλ / a = 1.8 cm14. 一双缝缝距d = 0.40 mm ,两缝宽度都是a = 0.080 mm ,用波长为λ = 480 nm (1 nm = 10−9 m )的平行光垂直照射双缝,在双缝后放一焦距f = 2.0 m 的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l ;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N 和相应的级数. 解:双缝干涉条纹(1) 第k 级亮纹条件:d sin θ = k λ第k 级亮条纹位置:x 1 = f tan θ1 ≈ f sin θ1 ≈ k f λ / d 相邻两亮纹的间距:Δx = x k +1 − x k = (k + 1) f λ / d − k λ / d = f λ / d = 2.4×10−3m = 2.4 mm(2) 单缝衍射第一暗纹:a sin θ1 = λ单缝衍射中央亮纹半宽度:Δx 0 = f tan θ1 ≈ f sin θ1 ≈ k f λ / d = 12 mm Δx 0 / Δx = 5∴ 双缝干涉第 ±5级主极大缺级.∴ 在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9 分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d / a = 5指出双缝干涉缺第 ±5 级主极大,同样可得出结论。

最新第11-2章光的衍射作业-答案

最新第11-2章光的衍射作业-答案

第11-2章光的衍射作业答案一.选择题1. 在单缝衍射实验中,用单色平行光垂直入射后,在光屏上产生衍射条纹,对于屏上的第二级明条纹中心,相应的单缝所能分成的半波带数目约为( C )(A) 2 (B) 3 (C) 5 (D) 62.一束平行单色光垂直入射在光栅上,当光栅常数b+b’为下列情况(b 代表每条缝的宽度) k = 2 、4 、6 等级次的主极大均不出现?( A )(A) b+b'=2b (B) b+b'=3b (C) b+b'=4b (D) b+b'=6b3.根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S,则S 的前方某点P 的光强度决定于波阵面S 上所在面积元发出的子波各自传到P 点的( B )(A)振动振幅之和;(B)振动的相干叠加;(C)振动振幅之和的平方(D)光强之和。

4.关于光学仪器的分辨率,下列说法正确的是( C )A.与入射光波长成正比,与透光孔径成正比;B.与入射光波长成反比,与透光孔径成反比;C.与入射光波长成反比,与透光孔径成正比;D.与入射光波长成正比,与透光孔径成反比。

5.某元素的特征光谱中,含有波长分别为1450nmλ=和2750nmλ=的光谱线,在光栅光谱中,这两种波长的光谱线有重叠现象,重叠处1λ的谱线级数是( C )(A)3 、6 、9(B)2 、4 、6( C)5 、10 、15(D)4 、8 、126. 在图示的夫琅和费单缝衍射装置中,将单缝宽度a稍微变窄,同时使会聚透镜L沿y轴正方向作微小位移,则屏幕C上的中央衍射条纹将( A )(A) 变宽,同时向上移动(B) 变宽,同时向下移动(C) 变宽,不移动(D) 变窄,同时向上移动7. 用单色光垂直照射光栅,测得第一级主极大的衍射角为030,则在衍射角πϕπ2121<<-范围内能观察到的全部主极大的条纹数为 ( B ) (A) 2条 (B) 3条 (C) 4条 (D) 5条二.填空题1. 在复色光照射下的单缝衍射图样中,某一波长单色光的第2级明纹位置恰与波长λ=400nm 的单色光的第3级明纹位置重合,这光波的波长__560nm__。

光的衍射作业

光的衍射作业

7.一单色平行光垂直入射一单缝,其衍射第三级明纹位置恰好与波长6000Å的单色光垂直入射该缝时衍射的第二级明纹重合,则该单色光的波长为________。

4286Å8.衍射光栅主极大公式, 在k =2的方向上第一条缝与第六条缝对应点发出的两条衍射光的光程差δ=。

λϕk b a ±=+sin )(λ109.在单缝衍射中,衍射角愈大(级数愈大)的那些明条纹的亮度愈___,原因是___________________________________________________________________________。

ϕ愈大,单缝处波面分成的半波带数目越多,未被抵消的半波带面积越小小10.用波长为λ的单色平行光垂直入射在一块多光栅上,其光栅常数d=3μm,缝宽a=1μm,则在单缝5衍射的中央明纹范围内共有__条谱线(主极大)。

11.用λ=5900=5900Å的钠黄光垂直入射到每毫米500条3刻痕的光栅上,最多能看到第__级明条纹。

12.对于单缝衍射第4级暗条纹,单缝处波面各可8分成___个半波带。

光两种成分,垂直入射光栅。

发现在与光栅法线夹24.46o 角的方向上红光和紫光谱线重合。

试问:(1)红光和紫光的波长各为多少?(2)在什么角度处还会出现这种复合谱线?(3)在什么角度处出现单一的红光谱线?解红光最高可以看到4级,紫光最高可以看到7级L6/9,4/6,2/3/=′k k 还可以看到红光的4级和紫光的6级光谱重合(3)红光的谱线最大不超过4级,2、4级还重合,所以只有1,3级为单一谱线。

o 19.111==θ时,k o34.38,3==θ时k。

第二章-光的衍射--习题及答案

第二章-光的衍射--习题及答案

第二章 光的衍射1. 单色平面光照射到一小圆孔上,将其波面分成半波带。

求第к个带的半径。

若极点到观察点的距离r 0为1m ,单色光波长为450nm ,求此时第一半波带的半径。

解:2022rr k k +=ρ 而20λkr r k +=20λk r r k =-20202λρk r r k =-+将上式两边平方,得422020202λλρk kr r r k++=+ 略去22λk 项,则λρ0kr k =将cm104500cm,100,1-80⨯===λr k 带入上式,得cm 067.0=ρ2. 平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样改变大小。

问:(1)小孔半径满足什么条件时,才能使得此小孔右侧轴线上距小空孔中心4m 的P 点的光强分别得到极大值和极小值;(2)P 点最亮时,小孔直径应为多大设此时的波长为500nm 。

解:(1)根据上题结论ρρ0kr k =将cm105cm,400-50⨯==λr 代入,得cm 1414.01054005k k k =⨯⨯=-ρ 当k 为奇数时,P 点为极大值; k 为偶数时,P 点为极小值。

(2)P 点最亮时,小孔的直径为cm2828.02201==λρr3.波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为和1mm 的透光圆环,接收点P 离光阑1m ,求P 点的光强I 与没有光阑时的光强度I 0之比。

解:根据题意m 1=R 500nmmm 1R mm 5.0R m 121hk hk 0====λr有光阑时,由公式⎪⎪⎭⎫ ⎝⎛+=+=R r R R r r R R k h h 11)(02002λλ 得11000110001105005.011620211=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ4100011000110500111620222=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ按圆孔里面套一个小圆屏幕()13221312121212121a a a a a a a a p =+=⎥⎦⎤⎢⎣⎡+-+=没有光阑时210a a =所以4.波长为的平行光射向直径为的圆孔,与孔相距1m 处放一屏。

光的衍射习题答案

光的衍射习题答案

思 考 题1 为什么隔着山可以听到中波段的电台广播,而电视广播却很容易被高大建筑物挡住? 答:只有当障碍物的大小比波长大得不多时,衍射现象才显著。

对一座山来说,电视广播的波长很短,衍射很小;而中波段的电台广播波长较长,衍射现象比较显著。

2 用眼睛通过一单狭缝直接观察远处与缝平行的光源,看到的衍射图样是菲涅耳衍射图样还是夫琅和费衍射图样?为什么?答:远处光源发出的光可认为是平行光,视网膜在眼睛(相当于凸透镜)的焦平面上,所以观察到的是平行光的衍射。

由此可知,这时人眼看到的是夫琅和费衍射图样。

3 在单缝衍射图样中,离中央明纹越远的明纹亮度越小,试用半波带法说明。

答:在单缝衍射图样中,未相消的一个半波带决定着明纹的亮度。

离中央明纹越远处,衍射角越大,单缝处波阵面分的半波带越多,未相消的一个半波带的面积越小,故离中央明纹越远的明纹亮度越小。

4 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的( )(A)振动振幅之和。

(B)光强之和。

(C)振动振幅之和的平方。

(D)振动的相干叠加。

答:衍射光强是所有子波相干叠加的结果。

选(D)。

5波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为30º,则缝宽的大小( )(A ) a =0.5λ。

(B ) a =λ。

(C )a =2λ。

(D )a =3λ。

答:[ C ]6波长为λ的单色光垂直入射到单缝上,若第一级明纹对应的衍射角为30︒,则缝宽a 等于( )(A ) a =λ 。

(B ) a =2λ。

(C ) a =23λ。

(D ) a =3λ。

答:[ D ]7在单缝夫琅和费衍射实验中波长为λ的单色光垂直入射到单缝上,对应于衍射角为30︒的方向上,若单缝处波面可分成3个半波带,则缝宽度a 等于( )(A) λ 。

(B) 1.5λ。

光的衍射参考答案

光的衍射参考答案

光的衍射参考解答一 选择题1.在如图所示的夫琅和费衍射装置中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 沿y 轴正方向作微小位移,则屏幕C 上的中央衍射条纹将(A )变宽,同时向上移动 (B )变宽,不移动 (C )变窄,同时向上移动 (D )变窄,不移动[ A ] [参考解]一级暗纹衍射条件:λϕ=1sin a ,所以中央明纹宽度af f f x λϕϕ2sin 2tan 211=≈=∆中。

衍射角0=ϕ的水平平行光线必汇聚于透镜主光轴上,故中央明纹向上移动。

2.在单缝的夫琅和费衍射实验中,若将单缝沿透镜主光轴方向向透镜平移,则屏幕上的衍射条纹 (A )间距变大 (B )间距变小(C )不发生变化 (D )间距不变,但明纹的位置交替变化[ C ] [参考解]单缝沿透镜主光轴方向或沿垂直透镜主光轴的方向移动并不会改变入射到透镜的平行光线的衍射角,不会引起衍射条纹的变化。

3.波长λ=5500Å的单色光垂直入射于光栅常数d=2×10-4cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为(A )2 (B )3 (C )4 (D )5[ B ] [参考解]由光栅方程λϕk d ±=sin 及衍射角2πϕ<可知,观察屏可能察到的光谱线的最大级次64.3105500102106=⨯⨯=<--λdk m ,所以3=m k 。

4.在双缝衍射实验中,若保持双缝S 1和S 2的中心之间距离不变,把两条缝的宽度a 略微加宽,则 (A )单缝衍射的中央主极大变宽,其中包含的干涉条纹的数目变少; (B )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目不变; (C )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变多;(D )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变少。

[ D ][参考解]参考第一题解答可知单缝衍射的中央主极大变窄,而光栅常数不变,则由光栅方程可知干涉条纹间距不变,故其中包含的干涉条纹的数目变少。

光的衍射习题答案

光的衍射习题答案

光的衍射习题答案光的衍射习题答案光的衍射是光波在通过一个孔或者绕过一个障碍物时发生的现象。

它是光的波动性质的直接证明,也是物理学中的重要概念之一。

在学习光的衍射时,我们经常会遇到一些习题,下面我将为大家提供一些光的衍射习题的答案。

1. 一束波长为500纳米的单色光通过一个宽度为0.1毫米的狭缝,距离狭缝1米处的屏上出现了衍射条纹。

求出相邻两个亮纹之间的间距。

解答:根据衍射的基本公式,亮纹的位置可以通过以下公式计算:sinθ = mλ / a其中,θ是衍射角,m是亮纹的次序,λ是波长,a是狭缝的宽度。

由题可知,波长λ为500纳米,即0.5微米,狭缝宽度a为0.1毫米,即0.1微米。

代入公式可得:sinθ = m * 0.5微米 / 0.1微米由于sinθ的值很小,我们可以使用近似公式sinθ ≈ θ,即:θ ≈ m * 0.5微米 / 0.1微米根据小角近似,当θ很小时,sinθ ≈ θ。

因此,亮纹之间的间距可以近似为:d ≈ λ / sinθ代入已知数据可得:d ≈ 0.5微米 / (m * 0.1微米 / 0.1微米)化简得:d ≈ 5微米 / m所以,相邻两个亮纹之间的间距与亮纹的次序m成反比关系。

当m为1时,相邻两个亮纹之间的间距为5微米;当m为2时,相邻两个亮纹之间的间距为2.5微米,依此类推。

2. 一束波长为600纳米的单色光垂直照射到一个宽度为0.2毫米的狭缝上,距离狭缝1米处的屏上出现了衍射条纹。

求出最亮的亮纹的角度。

解答:最亮的亮纹对应的是m=0的情况,即中央最亮的部分。

根据衍射公式sinθ = mλ / a,代入已知数据可得:sinθ = 0 * 0.6微米 / 0.2微米sinθ = 0由于s inθ的值为0,我们可以得到θ的值为0。

因此,最亮的亮纹的角度为0度,即光线垂直照射到屏上。

3. 一束波长为400纳米的单色光通过一个宽度为0.3毫米的狭缝,距离狭缝1米处的屏上出现了衍射条纹。

光的衍射参考答案

光的衍射参考答案

光的衍射参考解答(机械)一 选择题1.在如图所示的夫琅和费衍射装置中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 沿y 轴正方向作微小位移,则屏幕C 上的中央衍射条纹将(A )变宽,同时向上移动 (B )变宽,不移动 (C )变窄,同时向上移动 (D )变窄,不移动[ A ][参考解]一级暗纹衍射条件:λϕ=1s i n a ,所以中央明纹宽度af f f x λϕϕ2s i n 2t a n211=≈=∆中。

衍射角0=ϕ的水平平行光线必汇聚于透镜主光轴上,故中央明纹向上移动。

2.在单缝的夫琅和费衍射实验中,若将单缝沿透镜主光轴方向向透镜平移,则屏幕上的衍射条纹(A )间距变大 (B )间距变小(C )不发生变化 (D )间距不变,但明纹的位置交替变化[ C ][参考解]单缝沿透镜主光轴方向或沿垂直透镜主光轴的方向移动并不会改变入射到透镜的平行光线的衍射角,不会引起衍射条纹的变化。

3.波长λ=5500Å的单色光垂直入射于光栅常数d=2×10-4cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为(A )2 (B )3 (C )4 (D )5[ B ][参考解]由光栅方程λϕk d ±=s i n及衍射角2πϕ<可知,观察屏可能察到的光谱线的最大级次64.3105500102106=⨯⨯=<--λdk m ,所以3=m k 。

4.在双缝衍射实验中,若保持双缝S 1和S 2的中心之间距离不变,把两条缝的宽度a 略微加宽,则 (A )单缝衍射的中央主极大变宽,其中包含的干涉条纹的数目变少; (B )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目不变; (C )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变多; (D )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变少。

[ D][参考解]参考第一题解答可知单缝衍射的中央主极大变窄,而光栅常数不变,则由光栅方程可知干涉条纹间距不变,故其中包含的干涉条纹的数目变少。

光的衍射单元测试题及答案

光的衍射单元测试题及答案

光的衍射单元测试题及答案
问题一:
一束波长为500 nm 的单色光照射到一条宽度为0.2 mm 的狭缝上,狭缝后面的屏幕距离狭缝10 m,屏幕上呈现出光的衍射现象。

1. 屏幕上的主极大位置是在哪里?
2. 如果把狭缝的宽度从0.2 mm 增加到 0.5 mm,屏幕上呈现出
的光的衍射现象会如何变化?
答案:
1. 主极大位置计算公式为X = (n * λ * D) / a,其中 X 表示主极
大位置(即屏幕上距离狭缝的位置),n 表示标志某一极大的整数,λ 表示光波的波长,D 表示狭缝到屏幕的距离,a 表示狭缝的宽度。

根据公式计算,主极大位置 X = (1 * 500 nm * 10 m) / 0.2 mm = 2500 mm = 2.5 m。

2. 当狭缝宽度增加到 0.5 mm,屏幕上呈现出的光的衍射现象
会发生如下变化:
- 主极大宽度会变窄,即在屏幕上的主极大位置左右两侧的亮区会缩小。

- 主极大强度会变弱,即主极大上的亮度会减弱。

- 衍射角会变大,即从屏幕上看,衍射光束的夹角会增大。

请注意,以上答案仅供参考,具体情况可能会因实际条件和实验设计的差异而略有不同。

光的衍射(有答案)

光的衍射(有答案)

光的衍射一、光的衍射的基础知识1、发生明显衍射的条件只有当障碍物的尺寸跟光的波长相差不多,甚至比光的波长小的时候,衍射现象才会明显.2、衍射图样①单缝衍射a.单色光:明暗相间的不等距(等距、不等距)条纹,中央亮纹最宽最亮,两侧条纹具有对称性.b.白光:中间为宽且亮的白色条纹,两侧是窄且暗的彩色条纹,最靠近中央的是紫光,远离中央的是红光.②圆孔衍射:明暗相间的不等距(等距、不等距)圆环,圆环面积远远超过孔的直线照明的面积.③圆盘衍射:明暗相间的不等距(等距、不等距)圆环,中心有一亮斑称为泊松亮斑.二、衍射与干涉的比较三、习题1、对于光的衍射的定性分析,下列说法中不正确的是()A.只有障碍物或孔的尺寸可以跟光波波长相比甚至比光的波长还要小的时候,才能明显地产生光的衍射现象B.光的衍射现象是光波相互叠加的结果C.光的衍射现象否定了光的直线传播的结论D.光的衍射现象说明了光具有波动性答案 C解析光的干涉和衍射现象说明了光具有波动性,而小孔成像说明了光沿直线传播,而要出现小孔成像现象,孔不能太小,可见光的直线传播规律只是近似的,只有在光波波长比障碍物小得多的情况下,光才可以看做是直线传播的,所以光的衍射现象和直线传播并不矛盾,它们是在不同条件下出现的两种光现象,单缝衍射实验中单缝光源可以看成是无限多个光源排列而成,因此光的衍射现象也是光波相互叠加的结果.2、如图所示的4种明暗相间的条纹,分别是红光、蓝光通过同一个双缝干涉仪形成的干涉图样和黄光、紫光通过同一个单缝形成的衍射图样(黑色部分代表亮纹),那么1、2、3、4四个图中亮条纹的颜色依次是()123 4A.红黄蓝紫B.红紫蓝黄C.蓝紫红黄D.蓝黄红紫解析由于双缝干涉条纹是等间距的,而单缝衍射条纹除中央亮条纹最宽最亮之外,两侧条纹亮度、宽度都逐渐减小,因此1、3为双缝干涉条纹,2、4为单缝衍射条纹.又双缝干涉条纹的间距Δx=ldλ,在l、d都不变的情况下,干涉条纹间距Δx与波长λ成正比,红光波长比蓝光波长长,则红光干涉条纹间距比蓝光干涉条纹间距大,即1、3分别对应红光和蓝光.而在单缝衍射中,当单缝宽度一定时,波长越长,衍射越明显,即中央条纹越宽越亮,黄光波长比紫光波长长,则黄光的中央条纹较宽较亮,故2、4分别对应紫光和黄光.综上所述,1、2、3、4四个图中亮条纹的颜色依次是红、紫、蓝、黄,选项B正确.答案 B3、在单缝衍射实验中,下列说法正确的是()A.其他条件不变,将入射光由黄色换成绿色,衍射条纹间距变窄B.其他条件不变,使单缝宽度变小,衍射条纹间距变窄C.其他条件不变,换用波长较长的光照射,衍射条纹间距变宽D.其他条件不变,增大单缝到屏的距离,衍射条纹间距变宽答案ACD解析当单缝宽度一定时,波长越长,衍射现象越明显,条纹间距也越大,黄光波长大于绿光波长,所以条纹间距变窄,A、C正确;当光的波长一定时,单缝宽度越小,衍射现象越明显,衍射条纹间距越宽,B错误;当光的波长一定,单缝宽度也一定时,增大单缝到屏的距离,衍射条纹间距也会变宽,D正确.4、(2011·浙江·18)关于波动,下列说法正确的是()A.各种波均会发生偏振现象B.用白光做单缝衍射与双缝干涉实验,均可看到彩色条纹C.声波传播过程中,介质中质点的运动速度等于声波的传播速度D.已知地震波的纵波波速大于横波波速,此性质可用于横波的预警答案BD解析偏振现象是横波特有的现象,纵波不会发生偏振现象,故选项A错误.用白光做单缝衍射实验和双缝干涉实验看到的都是彩色条纹,故选项B正确.声波在传播过程中,质点在平衡位置附近振动,其振动速度周期性变化,而声波的传播速度是单位时间内声波传播的距离,故选项C错误.地震波的纵波传播速度比横波传播速度大,纵波可早到达地面,能起到预警作用,故选项D正确.5、在光的单缝衍射实验中可观察到清晰的明暗相间的图样,图4的四幅图片中属于光的单缝衍射图样的是()图4A.a、c B.b、c C.a、d D.b、d答案 D6、用单色光通过小圆盘和小圆孔分别做衍射实验,在光屏上得到衍射图形,则()A.用小圆盘时,图形中央是暗的,用小圆孔时,图形中央是亮的B.用小圆盘时,图形中央是亮的,用小圆孔时,图形中央是暗的C.两个图形中央均为亮点的同心圆形条纹D.两个图形中央均为暗点的同心圆形条纹答案 C7、(1)肥皂泡在太阳光照射下呈现的彩色是______现象;露珠在太阳光照射下呈现的彩色是________现象;通过狭缝看太阳光时呈现的彩色是________现象.(2)凡是波都具有衍射现象,而把光看作直线传播的条件是_____________.要使光产生明显的衍射,条件是______________________________________.(3)当狭缝的宽度很小并保持一定时,分别用红光和紫光照射狭缝,看到的衍射条纹的主要区别是____________________________________________________________.(4)如图6所示,让太阳光或白炽灯光通过偏振片P和Q,以光的传播方向为轴旋转偏振片P或Q,可以看到透射光的强度会发生变化,这是光的偏振现象,这个实验表明________________________________________________________________________________________________________________________________________________.图6答案见解析解析(1)肥皂泡呈现的彩色是光的干涉现象,露珠呈现的彩色是光的色散,通过狭缝看太阳光呈现的彩色是光的衍射现象.(2)障碍物或孔的尺寸比波长大得多时,可把光看作沿直线传播;障碍物或孔的尺寸跟波长相差不多或比波长更小时,可产生明显的衍射现象.(3)红光的中央亮纹宽,红光的中央两侧的亮纹离中央亮纹远.(4)这个实验说明了光是一种横波.。

光的衍射习题(附答案)之欧阳地创编

光的衍射习题(附答案)之欧阳地创编

光的衍射(附答案)一.二.填空题1.波长λ = 500 nm(1 nm = 10−9m)的单色光垂直照射到宽度 a = 0.25mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为 d = 12 mm,则凸透镜的焦距f为3m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1≈ 589 nm)中央明纹宽度为4.0mm,则λ2 ≈ 442 nm(1 nm = 10−9m)的蓝紫色光的中央明纹宽度为3.0mm.3.平行单色光垂直入射在缝宽为a = 0.15mm的单缝上,缝后有焦距为f = 400 mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8mm,则入射光的波长为500nm (或5×10−4mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b=3a时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d =2 μm(1 μm = 10−6 m)的光栅上,用焦距f=0.500m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l=0.1667m,则可知该入射的红光波长λ=632.6或633nm.7.一会聚透镜,直径为3cm,焦距为20cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于 2.24×10−5rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于4.47μm.8.钠黄光双线的两个波长分别是589.00nm和589.59nm(1 nm = 10−9m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1= 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 10−9m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d .三. 计算题11. 在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1)这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1) 由单缝衍射暗纹公式得a sin θ1= 1 λ1 a sin θ2= 2 λ2由题意可知θ1 = θ2, sin θ1= sin θ2代入上式可得λ1 = 2 λ2(2)a sin θ1=k 1λ1=2k 1λ2(k 1=1, 2, …)sin θ1=2k 1λ2/ aa sin θ2=k 2λ2(k 2=1, 2, …)sin θ2=2k 2λ2/ a若k 2= 2 k 1,则θ1= θ2,即λ1的任一k 1级极小都有λ2的2k 1级极小与之重合.12. 在单缝的夫琅禾费衍射中,缝宽a =0.100mm ,平行光垂直如射在单缝上,波长λ=500 nm ,会聚透镜的焦距f = 1.00 m .求中央亮纹旁的第一个亮纹的宽度Δx . 解:单缝衍射第1个暗纹条件和位置坐标x 1为a sin θ1= λx 1=f tan θ1 ≈ f sin θ1≈ f λ /a (∵θ1很小) 单缝衍射第2个暗纹条件和位置坐标x 2为a sin θ2= 2λx 2=f tan θ2 ≈ f sin θ2≈ 2f λ /a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx 1=x 2 − x 1≈ f (2λ /a − λ /a )=f λ /a=1.00×5.00×10−7/(1.00×10−4) m=5.00mm .13. 在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm ,λ2= 760 nm (1 nm = 10−9m ).已知单缝宽度a =1.0×10−2cm ,透镜焦距f = 50 cm .(1) 求两种光第一级衍射明纹中心间的距离.(2) 若用光栅常数a =1.0×10-3cm 的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sin φ1=12 (2 k + 1) λ1 = 12 λ1(取k = 1) a sin φ2= 12 (2 k + 1) λ2=32λ2tan φ1= x 1/f ,tan φ2= x 1/f 由于 sin φ1 ≈tan φ1,sin φ2 ≈tan φ2所以 x 1= 32 f λ1 /ax 2= 32f λ2 /a 则两个第一级明纹之间距为Δx 1=x 2 − x 1=32f Δλ/a =0.27cm (2) 由光栅衍射主极大的公式d sin φ1= k λ1 = 1 λ1d sin φ2= k λ2 = 1 λ2且有sin φ=tan φ =x / f所以Δx 1=x 2 − x 1=f Δλ/a =1.8cm14. 一双缝缝距d =0.40mm ,两缝宽度都是a =0.080mm ,用波长为λ = 480 nm (1 nm = 10−9m )的平行光垂直照射双缝,在双缝后放一焦距f = 2.0 m 的透镜.求:(1)在透镜焦平面的屏上,双缝干涉条纹的间距l ;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N 和相应的级数.解:双缝干涉条纹(1)第k 级亮纹条件:d sin θ =kλ第k 级亮条纹位置:x 1=f tan θ1 ≈ fsin θ1≈ kf λ /d相邻两亮纹的间距:Δx =x k +1 − x k =(k + 1) fλ /d − k λ /d =fλ /d = 2.4×10−3 m= 2.4 mm(2)单缝衍射第一暗纹:a sin θ1= λ单缝衍射中央亮纹半宽度:Δx 0=f tan θ1 ≈f sin θ1 ≈ kf λ/d =12mmΔx 0/Δx =5∴双缝干涉第±5级主极大缺级.∴ 在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0,±1, ±2, ±3, ±4级亮纹或根据d/a=5指出双缝干涉缺第±5 级主极大,同样可得出结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11-2章光的衍射作业答案
一.选择题
1. 在单缝衍射实验中,用单色平行光垂直入射后,在光屏上产生衍射条纹,对
于屏上的第二级明条纹中心,相应的单缝所能分成的半波带数目约为 ( C )
(A) 2 (B) 3 (C) 5 (D) 6
2.一束平行单色光垂直入射在光栅上,当光栅常数 b+b’为下列情况 (b 代表
每条缝的宽度) k = 2 、4 、6 等级次的主极大均不出现?( A )
(A) b+b'=2b (B) b+b'=3b (C) b+b'=4b (D) b+b'=6b
3.根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为 S,则 S 的前方某
点 P 的光强度决定于波阵面 S 上所在面积元发出的子波各自传到 P 点的
( B )
(A)振动振幅之和;(B)振动的相干叠加;
(C)振动振幅之和的平方(D)光强之和。

4.关于光学仪器的分辨率,下列说法正确的是( C )
A.与入射光波长成正比,与透光孔径成正比;
B.与入射光波长成反比,与透光孔径成反比;
C.与入射光波长成反比,与透光孔径成正比;
D.与入射光波长成正比,与透光孔径成反比。

5.某元素的特征光谱中,含有波长分别为
1450nm
λ=和
2750nm
λ=的光谱线,
在光栅光谱中,这两种波长的光谱线有重叠现象,重叠处
1
λ的谱线级数是( C )(A)3 、6 、9L( B)2 、4 、6L
(C)5 、10 、15L(D)4 、8 、12L
6. 在图示的夫琅和费单缝衍射装置中,将单缝宽度a稍微
变窄,同时使会聚透镜L沿y轴正方向作微小位移,则屏
幕C上的中央衍射条纹将 ( A )
(A) 变宽,同时向上移动 (B) 变宽,同时向下移动
(C) 变宽,不移动 (D) 变窄,同时向上移动
7. 用单色光垂直照射光栅,测得第一级主极大的衍射角为0
30,则在衍射角
πϕπ2121<<-范围内能观察到的全部主极大的条纹数为 ( B ) (A) 2条 (B) 3条 (C) 4条 (D) 5条
二.填空题
1. 在复色光照射下的单缝衍射图样中,某一波长单色光的第2级明纹位置恰与波长l =400nm 的单色光的第3级明纹位置重合,这光波的波长__560nm__。

2. 波长为600nm 的单色光垂直入射到光栅常数为2.0×10-3mm 的光栅上光栅的狭缝宽度b 为狭缝间距b ’的一半,则光谱上呈现主明纹的最大级别为 2 。

全部级数为 0、±1、±2。

3.在单缝衍射中,沿第三级明纹的衍射方向狭缝可分为 7 个半波带,沿第二级暗纹的衍射方向狭缝可分为 4 个半波带 。

4.平行单色光垂直入射到平面衍射光栅上,若减小入射光的波长,则明条纹间距将变小_,若增大光栅常数,则衍射图样中明条纹的间距将 减小 。

5. 在单缝衍射实验中,缝宽a = 0.2mm ,透镜焦距f = 0.4m ,入射光波长λ= 500nm ,则在距离中央亮纹中心位置2mm 处是 暗纹 纹
6. 用平行的白光垂直入射在平面透射光栅上时,波长为440 nm 的第3级光谱线将与波长为 660nm 的第2级光谱线重叠.
7. 在某单色光形成的单缝夫琅和费衍射图样中,第三级明条纹的中心与红光0λ=700nm 的第二级明条纹中心重合,此种单色光的波长为_500nm .
8. 为使望远镜能分辨角间距为rad 103.00-7⨯的两颗星,其物镜的直径至少应该大于__2.24_____m 。

(光的波长应取550nm)
三.计算题
1.单缝夫琅禾费衍射装置中,若缝宽为0.1mm ,凸透镜焦距为0.5m ,用400.0nm 和760.0的平行光垂直照射到单缝上。

求这两种光的第一级明纹中心的距离。

解:设两种单色光的第一级明纹的衍射角分别为 和 ,
当 有 , ,
因 很小有 ,代入上两式有,
, ,
m x 3107.2-⨯=∆
2. 用人眼观察远方的卡车车前灯。

已知两车前灯的间距为 1.50m ,一般环境下人眼瞳孔直径为
3.0mm ,视觉最敏感的波长为550nm,问人眼刚能分辨两车灯时卡车离人有多远
m d l rad D 30
439
0107.61024.21031055022.122.1⨯≈=⨯≈⨯⨯⨯==---θλθ
3.波长为600nm 的单色光垂直入射到光栅上,第2级明条纹出现在3.0sin =θ处,第3级缺级。

试求:(1)光栅常量;(2)光栅上狭缝宽度;(3)屏上呈现的全部级数。

解:(1)m k 69
100.43
.0106002sin d --⨯=⨯⨯==θλ (2)由缺级条件知sin sin d k b m θλθλ
=⎧⎨=⎩ 1233
d k b d d b m =⇒=、 (3)7.690sin k max =︒<λ
d ,6k max =,则屏幕上呈现的级数为0,1±,2±,4±,5±
4.波长为600nm 的单色光垂直入射到光栅上,光栅常数 d=7200nm ,第4级缺级。

试求:(1)屏幕上可能看到的最大的级数,(2)光栅上狭缝可能的宽度,取不同的宽度所代表的意义,(3)缝宽取不同的值,屏上呈现的全部级数。

解:(1)max sin 9012o
d k λ<=,max 11k =
(2)由缺级条件知sin sin d k b m θλ
θλ
=⎧⎨=⎩
123444d k b d d d b m =⇒=、、 14
b d =,第4级主纹出现在单缝衍射的第1级暗纹上,第8级主纹出现在单缝衍射的第2级暗纹上,L ;
24
b d =
,第4级主纹出现在单缝衍射的第2级暗纹上,第8级主纹出现在单缝衍射的第4级暗纹上L ;
34
b d =,第4级主纹出现在单缝衍射的第3级暗纹上,第8级主纹出现在单缝衍射的第6级暗纹上L ; (3)
14b d =
和34
b d =时,则屏幕上呈现的级数为0,1±,2±,3±,5±,6±,7±,9±,10±,11±,共19条
2142
b d d ==,使第二级也出现缺级,所有偶数级均缺级,则屏幕上呈现的级数为0,1±,3±,5±,,7±,9±,11±,共13条
5、用波长范围从400nm 到760nm 的白光垂直照射到每毫米500条缝的光栅上,求(1)第二级光谱中的760=λnm 的红光与第三级光谱中的哪种波长的光重叠;(2)重叠处的衍射角是多少?(12分) (1)光栅方程sin d k θλ=
276027603506.63nm λλ⨯⨯=⇒=
= 61210500
d m -==⨯ 9
6
3506.610sin 0.759210k d λθ--⨯⨯===⨯ arcsin(0.759)0.863249.45o rad θ⇒===
(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档