高等代数课件(北大版)第六章 线性空间§6.8

合集下载

高等代数课件(北大版)第六章-线性空间§6.5

高等代数课件(北大版)第六章-线性空间§6.5

,
n1 (1,0, ,0, 1) 就是W1 的一组基.
而在 W2中任取两个向量 , ,设
( x1, x2 , , xn ), ( y1, y2 , , yn ) 则 ( x1 y1, x2 y2 , , xn yn )
但是 ( x1 y1 ) ( x2 y2 ) ( xn yn )
例6 设V为数域P上的线性空间,1,2 , ,r V
令W {k11 k22 krr ki P,i 1,2, ,r}
则W关于V的运算作成V的一个子空间.
即1,2 , ,r 的一切线性
组合所成集合.
2023/9/3§6.5 线性子空间
二、一类重要的子空间 ——生成子空间
定义:V为数域P上的线性空间,1,2, ,r V,
无关组,则
L(1,2 , ,s ) L(i1 ,i2 , ,ir )
3、设 1,2 , ,n 为P上n维线性空间V的一组基,
A为P上一个 n s 矩阵,若
(1, 2 , , s ) (1,2 , ,n ) A 则 L(1, 2 , , s )的维数=秩(A).
2023/9/3§6.5 线性子空间
既然 1,2 , ,m 还不是V的一组基,它又是线
性无关的,那么在V中必定有一个向量
不能被
m1
1,2, ,m 线性表出,把它添加进去,则
1,2 , ,m ,m1 必定是线性无关的.
由定理3,子空间 L(1,2 , ,m1 ) 是m+1维的.
因 n-(m+1)=(n-m)-1=(k+1)-1=k,
由归纳假设,L(1,2 , ,m1 )的基1,2 , ,m ,m1
线性相关性. 所以可对矩阵A作初等行变换化阶梯
阵来求向量组 1, 2, , s 的一个极大无关组,从而 求出生成子空间 L(1, 2 , , s ) 的维数与一组基.

高等代数北大三版向量空间

高等代数北大三版向量空间
I. 涉及两个集合(其中一个集合……). II. 涉及两种运算(什么样的运算?). III. 满足8条运算性质.
惠州学院数学系
2. 向量空间的定义-抽象出的数学本质
定义1 设F是一个数域,V是一个非空集合.我们把V中的 元素称为向量,V称为向量空间,如果下列条件成立:
闭合性: (c1) V上有(闭合的)加法运算,即:对任意u,v属于V, 一定有u+v属于 V. (c2) F上的数对V上的向量有 (闭合的)数乘运算,即:对任意F中数 和V中元素v, 一定有: v属于V. 加法的性质: (a1) u+v= v +u,对所有u和v属于V. (a2) u+(v+w)= (u+v)+w, 对所有u、v和w属于V. (a3) V中存在一个向量பைடு நூலகம்记作o, 它满足:v+o= v 对所有V中的v. (a4) 给定V中每一个向量v, V中存在一个向量u满足:
➢ 向量空间产生有着丰富的数学背景,又在许多领域(包 括数学本身)中有着广泛的应用,例如:线性非常组解 的结构.
➢ 向量空间是我们遇到的第一抽象的代数系统. 所谓代数 系统,就是带有运算的集合.通过本章的学习,初步熟悉 用公理系统处理代数问题的思维方法、逻辑推理的方法.
惠州学院数学系
§6.1 向量空间的定义和例子
(c1) f(x)+g(x) F[x], 任给f(x),g(x) F[x]. (c2) af(x) F[x],任给 aF,f(x)F[x]. (a1) f(x)+g(x)= g(x) + f (x), 任给f(x),g(x) F[x].
惠州学院数学系
(a2) [f(x)+g(x)]+h(x)= f(x)+ [g(x) +h(x) ],

高等代数【北大版】课件

高等代数【北大版】课件
线性规划问题
线性方程组是求解线性规划问题的常用工具 。
物理问题建模
在物理问题中,线性方程组可以用来描述各 种现象,如振动、波动等。
投入产出分析
通过线性方程组分析经济系统中各部门之间 的相互关系。
控制系统分析
在控制系统分析中,线性方程组用于描述系 统的动态行为。
PART 03
向量与矩阵
REPORTING
高等代数【北大版】 课件
REPORTING
• 绪论 • 线性方程组 • 向量与矩阵 • 多项式 • 特征值与特征向量 • 二次型与矩阵的相似对角化
目录
PART 01
绪论
REPORTING
高等代数的应用
在数学其他分支的应用
高等代数是数学的基础学科,为其他分支提供了理论基础,如几 何学、分析学等。
PART 04
多项式
REPORTING
一元多项式的定义与运算
总结词
一元多项式的定义、运算性质和运算方法。
详细描述
一元多项式是由整数系数和变量组成的数学对象,具有加法、减法、乘法和除法等运算性质和运算方法。一元多 项式可以表示为$a_0 + a_1x + a_2x^2 + ldots + a_nx^n$的形式,其中$a_0, a_1, ldots, a_n$是整数,$x$是 变量。
矩阵的相似对角化
总结词
矩阵的相似对角化是将矩阵转换为对角矩阵 的过程,有助于简化矩阵运算和分析。
详细描述
矩阵的相似对角化是通过一系列的线性变换 ,将一个矩阵转换为对角矩阵。对角矩阵是 一种特殊的矩阵,其非主对角线上的元素都 为零,主对角线上的元素为特征值。通过相 似对角化,可以简化矩阵运算,并更好地理 解矩阵的性质和特征。

高等代数北大版线性空间

高等代数北大版线性空间

引 入 我们懂得,在数域P上旳n维线性空间V中取定一组基后,
V中每一种向量 有唯一拟定旳坐标 (a1,a2 , ,an ), 向量旳
坐标是P上旳n元数组,所以属于Pn.
这么一来,取定了V旳一组基 1, 2 , , n , 对于V中每一种 向量 ,令 在这组基下旳坐标 (a1,a2 , ,an ) 与 相应,就 得到V到Pn旳一种单射 : V P n , (a1,a2 , ,an )
2)证明:复数域C看成R上旳线性空间与W同构,
并写出一种同构映射.
2023/12/29§6.8 线性空间旳
及线性有关性,而且同构映射把子空间映成子空间.
2023/12/29§6.8 线性空间旳
3、两个同构映射旳乘积还是同构映射.
证:设 :V V , :V V 为线性空间旳同构
映射,则乘积 是 V到V 旳1-1相应. 任取 , V , k P, 有
第六章 线性空间
§1 集合·映射
§5 线性子空间
§2 线性空间旳定义 §6 子空间旳交与和
与简朴性质
§7 子空间旳直和
§3 维数·基与坐标
§8 线性空间旳同构
§4 基变换与坐标变换 小结与习题
2023/12/29
§6.8 线性空间旳同构
一、同构映射旳定义 二、同构旳有关结论
2023/12/29§6.8 线性空间旳
中分别取 k 0与k 1, 即得
0 0,
2)这是同构映射定义中条件ii)与iii)结合旳成果.
3)因为由 k11 k22 krr 0 可得 k1 (1 ) k2 (2 ) kr (r ) 0
反过来,由 k1 (1 ) k2 (2 ) kr (r ) 0 可得 (k11 k22 krr ) 0.

高等代数北大版64

高等代数北大版64

,?
n
)
? ? ??
a2 an
? b2 M ? bn
? ? ??
若? 1,? 2,L ,? n 线性无关,则
? a1 ?
? b1 ?
(? 1,? 2 ,L
,?
n
)
? ? ??
aaM2n ????
?
(?
1,?
2 ,L
,?
n
)
? ? ??
bbMn2 ????
?
? a1 ? ? b1 ?
? ? ??
aaMn2 ????
1)? 1,? 2 ,L ,? n ? V ,a1,a2,L , an , b1,b2,L , bn ? P
? a1 ?
? b1 ?
? a1 ? b1 ?
(? 1,? 2 ,L
,?
n
)
? ? ??
aaMn2 ????
?
(?
1
,?
2
,L
,? n )????bbMn2 ???? ? (? 1,? 2,L
§6.4 基变换与坐标变换
一、向量的形式书写法
1、V为数域 P上的 n 维线性空间,? 1,? 2 ,L ,? n 为
V 中的一组向量, ? ? V ,若
? ? x1? 1 ? x2? 2 ? L ? xn? n
则记作
? x1 ?
?
? (? 1 ,? 2 ,L
,?
n
)
? ? ??
xxMn2 ????
§6.4 基变换与坐标变换
二、基变换
1、定义 设V为数域P上n维线性空间,?1 ,?2 ,L ,?n ;
?1?,?2?,L ,?n? 为V中的两组基,若

高等代数第6章线性空间

高等代数第6章线性空间

a ∈ A表示a是A的元素, a ∈ A a∈A)表示a不是A的元素, (或
集合的表示法:列举ຫໍສະໝຸດ ; 集合的表示法:列举法;描述法{1,,,...,n,...} 23 {a ∈ C 存在正整数n,使得a = 1} |
n
集合的运算
M ∩ N = {x | x ∈ M且x ∈ N} M ∪ N = {x | x ∈ M或x ∈ N}
二、简单性质
的零元素) (1) 定义条件 3°中 0( 称为 的零元素)是唯 ° ( 称为V的零元素 一的. 一的. (2) 对于任意 α ∈ V,定义条件 °中 α’ (称为 ,定义条件4° α的负元素 )是唯一的.记为 α 。 是唯一的.记为(3) 0α = 0,k0 = 0. , . (4) 若kα = 0,则k = 0,或α = 0. , 或 . 证 若 k ≠ 0,则k-1(kα) = k-10 = 0. 而 则 k-1(kα) = (k-1k)α = 1α = α, 所以, 所以 α = 0. . (5) 每个向量 α 的负向量等于 (−1)α −
如果上述运算满足如下8条运算性质 则称V 如果上述运算满足如下 条运算性质, 则称 条运算性质 数域P上的 上的线性空间 是 数域 上的线性空间
1°加法交换律:α +β = β + α ; 加法交换律: 2°加法结合律:(α +β )+ γ = α + (β + γ); °加法结合律: ; 3°存在向量 ,使得对任一个向量α ,都有 °存在向量0, 都有 α+0=α; 4°对任一个向量α , 存在向量α ’,使得 ° α + α ’ = 0. 5°1的数乘 1α = α ; 的数乘: ° 的数乘 6°数乘结合律:k(lα) = (kl)α ; °数乘结合律: 7°数乘分配律:k(α +β ) = kα + kβ; °数乘分配律: 8°数乘分配律:(k + l)α = kα + lα. °数乘分配律: 中的向量, ∈ 其中α, β, γ 是V中的向量,k,l∈P. 中的向量

高等代数课件 第六章

高等代数课件 第六章
空间 M n (F)的非空子集。又中M n (F) 的运算是矩阵的
加法及数与矩阵的乘法,而两个上三角形的和仍是一 个上三角形矩阵,一个数与一个上三角形矩阵的乘积 仍是上三角形矩阵,所以,由子空间的定义 ,U是
的 M n (F) 一个子空间。
W {A M n (F) | | A | 0}不是 M n (F) 的子空间, 因为n阶单位矩阵I及 – I ∈W,但 I (I ) O W
6.1 向量空间的定义和例子 6.2 子空间 6.3 向量的线性相关 6.4 基和维数 6.5 坐 标 6.6 向量空间的同构 6.7 矩阵的秩 齐次线性方程组的解空间
§6.1 向量空间的定义和例子
一、 引例——定义产生的背景
例1 设 F 是一个数域,F mn表示上m×n矩阵的集合, 回忆一下 F mn 上所能够施行的运算(教材P182):只有 加法和数乘两种,并且满足(教材P183):
6.2.1 子空间的概念 6.2.2子空间的交与和. 二、教学目的 1.理解并掌握子空间的概念. 2.掌握子空间的判别方法,熟悉几种常见的 子空间. 3.掌握子空间的交与和的概念. 三、重点、难点 子空间的判别,子空间的交与和.
一、 子空间的概念
设V是数域F上一个向量空间. W是V 的一个非空 子集.对于W 中任意两个向量α,β,它们的和α+β是 V中一个向量. 一般说来,α+β不一定在W 内.如果W
中任意两个向量的和仍在W内,那么就说,W 对于V
的加法是封闭的.
同样,如果对于W中任意向量α和数域F中任意
数a,aα仍在W内,那么就说,W 对于标量与向量的
乘法是封闭的.
定理6.2.1 设W是数域F上向量空间V的一个 非空子集.如果W 对于V 的加法以及标量与向量乘法 是封闭的,那么本身也作成上一个向量空间.

高等代数课件(北大版)第六章线性空间§6.8

高等代数课件(北大版)第六章线性空间§6.8
得到V到Pn的一个单射
n 1 2
n
: V P , ( a , a , , a ) ( a , a , , a ) , a a a
n
反过来,对于 Pn 中的任一元素
1 2
并且
( ) ( a ,,,) aa , 即
1 12 2
1 2 n
是V中唯一确定的元素, n n
就是一个V到Pn的同构映射,所以 V Pn .
2019/3/18
数学与计算科学学院
二、同构的有关结论
1、数域P上任一n维线性空间都与Pn同构.
的 是 V 到 V 2、设 V , V 是数域P上的线性空间,
同构映射,则有 1) 2)
0 0 , .
k k 0 3)因为由 k 1 12 2 r r
( )( ) k ( ) 0 可得 kk 1 1 2 2 rr
反过来,由 kk ( )( ) k ( ) 0 1 1 2 2 rr 可得

数学与计算科学学院


i m V n ,1 , ,, 4)设 d 为V 中任意一组基. 2 n
) , ( ) ,, ( ) 由2)3)知, ( 为 的一组基. 1 2 n
所以 d i md V n i m V .
2019/3/18
数学与计算科学学院

5)首先


n
( k ) ( k a , k a , k a ) k P 1 2 n
k ( a , a ,) a k ( ) , 1 2 n 这就是说,向量用坐标表示后,它们的运算可以

高等代数 北大 课件

高等代数 北大 课件

拉普拉斯定理与因式分解
总结词
拉普拉斯定理的表述、应用和因式分解的方法。
详细描述
拉普拉斯定理是行列式计算中的重要定理,它提供了计算行列式的一种有效方法。因式分解是将多项式分解为若 干个因子的过程,是解决代数问题的重要手段之一。
CHAPTER 04
矩阵的分解与二次型
矩阵的分解
01
02
03
矩阵的三角分解
矩阵的乘法
矩阵的乘法满足结合律和分配律,但不一定满足 交换律。
பைடு நூலகம்
矩阵的逆与行列式
矩阵的逆
对于一个非奇异矩阵,存在一个逆矩阵,使得原矩阵 与逆矩阵相乘等于单位矩阵。
行列式的定义
行列式是一个由矩阵元素构成的数学量,可以用于描 述矩阵的某些性质。
行列式的性质
行列式具有一些重要的性质,如交换律、结合律、分 配律等。
将一个矩阵分解为一个下 三角矩阵和一个上三角矩 阵之积。
矩阵的QR分解
将一个矩阵分解为一个正 交矩阵和一个上三角矩阵 之积。
矩阵的奇异值分解
将一个矩阵分解为若干个 奇异值和若干个奇异向量 的组合。
二次型及其标准型
二次型的定义
一个多项式函数,可以表示为$f(x_1, x_2, ..., x_n) = sum_{i=1}^{n} sum_{ j=1}^{n} a_{ij} x_i x_j$,其中 $a_{ij}$是常数。
VS
二次型的标准型
通过线性变换,将一个二次型转化为其标 准形式,即一个平方项之和减去另一个平 方项之和。
正定二次型与正定矩阵
正定二次型的定义
对于一个二次型,如果对于所有 的非零向量$x$,都有$f(x) > 0$ ,则称该二次型为正定二次型。

高等代数北大版1-4ppt课件

高等代数北大版1-4ppt课件

f ( x),g( x)的最大公因式.
§1.4 最大公因式
11
如: f ( x)=x2 1, g( x)=1 ,则 ( f ( x)、g( x))=1. 取 u( x)= 1, v( x)=x2 ,有 u( x) f ( x)+v( x)g( x)=1, 取 u( x)=0, v( x)=1 ,也有 u( x) f ( x)+v( x)g( x)=1, 取u( x)= 2, v( x)=2x2 1 ,也有u( x) f ( x)+v( x)g( x)=1.
用 g( x) 除 f ( x) 得:
f ( x) q1( x)g( x) r1( x) 其中 (r1( x)) ( g( x)) 或 r1( x) 0 .
若 r1( x) 0 ,用 r1( x) 除 g( x),得:
g( x) q2( x)r1( x) r2( x)
§1.4 最大公因式
辗转相除法.
② 定理2中最大公因式 d( x)=u( x) f ( x)+v( x)g( x) 中的 u( x)、v( x) 不唯一.
③ 对于 d( x), f ( x),g( x) P[x], u( x),v( x) P[x],
使 d(x)=u( x) f ( x) v( x)g( x) ,但是 d(x)未必是
若 f ( x), g( x)不全为零,则( f ( x), g( x)) 0.
④ 最大公因式不是唯一的,但首项系数为1的最大
公因式是唯一的. 若 d1( x)、d为2( x) f ( x)、g( x)
的最大公因式,则 d1( x)=c,d2(cx为) 非零常数.
§1.4 最大公因式
4
二、最大公因式的存在性与求法

高等代数第六章 线性空间

高等代数第六章 线性空间
(7) (kl) k(l)
(8) 1
则称 Rn 是数域 R 上的 n 维向量空间
数域 F上的 n 维向量空间 F n
在数域F上,类似可以定义
Fn a1, a2, , an | ai F
有向量的加法
a1, a2, , an , b1, b2, , bn Fn
a1, a2, , an b1, b2, , bn
线性空间中向量的线性相关性
定义2
设V 是数域F上的一个线性空间,
1,2 ,,r (r 1) 是V 中一组向量,
k1, k2 ,, kr
是数域F 中的数,那么向量
k11 k22 krr
称为向量组 1,2 ,,r 的一个线性组合。 有时我们也说向量 可以用向量组 , ,
12
,r 线性表出
例1

V
a11 a21
a12
a22
aij
R
那么 V 对于矩阵的加法和数乘构成数域 R
上的线性空间.
1 0
0 1
0 0
0 0
E11
0
0
,
E12
0
0
,
E21
1
0
,
E22
0
1
是 V 的一个极大线性无关组
例2 问 F[x]4 中的向量组
f1(x) 3x3 x 2
f3(x) x
素 都有 0
(具有这个性质的元素0称为V的零元素);
4)对于V中每一个元素 ,都有V中的元素 ,
使得
( 称为 的负元素)。
0
数量乘法满足下面两条规则: 5) 1 6) k(l) (kl).
数量乘法与加法满足下面两条规则: 7) (k l) k l; 8) k( ) k k.

高等代数课件(北大版)第六章-线性空间§6.6

高等代数课件(北大版)第六章-线性空间§6.6

bt 1
x1
bt
2
x2
btn xn 0
的解空间,则 W1 W2 就是齐次线性方程组③
2020/9/20§6.6 子空间的交与和
a11 x1 a12 x2 a1n xn 0
ab1s11
x1 x1
as2 x2 b12 x2
asn xn 0 b1n xn 0

bt 1
x1
bt
并不是R3的子空间. 因为它对R3的运算不封闭,如 (1,0,0), (0,1,0) V1 V2
但是 (1,0,0) (0,1,0) (1,1,0) V1 V2
2020/9/20§6.6 子空间的交与和
三、子空间的交与和的有关性质
1、设 V1,V2 ,W 为线性空间V的子空间
1)若 W V1,W V2 , 则 W V1 V2 . 2)若 V1 W ,V2 W , 则 V1 V2 W .
2020/9/20§6.6 子空间的交与和
注意:
V的两子空间的并集未必为V的子空间. 例如 V1 {(a,0,0) a R}, V2 {(0,b,0) b R}
皆为R3的子空间,但是它们的并集 V1 V2 {(a,0,0),(0,b,0) a,b R} {(a,b,0) a,b R 且a,b中至少有一是0}
第六章 线性空间
§1 集合·映射
§5 线性子空间
§2 线性空间的定义 §6 子空间的交与和
与简单性质
§7 子空间的直和
§3 维数·基与坐标
§8 线性空间的同构
§4 基变换与坐标变换 小结与习题
2020/9/20
§6.6 子空间的交与和
一、子空间的交 二、子空间的和 三、子空间交与和的有关性质

最新扬州大学高等代数课件(北大三版)--第六章-线性空间说课讲解精品课件

最新扬州大学高等代数课件(北大三版)--第六章-线性空间说课讲解精品课件

6
性空间.
线 性
(3) R, kC k 不一定属于 R (例如: 1, k 1 i , 有
空 间
k 1iR 成立)

R 非 C 上的线性空间.
第七页,共83页。
高 例5 (1)数域P上一元(yī yuán)多项式环P[x];

(2)P[x]n={f(x)|əf<n} ∪{0}.

数 证明: (1) P[x]对多项式的加法,数乘运算封闭,且 8 条算律成立
→ P[x]构成 P 上的线性空间. (2) 显然成立.
由特殊到一般,由具体到抽象,把具体的代数对象用公理化方法
6
统一在一个数学模型下,是数学研究的一种基本思想方法.
线 性 空 间
第八页,共83页。
高 二. 基本(jīběn)性质
等 代 8条算律 ― 基本法律依据(公理),以2个 数 运算、8条算律为基础推导(tuīdǎo)其它基本
记成 {1,2, ,n} ;
6
是 P117 向量线性相关概念在一般线性空间中的推广.
线 性
定义 3 {1,2 , ,r }与{ 1, 2 , , s }等价
空 { 1,2 , ,r } { 1, 2 , , s }且{ 1, 2 , , s } {1,2 ,

记为 {1,2 , ,r } 等价 { 1, 2 , , s }.
线 性
间,Mn×1 = {(a1, a2, , an )/ ai P,i 1,2, ,n}为 P 上 n 元列空

间,统一记为 Pn .

第五页,共83页。
高 例3

C[a,b]={f:[a,b]上连续(liánxù)实 函数}:

高等代数课件(北大版)第六章线性空间§.ppt

高等代数课件(北大版)第六章线性空间§.ppt
3
1 2 3
3

一般地,向量空间

1
n P { ( a , a , , a ) a P ,1 i , 2 , , n } 为n维的, 1 2 n i
( 1 , 0 , , 0 ) , ( 0 , 1 , , 0 ) , , ( 0 , , 0 , 1 ) 2 n
就是 Pn 的一组基.称为Pn的标准基.
,2 , ,r , V ( 2) 1 ,若存在
使
1 12 2

可经向量组

r r

则称向量
kk k
数学与计算科学学院
k , k , , k P 1 2 r
, , , 1 2 r线性表出;
24.03.2019
,2 , , 1 s 中每一向量皆可经向量组 , , , ,2 , , 线性表出,则称向量组 1 2 r 1 s
矩阵构成的线性空间 一般地,数域P上的全体 mn
P
维的, 为 mn 0 0 1 E ij 0 0
mn
第 j列
0 第 i 行 i 1 ,2, ,m j 1 ,2, ,n mn 就是 的一组基. P 0
m n
矩阵单位
m n Aa (i ) P ,有 A a E j i j i j
24.03.2019
数学与计算科学学院
, , , 1 2 r 线性表出,且表法是唯一的.
二、线性空间的维数、基与坐标
1、无限维线性空间
若线性空间 V 中可以找到任意多个线性无关的向量, 则称 V 是无限维线性空间. 例1 所有实系数多项式所成的线性空间 R[x] 是 无限维的. 因为,对任意的正整数 n,都有 n 个线性无关的 向量 1,x,x2,…,xn-1

高等代数【北大版】课件

高等代数【北大版】课件

多项式的因式分解与根的性质
总结词
多项式的因式分解、根的性质和求解方 法
VS
详细描述
多项式的因式分解是将多项式表示为若干 个线性因子乘积的过程。通过因式分解, 可以更好地理解多项式的结构,简化计算 和证明。此外,多项式的根是指满足多项 式等于0的数。根的性质包括根的和与积、 重根的性质等。求解多项式的根的方法有 多种,如求根公式、因式分解法等。
性方
02
线性方程组的解法
高斯消元法 通过行变换将增广矩阵化为阶梯形矩 阵,从而求解线性方程组。
选主元高斯消元法
选择主元以避免出现除数为0的情况, 提高算法的稳定性。
追赶法
适用于系数矩阵为三对角线矩阵的情 况,通过逐步消去法求解。
迭代法
通过迭代逐步逼近方程组的解,常用 的方法有雅可比迭代法和SOR方法。
向量空间的子空间与基底
总结词
子空间与基底
详细描述
子空间是向量空间的一个非空子集,它也满足向量空间的定义和性质。基底是 向量空间中一个线性独立的集合,它可以用来表示向量空间中的任意元素。基 底中的向量个数称为向量空间的维数。
ቤተ መጻሕፍቲ ባይዱ
向量空间的维数与基底的关系
总结词
维数与基底的关系
详细描述
向量空间的维数与基底密切相关。一个向量空间的维数等于其基底的向量个数。 如果一个向量空间有n个基底,则它的维数为n。同时,如果一个向量空间有有限 个基底,则它的维数是有限的。
行列式
06
行列式的定义与性质
总结词
行列式的定义和性质是高等代数中的 基础概念,包括代数余子式、余子式、 转置行列式等。
详细描述
行列式是由n阶方阵的n!项组成的代数 式,按照一定规则排列,具有一些重 要的性质,如交换律、结合律、代数 余子式等。这些性质在后续章节中有 着广泛的应用。

高等代数 讲义 第六章

高等代数 讲义 第六章

3
2、映射的乘积
设映射σ : M → M ', τ : M ' → M '',乘积 τ o σ
定义为:τ o σ(a)=τ(σ(a)) ∀a ∈ M 即相继施行σ和τ的结果,τ o σ 是 M 到 M" 的一个
映射.
注:①对于任意映射σ : M → M ',有 IM′ oσ = σ o IM = σ
σ:σ(a)=1,σ(b)=1,σ(c)=2
(是)
δ:δ(a)=1,δ(b)=2,δ(c)=3,δ(c)=4 (不是)
τ:τ(b)=2,τ(c)=4
(不是)
2)M=Z,M´=Z+,
σ:σ(n)=|n|, ∀n ∈ Z τ:τ(n)=|n|+1, ∀n ∈ Z
(不是) (是)
§6.1 集合 映射
3)M= Pn×n ,M´=P,(P为数域)
§6.1 集合 映射
注:
① 对于有限集来说,两集合之间存在1—1对应 的充要条 件是它们所含元素的个数相同;
② 对于有限集A及其子集B,若B≠A(即B为A 的真子集),则 A、B之间不可能存在1—1对应; 但是对于无限集未必如此.
如例7中的8),σ是1—1对应,但2Z是Z的真子集. M=Z,M´=2Z, σ:σ(n)=2n,∀n∈ Z
力学问题的有关属性.为了研究一般线性方程组 解的理论,我们把三维向量推广为n维向量,定 义了n维向量的加法和数量乘法运算,讨论了向 量空间中的向量关于线性运算的线性相关性,完
满地阐明了线性方程组的解的理论.

现在把n维向量抽象成集合中的元素,撇开
言 向量及其运算的具体含义,把集合对加法和数
量乘法的封闭性及运算满足的规则抽象出来,

高等代数--第六章 线性空间

高等代数--第六章 线性空间

f3(x) x
是否线性相关
f4(x) 5
以上定义是大家过去已经熟悉的,不仅
如此,在第三章中,从这些定义出发对n元
数组所作的那些论证也完全可以搬到数域F
上的抽象的线性空间中来并得出相同的结论。
1.单个向量 是线性相关的充分必要条件
是 。两个以上的向量
线性相
关的 充0分必要条件是其中有1一,个2 ,向,量r 是其余 向量的线性组合。
2.如果向量组
线性无关,而且
可以被
线1,性2 ,表出,,r 那么

1
,
2
,,
s
rs
由此推出,两个等价的线性无关的向量
组,必定含有相同个数的向量。
3.如果向量组
1
,
2
,,
r
线性无关,但向
量组
1
,
2
,,
r
,
线性相关,那么
可以被
, ,, 线性表出,而且表法是唯一的。
12
r
对于n元数组所成的向量空间,有n个线性无 关的向量,而任意n+1个向量都是线性相关 的。在一个线性空间中,究竟最多能有几个 线性无关的向量,显然是线性空间的一个重 要属性。我们引入
我们来证01=02。 由于01、 02是零元素,所以 01+02 =01, 01+02 =02
于是 01=01 +02=02。 这就证明了零元素的唯一性。
2.负元素是唯一的。
这就是说,适合条件 0的元素 是被元素 唯一决定的。 假设 有两个负元素 与 , 0, 0. 那么 0 ( ) ( ) 0 .
定义3 设 1,2 ,,r
(1)
1
,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 线性空间
§1 集合·映射
§5 线性子空间
§2 线性空间的定义 §6 子空间的交与和
与简单性质
§7 子空间的直和
§3 维数·基与坐标
§8 线性空间的同构
§4 基变换与坐标变换 小结与习题
2020/7/29
数学与计算科学学院
§6.8 线性空间的同构
一、同构映射的定义 二、同构的有关结论
2020/7/29§6.8 线性空间的同数构学与计算科学学院
为V的一组基,则前面V到Pn的一一对应
: V Pn, (a1,a2 , ,an ) V
这里(a1,a2 , ,an )为 在 1, 2 , , n 基下的坐标,
就是一个V到Pn的同构映射,所以 V Pn .
2020/7/29§6.8 线性空间的同数构学与计算科学学院
二、同构的有关结论
1、数域P上任一n维线性空间都与Pn同构.
反过来,由 k1 (1 ) k2 (2 ) 可得 (k11 k22 krr ) 0.
2020/7/29§6.8 线性空间的同数构学与计算科学学院
kr (r ) 0
而 是一一对应,只有 (0) 0. 所以可得 k11 k22 krr 0. 因此,1,2 , ,r 线性相关(线性无关) (1), (2 ), , (r ) 线性相关(线性无关).
3)V中向量组 1,2 , ,r 线性相关(线性无关) 的充要条件是它们的象 (1), (2 ), , (r )
线性相关(线性无关). 4) dimV dimV .
5):V V 的逆映射 1 为 V 到V 的同构映射.
6) 若W是V的子空间,则W在 下的象集 (W ) { ( ) W }
i) 为双射 ii) ( ) ( ) ( ), , V
iii) k k , k P, V
则称 是V到V 的一个同构映射,并称线性空间
V与V 同构,记作 V V .
2020/7/29§6.8 线性空间的同数构学与计算科学学院
例1、V为数域P上的n维线性空间,1, 2 , , n
从而有 W , k W .
2020/7/29§6.8 线性空间的同数构学与计算科学学院
所以 W 是的 V 子空间. 显然, 也为W到 W 的同构映射,即
W W
故 dimW dim (W ).
是的 V 子空间,且 dimW dim (W ).
2020/7/29§6.8 线性空间的同数构学与计算科学学院
证: 1)在同构映射定义的条件iii) k k
中分别取 k 0与k 1, 即得
0 0,
2)这是同构映射定义中条件ii)与iii)结合的结果.
3)因为由 k11 k22 krr 0 可得 k1 (1 ) k2 (2 ) kr (r ) 0
任取 , V , 设
a11 a2 2 an n , b11 b2 2 bn n 则 ( ) (a1,a2 ,an ), ( ) (b1,b2 , ,bn ) 从而 ( ) (a1 b1,a2 b2 ,an bn )
(a1,a2 ,an ) (b1,b2 , ,bn ) ( ) ( )
(k ) (ka1, ka2 , kan )
k P
k(a1,a2 ,an ) k ( ),
这就是说,向量用坐标表示后,它们的运算可以
归结为它们的坐标的运算.
2020/7/29§6.8 线性空间的同数构学与计算科学学院
一、同构映射的定义
设 V ,V 都是数域P上的线性空间,如果映射 :V V 具有以下性质:
任取 , V ,
( 1( )) 1( )
1() 1( ) ( 1()) ( 1( )) ( 1() 1( ))
再由 是单射,有 1( ) 1() 1( )
同理,有 1(k) k 1(), V ,k P
所以, 1为 V 到V 的同构映射.
2020/7/29§6.8 V 且 0= 0 W , W 其次,对 , W , 有W中的向量 , 使 , . 于是有
k k k , k P
由于W为子空间,所以 W , k W .
引 入 我们知道,在数域P上的n维线性空间V中取定一组基后,
V中每一个向量 有唯一确定的坐标 (a1,a2 , ,an ), 向量的
坐标是P上的n元数组,因此属于Pn.
这样一来,取定了V的一组基 1, 2 , , n , 对于V中每一个 向量 ,令 在这组基下的坐标 (a1,a2 , ,an ) 与 对应,就 得到V到Pn的一个单射 : V Pn , (a1,a2, ,an )
4)设 dimV n, 1, 2 , , n 为V 中任意一组基. 由2)3)知, (1), ( 2 ), , ( n )为 的一组基.
所以 dimV n dimV .
2020/7/29§6.8 线性空间的同数构学与计算科学学院
5)首先 1 :V V 是1-1对应,并且
1 IV , 1 IV , I为恒等变换.
反过来,对于 Pn 中的任一元素 (a1,a2 , ,an ),
1a1 2a2 nan 是V中唯一确定的元素, 并且 ( ) (a1,a2 , ,an ), 即 也是满射.
因此, 是V到 Pn 的一一对应.
2020/7/29§6.8 线性空间的同数构学与计算科学学院
这个对应的重要必性表现在它与运算的关系上.
2、设 V ,V 是数域P上的线性空间, 是V到V 的
同构映射,则有
1) 0 0, .
2) (k11 k22 krr )
k1 (1 ) k2 (2 ) kr (r ), i V , ki P, i 1, 2, , r .
2020/7/29§6.8 线性空间的同数构学与计算科学学院
相关文档
最新文档