恒压与恒功率变量泵要点
恒压变量泵工作原理
恒压变量泵工作原理
恒压变量泵是一种能够保持工作流体流量和压力稳定的泵。
它通过自动调节泵的排量来保持流体的压力恒定。
下面是恒压变量泵的工作原理:
1. 压力传感器:恒压变量泵内置有一个压力传感器,用于感知工作流体的压力变化。
2. 控制系统:泵的控制系统根据压力传感器所感知到的实际工作压力,与设定的恒定压力进行比较,并进行调节。
3. 变量排量控制:恒压变量泵具有变量排量调节机构,可以根据控制系统的指令来调节泵的排量。
当实际工作压力低于设定的恒定压力时,控制系统会增加泵的排量,从而提高工作流体的压力;当实际工作压力高于设定的恒定压力时,控制系统会减小泵的排量,降低工作流体的压力。
4. 反馈控制:恒压变量泵的控制系统通过不断感知工作流体的压力变化,并根据实际压力与设定压力的差异进行调节,进一步实现恒定的工作压力。
综上所述,恒压变量泵通过压力传感器感知工作流体的压力变化,并通过控制系统的调节,不断调整泵的排量,从而保持流体的压力稳定在设定的恒定压力值。
这种工作原理使得恒压变量泵在不同工作条件下均能提供稳定的压力输出,适用于许多工业和农业领域。
恒压与恒功率柱塞泵区别
恒压与恒功率柱塞泵区别2009-06-11 21:58dancer77582008-05-03 09:40压力补偿变量泵和恒压泵有区别吗??如果有的话他们分别的原理是怎么样的,,有资料可以上传一下吗??,分别说明这两种泵最好了包括泵内部的结构图,,液压原理符号解释,以及变量特性曲线,恒压变量泵是在达到泵平身的设定压力后才开始变量,此时流量下降成陡线下降.这个比较好理解但是压力补偿是个什么意思,,,怎么个补偿法???我在也在论坛搜索了一下,感觉还是比较迷惑,所以特在此求助,希望大家可以帮帮忙,,,谢谢了!~!~sycscom2008-05-03 15:36我们通常说的恒压泵就是压力补偿变量泵啦,一回事!补充一下,严格说压力补偿泵范围更广,但通常说的压力补偿变量泵就是恒压泵新j2008-05-03 17:40压力补偿变量泵应是恒功率变量泵,与恒压变量是两种不同变量形式的泵,常见的YCY为恒功率泵,PCY为恒压变量,原理百度下吧。
dancer77582008-05-04 08:41谢谢两位的帮忙我又查了下,压力补偿泵的变量特性曲线和恒功率的变量泵相近我觉得这个PCY的恒压变量泵我觉得叫限压泵更合适一点,,呵呵..就象教材上的那个限压式变量叶片泵不知道这样说,对不对???sycscom2008-05-04 09:00三楼说的恒功率泵的确也属于压力补偿泵,但现在一般都没有压力补偿泵的这个叫法的,要么恒压泵,要么恒功率泵,或恒流量泵,等yuezhenju2008-05-04 10:18那柱塞泵和注射泵有人知道各自的原理图吗?谢谢恒源液压2008-05-11 08:25按教科书说法,压力补偿变量就是恒功率变量,这种油泵在到了设定压力后,随着压力的升高,流量会随之减少。
所以功率接近恒定。
闫波2008-05-11 11:19 就象我们在液压专业内通常所说的压力是一个广义的概念一样(它包括工作压力,二次压力,负载压力,超调压力等等),压力补偿似乎也应该是一个广义的概念,即所有缘于压力的变化而产生的流量或其它参数变化的,都应该称为压力补偿.我认为,对于泵而言,所有以压力作为输入信号,自动通过变量机构使流量发生变化的,都应该属于压力补偿变量泵(如通常所讲的恒压泵,恒功率泵,负载敏感泵等等).当然,这样的定义不应该由我这样一个搞应用的人所下.正如6楼所讲:“按教科书说法,压力补偿变量就是恒功率变量”.我理解,派克所谓“带标准压力补偿器”的变量泵,实际就是我们通常所讲的恒压变量泵.力士乐在变量泵的解释中,并没有哪些是或哪些不是“压力补偿”的说法.shenduowen172008-08-28 12:45根据PARKER给出的压力——流量曲线可知,当流量一旦调定,其流量随压力的变化有很少的变化。
恒功率及恒压泵控制原理及其应用
恒功率及恒压泵控制原理及其应用1.基本原理:恒功率控制原理是指在给定负载下,通过控制电路中的电流和电压使输出功率保持恒定。
恒功率控制可以应用于不同类型的设备,例如电机、泵和发电机等。
恒压控制原理是指在给定负载下,通过控制电路中的电压使输出电压保持恒定。
恒压控制主要应用于电源和电动机驱动系统等。
2.恒功率泵控制原理:恒功率泵控制是通过调节泵的转速或输出流量来实现恒定的功率输出。
控制系统通过监测负载的要求和实际输出,利用反馈回路来调节泵的工作状态,以保持泵的输出功率恒定。
当负载要求增加时,控制系统增加泵的输出流量或转速,以保持输出功率恒定。
3.恒压泵控制原理:恒压泵控制是通过调节泵的转速或输出流量来保持恒定的输出压力。
控制系统使用压力传感器监测输出压力,并与设定的目标压力进行比较。
根据比较结果,控制系统调节泵的转速或输出流量来保持输出压力恒定。
4.应用:恒功率泵控制在工业自动化领域中广泛应用,例如在供水系统中,可根据实际用水需求调节泵的输出流量,保持水压恒定。
在工艺过程中,可以根据工艺流程要求控制泵的输出功率,确保生产过程的稳定和高效。
恒压泵控制主要应用于供水系统和高压液体传动系统中。
在供水系统中,恒压泵控制可以根据水压需求自动调节泵的输出流量,保持恒定的供水压力。
在高压液体传动系统中,恒压泵控制能够提供恒定的液压力,确保系统的稳定和可靠性。
总结:恒功率及恒压泵控制通过调节泵的转速或输出流量来保持恒定的功率或压力输出。
这些控制方法在供水系统、工艺过程和高压液体传动系统等应用中发挥重要作用,能够提高系统的稳定性和效率。
恒功率恒压泵变量机构原理分析及研究
doi:10.3969/j.issn.1008-0813.2014.06.009恒功率恒压泵变量机构原理分析及研究王中伟1,2,周圣人1,2(1.四川宜宾普什驱动有限责任公司,四川宜宾644000; 2.西华大学,四川成都610039)摘要:该文以A11V-LRD 恒功率恒压泵为研究对象,介绍了压力切断和恒功率两种控制方式工作时的协同关系,重点研究了其内部变量机构的结构和工作原理;依据原理分析所得的推理结果与测试台做试验得出的数据十分符合。
关键词:恒功率;变量泵;变量机构;工作原理中图分类号:TH137.51文献标识码:A文章编号:1008-0813(2014)06-0032-03The Principle Analysis and Study of Pump Variable Mechanismwith Constant Power and Constant PressureWANG Zhong-w ei1,2,ZHOU Sheng-ren1,2(1.Sic hua n Yibin Pushdrive Co.,L td.,Yibin 644000,China; 2.Xihua University,Chengdu 610039,China)Abstract: In this paper, the A11V-LRD constant power and constant pressure pump as the object of study. Introduced the collaborative relationship when the two control mode of cut -off pressure and constant power work together. Mainly studied the structure and the principle of its internal variable institution. According to the principle analysis, the inference results are consistent with the experiment data obtained by test bench.Key wo rds: constant power;variable pump;variable mechanism;working principle0 引言恒功率控制的目的是使泵的输出动力具有自动调节性质,保证原动机总是工作在恒功率输出的最佳工况,提高原动机效率。
浅谈变量泵选用
浅谈变量泵选用常见的变量柱塞泵有恒压变量泵、恒功率变量泵、负载敏感变量泵等。
对于要求压力接近或相同,流量变化较大的液压系统,如节流调速系统、泵保压系统、要求快速响应的中位常闭换向阀系统、蓄能器系统、电液伺服系统和电液比例换向阀系统等,一般应采用恒压变量泵作为动力源,避免采用定量泵-溢流阀系统和旁路节流调速系统,以降低溢流或旁流流量损耗。
恒压变量泵的主要特征是:在系统压力达到泵的设定压力前为定量泵特性;达到设定压力时,泵的流量随负载需要自动调整;无负载时,泵的流量自动降至0,但其输出压力维持恒定。
国外中高压节流调速液压系统广泛采用恒压变量泵。
对于负载缓慢增加、平均功率较小或接近最大压力的行程较小的液压系统,如大多数压机,一般应采用恒功率变量泵作为动力源,对平均速度影响不大,但可以大幅减小装机功率。
恒功率变量泵的主要特征是:在系统压力达到泵的变量压力前为定量泵特性;达到变量压力时,泵的流量随负载增加自动减小,但压力/流量乘积大致为常数。
变量转折压力和压力/流量乘积(功率)均可根据需要调整,是应用最广泛的变量泵之一。
对于功率较大、负载缓慢增加且有较长保压时间要求的系统,也可采用恒压恒功率变量泵。
对于要求分别具有不同压力、不同流量的多执行器系统,可采用双压、双流量恒压变量泵或负载敏感变量泵。
双压、双流量恒压变量泵的输出特性可调整为相当于2台不同压力、不同流量的恒压变量泵,利用泵上附设的电磁阀来转换工作状态,适合于双执行器系统。
负载敏感变量泵的输出特性为:在泵的额定压力和流量范围内,其实际输出压力和流量能同时随负载需要自动调整;无负载时,泵的流量自动降至0,且输出压力较低,适合于多执行器系统。
由于上述2种泵能同时降低压力和流量损耗,故具有更好的节能效果,将获得良好的应用前景。
附带指出,对于零流量时输出压力较高的各种恒压变量泵,不影响系统功能时最好仍设置卸载回路,因这类泵在高压零流量时的功率损耗和磨损均大于零压全流量时的功率损耗和磨损。
恒功率及恒压泵控制原理及其应用
恒功率及恒压泵控制原理及其应用恒功率泵所实现的功能就是保证电机不会超功率,低压时大流量,高压时小流量;恒压泵能够实现零流量保压。
1)恒压泵一般用于这样的液压系统:开始阶段要求低压快速前进,而后转为慢速靠近,最后停止不动并保压,像油压机就是这样。
这里,恒压泵设定的压力就是系统保压所需要的压力。
这里,对“液压系统压力由负载决定,而由溢流阀加于限定”的基本原则应该讲是符合的。
为了更好理解泵控系统,可以考虑修改为“系统压力由负载决定,而由恒压泵加于限定”。
像压机的例子,压制件的反力可以很大,具体施加多少由恒压泵调节。
2)恒流泵主要用于工程机械这种设备上就一台发动机,要充分利用其功率。
对液压系统就可以在低压时大流量,高压时小流量。
这表面上与恒压泵相似,其实不然。
恒功率泵在压力流量变化时,遵循恒功率,而恒压泵在未达到调定值之前,是最大排量的定量泵,不存在开始恒功率的拐点。
而进入恒压工况后,原则上可以根据系统的需要提供流量而保持压力不变。
3)恒压变量泵是在达到泵本身的设定压力后才开始变量,此时流量下降成陡线下降.恒功率变量泵是几乎全压力阶段都在变量,基本保证输出的功率恒定在一定范围内,但是在泵设定的功率范围内,压力上升,流量是全流量输出,当超过这个压力,流量开始下降,以保证输出功率恒定(这也就是说在低于额定功率时,实际使用功率不是恒定的).还有电控变量泵,它的变量曲线由电控部份决定,与实际压力无关.不管如何,电机与油泵的功率匹配,是必须考虑的.4)恒压泵更重要的一点是:在压力不变的情况下更节约能源。
恒功率泵是能根据负载变化改变运动速度,也主要用于这种负载变化要求速度能变化的情况。
5)1)一般情况下,固定工业液压选用恒功率的案例较少,多数是行走机械(工程机械)动力是发动机的,为了充分利用功率,选用恒功率泵的情况较多。
当然天下之大,不能一概而论。
6)对于一个在反复循环过程中,或者随机操作过程中,压力与流量两个参数都有比较大差异的系统,人们往往采用“一把钥匙开一把锁”的模式灵活处理。
变量泵变量调节与控制技术恒功率310-3
主讲 Prof. 吴晓明 吴晓明
3.4 液压泵的恒功率控制
为了充分利用原动机功率,使原动机在高效率区域运转,使 用功率调节应是最简单的手段。无论是流量适应或压力适应系 统,都只能做到单参数适应,因而都是不够理想的能耗控制系 统。功率适应系统,即压力与流量两参数同时正好满足负载要 求的系统,才是理想的能耗控制系统,它能把能耗限制在最低 的限度内。 因此,恒功率泵主要用在工程车辆中,用发动机作为原动力 驱动泵。现今的功率调节泵,由于控制系统结构的改进,使之 很容易复合压力、流量(多为排量)控制等功能,具有液压遥 控、压力控制、流量控制、液压行程限制、机械行程限制、液 压两点控制和电气先导压力控制等辅助功能,所以其应用越来 越广泛,并已超出传统工程车辆的范围。
3.4.3全功率控制,分功率控制,交叉功率控制
3.4.3全功率控制,分功率控制,交叉功率控制 交叉功率控制 由于分功率变量系统只是两个液压泵的简单组合,每一个液 压泵最多吸收柴油机50%的功率,当一个液压泵工作于起调压力之 下时,另外一个液压泵却不能吸收柴油机空余出来的功率。针对 此缺点,在分功率系统基础上,出现了交叉功率控制。交叉功率 控制从原理上讲是一种全功率调节,与上述全功率控制不同的是 两个液压泵的排量可以不同。通过交叉连接配置,两个液压泵的 工作压力互相作用在对方的调节器上,每个液压泵的输出流量不 仅与自身的出口压力有关,还与另一液压泵的出口压力有关。如 果一台液压泵不工作或者以小于50%的总驱动功率工作,则第二台 液压泵自动地利用剩余的功率,在极端情况下可达到100%总驱动 功率。交叉功率控制既具有根据每一液压泵的负载大小调整液压 泵输出的能力,又能充分利用柴油机的功率。
3.4.2 LR型恒功率控制
(完整版)恒压与恒功率变量泵
动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。
这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。
这种变量型式的泵,输出压力小于调定恒压力时,全排量输出压力油,即定量输出,在输出油液的压力达到调定压力时,就自动地调节泵流量,以保证恒压力,满足系统的要求。
泵的输出恒压值,根据需要,在调压范围内可以无级调定,泵的结构见图 6 ,该结构将输出的压力油同时通至变量活塞下腔和和恒压阀的控制油入口,当输出压力小于调定恒压力时,作用在恒压阀芯上的油压推力小于调定弹簧力,恒压阀处于开启状态,压力油进入变量活塞上腔,变量活塞压在最低位置,泵全排量输出压力油;当泵在调定恒压力工作时,作用在恒压阀芯上的油压推力等于调定弹簧力,恒压阀的进排油口同时处于开启状态,使变量活塞上下腔的油压推力相等,变量活塞平衡在某一位置工作,若液压阻尼(负载)加大,油压瞬时升高,恒压阀排油口开大、进油口关小,变量活塞上腔比较下腔压力降低、变量活塞向上移动,泵的流量减小,直至压力下降到调定恒压力,这时变量活塞在新的平衡位置工作。
反之,若液压阻尼(负载)减小,油压瞬时下降,恒压阀进油口开大,排油口关小,变量活塞上腔比较下腔油压升高,变量活塞向下移动,泵的流量增大,直至压力上升至调定恒压力。
主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传YCY14-1B :斜盘式压力补偿变量(恒功率)柱塞泵/ 马达结构剖视YCY14-1B :斜盘式压力补偿变量柱塞泵/ 马达工作原理主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。
这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。
压力补偿变量泵的出口流量随出口压力的大小近似地在一定范围内按恒功率曲线变化。
当来自主体部分的高压油通过通道(a)、(b)、(c)进入变量壳体下腔(d)后,油液经通道(e)分别进入通道(f)和(h),当弹簧的作用力大于由油道(f )进入伺服活塞下端环形面积上的液压推力时,则油液经(h)到上腔(g),推动变量活塞向下运动,使泵的流量增加。
恒功率恒压变量泵的特性及前景
机械 2006年第11期 总第33卷 设计与研究 ・17・————————————— 收稿日期:2006-08-31作者简介:程晓东,中国石油大学(华东)在校研究生。
恒功率恒压变量泵的特性及前景程晓东,张作龙(中国石油大学(华东) 机电学院,山东 东营 257061)摘要:通过将恒功率恒压变量泵同传统的恒功率变量泵及恒压变量泵相比较,阐述它优于传统节能型变量泵的特点,并简要分析它的发展前景。
关键词:横功率恒压泵;变量特性;节能;前景中图分类号:TH322 文献标识码:B 文章编号:1006-0316(2006)11-0017-03进入21世纪,能源危机已经迫在眉睫,对节能产品的需求也迅速增加。
恒功率恒压变量柱塞泵就是在这一背景下产生的一种新型节能产品。
这种新型泵是以斜盘式轴向柱塞泵为基础,加入了新的变量形式从而实现新的功能的产品。
1 恒压变量泵恒压变量泵是一种高效、节能、大功率的液压动力源,它广泛应用于工程机械、机床工业、航空航天工业等液压系统领域。
目前,恒压泵控技术已经很成熟,国外很多厂家如:力士乐、威格士、丹尼逊以及意大利的沙姆等,都有很成熟的恒压变量泵可供选用。
1.比例控制滑阀2.伺服变量器3.压力设定弹簧4.变量反馈弹簧图1 H1VPC 泵的变量原理示意图图1为沙姆公司的H1VPC 变量泵的原理图,改变压力设定弹簧3就可按需设定泵的最高工作压力P max 。
当泵的输出压力达到P max 时,比例控制阀1在压力油作用下被打开,切换到某一特定位置后,压力油与伺服变量器2的大端相通,伺服变量器在压力油的作用下拉动变量盘,使变量角变小,从而使泵的排量变小,以维持输出压力不变。
这时,比例控制阀右端受到变量反馈弹簧4的反馈力和压力设定弹簧3的合理作用,与比例控制阀1左端的液压力保持平衡,比例控制阀保持不动。
相反,当泵的输出压力不到P max 时,比例控制滑阀1开口减小,直至关闭。
伺服变量器在压力油和弹簧力4作用下,推动变量盘,增大变量角,以增大排量来维持输出压力不变。
恒压变量泵基础知识(适合新手)
恒压变量泵基础知识(适合新手)一、工作原理恒压变量泵:拿泵的出口压力值和输入信号的值进行比较,然后通过变量机构的位置变化来确定泵的排量。
恒压变量控制:是指当流量做适应性的调节时,压力变动十分微小,可以向系统提供一个恒压源。
由于推动恒压阀动作的控制油,来自变量泵本身的出油口,所以属于自控式变量泵。
二、恒压变量泵的压力自动恒定过程:如图所示:CP为恒压阀,它的作用就是控制变量活塞缸的进油和回油,而控制活塞的伸出与回缩动作直接控制斜盘的倾角,从而使泵的排量发生变化。
恒压阀右侧调压弹簧的预紧力设定值为Pt(恒压阀的阀芯动作时行程非常小,可以认为弹簧的预紧力始终为其设定值Pt);泵的出口压力为Pp;泵的出口流量为qp;泵能输出的最大流量qpmax;负载所需流量qL。
1、排量增大的过程:当Pp<>2、压力上升的过程:若随后负载所需要流量qL<>3、排量减小的过程:当Pp>Pt时(泵出口的压力Pp上升到超过弹簧预紧力Pt时),恒压阀的阀芯右移,控制活塞无杆腔引入泵出口的高压油,斜盘倾角逐渐减小,最终在qp=qL时停止。
4、压力下降的过程:由于泵输出的流量已完全用于推动负载,因此没有多余的流量支撑原先的高压了,所以泵出口的压力Pp开始减小,直至减小到Pp=Pt为止。
此时,恒压阀关闭,变量活塞停止运动,变量过程结束,泵的工作压力稳定在恒压阀弹簧预紧力的设定值。
5、保压的过程:此后,如果负载不发生变化,那么系统就一直工作在恒压工况。
此时,泵的输出流量可以为0,但并不是说斜盘的倾角完全为0,此时倾角应该是处在一个很小的位置,使得泵内部的流量与泵内部的泄漏相一致,并且还要维持支撑负载的压力。
6、但是,如果负载对流量需求减少,那么泵出口压力升高,则重复步骤2~4。
7、同样,如果负载对流量需求增大,那么当泵出口压力小于弹簧预紧力时,则重复步骤1~4。
三、恒压变量泵在什么情况下应用能更好地发挥其节能的作用呢?•低压保持全流量输出,实现快速移动(该过程中该泵相当于一个定量泵)。
恒功率变量泵原理
恒功率变量泵原理
我也做这个型号的油泵,看了好多高手的见解,启发也很大,但有一些观点我不完全认同,我从油泵变量的设定和动作讲一下我的理解。
以楼主的原理图为准,1阀是LR阀(恒功率阀)设定的是恒功率曲线的启始变量点,一般是几个Mpa,2阀是恒压阀(DR阀),设定的是系统所需要的最高压力,3阀是流量阀(FR阀),不能拧死,松开就行,如4阀状态不变,那在DFLR阀中没有很大的作用,对起始变量点只有一些很小的影响,这一点和LGWX理解得不一样。
当油泵开始启动,压力还没有达到启始变量压力时,(4阀状态不变),1阀、2阀在弹簧力作用下处于原始工作位,不动作,3阀的二端同时通压力油,虽然有阻尼5的存在,但因1阀没找开,油液没有流动,不起阻尼作用,3阀二端压力一样,面积也一样,所以3阀也在原始工作位,这时油泵就是一个定量泵,
当系统压力达到1阀的设定压力,1阀打开,开始溢流,因阻尼5的作用,3阀二端产生压差,阀芯向右移动,油液经过2阀进入变量活塞右腔,开始变量,同时压缩弹簧。
这时就是位移---力反馈的恒功率原理,
当系统压力达到2阀设定的压力时,2阀的阀芯左移,压力油经2阀直接进入控制活塞右腔,进入恒压变量状态,其他阀就不起作用了。
所有的阀在起作用时,应该都不是固定在某一工作腔的,都不高频振颤,维持动态平衡,例如:恒压阀工作时,控制活塞右腔进油,流量一直在变小,直至流量小到不能维持系统压力,弹簧力大于阀芯左端的液压力,变量活塞右腔关闭,压力再升高,阀芯再打开。
恒压与恒功率变量泵要点
恒压与恒功率变量泵要点恒压变量泵和恒功率变量泵是两种常见的工业泵。
它们与传统的恒速泵相比,具有更加优越的性能和应用灵活性。
本文将重点介绍恒压变量泵和恒功率变量泵的原理、特点以及应用领域。
一、恒压变量泵恒压变量泵是一种能够输出恒定压力的变量排量泵。
它根据系统的压力变化自动调整排量,以维持恒定的输出压力。
恒压变量泵主要由变量排量控制机构、输出压力传感器和控制电路等组成。
1.原理恒压变量泵的原理是通过引入压力反馈回路来实现输出压力的恒定。
当系统压力下降时,输出压力传感器会检测到变化,并向控制电路发送信号。
控制电路会根据信号调节变量排量控制机构,使排量增大,从而增加输出流量,恢复系统压力到设定值。
反之,当系统压力升高时,排量减小,减少输出流量,以维持输出压力稳定。
2.特点(1)恒压输出:恒压变量泵能够根据系统需求自动调节排量,使输出压力保持恒定,能够在各种负载条件下稳定工作。
(2)节能降耗:恒压变量泵在系统压力低于设定值时,减少输出流量,降低功耗,从而实现节能效果。
(3)防止过载:恒压变量泵能够根据系统压力自动调节排量,避免系统发生过载。
(4)稳定性好:恒压变量泵具有排量调节范围广、动态响应快的特点,能够在泵输出压力变化范围内快速调节和稳定输出。
3.应用领域恒压变量泵广泛应用于液压系统中的恒压供油、恒压控制回路、恒压变频水泵、恒压供应装置等。
二、恒功率变量泵恒功率变量泵是一种根据系统负载需求自动调节输出功率的变量排量泵。
它能够自动调节输出流量以保持设定功率,能够在系统负载波动时自动调整排量。
1.原理恒功率变量泵的原理是通过引入功率反馈回路来实现输出功率的恒定。
当系统负载增加时,输出功率传感器会检测到变化,并向控制电路发送信号。
控制电路会根据信号调节变量排量控制机构,使排量增大,从而增加输出流量,维持输出功率稳定。
反之,当系统负载减小时,排量减小,减少输出流量,以保持输出功率恒定。
2.特点(1)恒功率输出:恒功率变量泵能够根据系统负载需求自动调节排量,使输出功率保持恒定,能够在负载变化的情况下稳定工作。
恒压与恒功率变量泵要点
PCY14-1B:斜盘式恒压变量柱塞泵-----结构剖视PCY14-1B:斜盘式恒压变量柱塞泵-----工作原理主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。
这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。
这种变量型式的泵,输出压力小于调定恒压力时,全排量输出压力油,即定量输出,在输出油液的压力达到调定压力时,就自动地调节泵流量,以保证恒压力,满足系统的要求。
泵的输出恒压值,根据需要,在调压范围内可以无级调定,泵的结构见图6,该结构将输出的压力油同时通至变量活塞下腔和和恒压阀的控制油入口,当输出压力小于调定恒压力时,作用在恒压阀芯上的油压推力小于调定弹簧力,恒压阀处于开启状态,压力油进入变量活塞上腔,变量活塞压在最低位置,泵全排量输出压力油;当泵在调定恒压力工作时,作用在恒压阀芯上的油压推力等于调定弹簧力,恒压阀的进排油口同时处于开启状态,使变量活塞上下腔的油压推力相等,变量活塞平衡在某一位置工作,若液压阻尼(负载)加大,油压瞬时升高,恒压阀排油口开大、进油口关小,变量活塞上腔比较下腔压力降低、变量活塞向上移动,泵的流量减小,直至压力下降到调定恒压力,这时变量活塞在新的平衡位置工作。
反之,若液压阻尼(负载)减小,油压瞬时下降,恒压阀进油口开大,排油口关小,变量活塞上腔比较下腔油压升高,变量活塞向下移动,泵的流量增大,直至压力上升至调定恒压力。
YCY14-1B:斜盘式压力补偿变量(恒功率)柱塞泵/马达-----结构剖视YCY14-1B:斜盘式压力补偿变量柱塞泵/马达-----工作原理主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。
这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。
压力补偿变量泵的出口流量随出口压力的大小近似地在一定范围内按恒功率曲线变化。
恒功率泵工作原理相关讨论
请教:力士乐A10VSO-DFLR(恒压/流量/功率控制)变量泵的控制原理管理提醒:本帖被论坛清道夫执行加亮操作(2009-01-08)图片:图片:图片:图片:为向各位了解力士乐A10VSO…DFLR…恒压/流量/功率控制泵的控制原理,上传4张图片.我想了解的问题是:1.功率阀的原理;2. 恒压/流量/功率控制三种控制功能的转换过程.说明:最上面的一张图为总图(网上下载的).图1和图2是按照力士乐另一份彩图资料绘制的. 图1中的A1和图2为清晰起见,图1中的X口我画在了上面(原资料是在侧面的)[ 此贴被论坛清道夫在2008-05-21 13:53重新编辑]顶端Posted: 2008-02-03 12:15 | [楼主] 小中大引用推荐编辑只看复制我的问题已经提出好几天了.无人回帖.可能是我对问题的叙述不很清楚.最近几天我琢磨了一下,对于功率阀的调节原理,我先试着分析如下.是我个人的理解,请诸位指正.功率阀相当于一个压力无级可调的(比例)溢流阀,它可无级地改变着进入流量调节器弹簧腔的压力P 通过泵斜盘改变功率阀调压弹簧的压缩量X来实现的(泵斜盘带动拨杆改变功率阀套的位置,进而改变功率阀压缩量X与泵斜盘倾角β成反比.在泵进入恒功率控制期间,流量调节器控制阀芯的位置也有3个.压力P H作用在控制阀芯的右端(见图1),以形成一个对抗反力,与作用在控制阀芯左端的泵出口压力P P相在中位(平衡位置),在此状态下,泵的斜盘倾角不变.功率阀所决定的压力P H与泵压力P P应该是同比例变化(升降)的.并且P H的变化要比P P的变化滞后一点当泵压升高时,P P先将控制阀芯向右推离中位(平衡被破坏),并进入泵变量缸的无杆腔使泵的斜盘倾角β变角β的变小,功率阀调压弹簧的压缩量X则变大,阀的开启压力P H随之升高,升高了的P H又将控制阀芯推回中循环下去,控制阀芯连续的经历由平衡→不平衡→新的平衡的过程(用一位网友的话讲,就是控制阀芯在“中位控制.当泵压降低时,则会出现相反的过程.恒功率控制始于起点的调整压力,终于切断点的限位柱(即死档铁).不知我分析的对不对,请各位点拨.[ 此贴被闫波在2008-02-11 10:35重新编辑]顶端Posted: 2008-02-09 11:13 | 1 楼小中大引用推荐编辑只看复制图片:图片:图片:上传DFLR恒压/流量/功率变量泵的性能曲线图(图4).图中的a,b,c,d,e,f是我加上去的,其余按原图绘坦言之,我基本看不明白该泵的性能曲线图.哪位能给讲解一下该泵的控制顺序;恒压,恒流和恒功率控制置?还有Wgm老师讲过:“复合控制恒功率优先”,在此,是如何保证优先的.我只知道恒功率泵的性能曲线好象是双曲线,但图上怎么看不出来呢?注:图4/B和图4/C是我个人的理解,后贴上的.[ 此贴被闫波在2008-02-19 09:15重新编辑]顶端Posted: 2008-02-12 12:07 | 2 楼l x y 9 3小中大引用推荐编辑只看复制这就是典型的双弹簧拟合成双曲线,达到工程上的“恒功率”。
恒功率变量泵与恒压变量泵[整理]
恒功率变量泵与恒压变量泵[整理] 恒功率泵所实现的功能就时保证电机不会超功率,低压时大流量,高压时小流量;恒压泵能够实现零流量保压。
1)恒压泵一般用于这样的液压系统:开始阶段要求低压快速前进,而后转为慢速靠近,最后停止不动并保压,像油压机就是这样。
这里,恒压泵设定的压力就是系统保压所需要的压力。
这里,对“液压系统压力由负载决定,而由溢流阀加于限定”的基本原则应该讲是符合的。
为了更好理解泵控系统,可以考虑修改为“系统压力由负载决定,而由恒压泵加于限定”。
像压机的例子,压制件的反力可以很大,具体施加多少由恒压泵调节。
2)恒流泵主要用于工程机械这种设备上就一台发动机,要充分利用其功率。
对液压系统就可以在低压时大流量,高压时小流量。
这表面上与恒压泵相似,其实不然。
恒功率泵在压力流量变化时,遵循恒功率,而恒压泵在未达到调定值之前,是最大排量的定量泵,不存在开始恒功率的拐点。
而进入恒压工况后,原则上可以根据系统的需要提供流量而保持压力不变。
3)恒压变量泵是在达到泵平身的设定压力后才开始变量,此时流量下降成陡线下降.恒功率变量泵是几乎全压力阶段都在变量,基本保证输出的功率恒定在一定范围内,但是在泵设定的功率范围内,压力上升,流量是全流量输出,当超过这个压力,流量开始下降,以保证输出功率恒定(这也就是说在低于额定功率时,实际使用功率不是恒定的).还有电控变量泵,它的变量曲线由电控部份决定,与实际压力无关.不管如何,电机与油泵的功率匹配,是必须考虑的. )恒压泵更重要的一点是:在压力不变的情况下更节约能源。
恒功率泵是能根4据负载变化改变运动速度,也主要用于这种负载变化要求速度能变化的情况。
5)1)一般情况下,固定工业液压选用恒功率的案例较少,多数是行走机械(工程机械)动力是发动机的,为了充分利用功率,选用恒功率泵的情况较多。
当然天下之大,不能一概而论。
6)对于一个在反复循环过程中,或者随机操作过程中,压力与流量两个参数都有比较大差异的系统,人们往往采用“一把钥匙开一把锁”的模式灵活处理。
恒功率恒压泵变量机构的调节原理
恒功率恒压泵具有体积小 ,重量轻 ,节能的特点 , 其内部的变量机构可根据泵外部负载的变化而调节流 量输出 ,以达到节能效果 。作为新型的液压源 ,恒功率 恒压泵具有很好的应用前景 。
但正如任何事物都有两面性一样 ,恒功率恒压泵由 于其内部采用较复杂的变量机构 ,将使泵输出的动特性 有所下降(特别在恒功率段) ;另外 ,在恒功率恒压泵做液 压源 ,多个执行器同时工作时 ,将会互相产生耦合现象[2] 。 因此 ,为了很好地选用恒功率恒压泵 ,探讨其内部伺服机 构的工作原理及对外部的影响是十分必要的 。 1 恒功率恒压泵的组成
恒功率恒压泵按伺服类型分为电子伺服和机械伺 服两类 ,它们都是按三通阀控差动缸的原理而工作的 。 本文研究的 A10VO452DFLR 恒功率恒压伺服变量泵为 德国 Hydrauma 公司产品 ,它的基本结构为柱塞泵 ,可 通过调节其斜盘的角度来改变输出流量 ,其内部全部 采用机械伺服变量机构 ,因而具有稳定性好 ,可靠性高 的优点 。
© 1995-2006 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
6
液压与气动
2002 年第 6 期
泵的出口到执行器这一段的容腔体积 , pS 为执行器进 口工作压力 , q 为执行器进口工作流量 。本文把由泵 和 VS 组成的部分称为泵源 。VS 容腔相当于电路中的 电容 ,有低通特性 ,不可能脱离开此容腔来研究执行器 的动特性 。
图 1 为 A10VO452DFLR 伺服变量机构原理图 ,它 内部的变量机构主要由定量控制阀 、恒功率控制阀 、恒 压控制阀 、差动缸等部分组成 。 图 2 为其典型特性曲线 。从图 2 可以看出 ,根据 输出压力的不同 ,A10VO452DFLR 的工作区间可分为 定量段 、恒功率段 、恒压段 ,这 3 段分别由内部各阀来 控制的 。 2 A10 VO452DFL R 变量机构调节原理 211 定量段 ( a~ b)
恒功率控制柱塞泵变量特性的设计及特点
恒功率控制柱塞泵变量特性的设计及特点恒功率控制柱塞泵变量特性的设计及特点活应用技术研究恒功率控制柱塞泵变量特性的设计及特点太原润滑液压研究所常若薇“随输出压力的降低而增大,泵的输出功率基本恒定。
这使原动机能充分发挥其能力,减少功率消耗。
恒功率变量特性的设计计算是实现泵的变量性能的基本保证。
1A7VLV恒功率变量泵结构及控制原理A7VLV恒功率变量泵属斜轴式柱塞泵,主要结构如所示。
其主要由主轴1、柱塞副2、缸体3、配流盘4和变量机构等组成。
工作原理是:原动机带动主轴1转动,装在主轴盘上的柱塞副拨动缸体转动。
缸体上有7个等分的柱塞孔,柱塞副在缸体孔中作往复运动。
缸体轴线相对主轴线有一夹角时,随着主轴的转动,缸体孔中柱塞副的行程有所改变。
当柱塞孔容积由小变大时,通过配流盘的低压侧从泵的吸油口吸入液压油,当柱塞孔的容积由大变小时,通过配流盘的高压侧从泵的压油口排出压力油。
主轴旋转1周,7个柱塞副在缸体孔中各往复运动1次,连续进行吸油、排油,从而使原动机输入的机械能转变为液压能。
I一主轴;2―柱塞副;3 6―变量活塞;7―传动杆;8一弹簧顶杆;A―油缸A腔;B―油缸B腔恒功率柱塞泵结构图A7VLV轴向柱塞泵恒功率变量机构主要由变量壳体5、变量活塞6、传动杆7、小活塞8、阀套9、控制阀芯10、大弹簧11、小弹簧12、调节弹簧13、弹簧顶杆14等组成。
恒功率变量机理为:由变量壳体形成的变量活塞油缸A腔常通压力油,使变量活塞带动传动杆使缸体、配流盘处于最大摆角位置,同时压力油经端盖通道作用在小活塞上,当作用在小活塞上的液压力大于弹簧11预压力和调节弹簧13的压力总和时,弹簧顶杆14顶着控制阀芯10向下运动,此时阀芯打开,高压油进入B腔,则变量活塞6在液压差动力的作用下推动着传动杆7带动缸体、配流盘绕O点转动,减少摆角Y从而压缩大弹簧11、小弹簧12使泵的输出流量减少,达到新的平衡。
同时弹簧11使控制阀芯复位,实现了行程反馈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PCY14-1B:斜盘式恒压变量柱塞泵-----结构剖视
PCY14-1B:斜盘式恒压变量柱塞泵-----工作原理
主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。
这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。
这种变量型式的泵,输出压力小于调定恒压力时,全排量输出压力油,即定量输出,在输出油液的压力达到调定压力时,就自动地调节泵流量,以保证恒压力,满足系统的要求。
泵的输出恒压值,根据需要,在调压范围内可以无级调定,泵的结构见图6,该结构将输出的压力油同时通至变量活塞下腔和和恒压阀的控制油入口,当输出压力小于调定恒压力时,作用在恒压阀芯上的油压推力小于调定弹簧力,恒压阀处于开启状态,压力油进入变量活塞上腔,变量活塞压在最低位置,泵全排量输出压力油;当泵在调定恒压力工作时,作用在恒压阀芯上的油压推力等于调定弹簧力,恒压阀的进排油口同时处于开启状态,使变量活塞上下腔的油压推力相等,变量活塞平衡在某一位置工作,若液压阻尼(负载)加大,油压瞬时升高,恒压阀排油口开大、进油口关小,变量活塞上腔比较下腔压力降低、变量活塞向上移动,泵的流量减小,直至压力下降到调定恒压力,这时变量活塞在新的平衡位置工作。
反之,若液压阻尼(负载)减小,油压瞬时下降,恒压阀进油口开大,排油口关小,变量活塞上腔比较下腔油压升高,变量活塞向下移动,泵的流量增大,直至压力上升至调定恒压力。
YCY14-1B:斜盘式压力补偿变量(恒功率)柱塞泵/马达-----结构剖视
YCY14-1B:斜盘式压力补偿变量柱塞泵/马达-----工作原理
主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。
这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。
压力补偿变量泵的出口流量随出口压力的大小近似地在一定范围内按恒功率曲线变化。
当来自主体部分的高压油通过通道(a、(b、(c进入变量壳体下腔(d)后,油液经通道(e)分别进入通道(f)和(h),当弹簧的作用力大于由油道(f)进入伺服活塞下端环形面积上的液压推力时,则油液经(h)到上腔(g),
推动变量活塞向下运动,使泵的流量增加。
当作用于伺服活塞下端环形面积上的液压推力大于弹簧的作用力时,则伺服活塞向上运动,堵塞通道(h),使(g)腔的油通过(i)腔而卸压,此时,变量活塞上移,变量头偏角减小,使泵的流量减小。
调节流量特性时,可先将限位螺钉拧至上端,根据所需的流量和压力变化范围,调节弹簧套,使其流量开始发生变化时的初始压力符合要求,然后将限位螺钉拧至终级压力时的流量不再发生变化,其中间的流量与压力变化关系由泵的本身设计所决定。
BCY14-1B:斜盘式电液比例控制变量柱塞泵/马达-----结构剖视
BCY14-1B:斜盘式电液比例控制变量柱塞泵/马达-----工作原理
主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。
这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。
BCY14-1B型电液比例控制变量泵,是利利用“流量——位移——力反馈”的原理设计的,是CY14-1B型轴向柱塞泵中一种新的变量型式,是靠外控油压来控制变量机构,并利用输入比例电磁铁的电流大小来改变泵的流量,输入电流与泵的流量成比例关系。
该泵控制灵活、动作灵敏、重复精度高、稳定性好,能方便地实现液压系统的遥控、自控、无级调速、跟踪反馈同步和计算机控制,适用于工业自动化的要求。
电液比例控制变量泵的工作原理如右图所示,当比例电磁铁1输入电流为零时,先导阀芯3在反馈弹簧6的作用下被推到上端,此时外控油进入变量活塞7的上下两腔,由于上腔面积A’大于下腔面积A,变量活塞被推向最下位置,变量头8的偏角为零,泵的排量也为零。
当输入电流增大时,先导阀芯3在电磁力的推动下向下移动,从而使先导阀的上阀口打开,变量活塞7上腔通过控制边与回油腔接通,上腔压力降低,变量活塞向上移动,变量头偏角增大,泵的排量也随之增加,同时变量活塞的移动又通过压缩反馈弹簧作用在先导阀芯上,将先导阀芯推到平衡位置,变量活塞即维持在某一确定的平衡位置上,泵的排量也维持在某一定值。
反之,当输入电流减小时,先导阀芯在反馈弹簧的作用下向上移动,使通向回油腔的阀口减小,进入上腔的阀口增大,由此上腔压力Pc’增大,变量活塞向下移动,直至电磁力等于反馈弹簧力时,先导阀芯又回到平衡位置,使Pc’ ·A’= Pc ·A,变量活塞又在一个新的位置上平
衡。
当输入电流不变时,若由于负载或其它原因引起变量活塞上移或下降时,则变量活塞的该位移变化量,通过反馈弹簧作用在先导阀芯上,改变先导阀的开口,使变量活塞的上腔压力升或降低,以抵抗负载力的变化,最终使变量活塞回到与输入电流相对应的位置上,即保持排量不变。
由此可见,该比例变量泵可在输入电流的作用下,对排量实现比例控制而不受负载的干扰。
BCY14-1B变量泵的主要性能指标为:滞环H1<5%,重复精度HR<3%,非线性度HLI<5%,分辨率HΔ1<2%,频响f-3dB≥1.5MHz(160、250BCY泵,f-3dB≥3MHz(25、63BCY泵。
BCY14-1B泵的外控油压力与泵的工作压力有关,在额定工况下,一般所需外控压力推荐按下表。
若使用的工作压力较低,外控油压力也可相应降低。
对于外控油供油量,若用户要求泵流量在Qmax0所需的时间为t秒,则推荐外控泵的流量为Q控≥q/t(l/min,q见下表。
由于实际工况往往并不要求流量在Qmax~0之间变化,而是在某一选定的流量下左右变化,因此实际所需外控泵流量可大大减小。
BCY14-1B泵的起始电流(死区)的大小,一般调节在150~250mA,最大控制电流一
般为650~800mA。
BCY电液比例泵的进出油口方向,与其它变量形式泵的进出油口方向正好相反,即从轴端看,顺时针旋转(正转泵)时进油口在右侧,出油口在左侧。
为了便于本厂出厂试验时的调试,最好请用户设计时选用反转泵。