17.反比例函数复习31-32

合集下载

反比例函数知识点知识点总结

反比例函数知识点知识点总结

反比例函数知识点知识点总结反比例函数知识点总结一、反比例函数的定义一般地,如果两个变量 x、y 之间的关系可以表示成 y = k/x(k 为常数,k≠0)的形式,那么称 y 是 x 的反比例函数。

需要注意的是,反比例函数中自变量 x 的取值范围是x≠0,因为分母不能为 0。

例如,当 k = 5 时,反比例函数为 y = 5/x。

二、反比例函数的表达式反比例函数常见的表达式有以下三种形式:1、 y = k/x (k 为常数,k≠0),这是最基本的形式。

2、 xy = k (k 为常数,k≠0),通过将 y = k/x 两边同乘 x 得到。

3、 y = kx^(-1) (k 为常数,k≠0),这是反比例函数的幂函数形式。

三、反比例函数的图像反比例函数的图像是双曲线。

当 k>0 时,双曲线的两支分别位于第一、三象限,在每一象限内 y 随 x 的增大而减小。

当 k<0 时,双曲线的两支分别位于第二、四象限,在每一象限内 y 随 x 的增大而增大。

例如,对于函数 y = 2/x,因为 k = 2>0,所以图像位于第一、三象限,在每个象限内,当 x 增大时,y 减小。

四、反比例函数图像的性质1、对称性反比例函数的图像关于原点对称,即若点(a,b)在反比例函数图像上,则点(a,b)也在其图像上。

2、渐近线双曲线逐渐接近但永远不会与坐标轴相交,其渐近线为 x 轴和 y 轴。

3、连续性反比例函数在定义域内不是连续的,存在间断点 x = 0。

五、反比例函数中 k 的几何意义在反比例函数 y = k/x 图像上任取一点 P,过点 P 分别作 x 轴、y轴的垂线 PM、PN,垂足分别为 M、N,则矩形 PMON 的面积 S =PM×PN =|y|×|x| =|xy| =|k|。

例如,在函数 y = 6/x 的图像上有一点 P(2,3),则矩形 PMON 的面积为 6。

六、反比例函数与一次函数的综合在解决反比例函数与一次函数的综合问题时,通常需要联立两个函数的解析式,组成方程组,求解交点坐标。

反比例函数知识点归纳(重点)

反比例函数知识点归纳(重点)

.人教版八年级数学下册反比例函数知识点归纳和典型例题(一)知识结构(二)学习目标1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数.2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.2.难点是反比例函数及其图象的性质的理解和掌握.二、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B. C.3xy=1 D.(2)下列函数中,y是x的反比例函数的是().A.B. C.D.答案:(1)C;(2)A.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限 B.第二象限 C.第三象限 D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B. C.D.答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数 C.非正数 D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④. y随x的增大而减小的函数有().A.0个 B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).答案:(1)A;(2)D;(3)B.注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数 B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).①求x 0的值;②求一次函数和反比例函数的解析式.(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y 与x成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;③ 研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)B;(2)4,8,(,);(3)依题意,且,解得.(4)①依题意,解得②一次函数解析式为,反比例函数解析式为.(5)①,,;②30;③消毒时间为(分钟),所以消毒有效.5.面积计算(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().A.B.C.D.第(1)题图第(2)题图(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x 轴,△ABC的面积S,则().A.S=1 B.1<S<2 C.S=2 D.S>2(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.第(3)题图第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.第(5)题图第(6)题图(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数(k>0,x>0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.① 求B点坐标和k的值;② 当时,求点P的坐标;③ 写出S关于m的函数关系式.答案:(1)D;(2)C;(3)6;(4),,矩形O Q 1P1 R 1的周长为8,O Q 2P2 R 2的周长为,前者大.(5)1.(6)①双曲线为,直线为;②直线与两轴的交点分别为(0,)和(,0),且A(1,)和C(,1),因此面积为4.(7)①B(3,3),;②时,E(6,0),;③.6.综合应用(1)若函数y=k1x(k1≠0)和函数(k2 ≠0)在同一坐标系内的图象没有公共点,则k1和k2().A.互为倒数 B.符号相同 C.绝对值相等 D.符号相反(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).① 求反比例函数和一次函数的解析式;② 根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(3)如图所示,已知一次函数(k≠0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.① 求点A、B、D的坐标;② 求一次函数和反比例函数的解析式.WORD格式整理版(4)如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).① 利用图中条件,求反比例函数的解析式和m的值;② 双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.(5)不解方程,判断下列方程解的个数.①;②.(2)① 反比例函数为,一次函数为;②范围是或.(3)①A(0,),B(0,1),D(1,0);②一次函数为,反比例函数为.(4)①反比例函数为,;②存在(2,2).(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.学习好帮手。

反比例函数知识点归纳和典型例题

反比例函数知识点归纳和典型例题

反比例函数知识点归纳和典型例题反比例函数是数学中的一个重要概念,它在实际问题的建模和解决中起着重要作用。

本文将对反比例函数的知识点进行归纳,并给出一些典型例题进行解析。

一、定义和性质反比例函数又称为倒数函数,其定义如下:设x和y是实数,且y ≠ 0,若存在一个实数k,使得y = k/x,那么称y是x的反比例函数。

反比例函数的图象通常是一个拋物线的两支或一支,不包括原点。

其一般形式为y = k/x,其中k为常数。

反比例函数具有以下重要性质:1. 定义域:定义除数x不能为0,所以反比例函数的定义域为x ≠ 0。

2. 值域:值域取决于常数k的正负,当k > 0时,值域为(0, +∞),当k < 0时,值域为(-∞, 0)。

3. 对称性:反比例函数关于两个坐标轴都具有对称性。

二、图象和特殊情况反比例函数的图象通常是一个拋物线的两支或一支,不包括原点。

当常数k > 0时,反比例函数的图象在第一象限和第三象限,当常数k< 0时,反比例函数的图象在第二象限和第四象限。

对于一些特殊情况,我们有以下例子:1. 当k > 0时,反比例函数的图象经过点(1, k),且在x轴和y轴上有渐进线。

2. 当k < 0时,反比例函数的图象经过点(-1, k),且在x轴和y轴上有渐进线。

三、典型例题解析下面通过几个典型例题来进一步理解反比例函数的应用。

例题1:已知y和x成反比例关系,且当x = 2时,y = 5,求当x =4时,y的值。

解析:根据反比例函数的定义,有y = k/x。

代入已知条件x = 2时,y = 5,得到5 = k/2,解得k = 10。

因此,当x = 4时,y = 10/4 = 2.5。

例题2:如果一根细木杆以每分钟1.5cm的速度缩短,那么多少分钟后长度为60cm?解析:设时间为t分钟,根据题意可以列出反比例函数y = k/x。

已知当t = 0时,y = 100,即杆子的初始长度是100cm。

反比例函数知识点总结

反比例函数知识点总结

反比例函数知识点总结反比例函数知识点总结1.反比例函数的定义一般地,形如y=k/x(k为常数,k≠0)的函数称为反比例函数。

它可以从以下几个方面来理解:⑴ x是自变量,y是x的反比例函数;⑵自变量x的取值范围是x≠0的一切实数,函数值的取值范围是y≠0;⑶比例系数k≠0是反比例函数定义的一个重要组成部分;⑷反比例函数有三种表达式:① y=k/x(k≠0);② y=kx^-1(k≠0);③ xy=k(定值)(k≠0);⑸函数y=k/x(k≠0)与函数x=k/y(k≠0)是等价的,所以当y是x的反比例函数时,x也是y的反比例函数。

当k=0时,y=k/x就不是反比例函数了。

2.用待定系数法求反比例函数的解析式由于反比例函数y=k/x(k≠0)中,只有一个待定系数,因此,只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。

3.反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称。

由于反比例函数中自变量x≠0,函数值y≠0,所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

反比例函数的画法分三个步骤:⑴列表;⑵描点;⑶连线。

再作反比例函数的图像时应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。

4.反比例函数的性质关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表所示:反比例函数 y=k/x(k≠0) k的符号 k>0 k0 y0时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y随x的增大而减小。

当k<0时,函数图像的两个分支分别在第二、第四象限,在每个象限内,y随x的增大而增大。

精心整理反比例函数复习(含经典例题)

精心整理反比例函数复习(含经典例题)

第十七章 反比例函数第1节 反比例函数 本节内容:1、 反比例函数定义 反比例函数定义的应用(重点)函数:在某变化过程中有两个变量x ,y.若给定其中一个变量x 的值,y 都有唯一确定的值与它对应,则称y 是x 的函数. 1、反比例函数的定义一般地,如果两个变量x 、y 之间的关系可以表示成xky =k (为常数,)0≠k 的形式,那么称y 是x 的反比例函数。

其中x 是自变量,y 是函数.自变量x 的取值范围是不等于0的一切实数。

注:(1)x ky =也可以写成1-=kx y 或k xy =的形式; (2)xky =若是反比例函数,则x 、y 、k 均不为零;(3)k xy =)0(>k 通常表示以原点及点()y x ,为对角线顶点的矩形的面积; (4)因变量y 的取值范围是y≠0的一切实数。

■例1:下列函数中是反比例关系的有 (填序号)。

①3x y -= ②131+=x y ③x y 2-= ④2211x y -= ⑤x y 23-=⑥21=xy ⑦28x y = ⑧1-=x y ⑨2=x y ⑩x ky =k (为常数,)0≠k■例2:当m 取什么值时,函数是反比例函数?2、 反比例函数定义的应用(重点)确定解析式的方法仍是 待定系数法 ,由于在反比例函数xky =中,只有一个待定系数,因此只需要一对对应值,即可求出k 的值,从而确定其解析式。

■例3由欧姆定律可知,电压不变时,电流强度I 与电阻R 成反比例,已知电压不变,电阻R=12.5欧姆,电流强度I=0.2安培。

(1) 求I 与R 的函数关系式; (2) 当R=5欧姆时,求电流强度。

■例4:已知函数y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =4;当x =2时,y =5(3) 求y 与x 的函数关系式 (4) 当x =-2时,求函数y 的值第2节 反比例函数的图象与性质本节内容:反比例函数的图象及其画法 反比例函数的性质(重点)反比例函数xky =)0(≠k 中的比例系数k 的几何意义(难点) 反比例函数与正比例函数图象的交点 1、 反比例函数的图象及其画法 反比例函数图象的画法——描点法:(1) 列表——自变量取值应以0(但(x≠0)为中心,向两边取三对(或三对以上)互为相反数的数,再求出对应的y 的值;(2) 描点——先描出一侧,另一侧可根据中心对称点的性质去找;(3) 连线——按照从左到右的顺序连接各点并延伸,注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交。

反比例函数整章知识点复习

反比例函数整章知识点复习
在经济学中,反比例函数可用于描述商品的需求量 与价格之间的关系,即需求法则。
在生物学中,反比例函数可用于描述种群数量与资 源之间的关系,如食物与捕食者数量等。
03
反比例函数的图像与性质
反比例函数的图像绘制
通过选择适当的x值,计算对应的y值 ,在坐标系上标出对应的点,连接各 点绘制出反比例函数的图像。
100%
经济问题
在经济学中,反比例函数可以用 来描述成本与产量的关系、供需 关系等。
80%
生态问题
在生态学中,反比例函数可以用 来描述种群数量与环境容量的关 系等。
05
反比例函数习题解析
基础题目解析
01
02
03
题目
已知点$P(x, y)$在反比例 函数$y = frac{k}{x}$的图 象上,若$x$与$y$的乘积 为$2k$,则$k$的值为 ____.
竞赛题目解析
01
k、a、b 的值;
02
k、a、b 的值;
03
k、a、b 的值;
04
k、a、b 的值;
THANK YOU
感谢聆听
反比例函数的计算方法
01
对于反比例函数
$f(x)
=
frac{k}{x}$,求值时只需将 $x$ 值
代入函数中即可。
02
若需要求 $f(x)$ 的导数或积分, 则需使用相应的微积分法则进行 计算。
反比例函数在实际问题中的应用
在物理学中,反比例函数可用于描述两个物理量之 间的反比关系,如电荷与电场强度、电流与电阻等 。
反比例函数的图像
图像特点
双曲线,分布在两个象限内,随着k的正负变化而分别分布在第一 、三象限或第二、四象限。

反比例函数复习课课件

反比例函数复习课课件

2023
REPORTING
THANKS
感谢观看
2023
PART 05
反比例函数的易错点与难 点解析
REPORTING
易错点的解析
混淆反比例函数与正比例函数
01
正比例函数是y=kx,而反比例函数是xy=k。学生常常将两者混
淆,导致在解题时出现错误。
忽视反比例函数的定义域
02
反比例函数的定义域是x不为0的实数,学生常常忽视这一点,
导致在解题时出错。
2023
PART 04
反比例函数的综合题解析
REPORTING
反比例函数的综合题解析
01
分析与照顾 into acts' intoic andic. of course, and will,, on the在这
பைடு நூலகம்02
saidcoupled =oman ofic ofic of and ofic and of intoic of and, and other神话 top similar 觉ungais'hipster
描述反比例函数的定义
详细描述
反比例函数是一种数学函数,其定义为 y = k/x,其中 k 是常数且 k ≠ 0。当 x 取任意非零实数时,y 的值都存在。
反比例函数的图像
总结词
描述反比例函数的图像特点
详细描述
反比例函数的图像通常在 x 轴和 y 轴上都有渐近线,即当 x 或 y 趋于无穷大时 ,函数值趋于 0。图像通常位于第一象限和第三象限。
反比例函数的性质
总结词:列举反比例函数 的性质
1. 当 k > 0 时,函数图像 在第一象限和第三象限;
3. 反比例函数是奇函数, 即 f(-x) = -f(x);

反比例函数(同步复习)基础篇

反比例函数(同步复习)基础篇

反比例函数 (基础篇)1、反比例函数旳概念一般地,函数xk y =(k 是常数,k≠0)叫做反比例函数。

反比例函数旳解析式也可以写成1-=kx y 旳形式。

自变量x 旳取值范畴是x ≠0旳一切实数,函数旳取值范畴也是一切非零实数。

(注意:反比例函数xk y =中,x旳次数只能为1,k 为不等于0旳实数)2、反比例函数旳图像反比例函数旳图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们有关原点对称。

由于反比例函数中自变量x ≠0,函数y≠0,因此,它旳图像与x 轴、y 轴都没有交点,即双曲线旳两个分支无限接近坐标轴,但永远达不到坐标轴。

3、反比例函数旳性质4、反比例函数解析式旳拟定拟定及诶是旳措施是待定系数法。

由于在反比例函数xk y =中,只有一种待定系数,因此只需要一对相应值或图像上旳一种点旳坐标,即可求出k 旳值,从而拟定其解析式。

5、反比例函数中反比例系数旳几何意义过反比例函数)0(≠=k xk y 图像上任一点P 作x 轴、y轴旳垂线P M,P N,则所得旳矩形PMON 旳面积S=PM •PN=xy x y =•。

k S k xy xky ==∴=,, 。

补充:正比例函数和一次函数 1、正比例函数和一次函数旳概念一般地,如果b kx y +=(k,b是常数,k ≠0),那么y叫做x旳一次函数。

特别地,当一次函数b kx y +=中旳b 为0时,kx y =(k为常数,k≠0)。

这时,y 叫做x 旳正比例函数。

2、一次函数旳图像所有一次函数旳图像都是一条直线3、一次函数、正比例函数图像旳重要特性:一次函数b kx y +=旳图像是通过点(0,b)旳直线;正比例函数kx y =旳图像是通过原点(0,0)旳直线。

k>0b>0 yx图像通过一、二、三象限,y随x旳增大而增大。

b<0yx 图像通过一、三、四象限,y随x旳增大而增大。

K<0b>0yx图像通过一、二、四象限,y随x旳增大而减小b<0yx图像通过二、三、四象限,y随x旳增大而减小。

反比例函数常用知识点总结

反比例函数常用知识点总结

反比例函数常用知识点总结一、反比例函数的定义反比例函数也叫做倒数函数,通常用y=k/x表示,其中k为非零常数。

这种函数的图像是一个双曲线,具有对称轴。

二、反比例函数的性质1. 反比例函数的定义域和值域反比例函数的定义域为x≠0,值域为y≠0。

2. 反比例函数的奇偶性反比例函数通常不具有奇偶性。

3. 反比例函数的单调性反比例函数在定义域内单调递减或递增。

4. 反比例函数的渐近线反比例函数的图像有两条渐近线,分别是x轴和y轴。

5. 反比例函数的对称性反比例函数的图像关于原点对称。

6. 反比例函数的零点和极限反比例函数有唯一的零点,即x=±√k。

当x→0时,y→±∞。

三、反比例函数的图像1. 反比例函数的基本图像反比例函数的基本图像是一个双曲线,具有对称轴。

2. 反比例函数的平移和缩放改变k的值可以使反比例函数的图像进行平移和缩放。

3. 反比例函数的特殊情况当k为正数时,反比例函数的图像在第一和第三象限。

当k为负数时,反比例函数的图像在第二和第四象限。

四、反比例函数的应用1. 反比例函数在物理学中的应用反比例函数可以用来描述两个物理量之间的关系,比如牛顿定律中的万有引力定律就是一个反比例函数。

2. 反比例函数在经济学中的应用反比例函数可以用来描述供求关系,比如需求曲线和供给曲线都是反比例函数。

3. 反比例函数在工程学中的应用反比例函数可以用来描述工程中的一些量与距离的关系,比如声音的传播距离与声音的强度之间的关系。

五、反比例函数的解题方法1. 求反比例函数的定义域和值域根据函数的定义,可以求出反比例函数的定义域和值域。

2. 求反比例函数的零点和极限根据函数的性质,可以求出反比例函数的零点和极限。

3. 求反比例函数的图像可以根据函数的性质和图形变换的知识,画出反比例函数的图像。

4. 求反比例函数的应用问题可以根据反比例函数在物理学、经济学和工程学中的应用问题,解决实际问题。

六、反比例函数的常见错误1. 关于定义域和值域的错误很多学生容易忽略反比例函数的定义域和值域,导致在解题过程中出现错误。

反比例函数复习课件

反比例函数复习课件
详细描述
反比例函数的一个重要性质是,随着 x 的增大,y 的值会减 小;随着 x 的减小,y 的值会增大。此外,由于分母不能为 零,反比例函数在 x = 0 处没有定义。
02
反比例函数的解析式
反比例函数的表达式
反比例函数的一般表达式为 y = k/x,其中 k 是常数且 k ≠ 0。
当 k > 0 时,反比例函数图像分布在第一象限和第三象限;当 k < 0 时,反比例函 数图像分布在第二象限和第四象限。
详细描述
利用数形结合的方法,通过绘制反比 例函数的图像,可以直观地观察函数 的单调性、对称性、渐近线等性质, 有助于理解函数的变化规律和解题思 路。
代数法解题
总结词
运用代数技巧解决反比例函数的 数学问题
详细描述
掌握反比例函数的性质和公式, 运用代数运算、方程求解、不等 式证明等技巧,解决反比例函数 的数学问题,如求值、证明等。
体重与饮食
摄入的食物量与体重增长 成反比,即吃得越多,体 重增长越快。
物理中的反比例现象
磁场与电流
在电磁感应现象中,磁场与感应 电流成反比关系。
声音传播
声音的传播速度与介质的密度和弹 性成正比,与介质的阻尼成反比。
光学透镜
透镜的焦距与透镜的曲率半径成反 比,即曲率半径越大,焦距越短。
数学中的反比例问题
在坐标轴上,反比例函数的图像是双曲线,且随着 |k| 的增大,图像逐渐远离坐标轴 。
反比例函数的变体
当 k > 0 时,反比例函数可以表示为 y = k/(x - h) + k,其中 h 是常数 且 h ≠ 0。
当 k < 0 时,反比例函数可以表示为 y = k/(x - h) - k,其中 h 是常数 且 h ≠ 0。

反比例函数全章复习与巩固(基础)知识讲解

反比例函数全章复习与巩固(基础)知识讲解

反比例函数全章复习与巩固(基础)责编:常春芳【学习目标】1.使学生理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式,能判断一个给定函数是否为反比例函数;()0ky k x=≠2.能描点画出反比例函数的图象,会用待定系数法求反比例函数的解析式;3.能根据图象数形结合地分析并掌握反比例函数的性质,能利用这些性质()0ky k x=≠分析和解决一些简单的实际问题.【知识网络】【要点梳理】【高清课堂406878 反比例函数全章复习 知识要点】要点一、反比例函数的概念一般地,形如ky x =(k 为常数,0k ≠)的函数称为反比例函数,其中x 是自变量,y 是函数,自变量的取值范围是不等于0的一切实数.x 要点诠释:在ky x =中,自变量x 的取值范围是,k y x =()可以写成()的形式,也可以写成的形式.要点二、反比例函数解析式的确定反比例函数解析式的确定方法是待定系数法.由于反比例函数中,只有一个待定ky x=系数,因此只需要知道一对的对应值或图象上的一个点的坐标,即可求出的值,k x y 、k 从而确定其解析式.要点三、反比例函数的图象和性质1.反比例函数的图象反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、()0ky k x=≠三象限或第二、四象限.它们关于原点对称,反比例函数的图象与轴、轴都没有交x y 点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交.要点诠释:观察反比例函数的图象可得:x 和y 的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.①的图象是轴对称图形,对称轴为两条直线;)0(≠=k x ky x y x y -==和②的图象是中心对称图形,对称中心为原点(0,0);)0(≠=k x ky ③(k≠0)在同一坐标系中的图象关于轴对称,也关于轴对称.xky x k y -==和x y 注:正比例函数与反比例函数,x k y 1=xk y 2=当时,两图象没有交点;当时,两图象必有两个交点,且这021<⋅k k 021>⋅kk 两个交点关于原点成中心对称.2.反比例函数的性质(1)图象位置与反比例函数性质 当时,同号,图象在第一、三象限,且在每个象限内,随的增大而0k >x y 、y x 减小;当时,异号,图象在第二、四象限,且在每个象限内,随的增大而0k <x y 、y x 增大.(2)若点()在反比例函数ky x =的图象上,则点()也在此图象上,故反比a b ,a b --,例函数的图象关于原点对称.(3)正比例函数与反比例函数的性质比较 正比例函数反比例函数解析式图 像直线有两个分支组成的曲线(双曲线)位 置,一、三象限;0k >,二、四象限0k <,一、三象限0k >,二、四象限0k <增减性,随的增大而增大0k >y x ,随的增大而减小0k <y x ,在每个象限,随的增大而减小0k >y x ,在每个象限,随的增大而增大0k <y x (4)反比例函数y =中的意义k ①过双曲线x k y =(k ≠0) 上任意一点作x 轴、y 轴的垂线,所得矩形的面积为k.②过双曲线x k y =(≠0) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的k 面积为2k.要点四、应用反比例函数解决实际问题须注意以下几点 1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题.2.列出函数关系式后,要注意自变量的取值范围.【典型例题】类型一、确定反比例函数的解析式1、已知函数是反比例函数,则的值为 .()32k y k x -=+k 【答案】2k =【解析】根据反比例函数概念,=且,可确定的值.3k -1-20k +≠k 【总结升华】反比例函数要满足以下两点:一个是自变量的次数是-1,另一个是自变量的系数不等于0.举一反三:【变式】反比例函数图象经过点(2,3),则的值是( ).5n y x+=n A. B. C. 0D. 12-1-【答案】D ;反比例函数过点(2,3).. 5n y x +=53,12n n +==∴∴类型二、反比例函数的图象及性质2、已知,反比例函数的图象在每个分支中随的增大而减小,试求42my x-=y x 的取值范围.21m -【思路点拨】由反比例函数性质知,当>0时,在每个象限内随的增大而减小,由k y x 此可求出的取值范围,进一步可求出的取值范围.m 21m -【答案与解析】解:由题意得:,解得,420m ->2m <所以,则<3.24m <21m -【总结升华】熟记并能灵活运用反比例函数的性质是解答本题的关键.举一反三:【变式】已知反比例函数,其图象位于第一、第三象限内,则的值可为2k y x-=k ________(写出满足条件的一个的值即可).k 【答案】3(满足>2即可).k 3、在函数(,为常数)的图象上有三点(-3,)、(-2,)、||k y x-=0k ≠k 1y 2y (4,),则函数值的大小关系是( )3y A . B . C . D .123y y y <<321y y y <<231y y y <<312y y y <<【答案】D ;【解析】∵ ||>0,∴ -||<0,∴反比例函数的图象在第二、四象限,且在每一个象限k k 里,随增大而增大,(-3,)、(-2,)在第二象限,(4,)在第四象限,∴ y x 1y 2y 3y 它们的大小关系是:.312y y y <<【总结升华】根据反比例函数的性质,比较函数值的大小时,要注意相应点所在的象限,不能一概而论,本题的点(-3,1y )、(-2,2y )在双曲线的第二象限的分支上,因为-3<-2,所以12y y <,点(4,3y )在第四象限,其函数值小于其他两个函数值.举一反三:【变式1】(2014春•海口期中)在同一坐标系中,函数y=和y=kx+3(k≠0)的图象大致是( ).A. B.C. D.【答案】C ;提示:分两种情况讨论:①当k >0时,y=kx+3与y 轴的交点在正半轴,过一、二、三象限,y=的图象在第一、三象限;②当k <0时,y=kx+3与y 轴的交点在正半轴,过一、二、四象限,y=的图象在第二、四象限.故选C .【高清课堂406878 反比例函数全章复习 例7】【变式2】已知,且则函数与在同一坐标>b a ,0,0,0≠+≠≠b a b a b ax y +=xba y +=系中的图象不可能是( ) .【答案】B ;提示:因为从B 的图像上分析,对于直线来说是,则,对于反比例函<0,0a b <0a b +<数来说,,所以相互之间是矛盾的,不可能存在这样的图形.0a b +>4、如图所示,P 是反比例函数图象上一点,若图中阴影部分的面积是2,求此ky x=反比例函数的关系式.【思路点拨】要求函数关系式,必须先求出的值,P 点既在函数的图象上又是矩形的顶k 点,也就是说,P 点的横、纵坐标的绝对值是矩形的边长.【答案与解析】解:设P 点的坐标为(,),由图可知,P 点在第二象限,∴ <0,>0.x y x y ∴ 图中阴影部分矩形的长、宽分别为-、.x y ∵ 矩形的面积为2,∴ -=2,∴ =-2.xy xy ∵ =,∴ =-2.xy k k ∴ 此反比例函数的关系式是.2y x=-【总结升华】此类题目,要充分利用过双曲线上任意一点作轴、轴的垂线所得矩形面x y 积为||这一条件,进行坐标、线段、面积间的转换.k 举一反三:【变式】如图,过反比例函数的图象上任意两点A 、B ,分别作轴的垂线,)(0x x2y >=x 垂足为,连接OA ,OB ,与OB 的交点为P ,记△AOP 与梯形的面积分别''B A 、'AA B B PA ''为,试比较的大小.21S S 、21S S 、【答案】解:∵,AOP AOA A OP S S S ''∆∆∆=-OB A OPA PBB S B S S ''''∆∆=-梯形 且,AOA 112122A A S x y '∆==⨯=OB 112122B B B S x y '∆==⨯=∴.21S S =类型三、反比例函数与一次函数综合5、已知反比例函数和一次函数的图象的一个交点坐标是(-3,ky x=y mx n =+4),且一次函数的图象与轴的交点到原点的距离为5,分别确定反比例函数和一次函数x 的表达式.【思路点拨】因为点(-3,4)是反比例函数与一次函数的图象的一个交ky x=y mx n =+点,所以把(-3,4)代入中即可求出反比例函数的表达式.欲求一次函数ky x=的表达式,有两个待定未知数,已知一个点(-3,4),只需再求一个一y mx n =+m n ,次函数图象上的点即可.由已知一次函数图象与轴的交点到原点的距离是5,则这个交x 点坐标为(-5,0)或(5,0),分类讨论即可求得一次函数的解析式.【答案与解析】解:因为函数的图象经过点(-3,4),ky x= 所以,所以=-12.43k=-k 所以反比例函数的表达式是.12y x=-由题意可知,一次函数的图象与轴的交点坐标为(5,0)或(-5,0),则y mx n =+x 分两种情况讨论:当直线经过点(-3,4)和(5,0)时,y mx n =+有 解得43,05,m n m n =-+⎧⎨=+⎩1,25.2m n ⎧=-⎪⎪⎨⎪=⎪⎩所以.1522y x =-+当直线经过点(-3,4)和(-5,0)时,y mx n =+有 解得 所以.43,05,m n m n =-+⎧⎨=-+⎩2,10.m n =⎧⎨=⎩210y x =+所以所求反比例函数的表达式为,一次函数的表达式为或12y x =-1522y x =-+.210y x =+【总结升华】本题考查待定系数法求函数解析式,解答本题时要注意分两种情况讨论,不能漏解.举一反三:【变式】如图所示,A 、B 两点在函数的图象上.(0)my x x=>(1)求的值及直线AB 的解析式;m (2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.【答案】解:(1)由图象可知,函数的图象经过点A(1,6),可得=6.(0)my x x=>m 设直线AB 的解析式为.y kx b =+∵ A(1,6),B(6,1)两点在函数的图象上,y kx b =+∴ 解得6,61,k b k b +=⎧⎨+=⎩1,7.k b =-⎧⎨=⎩∴ 直线AB 的解析式为.7y x =-+(2)题图中阴影部分(不包括边界)所含格点的个数是3.类型四、反比例函数应用6、(2015•兴化市三模)一辆客车从甲地出发前往乙地,平均速度v (千米/小时)与所用时间t (小时)的函数关系如图所示,其中60≤v ≤120.(1)直接写出v 与t 的函数关系式;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.①求两车的平均速度;②甲、乙两地间有两个加油站A 、B ,它们相距200千米,当客车进入B 加油站时,货车恰好进入A 加油站(两车加油的时间忽略不计),求甲地与B加油站的距离.【答案与解析】解:(1)设函数关系式为v=,∵t=5,v=120,∴k=120×5=600,∴v与t的函数关系式为v=(5≤t≤10);(2)①依题意,得3(v+v﹣20)=600,解得v=110,经检验,v=110符合题意.当v=110时,v﹣20=90.答:客车和货车的平均速度分别为110千米/小时和90千米/小时;②当A加油站在甲地和B加油站之间时,110t﹣(600﹣90t)=200,解得t=4,此时110t=110×4=440;当B加油站在甲地和A加油站之间时,110t+200+90t=600,解得t=2,此时110t=110×2=220.答:甲地与B加油站的距离为220或440千米.【总结升华】解决反比例函数与实际问题相结合的问题,要理解问题的实际意义及与之相关的数学知识.反比例函数是解决现实世界反比例关系的有力工具.。

反比例函数复习讲义

反比例函数复习讲义

反比例函数复习讲义 知识点一:反比例函数的概念一般地,如果两个变量x 、y 之间的关系可以表示成ky x=(k 为常数,)的形式,那么称y 是x 的反比例函数. 注:(1)反比例函数k y x =中的k x是一个分式,自变量x ≠0, k y x =也可写成1y kx -=或xy k =,其中k ≠0;(2)在反比例函数1y kx -=(k ≠0)中,x 的指数是-1。

如,5y x=也写成:15y x -=; (3)在反比例函数k y x =(k ≠0)中要注意分母x 的指数为1,如21y x=就不是反比例函数。

知识点二:反比例函数的图象 反比例函数(0)ky k x=≠的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限.它们关于原点对称,反比例函数的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交. 注:(1)观察反比例函数(0)ky k x=≠的图象可得:x 和y 的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点. (2)用描点法画反比例函数y= kx的图象时,应注意自变量x 的取值不能为0,一般应从1或-1开始对称取点.(3)在一个反比例函数图象上任取两点P ,Q ,过点P ,Q 分别作x 轴,y 轴的平行线,与两坐标轴分别围成的矩形面积为S 1,S 2 则S 1=S 2. 知识点三:反比例函数的性质 1.图象位置与函数性质当k>0时,x 、y 同号,图象在第一、三象限,且在每个象限内,y 随x 的增大而减小;当k<0时,x 、y 异号,图象在第二、四象限,且在每个象限内,y 随x 的增大而增大.2.若点(a,b)在反比例函数(0)ky k x=≠的图象上,则点(-a,-b )也在此图象上,故反比例函数的图象关于原点对称;3.正比例函数与反比例函数的性质比较。

正比例函数反比例函数解析式图 像 直线有两个分支组成的曲线(双曲线)位 置k >0,一、三象限; k <0,二、四象限 k >0,一、三象限 k <0,二、四象限增减性k >0,y 随x 的增大而增大 k <0,y 随x 的增大而减小k >0,在每个象限,y 随x 的增大而减小 k <0,在每个象限,y 随x 的增大而增大4.反比例函数y=x 中k 的意义 反比例函数y = k x (k ≠0)中比例系数k 的几何意义,即过双曲线y = kx(k ≠0)上任意一点引x 轴、y 轴垂线,所得矩形面积为│k │.知识点四:反比例函数解析式的确定反比例函数解析式的确定方法是待定系数法.由于在反比例函数关系式(0)ky k x=≠中,只有一个待定系数k ,确定了k 的值,也就确定了反比例函数,因此只需给出一组x 、y 的对应值或图象上点的坐标,代入(0)ky k x=≠中即可求出k 的值,从而确定反比例函数的解析式.知识点五:应用反比例函数解决实际问题须注意以下几点1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题。

高中数学-反比例函数专题复习

高中数学-反比例函数专题复习

高中数学-反比例函数专题复习1.定义:一般地,如果两个变量x 、y 之间的关系表示成y=(k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数,其中x 是自变量,y 是函数。

例如y =50x ;y =-8x ;y =m 2+1x(m 为常数)等。

提示:(1)y =k x 也可以写作y=kx -1的形式或xy=k 的形式(k为常数且k ≠0);(2)反比例函数的自变量x 不能为0;(3)k=xy 是反比例函数的另一种表示形式,即两变量的积是一个常数。

2.图像:反比例函数的图像属于双曲线。

反比例函数的图象既是轴对称图形又是中心对称图形。

有两条对称轴:直线y=x 和y=-x 。

对称中心是:原点。

3.性质:当k >0时双曲线的两支分别位于第一、第三象限,在每个象限内y 值随x 值的增大而减小;当k <0时双曲线的两支分别位于第二、第四象限,在每个象限内y 值随x 值的增大而增大。

xk4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。

知识点:1·一般地,如果两个变量x、y之间的关系可表示成y=k x(K为常数,K≠0)的形式,那么称y是x的反比例函数。

反比例函数的自变量x不能为零。

2·反比例函数的图象及其画法反比例函数图象的画法——描点法:⑴列表——自变量取值应以0(但(x≠0)为中心,向两边取三对(或三对以上)互为相反数的数,再求出对应的y的值;⑵描点——先描出一侧,另一侧可根据中心对称点的性质去找;⑶连线——按照从左到右的顺序连接各点并延伸,注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交。

反比例函数y=kx的图象是由两支曲线组成的。

当k>0时,两支曲线分别位于第一、三象限内,当k<0时,两支曲线分别位于第二、四象限内。

小注:⑴这两支曲线通常称为双曲线。

⑵这两支曲线关于原点对称。

⑶反比例函数的图象与x轴、y轴没有公共点。

(完整版)反比例函数知识点归纳总结与典型例题

(完整版)反比例函数知识点归纳总结与典型例题

反比例函数知识点归纳总结与典型例题(一)反比例函数的概念:知识要点:1、一般地,形如y = — ( k是常数,k = 0 )的函数叫做反比例函数。

x注意:(1)常数k称为比例系数,k是非零常数;(2)解析式有三种常见的表达形式:(A) y = k (k w 0) , (B) xy = k (k 丰 0) (C) y=kx-1 (kw0)x例题讲解:有关反比例函数的解析式1 1 1 x 1 (1)下列函数,① x(y 2) 1②.y ——③y /④.y ——⑤y —⑥y —;其中是y关x 1 x 2x 2 3x 于x的反比例函数的有:。

a2 2 ....... …(2)函数y (a 2)x 是反比例函数,则a的值是( )A.—1B. — 2C. 2D.2 或—21 .................(3)若函数y 七彳勤是常数)是反比例函数,则m=,解析式为 .xk(4)反比例函数y — (k 0)的图象经过(一2, 5)和(J2 , n),x求1) n的值;2)判断点B ( 4J2 , 短)是否在这个函数图象上,并说明理由(二)反比例函数的图象和性质:知识要点:1、形状:图象是双曲线。

2、位置:(1)当k>0时双曲线分另位于第象限内;(2)当k<0时,双曲线分另位于第象限I 3、增减性:(1)当k>0 时,,y 随x的增大而 ;(2)当k<0时,,y随x的增大而。

4、变化趋势:双曲线无限接近于x、y轴,但永远不会与坐标轴相交5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点; (2)对于k取互为相反数的两个反比例函数(如:y = 6和丫= ―)来说,它们是关于x轴,y轴。

x x例题讲解:反比例函数的图象和性质:(1)写出一个反比例函数,使它的图象经过第二、四象限m2 2⑵若反比例函数v (2m 1)x的图象在第二、四象限,则m的值是( )A—1或1; B、小于-的任意实数;C、一1; D、不能确定2(3)下列函数中,当x 0时,y随x的增大而增大的是( )1 一一4 _ 1A y 3x 4B y - x 2 C. y - D. y ——.3 x 2x2 ____ ,. 一 . 一(4)已知反比例函数y ——的图象上有两点A ( x1,y1),B ( x2, y2),且x1 x2,则y i y 的值是()A.正数B.负数C.非正数D.不能确定2 .(5)右点(x i, y 1)、(X 2, y 2)和(X 3,y 3)分别在反比例函数 y —的图象上,且X iX 2 0 X 3,x则下列判断中正确的是()A . y i y y 3B . y 3 y i y 2C . y 2 y 3 y iD . y 3 y y ik 1 ................... 一 ...(6)在反比例函数 y --- 的图象上有两点(x1,y 1)和(x 2, y 2),右x 10 x 2时,y i y 2 ,则k 的x取值范围是.(7)老师给出一个函数,甲、乙、丙三位同学分别指出了这个函数的一个性质:甲:函数的图象经过第二象限;乙:函数的图象经过第四象限;丙:在每个象限内,y 随x 的增大而增大.请你根据他们的叙述构造满足上述性质的一个函数 :.(三)反比例函数与面积结合题型。

反比例函数最全知识点

反比例函数最全知识点

反比例函数的图象和性质知识点一:反比例函数的概念及其图象、性质关键点拨与对应举例1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下三种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:若(a,b)在反比例函数kyx=的图象上,则(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x.知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按。

反比例函数知识点大全

反比例函数知识点大全

反比例函数知识点大全反比例函数的定义定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。

反比例函数的性质函数y=k/x 称为反比例函数,其中k≠0,其中X是自变量,1.当k0时,图象分别位于第一、三象限,同一个象限内,y随x 的增大而减小;当k0时,图象分别位于二、四象限,同一个象限内,y 随x的增大而增大。

2.k0时,函数在x0上同为减函数、在x0上同为减函数;k0时,函数在x0上为增函数、在x0上同为增函数。

3.x的取值范围是: x≠0;y的取值范围是:y≠0。

4..因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

但随着x无限增大或是无限减少,函数值无限趋近于0,故图像无限接近于x轴5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x(即第一三,二四象限角平分线),对称中心第1页共6页是坐标原点。

反比例函数的一般形式(k为常数,k≠0)的形式,那么称y是x的反比例函数。

其中,x是自变量,y是函数。

由于x在分母上,故取x≠0的一切实数,看函数y的取值范围,因为k≠0,且x≠0,所以函数值y 也不可能为0。

补充说明:1.反比例函数的解析式又可以写成: (k是常数,k ≠0).2.要求出反比例函数的解析式,利用待定系数法求出k即可.反比例函数解析式的特征⑴等号左边是函数,等号右边是一个分式。

分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。

⑵比例系数⑶自变量的取值为一切非零实数。

⑷函数的取值是一切非零实数。

反比例函数(高一数学)知识点形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。

自变量x的取值范围是不等于0的一切实数。

反比例函数图像性质:反比例函数的图像为双曲线。

由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

班级: 组别: 姓名: 钢屯中学八年级导学案(2011-2012学年度第二学期)
学科:数学 编号: 31
个性天地 课题 17.反比例函数复习(一) 课型 反馈课 总课时 31 主创人
刘国利 教研组长签字
王廷臣
领导签字
个性天地
学习目标:运用反比例函数的定义与性质和图像解综合题,要善于识别图形,勤于思考,获取有用的信息,灵活的运用数学思想方法。

目标检测 : 一、选择题:
1. 已知反比例函数x
k y =的图象经过点)2,1(,则函数kx y -=可确定为( )
A. x y 2-=
B. x y 2
1
-=
C. x y 2
1=
D. x y 2=
2. 如果反比例函数的图象经过点)2,3(,那么下列各点在此函数图象上的是( )
A. )23,2(-
B. )3
2
,9(
C. )32,3(-
D. )2
3
,6(
3. 如右图,某个反比例函数的图象经过点P ,则它的解析式为( ) A. )0(1>=x x y B. )0(1>-=x x y
C. )0(1<=x x y
D. )0(1<-=x x y
4. 如右图是三个反比例函数x k
y 1=,x
k y 2=,x k y 3=在x 轴上方的图象,由此观
察得到1k 、2k 、3k 的大小关系为( )
A. 321k k k >>
B. 123k k k >>
C. 132k k k >>
D. 213k k k >>
5. 已知反比例函数x y 1-=
的图象上有两点),(11y x A 、),(22y x B 且21x x <,那么下列结论正确的是( )
A. 21y y <
B. 21y y >
C. 21y y = D 1y 与2y 之间的大小关系不能确定 6、已知反比例函数x
k
y =的图象如图,则函数2-=kx y 的图象是下图中的( )
7、已知关于x 的函数)1(-=x k y 和x
k y -=(k ≠0),它们在同一坐标系内的图象大致是( )
O x
y
A
O x
y
B
O x
y
C
O x
y
D
8、如图,点A 是反比例函数`
4
x y =
图象上一点,AB ⊥y 轴于点B ,则△AOB 的面积是( ) A. 1 B. 2 C. 3
D. 4
9、某闭合电路中,电源的电压为定值,电流I (A )与电阻R (Ω)成反比例. 右图表示的是该电路中电流I 与电阻R 之间的图象,则用电阻R 表示电流I 的函数解析式为( )
A. R I 2=
B. R I 3=
C. R I 6=
D. R
I 6
-=
二、填空题: 1. 点)6,1(在双曲线x
k
y =上,则k =______________. 2. 近视眼镜的度数y (度)与镜片焦距x (米)成反比例. 已知400度近视眼镜镜片
的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式是_____________. 3. 已知反比例函数x
y 6-=的图象经过点),2(a P ,则a =__________. 三、解答题:
1. 已知一次函数k kx y +=的图象与反比例函数x
y 8
-
=的图象在第一象限交于点),4(n B ,求k ,n 的值.
O
x y
x
O -2 y x
O 2
y A
B
x
2
y C x
-2 y
D
O R (Ω) I (A)
(3,2) 3 2
1
-1 O x y
班级: 组别: 姓名: 钢屯中学八年级导学案(2011-2012
学年度第二学期) 学科:数学 编号: 32
个性天地 课题
17.反比例函数复习(二)
课型 反馈课
总课时
32 主创人 刘国利 教研组长签字 王廷臣 领导签字 个性天地
2.已知反比例函数x k
y =的图象与一次函数m kx y +=的图象相交于点)1,2(.
(1)分别求这两个函数的解析式.(2)试判断点)5,1(--P 关于x 轴的对称点'P 是
否在一次函数m kx y +=的图象上.
3.在压力不变的情况下,某物承受的压强P (Pa )是它的受力面积S (m 2
)的反比例函数,其图象如右图所示.(1)求P 与S 之间的函数关系式;(2)求当S =0.5m 2
时物体所受的压强P . 4.如图,反比例函数x y 8-=与一次函数2+-=x y 的图象交于A 、B 两点. (1)求A 、B 两点的坐标; (2)求△AOB 的面积.
5.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释效过程 中,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例;药物释放完毕后,
y 与x 成反比例,如图所示.根据图中提供的信息,解答下列问题:
(1)写出从药物释放开始,y 与x 之间的两个函数关系式及相应的自变量取值范围; (2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,
那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?
6.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试 销情况如下: 第1天 第2天 第3天 第4天 第5天 第6天 第7天 第8天 售价
x (元/千克)
400 250 240 200 150 125 120
销售量y /
千克 30 40 48 60 80 96 100
观察表中数据,发现可以用反比例函数表示这种海产品每天的销售量y (千克)与销售价格x (元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y (千克)
与销售价格x (元/千克)之间都满足这一关系. (1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种
海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?
反思与评价:
O x y A B。

相关文档
最新文档