多阶段决策过程最优化问题

合集下载

动态规划

动态规划
f1(A)=MIN r(A,B1)+ f2(B1) r(A,B2)+ f2(B2)
=MIN(3+12,4+10)=14
最短路线: A—— B2 ——C2——D2——E2——F 最优解: d1*(A)= B2,最短用时14
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
最优解: d2*(B1)= C1
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
4
3
D1
A
B
C
D
E
F
如果S2=B2,则下一步能取C2或C3,故
f2(B2)=MIN r(B2,C2)+ f3(C2)
r(B2,C3)+ f3(C3) =MIN(2+8,1+11)=10
最短路线: B2 ——C2——D2——E2——F
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
4
3
D1
A
B
C
D
E
F
如果S4=D3,则下一步只能取E2,故

(完整版)多阶段决策过程最优化问题

(完整版)多阶段决策过程最优化问题

多阶段决策过程最优化问题——动态规划的基本模型在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。

因此各个阶段决策的选取不能任意确定,它依赖于当前面临的状态,又影响以后的发展。

当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线。

这种把一个问题看做是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题称为多阶段决策最优化问题。

【例题1】最短路径问题。

图中给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路的长度。

现在,想从城市A到达城市E,怎样走路程最短,最短路程的长度是多少?【分析】把从A到E的全过程分成四个阶段,用k表示阶段变量,第1阶段有一个初始状态A,两条可供选择的支路ABl、AB2;第2阶段有两个初始状态B1、 B2,B1有三条可供选择的支路,B2有两条可供选择的支路……。

用dk(x k,x k+1)表示在第k阶段由初始状态x k到下阶段的初始状态x k+1的路径距离,Fk(x k)表示从第k阶段的x k到终点E的最短距离,利用倒推方法求解A到E的最短距离。

具体计算过程如下:S1:K=4,有:F4(D1)=3,F4(D2)=4,F4(D3)=3S2: K=3,有:F3(C1)=min{d3(C1,D1)+F4(D1),d3(C1,D2)+F4(d2)}=min{8,10}=8F3(C2)=d3(C2,D1)+f4(D1)=5+3=8F3(C3)=d3(C3,D3)+f4(D3)=8+3=11F3(C4)=d3(C4,D3)+f4(D3)=3+3=6S2: K=2,有F2(B1)=min{d2(B1,C1)+F3(C1),d2(B1,C2)+f3(C2),d2(B1,C3)+F3(C3)}=min{9,12,14}=9F2(m)=min{d2(B2,c2)+f3(C2),d2(B2,C4)+F3(C4)}=min{16,10}=10 S4:k=1,有:F1(A)=min{d1(A,B1)+F2(B1),d1(A,B2)+F2(B2)}=min{13,13}=13因此由A点到E点的全过程的最短路径为A—>B2一>C4—>D3—>E。

经典算法——动态规划教程

经典算法——动态规划教程

动态规划是对最优化问题的一种新的算法设计方法。

由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的没计法对不同的问题,有各具特色的表示方式。

不存在一种万能的动态规划算法。

但是可以通过对若干有代表性的问题的动态规划算法进行讨论,学会这一设计方法。

多阶段决策过程最优化问题——动态规划的基本模型在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。

因此各个阶段决策的选取不能任意确定,它依赖于当前面临的状态,又影响以后的发展。

当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线。

这种把一个问题看做是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题称为多阶段决策最优化问题。

【例题1】最短路径问题。

图中给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路的长度。

现在,想从城市A到达城市E,怎样走路程最短,最短路程的长度是多少?【分析】把从A到E的全过程分成四个阶段,用k表示阶段变量,第1阶段有一个初始状态A,两条可供选择的支路ABl、AB2;第2阶段有两个初始状态B1、 B2,B1有三条可供选择的支路,B2有两条可供选择的支路……。

用dk(x k,x k+1)表示在第k阶段由初始状态x k到下阶段的初始状态x k+1的路径距离,Fk(x k)表示从第k阶段的x k到终点E的最短距离,利用倒推方法求解A到E的最短距离。

具体计算过程如下:S1:K=4,有:F4(D1)=3,F4(D2)=4,F4(D3)=3S2: K=3,有:F3(C1)=min{d3(C1,D1)+F4(D1),d3(C1,D2)+F4(d2)}=min{8,10}=8F3(C2)=d3(C2,D1)+f4(D1)=5+3=8F3(C3)=d3(C3,D3)+f4(D3)=8+3=11F3(C4)=d3(C4,D3)+f4(D3)=3+3=6S2: K=2,有:F2(B1)=min{d2(B1,C1)+F3(C1),d2(B1,C2)+f3(C2),d2(B1,C3)+F3(C3)}=min {9,12,14}=9F2(m)=min{d2(B2,c2)+f3(C2),d2(B2,C4)+F3(C4)}=min{16,10}=10S4:k=1,有:F1(A)=min{d1(A,B1)+F2(B1),d1(A,B2)+F2(B2)}=min{13,13}=13因此由A点到E点的全过程的最短路径为A—>B2一>C4—>D3—>E。

动态规划方法求解线性规划问题

动态规划方法求解线性规划问题

动态规划方法求解线性规划问题标题:动态规划方法求解线性规划问题引言概述:动态规划是一种解决多阶段决策过程中最优化问题的方法,通过将问题分解为子问题并利用之前计算的结果来减少计算量,从而找到最优解。

在线性规划问题中,动态规划方法可以有效地求解最优解,提高计算效率。

正文内容:一、线性规划问题的定义1.1 线性规划问题是指在一系列约束条件下,求解线性目标函数的最优解的问题。

1.2 线性规划问题通常包括决策变量、目标函数和约束条件。

1.3 线性规划问题的目标是找到使目标函数取得最大值或最小值的决策变量取值。

二、动态规划方法的原理2.1 动态规划方法将原始问题分解为多个子问题,并利用之前计算的结果来减少计算量。

2.2 动态规划方法通常包括确定状态、状态转移方程和边界条件。

2.3 动态规划方法适用于满足最优子结构和重叠子问题性质的问题。

三、动态规划方法在线性规划问题中的应用3.1 将线性规划问题转化为动态规划问题,可以有效地求解最优解。

3.2 动态规划方法可以处理包含多个决策变量和约束条件的复杂线性规划问题。

3.3 动态规划方法在求解线性规划问题时能够提高计算效率,减少计算时间。

四、动态规划方法的实例分析4.1 假设有一个包含多个产品的生产计划问题,需要在有限资源下最大化利润。

4.2 可以将该生产计划问题转化为线性规划问题,并利用动态规划方法求解最优生产计划。

4.3 动态规划方法可以帮助生产计划问题的决策者找到最优的生产方案,实现最大利润。

五、动态规划方法的优势和局限性5.1 动态规划方法在求解线性规划问题时具有较高的计算效率和准确性。

5.2 动态规划方法可以处理复杂的线性规划问题,并找到最优解。

5.3 动态规划方法的局限性在于对问题的状态转移方程和边界条件的确定需要一定的经验和技巧。

结论:动态规划方法在求解线性规划问题中具有重要的应用意义,可以帮助决策者找到最优解,提高计算效率,实现最大化利益。

通过深入理解动态规划方法的原理和应用,可以更好地解决线性规划问题,实现决策优化。

Pascal动态规划-复习2

Pascal动态规划-复习2

● (5)第三次计算结点为B1,B2,B3,而决 策输出结点可能为C1,C2,C3。仿前计算可 得Bl,B2,B3的决策路径为如下情况。 ● Bl:B1C1费用 12+8=20, 路径:B1+C1+D1+E B2:B2C1费用 6+8=14, 路径:B2+C1+D1+E B3:B2C2费用 12+7=19,路径:B3+C2+D2+E ● 此时也无法定下第一,二,三阶段的城市哪 三个将在整体的最优决策路径上。 ● (6)第四次计算结点为A,决策输出结点可 能为B1,B2,B3。同理可得决策路径为 ● A:AB2,费用5+14=19,路径 A+B2+C1+D1+E。 ● 此时才正式确定每个子问题的结点中,哪一 个结点将在最优费用的路径上。19将是最短 路径的结果 ● 显然这种计算方法,符合最优原理。 ● 子问题的决策中,只对同一城市(结点)比 较优劣。而同一阶段的城市(结点)的优劣 要由下一个阶段去决定。
数塔
● 如下图所示的数塔,从顶部出发,在每一结点可以选择向左下走或是 向右下走,一直走到底层,要求找出一条路径,使路径上的数的和最 大。数塔层数用n表示,1<=n<=100。 ● 【分析】对于这一问题,很容易想到用枚举的方法(深度搜索法)去 解决,即列举出所有路径并记录每一条路径所经过的数字总和。然后 寻找最大的数字总和,这一想法很直观,很容易编程实现。 ● 但是当行数很大时,当三角形的行数等于100时,其枚举量之大是可 想而知的,用枚举法肯定超时,甚至根本不能得到计算结果,必须用 动态规划法来解。
动态规划适合解决什么样的问题
● 准确地说,动态规划不是万能的,它只适于解决一定条件的最优策略 问题。 ● (1)状态必须满足最优化原理; (2)状态必须满足无后效性 ● 1、动态规划的最优化原理是指无论过去的状态和决策如何,对前面 的决策所形成的当前状态而言,余下的诸决策必须构成最优策略。 ● 可以通俗地理解为子问题的局部最优将导致整个问题的全局最优在上 例最短路径问题中,A到E的最优路径上的任一点到终点E的路径也必 然是该点到终点E的一条最优路径,满足最优化原理。 ● 动态规划的无后效性原则指某阶段的状态一旦确定,则此后过程的演 变不再受此前各状态及决策的影响。也就是说,“未来与过去无关”, 当前的状态是此前历史的一个完整总结,此前的历史只能通过当前的 状态去影响过程未来的演变。具体地说,如果一个问题被划分各个阶 段之后,阶段 I 中的状态只能由阶段 I+1 中的状态通过状态转移方程 得来,与其他状态没有关系,特别是与未发生的状态没有关系,这就 是无后效性。

运筹学及其应用9.1 多阶段决策过程最优化问题举例

运筹学及其应用9.1 多阶段决策过程最优化问题举例

6
t
使 S = ∑ ∑ f ( x i ) + 16 u j =
i =1
j =1
Байду номын сангаас
6
∑ f ( xi ) + 16(5x1 + 4 x2 + 3x3 + 2 x4 + x5 − 185)
i =1
为最小,其中
f
(xi )
=
110200xxii
,0 −
≤ xi ≤ 15 300,15 < xi

30
6
例1
因此,我们的问题就变成:求y,y1,y2,…,yn-1,以使 g(y)+h(x-y)+g(y1)+h(x1-y1)+…+g(yn-1)+h(xn-1-yn-1) 达到最大,且满足条件
x1=ay+b(x-y) x2=ay1+b(x1-y1)
……… xn-1=ayn-2+b(xn-2-yn-2) yi与xi均非负,i=1,2, …,n-1
5
例1
若以y与x-y分别投入生产方式A与B,在第一 阶段生产后回收的总资源为x1=ay+b(x-y),再将x1 投入生产方式A和B,则可得到收入g(y1)+h(x1-y1), 继续回收资源x2=ay1+b(x1-y1),……
若上面的过程进行n个阶段,我们希望选择n 个变量y,y1,y2,…,yn-1,使这n个阶段的总收入最大。
第二种方法即所谓“局部最优路径”法,是 说某人从k出发,他并不顾及全线是否最短,只是选 择当前最短途径,“逢近便走”,错误地以为局部 最优会致整体最优,在这种想法指导下,所取决策
必是v1→v2→v5→ v9→ v10 ,全程长度是30;显

动态规划习题详解

动态规划习题详解

动态规划动态规划是运筹学的一个分支,它是解决多阶段决策过程最优化问题的一种方法。

该方法是由美国数学家贝尔曼(R.Bellman)等人在本世纪50年代初提出的。

他们针对多阶段决策问题的特点,提出了解决这类问题的“最优化原理”,并成功地解决了生产管理、工程技术等方面的许多实际问题,从而建立了运筹学的一个新分支——动态规划。

他的名著《动态规划》于1957年出版,该书是动态规划的第一本著作。

动态规划是现代企业管理中的一种重要决策方法,在工程技术、经济管理、工农业生产及军事及其它部们都有广泛的应用,并且获得了显著的效果。

动态规划可用于解决最优路径问题、资源分配问题、生产计划与库存问题、投资分配问题、装载问题、设备更新与维修问题、排序问题及生产过程的最优控制等。

由于它所具有独特的解题思路,在处理某些优化问题时,常常比线性规划或非线性规划方法更有效。

第一节动态规划的基本方法多阶段决策的实际问题很多,下面通过具体例子,说明什么是动态规划模型及其求解方法。

例1:最短路线问题某工厂需要把一批货物从城市A运到城市E,中间可经过B1 、B2、B3、C1、C2、C3、D1、D2等城市,各城市之间的交通线和距离如下图所示,问应该选择一条什么路线,使得从A到E的距离最短?下面引进几个动态规划的基本概念和相关符号。

(1)阶段(Stage)把所给问题的过程,按时间和空间特征划分成若干个相互联系的阶段,以便按次序去求每个阶段的解,阶段总数一般用字母n表示,用字母k表示阶段变量。

如例l中 (最短路线问题)可看作是n=4阶段的动态规划问题,k=2表示处于第二阶段。

(2)状态(State)状态表示每个阶段开始时系统所处的自然状况或客观条件,它描述了研究问题过程状况。

描述各阶段状态的变量称为状态变量,常用字母sk表示第k阶段的状态变量,状态变量的取值范围称为状态集,用Sk表示。

如例l中,第一阶段的状态为A(即出发位置)。

第二阶段有三个状态:B1 、B2、B3,状态变量s2=B2表示第2阶段系统所处的位置是B2。

动态规划_多阶段决策问题的求解方法

动态规划_多阶段决策问题的求解方法

动态规划_多阶段决策问题的求解方法1.构造状态网络; :一:解决多阶段决策最优化的过程为动态规划方法在程序设计中,有一类活动的过程,由于它的特殊性,可将过程2.根据状态转移关系和状态转移方程建立最优值的分成若干个互相联系的阶段,在它的每一阶段都需要做出决策,从而3.按阶段的先后次序计算每个状态的最优值。

使整个过程达到最好的活动效果。

因此各个阶段决策的选取不能任逆向思维法是指从问题目标状态出发倒推回初始意确定,它依赖于当前面临的状态,又影响以后的发展。

当各个阶段态的思维方法。

动态规划的逆向思维法的要点可归纳为以决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条 1.分析最优值的结构,刻画其结构特征; 活动路线。

这种把一个问题看作是一个前后关联具有链状结构的多 2.递归地定义最优值; 阶段过程就称为多阶段决策过程,这种问题称为多阶段决策问题。

3.按自底向上或自顶向下记忆化的方式计算最优在多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状态的转移,一个决策序列如果原问题可以分解成几个本质相同、规模较小的就是在变化的状态中产生出来的,故有"动态"的含义,我们称这种就会联想到从逆向思维的角度寻求问题的解决。

一般解决多阶段决策最优化的过程为动态规划方法。

策问题多采用动态规划逆向思维方法解决。

二、举:二:动态规划最优化原理 pascal 语例说明本文以信息学奥赛用语言——最优化原理是动态规划的基础。

任何一个问题,如果失去了这言为编程个最优化原理的支持,就不可能用动态规划方法计算。

这个“最优化说明,其他编程语言编写方法相同,语句类似。

原理”如果用数学化一点的语言来描述的话,就是:假设为了解决某 :一:问题描述一优化问题,需要依次作出 n 个决策 D1,D2,,Dn,如若这个决策设有 N 个不相同的整数组成的数列,记为: 序列是最优的,对于任何一个整数 k,1 < k < n,不论前面 k 个决策是怎样的,以后的最优决策只取决于由前面决策所确定的当前状态,即 ()且 ?? a1 a2 an aiajij以后的决策 Dk+1,Dk+2,,Dn 也是最优的。

动态规划在经济管理中的应用研究

动态规划在经济管理中的应用研究

动态规划在经济管理中的应用研究1 绪言20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。

动态规划(dynamic programming)是运筹学的一个分支,是解决多阶段决策过程最优化问题的一种方法。

是求解决策过程(decision process)最优化的数学方法。

同时动态规划也是一种在数学和计算机中使用的,用于求解包含重叠子问题的最优化问题的方法。

其基本思想是,将原问题分解为相似的子问题,在求解过程中通过子问题的解求出原问题的解。

动态规划的思想是多种算法的基础,被广泛应用于计算机科学和工程领域。

它作为运筹学的一个分支,在工程技术,经济,工业生产及军事等部门都得到了广泛的应用,并获得了显著的效果。

许多问题,利用动态规划去处理,常比线性规划和非线性规划这样一些“静态”的优化方法更有成效。

特别是对于离散性质的问题,传统的解析数学方法无法施展其技,动态规划就常常成为一种有用的工具。

在某些情况下,用动态规划处理不仅能作定性的描述分析,而且可以利用计算机给出求其数值解的方法。

因此对动态规划应用的研究有重要的意义。

2 动态规划介绍动态规划是用来解决多阶段决策过程中最优化问题的一种方法。

动态规划基本原理是将一个问题的最优解转化为求子问题的最优解。

研究的对象是决策过程的最优化,其变量是变动的时间或变动的状态,最后达到整个系统的最优。

基本原理一方面说明了原问题的最优解中包含了子问题的最优解,另一方面给出了一种求解问题的思路,将一个难以直接解决的大问题,分割成一些规模较小的相同子问题,每一个子问题只解一次,并将结果保存起来以后直接引用,避免每次碰到时都要重复计算,以便各个击破。

09数学运筹学复习题

09数学运筹学复习题

09 级数学专业《运筹学》复习题 线性规划 一、填空题1. 线性规划模型包括 决策变量 、目标函数 、约束条件 三个要素。

2.线性规划问题的标准形式中, 约束条件取 等式, 目标函数求 最大 _,而所有决策变量 必须 非负 。

3.线性规划问题是求一个 线性目标函数 在一组 线性约束条件 下的最值问题。

4.线性规划问题的可行解是指满足 所有约束条件 _ 的解。

5.在线性规划问题中,基本可行解的非零分量所对应的列向量线性无关 。

6.在将线性规划问题的一般形式转化为标准形式时,引入的松驰变量在目标函数中的系数 为正。

7.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其 可行解 的集合中进行搜索即可得到最优解。

8.若线性规划问题有最优解,则最优解一定可以在可行域的9.图解法适用于含有 两个 _ 决策变量的线性规划问题。

11.在用图解法求解线性规划问题时, 最优解不唯一 。

12. 设线性规划模型的一般形式为 , 其标准形式为 , 其典式 。

13将线性规划模型化成标准形式时,” < "的约束条件要在不等式左 _端加入 松弛 变量。

14、 如果某个约束条件是” > "情形,若化为标准形式,需要引入一个 剩余 变量。

15、 线性规划的典式对应的表格表示被称为 单纯形表 。

16、 线性规划的代数解法只要运用了代数消去法的原理实现 基可行解 的转换,寻求最优解。

17、 在线性规划问题中,基变量的系数列向量为 单位列向量。

18、 对于求目标函数极大值而言,人工变量在目标函数的系数应为-1。

19 、对偶问题的对偶问题为 原问题 。

20、在一对对偶问题中,原问题的约束条件的右端常数是对偶问题的目标函数系数。

21 、在大 M 法中, M 表示充分大的正数。

22、 如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为等式。

23、 在现性规划问题的基本解中,所有的非基变量等于 0 。

多阶段决策过程最优化问题研究

多阶段决策过程最优化问题研究
地 区预 期 创 造 的 销售 收 入 见 表 1 . 表 1 每 个 地 区可 能 创 造 的销 售 收 入
Ta b.1 Posi e s l e n r a e ac r a sbl a e r ve ue c e t d by e h a e
从 表 1中可 以看 出 , 果 没 有 在 华 北 和 华 东 地 区建 样 板 店 , 么 这两 个 地 区 的 销售 收 入 为 0 如 果 没 有 在 华 南 地 区建 样 板 如 那 . 店 , 南 地 区 仍 可 以通 过 订 购 系 统 获 得 每 月 2万 元 的 销售 收 入 . 个 问题 的 目标 函数 是 在 建 样 板 店 的个 数 有 限 的条 件 下 , 何 华 这 如
0 引 言
在 实践 中 , 常 会 遇 到 这 样 的决 策 问 题 “ : 于 过 程 的特 殊 性 , 以 将 决 策 的 全 过 程 依 据 时 间 或 空 间 划 分 为 若 干个 相 常 由 可 互 联 系 的 阶 段. 态 规 划 方 法 的关 键 是 将 多 阶段 的决 策 问 题 变 换 成 一 系 列 的单 阶 段 问 题 , 逐 一 求 解 . 阶 段 的 决 策 过 程 很 动 并 多 难 直 观 地 描 述 , 文 通 过 一 个 实 例 来 说 明动 态 规 划 解 决 多 阶段 决 策 问题 的方 法 和 过程 . 本
1 1 第 三 阶段 决 策 .
将 在 华 南 地 区建 多少 样 板 店 作 为 问题 第 三 阶 段 的 决 策 . 动 态 规 划 中假 设 第 三 阶 段 的决 策 是 决 策 过 程 中 的最 终 决 策 , 在 因 此 , 果 将 在华 东 、 北 地 区建 样 板 店 作 为 规 划 的第 二 阶 段 和 第 一 阶段 , 么 在 华 南 地 区建 几 个 样 板 店 的 决 策 是 建 立 在 另 两 如 华 那

动态规划

动态规划

5 . 最短路问题:给定一个交通网络图如下,其 中两点之间的数字表示距离(或花费),试求从A点 到G点的最短距离(总费用最小)。
1 C1 3 6 8 3 D1 1 2 2 2 5 E2 2 D2 E1 3
5
A 3
B1
6
8 B2 7 6
C2
5
3
5
F1
3
4
G
C3 8 C4
3
4 D3
3
3 4 E3
6
6
F2
3.航天飞机飞行控制问题:由于航天飞机的运 动的环境是不断变化的,因此就要根据航天飞机飞 行在不同环境中的情况,不断地决定航天飞机的飞 行方向和速度(状态),使之能最省燃料和实现目 的(如软着落问题)。
不包含时间因素的静态决策问题(本质上是一 次决策问题)也可以适当地引入阶段的概念,作为 多阶段的决策问题用动态规划方法来解决。 4.线性规划、非线性规划等静态的规划问题也可 以通过适当地引入阶段的概念,应用动态规划方法 加以解决。
f k sk min d k sk , uk sk f k 1 uk sk u k Dk s k f 6 s6 0或 写 成 5 s5 d 5 s5 , F f
k 5,4,3,2,1
动态规划的基本方程(二)
D4(D1)={E1,E2},D4(D2)= {E1,E2}
D5(E1)={F}, D5(E2)={F}
4 A 5
2 B1 3 5 B2 8 7 7
⑷状态转移方程 上例中的状态转移方程sk+1=uk(sk)
C1 5 8 C2 45 3 C3 4 84 C4
D1 3 5 E1 4 6 D2 2 3 E2 1 3 D3

动态规划的基本概念

动态规划的基本概念
动态规划对于解决多阶段决策问题的效果是明显的,但也有一定的局限 性。首先,它没有统一的处理方法,必须根据问题的各种性质并结合一定的 技巧来处理;另外当变量的维数增大时,总的计算量及存贮量急剧增大。由 于计算机的存贮量及计算速度的限制,目前的计算机仍不能用动态规划方法 来解决较大规模的问题,这就是所谓“维数障碍”。
优指标函数(k=1,2,…,n)。
§2 动态规划的最优性原理
多阶段决策过程的特点是每个阶段都要进行决策,具有 n个阶段的决策过程的策略是由n个相继进行的阶段决策构成 的决策序列。由于前阶段的终止状态又是后一阶段的初始状态 ,因此确定阶段最优决策不能只从本阶段的效应出发,必须通 盘考虑,整体规划。就是说,阶段k的最优决策不应只是本阶 段的最优,而必须是本阶段及其所有后续阶段的总体最优,即 关于整个后部子过程的最优决策。
运筹学
动态规划
L/O/G/O
第五章 动态规划
动态规划是运筹学的一个重要分支,它是从1951年开始,由美国人贝 尔曼(R.Belman)为首的一个学派发展起来的。动态规划在经济、管理、 军事、工程技术等方面都有广泛的应用。
动态规划是解决多阶段决策过程的最优化问题的一种方法。所谓多阶段 决策过程是指这样一类决策过程:它可以把一个复杂问题按时间(或空间) 分成若干个阶段,每个阶段都需要作出决策,以便得到过程的最优结局。由 于在每个阶段采取的决策是与时间有关的而且前一阶段采取的决策如何,不 但与该阶段的经济效果有关,还影响以后各阶段的经济效果,可见这类多阶 段决策问题是一个动态的问题,因此,处理的方法称为动态规划方法。然而 ,动态规划也可以处理一些本来与时间没有关系的静态模型,这只要在静态 模型中人为地引入“时间”因素,分成时段,就可以把它看作是多阶段的动 态模型,用动态规划方法去处理。

动态规划_多阶段决策问题的求解方法

动态规划_多阶段决策问题的求解方法

动态规划_多阶段决策问题的求解方法1.构造状态网络; :一:解决多阶段决策最优化的过程为动态规划方法在程序设计中,有一类活动的过程,由于它的特殊性,可将过程2.根据状态转移关系和状态转移方程建立最优值的分成若干个互相联系的阶段,在它的每一阶段都需要做出决策,从而3.按阶段的先后次序计算每个状态的最优值。

使整个过程达到最好的活动效果。

因此各个阶段决策的选取不能任逆向思维法是指从问题目标状态出发倒推回初始意确定,它依赖于当前面临的状态,又影响以后的发展。

当各个阶段态的思维方法。

动态规划的逆向思维法的要点可归纳为以决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条 1.分析最优值的结构,刻画其结构特征; 活动路线。

这种把一个问题看作是一个前后关联具有链状结构的多 2.递归地定义最优值; 阶段过程就称为多阶段决策过程,这种问题称为多阶段决策问题。

3.按自底向上或自顶向下记忆化的方式计算最优在多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状态的转移,一个决策序列如果原问题可以分解成几个本质相同、规模较小的就是在变化的状态中产生出来的,故有"动态"的含义,我们称这种就会联想到从逆向思维的角度寻求问题的解决。

一般解决多阶段决策最优化的过程为动态规划方法。

策问题多采用动态规划逆向思维方法解决。

二、举:二:动态规划最优化原理 pascal 语例说明本文以信息学奥赛用语言——最优化原理是动态规划的基础。

任何一个问题,如果失去了这言为编程个最优化原理的支持,就不可能用动态规划方法计算。

这个“最优化说明,其他编程语言编写方法相同,语句类似。

原理”如果用数学化一点的语言来描述的话,就是:假设为了解决某 :一:问题描述一优化问题,需要依次作出 n 个决策 D1,D2,,Dn,如若这个决策设有 N 个不相同的整数组成的数列,记为: 序列是最优的,对于任何一个整数 k,1 < k < n,不论前面 k 个决策是怎样的,以后的最优决策只取决于由前面决策所确定的当前状态,即 ()且 ?? a1 a2 an aiajij以后的决策 Dk+1,Dk+2,,Dn 也是最优的。

多阶段决策过程

多阶段决策过程

动态规划多阶段决策过程(multistep decision process )是指这样一类特殊的活动过程,过程可以按时间顺序分解成若干个相互联系的阶段,在每一个阶段都需要做出决策,全部过程的决策是一个决策序列。

动态规划(dynamic programming )算法是解决多阶段决策过程最优化问题的一种常用方法,难度比较大,技巧性也很强。

利用动态规划算法,可以优雅而高效地解决很多贪婪算法或分治算法不能解决的问题。

动态规划算法的基本思想是:将待求解的问题分解成若干个相互联系的子问题,先求解子问题,然后从这些子问题的解得到原问题的解;对于重复出现的子问题,只在第一次遇到的时候对它进行求解,并把答案保存起来,让以后再次遇到时直接引用答案,不必重新求解。

动态规划算法将问题的解决方案视为一系列决策的结果,与贪婪算法不同的是,在贪婪算法中,每采用一次贪婪准则,便做出一个不可撤回的决策;而在动态规划算法中,还要考察每个最优决策序列中是否包含一个最优决策子序列,即问题是否具有最优子结构性质。

动态规划算法的有效性依赖于待求解问题本身具有的两个重要性质:最优子结构性质和子问题重叠性质。

1 、最优子结构性质。

如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质(即满足最优化原理)。

最优子结构性质为动态规划算法解决问题提供了重要线索。

2 、子问题重叠性质。

子问题重叠性质是指在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。

动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只计算一次,然后将其计算结果保存在一个表格中,当再次需要计算已经计算过的子问题时,只是在表格中简单地查看一下结果,从而获得较高的解题效率。

当我们已经确定待解决的问题需要用动态规划算法求解时,通常可以按照以下步骤设计动态规划算法:1 、分析问题的最优解,找出最优解的性质,并刻画其结构特征;2 、递归地定义最优值;3 、采用自底向上的方式计算问题的最优值;4 、根据计算最优值时得到的信息,构造最优解。

(完整word版)运筹学填空题

(完整word版)运筹学填空题

填空题(共83道)1、在统筹图中,(工作)、(节点)和(线路)是它的三大要素。

2、动态规划大体上可以分为(离散确定型)、(离散随机型)、(连续确定型)、(连续随机型)四大类。

3、√策行为的基本要素包括(局中人)、(策略)、(局势)、得失函数和(信息)。

4、按照顾客来到排队系统后,面√服务机构前的顾客队列时,所采取的决策(或行为)可将排队规则分为(等待制)、(消失制)和(混合制)三种。

5、统筹图的基本结构有(顺序结构)、(平行结构)、(交叉结构)6、统筹图的绘制包括准备工作、(绘制草图并调整)、计算参数、(可行性分析)7、在线性规划问题中,称满足所有约束条件方程和非负限制的解为(可行解)8、在线性规划问题中,图解法适合用于处理(变量)为两个线性规划的问题9、请举例说明√策论的应用:()、()、()、()和()。

备注:无固定答案10、一局√策通常包括(局中人)、(策略)、(局势)、得失函数、信息。

11、求解线性规划问题可能的结果有(无解)、(有唯一最优解)、(有无穷多个最优解)、(无界解)。

12、两点之间有两条或多条边相连则称这些边为(多重边)或(平行边)13、没有环和多重边的图成为(简单图),否则成为(多重图)14、√于任意给定的简单无向图G=<V,E>,假设有V1、V2是V的一个划分,如果V1和V2的生成子图是零图,则称G是(二部图).15、排队系统由三部分组成,即(输入过程)、(排队过程)和(服务机构)1819、如果某个变量Xt为自由变量,则应引进两个非负变量Xt′,Xt〞,20、“行小取大”,“列大取小”,选取√抗双方最优策略的方法称(最大最小)原理。

21、线性规划可行域的顶点一定是(基可行解)。

22、相√某一个节点i而言,线路又可分为(先行线路)和后续线路。

23.动态规划是解决多阶段决策过程最优化问题一种经典(定量化)数学方法。

24.统筹图的基本结构大致有(顺序结构、平行结构、交叉结构)三种。

运筹学教程 (5)

运筹学教程 (5)
12
1.多阶段决策过程的最优化
四、动态规划方法导引
例5.1:为了说明动态规划的基本思想方法 和特点,下面以图5-1所示为例讨论的求最短路 问题的方法。
第一种方法称做全枚举法或穷举法。它的 基本思想是列举出所有可能发生的方案和结果, 再对它们一一进行比较,求出最优方案。这里从
v1到v10的路程可以分为4个阶段。第一段的走法
第三种方法是动态规划方法。动态 规划方法寻求该最短路问题的基本思想 是,首先将问题划分为4个阶段,每次的 选择总是综合后继过程的一并最优进行 考虑,在各段所有可能状态的最优后继 过程都已求得的情况下,全程的最优路 线便也随之得到。
为了找出所有可能状态的最优后继 过程,动态规划方法总是从过程的最后 阶段开始考虑,然后逆着实际过程发展 的顺序,逐段向前递推计算直至始点。
20
2.动态规划的基本概念
(二)状态、状态变量和可能状态集
1.状态与状态变量。用以描述事物 (或系统)在某特定的时间与空间域中所处 位置及运动特征的量,称为状态。反映状 态变化的量叫做状态变量。状态变量必须 包含在给定的阶段上确定全部允许决策所 需要的信息。按照过程进行的先后,每个 阶段的状态可分为初始状态和终止状态, 或称输入状态和输出状态,阶段k的初始
状态记作sk,终止状态记为sk+1。但为了
清楚起见,通常定义阶段的状态即指其初 始状态。
21
2.动态规划的基本概念
2.可能状态集
一般状态变量的取值有一定的范围或允许集 合,称为可能状态集,或可达状态集。可能状态 集实际上是关于状态的约束条件。通常可能状态
集用相应阶段状态sk的大写字母Sk表示,sk∈Sk,
策略就是全过程策略。
在实际问题中,由于在各个阶段可供选择的决策 有许多个,因此,它们的不同组合就构成了许多 可供选择的决策序列(策略),由它们组成的集合,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多阶段决策过程最优化问题
——动态规划的基本模型
在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。

因此各个阶段决策的选取不能任意确定,它依赖于当前面临的状态,又影响以后的发展。

当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线。

这种把一个问题看做是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题称为多阶段决策最优化问题。

【例题1】最短路径问题。

图中给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路的长度。

现在,想从城市A到达城市E,怎样走路程最短,最短路程的长度是多少?
【分析】把从A到E的全过程分成四个阶段,用k表示阶段变量,第1阶段有一个初始状态A,两条可供选择的支路ABl、AB2;第2阶段有两个初始状态B1、 B2,B1有三条可供选择的支路,B2有两条可供选择的支路……。

用dk(x k,x k+1)表示在第k阶段由初始状态x k到下阶段的初始状态x k+1的路径距离,Fk(x k)表示从第k阶段的x k到终点E的最短距离,利用倒推方法求解A到E的最短距离。

具体计算过程如下:
S1:K=4,有:F4(D1)=3,F4(D2)=4,F4(D3)=3
S2: K=3,有:F3(C1)=min{d3(C1,D1)+F4(D1),d3(C1,D2)+F4(d2)}=min{8,10}=8
F3(C2)=d3(C2,D1)+f4(D1)=5+3=8
F3(C3)=d3(C3,D3)+f4(D3)=8+3=11
F3(C4)=d3(C4,D3)+f4(D3)=3+3=6
S2: K=2,有
F2(B1)=min{d2(B1,C1)+F3(C1),d2(B1,C2)+f3(C2),d2(B1,C3)+F3(C3)}=
min{9,12,14}=9
F2(m)=min{d2(B2,c2)+f3(C2),d2(B2,C4)+F3(C4)}=min{16,10}=10 S4:k=1,有:F1(A)=min{d1(A,B1)+F2(B1),d1(A,B2)+F2(B2)}=min{13,13}=13
因此由A点到E点的全过程的最短路径为A—>B2一>C4—>D3—>E。

最短路程长度为13。

从以上过程可以看出,每个阶段中,都求出本阶段的各个初始状态到过程终点E的最短路径和最短距离,当逆序倒推到过程起点A时,便得到了全过程的最短路径及最短距离,同时附带得到了一组最优结果(即各阶段的各状态到终点E的最优结果)。

在上例的多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化问题的方法为动态规划方法。

根据上例分析和动态规划的基本概念,可以得到动态规划的基本模型如下:
(1)确定问题的决策对象。

(2)对决策过程划分阶段。

(3)对各阶段确定状态变量。

(4)根据状态变量确定费用函数和目标函数。

(5)建立各阶段状态变量的转移过程,确定状态转移方程。

思考与练习:
1、写出本节例题的算法及PASCAL程序。

2、若城市路径示意图如下图所示,
图中,每条边上的数字是这段道路的长度。

条件:从A地出发,只允许向右或向上走。

试寻找一条从A地到B地的最短路径和长度。

(分析与解)。

相关文档
最新文档