初二一次函数综合应用
一次函数与反比例函数综合应用教案
一次函数与反比例函数综合应用教案一、教学目标1. 让学生掌握一次函数和反比例函数的基本概念和性质。
2. 培养学生运用一次函数和反比例函数解决实际问题的能力。
3. 引导学生通过合作交流,提高解决问题的策略和思维能力。
二、教学内容1. 一次函数的基本概念和性质。
2. 反比例函数的基本概念和性质。
3. 一次函数和反比例函数的综合应用。
三、教学重点与难点1. 教学重点:一次函数和反比例函数的基本概念、性质和综合应用。
2. 教学难点:一次函数和反比例函数的综合应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究一次函数和反比例函数的性质。
2. 利用案例分析法,让学生通过实际问题体会一次函数和反比例函数的应用价值。
3. 采用合作交流法,培养学生团队协作和沟通能力。
五、教学过程1. 导入新课:通过生活实例引入一次函数和反比例函数的概念。
2. 自主学习:让学生自主探究一次函数和反比例函数的性质。
3. 案例分析:分析实际问题,引导学生运用一次函数和反比例函数解决问题。
4. 合作交流:分组讨论,让学生分享解题策略和心得。
5. 总结提升:总结一次函数和反比例函数的性质及应用,提高学生解决问题的能力。
6. 课后作业:布置相关练习题,巩固所学知识。
六、教学活动设计1. 活动一:引入概念通过展示实际生活中的线性关系图片,如直线轨道上列车的运动,引导学生思考线性关系的表现形式。
引导学生提出一次函数的表达式,并解释其含义。
2. 活动二:探索性质学生通过绘制一次函数图像,观察并总结其在坐标系中的性质。
通过实际例子,让学生理解一次函数的斜率和截距对图像的影响。
3. 活动三:反比例函数的引入引导学生从比例关系出发,思考反比例函数的概念。
通过实际问题,如在固定面积内,距离与面积的关系,引入反比例函数。
七、教学评价设计1. 评价目标:学生能理解并应用一次函数和反比例函数解决实际问题。
通过设计具有挑战性的问题,如购物预算问题,让学生应用所学的函数知识。
沪科版八年级上册数学第12章 一次函数 综合与实践 一次函数模型的应用
240元/辆
型 载客量 租金单价
号 A 30人/辆 300元/辆
注:载客量指的是每辆客车最多可载该校师生的人数. (1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数表达式,并直接写出x的
取值范围;
解:y=300x+240(50-x),整理得y=60x+12000. x的取值范围为30≤x≤50且x为整数.
每车限载人 租金/(元/
车型
数/人
辆)
商务
6
300
车
轿车
4
(1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为 多少元;
解:设一辆轿车的单程租金为x元. 由题意,得300×2+3x=1320,解得x=240. 答:一辆轿车的单程租金为240元.
(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车 前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?
(3)请分别求出y1,y2关于x的函数表达式. 解:设y1=k1x,因为函数图象经过点(100,500), 所以500=100k1,解得k1=5. 所以y1=5x. 设y2=k2x+b. 因为函数图象经过点(0,20000)和(4000,30000),
所以b4=00200k02+00b,=30 000,解得kb2==220.50,00, 所以 y2=2.5x+20 000.
解:当0≤x<0.5时,y=0; 当xy=kx+b, 将(0.5,0),(1,0.5)代入,得
初二数学一次函数知识应用
初二数学一次函数知识应用当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y 是重物重量x 的一次函数。
一次函数的应用一、分段函数问题分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际。
二、函数的多变量问题解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数三、概括整合(1) 简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
(2) 理清题意是采用分段函数解决问题的关键。
常用公式1. 求函数图像的k 值:(y1-y2)/(x1-x2)2. 求与x 轴平行线段的中点:(x1+x2)/23. 求与y 轴平行线段的中点:(y1+y2)/24. 求任意线段的长:"[(x1-x2)八2+(y1-y2)八2]5. 求两个一次函数式图像交点坐标:解两函数式两个一次函数y仁k1x+b1y2=k2x+b2 令y1=y2 得k1x+b仁k2x+b2 将解得的x=x0值代回y仁k1x+b1y2=k2x+b2两式任一式得到y=yO则(x0,y0) 即为y1=k1x+b1 与y2=k2x+b2 交点坐标6. 求任意2 点所连线段的中点坐标:[(x1+x2)/2 ,(y1+y2)/2]7. 求任意2 点的连线的一次函数解析式:(X-x1)/(x1-x2)=(Y-y1)/(y1-y2)( 若分母为0,则分子为0)xy+ ,+(正,正)在第一象限- ,+(负,正)在第二象限- ,-( 负,负) 在第三象限+ ,-( 正,负)在第四象限8. 若两条直线y仁k1x+b1//y2=k2x+b2,贝S k仁k2, b1^ b29. 如两条直线y仁k1x+b1 丄y2=k2x+b2,则k1 x k2=-110.y=k(x-n)+b 就是直线向右平移n 个单位y=k(x+n)+b 就是直线向左平移n 个单位口诀:右减左加( 对于y=kx+b 来说,只改变n) y=kx+b+n 就是向上平移n 个单位y=kx+b-n 就是向下平移n 个单位口诀:上加下减( 对于y=kx+b 来说,只改变b)11. 直线y=kx+b与x轴的交点:(-b/k , 0)与y轴的交点:(0 ,b) 当时间t 一定,距离s是速度V的一次函数。
精品 八年级数学下册 19.3 一次函数综合应用题
19.3 一次函数综合应用题例1.小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高___________cm;(2)求放入小球后量桶中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量桶中至少放入几个小球时有水溢出?例 2.小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为S1m,小明爸爸与家之间的距离为S2m,图中折线OABD、线段EF分别表示S1、S2与t之间的函数关系的图象.(1)求S2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?例3.某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10—25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用?其余游客八折优惠.该单位选择哪一家旅行社支付的旅游费用较少?请大家先计划一下,你选哪家旅行社?例4.某商业集团新进了40台空调机,60台电冰箱,Array计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如右表:设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元).求y关于x的函数关系式,并求出x的取值范围。
例5.某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.(1)有月租费的收费方式是(填①或②),月租费是元;(2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.例6.如图,直线y=kx+4与x轴、y轴分别交于点C、D,点C的坐标为(-8,0),点A的坐标为(-6,0).(1)求k的值和该直线的函数解析式;(2)若点P(x,y)是第二象限内的直线上的一个动点,当点P运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.例7.某单位今年“十一”期间要组团去北京旅游,与旅行社联系时,甲旅行社提出每人次收300元车费和住宿费,不优惠。
初二下册一次函数的应用
一次函数的应用1、掌握本章知识框架并熟练使用相关知识解决实际问题及几何问题2、能够从函数图象中得到需要的信息,并求出函数解析式从而解决实际问题和几何问题知识点一、用待定系数法确定函数解析式的一般步骤: (1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程; (3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式. 知识点二、一次函数与方程、不等式(数形结合法)1. 一次函数与一元一次方程:从“数”的角度看x 为何值时函数y= ax+b 的值为0.2. 求ax +b =0(a , b 是常数,a ≠0)的解,从“形”的角度看,求直线y= ax+b 与 x 轴交点的横坐标3. 一次函数与一元一次不等式:解不等式ax +b >0(a ,b 是常数,a ≠0) .从“数”的角度看,x 为何值时函数y= ax+b 的值大于0. 4. 解不等式ax +b >0(a ,b 是常数,a ≠0) . 从“形”的角度看,求直线y= ax+b 在 x 轴上方的部分(射线)所对应的的横坐标的取值范围. 5.一次函数与二元一次方程组: 解方程组从“数”的角度看,自变量(x )为何值时两个函数值相等.并求出这个函数值解方程组 从“形”的角度看,确定两直线交点的坐标.⎪⎩⎪⎨⎧=-=+c b a c b a y x y x 222111⎪⎩⎪⎨⎧=-=+c b a c b a y x y x 222111类型一:利用函数图象解决实际问题——行程问题、工程问题例1、甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是()A.4 B.3 C.2 D.1练习1、从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进,已知小明骑车上坡的速度比在平路上的速度每小时少5km.下坡的速度比在平路上的速度每小时多5km.设小明出发xh后,到达离甲地ykm的方,图中的折线OABCDE 表示y与x之间的函数关系,有下列说法正确的有()个①小明骑车在平路上的速度为15km/h;②小明途中休息了0.1h;③如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地5.75km.A.0 B.1 C.2 D.3练习2、甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t= 小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.例2、某市政府决定实施供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图,则下列说法中错误的是()A.甲队每天挖100米 B.乙队开挖两天后,每天挖50米C.甲队比乙队提前2天完成任务 D.当x=3时,甲、乙两队所挖管道长度相同练习1、某县在实施“村村通”工程中,决定在A、B两村之间修一条公路,甲、乙两个工程队分别从A、B两村同时开始相向修路,施工期间,甲队改变了一次修路速度,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到公路修通,甲、乙两个工程队各自所修公路的长度y(米)与修路时间x(天)之间的函数图象如图所示.(1)求甲队前8天所修公路的长度;(2)求甲工程队改变修路速度后y与x之间的函数关系式;(3)求这条公路的总长度.练习2、某新建小区要修一条1050米长的路,甲、乙两个工程队想承建这项工程.经了解得到以下信息(如表):工程队每天修路的长度(米)单独完成所需天数(天)每天所需费用(元)甲队30 n 600乙队m n﹣14 1160(1)甲队单独完成这项工程所需天数n= 35 ,乙队每天修路的长度m= 50 (米);(2)甲队先修了x米之后,甲、乙两队一起修路,又用了y天完成这项工程(其中x,y为正整数).①当x=90时,求出乙队修路的天数;②求y与x之间的函数关系式(不用写出x的取值范围);③若总费用不超过22800元,求甲队至少先修了多少米.类型二:利用函数图象解决实际问题——实际问题中的分段函数例1、(方案择优)某种铂金饰品在甲、乙两个商店销售.甲店标价:每克477元,按标价出售,不优惠;乙店标价:每克530元,但如果购买的铂金饰品质量超过3克,则超出的部分可打八折出售.设购买铂金饰品的质量为x克(x>3),在甲店购买铂金饰品的费用为y甲元,在乙店购买铂金饰品的费用为y乙元.(1)请分别求出y甲、y乙与x之间的函数关系式;(2)当购买铂金饰品的质量是多少克时,甲乙两店的费用相等?(3)当购买铂金饰品的质量是多少克时,在甲店购买比较合算?(4)当购买铂金饰品的质量是多少克时,在乙店购买比较合算?练习1、某旅行团计划今年暑假组织老年人团到台湾旅游,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆可供选择,其收费标准为某人每天120元,并且推出各自不同的优惠方案:甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费.设老年人团的人数为x(1)根据题意,用含x的式子填写下表:x≤35 35<x<45 x=45 x>45甲宾馆收费/元120x 5280乙宾馆收费/元120x 120x 5400(2)当x取何值时,旅行团在甲、乙两家宾馆的实际花费相同?练习2、为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:目的地车型A村(元/辆)B村(元/辆)大货车 800 900小货车 400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.练习3、为了抓住保国寺建寺1000年的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?例2、(最大利润问题)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.练习1、小明到服装店进行社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元,乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500元,则甲种服装最多购进多少件??(2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?练习2、某酒厂每天生产A,B两种品牌的白酒共600瓶,A,B两种品牌的白酒每瓶的成本和利润如下表:设每天生产A种品牌白酒x瓶,每天获利y元.(1)请写出y关于x的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?A B成本(元/瓶)50 35利润(元/瓶)20 15类型三:利用一次函数解几何问题例1、如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B→C→D 运动,设运动的时间为t(s),三角形APD的面积为S(cm2),S与t的函数图象如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,三角形APD的面积S 的最大值为________cm2;(2)求出点P在CD上运动时S与t之间的函数解析式;(3)当t为何值时,三角形APD的面积为10 cm2?(第6题)练习1、如图1,在矩形ABCD中,AB=12cm,BC=10cm,点P从A出发,沿A→B→C→D的路线运动,到D停止;点Q从D点出发,沿D→C→B→A路线运动,到A点停止.若点P,点Q同时出发,点P的速度为1cm/s,点Q的速度为2cm/s,a秒后点P改变速度,变为bcm/s,点Q速度不变.图2是点P出发x秒后△APD的面积S(cm2)与x(s)的函数关系图象,根据图象判断,下列选项正确的是()A.a=5s B.点P改变速度后4s与点Q相遇C.b=3cm/s D.c=18s练习2、如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.基础演练1.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个2.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件 B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等 D.第30天的日销售利润是750元3、某油箱容量为60 L的汽车,加满汽油后行驶了100 km时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为x km,油箱中剩油量为y L,则y与x之间的函数解析式和自变量取值范围分别是()A.y=0.12x,x>0 B.y=60﹣0.12x,x>0C.y=0.12x,0≤x≤500 D.y=60﹣0.12x,0≤x≤500二.解答题1.如图1,正方形ABCD的边长为4厘米,E为AD边的中点,F为AB边上一点,动点P从点B出发,沿B →C→D→E,向终点E以每秒a厘米的速度运动,设运动时间为t秒,△PBF的面积记为S.S与t的部分函数图象如图2所示,已知点M(1,)、N(5,6)在S与t的函数图象上.(1)求线段BF的长及a的值;(2)写出S与t的函数关系式,并补全该函数图象;(3)当t为多少时,△PBF的面积S为4.巩固提高1、某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.2.受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:到超市的路程(千米)运费(元/斤•千米)甲养殖场200 0.012乙养殖场140 0.015(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?1.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间 x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.3.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费:在乙商场累计购物超过50元后,超出50元的部分按95%收费.回答下列问题:(Ⅰ)①若你在甲商场累计购物x元,实际付款金额y元,写出y关于x的函数关系式;②若你在乙商场累计购物x元,实际付款金额y元,写出y关于x的函数关系式;(Ⅱ)当你在同一商场累计购物超过100元时,在哪家商场的实际花费少?一、选择题1、小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计),一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s(单位:米)与他所用时间t(单位:分钟)之间的函数关系如图所示,已知小明从家出发7分钟时与家的距离为1200米,从上公交车到他到达学校共用10分钟,下列说法:①小明从家出发5分钟时乘上公交车②公交车的速度为400米/分钟③小明下公交车后跑向学校的速度为100米/分钟④小明上课没有迟到其中正确的个数是()A.1个B.2个C.3个D.4个二、解答题1、甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.2、某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:类型价格进价(元/盏)售价(元/盏)A型30 45B型50 70(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?3、某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?。
初二一次函数应用
1、已知一次函数y=kx+b 的图象经过点(-1, -5),且与正比例函数y= 12x 的图象相交于点(2,a),求(1)a 的值(2)k ,b 的值2.已知直线b kx y +=平行于直线y=-3x+4,且与直线y=2x-6的交点在x 轴上,求此一次函数的解析式。
3.点A ,B ,C ,D 的坐标如图,求直线AB 与直线CD 的交点坐标.4. 已知:一次函数y kx b =+的图象经过M(0,2),(1,3)两点. (l) 求k 、b 的值;(2) 若一次函数y kx b =+的图象与x 轴的交点为A(a ,0),求a 的值5.已知函数y=(2m+1)x+m -3(1)若这个函数的图象经过原点,求m 的值(2)若这个函数的图象不经过第二象限,求m 的取值范围.6、某自来水公司为了鼓励市民节约用水,采取分 段收费标准,若某用户居民每月应交水费y (元)是用户量x (方)的函数,其图象如图所示,根据图象回答下列问题:(1)分别求出x ≤5和x>5时,y 与x (2)自来水公司的收费标准是什么?(3)若某户居民交水费9元,该月用水多少方y(元)7、如图所示的折线ABC •表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象.(1)写出y 与t •之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?(3)若要付电话费7.4元,可通话多少分钟?8、某气象研究中心观测一场沙尘暴从发生到结束全过程,开始时风暴平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时,一段时间,风暴保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减小1千米/时,最终停止。
结合风速与时间的图像,回答下列问题:(1)在y 轴( )内填入相应的数值;(2)沙尘暴从发生到结束,共经过多少小时?(3)求出当x ≥25时,风速y (千米/时)与时间x (小时)之间的函数关系式。
八年级数学一次函数图象的应用
· ·
·
·
( S 40t 200 )
深入探究
1.如图,
·
-2 (1)当y=0时,x=________________ ;
y=0.5x+1 (2)直线对应的函数表达式是________________.
议一议
一元一次方程0.5x+1=0与一次函数 y=0.5x+1有什么联系? y
3 2 1 -3 -2 -1 0 -1 1 2 3x
一次函数的应用(一)
回顾与复习
在一次函数y=kx+b中 当k>0时,y随x的增大而增大, 当b>0时,直线交y轴于正半轴, 必过一、二、三象限; 当b<0时,直线交y轴于负半轴, 必过一、三、四象限; 当k<0时,y随x的增大而减小, 当b>0时,直线交y轴于正半轴, 必过一、二、四象限; 当b<0时,直线交y轴于负半轴, 必过二、三、四象限.
想一想
由于持续高温和连日无 雨,某水库的蓄水量随着时 间的增加而减少.干旱持续 时间t(天)与蓄水量V(万米3) 的关系如下图所示,回答下 列问题:
·· ·
(1)干旱持续10天,蓄水量为多少? 连续干旱23天呢?
(2)蓄水量小于400万米3时,将发生 严重干旱警报.干旱多少天后将 发出严重干旱警报? (3)按照这个规律,预计持续干旱 多少天水库将干涸?
S(户) 1000
根据图象回答下列问题:
·
20 t(天)
(6)若每户每天节约用水0. 1吨,那 么活动第20天可节约多少吨水? (第20天可节约100吨水) 200 (7)写出活动开展的第t天节约的 水量y与天数t的函数关系。 ( Y 4t 20 )
0
《一次函数和反比例函数的综合运用》教学设计
《一次函数和反比例函数的综合运用》教学设计一、教学内容分析教学内容:一次函数和反比例函数的综合运用内容分析:一次函数和反比例函数是在初中阶段比较重要的两个函数问题,是二次函数的基础,学生不仅要掌握函数知识,还应该掌握解决问题的常规方法,利用“方程思想”“数形结合”思想及“转化”的数学思想解决问题。
在教学中要注重类比教学和启发式教学,通过对知识的传授与运用,让学生达到举一反三,触类旁通的目的。
同时也要注重“数形结合”思想的运用,数学是研究现实世界数量关系和空间形式的科学,而“数形结合”就是通过数与形之间的对应和转化来解决问题,以形助数和以数解行两个方面,利用它可使复杂问题简单化,抽象问题具体化。
本节课主要是让学生掌握一次函数和反比例函数的综合运用,近几年的中考也有涉及一次函数和反比例函数的综合运用等相关问题,解决一次函数和反比例函数的综合运用主要是一次函数和反比例函数的相交问题和围成图像的面积计算问题,解决此类问题,主要要熟练一次函数和反比例函数的解析式和性质,借助图像,运用知识,利用“方程思想”“数形结合”思想及“转化”的数学思想解决问题。
二、教学目标:1、知识与技能:理解和掌握一次函数与反比例函数的概念、图像、性质,会运用知识分析解决一次函数与反比例的综合题,培养学生的发散思维能力。
2、过程与方法:让学生经历一次函数与反比例函数的复习过程,进一步领会“方程思想”“数形结合”思想及“转化”的数学思想,遵循“优化”原则。
3、情感、态度、价值观:通过全班互动,小组探究合作学习,培养学生的合作意识,增进学生的感情,培养沟通能力,通过方法探索,培养学生的探索钻研精神。
三、教学重难点重点:熟练应用一次函数与反比例函数的图像和性质进行解题。
难点:利用“数形结合”以及转化思想解决问题。
三、工具、教法和学法1、教学工具:多媒体2、教学方法:本节课根据学生的认识水平采用启发式,练习法等教学方法,讲练结合,在学生和教师共同分析,合作探究,小组讨论,展示交流,互相启发的过程中,教师适时适当地点拨、肯定、表扬学生,给学生提供展示的机会,激发学生的学习积极性,使学生主动参与学习的全过程。
初二数学一次函数综合运用(含答案)
一次函数综合应用例题精讲一、一次函数的实际应用【例1】 2007年5月,第五届中国宜昌长江三峡国际龙舟拉力赛在黄陵庙揭开比赛帷幕.20日上午9时,参赛龙舟从黄陵庙同时出发.其中甲、乙两队在比赛时,路程y (千米)与时间x (小时)的函数关系如图所示.甲队在上午11时30分到达终点黄柏河港. ⑴哪个队先到达终点?乙队何时追上甲队? ⑵在比赛过程中,甲、乙两队何时相距最远?【答案】⑴乙队先达到终点,对于乙队,1x =时,16y =,所以16y x =,对于甲队,出发1小时后,设y 与x 关系为y kx b =+将1x =,20y =和 2.5x =,35y =分别代入上式得: 2035 2.5k bk b =+⎧⎨=+⎩解得:1010y x =+解方程组161010y x y x =⎧⎨=+⎩ 得:53x =,即:出发1小时40分钟后(或者上午10点40分)乙队追上甲队. ⑵1小时之内,两队相距最远距离是4千米,乙队追上甲队后,两队的距离是16(1010)610x x x -+=-,当x 为最大,即3516x =时,610x -最大,此时最大距离为35610 3.125416⨯-=<,(也可以求出AD CE 、的长度,比较其大小)所以比赛过程中,甲、乙两队在出发后1小时(或者上午10时)相距最远【例2】 如图表示甲、乙两名选手在一次自行车越野赛中,路程y (km )随时间x (min )的变化的图像(全程),根据图像回答以下问题:⑴求比赛开始多少分钟时,两人第一次相遇? ⑵求这次比赛的全程是多少?⑶求比赛开始多少分钟时,两人第二次相遇?【答案】⑴由图可知,线段OD 过点481200(,)(,,)可知其解析式为14y x =,他们相遇时6y =,此时x 故比赛开始24分钟时,两人第一次相遇.时间/时⑵由图可知,这次比赛的全程为12km .⑶点B (33,7)、点C (43,12),故线段BC 的解析式为:()1192y x =-,而线段OD 的解析式为()10484y x =<<,故它们的交点坐标为(38,192),即比赛开始38分钟时,两人第二次相遇. 【例3】 为了保护环境,某企业决定购买10台污水处理设备,现有A B ,两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表:⑴求购买设备的资金y 万元与购买A 型x 台的函数关系,并设计该企业有几种购买方案; ⑵若企业每月产生的污水量为2040吨,利用函数的知识说明,应选择哪种购买方案;⑶在第⑵问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)【答案】⑴购买污水处理设备A 型x 台,则B 型()10x -台,由题意知:()121010y x x =+-,即2100y x =+,2100105y x =+≤,∴ 2.5x ≤ 又∵x 是非负整数,∴x 可取0,1,2 ∴有三种购买方案:①购A 型D 台,B 型10台;②购A 型1台,B 型9台;③购A 型2台,B 型8台; ⑵由题意得()240200102040x x +-≥,解得1x ≥∴x 为1或2,∵由2100y x =+得20k =>,y 随x 的增大而增大. 为了节约资金,应选购A 型1台,B 型9台.⑶10年企业自己处理污水的总资金为:1021010202+⨯=(万元) 若将污水排到污水厂处理,10年所需费用为: 20401210102448000⨯⨯⨯=(元)244.8=(万元)∵244.820242.8-=(万元),∴能节约资金42.8万元.【例4】 某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x (辆),购车总费用为y (万元). ⑴求y 与x 的函数关系式(不要求写出自变量x 的取值范围);⑵若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用.【答案】⑴因为购买大型客车x 辆,所以购买中型客车()20x -辆.()62402022800y x x x =+-=+⑵依题意得()20x x -<.解得10x >.∵ 22800y x =+,y 随着x 的增大而增大,x 为整数, ∴ 当11x =时,购车费用最省,为22×11+800=1 042(万元). 此时需购买大型客车11辆,中型客车9辆.答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1042万元.二、一次函数与几何综合【例5】 已知直线3y x =+的图象与x y 、轴交于A B 、两点,直线l 经过原点,与线段AB 交于点C ,把AOB ∆的面积分为2:1的两部分,求直线l 的解析式。
一次函数与反比例函数综合应用教案
一次函数与反比例函数综合应用教案一、教学目标1. 让学生理解一次函数和反比例函数的定义及其性质。
2. 培养学生运用一次函数和反比例函数解决实际问题的能力。
3. 引导学生运用数形结合的方法,探究一次函数与反比例函数的综合应用。
二、教学内容1. 一次函数的定义及其性质。
2. 反比例函数的定义及其性质。
3. 一次函数与反比例函数的综合应用。
三、教学重点与难点1. 教学重点:一次函数和反比例函数的定义及其性质,一次函数与反比例函数的综合应用。
2. 教学难点:一次函数与反比例函数的综合应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究一次函数与反比例函数的综合应用。
2. 利用数形结合的方法,直观展示一次函数与反比例函数的关系。
3. 通过小组合作、讨论交流,培养学生的团队协作能力。
五、教学过程1. 导入:回顾一次函数和反比例函数的定义及其性质,引导学生思考一次函数与反比例函数之间的关系。
2. 新课:讲解一次函数与反比例函数的综合应用,举例说明实际问题中的运用。
3. 案例分析:分析具体案例,让学生运用一次函数与反比例函数解决实际问题。
4. 课堂练习:布置相关练习题,巩固所学知识。
5. 总结:对本节课的内容进行总结,强调一次函数与反比例函数的综合应用。
6. 作业布置:布置课后作业,巩固所学知识。
六、教学评价1. 评价目标:检查学生对一次函数与反比例函数综合应用的理解和掌握程度。
2. 评价方法:课堂问答:通过提问,了解学生对一次函数与反比例函数定义、性质的理解。
练习题:分析学生完成练习题的情况,评估其对知识的运用能力。
小组讨论:观察学生在小组讨论中的表现,评估其合作和交流能力。
七、教学资源1. 教学课件:制作包含一次函数与反比例函数图示、案例分析的课件,辅助教学。
2. 练习题库:准备一系列针对一次函数与反比例函数综合应用的练习题。
3. 案例素材:收集或设计一些实际问题,作为学生练习的素材。
八、教学拓展1. 延伸学习:介绍一次函数与反比例函数在高级数学中的应用,如微积分中的极限概念。
人教版八年级数学下册 第19章《一次函数》讲义 第22讲 一次函数的综合应用-word
第22讲 一次函数的综合应用(1)定义型 (2)点斜型 (3)两点型 (4)图像型 (5)斜截型 (6)平移型 (7) 实际应用型 (8)面积型 (9)比例型(10)对称型知识归纳: 若直线l 与直线y kx b =+关于(1)x 轴对称,则直线l 的解析式为y kx b =--(2)y 轴对称,则直线l 的解析式为y kx b =-+(3)直线y =x 对称,则直线l 的解析式为y k x b k=-1 (4)直线y x =-对称,则直线l 的解析式为y k x b k =+1 (5)原点对称,则直线l 的解析式为y kx b =-公式中的直线方程为Ax+By+C=0,点P 的坐标为(x 0,y 0) 在实际生活中,应用函数知识解决实际问题,关键是建立函数模型,即列出符合题意的函数解析式,再利用方程(组)或不等式(组)或函数性质进行求解.直线y=k 1x+b 1与y=k 2x+b 2的位置关系(1)两直线平行:k 1=k 2且b 1 ≠b 2 (2)两直线相交:k 1≠k 2(3)两直线重合:k 1=k 2且b 1=b 2 (4)两直线垂直:即k1﹒k2=-1(5)两直线交于y 轴上同一点: b 1=b 2函数的思想、数形结合的思想,分类讨论的思想。
考点1、实际问题的函数解析式例1、某计算器每个定价80元,若购买不超过20个,则按原价付款:若一次购买超过20个,则超过部分按七折付款.设一次购买数量为x (x >20)个,付款金额为y 元,则y与x之间的表达式为()A、y=0.7×80(x-20)+80×20B、y=0.7x+80(x-10)C、y=0.7×80•xD、y=0.7×80(x-10)例2、等腰三角形的周长是40cm,腰长y(cm)是底边长x(cm)的函数解析式正确的是()A、y=-0.5x+20(0<x<20)B、y=-0.5x+20(10<x<20)C、y=-2x+40 (10<x<20)D、y=-2x+40(0<x<20)例3、甲乙两车沿直路同向行驶,车速分别为20m/s和25m/s.现甲车在乙车前500m 处,设xs(0≤x≤100)后两车相距ym.那么y关于x的数解析式为.(写出自变量取值范围)例4、平行四边形相邻的两边长为x、y,周长是30,则y与x的函数关系式是.例5、某地长途汽车客运公司规定旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李票费用y(元)是行李重量x(公斤)的一次函数,如图,求:(1)y与x之间的函数关系式;(2)旅客最多可免费携带行李的公斤数例6、年级(1)班班委发起为玉树灾区捐款义卖活动,决定在“六一节”当天租用摊位卖玩具筹集善款.已知同学们从批发店按每个7.6元买进玩具,并按每个15元卖出,租用摊位一天的租金为20元.(1)求同学们当天所筹集的善款y(元)与销售量x(个)之间的函数关系式(善款=销售额-成本);(2)若要筹集不少于500元的慰问金,则至少要卖出玩具多少个?1、汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的关系式()A、Q=5tB、Q=5t+40C、Q=40-5t(0≤t≤8)D、以上答案都不对2、如图中各图分别是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)个花盆,每个图案花盆的总数是s.按此规律推出,s与n的关系式是()A、S=3nB、S=3(n-1)C、S=3n-1D、S=3n+13、某楼盘共23层,销售价格如下:第八层楼房售价为4000元/米2,从第八层起每上升一层,每平平方米的售价提高50元,售价y(元/米2)与楼层x(8≤x≤23,x取整数)之间的关系式为.4、一位卖报人每天从报社固定购买100分报纸,每份进价0.6元,然后以每份1元的价格出售.如果报纸卖不完退回报社时,退回的报纸报社只按进价的50%退款给他.如果某一天卖报人卖出的报纸为x份,所获得的利润为y元,试写出y与x的表达式.5、一盘蚊香长105cm,点燃时每小时缩短10cm.(1)请写出点燃后蚊香的长y(cm)与蚊香燃烧时间t(h)之间的函数关系式;(2)该蚊香可点燃多长时间?6、水管是圆柱形的物体,在施工中,常常如下图那样堆放,随着的增加,水管的总数是如何变化的?如果假设层数为n,物体总数为y.(1)请你观察图形填写下表,(2)请你写出y与n的函数解析式.7、某工厂加工一批产品,为了提前交货,规定每个工人完成100个以内,每个产品付酬1.5元;超过100个,超过部分每个产品付酬增加0.3元;超过200个,超过部分除按上述规定外,每个产品再增加0.4元.求一个工人:(1)完成100个以内所得报酬y(元)与产品数x(个)之间的函数关系式;(2)完成100个以上,但不超过200个所得报酬y(元)与产品数x(个)之间的函数关系式;(3)完成200个以上所得报酬y(元)与产品数x(个)之间的函数关系式.考点2、一次函数的应用例1、明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A、300m2B、150m2C、330m2D、450m2例2、如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省()A、1元B、2元C、3元D、4元(例1)(例2)例3、如图,小明购买一种笔记本所付款金额y(元)与购买量x(本)之间的函数图象由线段OB和射线BE组成,则一次购买8个笔记本比分8次购买每次购买1个可节省元.例4、甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲乙两队所挖管道长度都相差100米.正确的有______.(在横线上填写正确的序号)(例3)(例4)例5、为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x 的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.例6、某商店销售A型和B型两种型号的电脑,销售一台A型电脑可获利120元,销售一台B型电脑可获利140元.该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的3倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y与x的关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售利润最大?(3)若限定商店最多购进A型电脑60台,则这100台电脑的销售总利润能否为13600元?若能,请求出此时该商店购进A型电脑的台数;若不能,请求出这100台电脑销售总利润的范围.1、小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计)一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校公用10分钟.下列说法:①公交车的速度为400米/分钟;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分钟;④小刚上课迟到了1分钟.其中正确的个数是()A、4个B、3个C、2个D、1个2、如图1为深50cm的圆柱形容器,底部放入一个长方体的铁块,现在以一定的速度向容器内注水,图2为容器顶部离水面的距离y(cm)随时间t(分钟)的变化图象,则()B.放人的长方体的高度为30cmC.该容器注满水所用的时间为21分钟3、设甲,乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,y关x于的函数关系如图所示,则甲车的速度是_______米/秒.4、某通讯公司的4G上网套餐每月上网费用y(单位:元)与上网流量x(单位:兆)的函数关系的图象如图所示.若该公司用户月上网流量超过500兆以后,每兆流量的费用为0.29元,则图中a的值为.(3)(4)5、某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费,小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元。
专题 一次函数与三角形的综合应用(原卷版)
八年级下册数学《第十九章 一次函数》 专题 一次函数与三角形的综合应用问题【例题1】(2022春•芝罘区期末)如图,一次函数y 1=kx +b 的图象与坐标轴交于A ,B 两点,与正比例函数y 2=﹣2x 交于点C (m ,4),OA =6. (1)求一次函数的表达式; (2)求△BOC 的面积;(3)在线段AB 上是否存在点P ,使△OAP 是以OA 为底的等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.【变式1-1】(2022秋•沭阳县期末)如图,在平面直角坐标系中,直线AB分别交x轴,y轴于点A(3,0),点B(0,3).(1)求直线AB的解析式;(2)若点C是线段AB上的一个动点,当△AOC的面积为3时,求出此时点C的坐标;(3)在(2)的条件下,在x轴上是否存在一点P,使得△COP是等腰三角形?若存在,直接写出所有满足条件的点P的坐标,若不存在,请说明理由.【变式1-2】(2022秋•烟台期末)如图,一次函数y=−34x+3的图象与x轴、y轴分别相交于点A,B,将△AOB沿直线CD对折,使点A和点B重合,直线CD与x轴交于点C,与AB交于点D.(1)求A,B两点的坐标;(2)求线段CD的长;(3)在x轴上是否存在点P,使△P AB为等腰三角形?如果存在,请直接写出所有满足条件的点P的坐标;如果不存在,请说明理由.【变式1-3】(2021秋•驿城区校级期末)直线y =kx ﹣8与x 轴、y 轴分别交于B 、C 两点,且OC OB=43.(1)求OB 的长和k 的值;(2)若点A 是第一象限内直线y =kx ﹣8上的一个动点,当它运动到什么位置时,△AOB 的面积是12? (3)在(2)成立的情况下,y 轴上是否存在点P ,使△POA 是等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.(写过程)【变式1-4】(2023•沭阳县模拟)如图,直线AB :y =34x +32与坐标轴交于A 、B 两点,点C 与点A 关于y轴对称.CD ⊥x 轴与直线AB 交于点D . (1)求点A 和点B 的坐标;(2)点P 在直线CD 上运动,且始终在直线AB 下方,当△ABP 的面积为92时,求出点P 的坐标;(3)在(2)的条件下,点Q 为直线CD 上一动点,直接写出所有使△APQ 是以AP 为腰的等腰三角形的点Q 的坐标.【变式1-5】(2022春•珠晖区校级期中)如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC 在x轴上,A,C,B三点的坐标分别为A(0,4),C(3,0),B(﹣5,0),点P从B出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒.(1)求直线AC的解析式和△ABC的AC边上的高线长;(2)连接P A,写出△POA的面积S与t的函数表达式;(3)是否存在一点P,使△P AC是等腰三角形?若存在,请直接写出P点满足条件时,所有t的值;若不存在,请说明理由.【变式1-6】(2022春•明溪县月考)阅读下列材料:课本的定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.该定理的逆命题“在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.”也是真命题.请依据上面定理与真命题,解答下面问题.如图,在直角坐标系xOy中,点A(m,2√3)在正比例函数y=√3x图象上,将y轴沿着x轴正半轴平移m个单位得到直线AB,再将直线AB绕着点A逆时针旋转n°,分别交y轴,x轴于点C,点D.(1)求m的值;(2)如图1,若n=60,求直线AD的表达式;(3)若点C在y轴正半轴上,且△OAC是等腰三角形,求点C的坐标.【例题2】(2022秋•莲湖区期末)如图,直线l:y=12x+m交x轴于点A,交y轴于点B(0,1),点P(n,2)在直线l上.(1)求m,n的值;(2)已知M是x轴上的动点,当以A,P,M为顶点的三角形是直角三角形时,求点M的坐标.【变式2-1】如图,在平面直角坐标系中,正比例函数y=kx(k≠0)的图象经过点Q(6,8),点A在线段OQ上,点B在x轴的正半轴上,且OA+OB=10,点B关于点P(4,0)的对称点为点C,连结AB,AC,设点A的横坐标为t.(1)求k的值,并写出当0<y<6时x的取值范围.(2)当点A在线段OQ上运动时,设OB的长为S.①求S关于t的函数表达式.②当S=5时,求P A的长.(3)当△ABC为直角三角形时,求t的值.【变式2-2】(2022秋•万柏林区校级月考)如图,平面直角坐标系中直线AB与x轴交于点A(﹣3,0)与y轴交于点B(0,6),点C是直线AB上的一点,它的坐标为(m,4),经过点C作直线CD∥x轴交y轴于点D.(1)求点C的坐标及线段AB的长;(2)已知点P是直线CD上一点.请作答.①若△POC的面积为4,求点P的坐标;②若△POC为直角三角形,请直接写出所有满足条件的点P的坐标.【变式2-3】(2022秋•济南期末)如图,已知直线l1经过点(5,6),交x轴于点A(﹣3,0),直线l2:y=3x交直线l1于点B.(1)求直线l1的函数表达式和点B的坐标;(2)求△AOB的面积;(3)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标;若不存在,请说明理由.【变式2-4】(2021春•和平区校级期中)如图,点M(2,m)在直线y1=2x上点A,B的坐标分别是(4,0),(0,2),连接AB,将△AOB沿射线OM方向平移,使点O移动到点M,得到△CMD(点A,B 分别对应点C,D).(1)填空:m=,点C的坐标是;(2)连接AD求直线AD的表达式y2=kx+b;(3)当y2≥y1时,请直接写出x的取值范围;(4)点P是直线OM上的一点,请直接写出使△ADP是以AD为直角边的直角三角形时点P的坐标.【变式2-5】(2022秋•海曙区校级期末)如图1,在同一平面直角坐标系中,直线AB:y=2x+b与直线AC:y=kx+3相交于点A(m,4),与x轴交于点B(﹣4,0),直线AC与x轴交于点C.(1)填空:b=,m=,k=;(2)如图2,点D为线段BC上一动点,将△ACD沿直线AD翻折得到△AED,线段AE交x轴于点F.①当点E落在y轴上时,求点E的坐标;②若△DEF为直角三角形,求点D的坐标.【例题3】如图,一次函数y=−23x+4的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°,求过B、C两点直线的解析式.【变式3-1】(2023春•崇川区校级月考)模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB =CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.(1)求证:△BEC≌△CDA;(2)模型应用:已知直线l1:y=−43x﹣4与y轴交于A点.将直线l1绕着A点逆时针旋转45°至l2,如图2,求l2的函数解析式.【变式3-2】(2022春•南城县校级月考)如图,已知直线y=kx+3分别交x轴、y轴于A、C两点,直线BC过点C交x轴于点B,且OB=2OC=3OA,点D为AC的中点.(1)求k的值以及直线BC的解析式;(2)过点D作DE⊥y轴交BC于点E,连接OE,求四边形AOEC的面积;(3)已知点P是线段BC上的一个动点,点Q是x轴上的一个动点,当以点D、P、Q为顶点的三角形为等腰直角三角形时,求点P的坐标.【变式3-3】(2022秋•和平区校级期末)如图,直线l1经过A(6,0)、B(0,8)两点,点C从B出发沿线段BO以每秒1个单位长度的速度向点O运动,点D从A出发沿线段AB以每秒2个单位长度的速度向点B运动,设运动时间为t秒(t>0),(1)求直线l1的表达式;(2)当t=时,BC=BD;(3)将直线l1沿x轴向右平移3个单位长度后,与x轴,y轴分别交于E、F两点,求四边形BAEF的面积;(4)在第一象限内,是否存在点P,使A、B、P三点构成等腰直角三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.【变式3-4】(2022•南京模拟)如图1,在平面直角坐标系中.直线l 1:y =kx +3与直线l 2:y =﹣x ﹣6交于点A ,已知点A 的横坐标为−185,直线l 1与x 轴交于点B ,与y 轴交于点C ,直线l 2与x 轴交于点F ,与y 轴交于点D .(1)求直线l 1的解析式;(2)将直线l 2向上平移92个单位得到直线l 3,直线l 3与y 轴交于点E .过点E 作y 轴的垂线l 4,若点M 为垂线l 4上的一个动点,点N 为l 2上的一个动点,求DM +MN 的最小值;(3)已知点P 、Q 分别是直线l 1,l 2上的两个动点,连接EP 、EQ 、PQ ,是否存在点P 、Q ,使得△EPQ 是以点Q 为直角顶点的等腰直角三角形,若存在,求点Q 的坐标;若不存在,说明理由.【例题4】(2022秋•蚌山区月考)如图,直线l1:y=ax+b(常数a<0,b>0)与x轴、y轴分别交于A,B两点,直线l2:y=cx+d(常数c>0,d>0)与x轴、y轴分别交于C,D两点,直线l1与直线l2交于点E,且△AOB≌△COD.(1)求证:AB⊥CD;(2)若a=﹣2,b=4,求△ADE的面积.【变式4-1】如图,平面直角坐标系xOy中,l1:y1=﹣2x+4交x轴于A,交y轴于B.另一直线l2:y2=kx+b交x轴于C,交y轴于D,交l1于E.已知△COD≌△BOA.(1)求l2解析式.(2)P,Q分别在线段AB和CD上运动,若P从B开始运动,速度是1单位长度每秒,Q从C开始运动,速度等于P的运动速度,设运动时间为t,则t为多少时,PQ∥x轴?【变式4-2】如图,直线y=−12x+2与x轴、y轴分别交于A,B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动,设动点M的移动时间为t秒.(1)求A,B两点的坐标;(2)求当t为何值时△COM≌△AOB,并求此时M点的坐标.【变式4-3】如图,直线:y=−12x+b与x轴分别交于A(4,0)、B两点,在y轴上有一点N(0,4),动点M从点A以每秒1个单位的速度匀速沿x轴向左移动.(1)点B的坐标为;(2)求△MNO的面积S与移动时间t之间的函数关系式;(3)当t=时,△NOM≌△AOB;(4)若M在x轴正半轴上,且△NOM≌△AOB,G是线段ON上一点,连接MG,将△MGN沿MG折叠,点N恰好落在x轴上的H处,求G点的坐标.【变式4-4】如图①,在平面直角坐标系中,直线y=−43x+4交x轴、y轴分别于点A、点B,直线CD 交x轴、y轴分别于点D、点C,交直线AB于点E(点E不与点B重合),且△AOB≌△COD.(1)求直线CD的函数表达式;(2)如图②,连接OE,过点O作OF⊥OE交直线CD于点F,①求证:OE=OF;②直接写出点F的坐标.(3)若点P是直线CD上一点,点Q是x轴上一点(点Q不与点O重合),当△DPQ和△COD全等时,直接写出点P的坐标.【变式4-5】如图①,平面直角坐标系中,直线y=kx+b与x轴交于点A(﹣10,0),与y轴交于点B,与直线y=−73x交于点C(a,7).(1)求点C的坐标及直线AB的表达式;(2)如图②,在(1)的条件下,过点E作直线l⊥x轴,交直线y=−73x于点F,交直线y=kx+b于点G,若点E的坐标是(﹣15,0).①求△CGF的面积;②点M为y轴上OB的中点,直线l上是否存在点P,使PM﹣PC的值最大?若存在,直接写出这个最大值;若不存在,说明理由;(3)若(2)中的点E 是x 轴上的一个动点,点E 的横坐标为m (m <0),点E 在x 轴上运动,当m 取何值时,直线l 上存在点Q ,使得以A ,C ,Q 为顶点的三角形与△AOC 全等?请直接写出相应的m 的值.【例题5】(2022•铜仁市三模)(1)探索发现:如图1,已知Rt △ABC 中,∠ACB =90°,AC =BC ,直线l 过点C ,过点A 作AD ⊥l ,过点B 作BE ⊥l ,垂足分别为D 、E .求证:CD =BE .(2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点N 的坐标为(4,2),求点M 的坐标. (3)拓展应用:如图3,在平面直角坐标系内,已知直线y =﹣4x +4与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45°后,所得的直线交x 轴于点R .求点R 的坐标.【变式5-1】(2022秋•邗江区校级期末)如图1,在平面直角坐标系中,点A 的坐标为(3,0),点B的坐标为(0,4),点C在y轴上,作直线AC.点B关于直线AC的对称点B′刚好在x轴上,连接CB′.(1)写出点B′的坐标,并求出直线AC对应的函数表达式;(2)点D在线段AC上,连接DB、DB′、BB′,当△DBB′是等腰直角三角形时,求点D坐标;(3)如图2,在(2)的条件下,点P从点B出发以每秒1个单位长度的速度向原点O运动,到达点O时停止运动,连接PD,过D作DP的垂线,交x轴于点Q,问点P运动几秒时△ADQ是等腰三角形.【变式5-2】(2021春•闵行区期中)一次函数y=kx+√3(k≠0)的图象与x轴、y轴分别交于A(1,0)、B(0,m)两点.(1)求一次函数解析式和m的值;(2)将线段AB绕着点A旋转,点B落在x轴负半轴上的点C处.点P在直线AB上,直线CP把△ABC 分成面积之比为2:1的两部分.求直线CP的解析式;(3)在第二象限是否存在点D,使△BCD是以BC为腰的等腰直角三角形?若存在,请直接写出点D 的坐标;若不存在,请说明理由.【变式5-3】如图1所示,腰长为3的等腰Rt△AOB的腰与坐标轴重合,直线y=−23x与AB交于点C.(1)求点C的坐标;(2)如图2,将直线OC沿y轴正方向平移4个单位长度得到直线DE(其中D、E分别为新直线与y轴、x轴的交点),连接DC、CE,求△CDE的面积;(3)如图3,在第(2)问的条件下,将△AOB沿x轴平移得到△NKM,连接DN、DM,当△DMN为等腰三角形时,直接写出M的坐标.【变式5-4】(2021春•梁平区期末)如图1,在矩形OACB中,点A,B分别在x轴、y轴正半轴上,点C 在第一象限,OA=8,OB=6.(1)请直接写出点C的坐标;(2)如图2,AF平分∠BAC交BC于点F,求△ACF的面积;(3)如图3,动点P(x,y)在第一象限,且点P在直线y=2x﹣4上,点D在线段AC上,是否存在直角顶点为P的等腰直角三角形BDP,若存在,请求出直线PD的解析式;若不存在,请说明理由.【变式5-5】(2021春•九龙坡区期中)如图1,矩形OABC摆放在平面直角坐标系中,点A在y轴上,点C在x轴上,OA=6,AB=4,点D在BC上,BD=2,过点A的直线交x轴于点E,连接DE,且DE ⊥AD.(1)△ADE是三角形,直线AE的解析式为;(2)如图2,点F是DE的中点,请在直线AE上找一点G,使得△DFG的周长最小,并求出此时点G 的坐标和△DFG周长的最小值;(3)如图3,将直线AE进行平移,记平移后的直线为l,直线l与直线DE相交于点M,与x轴相交于点N,是否存在这样的点M、N,使得△DMN是等腰直角三角形.若存在,请直接写出点M的坐标,若不存在,请说明理由.。
八年级数学一次函数综合应用(一)(北师版)(含答案)
一次函数综合应用(一)(北师版)一、单选题(共7道,每道14分)1.已知一次函数y=kx+b的图象经过点A(0,6),且与正比例函数的图象相交于点B(-4,a),则这个一次函数的表达式是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:坐标表达式互转2.已知一次函数y=kx+b的图象经过点(-3,4),并且与y轴相交于点P,直线与y轴相交于点Q,点Q恰与点P关于x轴对称,则这个一次函数的表达式是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:坐标表达式互转3.已知,一次函数y=kx+b过点P,且与正比例函数y=2x的图象相交于A(1,a).若点Q的坐标为(1,4),且点P与点Q关于原点对称,则这个一次函数的解析式为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:坐标表达式互转4.已知一次函数的图象交x轴于点A(-4,0),交正比例函数的图象于点B,且点B在第四象限,它的横坐标为1.若△AOB的面积为3,则这个一次函数的解析式为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:坐标表达式互转5.如图,直线与x轴和y轴分别交于点A和点B,直线交直线于点C,且与x轴交于点D,则直线的表达式为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:坐标表达式互转6.(上接第5题)在直线上存在异于C的一点P,使得△ADP与△ADC的面积相等,则点P的坐标为( )A.(7,-6)B.(-9,-6)C. D.(-10,-6)答案:B解题思路:试题难度:三颗星知识点:待定系数法求一次函数解析式7.已知A(-4,3),B(2,3),C(3,2),直线经过点C和点P,点P是x轴上一点,且使AP+BP 最短,则直线的解析式为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:坐标表达式互转。
初二数学一次函数与综合应用(含答案)
一次函数与综合应用例题精讲一、一次函数的应用【例1】小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是()B.15分钟C.25分钟D.27分钟【答案】B【例2】有一个装有进、出水管的容器,单位时间内进、出的水量都是一定的,已知容器的容积为600升,又知单开进水管10分钟可把空容器注满,若同时打开进、出水管,20分钟可把满容器的水放完。
现已知水池内有水200升,先打开进水管5分钟,再打开出水管,两管同时开放直至把容器的水放完。
则能正确反映这一过程中容器的水量Q(升)随时间t(分钟)变化的图象是()【答案】B【例3】甲、乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:①他们都行驶了18千米;②甲在途中停留了0.5小时;③乙比甲晚出发0.5小时;④相遇后,甲的速度小于乙的速度;⑤甲、乙两人同时到达目的地。
其中符合图象描述的说法有()A.2个B.3个C.4个 D.5个Array(小时)【答案】C【例4】 某工厂用一种自动控制加工机制作一批工件,该机器运行过程分为加油过程和加工过程:加工过程中,当油箱中油量为10升时,机器自动停止加工进入加油过程,将油箱加满后继续加工,如此往复。
已知机器运行需运行185分钟才能将这批工件加工完。
如图是油箱中油量y (升)与机器运行时间x (分)之间的函数图象。
根据图象回答下列问题:⑴求在第一个加工过程中,油箱中油量y (升)与机器运行时间x (分)之间的函数关系式(不必写出自变量的取值范围)⑵机器运行多少分钟时,第一个加工过程停止? ⑶加工完这批工件,机器耗油多少升?【答案】⑴110y x =-+⑵100分钟 ⑶175升【例5】 东风商场文具部的某种毛笔每枝售价25元,书法练习本每本售价5元,该商场为促销制定了两种优惠办法.甲:买一枝毛笔就赠送一本书法练习本. 乙:按购买金额打九折付款.某校欲为校书法兴趣小组购买这种毛笔10枝,书法练习本(10)x x ≥本.⑴写出每种优惠办法实际的金额y 甲(元),y 乙(元)与x (本)之间的函数关系式; ⑵比较购买同样多的书法练习本时,按哪种优惠办法付款更省钱;⑶如果商场允许可以任意选择一种优惠办法购买,也可以同时选两种优惠办法购买,请你就购买这种毛笔10枝和书法练习本60本设计一种最省钱的购买方案.【答案】⑴25105(10)5200(10)y x x x =⨯+-=+≥甲,(25105)90% 4.5225(0)y x x x =⨯+⨯=+≥乙;⑵当购买50本书法练习本时,两种优惠办法的实际付款一样,即可任选一种办法付款;当购买本数在10~50本之间,选择的优惠办法甲付款更省钱;当购买本数大于50本时,选择优惠办法乙付款更省钱.⑶选用优惠办法甲购买10枝毛笔和10本书法练习本,再用优惠办法乙购买50本书法练习本的方案最省钱.【例6】 一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y (百元)关于观众人数x (百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y (百元)关于观众人数x (百人)的函数解析式和成本费用s (百元)关于观众人数x (百人)的函数解析式;⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费)【答案】⑴由图象可知:当010x ≤≤时,设y 关于x 的函数解析100y kx =-,∵(10,400)在100y kx =-上,∴40010100k =-,解得50k = ∴50100y x =-,100(50100)s x x =--),∴50100s x =+ ⑵当1020x <≤时,设y 关于x 的函数解析式为y mx b =+, ∵(10,350),(20,850)在y mx b =+上, 1035020580m b m b +=⎧⎨+=⎩,解得50150m b =⎧⎨=-⎩∴50150y x =-,∴()100501505050100s x x s x ∴=---∴=+ ∴()()50100010501501020x x y x x ⎧-⎪=⎨-<⎪⎩≤≤≤令360y =当010x ≤≤时,50100360x -= 解得9.2x = 50100509.2100560s x =+=⨯+=当1020x <≤时,50150360x -=解得10.2x = 501005010.2100610s x =+=⨯+=.要使这次表演会获得36000元的毛利润. 要售出920张或1020张门票,相应支付的成本费用分别为56000元或61000元.二、一次函数与几何综合【例7】 如图所示,已知正比例函数y x =和3y x =,过点()20A ,作x 轴的垂线,与这两个正比例函数的图象分别交与B C ,两点,求三角形OBC 的面积(其中O 【答案】由题意,∵20A (,),AC x ⊥轴 ∴将2x =分别代入3y x y x ==、得,()()2226B C ,,,∴624BC =-=∴1142422OBC S BC OA ∆=⋅⋅=⨯⨯=【例8】 如图,直线6y kx =+与x 轴y 轴分别相交于点E F 、. 点E 的坐标为 8, 0-(), 点A 的坐标为()60-,. 点,P x y ()是第二象限内的直线上的一个动点。
一次函数的简单应用综合
一次函数的应用-耗油量问题1.张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前邮箱有油25升,已知汽车以100千米/小时的速度匀速行驶,两小时后,油箱还有9升油。
则油箱中剩余油量y(升)与行驶时间t(小时)的函数关系式是y=______(不要求写出自变量的取值范围)2.暑假期间,小明和父母一起开车到距家250千米的某景点旅游、出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升(汽车行使过程中,每千米的耗油量不变)则油箱余油量y与行驶路程x之间的函数关系式为y=______(不要求写出自变量的取值范围)3.如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x(单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.则当速度为50km/h时,该汽车的耗油量为______L/km4.某汽车生产厂对其生产的A型汽车进行耗油量实验,实验中汽车视为匀速行驶,已知油箱中的余油量y(升)与行驶时间t(小时)的关系如下表:则y与t之间的函数关系式为y=______(不要求写出自变量的取值范围)5. 汽车在行驶过程中,油箱中剩余油量Q(升)与行驶路程s(千米)之间存在函数关系Q=a-ks.其中a,k为常数.小明乘坐爸爸驾驶的汽车外出(出发前刚加满油),他注意到行驶了200千米时,油箱中还有25升油,行驶了300千米时,油箱中仅剩下15升油,试问:(1)Q与s之间函数解析式为Q=______(不要求写出自变量的取值范围)(2)这辆车加满油后,最多能行驶_____千米(3)邮箱中最多能装______升油6. 一辆机动车行驶在路途中.出发时,油箱内存油40L.行驶若干小时后司机停车吃饭,饭后继续行驶一段时间后到达某加油站准备加油,图中表示的是该过程中油箱里剩余油量Q(L)与行驶时间t(h)之间的函数关系.(1)司机行驶______小时停车吃饭;吃饭用了______小时;(2)则饭前行驶过程中的函数解析式为Q=______;(不要求写出自变量的取值范围)(3)6小时后,邮箱内还有______升油.7. 拖拉机的油箱有油100升,每工作1小时耗油8升,则油箱的剩余油量y(升)与工作时间x(时)间的函数关系式为y=______.(不要求写出自变量的取值范围)8. 货车在公路A处加满油后,以每小时60千米的速度匀速行驶,前往与A处相距360千米的B处.下表记录的是货车一次加满油后油箱剩余油量y(升)与行驶时间x(时)之间的关系:则这个函数解析式y=______.(不要求写出自变量的取值范围)一次函数的应用-弹簧问题1.若弹簧的总长度y(cm)是所挂重物质量x(kg)的一次函数;已知不挂重物时,弹簧的长度是10cm,挂20千克质量的重物时,弹簧的长度是20cm,则这个一次函数的解析式为______(写成y=kx+b,k≠0形式,不要求写出自变量的取值范围)2.一根弹簧的原长是3.5cm,且每挂重2kg就伸长1.8 cm,则重后弹簧的长度y(cm)与挂重x(kg)之间的函数关系式为______(写成y=kx+b,k≠0形式,不要求写出自变量的取值范围)3. 根据下面的研究弹簧长度与所挂物体重量关系的实验表格,不挂物体时,弹簧原长______cm;当所挂物体重量为3.5kg时,弹簧比原来伸长______cm。
一次函数的应用与综合篇(解析版)--中考数学必考考点总结+题型专训
知识回顾一次函数的应用与综合--中考数学必考考点总结+题型专训1.一次函数的图像与性质:一次函数与x 轴的交点坐标公式为:⎪⎭⎫ ⎝⎛-0 ,kb ;与y 轴的交点坐标公式为:()b ,0。
2.一次函数的平移:①左右平移,自变量上进行加减。
左加右减。
即若()0≠+=k b kx y 向左移动了m 个单位,则平移后的函数解析式为:()()0≠++=k b m x k y ;若()0≠+=k b kx y 向右移动了m 个单位,则平移后的函数解析式为:()()0≠+-=k b m x k y 。
②上下平移,解析式整体后面进行加减。
上加下减。
即若()0≠+=k b kx y 向上移动了m 个单位,则平移后的函数解析式为:()0≠++=k m b kx y ;若()0≠+=k b kx y 向下移动了m 个单位,则平移后的函数解析式为:()0≠-+=k m b kx y 。
3.一次函数的对称变换:①若一次函数关于x 轴对称,则自变量不变,函数值变为相反数。
即()0≠+=k b kx y 关于x 轴的函数解析式为:()0≠+=-k b kx y ,即()0≠--=k b kx y 。
②若一次函数关于y 轴对称,则函数值不变,自变量变成相反数。
即()0≠+=k b kx y 关于y 轴的函数解析式为:()()0≠+-=k b x k y ,即()0≠+-=k b kx y 。
③若一次函数关于原点对称,则自变量与函数值均变成相反数。
即()0≠+=k b kx y 关于原点的函数解析式为:()()0≠+-=-k b x k y ,即()0≠-=k b kx y 。
4.待定系数法求函数解析式:具体步骤:①设函数解析式——()0≠+=k b kx y 。
②找点——经过函数图像上的点。
③带入——将找到的点的坐标带入函数解析式中得到方程(或方程组)。
④解——解③中得到的方程(或方程组),求出b k ,的值。
⑤反带入——将求出的k ,5.一次函数与一元一次方程:①若一次函数()0≠+=k b kx y 的图像经过点()n m ,,则一元一次方程n b kx =+的解为m x =。
二次函数和一次函数的综合应用
二次函数和一次函数的综合应用二次函数和一次函数是数学中常见的函数类型,它们在实际问题的解决中具有广泛的应用。
二次函数的一般形式为y=ax^2+bx+c,一次函数的一般形式为y=mx+n。
在本文中,将探讨二次函数和一次函数的综合应用,并通过实际问题的例子,说明它们在现实生活中的应用价值。
1. 抛物线的模型应用二次函数可以用来建立抛物线的模型,抛物线在现实生活中的应用非常广泛。
例如,在物理学中,当考虑抛体在空中自由落体运动时,可以使用二次函数来描述物体的运动轨迹。
另外,抛物线也可用于炮弹的射程计算、杆塔的线拉力计算等工程问题。
2. 二次方程的求解二次函数与二次方程密切相关,二次方程是二次函数的零点问题。
二次方程的求解是解决许多实际问题的基础。
例如,在物理学中,当考虑自由落体运动时,可以通过求解二次方程来计算物体的时间、速度等参数。
在经济学中,二次方程可以用来解决成本、收益、利润等问题。
在工程领域中,二次方程可以应用于建筑、设计、模拟等方面。
3. 直线与曲线的交点问题一次函数和二次函数之间的交点问题是实际生活中常见的问题。
例如,在经济学中,我们可以通过求解一次函数和二次函数的交点,来分析生产成本与产量之间的关系,或者评估销售利润和销售数量之间的关系。
在几何学中,我们可以通过求解二次函数与一次函数的交点,来解决线段和抛物线的交点问题。
4. 最优化问题二次函数和一次函数也常用于解决最优化问题。
例如,在经济学中,我们可以通过建立成本函数和收益函数来优化生产和经营决策。
通过研究二次函数的顶点来确定最大值或最小值。
在物理学中,最优化问题也广泛应用于动力学、力学等领域。
综上所述,二次函数和一次函数的综合应用非常重要,并在许多领域中发挥着重要的作用。
通过建立模型、求解方程、分析交点和解决最优化问题,我们可以利用二次函数和一次函数来解决现实生活中的实际问题。
这些方法不仅在学术研究中有重要意义,也对我们的日常生活产生了积极的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.(3分)如图,在长方形ABCD中,AB=8,DC=4,将长方形的一角沿AC折叠,则重叠阴影部分△AFC的面积为()
A.14 B.12 C.10 D.8
16.(3分)如图,在平面直角坐标系中,点A的坐标是(0,3),点B的坐标是(﹣4,0),以AB为边作正方形ABCD,连接OD,DB.则△DOB的面积是.
23.(8分)如图,正方形ABOD的边长为2,OB在x轴上,OD在y轴上,且AD∥OB,AB∥OD,点C为AB的中点,直线CD交x轴于点F.
(1)求直线CD的函数关系式;
(2)过点C作CE⊥DF且交于点E,求证:∠ADC=∠EDC;
(3)求点E坐标;
(4)点P是直线CE上的一个动点,求PB+PF的最小值.
一.解答题(共8小题)
1.一次函数y=kx+b的图象与两坐标轴分别交于A(2,0),B(0,﹣1)两点.(1)求k、b;
(2)P为该一次函数图象上一点,过P作PQ⊥x轴,垂足为Q.若S
=4,求
△PAQ
点P的坐标.
2.如图,一次函数y=x+6的图象交x轴于点A、交y轴于点B,∠ABO的平分线交x轴于点C,过点C作直线CD⊥AB,垂足为点D,交y轴于点E.
(1)求直线CE的解析式;
(2)在线段AB上有一动点P(不与点A,B重合),过点P分别作PM⊥x轴,PN⊥y轴,垂足为点M、N,是否存在点P,使线段MN的长最小?若存在,请直接写出点P的坐标;若不存在,请说明理由.
3.如图:在平面直角坐标系中,直线AB与x轴、y轴分别交于B、A两点,若OA、OB的长分别是方程若x2﹣7mx+48=0的两根且OB>OA,AB=10.AC平分∠BAO交x轴于点C.
(1)求A、B两点的坐标.
(2)直线AC的解析式.
(3)直线AC上是否存在点P,使A、B、P三点构成的三角形为直角三角形?若存在,请直接写出P 点坐标;若不存在,请说明理由.
4.如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y 轴于B、C两点,∠ABO=30°,OB=3OC.
(1)试说明直线AC与直线AB垂直;
(2)若点D在直线AC上,且DB=DC,求点D的坐标;
(3)在(2)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.
5.如图(1),直线y=﹣x+3分别与y轴、x轴交于A、C两点,以OA、OC为边作正方形OABC,E是边OC上一点,将直线AE绕A点逆时针旋转45°与过E点垂直于AE的直线交于点D.
(1)求A、B、C三点的坐标;
(2)若直线AD的解析式为y=﹣x+3,求直线DE的解析式.
6.如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x 轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处.
(1)求D、E两点的坐标;
(2)求D、E两点所在直线的函数解析式.
7.如图,已知正方形OABC的边长为3,点D在BC上,点E在AB上,且BD=1.(1)点D的坐标是;
(2)若∠ODE=90°,求点E的坐标;
(3)设一次函数y=kx﹣2k的图象与x轴交于点P,与正方形OABC的边交于点Q,若△OPQ为等腰三角形,求该一次函数的解析式.
8.如图,矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(﹣12,16),矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、x轴分别交于点D、F.
(1)直接写出线段BO的长;
(2)求直线BD解析式.。