一元一次函数应用题测试

合集下载

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册一、利用一次函数模型解决实际问题例1.实验表明,在某地,温度在15℃至25℃的范围内,一种蟋蟀1min的平均鸣叫次数y可近似看成该地当时温度x(℃)的一次函数.已知这种蟋蟀在温度为16℃时,1min平均鸣叫92次;在温度为23℃时,1min平均鸣叫155次.(1)求y与x之间的函数表达式;(2)当这种蟋蟀1min平均鸣叫128次时,该地当时的温度约是多少?变式1.如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位:cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数表达式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8cm,求此时碗的数量最多为多少个?变式2.某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.二、利用一次函数解决行程问题例2.小军到某景区游玩,他从景区入口处步行到达小憩屋,休息片刻后继续前行,此时观光车从景区入口处出发的沿相同路线先后到达观景点,如图,l1,l2分别表示小军与观光车所行的路程y(m)与时间x(min)之间的关系.根据图象解决下列问题:(1)观光车出发分钟追上小军;(2)求l2所在直线对应的函数表达式;(3)观光车比小军早几分钟到达观景点?请说明理由.变式1.在一条笔直的道路上依次有A,B,C三地,男男从A地跑步到C地,同时乐乐从B地跑步到A地,休息1分钟后接到通知,要求乐乐比男男早1分钟到达C地,两人均匀速运动,如图是男男跑步时间t(分钟)与两人距A 地路程s(米)之间的函数图象.(1)a=,乐乐去A地的速度为;(2)结合图象,求出乐乐从A地到C地的函数解析式(写出自变量的取值范围);(3)请直接写出两人距B地的距离相等的时间.变式2.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s (km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为km/h,C点的坐标为.(2)慢车出发多少小时后,两车相距200km.变式3.某物流公司的一辆货车A从乙地出发运送货物至甲地,1小时后,这家公司的一辆货车B从甲地出发送货至乙地.货车A、货车B距甲地的距离y(km)与时间x(h)之间的关系如图所示.(1)求货车B距甲地的距离y与时间x的关系式;(2)求货车B到乙地后,货车A还需多长时间到达甲地.三、利用一次函数解决最低费用和最高利润问题例3.某校开设棋类社团,购买了五子棋和象棋.五子棋比象棋的单价少8元,用1000元购买的五子棋数量和用1200元购买的象棋数量相等.(1)两种棋的单价分别是多少?(2)学校准备再次购买五子棋和象棋共30副,根据学生报名情况,购买五子棋数量不超过象棋数量的3倍.问购买两种棋各多少副时费用最低?最低费用是多少?变式1.眉山是“三苏”故里,文化底蕴深厚.近年来眉山市旅游产业蓬勃发展,促进了文创产品的销售,某商店用960元购进的A款文创产品和用780元购进的B款文创产品数量相同.每件A款文创产品进价比B款文创产品进价多15元.(1)求A,B两款文创产品每件的进价各是多少元?(2)已知A款文创产品每件售价为100元,B款文创产品每件售价为80元,根据市场需求,商店计划再用不超过7400元的总费用购进这两款文创产品共100件进行销售,问:怎样进货才能使销售完后获得的利润最大,最大利润是多少元?变式 2.近年来,中国传统服饰备受大家的青睐,走上国际时装周舞台,大放异彩.某服装店直接从工厂购进长、短两款传统服饰进行销售,进货价和销售价如表:价格/类别短款长款进货价(元/件)8090销售价(元/件)100120(1)该服装店第一次用4300元购进长、短两款服装共50件,求两款服装分别购进的件数;(2)第一次购进的两款服装售完后,该服装店计划再次购进长、短两款服装共200件(进货价和销售价都不变),且第二次进货总价不高于16800元.服装店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?变式3.某小区物管中心计划采购A,B两种花卉用于美化环境.已知购买2株A 种花卉和3株B种花卉共需要21元;购买4株A种花卉和5株B种花卉共需要37元.(1)求A,B两种花卉的单价.(2)该物管中心计划采购A,B两种花卉共计10000株,其中采购A种花卉的株数不超过B种花卉株数的4倍,当A,B两种花卉分别采购多少株时,总费用最少?并求出最少总费用.变式4.A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见如表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A 种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.变式5.成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A 种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.变式6.某县著名传统土特产品“豆笋”、“豆干”以“浓郁豆香,绿色健康”享誉全国,深受广大消费者喜爱.已知2件豆笋和3件豆干进货价为240元,3件豆笋和4件豆干进货价为340元.(1)分别求出每件豆笋、豆干的进价;(2)某特产店计划用不超过10440元购进豆笋、豆干共200件,且豆笋的数量不低于豆干数量的,该特产店有哪几种进货方案?(3)若该特产店每件豆笋售价为80元,每件豆干售价为55元,在(2)的条件下,怎样进货可使该特产店获得利润最大,最大利润为多少元?变式7.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?四、利用一次函数解决含参数的最高利润问题例4.在襄阳市创建“经济品牌特色品牌”政策的影响下.每到傍晚,市内某网红烧烤店就食客如云,这家烧烤店的海鲜串和肉串非常畅销,店主从食品加工厂批发以上两种产品进行加工销售,其中海鲜串的成本为m元/支,肉串的成本为n元/支;两次购进并加工海鲜串和肉串的数量与成本如下表所示(成本包括进价和其他费用):次数数量(支)总成本(元)海鲜串肉串第一次3000400017000第二次4000300018000针对团以消费,店主决定每次消费海鲜串不超过200支时,每支售价5元;超过200支时、不超过200支的部分按原价,超过200支的部分打八折.每支肉串的售价为3.5元.(1)求m、n的值;(2)五一当天,一个旅游团去此店吃烧烤,一次性消费海鲜串和肉串共1000支,且海鲜串不超过400支.在本次消费中,设该旅游团消费海鲜串x支,店主获得海鲜串的总利润为y元,求y与x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,该旅游团消费的海鲜串超过了200支,店主决定给该旅游团更多优惠,对每支肉串降价a(0<a<1)元,但要确保本次消费获得肉串的总利润始终不低于海鲜串的总利润,求a的最大值.变式1.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?变式2.为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.变式3.为迎接“五一”小长假购物高潮,某品牌专卖店准备购进甲、乙两种衬衫,其中甲、乙两种衬衫的进价和售价如下表:衬衫价格甲乙m m﹣10进价(元/件)260180售价(元/件)若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同.(1)求甲、乙两种衬衫每件的进价;(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元,且不超过34700元,问该专卖店有几种进货方案;(3)在(2)的条件下,专卖店准备对甲种衬衫进行优惠促销活动,决定对甲种衬衫每件优惠a元(60<a<80)出售,乙种衬衫售价不变,那么该专卖店要获得最大利润应如何进货?五、利用一次函数解决方案问题例5.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.变式1.某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实际意义;(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为a kg时,它们的利润和为1500元,求a的值.。

一元一次函数应用题与答案

一元一次函数应用题与答案

一元一次方‎程应用题归‎类汇集一、列方程解应‎用题的一般‎步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表‎示本题含义‎的相等关系‎(找出等量关‎系).(2)设—设出未知数‎:根据提问,巧设未知数‎.(3)列—列出方程:设出未知数‎后,表示出有关‎的含字母的‎式子,然后利用已‎找出的等量‎关系列出方程.(4)解——解方程:解所列的方‎程,求出未知数‎的值.(5)答—检验,写答案:检验所求出‎的未知数的‎值是否是方‎程的解,是否符合实‎际,检验后写出‎答案.(注意带上单‎位)二、一般行程问‎题(相遇与追击‎问题)1.行程问题中‎的三个基本‎量及其关系‎:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基‎本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距1、从甲地到乙‎地,某人步行比‎乘公交车多‎用3.6小时,已知步行速‎度为每小时‎8千米,公交车的速‎度为每小时‎40千米,设甲、乙两地相距‎x千米,则列方程为‎。

解:等量关系步行时间-乘公交车的‎时间=3.6小时列出方程是‎:2、某人从家里‎骑自行车到‎学校。

若每小时行‎15千米,可比预定时‎间早到15‎分钟;若每小时行‎9千米,可比预定时‎间晚到15‎分钟;求从家里到‎学校的路程‎有多少千米‎?解:等量关系⑴速度15千‎米行的总路‎程=速度9千米‎行的总路程‎⑵速度15千‎米行的时间‎+15分钟=速度9千米‎行的时间-15分钟提醒:速度已知时‎,设时间列路‎程等式的方‎程,设路程列时‎间等式的方‎程。

方法一:设预定时间‎为x小/时,则列出方程‎是:15(x-0.25)=9(x+0.25)方法二:设从家里到‎学校有x千‎米,则列出方程‎是:3、一列客车车‎长200米‎,一列货车车‎长280米‎,在平行的轨‎道上相向行‎驶,从两车头相‎遇到两车车‎尾完全离开‎经过16秒‎,已知客车与‎货车的速度‎之比是3:2,问两车每秒‎各行驶多少‎米?提醒:将两车车尾‎视为两人,并且以两车‎车长和为总‎路程的相遇‎问题。

齐齐哈尔市必修第一册第二单元《一元一次函数,方程和不等式》测试(含答案解析)

齐齐哈尔市必修第一册第二单元《一元一次函数,方程和不等式》测试(含答案解析)

一、选择题1.现有以下结论: ①函数1y x x=+的最小值是2; ②若a 、b R ∈且0ab >,则2b aa b+≥;③y =2;④函数()4230y x x x=-->的最小值为2-. 其中,正确的有( )个A .0B .1C .2D .32.如果两个正方形的边长之和为1,那么它们的面积之和的最小值是( ) A .14B .12C .1D .23.已知正数x ,y 满足2021x y xy +=,则2120x y+的最小值为( ) A .2B .3C .4D .54.设实数x 满足0x >,函数4231y x x =+++的最小值为( )A .1B .2C .1D .65.已知不等式222ax y xy +≥,若对于任意[1,2],[2,3]x y ∈∈,该不等式恒成立,则实数a 的取值范围是( ). A .3a ≥-B .1a ≥-C .18a ≥D .118a -≤≤6.甲、乙、丙、丁四人参加数学竞赛,四人在成绩公布前作出如下预测: 甲预测说:获奖者在乙、丙、丁三人中; 乙预测说:我不会获奖,丙获奖 丙预测说:甲和丁中有一人获奖; 丁预测说:乙的猜测是对的成绩公布后表明,四人的猜测中有两人的预测与结果相符.另外两人的预测与结果不相符,已知有两人获奖,则获奖的是() A .甲和丁 B .乙和丁 C .乙和丙 D .甲和丙7.下列命题中是真命题的是( )A.y =的最小值为2;B .当a >0,b >0时,114a b++; C .若a 2+b 2=2,则a +b 的最大值为2;D .若正数a ,b 满足2,a b +=则11+4+22a b +的最小值为12.8.若直线220ax by +-=(),a b R +∈平分圆222460xy x y +---=,则21a b+的最小值是( ). A .1B .5C.D.3+9.若不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则a b -=( ) A .4-B .14C .10-D .1010.若直线10ax by --=,(a ,0b >)过点()2,1-,则11a b+的最小值为( ) A.3-B .8C.D.3+11.下列结论不正确的是( ) A .若a b >,0c >,则ac bc > B .若a b >,0c >,则c c a b> C .若a b >,则a c b c +>+D .若a b >,则a c b c ->-12.若关于x 的不等式220x ax +->在区间[]1,5上有解,则a 的取值范围是( ) A .23,5⎛⎫-+∞ ⎪⎝⎭B .23,15⎡⎤-⎢⎥⎣⎦C .()1,+∞D .23,5⎛⎤-∞ ⎥⎝⎦二、填空题13.已知0,0,4a b a b >>+=,则411a b ++的最小值为__________. 14.已知0a b >>,则41a ab a b+++-的最小值为__________. 15.当1x >时,11x x +-的最小值为___________. 16.设x >0,y >0,x +2y =4,则(4)(2)x y xy++的最小值为_________.17.已知函数223,1(){lg(1),1x x f x x x x +-≥=+<,则((3))f f -= ,()f x 的最小值是 .18.已知0a >,0b >,若不等式212m a b a b+≥+恒成立,则m 的最大值为______.19.已知,a b 为正实数,直线y x a =-与曲线ln()y x b =+相切,则23a b+的最小值为__________.20.已知正实数,x y 满足3x+y+=xy ,则x y +的最小值为__________.三、解答题21.已知二次函数()223f x x ax =-+.(1)若()f x 在(],1-∞上单调递减,求实数a 的最小值; (2)存在[]4,2x ∈--,使得()f x a ≥有解,求实数a 的取值范围.22.对于四个正数x y z w ,,,,如果xw yz <,那么称()x y ,是()z w ,的“下位序对”. (1)对于23711,,,,试求()27,的“下位序对”; (2)设a b c d ,,,均为正数,且()a b ,是()c d ,的“下位序对”,试判断c a a cd b b d++,,之间的大小关系.23.已知不等式()21460a x x --+>的解集为{}31x x -<<.(1)解不等式()2220x a x a +-->;(2)b 为何值时,230ax bx ++≥的解集为R ?24.设函数()()()2230f x ax b x a =+-+≠.(1)若(1)4f =,且,a b 均为正实数,求14a b+的最小值,并确定此时实数,a b 的值; (2)若b R ∀∈满足()222(1)32b f x a x a ab >--+-+在x ∈R 上恒成立,求实数a 的取值范围.25.设全集U =R ,集合2A={x|x -4x-12<0},B={x|(x-a)(x-2a)<0}. (1)当a=1时,求集合UA B ⋂;(2)若B A ⊆,求实数a 的取值范围.26.设a ,b 为实数,比较22a b +与1ab a b ++-的大小.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】取0x <,可判断①的正误;利用基本不等式可判断②③④的正误. 【详解】对于①,当0x <时,10y x x=+<,①错误;对于②,若a ,b R ∈且0ab >,说明0b a >,0a b >,则2b a a b +≥=,当且仅当22a b =时取等号,显然成立,②正确;对于③,2y =≥=,=231x +=,显然这样的x 不存在,所以结论不正确,③错误;对于④,因为0x >,所以43x x+≥函数()4230y x x x=-->的最大值为2-,所以结论不正确,④错误. 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.B解析:B 【分析】设两个正方形的边长分别为x 、y ,可得1x y +=,利用基本不等式可求得两个正方形的面积之和22x y +的最小值.【详解】设两个正方形的边长分别为x 、y ,则0x >,0y >且1x y +=,由基本不等式可得222x y xy +≥,所以,()()22222221x yx y xy x y +≥++=+=,所以,2212x y +≥,当且仅当12x y ==时,等号成立,因此,两个正方形的面积之和22x y +的最小值为12. 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.C解析:C 【分析】 由已知得20211y x +=,再202121202120x y x y y x ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,运用基本不等式可得选项. 【详解】由2021x y xy +=得20211y x+=,2021202122224212021202120x y x y x y y x y x ⎛⎫⎛⎫+=++=++≥+=+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当20212120x y y x=且20211y x +=,即42,40x y ==.时,等号成立. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.A解析:A 【分析】将函数变形为()43111y x x =++-+,再根据基本不等式求解即可得答案.解:由题意0x >,所以10x +>, 所以()4423231311y x x x x =++=++-+++()4311111x x =++-≥=+,当且仅当()4311x x +=+,即103x =->时等号成立,所以函数4231y x x =+++的最小值为1. 故选:A . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方5.B解析:B 【分析】 将a 分离出来得22()y ya x x ≥-,然后根据[1x ∈,2],[2y ∈,3]求出y x的范围,令yt x=,则22a t t ≥-在[1,3]上恒成立,利用二次函数的性质求出22t t -的最大值,即可求出a 的范围. 【详解】 解:由题意可知:不等式222ax y xy +≥对于[1,2],[2,3]x y ∈∈恒成立, 即:22()y ya x x≥-,对于[1,2],[2,3]x y ∈∈恒成立, 即:x 2ma 2()yy a xx ⎡⎤⎢⎥⎣⎦≥-,对于[1,2],[2,3]x y ∈∈恒成立,令y t x =,结合图形可知yx的取值范围是(1,3),则13t ≤≤, 22a t t ∴≥-在[1,3]上恒成立,221122()48y t t t =-+=--+,13t ≤≤,∴当1t =时,1max y =-,1a ∴≥-.【点睛】关键点点睛:本题考查的是不等式与恒成立的综合类问题,利用分离参数法、换元法和将恒成立问题转化为二次函数最值问题是解题的关键,还需要注意换元时新元的范围,属于中档题.6.B解析:B 【分析】从四人的描述语句中可以看出,乙、丁的表述要么同时与结果相符,要么同时与结果不符,再进行判断 【详解】若乙、丁的预测成立,则甲、丙的预测不成立,推出矛盾.故乙、丙预测不成立时,推出获奖的是乙和丁 答案选B 【点睛】真假语句的判断需要结合实际情况,作出合理假设,才可进行有效论证7.B解析:BCD 【分析】利用基本不等式分别判断A 、B 、D 选项,C 选项可设2,2a b αα==,利用三角函数的值域求范围. 【详解】 A 选项,222x +≥2220x +>,∴22221222222y x x x x =+≥+⋅=++2222x x +=+,即221x +=±时成立,又222x ≥+,故A 错;B 选项,当a >0,b >0时,11122224ab ab ab a b ab ab+++≥⨯⋅=,当且仅当1a b =⎧=,即1a b ==时等号成立,B 正确;C选项,设,a b αα==,则2sin 24a b πααα⎛⎫+==+≤ ⎪⎝⎭,C 正确;D 选项,2a b +=,()212192a b ⎡⎤⎛⎫∴+++= ⎪⎢⎥⎝⎭⎣⎦,则()121252229291111++4+22442+2242a b a b a b a b a b ⎛⎫+ ⎪⎡⎤+⎛⎫⎛⎫+++=⨯++ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝=+⎣+⎭⎦ ⎪⎝⎭251942⎛ ≥⨯+= ⎝⎭,当且仅当122422a b a b ++=++且2a b +=时等号成立,解得1a b ==,故D 正确. 故选:BCD 【点睛】本题考查基本不等式的应用、利用三角函数的值域求范围,注意取等号的条件,属于中档题.8.D解析:D 【分析】根据条件可知直线过圆心,求解出,a b 的关系式,利用常数代换法以及基本不等式求解出21a b +的最小值. 【详解】因为直线220ax by +-=(),a b R+∈平分圆222460xy x y +---=,所以直线220ax by +-=过圆心,又因为圆的方程()()221211x y -+-=,所以圆心为()1,2,所以222a b +=,即1a b +=,所以()21212333b a a b a b a b a b ⎛⎫+=+⋅+=++≥+=+ ⎪⎝⎭ 取等号时222a b =即a =,此时21a b ==,故选:D. 【点睛】本题考查圆的对称性与基本不等式的综合应用,其中涉及到利用常数代换法求解最小值,对学生的理解与计算能力要求较高,难度一般.利用基本不等式求解最值时注意说明取等号的条件.9.C解析:C 【分析】由题意可知方程220ax bx ++=的根为11,23-,结合根与系数的关系得出12,2a b =-=-,从而得出-a b 的值.【详解】由题意可知方程220ax bx ++=的根为11,23- 由根与系数的关系可知,11112,2323b a a-+=--⨯= 解得12,2a b =-=- 即12210a b -=-+=- 故选:C 【点睛】本题主要考查了根据一元二次不等式的解集求参数的值,属于中档题.10.D解析:D 【分析】先得到21a b +=,再整理11a b+为23b aa b ++求最小值,最后判断等号成立即可. 【详解】解:∵直线10ax by --=,过点()2,1-, ∴ 21a b +=, ∵0a >,0b > ∴20a b>,0ba >∴111122333b a a b a b a b a b +=++=++≥+=+()() 当且仅当2b aa b=时,等号成立. 故选:D.【点睛】本题考查基本不等式“1”的妙用求最值,是基础题.11.B解析:B 【分析】根据不等式的性质,对选项逐一分析,由此得出正确选项. 【详解】对于A 选项,不等式两边乘以一个正数,不等号不改变方程,故A 正确.对于B 选项,若2,1,1a b c ===,则c ca b<,故B 选项错误.对于C 、D 选项,不等式两边同时加上或者减去同一个数,不等号方向不改变,故C 、D 正确.综上所述,本小题选B. 【点睛】本小题主要考查不等式的性质,考查特殊值法解选择题,属于基础题. 12.A解析:A 【分析】利用分离常数法得出不等式2a x x >-在[]15x ∈,上成立,根据函数()2f x x x=-在[]15x ∈,上的单调性,求出a 的取值范围【详解】关于x 的不等式220x ax +->在区间[]1,5上有解22ax x ∴>-在[]15x ∈,上有解 即2a x x>-在[]15x ∈,上成立,设函数数()2f x x x=-,[]15x ∈,()2210f x x∴'=--<恒成立 ()f x ∴在[]15x ∈,上是单调减函数且()f x 的值域为2315⎡⎤-⎢⎥⎣⎦, 要2a x x >-在[]15x ∈,上有解,则235a >- 即a 的取值范围是23,5⎛⎫-+∞ ⎪⎝⎭故选A 【点睛】本题是一道关于一元二次不等式的题目,解题的关键是掌握一元二次不等式的解法,分离含参量,然后求出结果,属于基础题.二、填空题13.【分析】由可得则展开后利用基本不等式求解即可【详解】当且仅当即时等号成立故的最小值为故答案为:【点睛】方法点睛:在利用基本不等式求最值时要特别注意拆拼凑等技巧使其满足基本不等式中正(即条件要求中字母 解析:95【分析】由4a b +=,可得(1)5a b ++= ,则()411111154a b a b a b ⎛⎫+=+++⋅⎡⎤ ⎪⎣⎦++⎝⎭,展开后利用基本不等式求解即可.【详解】 4,(1)5a b a b +=∴++=,414114(1)14(19[(1)]5251151555b a b a b a b a b a b a ⎡⎤++⎛⎫⎡⎤+=+++⋅=++⋅⋅=⎢⎥ ⎪⎢⎥+++⎝⎭⎣⎦⎣⎦,当且仅当4(1)1b a a b +=+,即102,33a b ==时等号成立, 故411a b ++的最小值为95. 故答案为:95. 【点睛】方法点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.14.【分析】由可知利用基本不等式即可求最值【详解】因为所以当且仅当即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项必须为正数;(解析:【分析】由0a b >>可知0a b +>,0a b ->,414122a b a b a a b a b a b a b+-++=++++-+-,利用基本不等式即可求最值. 【详解】 因为0a b >>,所以0a b +>,0a b ->,414122a b a b a a b a b a b a b+-++=++++-+-22≥=⨯=当且仅当a b a b ⎧+=⎪⎨-=⎪⎩即2a =,b =故答案为:【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【分析】化简得到结合基本不等式即可求解【详解】由可得则当且仅当时即等号成立所以的最小值为故答案为:【点睛】利用基本不等式求最值时要注意其满足的三个条件:一正二定三相等:(1)一正:就是各项必须为正数 解析:3【分析】 化简得到111111x x x x +=-++--,结合基本不等式,即可求解. 【详解】由1x >,可得10x ->,则11111311x x x x +=-++≥=--, 当且仅当111x x -=-时,即2x =等号成立, 所以11x x +-的最小值为3. 故答案为:3.【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”: (1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.16.9【分析】将分式展开利用基本不等式求解即可【详解】又x +2y =4即当且仅当等号成立故原式故填9【点睛】本题考查基本不等式求最值考查等价变换思想与求解能力注意等号成立条件解析:9【分析】将分式展开,利用基本不等式求解即可【详解】 (4)(2)82416161x y xy x y xy xy xy xy xy++++++===+ 又x +2y =422,xy ≥即2xy ≤,当且仅当2,1x y ==等号成立,故原式9≥ 故填9【点睛】本题考查基本不等式求最值,考查等价变换思想与求解能力,注意等号成立条件 17.【详解】若:当且仅当时等号成立;若:当且仅当时等号成立故可知考点:1分段函数;2函数最值解析:,.【详解】 2(3)lg[(3)1]1((3))(1)1230f f f f -=-+=⇒-==+-=,若1x >:2()3223f x x x =+-≥,当且仅当22x x x=⇒= 若1x <:2()lg(1)lg10f x x =+≤=,当且仅当0x =时,等号成立,故可知min [()]223f x =.考点:1.分段函数;2.函数最值.18.9【分析】将题目所给不等式分离常数利用基本不等式求得的最大值【详解】由得恒成立而故所以的最大值为【点睛】本小题主要考查不等式恒成立问题求解策略考查利用基本不等式求最值考查化归与转化的数学思想方法属于 解析:9.【分析】将题目所给不等式分离常数m ,利用基本不等式求得m 的最大值.【详解】由212m a b a b +≥+得()212m a b a b ⎛⎫≤++ ⎪⎝⎭恒成立,而()212225a b a b a b b a ⎛⎫++=++ ⎪⎝⎭225549a b b a≥+⋅=+=,故9m ≤,所以m 的最大值为9.【点睛】本小题主要考查不等式恒成立问题求解策略,考查利用基本不等式求最值,考查化归与转化的数学思想方法,属于中档题.19.【分析】函数求导由切线方程可得再利用基本不等式求得最值【详解】的导数为由切线的方程可得切线的斜率为1可得切点的横坐标为切点为代入得为正实数则当且仅当即时取得最小值故答案为:【点睛】本题考查导数的运算解析:5+【分析】函数求导,由切线方程y x a =-可得1a b +=,再利用基本不等式求得最值.【详解】ln()y x b =+的导数为1y x b'=+, 由切线的方程y x a =-可得切线的斜率为1,可得切点的横坐标为1b -,切点为(1,0)b -,代入y x a =-,得1a b +=,,a b 为正实数,则2323233()()2355b a a a b a b a b a b b+=++=+++≥+=+当且仅当a =,即2,3a b ==5+.故答案为:5+【点睛】 本题考查导数的运算、导数的几何意义及基本不等式求最值,属于基础题.20.6【分析】由题得解不等式即得x+y 的最小值【详解】由题得所以所以所以x+y≥6或x+y≤-2(舍去)所以x+y 的最小值为6当且仅当x=y=3时取等故答案为6【点睛】本题主要考查基本不等式求最值意在考解析:6【分析】 由题得2)34x y x+y+=xy +≤(,解不等式即得x+y 的最小值. 【详解】 由题得2)34x y x+y+=xy +≤(, 所以2)4(x y x y +-+≥()-120, 所以6)(2)0x y x y +-++≥(, 所以x+y≥6或x+y≤-2(舍去),所以x+y 的最小值为6.当且仅当x=y=3时取等.故答案为6【点睛】本题主要考查基本不等式求最值,意在考查学生对该知识的理解掌握水平和分析推理能力.三、解答题21.无22.无23.无24.无25.无26.无。

一元一次方程应用题(6)

一元一次方程应用题(6)

一、解答题(共15小题)1、一个底面半径为4cm,高为10cm的圆柱形烧杯中装满水.把烧杯中的水倒入底面半径为1cm的圆柱形试管中,刚好倒满试管.试管的高为多少cm?2、小红:昨天我们8个人去凤凰山公园玩,买门票花了260元,小明:哦,门票挺贵的,听说成人票每张40元,孩子票每张20元,是吗?小红:哼,是的,那你猜猜我们去了几个大人,几个小孩子?小明:去了…根据以上的对话,你能用列方程的知识帮助小明回答小红的提问吗?3、某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比定货任务少100套,如果每天生产23套服装,就可超过订货任务20套,问这批服装的定货任是多少套原计创几天完成?4、如图所示,甲、乙两人在环形跑道上练习跑步,已知环形跑道一圈长400米,乙每秒钟跑6米,甲的速度是乙的倍.(1)如果甲、乙在跑道上相距8米处同时反向出发,那么经过多少秒两人首次相遇?(2)如果甲在乙前面8米处同时同向出发,那么经过多少秒两人首次相遇?5、甲车队有50辆汽车,乙车队有41辆汽车,如果要使乙车队数比甲车队车数的2倍还多1辆,应从甲车队调多少辆车到乙车队?6、某空调厂的装配车间原计划用2个月时间(每月30天计),每天组装150台空调.(1)从组装空调开始,每天组装的台数m(单位:台/天)与生产的时间t(单位:天)之间有怎样的函数关系?(2)由于气温提前升高、厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调?7、金石中学有A、B两台复印机,用于印刷学习资料和考试试卷.学校举行期末考试,数学试卷如果用复印机A、B单独复印,分别需要90分钟和60分钟.在考试时为了保密需要,不能过早提前印刷试卷,学校决定在考试前由两台复印机同时复印.(1)两台复印机同时复印,共需多少分钟才能印完?(2)在复印30分钟后B机出了故障,暂时不能复印,此时离发卷还有13分钟.请你算一下,如果由A机单独完成剩下的复印任务,会不会影响按时发卷考试?(3)B机经过紧急抢修,9分钟后修好恢复使用,请你再算算,学校能否按时发卷考试?8、小赵和小王交流暑假中的活动,小赵说:“我参加科技夏令营,外出一个星期,这七天的日期数之和为84,你知道我是几号出去的吗”小王说:“我假期到舅舅家去住了七天,日期数的和再加上月份数也是84,你能猜出我是几月几号回家的吗”试列出方程,解答小赵与小王的问题.9、暑假,某校初一年级(1)班组织学生去公园游玩,该班有50名同学组织了划船活动,如图是划船须知.(1)他们一共租了10条船,并且每条船都坐满了人,那么大、小船各租了几只?(2)他们租船一共花了多少元钱?10、某水果批发商欲将A市的一批水果运往B市销售,有火车和汽车两种运输工具,运输过程中的损耗均为160元(1)如果汽车的总支出费用比火车费用多960元,你知道A市与B市之间的路程是多少千米吗?请你列方程解答;(2)如果A市与C市之间的距离为S千米,要想将这批水果运往C市销售.选择哪种运输工具比较合算呢说明你的理由.11、将连续的奇数1,3,5,7,9…,排成如图的数表,问:(1)十字框中的五个数的和与15有什么关系?(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于2009吗?若能,请求出这五个数;若不能,请说明理由.12、初一学生王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,摩托车从甲地,运货汽车从乙地,同时,同向出发,两车几小时相遇?请你将这道作业题补充完整并列出方程解答.13、一水池装有甲、乙、丙三个水管,甲、乙是进水管,丙是放水管,分别单独开放甲、乙水管各需45分钟和60分钟注满水池,单独打开丙水管,90分钟可放完一池水,现三管一齐开放,多少分钟可以注满水池?14、列方程解应用题:甲、乙两车同时从A城去B城,甲车每小时行35千米,乙车每小时行40千米,结果乙比甲提前半小时到达B城.问A、B两城间的路程有多少千米?15、某服装厂接受了一批校服订货任务,按计划天数进行生产,如果每天平均生产20套,就比订货任务少生产100套,如果每天平均生产23套,就可超过订货任务20套,问原计划多少天完成?这批服装订货任务是多少套?答案与评分标准一、解答题(共15小题)1、一个底面半径为4cm,高为10cm的圆柱形烧杯中装满水.把烧杯中的水倒入底面半径为1cm的圆柱形试管中,刚好倒满试管.试管的高为多少cm?考点:一元一次方程的应用。

一元一次函数练习题带答案

一元一次函数练习题带答案

一元一次函数练习题带答案1.下面哪个点在函数y=1x+1的图象上A. B.C. D.2.下列函数中,y是x的正比例函数的是A.y=2x-1 B.y=xC.y=2x D.y=-2x+13.一次函数y=-5x+3的图象经过的象限是A.一、二、三B.二、三、四C.一、二、四D.一、三、四4.若一次函数y=x-k的图象经过第二、三、四象限,则k的取值范围是A.k>3B.0 填空题1.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,?该函数的解析式为_________.2.若点在正比例函数y=kx的图象上,则此函数的解析式为________.3.已知一次函数y=-x+a与y=x+b的图象相交于点,则a+b=_________.解答题1.根据下列条件,确定函数关系式:y与x成正比,且当x=9时,y=16;y=kx+b的图象经过点和点.2.如图所示的折线ABC?表示从甲地向乙地打长途电话所需的电话费y 与通话时间t之间的函数关系的图象写出y与t?之间的函数关系式.通话2分钟应付通话费多少元?通话7分钟呢?一、选择题:1.已知y与x+3成正比例,并且x=1时,y=8,那么y 与x之间的函数关系式为y=8x y=2x+6y=8x+6y=5x+32.若直线y=kx+b经过一、二、四象限,则直线y=bx+k 不经过一象限二象限三象限四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是164.若甲、乙两弹簧的长度y与所挂物体质量x之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为y1>y y1=y2y1 5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,?则有一组a,b的取值,使得下列4个图中的一个为正确的是6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k 不经过第象限.一二三四7.一次函数y=kx+2经过点,那么这个一次函数y随x的增大而增大y随x的增大而减小图像经过原点图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在第一象限第二象限第三象限第四象限9.要得到y=-33x-4的图像,可把直线y=-x.2 向左平移4个单位向右平移4个单位向上平移4个单位向下平移4个单位10.若函数y=x+x2中的y与x成正比例,则m的值为 m>-11 m>m=- m=4411.若直线y=3x-1与y=x-k的交点在第四象限,则k 的取值范围是.k1 k>1或k 12.过点P直线,使它与两坐标轴围成的三角形面积为5,?这样的直线可以作4条条条 1条13.已知abc≠0,而且a?bb?cc?a=p,那么直线y=px+p 一定通过 ??cab第一、二象限第二、三象限第三、四象限第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y -4 -4 15.在直角坐标系中,已知A,在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有1个个个个16.一次函数y=ax+b的图象过点,交x轴于,交y轴于,若p为质数,q为正整数,那么满足条件的一次函数的个数为01 无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k的交点为整点时,k的值可以取2个个个个18.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取2个个个个19.甲、乙二人在如图所示的斜坡AB上作往返跑训练.已知:甲上山的速度是a米/分,下山的速度是b米/分,;乙上山的速度是1a米/分,下山的速度是2b米/分.如果甲、乙二人同时从点2A出发,时间为t,离开点A的路程为S,?那么下面图象中,大致表示甲、乙二人从点A出发后的时间t与离开点A的路程S?之间的函数关系的是20.若k、b是一元二次方程x2+px-│q│=0的两个实根,在一次函数y=kx+b中,y随x的增大而减小,则一次函数的图像一定经过第1、2、4象限第1、2、3象限第2、3、4象限第1、3、4象限二、填空题1.已知一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.2.已知一次函数y=x+m-3的图像经过第一,第三,第四象限,则m的取值范围是________.3.某一次函数的图像经过点,且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.已知直线y=-2x+m不经过第三象限,则m的取值范围是_________.5.函数y=-3x+2的图像上存在点P,使得P?到x?轴的距离等于3,?则点P?的坐标为__________.6.过点P且与直线y=x+1平行的一次函数解析式为_________.7.y=2x与y=-2x+3的图像的交点在第_________象限. 8.某公司规定一个退休职工每年可获得一份退休金,?金额与他工作的年数的算术平方根成正比例,如果他多工作a年,他的退休金比原有的多p元,如果他多工作b年,他的退休金比原来的多q元,那么他每年的退休金是表示______元.9.若一次函数y=kx+b,当-3≤x≤1时,对应的y值为1≤y≤9,?则一次函数的解析式为________.10.设直线kx+y-1=0与两坐标所围成的图形的面积为Sk,那么S1+S2+…+S2008=_______. 11.据有关资料统计,两个城市之间每天的电话通话次数T?与这两个城市的人口数m、n以及两个城市间的距离d有T=kmn的关系.?现测得A、B、C三个城市2d的人口及它们之间的距离如图所示,且已知A、B两个城市间每天的电话通话次数为t,那么B、C两个城市间每天的电话次数为_______次.三、解答题1.已知一次函数y=ax+b的图象经过点A与B.求一次函数的解析式,并在直角坐标系内画出这个函数的图象;如果中所求的函数y的值在-4≤y≤4范围内,求相应的y的值在什么范围内.2.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.写出y与x之间的函数关系式;如果x的取值范围是1≤x≤4,求y的取值范围.3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.?小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;;小明回家后,?测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,下图表示他离家的距离y与所用的时间x之间关系的函数图象.根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?求小明出发两个半小时离家多远??求小明出发多长时间距家12千米?5.已知一次函数的图象,交x轴于A,交正比例函数的图象于点B,且点B?在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,?求正比例函数和一次函数的解析式. 6.如图,一束光线从y轴上的点A出发,经过x轴上点C反射后经过点B,求光线从A点到B点经过的路线的长.一次函数经典试题及答案汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,10.若把这一过程中汽车的行驶路程s看作时间t的函数,其图像可能是函数的意义 A1、小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O-A-B-C和线段OD分别表示两人离学校的路程s 与所经过的时间t之间的函数关系,请根据图象回答下列问题:小聪在天一阁查阅资料的时间为________分钟,小聪返回学校的速度为_______千米/分钟。

初中数学一元一次方程精选试题(含答案和解析)

初中数学一元一次方程精选试题(含答案和解析)

初中数学一元一次方程精选试题(含答案和解析)一.选择题1.(2018·湖北省恩施·3分)一商店在某一时间以每件120元的价格卖出两件衣服.其中一件盈利20%.另一件亏损20%.在这次买卖中.这家商店()A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元【分析】设两件衣服的进价分别为x、y元.根据利润=销售收入﹣进价.即可分别得出关于x、y的一元一次方程.解之即可得出x、y的值.再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、y元.根据题意得:120﹣x=20%x.y﹣120=20%y.解得:x=100.y=150.∴120+120﹣100﹣150=﹣10(元).故选:C.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.2.(2018湖南省邵阳市)(3分)程大位是我国明朝商人.珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著.详述了传统的珠算规则.确立了算盘用法.书中有如下问题:一百馒头一百僧.大僧三个更无争.小僧三人分一个.大小和尚得几丁.意思是:有100个和尚分100个馒头.如果大和尚1人分3个.小和尚3人分1个.正好分完.大、小和尚各有多少人.下列求解结果正确的是()A.大和尚25人.小和尚75人 B.大和尚75人.小和尚25人C.大和尚50人.小和尚50人 D.大、小和尚各100人【分析】根据100个和尚分100个馒头.正好分完.大和尚一人分3个.小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100.大和尚分得的馒头数+小和尚分得的馒头数=100.依此列出方程即可.【解答】解:设大和尚有x人.则小和尚有(100﹣x)人.根据题意得:3x+=100.解得x=25则100﹣x=100﹣25=75(人)所以.大和尚25人.小和尚75人.故选:A.【点评】本题考查了一元一次方程的应用.关键以和尚数和馒头数作为等量关系列出方程.二.填空题1.(2018·湖北江汉油田、潜江市、天门市、仙桃市·3分)某公司积极开展“爱心扶贫”的公益活动.现准备将6000件生活物资发往A.B两个贫困地区.其中发往A区的物资比B区的物资的1.5倍少1000件.则发往A区的生活物资为3200 件.【分析】设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据发往A.B两区的物资共6000件.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据题意得:x+1.5x﹣1000=6000.解得:x=2800.∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018•上海•4分)方程组的解是..【分析】方程组中的两个方程相加.即可得出一个一元二次方程.求出方程的解.再代入求出y即可.【解答】解:②+①得:x2+x=2.解得:x=﹣2或1.把x=﹣2代入①得:y=﹣2.把x=1代入①得:y=1.所以原方程组的解为..故答案为:..【点评】本题考查了解高次方程组.能把二元二次方程组转化成一元二次方程是解此题的关键.三.解答题1.(2018•广东•7分)某公司购买了一批A.B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x ﹣9)元/条.根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.即可得出关于x的分式方程.解之经检验后即可得出结论;(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据总价=单价×数量.即可得出关于a的一元一次方程.解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据题意得:=.解得:x=35.经检验.x=35是原方程的解.∴x﹣9=26.答:A型芯片的单价为26元/条.B型芯片的单价为35元/条.(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据题意得:26a+35(200﹣a)=6280.解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.2.(2018•海南•8分)“绿水青山就是金山银山”.海南省委省政府高度重视环境生态保护.截至2017年底.全省建立国家级、省级和市县级自然保护区共49个.其中国家级10个.省级比市县级多5个.问省级和市县级自然保护区各多少个?【分析】设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据国家级、省级和市县级自然保护区共49个.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据题意得:10+x+5+x=49.解得:x=17.∴x+5=22.答:省级自然保护区有22个.市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018湖南张家界5.00分)列方程解应用题《九章算术》中有“盈不足术”的问题.原文如下:“今有共買羊.人出五.不足四十五;人出七.不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊.每人出5元.则差45元;每人出7元.则差3元.求人数和羊价各是多少?【分析】可设买羊人数为未知数.等量关系为:5×买羊人数+45=7×买羊人数+3.把相关数值代入可求得买羊人数.代入方程的等号左边可得羊价.【解答】解:设买羊为x人.则羊价为(5x+45)元钱.5x+45=7x+3.x=21(人).5×21+45=150(员).答:买羊人数为21人.羊价为150元.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.。

武汉市必修第一册第二单元《一元一次函数,方程和不等式》测试(答案解析)

武汉市必修第一册第二单元《一元一次函数,方程和不等式》测试(答案解析)

一、选择题1.已知0x >,0y >,且1x y xy +=-,则( )A .xy 的最大值为3+B .xy 的最大值为6C .2x y +的最小值为3+D .2x y +的最小值为72.已知0a >,0b >,若不等式122m a b a b+≥+恒成立,则实数m 的最大值为( ) A .10B .9C .8D .73.设实数x 满足0x >,函数4231y x x =+++的最小值为( )A .1B .2C .1D .64.若,a b ∈R ,且0ab >,则下列不等式中恒成立的是( )A .222a b ab +>B .a b +≥C .11a b +>D .2b aa b+≥ 5.已知a ,b 均为正数,且20a b ab +-=,则22124b a a b -+-的最大值为( )A .9-B .8-C .7-D .6-6.若直线220ax by +-=(),a b R +∈平分圆222460xy x y +---=,则21a b+的最小值是( ).A .1B .5C .D .3+7.若正实数,x y 满足x y 1+=,则41x 1y++的最小值为( ) A .447B .275C .143D .928.若不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则a b -=( ) A .4-B .14C .10-D .109.若不等式()()2||20x a b x x ---≤对任意实数x 恒成立,则a b +=( )A .-1B .0C .1D .210.若a ,b 为正实数,直线2(23)20x a y +-+=与直线210bx y +-=互相垂直,则ab 的最大值为( )A .32B .98C .94D 11.已知关于x 的不等式()()224210a x a x -+--≥的解集为空集,则实数a 的取值范围是( )A .62,5⎡⎤-⎢⎥⎣⎦B .62,5⎡⎫-⎪⎢⎣⎭C .6,25⎛⎤-⎥⎝⎦D .(][),22,-∞+∞12.已知0x >,0y >,23x y +=,则23x yxy+的最小值为( )A .3-B .1C 1D 1参考答案二、填空题13.有一块直角三角形空地ABC ,2A π∠=,250AB =米,160AC =米,现欲建一矩形停车场ADEF ,点D 、E 、F 分别在边AB 、BC 、CA 上,则停车场面积的最大值为________平方米.14.设m ,a R ∈,()()211f x x a x =+-+,2()24mg x mx ax =++,若“对于一切实数x ,()0f x >”是“对于一切实数x ,()0g x >”的充分条件,则实数m 的取值范围是___________.15.已知a 、b 都是正数,且0a b ab +-=,则1911b a b +--的最小值是__________. 16.已知0a b >>,则41a ab a b+++-的最小值为__________. 17.若命题“对任意实数0a >,0b >且4a b +=,不等式41m a b+>恒成立”为假命题,则m 的取值范围为_______.18.一批救灾物资随51辆汽车从某市以/vkm h 的速度匀速直达灾区,已知两地公路线长400km ,为了安全起见,两辆汽车的间距不得小于2800v km ,那么这批物资全部到达灾区,最少需要______.h19.已知()f x 是定义在R 上的奇函数,当0x >时,2()4f x x x =-,则不等式()f x x >的解集用区间表示为__________. 20.函数()10y x x x=->的图象上一点到坐标原点的距离的平方的最小值为________. 三、解答题21.设函数2()(,)f x x ax b a b R =-+∈.(1)若2a =,求函数|()|y f x =在区间[0,3]上的最大值;(2)试判断:是否存在实数a ,b ,使得当,][0x b ∈时,2()6f x ≤≤恒成立,若存在,请求出实数b 的取值范围;若不存在,请说明理由.22.已知集合{}2430A x x x =-+≤,B =______.若“x A ∈”是“x B ∈”的必要不充分条件,给出如下三个条件:①{}1x a x a -≤≤,②{}2x a x a ≤≤+,③{}3x ≤≤.请从中任选一个补充到横线上.若问题中的a 存在,求出a 的取值范围.23.已知不等式()()2330,ax a x b a b R +--<∈的解集为{}31A x x =-<<.(1)求实数a ,b 的值;(2)设()22()2ax bx f x x A x +-=∈-,当x 为何值时()f x 取得最大值,并求出其最大值.24.已知正数,,a b c 满足3a b c ++=. (Ⅰ)若221a b +=,求c 的取值范围; (Ⅱ)求证:3bc ac ab a b c++≥.25.解关于x 的不等式ax 2-(a +1)x +1<0.26.已知0a b c d >>>>,ad bc =. (Ⅰ)证明:a d b c +>+; (Ⅱ)证明:a b c b c a a b c a b c >.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用公式x y +≥,将等式转化为不等式,求xy 的范围;由条件转化为11x y x +=-,代入2x y +后,利用基本不等式求最小值. 【详解】0,0x y >>,x y +≥1xy ∴-≥210-≥,10x y xy +=->1>1t =>,即2210t t --≥,解得:1t ≥或1t ≤1≥,(213xy ≥=+,所以xy 的最小值是3+AB 不正确;10,0,1011x x y x y xy y x x +>>+=-⇒=>⇒>- ()11222222121111x x x y x x x x x x +-++=+=+=-+++---()2213371x x =-++≥=-,当()2211x x -=-时,即2x =时等号成立,所以2x y +的最小值是7,故D 正确. 故选:D 【点睛】关键点点睛:本题考查根据条件等式,利用基本不等式求最值,条件等式除了基本变形,同时也需注意变量的范围,比如本题中的1,1xy x >>等条件.2.C解析:C 【分析】 由已知可得()122m a b a b ⎛⎫≤++ ⎪⎝⎭,即求()122a b a b ⎛⎫++ ⎪⎝⎭的最小值,由基本不等式可得答案. 【详解】因为0a >,0b >,则()122m a b a b ⎛⎫≤++ ⎪⎝⎭,所以()1242448b a a b a b a b ⎛⎫++=++≥+⎪⎝⎭,当且仅当4b aa b=即2b a =等号成立,要使不等式恒成立,所以8m ≤ 所以实数m 的最大值为8.故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.A【分析】将函数变形为()43111y x x =++-+,再根据基本不等式求解即可得答案. 【详解】解:由题意0x >,所以10x +>, 所以()4423231311y x x x x =++=++-+++()4311111x x =++-≥=+,当且仅当()4311x x +=+,即10x =->时等号成立,所以函数4231y x x =+++的最小值为1. 故选:A . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方4.D解析:D 【分析】利用基本不等式的性质来逐一判断正误即可. 【详解】对于A ,222a b ab +≥,当且仅当a b =时,等号成立,故A 错误;对于B 、C ,虽然0ab >,只能说明,a b 同号,若,a b 都小于0时,则不等式不成立,故B ,C 错误;对于D ,0ab >,,0b a a b∴>,2b aa b ∴+≥,当且仅当a b =时,等号成立,故D 正确; 故选:D. 【点睛】易错点睛:本题考查基本不等式的相关性质,利用基本不等式求最值时,要注意其必须满足的三个条件:一正、二定、三相等,考查学生的逻辑推理能力,属于基础题.5.C【分析】先利用条件化简222212144b b a a a b +⎛⎫-+-=- ⎪⎝⎭,巧用“1”的代换证明42b a +≥,再证明222242b a b a ⎛⎫+ ⎪⎝⎭≥+,即得到2214b a ⎛⎫- ⎪⎝⎭+的取值范围,根据等号条件成立得到最值. 【详解】依题意,0,0a b >>,20a b ab +-=可知121a b+=,则222212144b b a a a b +⎛⎫-+-=- ⎪⎝⎭,122224222b b b a a a a b a b ⎛⎫⎛⎫+=+⋅+=++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当22b a a b=时,即2ba =时等号成立.22242b ba a ab ≥⋅⋅=+,当且仅当2b a =时,等号成立,则左右同时加上224b a +得,则222222442b b b a a ab a ⎛⎫≥+=⎛⎫+++ ⎪⎝⎝⎭⎭ ⎪, 即222242b a b a ⎛⎫+ ⎪⎝⎭≥+,当且仅当2b a =时等号成立, 故2222428422b a b a ⎛⎫+ ⎪⎝⎭≥≥=+,当且仅当2b a =时,即2,4a b ==时等号成立, 故2222121744b b a a a b ⎛⎫-+-=-≤- ⎪⎝⎭+当且仅当2b a =时,即2,4a b ==时等号成立. 即22124b a a b -+-的最大值为7-. 故选:C. 【点睛】 关键点点睛:本题解题关键在于利用基本不等式证明的常用方法证明42b a +≥和222242b a b a ⎛⎫+ ⎪⎝⎭≥+,进而突破难点,取最值时要保证取等号条件成立.6.D【分析】根据条件可知直线过圆心,求解出,a b 的关系式,利用常数代换法以及基本不等式求解出21a b +的最小值. 【详解】因为直线220ax by +-=(),a b R+∈平分圆222460xy x y +---=,所以直线220ax by +-=过圆心,又因为圆的方程()()221211x y -+-=,所以圆心为()1,2,所以222a b +=,即1a b +=,所以()21212333b a a b a b a b a b ⎛⎫+=+⋅+=++≥+=+ ⎪⎝⎭取等号时222a b =即a =,此时21a b ==,故选:D. 【点睛】本题考查圆的对称性与基本不等式的综合应用,其中涉及到利用常数代换法求解最小值,对学生的理解与计算能力要求较高,难度一般.利用基本不等式求解最值时注意说明取等号的条件.7.D解析:D 【分析】将1x y +=变成12x y ++=,可得41141121x y x y x y ⎛⎫+++=⋅+ ⎪++⎝⎭,展开后利用基本不等式求解即可. 【详解】0x ,0y >,1x y +=,12x y ∴++=,(41141141191451212122x y y x x y x y x y ⎛⎫⎛⎫++++=⋅+=+++≥+= ⎪ ⎪+++⎝⎭⎝⎭(当且仅当13x =,23y =取等号),故选D . 【点睛】本题主要考查利用基本不等式求最值,属于中档题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).8.C解析:C 【分析】由题意可知方程220ax bx ++=的根为11,23-,结合根与系数的关系得出12,2a b =-=-,从而得出-a b 的值.【详解】由题意可知方程220ax bx ++=的根为11,23- 由根与系数的关系可知,11112,2323b a a-+=--⨯=解得12,2a b =-=-即12210a b -=-+=- 故选:C 【点睛】本题主要考查了根据一元二次不等式的解集求参数的值,属于中档题.9.D解析:D 【分析】可采用分类讨论法,分别讨论22x x -与x a b --的正负,确定,a b 之间的关系即可求解. 【详解】当220x x -≥时,即[]02x ,∈时,||0x a b --≤恒成立,所以b a x b a -+≤≤+恒成立,所以2a b +≥且a b ≤; 当220x x -≤时,即(][),02,x ∈-∞+∞时,||0x a b --≥恒成立所以x a b ≥+或x a b ≤-恒成立,所以2a b +≤且a b ≥,综上,2a b += 故选:D 【点睛】本题考查一元二次不等式的解法,由含参数绝对值不等式求参数关系,分类讨论的数学思想,属于中档题10.B解析:B 【分析】由两直线垂直求出23a b +=,再利用基本不等式求出ab 的最大值. 【详解】解:由直线2(23)20x a y +-+=与直线210bx y +-=互相垂直 所以22(23)0b a +-=即23a b +=又a 、b 为正实数,所以2a b +≥即229224a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当a 34=,b 32=时取“=”;所以ab 的最大值为98. 故选:B 【点睛】本题主要考查了由直线垂直求参数,基本不等式求最值的应用,属于中档题.11.C解析:C 【分析】由题意得出关于x 的不等式()()224210a x a x -+--<的解集为R ,由此得出240a -=或2400a ⎧-<⎨∆<⎩,在240a -=成立时求出实数a 的值代入不等式进行验证,由此解不等式可得出实数a 的取值范围. 【详解】由题意知,关于x 的不等式()()224210a x a x -+--<的解集为R .(1)当240a -=,即2a =±.当2a =时,不等式()()224210a x a x -+--<化为10-<,合乎题意;当2a =-时,不等式()()224210a x a x -+--<化为410x --<,即14x >-,其解集不为R ,不合乎题意;(2)当240a -≠,即2a ≠±时.关于x 的不等式()()224210a x a x -+--<的解集为R .2400a ⎧-<∴⎨∆<⎩,解得265a -<<.综上可得,实数a 的取值范围是6,25⎛⎤- ⎥⎝⎦.故选C . 【点睛】本题考查二次不等式在R 上恒成立问题,求解时根据二次函数图象转化为二次项系数和判别式的符号列不等式组进行求解,考查化归与转化思想,属于中等题.12.B解析:B 【分析】把要求的式子变形为21x y y x++,再利用基本不等式求得它的最小值. 【详解】已知0x >,0y >,23x y +=,则22223(2)222121221x y x x y y x xy y x y x yxy xy xy y x y x+++++===+++=+, 当且仅当222x y = 时,即当323x =-,且632y -=,等号成立, 故23x y xy+的最小值为122+,故选:B . 【点睛】本题考查基本不等式的运用,考查常数代换法,注意最值取得的条件,考查运算能力,属于中档题.二、填空题13.【分析】设米米根据可得出利用基本不等式可求得的最大值即为所求【详解】设米米则即整理可得由基本不等式可得当且仅当时即当时等号成立因此停车场面积的最大值为平方米故答案为:【点睛】易错点睛:利用基本不等式 解析:10000【分析】设AD x =米,AF y =米,根据tan DE CF ACABC BD EF AB∠===可得出16254000x y +=,利用基本不等式可求得xy 的最大值,即为所求.【详解】设AD x =米,AF y =米,则250BD AB AD x =-=-,160CF AC AF y =-=-,tan DE CF AC ABC BD EF AB ∠===,即160160250250y y x x -==-,整理可得16254000x y +=, 由基本不等式可得400016252162540x y x y xy =+≥⨯=,10000xy ∴≤,当且仅当162516254000x y x y =⎧⎨+=⎩时,即当12580x y =⎧⎨=⎩时,等号成立. 因此,停车场面积的最大值为10000平方米.故答案为:10000.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.【分析】先求出和恒成立时的范围然后根据充分条件的定义求解【详解】在上恒成立则解得在上恒成立首先都不可能恒成立因此解得∵对于一切实数x 是对于一切实数x 的充分条件∴解得故答案为:【点睛】思路点睛:本题考 解析:[6,)+∞【分析】先求出()0f x >和()0>g x 恒成立时a 的范围,然后根据充分条件的定义求解.【详解】()0f x >在R 上恒成立,则2(1)40a ∆=--<,解得13a -<<,()0>g x 在R 上恒成立,首先0m ≤都不可能恒成立,因此22040m a m >⎧⎨∆=-<⎩,解得22m m a -<<, ∵“对于一切实数x ,()0f x >”是“对于一切实数x ,()0g x >”的充分条件, ∴12320m m m ⎧-≤-⎪⎪⎪≥⎨⎪>⎪⎪⎩,解得6m ≥.故答案为:[6,)+∞.【点睛】思路点睛:本题考查一元二次不等式恒成立问题,考查由充分条件求参数范围,一元二次不等式恒成立问题,注意讨论最高次项系数(若最高次项系数为0,则不等式不是二次不等式),充分条件与必要条件问题可以利用集合的包含关系进行求解.15.【分析】由可得出根据已知条件得出将代入所求代数式可得出利用基本不等式可求得的最小值【详解】所以由解得则所以当且仅当时等号成立因此的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必 解析:15【分析】由0a b ab +-=可得出1b a b =-,根据已知条件得出1b >,将1b a b =-代入所求代数式可得出()19919111b b a b b +=-++---,利用基本不等式可求得1911b a b +--的最小值. 【详解】0a b ab +-=,所以,()1a b b -=-,1b a b ∴=-, 由010b a b b ⎧=>⎪-⎨⎪>⎩,解得1b >,则10b ->, 所以,()()919191919915111111b b b b a b b b b -++=+=-++≥=------, 当且仅当4b =时,等号成立,因此,1911b a b +--的最小值为15. 故答案为:15.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.16.【分析】由可知利用基本不等式即可求最值【详解】因为所以当且仅当即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项必须为正数;( 解析:【分析】由0a b >>可知0a b +>,0a b ->,414122a b a b a a b a b a b a b+-++=++++-+-,利用基本不等式即可求最值. 【详解】 因为0a b >>,所以0a b +>,0a b ->,414122a b a b a a b a b a b a b+-++=++++-+-22≥=⨯=当且仅当a b a b ⎧+=⎪⎨-=⎪⎩即2a =,b =故答案为:【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.17.【分析】利用基本不等式求出的最小值可得不等式恒成立时的取值范围再取其补集即可【详解】若不等式对任意实数且恒成立则当且仅当且即时等号成立所以故命题为假命题时的取值范围为故答案为:【点睛】本题主要考查命 解析:94m ≥【分析】 利用基本不等式求出41a b +的最小值,可得不等式41m a b +>恒成立时,m 的取值范围,再取其补集即可.【详解】 若不等式41m a b+>对任意实数0a >,0b >且4a b +=恒成立,则411411419()()(5)5)4444b a a b a b a b a b +=++=++≥=, 当且仅当4b a a b =且4a b +=,即83a =,43b =时等号成立. 所以94m <,故命题为假命题时,m 的取值范围为94m ≥. 故答案为: 94m ≥【点睛】本题主要考查命题的真假,基本不等式的应用,属于中档题.18.10【分析】用速度v 表示时间结合基本不等式计算最小值即可【详解】当最后一辆车子出发第一辆车子走了小时最后一辆车走完全程共需要小时所以一共需要小时结合基本不等式计算最值可得故最小值为10小时【点睛】考 解析:10【分析】用速度v 表示时间,结合基本不等式,计算最小值,即可.【详解】 当最后一辆车子出发,第一辆车子走了25080016v v v ⋅=小时,最后一辆车走完全程共需要400v 小时,所以一共需要40016v v +小时,结合基本不等式,计算最值,可得4001016v v +≥=,故最小值为10小时 【点睛】考查了基本不等式计算函数最值问题,关键利用a b +≥中等.19.或【解析】试题分析:当x>0时不等式f (x )>x 转化为由函数是奇函数图像关于原点对称因此当时不等式f (x )>x 的解集为综上不等式的解为(-50)∪(5+∞)考点:函数奇偶性解不等式解析:{|5x x >或50}x -<<【解析】试题分析:当x>0时,不等式f (x )>x 转化为245xx x x ->∴>,由函数是奇函数,图像关于原点对称,因此当0x <时不等式f (x )>x 的解集为50x -<<,综上不等式的解为(-5,0)∪(5,+∞)考点:函数奇偶性解不等式20.【分析】设曲线上任一点坐标为求出它是原点距离的平方用基本不等式求得最小值【详解】设曲线上作一点的坐标为则当且仅当即时等号成立故答案为:【点睛】本题考查用基本不等式求最值属于基础题解析:2【分析】 设曲线上任一点坐标为1,x x x ⎛⎫- ⎪⎝⎭,求出它是原点距离的平方,用基本不等式求得最小值.【详解】设曲线上作一点P 的坐标为1,(0)x x x x ⎛⎫-> ⎪⎝⎭,则2222211222OP x x x x x ⎛⎫=+-=+-≥ ⎪⎝⎭,当且仅当2212x x =,即142x -=时等号成立,故答案为:2.【点睛】本题考查用基本不等式求最值,属于基础题.三、解答题21.无22.无23.无24.无25.无26.无。

沧州市必修第一册第二单元《一元一次函数,方程和不等式》测试题(含答案解析)

沧州市必修第一册第二单元《一元一次函数,方程和不等式》测试题(含答案解析)

一、选择题1.已知12x >,则2321x x +-的最小值是( )A .32B32C2D.322.在弹性限度内,弹簧拉伸的距离与所挂物体的质量成正比,即md k=,其中d 是距离(单位cm ),m 是质量(单位g ),k 是弹簧系数(单位g/cm ).弹簧系数分别为1k ,2k 的两个弹簧串联时,得到的弹簧系数k 满足12111k k k =+,并联时得到的弹簧系数k 满足12k k k =+.已知物体质量为20g ,当两个弹簧串联时拉伸距离为1cm ,则并联时弹簧拉伸的最大距离为( ) A .1cm 4B .1cm 2C .1cmD .2cm3.当104x <<时,不等式11014m x x+-≥-恒成立,则实数m 的最大值为( ) A .7B .8C .9D .104.已知0,0,23x y x y >>+=,则1421x y++的最小值是( ) A .3B .94 C .4615D .95.设正实数x ,y ,z 满足22340x xy y z -+-=,则当xyz取得最大值时,212x y z +-的最大值为( ) A .0B .3C .94D .16.已知m >0,xy >0,当x +y =2时,不等式4m x y +≥92恒成立,则m 的取值范围是( ) A .1,)2⎡+∞⎢⎣B .[1,)+∞C .](01,D .1(02⎤⎥⎦,7.若直线220ax by +-=(),a b R +∈平分圆222460xy x y +---=,则21a b+的最小值是( ). A .1B .5C.D.3+8.如图,在ABC 中,23BD BC =,E 为线段AD 上的动点,且CE xCA yCB =+,则13x y+的最小值为( )A .16B .15C .12D .109.已知2m >,0n >,3m n +=,则112m n+-的最小值为( ) A .3B .4C .5D .610.不等式28610x x -+<的解集为( ) A .11(,)42B .11(,)(,)42-∞+∞ C .11(,)34--D .11(,)(,)34-∞--+∞ 11.若a >b ,则下列不等式一定成立的是( ). A .11a b< B .55a b > C .22ac bc >D .a b >12.下列命题中正确的是( ) A .若ac bc >22,则a b >B .若a b >,则11a b< C .若a b >,c d >,则a c b d ->-D .若a b >,c d <,则a b c d> 二、填空题13.已知函数2()21f x x ax =-+,若对∀(]0,2x ∈,恒有()0f x ≥,则实数a 的取值范围是___________.14.已知,x y R +∈,且1112x y+=,则x y +的最小值为________ 15.已知0x >,0y >,22x y +=,则223524x y x yxy+++的最小值为______.16.若0a >,0b >,且4a b +=,则下列不等式中恒成立的是_______.①112ab >;②228a b +≥;2ab ≥;④111a b+≥. 17.已知实数0a b >>,且2a b +=,则22323a ba ab b -+-的最小值为____18.已知实数0a >,0b >是8a 与2b 的等比中项,则62a b+的最小值是_________. 19.已知()f x 是定义在R 上的奇函数,当0x >时,2()4f x x x =-,则不等式()f x x >的解集用区间表示为__________. 20.若ad bc ≠,则()()2222a b cd ++__________()2ac bd +.(选“≥”、“≤”、“>”、“<”其一填入)三、解答题21.已知函数2()21f x kx kx =+-.(1)若不等式()0f x <的解集为3,12⎛⎫- ⎪⎝⎭,求实数k 的值;(2)若方程()0f x =在[]12,有解,求实数k 的取值范围. 22.已知0,0x y >>,且280x y xy +-=,求 (1)xy 的最小值; (2)x y +的最小值.23.二次函数2()21(0)f x ax ax b a =-++>在区间[]0,3上有最大值4,最小值0. (1)求函数()f x 的解析式; (2)设()4()f x x g x x -=,若()0g x mx -≤在1,77x ⎡⎤∈⎢⎥⎣⎦时恒成立,求m 的取值范围.24.已知正实数x ,y 满足2520x y +=. (1)求xy 的最大值; (2)若不等式21014m m x y+≥+恒成立,求实数m 的取值范围.25.已知函数()21f x x bx =+-有两个零点1x ,2x ,且1x ,2x 的倒数和为1-. (1)求函数()f x 的解析式;(2)若在区间[]2,1-上,不等式()2->-f x x m 恒成立,求实数m 的取值范围.26.设:p 实数x 满足22430x ax a -+<,:q 实数x 满足31x -<. (1)若1a =,且p q ∧为真,求实数x 的取值范围;(2)若其中0a >且p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由2111333311212222x x x x x x ⎛⎫+=+=-++⎪-⎝⎭--,利用均值不等式可得答案. 【详解】21113333331121222222x x x x x x ⎛⎫+=+=-++≥= ⎪-⎝⎭-- 当且仅当113122x x ⎛⎫-= ⎪⎝⎭-,即132x =+ 时,取得等号. 故选:D 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,这时改用勾型函数的单调性求最值.2.A解析:A 【分析】先利用串联列关系()121220k k k k +=,结合基本不等式求得12k k +最小值,再利用并联关系得到12k k k '=+最小时求得弹簧拉伸的最大距离即可. 【详解】依题意设两个弹簧的弹簧系数分别为1k ,2k ,串联时弹簧系数为k ,并联时弹簧系数为k '.两个弹簧串联时,由m d k =知,20201m k d ===,则12111k k k =+即12121211120k kk k k k +=+=,即()()2121212204k k k k k k ++=≤,故1280k k +≥,当且仅当1240k k ==时等号成立,两个弹簧并联时,12k k k '=+,拉伸距离12m md k k k '==+',要是d '最大,则需12k k k '=+最小,而1240k k ==时()12min 80k k +=,故此时d '最大,为284001m d k '==='cm. 故选:A. 【点睛】 思路点睛:利用基本不等式求最值时,需注意取等号条件是否成立. (1)积定,利用x y +≥,求和的最小值;(2)和定,利用()24x y xy +≤,求积的最大值;(3)妙用“1”拼凑基本不等式求最值.3.C解析:C 【分析】 分离参数化为41414m x x≤+-恒成立,再利用基本不等式求出不等式右边的最小值即可得解. 【详解】不等式11014m x x+-≥-恒成立化为41414m x x ≤+-恒成立, 因为104x <<,所以140x ->,所以()4141414414414x x x x x x ⎛⎫+=+-+ ⎪--⎝⎭44(14)5144x x x x -=++-5≥+549=+=,当且仅当44(14)144x x x x -=-,即16x =时,等号成立.所以9m ≤,所以m 的最大值为9. 故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方4.B解析:B 【分析】由已知条件代入后凑出积为定值,再由基本不等式得最小值. 【详解】∵0,0,23x y x y >>+=,所以(2x+1)+y=4则()()421141141549=2152142142144x yx y x y x y x y ++++++=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭++=+++ 当且仅当()42121x y x y +=+且214x y ++=即18,63x y ==时取等号, 则1421x y ++的最小值是94. 故选:B . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方5.D解析:D 【分析】利用22340x xy y z -+-=可得143xy x y z y x =+-,根据基本不等式最值成立的条件可得22,2x y z y ==,代入212x y z++可得关于y 的二次函数,利用单调性求最值即可.【详解】由正实数x ,y ,z 满足22340x xy y z -+-=,2234z x xy y ∴=-+.∴2211434432?xy xy x y zx xy y x y y x===-++-,当且仅当20x y =>时取等号,此时22z y =.∴222122121(1)1122x y z y y y y+-=+-=--+,当且仅当1y =时取等号, 即212x y z+-的最大值是1. 故选:D 【点睛】本题主要考查了基本不等式的性质和二次函数的单调性,考查了最值取得时等号成立的条件,属于中档题.6.B解析:B 【分析】根据“乘1法”,可得()4142m m x y x y x y ⎛⎫+=++ ⎪⎝⎭,展开后,利用基本不等式可推出其最小值,则可得不等式(19422m ++≥,解不等式即可. 【详解】 解:xy >0,且x +y =2,0,0x y ∴>>,()(41414114442222m m y mx x y m m m x y x y x y ⎛⎛⎫⎛⎫∴+=++=+++≥++=++ ⎪ ⎪ ⎝⎭⎝⎭⎝当且仅当4y mxx y=2y =时,等号成立, 不等式4m x y +≥92恒成立,(19422m ∴++≥,化简得50m +≥ 解得m 1≥.∴m 的取值范围是[1,)+∞故选:B . 【点睛】本题考查利用基本不等式解决最值问题,熟练掌握“乘1法”是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题7.D解析:D 【分析】根据条件可知直线过圆心,求解出,a b 的关系式,利用常数代换法以及基本不等式求解出21a b +的最小值. 【详解】因为直线220ax by +-=(),a b R+∈平分圆222460xy x y +---=,所以直线220ax by +-=过圆心,又因为圆的方程()()221211x y -+-=,所以圆心为()1,2,所以222a b +=,即1a b +=,所以()21212333b a a b a b a b a b ⎛⎫+=+⋅+=++≥+=+ ⎪⎝⎭取等号时222a b =即a =,此时21a b ==,故选:D. 【点睛】本题考查圆的对称性与基本不等式的综合应用,其中涉及到利用常数代换法求解最小值,对学生的理解与计算能力要求较高,难度一般.利用基本不等式求解最值时注意说明取等号的条件.8.A解析:A 【分析】由已知可得A ,D ,E 三点共线,结合平面向量基本定理可得31x y +=,0x >,0y >,再利用基本不等式即可求解. 【详解】 解:∵23BD BC =, ∴3CB CD =,3CE xCA yCB xCA yCD =+=+,因为A ,D ,E 共线,所以31x y +=,则()3313333101016x y x y y x x y x y x y +++=+=++≥+. 当且仅当33y x x y =且31x y +=即14x y ==时取等号, 故选:A. 【点睛】本题主要考查三点共线的向量表示,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.9.B解析:B【分析】由2m >,0n >,3m n +=,所以21m n -+=,结合“1”的代换,结合基本不等式,即可求解. 【详解】因为2m >,0n >,3m n +=,所以21m n -+=, 则()1111222224222n m m n m n m n m n-⎛⎫+=+-+=++≥+= ⎪---⎝⎭, 当且仅当22n m m n-=-且3m n +=,即51,22m n ==时取等号,故选:B. 【点睛】本题主要考查了利用基本不等式求最值问题,其中解答合理构造基本不等式的条件“一正、二定、三相等”,结合“1”的代换技巧是解答的关键,着重考查推理与运算能力.10.A解析:A 【分析】运用因式分解法,化为一元一次不等式组,解不等式,求并集即可得到所求解集. 【详解】解:28610x x -+<即为(21)(41)0x x --<, 即有210410x x ->⎧⎨-<⎩或210410x x -<⎧⎨->⎩,可得x ∈∅或1142x <<, 即解集为1(4,1)2,故选A . 【点睛】本题考查一元二次不等式的解法,考查运算能力,属于基础题.11.B解析:B 【分析】利用函数的单调性、不等式的基本性质即可判断出结论. 【详解】 a >b ,则1a 与1b的大小关系不确定;由函数y =x 5在R 上单调递增,∴a 5>b 5; c =0时,ac 2=bc 2;取a =-1,b =-2,|a |>|b |不成立.因此只有B 成立. 故选B . 【点睛】本题考查了函数的单调性、不等式的基本性质,考查了推理能力与计算能力,属于基础题.12.A解析:A 【分析】对于选项A ,由不等式性质得该选项正确;对于选项B ,11b a a b ab--=符号不能确定,所以该选项错误;通过举反例说明选项C 和选项D 错误. 【详解】对于选项A ,若ac bc >22,所以20c >,则a b >,所以该选项正确;对于选项B ,11b aa b ab--=符号不能确定,所以该选项错误; 对于选项C ,设1,0,1,3,2,3a b c d a c b d ===-=--=-=,所以a c b d -<-,所以该选项错误;对于选项D ,设0,1,2,1,0,1,a b a ba b c d c d c d==-=-=-==∴<,所以该选项错误; 故选:A 【点睛】本题主要考查不等式的性质,考查实数大小的比较,意在考查学生对这些知识的理解掌握水平.二、填空题13.【分析】利用参变分离得在上恒成立结合双勾函数性质求出的最小值即可【详解】解:由题意知:在上恒成立所以在上恒成立又因为函数在上单调递减在上单调递增所以当时最小为2所以即故答案为:【点睛】方法点睛:在解 解析:1a ≤【分析】利用参变分离得2112x a x x x +≤=+在(]02x ∈,上恒成立,结合双勾函数性质求出1y x x=+的最小值即可. 【详解】 解:由题意知:()2210f x x ax =-+≥在(]02x ∈,上恒成立,所以2112x a x x x+≤=+在(]02x ∈,上恒成立, 又因为函数1y x x=+在()01x ∈,上单调递减,在()12x ∈,上单调递增,所以当1x =时,1x x+最小为2, 所以2a ≤2,即1a ≤,故答案为:1a ≤.【点睛】方法点睛:在解决二次函数的恒成立问题,常常采用参变分离法,如此可以避免对参数进行分类讨论.14.【分析】由条件可得利用均值不等式可得答案【详解】当且仅当即也即时取等号故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项必须为正数;(2)【分析】由条件可得()2112112x y x y x y x y y x ⎛⎫+=+=++⎪⎭+⎝+,利用均值不等式可得答案. 【详解】 ()11332122212x y x y y x x y x y ⎛⎫+=+=+++++≥+= ⎪⎝⎭当且仅当2x y y x =,即x =,也即x y ⎧=⎪⎪⎨⎪=⎪⎩时取等号.故答案为:32+ 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方 15.16【分析】由条件可知则原式变形为展开后利用基本不等式求最小值【详解】原式;当且仅当即时取等所以的最小值为16故答案为:16【点睛】关键点点睛:本题的关键是结合1的妙用利用基本不等式求最值解析:16【分析】由条件可知()1212x y +=,则原式变形为()1243522x y x y y x y x ⎛⎫=++++ ⎪⎝⎭,展开后,利用基本不等式求最小值.【详解】 原式()124493524162x y x y x y y x y x y x⎛⎫=++++=++≥ ⎪⎝⎭; 当且仅当23x y =即67x =,47y =时取等. 所以223524x y x y xy+++的最小值为16. 故答案为:16【点睛】关键点点睛:本题的关键是结合 “1”的妙用,利用基本不等式求最值.16.②④【分析】利用基本不等式和题设得到答案即可【详解】解:且即当且仅当时取等号故选项①错误;当且仅当时取等号选项②正确;即选项③错误;当且仅当时取等号选项④正确故答案为:②④【点睛】利用基本不等式求最解析:②④【分析】利用基本不等式和题设得到答案即可.【详解】解:0a >,0b >,且4a b +=,42a b ab ∴+=,即4ab ,当且仅当2a b ==时取等号,∴114ab ,故选项①错误; 222()82a b a b ++=,当且仅当2a b ==时取等号,∴选项②正确;42a b ab +=,即2,∴选项③错误;1111111()()(2)(221444b a a b a b a b a b +=++=+++=,当且仅当2a b ==时取等号,∴选项④正确,故答案为:②④.【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方17.【分析】由a+b =2得出b =2﹣a 代入代数式中化简后换元t =2a ﹣1得2a =t+1得出1<t <3再代入代数式化简后得出然后在分式分子分母中同时除以t 利用基本不等式即可求出该代数式的最小值【详解】解:解析:34+ 【分析】由a +b =2得出b =2﹣a ,代入代数式中,化简后换元t =2a ﹣1,得2a =t +1,得出1<t <3,再代入代数式化简后得出()2265t t t -+,然后在分式分子分母中同时除以t ,利用基本不等式即可求出该代数式的最小值.【详解】解:由于a +b =2,且a >b >0,则0<b <1<a <2, 所以,()()()()][()()()()()()2232221334223322622262232a a a a b a b a a ab b a b a b a a a a a a a a ------====+--+----⎡⎤--⋅+-⎣⎦,令t =2a ﹣1∈(1,3),则2a =t +1, 所以,()()()()()()()()22222132222523226215161656a a b t t t a ab b a a t t t t t t t t --=====+-----⎡⎤⎛⎫--+-+⎣⎦-+ ⎪⎝⎭.当且仅当()513t t t=<<,即当t = 因此,22323a b a abb -+-的最小值为34+. 【点睛】本题考查利用基本不等式求最值,解本题的关键就是对代数式进行化简变形,考查计算能力,属于中等题.18.32【分析】由是与的等比中项求得化简结合基本不等式即可求解【详解】由题意实数是与的等比中项可得解得所以当且仅当时即时等号成立所以的最小值是故答案为:【点睛】本题主要考查了利用基本不等式求最值以及等比 解析:32【分析】8a 与2b 的等比中项,求得31a b +=,化简626266()(3)20b a a b a b a b a b+=++=++,结合基本不等式,即可求解.由题意,实数0a >,0b >8a 与2b 的等比中项,可得23228a b a b +=⨯=,解得31a b +=,所以626266()(3)202032b a a b a b a b a b +=++=++≥+=, 当且仅当66b a a b +时,即14a b ==时,等号成立, 所以62a b+的最小值是32. 故答案为:32.【点睛】本题主要考查了利用基本不等式求最值,以及等比中项公式的应用,其中解答中熟记等比中项公式,合理利用“1”的代换,结合基本不等式求解是解答的关键,着重考查推理与运算能力.19.或【解析】试题分析:当x>0时不等式f (x )>x 转化为由函数是奇函数图像关于原点对称因此当时不等式f (x )>x 的解集为综上不等式的解为(-50)∪(5+∞)考点:函数奇偶性解不等式解析:{|5x x >或50}x -<<【解析】试题分析:当x>0时,不等式f (x )>x 转化为245xx x x ->∴>,由函数是奇函数,图像关于原点对称,因此当0x <时不等式f (x )>x 的解集为50x -<<,综上不等式的解为(-5,0)∪(5,+∞)考点:函数奇偶性解不等式20.>【分析】作差分析差的正负即可求解【详解】因为又所以所以故答案为:>【点睛】本题主要考查了比较法判断两个式子的大小考查了运算能力属于中档题解析:>【分析】作差,分析差的正负即可求解.【详解】因为()()()22222a b c d ac bd ++-+()()2222222222222a c a d b c b d a c b d acbd +=+++-+ 22222b c a d abcd =+-20(bc ad )=-≥,所以2()0bc ad ->所以()()22222()a b c d ac bd ++>+, 故答案为:>【点睛】本题主要考查了比较法判断两个式子的大小,考查了运算能力,属于中档题.三、解答题21.(1)13;(2)11,103⎡⎤⎢⎥⎣⎦. 【分析】(1)由题意可得32-、1是方程2210kx kx +-=的两个根,利用两根之积列方程即可求解; (2)方程()0f x =在[]12,有解,可得212k x x =+在[]12,有解,利用二次函数的性质求出22y x x =+的范围,即可求解.【详解】 (1)因为2210kx kx +-<的解集是3,12⎛⎫- ⎪⎝⎭, 所以32-、1是方程2210kx kx +-=的两个根, 由根与系数的关系可得:31122k -⨯=-,解得:13k =, (2)因为方程()0f x =在[]12,有解, 所以2210kx kx +-=在[]12,有解, 212k x x =+在[]12,有解, 因为22y x x =+对称轴为14x =-,在[]12,上单调递增, 所以[]223,10y x x =+∈, 可得2111,2103k x x ⎡⎤=∈⎢⎥+⎣⎦, 所以实数k 的取值范围11,103⎡⎤⎢⎥⎣⎦. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解22.无23.无24.无25.无26.无。

一元一次函数应用题与答案

一元一次函数应用题与答案

一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。

解:等量关系步行时间-乘公交车的时间=3.6小时列出方程是:2、某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系⑴速度15千米行的总路程=速度9千米行的总路程⑵速度15千米行的时间+15分钟=速度9千米行的时间-15分钟提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。

方法一:设预定时间为x小/时,则列出方程是:15(x-0.25)=9(x+0.25)方法二:设从家里到学校有x千米,则列出方程是:3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。

等量关系:快车行的路程+慢车行的路程=两列火车的车长之和设客车的速度为3x米/秒,货车的速度为2x米/秒,则16×3x+16×2x=200+2804、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。

一元一次函数练习题及答案

一元一次函数练习题及答案

一元一次函数练习题及答案精品文档一元一次函数练习题及答案1(下面哪个点在函数y=1x+1的图象上A( B(C( D(2(下列函数中,y是x的正比例函数的是A(y=2x-1 B(y=xC(y=2x D(y=-2x+13(一次函数y=-5x+3的图象经过的象限是A(一、二、三B(二、三、四C(一、二、四D(一、三、四4(若一次函数y=x-k的图象经过第二、三、四象限,则k的取值范围是A(k>3B(0 填空题1(已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,?该函数的解析式为_________(2(若点在正比例函数y=kx的图象上,则此函数的解析式为________(3(已知一次函数y=-x+a与y=x+b的图象相交于点,则a+b=_________(解答题1(根据下列条件,确定函数关系式:y与x成正比,且当x=9时,y=16;y=kx+b的图象经过点和点(2(如图所示的折线ABC?表示从甲地向乙地打长途电1 / 10精品文档话所需的电话费y 与通话时间t之间的函数关系的图象写出y与t?之间的函数关系式(通话2分钟应付通话费多少元,通话7分钟呢,一次函数与一元一次方程练习题一、选择题1(直线y=3x+9与x轴的交点是A(B(C(D(2(直线y=kx+3与x轴的交点是,则k的值是A( B( C(- D(-33(已知直线y=kx+b与直线y=3x-1交于y轴同一点,则b的值是A(1 B(-1C(11 D(-34(已知直线AB?x轴,且点A的坐标是,则直线y=x与直线AB的交点是A(B(C(D(15、已知点,都在直线y=- x+2上,则y1 y2大小关系是y1 >y2y1 =y y1 6.已知一次函数y=ax+4与y=bx-2的图象在x轴上相交于同一点,则的值是114- - 27、一次函数y=ax+b,若a+b=1,则它的图象必经过点A、 B、 C、 D、2 / 10精品文档8. 如图,直线y?kx?b与x轴交于点,则y>0时,x的取值范围是A、x>,B、x>0C、x 9.无论m为何实数,直线y?x?2m与y??x?4的交点不可能在A.第一象限B第二象限C.第三象限D.第四象限10(若函数y=x2+x是正比例函数,则m的值为A(m>1111 B(m= C(m 11(若一次函数y=x-k的图象经过第二、三、四象限,则k 的取值范围是A(k> B(0 12(已知一次函数的图象与直线y=-x+1平行,且过点,那么此一次函数的解析式为A(y=-x-B(y=-x-C(y=-x+10 D(y=-x-1二、填空题1(直线y=3x+6与x轴的交点的横坐标x的值是方程2x+a=0的解,则a?的值是______(2(已知直线y=2x+8与x轴和y轴的交点的坐标分别是_______、_______(?与两条坐标轴围成的三角形的面积是__________(3(已知关于x的方程mx+n=0的解是x=-2,则直线y=mx+n与x?轴的交点坐标是________(4(方程3x+2=8的解是__________,则函数y=3x+2在自变量x等于_________?时的函数值是8(2m?3是正比例函数,则常数m的值是..若函数y=x3 / 10精品文档6.y=x?1?1中x的取值范围是x?37.当y=2x+2与y=x+1有相同的函数值。

一次函数的应用专项练习30题有答案

一次函数的应用专项练习30题有答案

一次函数的应用专项练习30题(有答案)1.向一个空水池注水,水池蓄水量y(米3)与注水时间x(小时)之间的函数图象如图所示.(1)第20小时时蓄水量为_________ 米3;(2)水池最大蓄水量是_________ 米3;(3)求y与x之间的函数关系式.2.小王的父母经营一家饲料店,拟投入a元购入甲种饲料,现有两种方案:①如果月初出售这批甲种饲料可获利8%,并用本金和利润再购入乙种饲料,到月底售完又获利10%;②如果月底出售这批甲种饲料,可获利20%,但要付仓储费600元.(1)分别写出方案①、②获利金额的表达式;(2)请你根据小王父母投入资金的多少,定出可多获利的方案.3.某工厂现在年产值是15万元,计划以后每年增加2万元,设x年后的年产值为y(万元).(1)写出y与x之间的关系式;(2)用表格表示当x从0变化到5(每次增加1)y的对应值;(3)求10年后的年产值?4.我们知道海拔一定高度的山区气温随着海拔高度的增加而下降.小明暑假到去旅游,沿途他利用随身所带的测量仪器,测得以下数据:1400 1500 1600 1700 …海拔高度x(m)气温y(°C)32.00 31.40 30.80 30.20 …(1)现以海拔高度为x轴,气温为y轴建立平面直角坐标系,根据提供的数据描出各点;(2)已知y与x的关系是一次函数关系,求出这个关系式;(3)若小明到达天都峰时测得当时的气温是29.24°C.求天都峰的海拔高度.5.如图,l1,l2分别表示一种白炽灯和一种节能灯的费用y与照明时间x(h)的函数图象,假设两种灯的使用寿命都是2000h,照明效果一样.(费用=灯的售价+电费,单位:元)(1)根据图象分别求出l1,l2的函数关系式.(2)当照明时间为多少时,两种灯的费用相等?6.某物流公司的快递车和货车每天沿同一公路往返于A、B两地,快递车比货车多往返一趟.图表示快递车与货车距离A地的路程y(单位:千米)与所用时间x(单位:时)的函数图象.已知货车比快递车早1小时出发,到达B 地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A地晚1小时.(1)两车在途中相遇的次数为_________ 次;(直接填入答案)(2)求两车最后一次相遇时,距离A地的路程和货车从A地出发了几小时.7.某农户有一水池,容量为10立方米,中午12时打开进水管向水池注水,注满水后关闭水管同时打开出水管灌溉农作物,当水池中的水量减少到1立方米时,再次打开进水管向水池注水(此时出水管继续放水),直到再次注满水池后停止注水,并继续放水灌溉,直到水池中无水,水池中的水量y(单位:立方米)随时间x(从中午12时开始计时,单位:分钟)变化的图象如图所示,其中线段CD所在直线的表达式为y=﹣0.25x+33,线段OA所在直线的表达式为y=0.5x,假设进水管和出水管每分钟的进水量和出水量都是固定的.(1)求进水管每分钟的进水量;(2)求出水管每分钟的出水量;(3)求线段AB所在直线的表达式.8.为发展电信事业,方便用户,电信公司对移动采取不同的收费方式,其中“如意卡”无月租,每通话一分钟收费0.25元,“便民卡”收费信息如图(1)分别求出两种卡在某市围每月(30天)的通话时间x(分钟)与通话费y(元)之间的函数关系式.(2)请你帮助用户计算一下,在一个月使用哪种卡便宜.9.如图是甲、乙两人去某地的路程S(km)与时间t(h)之间的函数图象,请你解答下列问题:(1)甲去某地的平均速度是多少?(2)甲出发多长时间,甲、乙在途中相遇?10.如图,在甲、乙两同学进行400米跑步比赛中,路程s(米)与时间t(秒)之间的函数关系的图象分别为折线OAB和线段OC,请根据图上信息回答下列问题:(1)_________ 先到达终点;(2)第_________ 秒时,_________ 追上_________ ;(3)比赛全程中,_________ 的速度始终保持不变;(4)写出优胜者在比赛过程中所跑的路程s(米)与时间t(秒)之间的函数关系式:_________ .11.甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2)当x=2.8时,甲、乙两组共加工零件_________ 件;乙组加工零件总量a的值为_________ .(3)加工的零件数达到230件装一箱,零件装箱的时间忽略不计,若甲、乙两组加工出的零件合在一起装箱,当甲组工作多长时间恰好装满第2箱?12.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象提供的信息解答下列问题:(1)甲队在0≤x≤6的时间段,挖掘速度为每小时_________ 米;乙队在2≤x≤6的时间段,挖掘速度为每小时_________ 米;请根据乙队在2≤x≤6的时间段开挖的情况填表:时间(h) 2 3 4 5 630 50乙队开挖河渠(m)(2)①请直接写出甲队在0≤x≤6的时间段,y甲与x之间的关系式;②根据(1)中的表中规律写出乙队在2≤x≤6的时间段,y乙与x之间的关系式;(3)在(1)的基础上,如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到每小时12米,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?13.百舟竞渡,激悄飞扬,端午节期间,龙舟比赛在九龙江举行.甲、乙两支龙舟队在比赛时的路程y(米)与时间x(分钟)的函数关系的图象如图所示,根据图象解答下列问题:(1)出发后1.5分钟,_________ 支龙舟队处于领先位置(填“甲”或“乙“);(2)_________ 支龙舟队先到达终点(填“甲“或“乙”),提前_________ 分钟到达;(3)求乙队加逨后,路程y(米)与时问分钟)之间的函数关系式,并写出自变x的取值围.14.在人才招聘会上,某公司承诺:录用后第一年的月工资为2000元,以后每年的月工资比上一年的月工资增加300元,一年按12个月计算.(1)如果某人在该公司连续工作x年,他在第x年后的月工资是y元,写出y与x的关系式.(2)如果这个人期望第五年的工资收入超过4万元,那么他是否应该在该公司应聘?15.褚向同学乘车从学校出发回家,他离家的路程y(km)与所用时间x(时)之间的关系如图所示.(1)求y与x之间的关系式;(2)求学校和褚向同学家的距离.16.某软件公司开发出一种图书管理软件,前期投入的各种费用总共50000元,之后每售出一套软件,软件公司还需支付安装调试费用200元,设销售套数x(套).(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式.(2)该公司计划以400元每套的价格进行销售,并且公司仍要负责安装调试,试问:软件公司售出多少套软件时,收入超出总费用?17.甲和乙上山游玩,甲乘坐缆车,乙步行,两人相约在山顶的缆车终点会合.已知乙行走到缆车终点的路程是缆车到山顶的线路长的2倍,甲在乙出发后50min才乘上缆车,缆车的平均速度为180m/min.设乙出发xmin后行走的路程为ym.图中的折线表示乙在整个行走过程中y与x的函数关系.(1)乙行走的总路程是_________ m,他途中休息了_________ min.(2)①当50≤x≤80时,求y与x的函数关系式;②当甲到达缆车终点时,乙离缆车终点的路程是多少?18.经理到家果园里一次性采购一种水果,他俩商定:经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).(1)如果采购量x满足20≤x≤40,求y与x之间的函数关系式;(2)已知家种植水果的成本是2 800元/吨,经理的采购量x满足20≤x≤40,那么当采购量为多少时,家在这次买卖中所获的利润w最大?最大利润是多少?19.某移动通讯公司开设了“全球通”和“神舟行”两种通讯业务,收费标准见下表:通讯业务月租费(元)通话费(元/分钟)全球通50 0.4神舟行0 0.6某用户一个月通话x分钟,“全球通”和“神舟行”的收费分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;(2)在通话时间相同的情况下,你认为该用户应选择哪种通讯业务更为合算?20.某长途汽车客运站规定,乘客可以免费携带一定质量的行,但超过该质量则需交纳行费,已知行费y(元)是行质量x(千克)的一次函数.现在黄明带了60千克的行,交了行费5元,王华带了78千克的行,交了8元.(1)写出y与x之间的函数关系式;(2)旅客最多可以免费携带多少千克的行?21.某长途汽车客运站规定,乘客可免费携带一定质量的行,但超过该质量则需要购买行票,且行费y(元)是行质量x(千克)的一次函数,如图所示.(1)求y与x之间的函数关系式.(2)最多可免费携带多少质量的行?22.小明从A地出发向B地行走,同时小聪从B地出发向A地行走.如图所示,线段l1、l2分别表示小明、小聪离B地的距离y(km)与已用时间x(h)之间的关系.观察图象,回答以下问题:(1)出发_________ (h)后,小明与小聪相遇,此时两人距离B地_________ (km);(2)求小聪走1.2(h)时与B地的距离.23.某公司生产一种新产品,前期投资300万元,每生产1吨新产品还需其他投资0.3万元,如果生产这一产品的产量为x吨,每吨售价为0.5万元.(1)设生产新产品的总投资y1万元,试写出y1与x之间的函数关系式和定义域;(2)如果生产这一产品能盈利,且盈利为y2万元,求y2与x之间的函数关系式,并写出定义域;(3)请问当这一产品的产量为1800吨时,该公司的盈利为几万元?24.根据市场调查,某厂家决定生产一批产品投放市场,安排750名工人计划10天完成a件的生产量.(1)按计划,该厂平均每天应生产产品多少件?(用含a的式子表示)(2)该厂按计划生产几天后,该厂家又抽调了若干名工人支援生产,同时,通过技术革新等手段使每位工人的工作效率比原计划每位工人的工作效率提高25%,结果提前完成任务,图中折线表示实际工作情况.求厂家又抽调了多少名工人支援生产?25.某公司库存挖掘机16台,现在运往甲、乙两地支援建设,每运一台到甲、乙两地的费用分别是500元和300元.设运往甲地x台挖掘机,运这批挖掘机的总费用为y元.(1)写出y与x之间的函数关系式;(2)如果公司决定将这16台挖掘机平均分配给甲、乙两地,求此次运输的总费用;(3)如果公司决定按运输费用平均分配这16台挖掘机,求此时运输的总费用又是多少.26.A市和B市各有机床12台和6台,现运往C市10台,D市8台.若从A市运1台到C市、D市各需要4万元和8万元,从B市运1台到C市、D市各需要3万元和5万元.(1)设B市运往C市x台,求总费用y关于x的函数关系式;(2)若总费用不超过90万元,问共有多少种调运方法?(3)求总费用最低的调运方法,最低费用是多少万元?27.某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2060万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:A B成本(万元/套)25 28售价(万元/套)30 34(1)该公司如何建房获得利润最大?(2)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?(注:利润=售价﹣成本)28.某工厂研制一种新产品并投放市场,根据市场调查的信息得出这种新产品的日销售量y(万件)与销售的天数x(天)的关系如图所示.根据图象按下列要求作出分析:(1)求开始时,不断上升的日销售量y(万件)与销售天数x(天)的函数关系式;(2)已知销售一件产品获利0.9元,求在该产品日销售量不变期间的利润有多少万元.29.两种移动计费方式如下:全球通神州行月租费15元/月0本地通话费0.10元/分0.20元/分(1)一个月某用户在本地通话时间是x分钟,请你用含有x的式子分别写出两种计费方式下该用户应该支付的费用.(2)若某用户一个月本地通话时间是5个小时,你认为采用哪种方式较为合算?(3)小王想了解一下一个月本地通话时间为多少时,两种计费方式的收费一样多.请你帮助他解决一下.30.为了学生的健康,学校课桌、课凳的高度都是按一定的关系科学设计的,小明对学校所添置的一批课桌、课凳进行观察研究,发现他们可以根据人的身长调节高度,于是,他测量了一套课桌、课凳上相对的四档高度,得到如下数据:档次/高度第一档第二档第三档第四档凳高x/cm 37.0 40.0 42.0 45.0桌高y/cm 70.0 74.8 78.0 82.8(1)小明经过数据研究发现,桌高y是凳高x的一次函数,请你求出这个一次函数的解析式(不要求写出x的取值围).(2)小明回家后,量了家里的写字台和凳子,凳子的高度是41厘米,写字台的高度是75厘米,请你判断它们是否配套.一次函数的应用30题参考答案:1.(1)由图形可知,当x=20时,y=1000,∴第20小时时蓄水量为1000米3.(2)由图形可知,当x=230时,y=4000,∴水池最大储水量为4000米3.(3)由图形可知,x=20为图象的拐点,①当0<x<20时:为正比例函数,设y1=kx1,过点(20,1000),∴k=50,∴y1=50x1,(0<x<20).②当20≤x ≤30时,设y2=k1x2+b,过点(20,1000)和(30,4000),∴代入方程式中,求解为k1=300,b=﹣5000,∴y2=300x2﹣5000,(20≤x≤30)2.(1)方案①获利a(1+8%)•(1+10%)﹣a=0.188a 方案②a•20%﹣600=0.2a﹣600(2)当0.188a=0.2a﹣600时,解得:a=50000.当a=50000元时,获利一样多;当a高于50000元时,第二种方案获利多一些;当a低于50000元时,第一种方案获利多一些3.(1)依题意,得y=15+2x;(2)列表如下:x 0 1 2 3 4 5y 15 17 19 21 23 25(3)当x=10时,y=15+2×10=35,即10年后的年产值为35万元4.(1)描点:(2)设解析式为y=kx+b,把点(1400,32),(1500,31.4)分别代入可得:,解得:,所以此一次函数关系式为:y=﹣x+40.4;(3)当y=29.24时,有:x+40.4=29.24,解得:x=,即山巅的海拔为:米5.(1)设l1、l2的解析式分别为y1=k1x+b1,y2=k2x+b2,由图象,得,,解得:,.故l1的解析式为:y1=x+2,l2的解析式为:y2=x+20(2)由题意,得x+2=x+20,解得x=1000.故当照明1000小时时两种灯的费用相等6.(1)由图象得:两车在途中相遇的次数为4次.故答案为:4;(2)由题意得:快递车的速度为:400÷4=100,货车的速度为:400÷8=50,∴200÷50=4,600÷100=6∴E(6,200),C(7,200).如图,设直线EF的解析式为y=k1x+b1,∵图象过(10,0),(6,200),∴,∴k1=﹣50,b1=500,∴y=﹣50x+500①.设直线CD的解析式为y=k2x+b2,∵图象过(7,200),(9,0),∴,∴k1=﹣100,b 1=900,∴y=﹣100x+900②.解由①,②组成的方程组得:,解得:,∴最后一次相遇时距离A地的路程为100km,货车从A 地出发了8小时.7.(1)∵线段OA所在直线的表达式为y=0.5x,∴x=1时,y=0.5,则求出进水管每分钟的进水量为0.5立方米.(2)∵线段CD所在直线的表达式为y=﹣0.25x+33,∴10=﹣0.25x+33,解得:x=92,0=﹣0.25x+33,解得:x=132,∵132﹣92=40(分钟),∴10÷40=0.25,则求出出水管每分钟的出水量为0.25立方米.(3)对于C来说,纵坐标为10,代入y=﹣0.25x+33中得:10=﹣0.25x+33,解得:x=92,点A的纵坐标为10,代入y=0.5x中得到x=20,故A(20,10),设从B到C经过了a分钟,则:(0.5﹣0.25)a=10﹣1=9,解得:a=36,∴B的横坐标为92﹣36=56,故B(56,1).设AB 解析式为y=kx+b(k≠0),将A,B坐标代入得:,解得:,即直线AB 解析式为8.(1)设便民卡每月的通话时间与费用之间的关系为y2=kx+b,根据图象得:,解得:,故使用如意卡每月的费用与时间之间的关系式为:y1=0.25x;“便民卡”y与x之间的函数关系式为:y2=0.2x+12.(2)当y1>y2时,0.25x>0.2x+12,解得:x>240;当y1=y2时,0.25x=0.2x+12,解得:x=240当y1<y2时,0.25x<0.2x+12,解得x<240.故当x<240时使用如意卡划算些,当x=240时,两种收费一样划算,当x>240时.使用便民卡划算些9.(1)利用图表得出甲所行驶的总路程为:30千米,行驶时间为:3小时,故甲去某地的平均速度是:30÷3=10千米/时;(2)由图象得出:直线CD经过点(3,30),(1,0)代入s=kt+b,得:,解得:,故直线CD解析式为:s=15t﹣15,由图象得出s=15千米时两人相遇,则15=15t﹣15,解得:t=2.故甲出发2小时,甲、乙在途中相遇10.依题意,得(1)乙先到达终点;(2)第40秒时,乙追上甲;(3)比赛全程中,乙的速度始终保持不变;(4)乙的速度为:400÷50=8,∴S=8t(0≤t≤50).故答案为:(1)乙;(2)40,乙,甲;(3)乙;(4)S=8t (0≤t≤50)11.(1)∵图象经过原点及(6,360),∴设解析式为:y=kx,∴6k=360,解得:k=60,∴y=60x(0<x≤6);(2)∵乙2小时加工100件,∴乙的加工速度是:每小时50件,∴2.8小时时两人共加工60×2.8+50×2=268(件),∴乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.∴更换设备后,乙组的工作速度是:每小时加工50×2=100件,a=100+100×(4.8﹣2.8)=300;(3)乙组加工的零件的个数y与时间x的函数关系式为y=50x(0≤x≤2)y=100(2<x≤2.8)y=100x﹣(2.8<x≤4.8)∵当2.8<x≤4.8时,60x+100x﹣=230×2,得x=4,∴再经过4小时恰好装满第2箱12.(1)甲:60÷6=10;乙:(50﹣30)÷(6﹣2)=20÷4=5;30+5(3﹣2)=35,30+5(4﹣2)=40,30+5(5﹣2)=45,∴表格容依次填35、40、45;(3分)(2)①∵甲图象经过点(0,0)(6,60),∴设y甲与x之间的关系式是y甲=ax,则6a=60,解得a=10,∴y甲与x之间的关系式是:y甲=10x,(5分)②∵图象经过点(2,30)(6,50),∴设y乙与x之间的关系式是y乙=kx+b,则,解得,∴y乙与x之间的关系式是:y乙=30+5(x﹣2)=5x+20;(7分)(3)设甲队从开挖到完工所挖河渠的长度为z米,由题意得=(9分)解得z=110,∴甲队从开挖到完工所挖河渠的长度为110米.13.(1)当x=1.5时,甲对应的函数图象在乙的图象的上方,所以甲支龙舟队处于领先位置.故答案为甲;(2)乙比赛用时4.5分,甲用时5分,所以乙支龙舟队先到达终点,比甲提前0.5分钟到达.故答案为乙,0.5;(3)设乙队加逨后,路程y(米)与时间(分钟)之间的函数关系式为y=kx+b,把(2,300)和(4.5,1050)代入得,2k+b=300,4.5k+b=1050,解得k=300,b=﹣300,∴y=300x﹣300(2≤x≤4.5)14.(1)由题意得y=2000+300(x﹣1)=1700+300x;(2)把x=5代入y=1700+300n=3200(元),3200×12=38400(元).∵38400元<40 000元,∴他不可以到该公司应聘15.(1)设y与x的关系式为y=kx+b,有函数的图象可知点(3,40),(5,0),则,解得:所以y与x的关系式为y=﹣20x+100;(2)当x=0时,y=100,所以学校与褚向同学的距离为100千米.16.(1)设总费用y(元)与销售套数x(套),根据题意得到函数关系式:y=50000+200x.(2)设软件公司至少要售出x套软件才能收入超出总费用,则有:400x>50000+200x解得:x>250.答:软件公司至少要售出251套软件才能收入超出总费用17.(1)由图象得:乙行走的总路程是:3600米,他途中休息了20分钟.故答案为:3600,20;(2)①当50≤x≤80时,设y与x的函数关系式为y=kx+b.根据题意得:,解得:,∴y与x的函数关系式为:y=55x﹣800②缆车到山顶的路线长为3600÷2=1800(m),缆车到达终点所需时间为1800÷=10(min).甲到达缆车终点时,乙行走的时间为10+50=60(min).把x=60代入y=55x﹣800,得y=55×60﹣800=2500.所以,当甲到达缆车终点时,乙离缆车终点的路程是:3600﹣2500=1100(m)18.(1)当20≤x≤40时,设y与x之间的函数关系式:y=kx+b,∵当x=20时,y=8000,当x=40时,y=4000∴,,∴y=﹣200x+12000;(2)当20≤x≤40时,w=(y﹣2800)x=﹣200x2+9200x=﹣200(x﹣23)2+105800,∴当x=23时,w有最大值,是105800,当采购量为23吨时,家在这次买卖中所获的利润w最大,最大利润是105800元19.(1)利用图表直接得出:y1=0.4x+50;y2=0.6x;(2)当y1=y2,即0.4x+50=0.6x时,解得:x=250;当y1<y2,即0.4x+50<0.6x时,解得:x>250;当y1>y2,即0.4x+50>0.6x时,解得:x<250;答:通话时间为250分钟时,两种通讯业务一样,当通话时间为大于250分钟时,全球通业务合算,当通话时间为小于250分钟时,神舟行业务合算20.(1)设行费y(元)关于行质量x(千克)的一次函数关系式为y=kx+b,由题意得,解得k=,b=﹣5,∴该一次函数关系式为;(2)∵,解得x≤30,∴旅客最多可免费携带30千克的行.答:(1)行费y (元)关于行质量x(千克)的一次函数关系式为;(2)旅客最多可免费携带30千克的行21.(1)设一次函数y=kx+b,∵当x=60时,y=6,当x=80时,y=10,∴,解之,得,∴所求函数关系式为y=x﹣6(x≥30);(2)当y=0时,x﹣6=0,所以x=30,故旅客最多可免费携带30kg行.22.(1)由函数图象可以得出l1、l2的交点坐标是(0.6,2.4),故出发0.6小时后,小明与小聪相遇,此时两人距B地2.4,(2)设l2的解析式为y=kx,由题意,得2.4=0.6k,k=4则l2的解析式为y=4x.当x=1.2时,y=4.8答:小聪走1.2(h)时与B地的距离是4.8(km).故答案为:0.6,2.4.23.(1)由题意,得y1=0.3x+300,定义域为x>0.(2)由题意,得y2=0.5x﹣0.3x﹣300,y2=0.2x﹣300;定义域为x>1500;(3)当x=1800时,y2=0.2×1800﹣300=60.故当这一产品的产量为1800吨时,该公司的盈利为60万元24.(1)由题意,得该厂平均每天应生产产品的件数为:件,故答案为:;(2)设厂家又抽调了x名工人支援生产,由题意及图象得:×2+(1+25%)(750+x)×6=a,解得:x=50.答:厂家又抽调了50名工人支援生产25.(1)设运往甲地x台挖掘机,运这批挖掘机的总费用为y元,则:y=500x+300(16﹣x)=200x+4800;(2)当x=8时,y=200x+4800=1600+4800=6400;(3)依题意有500x=300(16﹣x),解得:x=6,当x=6时,y=200x+4800=1200+4800=6000.26.(1)设B市运往C市x台,则运往D市(6﹣x)台,A市运往C市(10﹣x)台,运往D市(x+2)台,由题意得:y=4(10﹣x)+8(x+2)+3x+5(6﹣x),y=2x+86.(2)由题意得:,解得:0≤x≤2,∵x为整数,∴x=0或1或2,∴有3种调运方案.当x=0时,从B市调往C市0台,调往D市6台.从A市调往C 市10台,调往D市2台,当x=1时,从B市调往C市1台,调往D市5台.从A市调往C 市9台,调往D市3台,当x=2时,从B市调往C市2台,调往D市4台.从A市调往C 市8台,调往D市4台,(3)∵y=2x+86.∴k=2>0,∴y随x的增大增大,∴当x最小为0时,y最小,∴运费最小的调运方案是:从B市调往C市0台,调往D市6台,从A市调往C市10台,调往D市2台.y最小=86万元27.(1)设建A型的住房x套,B型的住房(80﹣x)套,利润为y,根据题意得:,解得:48≤x≤50.利润y=(30﹣25)x+(34﹣28)(80﹣x)=480﹣x.∵y随x的增加而减小,∴x=48时利润最大,即建A型住房48套,B型住房32套.(2)利润y=480+(a﹣1)x.当a>1时,x=50时利润y最大,即建A型住房50套,B型住房30套.当a=1时,建A型住房48到50之间即可.当0<a<1时,x=48时利润最大,即建A型48套,建B型32套28.(1)设开始时,不断上升的日销售量y(万件)与销售天数x (天)的函数关系式为y=kx,由图象得:3=60k,k=,故y与x之间的函数关系式为:y=x(0≤x≤60);(2)由图象得日销售量不变期间的销量为:3万件.则利润为:3×0.9=2.7万元29.(1)全球通:15+0.1x,神州行:0.2x;(2)5小时=300分钟,全球通:15+0.1×300=45(元),神州行:0.2×300=60(元),∴应选择全球通;(3)∵两种计费方式的收费一样多,∴0.2x=15+0.1x,解得:x=150,答:一个月本地通话时间为150分钟时,两种计费方式的收费一样多30.(1)设一次函数的解析式为:y=kx+b,将x=37,y=70;x=42,y=78代入y=kx+b,得,解得,∴y=1.8x+10.8;(2)当x=41时,y=1.8×41+10.8=84.6,∴家里的写字台和凳子不配套.。

一元一次方程解应用题——销售问题(例)

一元一次方程解应用题——销售问题(例)

一元二次方程的应用——销售问题1:某商场将每件进价为80元的某种商品按每件100元出售时,一天可卖出100件,后经市场调查,发现这种商品单价每降低1元,其销售量可增加10件.(1)求商场经营该商品原来一天可获利多少元?(2)若商场经营该商品一天要获利2160元,那么每件商品应降价多少元?2:为鼓励大学生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:50010+=xy.-(1)李明在开始创业的第一个月将销售单价定为20元,政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?3:某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿场售价与上市时间的关系如图一的一条折线表示;西红柿的种植成本与上市时间的函数关系为()300024252320012≤≤+-=t t t Q ,. (1)写出图一表示的市场售价与时间的函数关系式?(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价各种植成本的单位:元/102㎏,时间单位:天)作业:某商场经营某种品牌的童装,购进时的单价是40元.根据市场调查,在一段时间内,销售单价是60元时,销售量是100件,而销售单价每降低1元,就可多售出10件.(1)写出销售量y (件)与销售单价x (元)之间的函数关系式;(2)写出销售该品牌童装获得的利润w (元)与销售单价x (元)之间的函数关系式;(3)为了尽快地减少库存,销售单价为多少元时可以获利2090元?(4)若童装厂规定该品牌童装销售单价不低于56元,且商场要完成不少于110件的销售任务,则商场销售该品牌童装获得的最大利润是多少元?。

赤峰市必修第一册第二单元《一元一次函数,方程和不等式》测试题(含答案解析)

赤峰市必修第一册第二单元《一元一次函数,方程和不等式》测试题(含答案解析)

一、选择题1.现有以下结论: ①函数1y x x=+的最小值是2; ②若a 、b R ∈且0ab >,则2b aa b+≥;③y =2;④函数()4230y x x x=-->的最小值为2-. 其中,正确的有( )个A .0B .1C .2D .32.已知a >0,b >0,a +b =1,则下列等式可能成立的是( )A .221a b +=B .1ab =C .212a b +=D .2212a b -=3.若正数x ,y 满足40x y xy +-=,则3x y+的最大值为( ) A .1B .38C .37 D .134.已知正实数x ,y ,a 满足2x y axy +=,若2x y +的最小值为3,则实数a 的值为( ) A .1B .3C .6D .95.已知函数()24x x af x x++=,若对于任意[)1,x ∈+∞,()0f x >恒成立,则实数a的取值范围为( )A .[)5,+∞B .()5,-+∞C .()5,5-D .[]5,5-6.已知不等式222ax y xy +≥,若对于任意[1,2],[2,3]x y ∈∈,该不等式恒成立,则实数a 的取值范围是( ). A .3a ≥-B .1a ≥-C .18a ≥D .118a -≤≤7.已知关于x 的不等式(1)(3)10(0)a x x a +-+>≠的解集是()()1212,x x x x <,则错误的是( ) A .122x x +=B .123x x <-C .214x x ->D .1213x x -<<<8.已知正实数,a b 满足1a b +=,则11b a b ⎛⎫+ ⎪⎝⎭的最小值是( )A .112B .5C .222+D .32+9.两个正实数a ,b 满足3a ,12,b 成等差数列,则不等式2134m m a b+≥+恒成立时实数m 的取值范围是( ) A .[]4,3-B .[]2,6-C .[]6,2-D .[]3,4-10.已知a≥0,b≥0,且a+b=2,则 ( ) A .ab≤ B .ab≥ C .a 2+b 2≥2D .a 2+b 2≤311.若直线20(,1)ax by a b +-=>始终把圆222220x y x y +---=的周长分为1:2.则11a b+的最大值为( ) A .423-B .22-C 21D 212.已知,a b R +∈,2229ab b a b +++=,则+a b 的最小值( ) A .1B .2C .52D .3二、填空题13.已知0,0,4a b a b >>+=,则411a b ++的最小值为__________. 14.有一块直角三角形空地ABC ,2A π∠=,250AB =米,160AC =米,现欲建一矩形停车场ADEF ,点D 、E 、F 分别在边AB 、BC 、CA 上,则停车场面积的最大值为________平方米.15.对于实数m ,若两函数()f x ,()g x 满足:①[,)x m ∀∈+∞,()0f x <或()0<g x ;②(,]x m ∃∈-∞,()()0f x g x <,则称函数()f x 和()g x 互为“m 相异”函数.若2()1f x ax ax =+-和()1g x x =-互为“1相异”函数,则实数a 的取值范围是___________.16.已知正实数a ,b 满足21ab a b ++=,则188a b a b+++的取值范围为_________. 17.已知函数()221f x ax x =+-,若对任意x ∈R ,()0f f x ≤⎡⎤⎣⎦恒成立,则实数a 的取值范围是_______________.18.已知0x >,0y >,22x y +=,则223524x y x y xy+++的最小值为______.19.已知,x y 为正实数,且114x y m x y+=+=,则m 的最小值为___________. 20.正数a ,b 满足ab =a +b +3,则ab 的取值范围是________.三、解答题21.已知函数()()223f x x bx b R =-+∈.(1)若()f x 在区间[22]-,上单调递减,求实数b 的取值范围; (2)若()f x 在区间[22]-,上的最大值为9,求实数b 的值.22.已知函数()f x x x =++,M 为不等式()f x < (1)求集合M ;(2)证明:当,a b M ∈时,|)||2|a b ab +<+.23.已知函数()|21||2|f x x x =---,M 为不等式()1f x <-的解集. (1)求M ;(2)当,a b M ∈且1a b +=时,4a b tab +≥恒成立,求t 的最大值.24.(1)已知01x <<,求函数()(33)f x x x =-的最大值: (2)已知关于x 的不等式210ax bx a +-<的解集为122x x ⎧⎫-<<⎨⎬⎩⎭,求a ,b 的值.25.解关于x 的不等式:()2220ax x ax a -≥-<.26.(1)已知2x <,求()92f x x x =+-的最大值; (2)已知x 、y 是正实数,且9x y +=,求13x y+的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】取0x <,可判断①的正误;利用基本不等式可判断②③④的正误. 【详解】对于①,当0x <时,10y x x=+<,①错误;对于②,若a ,b R ∈且0ab >,说明0b a >,0a b >,则2b a a b +≥=,当且仅当22a b =时取等号,显然成立,②正确;对于③,2y =≥=,=231x +=,显然这样的x 不存在,所以结论不正确,③错误;对于④,因为0x >,所以43x x+≥函数()4230y x x x=-->的最大值为2-,所以结论不正确,④错误. 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.D解析:D 【分析】根据已知条件由2()2a b ab +≤可求出2212a b +≥,又由完全平方公式可得221a b +<,即可判断A 、B ;由已知条件可知01b <<,则2b b >,因此22212a b a b +>+≥,可判断C ;由平方差公式可得12a b -=,与1a b +=联立可求出满足条件的a 、b ,故D 可能成立. 【详解】001a b a b >>+=,,2222211()21212()12()222a b a b a b ab ab +∴+=+-=-≥-⋅=-⨯=, 当且仅当12a b ==时等号成立, 又0ab >,222()2121b a b a ab a b +=+-=-<∴,22112a b ≤+<∴,则221a b +=不可能成立; 2211()()224a b ab ≤==+,当且仅当12a b ==时等号成立,故1ab =不可能成立;001a b a b >>+=,,,01b ∴<<,2b b ∴>,22212b a b a +>+≥∴(由A 可知),则212a b +=不可能成立; ()()2212a b a b a b a b -=+-=-=,联立112a b a b +=⎧⎪⎨-=⎪⎩,解得31,44a b ==,满足条件,D 成立. 故选:D3.D解析:D 【分析】 已知等式变形为411x y+=,然后用“1”的代换求出x y +的最小值即可得. 【详解】∵x ,y 均为正数,40x y xy +-=,∴411x y+=,∴414()559y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4y x x y =,即6,3x y ==时等号成立,∴33193x y ≤=+,所求最大值为13. 故选:D . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方4.B解析:B 【分析】利用“乘1法”与基本不等式的性质即可得出. 【详解】因为正实数x ,y ,a 满足2x y axy +=,所以21a y x+=,所以121122192(2)()(5)(5,x y x y x y a y x a y x a a+=⨯++=++≥+= 当且仅当22x y y x =且21a y x+=时取等号, 由题意可得93a=, 解得3a =, 故选:B 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5.B解析:B 【分析】根据条件将问题转化为“24a x x >--在[)1,+∞上恒成立”,再根据()2max4a x x>--求解出a 的范围. 【详解】因为对于任意[)1,x ∈+∞,()0f x >恒成立,所以240x x a ++>对[)1,x ∈+∞恒成立, 所以()2max4a x x>--,[)1,x ∈+∞,又因为24y x x =--的对称轴为2x =-,所以24y x x =--在[)1,+∞上单调递减, 所以()()2max4145x x --=--=-,所以5a >-,故选:B. 【点睛】方法点睛:一元二次不等式在指定区间上恒成立求解参数范围问题的处理方法: (1)分类讨论法:根据参数的临界值作分类讨论;(2)分离参数法:将自变量和参数分离开来,自变量部分构造新函数,分析新函数的最值与参数的大小关系.6.B解析:B【分析】 将a 分离出来得22()y ya x x ≥-,然后根据[1x ∈,2],[2y ∈,3]求出y x的范围,令yt x=,则22a t t ≥-在[1,3]上恒成立,利用二次函数的性质求出22t t -的最大值,即可求出a 的范围. 【详解】 解:由题意可知:不等式222ax y xy +≥对于[1,2],[2,3]x y ∈∈恒成立, 即:22()y ya x x≥-,对于[1,2],[2,3]x y ∈∈恒成立, 即:x 2ma 2()yy a xx ⎡⎤⎢⎥⎣⎦≥-,对于[1,2],[2,3]x y ∈∈恒成立,令y t x =,结合图形可知yx的取值范围是(1,3),则13t ≤≤, 22a t t ∴≥-在[1,3]上恒成立,221122()48y t t t =-+=--+,13t ≤≤,∴当1t =时,1max y =-,1a ∴≥-.故选:B.【点睛】关键点点睛:本题考查的是不等式与恒成立的综合类问题,利用分离参数法、换元法和将恒成立问题转化为二次函数最值问题是解题的关键,还需要注意换元时新元的范围,属于中档题.7.D解析:D 【分析】根据关于x 的不等式(1)(3)10(0)a x x a +-+>≠的解集是()()1212,x x x x <,可得120,,a x x <是方程22310ax ax a --+=,然后利用根与系数的关系判断.【详解】因为关于x 的不等式(1)(3)10(0)a x x a +-+>≠的解集是()()1212,x x x x <, 所以120,,a x x <是方程22310ax ax a --+=的两根, 所以12121312,33a x ax x x a -===-⋅<-+, ()2112122131444244x x x x x x a a a-=-=-⨯=--⋅>+,故ABC 正确; 设()(1)(3)f x a x x =+-,()(1)(3)1g x a x x =+-+其图象如图所示:由图象知:121,3x x <->,故D 错误; 故选:D 【点睛】关键点点睛:本题考查一元二次不等式的解集的应用,关键是三个“二次”的转化,还有根与系数的关系与函数零点,注意二次项系数的正负.8.C解析:C 【分析】将原式变形为()2211b a b b a b ab++⎛⎫+= ⎪⎝⎭,再利用基本不等式计算可得; 【详解】解:()222111b a b b b a b ab ab+++⎛⎫+== ⎪⎝⎭ )()22222222222222b a abab b a ab ababab++++==≥=,当且仅当2a b =时取等号,即22a =21b =时等号成立,故选:C . 【点睛】本题考查基本不等式的应用,属于中档题.9.C解析:C 【分析】由题意利用等差数列的定义和性质求得13a b =+,再利用基本不等式求得112ab,根据题意,2412m m +,由此求得m 的范围. 【详解】 解:两个正实数a ,b 满足3a ,12,b 成等差数列, 13a b ∴=+,123ab ∴,112ab∴,∴112ab. ∴不等式2134m m a b ++恒成立,即234a b m m ab++恒成立, 即214m m ab+恒成立. 2412m m ∴+,求得62m -,故选:C . 【点睛】本题主要考查等差数列的定义和性质,不等式的恒成立问题,基本不等式的应用,属于基础题.10.C解析:C 【解析】 选C.由≥得ab≤=1,当且仅当a=b=1时,等号成立.又a 2+b 2≥2ab ⇒2(a 2+b 2)≥(a+b)2⇒a 2+b 2≥2,当且仅当a=b=1时,等号成立.11.B解析:B 【分析】由圆的方程得圆心和半径,根据圆的周长被分为1:2,可推出圆心到直线的距离为1,即2221a b a b +-=+,化简整理后,再结合基本不等式的性质可得ab 的最小值,再求出11a b+的最大值.【详解】把圆222220x y x y +---=化成标准形式为22(1)(1)4x y -+-=,其中圆心为(1,1),半径为2.设直线与圆交于A 、B 两点,圆心为C , 因为直线把圆的周长分为1:2,所以13601203ACB ∠=⨯︒=︒, 所以圆心(1,1)C 到直线20ax by +-=的距离为12221a b a b+-=+,因为a ,1b >,所以202()a ab b -++=,由基本不等式的性质可知,22()4ab a b ab +=+, 当且仅当a b =时,等号成立,此时有2(22)ab +,所以21(2)1111122222(22)ab a b a b ab ab ab+++===++=+. 所以11a b +的最大值为22- 故选:B . 【点评】本题主要考查直线与圆的综合问题,除圆的标准方程、点到直线的距离公式等基础知识外,还涉及利用基本不等式的性质求最值,考查学生的逻辑推理能力和运算能力,属于中档题.12.C解析:C 【分析】令z a b =+,得a z b =-,代入2229ab b a b +++=,化简后利用判别式列不等式,解不等式求得+a b 的最小值. 【详解】令z a b =+,得a z b =-,代入2229ab b a b +++=并化简得()212290b z b z +--+=,关于b 的一元二次方程有正解,所以首先()()2124290z z ∆=---+≥, 即()()27250z z +-≥,由于,a b 是正实数,所以250z -≥,即52z ≥,也即+a b 的最小值为52. 此时对称轴1221120222z z z ---==-≥>,所以关于b 的一元二次方程()212290b z b z +--+=有正解,符合题意.故选:C【点睛】本小题主要考查判别式法求最值,考查一元二次不等式的解法,属于中档题.二、填空题13.【分析】由可得则展开后利用基本不等式求解即可【详解】当且仅当即时等号成立故的最小值为故答案为:【点睛】方法点睛:在利用基本不等式求最值时要特别注意拆拼凑等技巧使其满足基本不等式中正(即条件要求中字母 解析:95【分析】由4a b +=,可得(1)5a b ++= ,则()411111154a b a b a b ⎛⎫+=+++⋅⎡⎤ ⎪⎣⎦++⎝⎭,展开后利用基本不等式求解即可.【详解】 4,(1)5a b a b +=∴++=,414114(1)14(19[(1)]5251151555b a b a b a b a b a b a ⎡⎤++⎛⎫⎡⎤+=+++⋅=++⋅⋅=⎢⎥ ⎪⎢⎥+++⎝⎭⎣⎦⎣⎦,当且仅当4(1)1b a a b +=+,即102,33a b ==时等号成立, 故411a b ++的最小值为95. 故答案为:95. 【点睛】方法点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.14.【分析】设米米根据可得出利用基本不等式可求得的最大值即为所求【详解】设米米则即整理可得由基本不等式可得当且仅当时即当时等号成立因此停车场面积的最大值为平方米故答案为:【点睛】易错点睛:利用基本不等式解析:10000【分析】设AD x =米,AF y =米,根据tan DE CF AC ABC BD EF AB ∠===可得出16254000x y +=,利用基本不等式可求得xy 的最大值,即为所求.【详解】设AD x =米,AF y =米,则250BD AB AD x =-=-,160CF AC AF y =-=-,tan DE CF AC ABC BD EF AB ∠===,即160160250250y y x x -==-,整理可得16254000x y +=, 由基本不等式可得400016252162540x y x y xy =+≥⨯=,10000xy ∴≤,当且仅当162516254000x y x y =⎧⎨+=⎩时,即当12580x y =⎧⎨=⎩时,等号成立. 因此,停车场面积的最大值为10000平方米.故答案为:10000.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【分析】根据两个函数互为相异函数可得有恒成立且在上有解利用参变分离先讨论前者再结合二次函数的图象和性质可得所求的取值范围【详解】因为当时当时当时结合互为相异函数故有恒成立且在上有解先考虑有恒成立则在 解析:(),4-∞-【分析】根据两个函数互为“1相异”函数可得[1,)x ∀∈+∞,有()0f x <恒成立,且()0f x >在(),1-∞上有解,利用参变分离先讨论前者,再结合二次函数的图象和性质可得所求的取值范围.【详解】因为当1x >时,()0g x >,当1x =时,()0g x =,当1x <时,()0g x <, 结合()(),f x g x 互为“1相异”函数,故[1,)x ∀∈+∞,有()0f x <恒成立,且()0f x >在(),1-∞上有解.先考虑[1,)x ∀∈+∞,有()0f x <恒成立,则210ax ax 在[1,)+∞上恒成立, 故2+1a x x<在[1,)+∞上恒成立, 因为22+x x ≥,故2+1102x x <≤,故0a ≤. 再考虑()0f x >在(),1-∞上有解,若0a =,则()10f x =-<,故()0f x >在(),1-∞上无解,若0a <,()f x 的对称轴为12x =-,且开口向下, 由()0f x >在(),1-∞上有解可得240a a ∆=+>,故4a 或0a >(舍).故实数a 的取值范围是(),4-∞-,故答案为:(),4-∞-.【点睛】方法点睛:对于新定义背景下的函数性质的讨论,一般是先根据定义得到含参数的函数的性质,对于不等式的恒成立或有解问题,可优先考虑参变分离的方法,也可以结合函数图象的性质处理.16.【分析】先根据正实数ab 满足找到ab 的关系及ab 的范围然后把通换元法转化为函数求值域【详解】由得∴且∵∴∴∴则令则在上递减(因为)∴令则∴=在上单增∴故答案为:(69)【点睛】利用基本不等式求最值时解析:()6,9【分析】先根据正实数a ,b 满足21ab a b ++=找到a ,b 的关系及a ,b 的范围,然后把188a b a b+++通换元法转化为函数求值域. 【详解】 由21ab a b ++=得21ab a b ++=,∴121a b a -=+,且(1)(2)3a b ++=. ∵0,0a b >>,∴120a ->,∴12a <∴102a <<.则3321311a b a a a a +=+-=++-++, 令31,1,2u a u ⎛⎫=+∈ ⎪⎝⎭则33a b u u+=+-在31,2⎛⎫ ⎪⎝⎭上递减,(因为32<), ∴112a b ⎛⎫+∈ ⎪⎝⎭,. 令=+t a b ,则112t ⎛⎫∈ ⎪⎝⎭,, ∴188a b a b +++=18t t +在112⎛⎫ ⎪⎝⎭,上单增, ∴()1886,9a b a b++∈+. 故答案为:(6,9).【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:“一正二定三相等”(1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.如果等号成立的条件满足不了,说明函数在对应区间单调,可以利用单调性求最值或值域.17.【分析】根据二次函数的图象和性质分三种情况讨论结合已知条件可得出关于实数的不等式进而可求得实数的取值范围【详解】当时则令解得不满足对任意的恒成立;当时由于二次函数的图象开口向上不满足对任意恒成立;当解析:1,2⎛--∞ ⎝⎦【分析】根据二次函数的图象和性质,分0a =、0a >、0a <三种情况讨论,结合已知条件可得出关于实数a 的不等式,进而可求得实数a 的取值范围.【详解】当0a =时, ()21f x x =-,则()()221143f f x x x =--=-⎡⎤⎣⎦,令()0f f x ≤⎡⎤⎣⎦,解得34x ≤,不满足对任意的x ∈R ,()0f f x ≤⎡⎤⎣⎦恒成立;当0a >时,()111f x f a a ⎛⎫≥-=-- ⎪⎝⎭, 由于二次函数()f x 的图象开口向上,不满足对任意x ∈R ,()0f f x ≤⎡⎤⎣⎦恒成立; 当0a <时,()1111f x f a a a ⎛⎫≤-=--<- ⎪⎝⎭, 由于二次函数()f x 在区间1,a ⎛⎫-∞- ⎪⎝⎭上单调递增, 则()221111112110a a f f x f a a a a a --⎛⎫⎛⎫⎛⎫≤--=⋅---+-=≤⎡⎤ ⎪ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎝⎭, 0a <,可得210a a --≥,解得152a.因此,实数a 的取值范围是1,2⎛-∞ ⎝⎦.故答案为:⎛-∞ ⎝⎦. 【点睛】关键点点睛:本题考查利用复合型二次不等式在实数集R 上恒成立求参数,要注意对实数a 的取值进行分类讨论,解题时要确定内层函数的值域结合二次函数的单调性求出()f f x ⎡⎤⎣⎦的最大值来求解.18.16【分析】由条件可知则原式变形为展开后利用基本不等式求最小值【详解】原式;当且仅当即时取等所以的最小值为16故答案为:16【点睛】关键点点睛:本题的关键是结合1的妙用利用基本不等式求最值解析:16【分析】由条件可知()1212x y +=,则原式变形为()1243522x y x y y x y x ⎛⎫=++++ ⎪⎝⎭,展开后,利用基本不等式求最小值. 【详解】 原式()124493524162x y x y x y y x y x y x⎛⎫=++++=++≥ ⎪⎝⎭; 当且仅当23x y =即67x =,47y =时取等. 所以223524x y x y xy+++的最小值为16. 故答案为:16【点睛】关键点点睛:本题的关键是结合 “1”的妙用,利用基本不等式求最值.19.3【分析】利用已知条件结合1代换构造进而应用基本不等式求最值即可求的最小值;【详解】知:当且仅当等号成立∴即有故答案为:3【点睛】本题考查了利用基本不等式求最值根据已知条件构造基本不等式形式求最值然 解析:3【分析】利用已知条件,结合“1”代换构造41154()x y y x m x y m mx my++=++,进而应用基本不等式求最值,即可求m 的最小值;【详解】 1140x y m x y+=+=>知:4115459x y y x m m x y m mx mym m ⎛⎫+⎛⎫+=++=≥+= ⎪ ⎪⎝⎭⎝⎭当且仅当2y x =等号成立,∴29m ≥,即有3m ≥,故答案为:3【点睛】本题考查了利用基本不等式求最值,根据已知条件构造基本不等式形式求最值,然后求参数范围;20.【分析】由题得ab =a +b +3≥2+3解不等式即得解【详解】∵ab 是正数∴ab =a +b +3≥2+3(当且仅当a =b =3时等号成立)所以所以所以或所以ab≥9故答案为:【点睛】本题主要考查基本不等式的解析:[)9,+∞【分析】由题得ab =a +b +3,解不等式30ab -≥即得解.【详解】∵a ,b 是正数,∴ab=a +b ++3(当且仅当a =b =3时等号成立),所以30ab -≥,所以0≥,3≥1≤-,所以ab ≥9.故答案为:[9,)+∞【点睛】本题主要考查基本不等式的应用,意在考查学生对这些知识的理解掌握水平.三、解答题21.无22.无23.无24.无25.无26.无。

(完整版)一次函数应用题专题训练

(完整版)一次函数应用题专题训练

一次函数应用题专题训练1.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y (千米),图中的折线表示从两车出发至快车到达乙地过程中y 与x 之间的函数关系. (1)根据图中信息,求线段AB 所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t 时,求t 的值; (3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y 关于x 的函数的大致图像. (温馨提示:请画在答题卷相对应的图上)2.春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y (人)与售票时间x (分钟)的关系如图所示,已知售票的前a 分钟只开放了两个售票窗口(规定每人只购一张票). (1)求a 的值.(2)求售票到第60分钟时,售票听排队等候购票的旅客人数.(3)若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?3.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x (h )后,与.B .港的距离....分别为1y 、2y (km ),1y 、2y 与x 的函数关系如图所示.(1)填空:A 、C 两港口间的距离为 km , a ; (2)求图中点P 的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10 km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.O y/km 9030 a3P甲 乙x/h4.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?⑵如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?5.某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途径配货站C,甲车先到达C地,并在C地用1小时配货,然后按原速度开往B地,乙车从B地直达A地,图16是甲、乙两车间的距离y(千米)与乙车出发x(时)的函数的部分图像(1)A、B两地的距离是千米,甲车出发小时到达C地;(2)求乙车出发2小时后直至到达A地的过程中,y与x的函数关系式及x的取值范围,并在图16中补全函数图像;(3)乙车出发多长时间,两车相距150千米6.张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.请根据图象回答下列问题:(1)汽车行驶小时后加油,中途加油升;小时)(2)求加油前油箱剩余油量y 与行驶时间t 的函数关系式;210千米,要到达目的地,7.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李. (1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?8.自2010年6月1日起我省开始实施家电以旧换新政策,消费者在购买政策限定的新家电时,每台新家电用一台同类的旧家电换取一定数额的补贴.为确保商家利润不受损失,补贴部分由政府提供,其中三种家电的补贴方式如下表:为此,某商场家电部准备购进电视、洗衣机、冰箱共100台,这批家电的进价和售价如下表:设购进的电视机和洗衣机数量均为x 台,这100台家电政府需要补贴y 元,商场所获利润w 元(利润=售价-进价)(1)请分别求出y与x和w与x的函数表达式;(2)若商场决定购进每种家电不少于30台,则有几种进货方案?若商场想获得最大利润,应该怎样安排进货?若这100台家电全部售出,政府需要补贴多少元钱?9、(2005年包头)小明、小颖两名同学在学校冬季越野赛中的路程y(千米)与时间x(分)的函数关系如图所示。

一元一次函数路程应用题

一元一次函数路程应用题

一元一次函数路程应用题
1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?
(2)两车同时开出,相背而行多少小时后两车相距600公里?
(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?
(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?。

一次函数应用题

一次函数应用题

一次函数应用题1.已知XXX现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套。

已知做一套M型号的时装需要A种布料6米,B种布料0.9米,可获利润45元;做一套N型号的时装需要A种布料1.1米,B种布料0.4米,可获利润50元。

设生产N种型号的时装套数为$x$,用这批布料生产这两种型号的时装所获总利润为$y$元。

1) $y$与$x$的函数关系式为:$$y=45(80-x)\cdot\frac{70-6x}{6}+50x\cdot\frac{52-0.4x}{0.4}$$其中,第一项是生产M型号时装所获利润,第二项是生产N型号时装所获利润。

自变量$x$的取值范围为$0\leq x\leq 52/0.4=130$,因为B种布料的数量有限制。

2) 当生产N型号的时装为$20$套时,所获利润最大,最大利润为$y_{\max}=3850$元。

2.某市电话的月租费是$20$元,可打$60$次免费电话(每次$3$分钟),超过$60$次后,超过部分每次$0.13$元。

1) $y$与$x$的函数关系式为:$$y=\begin{cases}20.& x\leq 60 \\20+0.13(x-60)。

& x>60end{cases}$$2) 月通话$50$次的电话费为$20$元,月通话$100$次的电话费为$23$元。

3) 设该月通话次数为$t$,则$$y=\begin{cases}20.& t\leq 60 \\20+0.13(t-60)。

& t>60end{cases}$$解得$t=60+5(y-20)$,代入$y=27.8$得$t=98$次。

3.荆门火车货运站现有甲种货物$1530$吨,乙种货物$1150$吨,安排用一列货车将这批货物运往广州,这列货车可挂A、B两种不同规格的货厢$50$节,已知用一节A型货厢的运费是$0.5$万元,用一节B型货厢的运费是$0.8$万元。

深圳华胜实验学校必修第一册第二单元《一元一次函数,方程和不等式》测试题(有答案解析)

深圳华胜实验学校必修第一册第二单元《一元一次函数,方程和不等式》测试题(有答案解析)

一、选择题1.已知,,(0,)x y t ∈+∞,且11tx y+=, A .当2t =时,当且仅当2x y ==时,2x y +有最小值 B .当8t =时,当且仅当253x y ==时,2x y +的最小值为25 C .若2x y +的最小值为9,则t 的值为2 D .若2x y +的最小值为25,则t 的值为62.已知a >0,b >0,a +b =1,则下列等式可能成立的是( ) A .221a b += B .1ab = C .212a b +=D .2212a b -=3.当104x <<时,不等式11014m x x+-≥-恒成立,则实数m 的最大值为( ) A .7B .8C .9D .104.若正数a ,b 满足1a >,1b >,且3a b +=,则1411a b +--的最小值为( ) A .4B .6C .9D .165.已知不等式222ax y xy +≥,若对于任意[1,2],[2,3]x y ∈∈,该不等式恒成立,则实数a 的取值范围是( ).A .3a ≥-B .1a ≥-C .18a ≥D .118a -≤≤6.设正实数x ,y ,z 满足22340x xy y z -+-=,则当xy z取得最大值时,212x y z +-的最大值为( ) A .0B .3C .94D .17.若不等式()()2||20x a b x x ---≤对任意实数x 恒成立,则a b +=( )A .-1B .0C .1D .28.已知2m >,0n >,3m n +=,则112m n+-的最小值为( ) A .3B .4C .5D .69.如图,平行四边形ABCD 的对角线相交于点O ,过点O 的直线与AB ,AD 所在直线分别交于点M ,N ,若AB =m AM ,AN =n AD (m >0,n >0),则mn的最大值为( )A .22B .1C .2D .210.若直线10ax by --=,(a ,0b >)过点()2,1-,则11a b+的最小值为( ) A .322-B .8C .42D .322+11.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,90ACB ∠=︒,D 为AB 边上的一点,30ACD ∠=︒,且2CD =,则3a b 的最小值为( ) A .4B .423+C .8D .823+12.已知0x >,0y >,23x y +=,则23x yxy+的最小值为( )A .322-B .221C 21D 21参考答案二、填空题13.已知正实数,x y 满足48x y +=,则xy 的最大值为_______________. 14.已知函数2()34(0)f x ax x a =-+>,若存在32m n a<≤,使得()f x 在区间[,]m n 上的值域为[,]m n ,则a 的取值范围________.15.已知实数0a >,0b >2是2a 与2b 的等比中项,则13a b+的最小值是______. 16.某企业开发一种产品,生产这种产品的年固定成本为3600万元,每生产x 千件,需投入成本c (x )万元,c (x )=x 2+10x .若该产品每千件定价a 万元,为保证生产该产品不亏损,则a 的最小值为_____.17.若命题“对任意实数0a >,0b >且4a b +=,不等式41m a b+>恒成立”为假命题,则m 的取值范围为_______.18.已知关于x 的不等式()()22454130m m x m x +---+>对一切实数x 恒成立,则实数m 的取值范围为_____________.19.已知函数()21f x ax a =+-的图象恒过定A ,若点A 在直线10mx ny ++=上,其中0m n ⋅>,则12m n+的最小值为____ 20.已知不等式250ax x c ++>的解集为(2,3),则a c +=________.三、解答题21.2020年11月23日,贵州宣布最后9个深度贫困县退出贫困县序列,这不仅标志着贵州省66个贫困县实现整体脱贫,这也标志着国务院扶贫办确定的全国832个贫困县全部脱贫摘帽,全国脱贫攻坚目标任务已经完成.在脱贫攻坚过程中,某地县乡村三级干部在帮扶走访中得知某贫困户的实际情况后,为他家量身定制了脱贫计划,政府无息贷款10万元给该农户种养羊,每万元可创造利润0.15万元.若进行技术指导,养羊的投资减少了x ()0x >万元,且每万元创造的利润变为原来的()10.25x +倍.现将养羊少投资的x 万元全部投资网店,进行农产品销售,则每万元创造的利润为()0.150.875a x -万元,其中0a >. (1)若进行技术指导后养羊的利润不低于原来养羊的利润,求x 的取值范围; (2)若网店销售的利润始终不高于技术指导后养羊的利润,求a 的最大值. 22.设函数2()(2)3f x ax b x =+-+.(1)若不等式()0f x >的解集为()1,1-,求实数,a b 的值;(2)若()10f =,且存在x ∈R ,使()4f x >成立,求实数a 的取值范围. 23.已知二次函数()f x 满足(1)8f -=且(0)(4)3f f == (1)求()f x 的解析式;(2)若[],1x t t ∈+,试求()y f x =的最小值.24.已知二次函数()2f x ax bx c =++,若不等式()20f x +>的解集为()1,2,且方程()0f x x +=有两个相等的实数根.(1)求()f x 的解析式;(2)若()1,x ∃∈+∞,()0f x mx +>成立,求实数m 的取值范围.25.(Ⅰ)已知不等式220(2)x ax a a -+->>的解集为12(,)(,)x x -∞+∞,求12121x x x x ++的最小值. (Ⅱ)若正数a b c 、、满足2a b c ++=,求证:2222b c a a b c++≥.26.当a 为何值时,不等式22(1)(1)10a x a x ----<的解集是全体实数?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【分析】 当2t =时,121x y +=,()1222x y x y x y ⎛⎫+=++ ⎪⎝⎭展开后利用基本不等式即可判断A ;当当8t =时,181x y +=,()2812x y x y x y ⎛⎫+=++ ⎪⎝⎭展开后利用基本不等式即可判断B ;()1221212122x y x y t t t x y x t y tx y ⎛⎫+=++=+++≥++=++ ⎪⎝⎭分别令129t ++=和1225t ++=即可求出t 的值,可判断选项C 、D ,进而可得正确选项. 【详解】对于选项A :当2t =时,121x y+=, ()122225259x x y x y x y x y y ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当12122x y y x xy ⎧+=⎪⎪⎨⎪=⎪⎩即3x y ==时等号成立,所以3x y ==时,2x y +有最小值,故选项A 不正确; 对于选项B :当8t =时,181x y+=, ()188222171725x x y x y x y x y y ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当18128x y y xxy ⎧+=⎪⎪⎨⎪=⎪⎩即510x y =⎧⎨=⎩时等号成立,所以510x y =⎧⎨=⎩时,2x y +有最小值,故选项B 不正确;对于选项C :()12212221x y x t y tx y t t x y x y ⎛⎫+=++=+++≥++⎪⎝⎭12t =++129t ++=即0==即2t =,当且仅当12122x y y x x y ⎧+=⎪⎪⎨⎪=⎪⎩即3x y ==时等号成立,所以2t =,故选项C 正确;对于选项D :()12212221x y x t y tx y t t x y x y ⎛⎫+=++=+++≥++⎪⎝⎭12t =++1225t ++=即0==,即8t =,当且仅当12128x y y x xy ⎧+=⎪⎪⎨⎪=⎪⎩即510x y =⎧⎨=⎩时等号成立,所以8t =,故选项D 不正确;故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.D解析:D 【分析】根据已知条件由2()2a b ab +≤可求出2212a b +≥,又由完全平方公式可得221a b +<,即可判断A 、B ;由已知条件可知01b <<,则2b b >,因此22212a b a b +>+≥,可判断C ;由平方差公式可得12a b -=,与1a b +=联立可求出满足条件的a 、b ,故D 可能成立. 【详解】001a b a b >>+=,,2222211()21212()12()222a b a b a b ab ab +∴+=+-=-≥-⋅=-⨯=, 当且仅当12a b ==时等号成立, 又0ab >,222()2121b a b a ab a b +=+-=-<∴,22112a b ≤+<∴,则221a b +=不可能成立;2211()()224a b ab ≤==+,当且仅当12a b ==时等号成立,故1ab =不可能成立;001a b a b >>+=,,,01b ∴<<,2b b ∴>,22212b a b a +>+≥∴(由A 可知),则212a b +=不可能成立; ()()2212a b a b a b a b -=+-=-=,联立112a b a b +=⎧⎪⎨-=⎪⎩,解得31,44a b ==,满足条件,D 成立. 故选:D3.C解析:C 【分析】 分离参数化为41414m x x≤+-恒成立,再利用基本不等式求出不等式右边的最小值即可得解. 【详解】不等式11014m x x+-≥-恒成立化为41414m x x ≤+-恒成立, 因为104x <<,所以140x ->,所以()4141414414414x x x x x x ⎛⎫+=+-+ ⎪--⎝⎭44(14)5144x x x x -=++-5≥+549=+=,当且仅当44(14)144x x x x -=-,即16x =时,等号成立.所以9m ≤,所以m 的最大值为9. 故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方4.C解析:C 【分析】由等式3a b +=可以得到111a b -+-=,由1411a b +--乘以111a b -+-=所求得式子和基本不等式进行求解即可. 【详解】由3a b +=,可得111a b -+-=,10,10a b ->->, 所以()141414(1)511111111a b a a b b a b a b --⎛⎫+=+=++ ⎪------⎝⎭-+-59≥+= 当且仅当12(1)b a -=-,即54,33b a ==时等号成立. 故选:C 【点睛】关键点点睛:本题注意观察待求式的分母,1,1a b --,结合已知条件,可变形为关于分母的式子111a b -+-=,这样就转化为“1”的常规技巧的应用.5.B解析:B 【分析】 将a 分离出来得22()y ya x x ≥-,然后根据[1x ∈,2],[2y ∈,3]求出y x的范围,令yt x=,则22a t t ≥-在[1,3]上恒成立,利用二次函数的性质求出22t t -的最大值,即可求出a 的范围. 【详解】 解:由题意可知:不等式222ax y xy +≥对于[1,2],[2,3]x y ∈∈恒成立, 即:22()y ya x x≥-,对于[1,2],[2,3]x y ∈∈恒成立, 即:x 2ma 2()yy a xx ⎡⎤⎢⎥⎣⎦≥-,对于[1,2],[2,3]x y ∈∈恒成立,令y t x =,结合图形可知yx的取值范围是(1,3),则13t ≤≤, 22a t t ∴≥-在[1,3]上恒成立,221122()48y t t t =-+=--+,13t ≤≤,∴当1t =时,1max y =-,1a ∴≥-.故选:B.【点睛】关键点点睛:本题考查的是不等式与恒成立的综合类问题,利用分离参数法、换元法和将恒成立问题转化为二次函数最值问题是解题的关键,还需要注意换元时新元的范围,属于中档题.6.D解析:D 【分析】利用22340x xy y z -+-=可得143xy x y z y x =+-,根据基本不等式最值成立的条件可得22,2x y z y ==,代入212x y z++可得关于y 的二次函数,利用单调性求最值即可.【详解】由正实数x ,y ,z 满足22340x xy y z -+-=,2234z x xy y ∴=-+.∴2211434432?3xy xy x y zx xy y x y y xy x===-++--, 当且仅当20x y =>时取等号,此时22z y =.∴222122121(1)1122x y z y y y y+-=+-=--+,当且仅当1y =时取等号, 即212x y z+-的最大值是1. 故选:D 【点睛】本题主要考查了基本不等式的性质和二次函数的单调性,考查了最值取得时等号成立的条件,属于中档题.7.D解析:D 【分析】可采用分类讨论法,分别讨论22x x -与x a b --的正负,确定,a b 之间的关系即可求解. 【详解】当220x x -≥时,即[]02x ,∈时,||0x a b --≤恒成立,所以b a x b a -+≤≤+恒成立,所以2a b +≥且a b ≤; 当220x x -≤时,即(][),02,x ∈-∞+∞时,||0x a b --≥恒成立所以x a b ≥+或x a b ≤-恒成立,所以2a b +≤且a b ≥,综上,2a b += 故选:D 【点睛】本题考查一元二次不等式的解法,由含参数绝对值不等式求参数关系,分类讨论的数学思想,属于中档题8.B解析:B 【分析】由2m >,0n >,3m n +=,所以21m n -+=,结合“1”的代换,结合基本不等式,即可求解. 【详解】因为2m >,0n >,3m n +=,所以21m n -+=, 则()1111222224222n m m n m n m n m n-⎛⎫+=+-+=++≥+= ⎪---⎝⎭, 当且仅当22n m m n-=-且3m n +=,即51,22m n ==时取等号,故选:B. 【点睛】本题主要考查了利用基本不等式求最值问题,其中解答合理构造基本不等式的条件“一正、二定、三相等”,结合“1”的代换技巧是解答的关键,着重考查推理与运算能力.9.B解析:B 【分析】根据向量共线的推论,结合向量的线性运算求得12m n+=,再用基本不等式即可求得结果. 【详解】 因为1122AO AB AD =+,又AB =m AM ,AN =n AD , 故可得 122m AO AM AN n=+,又,,O M N 三点共线,故可得1122m n +=,即12m n+=. 故211114m m m n n n ⎛⎫=⨯≤+= ⎪⎝⎭,当且仅当1m n ==时取得最大值. 故选:B . 【点睛】本题考查平面向量共线定理的推论以及基本不等式的应用,属综合中档题.10.D解析:D 【分析】先得到21a b +=,再整理11a b +为23b aab ++求最小值,最后判断等号成立即可. 【详解】解:∵直线10ax by --=,过点()2,1-, ∴ 21a b +=, ∵0a >,0b > ∴20a b>,0ba >∴111122333b a a b a b a b a b +=++=++≥+=+()() 当且仅当2b aa b=时,等号成立. 故选:D.【点睛】本题考查基本不等式“1”的妙用求最值,是基础题.11.B解析:B 【分析】设,0,2A παα⎛⎫∠=∈ ⎪⎝⎭,在ACD △中,利用正弦定理得()2sin 150sin b αα=︒-,化简得到1tan b α=ABC 中,有tan a b α=⋅,然后将a +转化为4a α=+利用基本不等式求解. 【详解】设,0,2A παα⎛⎫∠=∈ ⎪⎝⎭,在ACD △中,由正弦定理得:()2sin 150sin b αα=︒-,所以()2sin 1501sin tan b ααα︒-==+,在直角ABC 中,tan a b α=⋅,所以(1tan tan 4tan tan a b ααααα⎛⋅==+⎝+=44≥+=+an α=,即4πα=时取等号, 故选:B【点睛】本题主要考查正弦定理和基本不等式的解三角形中的应用,还考查了运算求解的能力,属于中档题.12.B解析:B 【分析】把要求的式子变形为21x y y x++,再利用基本不等式求得它的最小值. 【详解】已知0x >,0y >,23x y +=,则22223(2)2221211x y x x y y x xy y x y x yxy xy xy y x y x+++++===+++=,当且仅当222x y = 时,即当3x =-,且62y -=,等号成立,故23x y xy+的最小值为1+故选:B . 【点睛】本题考查基本不等式的运用,考查常数代换法,注意最值取得的条件,考查运算能力,属于中档题.二、填空题13.4【分析】由基本不等式求解【详解】因为所以所以当且仅当即时等号成立故答案为:4【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项必须为正数;(2)二解析:4 【分析】由基本不等式求解. 【详解】因为0,0x y >>,所以48x y +=≥=, 所以4xy ≤,当且仅当4x y =,即1,4x y ==时等号成立. 故答案为:4. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方14.【分析】由二次函数的性质可得化简得进而可得是方程两个不相等的实数根即可得解【详解】因为函数的图象开口朝上且对称轴为所以函数在区间上单调递减所以两式相减化简得将代入可得同理所以是方程两个不相等的实数根 解析:113164a ≤< 【分析】由二次函数的性质可得()()223434f m am m nf n an n m⎧=-+=⎪⎨=-+=⎪⎩,化简得2m n a +=,进而可得,m n 是方程22240ax x a-+-=两个不相等的实数根,即可得解. 【详解】因为函数2()34(0)f x ax x a =-+>的图象开口朝上且对称轴为32x a =,32m n a<≤, 所以函数2()34(0)f x ax x a =-+>在区间[,]m n 上单调递减,所以()()223434f m am m nf n an n m ⎧=-+=⎪⎨=-+=⎪⎩,两式相减化简得2m n a +=, 将2m n a =-代入234an n m -+=可得22240an n a-+-=, 同理22240am m a-+-=,所以,m n 是方程22240ax x a-+-=两个不相等的实数根, 又函数2224y ax x a =-+-的图象开口朝上,对称轴为132x a a=<,所以24440a a ⎛⎫∆=--> ⎪⎝⎭且当32x a =时,22240ax x a-+-≥, 所以22444033224022a a a a a a ⎧⎛⎫--> ⎪⎪⎝⎭⎪⎨⎛⎫⎛⎫⎪⋅-⋅+-≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得113164a ≤<, 所以a 的取值范围为113164a ≤<. 故答案为:113164a ≤<. 【点睛】关键点点睛:解决本题的关键是利用二次函数的性质转化条件为2m n a+=,再结合一元二次方程根的分布即可得解.15.【分析】由是与的等比中项求得化简结合基本不等式即可求解【详解】由题意实数是与的等比中项可得得所以当且仅当时即时等号成立所以的最小值是故答案为:【点睛】本题主要考查了利用基本不等式求最值以及等比中项公解析:4+【分析】2a 与2b 的等比中项,求得1a b +=,化简13133()()4b a a b a b a b a b +=++=++,结合基本不等式,即可求解. 【详解】由题意,实数0a >,0b >2a 与2b的等比中项,可得2222a b a b +=⨯=,得1a b +=,所以13133()()44b a a b a b a b a b +=++=++≥+= 当且仅当3b a a b =时,即1322a b ==,时,等号成立, 所以13a b+的最小值是4+.故答案为:4+ 【点睛】本题主要考查了利用基本不等式求最值,以及等比中项公式的应用,其中解答中熟记等比中项公式,合理利用“1”的代换,结合基本不等式求解是解答的关键,着重考查推理与运算能力,属于中档题.16.130【分析】本题先根据题意建立函数与不等式关系再运用参变分离化简最后运用基本不等式求最值即可【详解】解:有题意建立利润函数关系:()整理得:为保证生产该产品不亏损则()即当且仅当即取最小值130此解析:130 【分析】本题先根据题意建立函数与不等式关系,再运用参变分离化简,最后运用基本不等式求最值即可. 【详解】解:有题意建立利润函数关系:2()(103600)f x ax x x =-++,(0x >) 整理得:2()(10)3600f x x a x =-+--,为保证生产该产品不亏损,则2()(10)36000f x x a x =-+--≥,(0x >)即36001010130a x x ≥++≥=, 当且仅当3600x x=即60x =,a 取最小值130,此时产品不亏损 故答案为:130. 【点睛】本题考查函数与不等式关系、参变分离法,基本不等式解决实际问题中的最值问题,是基础题.17.【分析】利用基本不等式求出的最小值可得不等式恒成立时的取值范围再取其补集即可【详解】若不等式对任意实数且恒成立则当且仅当且即时等号成立所以故命题为假命题时的取值范围为故答案为:【点睛】本题主要考查命 解析:94m ≥【分析】利用基本不等式求出41a b +的最小值,可得不等式41m a b+>恒成立时,m 的取值范围,再取其补集即可. 【详解】 若不等式41m a b+>对任意实数0a >,0b >且4a b +=恒成立,则411411419()()(5)5)4444b a a b a b a b a b +=++=++≥=, 当且仅当4b a a b =且4a b +=,即83a =,43b =时等号成立.所以94m <,故命题为假命题时,m 的取值范围为94m ≥.故答案为: 94m ≥ 【点睛】本题主要考查命题的真假,基本不等式的应用,属于中档题.18.【分析】分和两种情况讨论结合题可得出关于实数的不等式组由此可解得实数的取值范围【详解】当时可得或①当时可得合乎题意;②当时可得解得不合乎题意;当时由题意可得解得综上所述实数的取值范围是故答案为:【点 解析:1,19【分析】分2450m m +-=和2450m m +-≠两种情况讨论,结合题可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】当2450m m +-=时,可得1m =或5m =-. ①当1m =时,可得30>,合乎题意;②当5m =-时,可得2430x +>,解得18x >-,不合乎题意;当2450m m +-≠时,由题意可得()()22245016112450m m m m m ⎧+->⎪⎨∆=--+-<⎪⎩,解得119m <<.综上所述,实数m 的取值范围是1,19. 故答案为:1,19. 【点睛】本题考查利用一元二次不等式在实数集上恒成立求参数,考查计算能力,属于中等题.19.【分析】先求得函数的图象恒过定点代入直线的方程得到再结合基本不等式即可求解【详解】由题意函数可得函数的图象恒过定点又由点在直线上可得则又因为则所以当且仅当时等号成立因此的最小值为故答案为:【点睛】本 解析:8【分析】先求得函数()y f x =的图象恒过定点(2,1)A --,代入直线的方程,得到21m n +=,再结合基本不等式,即可求解. 【详解】由题意,函数()21(2)1f x ax a a x =+-=+-, 可得函数()y f x =的图象恒过定点(2,1)A --,又由点(2,1)A --在直线10mx ny ++=上,可得210m n --+=,则21m n +=,又因为0m n ⋅>,则0mn>,所以12124()(2)448n m m n m n m n m n +=++=++≥=, 当且仅当122n m ==时,等号成立, 因此,12m n +的最小值为8. 故答案为:8.【点睛】本题主要利用基本不等式求最值问题,同时考查函数的图象过定点问题的应用,其中解答中熟记基本不等式的“一正、二定、三相等”,准确运算时解答的关键,着重考查推理与运算能力.20.-7【分析】结合一元二次不等式和一元二次方程的性质列出方程组求得的值即可得到答案【详解】由不等式的解集为可得解得所以故答案为:【点睛】本题主要考查了一元二次不等式的解法以及一元二次方程的性质其中解答解析:-7 【分析】结合一元二次不等式和一元二次方程的性质,列出方程组,求得,a c 的值,即可得到答案. 【详解】由不等式250ax x c ++>的解集为(2,3),可得052323a a c a ⎧⎪<⎪⎪+=-⎨⎪⎪⨯=⎪⎩,解得1,6a c =-=-,所以167a c +=--=-. 故答案为:7-. 【点睛】本题主要考查了一元二次不等式的解法,以及一元二次方程的性质,其中解答中熟记一元二次不等式的解法是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题21.(1)x 的取值范围为06x <≤;(2)a 的最大值为6.5. 【分析】(1)由题意得()()0.1510.25100.1510x x +-≥⨯,解不等式可得结果;(2)由题意得()()()0.150.8750.1510.2510a x x x x -≤+-恒成立,分离出参数a 得510 1.58x a x ≤++恒成立,只要利用基本不等式求出5108x x +的最小值即可 【详解】 解:(1)由题意,得()()0.1510.25100.1510x x +-≥⨯, 整理得260x x -≤,解得06x ≤≤,又0x >,故06x <≤. (2)由题意知网店销售的利润为()0.150.875a x x -万元, 技术指导后,养羊的利润为()()0.1510.2510x x +-万元, 则()()()0.150.8750.1510.2510a x x x x -≤+-恒成立, 又010x <<,∴5101.58x a x≤++恒成立, 又51058x x+≥,当且仅当4x =时等号成立, ∴0 6.5a <≤,即a 的最大值为6.5.答:(1)x 的取值范围为06x <≤;(2)a 的最大值为6.5.【点睛】关键点点睛:此题考查利用数学知识解决实际问题,考查不等式的解法,第2问解题的关键是由()()()0.150.8750.1510.2510a x x x x -≤+-恒成立,转化为5101.58x a x≤++恒成立,然后利用基本不等式求5108x x+的最小值即可,属于中档题 22.(1)32a b =-⎧⎨=⎩;(2)()(),91,-∞--+∞.【分析】(1)由不等式的解集得相应二次方程的两根,由韦达定理可求得,a b ;(2)由()10f =得1b a =--,问题可转化为存在x ∈R ,使得()2310ax a x -+->成立.,0a ≥不等式可以成立,0a <时由二次不等式有解可得a 的范围. 【详解】解:(1)由题意可知:方程()2230ax b x +-+=的两根是1-,1所以21103(1)11b a a-⎧-=-+=⎪⎪⎨⎪=-⨯=-⎪⎩解得32a b =-⎧⎨=⎩(2)由()10f =得1b a =--存在x ∈R ,()4f x >成立,即使()2210ax b x +-->成立,又因为1b a =--,代入上式可得()2310ax a x -+->成立.当0a ≥时,显然存在x ∈R 使得上式成立;当0a <时,需使方程()2310ax a x -+-=有两个不相等的实根所以()2340a a ∆=++> 即21090a a ++> 解得9a <-或10a -<< 综上可知a 的取值范围是()(),91,-∞--+∞.【点睛】关键点点睛:本题考查一元二次不等式的解集,解题关键是掌握“三个二次”的关系.对一元二次不等式的解集,一元二次方程的根,二次函数的图象与性质的问题能灵活转化,熟练应用.解题中注意不等式的解区间的端点处的值是相应二次方程的根,是二次函数图象与x 轴交点横坐标.23.(1)2()43f x x x =-+;(2)2min 243,2()1,122,1t t t f x t t t t ⎧-+≥⎪=-<<⎨⎪-≤⎩. 【分析】(1)设二次函数()f x 的解析式为:2()(0)f x ax bx c a =++≠,由(1)8f -=、(0)(4)3f f ==列方程组即可求出,,a b c 得值进而可得()f x 的解析式;(2)由(1)知2()43f x x x =-+,对称轴为2x =,分情况讨论对称轴和区间的关系即可求解. 【详解】(1)设二次函数()f x 的解析式为:2()(0)f x ax bx c a =++≠,因为(1)8f -=,且(0)(4)3f f ==,则有813416433a b c a c b a b c c -+==⎧⎧⎪⎪=⇒=-⎨⎨⎪⎪++==⎩⎩, 于是二次函数解析式为:2()43f x x x =-+(2)由(1)知2()43f x x x =-+,对称轴为2x =,若2t ≥,则()f x 在[],1t t +上单调递增,所以2min ()()43f x f t t t ==-+;若12t +≤,即1t ≤时,()f x 在[],1t t +上单调递减,所以22min ()(1)(1)4(1)32f x f t t t t t =+=+-++=-;若21t t <<+,即12t <<时,2min ()(2)24231f x f ==-⨯+=-综上,2min 243,2()1,122,1t t t f x t t t t ⎧-+≥⎪=-<<⎨⎪-≤⎩【点睛】方法点睛:求函数解析式的方法(1)待定系数法:已知函数类型,可用待定系数法求解,先设出()f x ,再利用题目中给的已知条件,列出关于待定系数的方程组,进而求出待定的系数;(2)换元法:主要用于解决已知复合函数()f g x ⎡⎤⎣⎦的表达式求()f x 的解析式的问题,令()g x t =,解出x ,然后代入()f g x ⎡⎤⎣⎦中即可求得()f t ,从而求得()f x ,要注意新元的取值范围;(3)配凑法:配凑法是将()f g x ⎡⎤⎣⎦右端的代数式配凑成关于()g x 的形式,进而求出()f x 的解析式;(4)构造方程组法(消元法):主要解决已知抽象函数关系式求解函数解析式的问题.方法是根据不同的变量之间的关系,利用变换形式构造不同的等式,通过解方程组求解.24.无 25.无 26.无。

2014年全国中考数学试题分类汇编04 一元一次方程及其应用(含解析)

2014年全国中考数学试题分类汇编04 一元一次方程及其应用(含解析)

一元一次方程及其应用一、选择题1.(2014·台湾,第19题3分)桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3︰4︰5.若不计杯子厚度,则甲杯内水的高度变为多少公分?()A.5.4 B.5.7 C.7.2 D.7.5分析:根据甲、乙、丙三杯内水的高度比变为3︰4︰5,设后来甲、乙、丙三杯内水的高度为3x、4x、5x,由表格中的数据列出方程,求出方程的解得到x的值,即可确定出甲杯内水的高度.解:设后来甲、乙、丙三杯内水的高度为3x、4x、5x,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,解得:x=2.4,则甲杯内水的高度变为3×2.4=7.2(公分).故选C.点评:此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.2.(2014•滨州,第4题3分)方程2x﹣1=3的解是().二、填空题1.(2014•浙江湖州,第11题4分)方程2x﹣1=0的解是x=.分析:此题可有两种方法:(1)观察法:根据方程解的定义,当x=时,方程左右两边相等;(2)根据等式性质计算.即解方程步骤中的移项、系数化为1.解:移项得:2x=1,系数化为1得:x=.点评:此题虽很容易,但也要注意方程解的表示方法:填空时应填x=,不能直接填.2. (2014•湘潭,第15题,3分)七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为2x+56=589﹣x.三、解答题1. (2014•益阳,第18题,8分)“中国﹣益阳”网上消息,益阳市为了改善市区交通状况,计划在康富路的北端修建通往资江北岸的新大桥.如图,新大桥的两端位于A、B两点,小张为了测量A、B之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BAD=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米).参考数据:sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.(第1题图),,==4×2. (2014•益阳,第19题,10分)某电器超市销售每台进价分别为200元、170元的A、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.依题意得:,解得:3. (2014•株洲,第20题,6分)家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:(1)他下山时的速度比上山时的速度每小时快1千米;(2)他上山2小时到达的位置,离山顶还有1千米;(3)抄近路下山,下山路程比上山路程近2千米;(4)下山用1个小时;根据上面信息,他作出如下计划:(1)在山顶游览1个小时;(2)中午12:00回到家吃中餐.若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?4. (2014年江苏南京,第25题)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?(第4题图)考点:一次函数的解析式的运用,一元一次方程的运用分析:(1)由速度=路程÷时间就可以求出小明在平路上的速度,就可以求出返回的时间,进而得出途中休息的时间;(2)先由函数图象求出小明到达乙地的时间就可以求出B的坐标和C的坐标就可以由待定系数法求出解析式;(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,根据距离甲地的距离相等建立方程求出其解即可.解答:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15﹣5=10,小明骑车在上坡路的速度为:15+5=20.∴小明返回的时间为:(6.5﹣4.5)÷2+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1﹣0.5﹣0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意,得,解得:,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2+b2,由题意,得,解得:,∴y=﹣20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意,得10t+1.5=﹣20(t+0.15)+16.5,解得:t=0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.点评:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一元一次方程的运用,解答时求出一次函数的解析式是关键.5. (2014•泰州,第20题,8分)某篮球运动员去年共参加40场比赛,其中3分球的命中率为0.25,平均每场有12次3分球未投中.(1)该运动员去年的比赛中共投中多少个3分球?(2)在其中的一场比赛中,该运动员3分球共出手20次,小亮说,该运动员这场比赛中一定投中了5个3分球,你认为小亮的说法正确吗?请说明理由.=126.(2014·浙江金华,第20题8分)一种长方形餐桌的四周可坐6 从用餐,现把若干张这样的餐桌按如图方式拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?【答案】(1)18,34;(2)22.【解析】7.(2014•浙江宁波,第24题10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?,∴盒子的个数为:=308.(2014•滨州,第19题3分)(1)解方程:2﹣=9.(2014•德州,第20题8分)目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?10.(2014•菏泽,第17题7分)(1)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输,某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?。

哈尔滨市必修第一册第二单元《一元一次函数,方程和不等式》测试卷(包含答案解析)

哈尔滨市必修第一册第二单元《一元一次函数,方程和不等式》测试卷(包含答案解析)

一、选择题1.已知,,(0,)x y t ∈+∞,且11tx y+=, A .当2t =时,当且仅当2x y ==时,2x y +有最小值 B .当8t =时,当且仅当253x y ==时,2x y +的最小值为25 C .若2x y +的最小值为9,则t 的值为2 D .若2x y +的最小值为25,则t 的值为62.已知a >0,b >0,a +b =1,则下列等式可能成立的是( ) A .221a b += B .1ab = C .212a b +=D .2212a b -=3.已知0a >,0b >,且1a b +=,则14a b+的最小值为( ) A .9B .8C .7D .64.在弹性限度内,弹簧拉伸的距离与所挂物体的质量成正比,即md k=,其中d 是距离(单位cm ),m 是质量(单位g ),k 是弹簧系数(单位g/cm ).弹簧系数分别为1k ,2k 的两个弹簧串联时,得到的弹簧系数k 满足12111k k k =+,并联时得到的弹簧系数k 满足12k k k =+.已知物体质量为20g ,当两个弹簧串联时拉伸距离为1cm ,则并联时弹簧拉伸的最大距离为( ) A .1cm 4B .1cm 2C .1cmD .2cm5.已知a ,b 均为正数,且20a b ab +-=,则22124b a a b -+-的最大值为( )A .9-B .8-C .7-D .6-6.设1a b +=,0b >,则2244||ab b a a b++的最小值为( )A .14B .34C .54D .747.在区间1,23⎡⎤⎢⎥⎣⎦上,不等式2410mx x -+<有解,则m 的取值范围为( )A .4m ≤B .74m <C .4m <D .3m <8.已知不等式222ax y xy +≥,若对于任意[1,2],[2,3]x y ∈∈,该不等式恒成立,则实数a 的取值范围是( ). A .3a ≥-B .1a ≥-C .18a ≥D .118a -≤≤9.下列命题中是真命题的是( )A .y =的最小值为2;B .当a >0,b >0时,114a b++; C .若a 2+b 2=2,则a +b 的最大值为2;D .若正数a ,b 满足2,a b +=则11+4+22a b +的最小值为12.10.若直线220ax by +-=(),a b R +∈平分圆222460xy x y +---=,则21a b+的最小值是( ).A .1B .5C .D .3+11.若直线20(,1)ax by a b +-=>始终把圆222220x y x y +---=的周长分为1:2.则11a b+的最大值为( )A .4-B .2-C 1D12.已知3x >,13y x x =+-,则y 的最小值为( ) A .2B .3C .4D .5二、填空题13.已知正数,x y 满足10xy y -+=,则4y x+的最小值为___________. 14.当1x >时,11x x +-的最小值为___________. 15.已知向量()2,1a y =-,(),3b x =,且a b ⊥,若x ,y 均为正数,则32x y+的最小值是______. 16.若对于(0,)2x π∈,不等式2219sin cos mx x+≥恒成立,则正实数m 的取值范围为__________17.已知向量1a =,向量b 满足4a b a b -++=,则b 的最小值为______. 18.在ABC 中,角,,A B C 所对的边分别为,,a b c ,120,ABC ABC ∠=︒∠的平分线交AC 于点D ,且1BD =,则9a c +的最小值为________.参考答案19.函数()2436xxf xx++=-的值域为__________.20.如图:已知树顶A离地面212米,树上另一点B离地面112米,某人在离地面32米的C 处看此树,则该人离此树_________米时,看A、B的视角最大.三、解答题21.设2()(1)2f x x a x a=--+-.(1)若不等式()2f x≥-对一切实数x恒成立,求实数a的取值范围;(2)解关于x的不等式()0f x<(a R∈).22.已知命题p:方程240x mx++=无实数根:命题q:不等式()2310x m x+-+>在x∈R上恒成立.(1)如果命题p是假命题,请求出实数m的取值范围;(2)如果命题p q∨为真命题,且命题p q∧为假命题,请求出实数m的取值范围. 23.(Ⅰ)已知不等式220(2)x ax a a-+->>的解集为12(,)(,)x x-∞+∞,求12121x xx x++的最小值.(Ⅱ)若正数a b c、、满足2a b c++=,求证:2222b c aa b c++≥.24.已知函数212()log(1)f x x=+,26()g x x ax=-+.(1)若()g x为偶函数,求a的值并写出()g x的增区间;(2)若关于x的不等式()0<g x的解集为{}23x x<<,当1x>时,求()1g xx-的最小值;(3)对任意的1[1,)x∈+∞,2[2,4]x∈-,不等式12()()f xg x≤恒成立,求实数a的取值范围.25.已知正数,,a b c满足3a b c++=.(Ⅰ)若221a b +=,求c 的取值范围; (Ⅱ)求证:3bc ac ab a b c++≥.26.已知ABC 内接于O ,AB c =,BC a =,=CA b ,O 的半径为r .(1)若230OA OB OC ++=,试求BOC ∠的大小;(2)若A 为动点,60BAC ∠=︒,AO OC OB λμ=+,试求λμ+的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 当2t =时,121x y +=,()1222x y x y x y ⎛⎫+=++ ⎪⎝⎭展开后利用基本不等式即可判断A ;当当8t =时,181x y +=,()2812x y x y x y ⎛⎫+=++ ⎪⎝⎭展开后利用基本不等式即可判断B ;()12212122122222x y x y t t t t x y x t y tx y txy x y ⎛⎫+=++=+++≥++⨯=++ ⎪⎝⎭分别令12229t t ++=和122225t t ++=即可求出t 的值,可判断选项C 、D ,进而可得正确选项. 【详解】对于选项A :当2t =时,121x y+=, ()122222522529x xx y x y x y x y y x y y ⎛⎫+=++=++≥+⨯= ⎪⎝⎭,当且仅当12122x y y x x y ⎧+=⎪⎪⎨⎪=⎪⎩即3x y ==时等号成立,所以3x y ==时,2x y +有最小值,故选项A 不正确; 对于选项B :当8t =时,181x y+=, ()188222171725x x y x y x y x y y ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当18128x y y xxy ⎧+=⎪⎪⎨⎪=⎪⎩即510x y =⎧⎨=⎩时等号成立,所以510x y =⎧⎨=⎩时,2x y +有最小值,故选项B 不正确;对于选项C :()12212221x y x t y tx y t t x y x y ⎛⎫+=++=+++≥++⎪⎝⎭12t =++129t ++=即0==即2t =,当且仅当12122x y y x xy ⎧+=⎪⎪⎨⎪=⎪⎩即3x y ==时等号成立,所以2t =,故选项C 正确;对于选项D :()12212221x y x t y tx y t t x y x y ⎛⎫+=++=+++≥++⎪⎝⎭12t =++1225t ++=即0==,即8t =,当且仅当12128x y y x xy ⎧+=⎪⎪⎨⎪=⎪⎩即510x y =⎧⎨=⎩时等号成立,所以8t =,故选项D 不正确;故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.D解析:D 【分析】根据已知条件由2()2a b ab +≤可求出2212a b +≥,又由完全平方公式可得221a b +<,即可判断A 、B ;由已知条件可知01b <<,则2b b >,因此22212a b a b +>+≥,可判断C ;由平方差公式可得12a b -=,与1a b +=联立可求出满足条件的a 、b ,故D 可能成立. 【详解】001a b a b >>+=,,2222211()21212()12()222a b a b a b ab ab +∴+=+-=-≥-⋅=-⨯=, 当且仅当12a b ==时等号成立, 又0ab >,222()2121b a b a ab a b +=+-=-<∴,22112a b ≤+<∴,则221a b +=不可能成立; 2211()()224a b ab ≤==+,当且仅当12a b ==时等号成立,故1ab =不可能成立;001a b a b >>+=,,,01b ∴<<,2b b ∴>,22212b a b a +>+≥∴(由A 可知),则212a b +=不可能成立; ()()2212a b a b a b a b -=+-=-=,联立112a b a b +=⎧⎪⎨-=⎪⎩,解得31,44a b ==,满足条件,D 成立. 故选:D3.A解析:A 【分析】利用“1”的代换,转化()1414a b a b a b ⎛⎫+=++ ⎪⎝⎭,结合基本不等式即可得解. 【详解】1a b +=,0a >,0b > ()1414455549b a a b a b a b a b ⎛⎫+++=++≥+=+= ⎪⎝⎭∴=,当且仅当4b a a b =,即13a =,23b =时,等号成立. 14a b ∴+的最小值为9 故选:A. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.A解析:A 【分析】先利用串联列关系()121220k k k k +=,结合基本不等式求得12k k +最小值,再利用并联关系得到12k k k '=+最小时求得弹簧拉伸的最大距离即可. 【详解】依题意设两个弹簧的弹簧系数分别为1k ,2k ,串联时弹簧系数为k ,并联时弹簧系数为k '.两个弹簧串联时,由m d k =知,20201m k d ===,则12111k k k =+即12121211120k kk k k k +=+=, 即()()2121212204k k k k k k ++=≤,故1280k k +≥,当且仅当1240k k ==时等号成立,两个弹簧并联时,12k k k '=+,拉伸距离12m md k k k '==+',要是d '最大,则需12k k k '=+最小,而1240k k ==时()12min 80k k +=,故此时d '最大,为284001m d k '==='cm. 故选:A. 【点睛】 思路点睛: 利用基本不等式求最值时,需注意取等号条件是否成立. (1)积定,利用x y +≥,求和的最小值;(2)和定,利用()24x y xy +≤,求积的最大值;(3)妙用“1”拼凑基本不等式求最值.5.C解析:C 【分析】先利用条件化简222212144b b a a a b +⎛⎫-+-=- ⎪⎝⎭,巧用“1”的代换证明42b a +≥,再证明222242b a b a ⎛⎫+ ⎪⎝⎭≥+,即得到2214b a ⎛⎫- ⎪⎝⎭+的取值范围,根据等号条件成立得到最值. 【详解】依题意,0,0a b >>,20a b ab +-=可知121a b+=,则222212144b b a a a b +⎛⎫-+-=- ⎪⎝⎭,122224222b b b a a a a b a b ⎛⎫⎛⎫+=+⋅+=++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当22b a a b=时,即2ba =时等号成立.22242b ba a ab ≥⋅⋅=+,当且仅当2b a =时,等号成立,则左右同时加上224b a +得,则222222442b b b a a ab a ⎛⎫≥+=⎛⎫+++ ⎪⎝⎝⎭⎭ ⎪, 即222242b a b a ⎛⎫+ ⎪⎝⎭≥+,当且仅当2b a =时等号成立, 故2222428422b a b a ⎛⎫+ ⎪⎝⎭≥≥=+,当且仅当2b a =时,即2,4a b ==时等号成立, 故2222121744b b a a a b ⎛⎫-+-=-≤- ⎪⎝⎭+当且仅当2b a =时,即2,4a b ==时等号成立. 即22124b a a b -+-的最大值为7-. 故选:C. 【点睛】 关键点点睛:本题解题关键在于利用基本不等式证明的常用方法证明42b a +≥和222242b a b a ⎛⎫+ ⎪⎝⎭≥+,进而突破难点,取最值时要保证取等号条件成立.6.B解析:B 【分析】利用1a b +=,0b >,10b a =->,1a ∴>且0a ≠; 对a 进行分类讨论,分为10a >>和0a >,进行讨论,然后,求解即可得到2244||ab b a a b++的最小值【详解】1a b +=,0b >,10b a =->,1a ∴>且0a ≠;当10a >>,22224414||444ab b a ab b a b a a b ab a b ++++==++1544≥+=;当且仅当4b aa b =,又1b a =-,解得1a =-或13a =,又由10a >>,得13a =时,此时,23b =,2244||ab b a a b ++的最小值54;当0a >,222244134||4444ab b a ab b a b a a b ab a b ++++⎛⎫⎛⎫==-+-+-≥ ⎪ ⎪-⎝⎭⎝⎭,当且仅当4b aa b -=-时,解得1a =-或13a =,又由0a >,得1a =-,此时,2b =,2244||ab b a a b ++的最小值34;综上,2244||ab b a a b ++的最小值34;故选:B 【点睛】关键点睛:解题的关键在于利用1a b +=,0b >,10b a =->,可得1a >且0a ≠,对a 进行分类讨论,难点在于利用基本不等式进行求最值,本题属于中档题7.C解析:C 【分析】令()241f x mx x =-+,对二次项系数m 分三种情况讨论,再对二次函数的对称轴分类讨论,分别求出参数的取值范围,最后取并集即可; 【详解】解:令()241f x mx x =-+当0m =时,原不等式为410x -+<,解得14x >,满足条件; 当0m <时,函数的对称轴为20x m =<,要使不等式2410mx x -+<在区间1,23⎡⎤⎢⎥⎣⎦有解,只需()20f <,即4700m m -<⎧⎨<⎩解得0m <当0m >时,函数的对称轴为20x m =>,要使不等式2410mx x -+<在区间1,23⎡⎤⎢⎥⎣⎦有解,当2103m <<,即6m >时,只需103f ⎛⎫< ⎪⎝⎭,即110936m m ⎧-<⎪⎨⎪>⎩无解; 当22m >,即01m <<时,只需()20f <,即47001m m -<⎧⎨<<⎩解得01m <<;当1223m≤≤,即16m ≤≤时,只需20f m ⎛⎫< ⎪⎝⎭,即481016m m m ⎧-+<⎪⎨⎪≤≤⎩解得14m ≤<; 综上可得4m < 故选:C 【点睛】本题考查一元二次不等式的解,一元二次方程根的分布问题,解答的关键是对对称轴即二次项系数分类讨论,分别求出各种情况的参数的取值范围,最后取并集;8.B解析:B 【分析】 将a 分离出来得22()y ya x x ≥-,然后根据[1x ∈,2],[2y ∈,3]求出y x的范围,令yt x=,则22a t t ≥-在[1,3]上恒成立,利用二次函数的性质求出22t t -的最大值,即可求出a 的范围. 【详解】 解:由题意可知:不等式222ax y xy +≥对于[1,2],[2,3]x y ∈∈恒成立, 即:22()y ya x x≥-,对于[1,2],[2,3]x y ∈∈恒成立, 即:x 2ma 2()yy a xx ⎡⎤⎢⎥⎣⎦≥-,对于[1,2],[2,3]x y ∈∈恒成立,令y t x =,结合图形可知yx的取值范围是(1,3),则13t ≤≤, 22a t t ∴≥-在[1,3]上恒成立,221122()48y t t t =-+=--+,13t ≤≤,∴当1t =时,1max y =-,1a ∴≥-.故选:B.【点睛】关键点点睛:本题考查的是不等式与恒成立的综合类问题,利用分离参数法、换元法和将恒成立问题转化为二次函数最值问题是解题的关键,还需要注意换元时新元的范围,属于中档题.9.B解析:BCD 【分析】利用基本不等式分别判断A 、B 、D 选项,C 选项可设2,2a b αα==,利用三角函数的值域求范围. 【详解】 A 选项,222x +≥2220x +>,∴22221222222y x x x x =+≥+⋅=++2222x x +=+,即221x +=±时成立,又222x ≥+,故A 错;B 选项,当a >0,b >0时,11122224ab ab ab a b ab ab+++≥⨯⋅=, 当且仅当1a b ab ab =⎧=,即1a b ==时等号成立,B 正确;C 选项,设2,2a b αα==,则222sin 24a b πααα⎛⎫+==+≤ ⎪⎝⎭,C 正确;D 选项,2a b +=,()212192a b ⎡⎤⎛⎫∴+++= ⎪⎢⎥⎝⎭⎣⎦, 则()121252229291111++4+22442+2242a b a b a b a b a b ⎛⎫+ ⎪⎡⎤+⎛⎫⎛⎫+++=⨯++ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝=+⎣+⎭⎦ ⎪⎝⎭251942⎛ ≥⨯+= ⎝⎭,当且仅当122422a b a b ++=++且2a b +=时等号成立,解得1a b ==,故D 正确. 故选:BCD 【点睛】本题考查基本不等式的应用、利用三角函数的值域求范围,注意取等号的条件,属于中档题.10.D解析:D 【分析】根据条件可知直线过圆心,求解出,a b 的关系式,利用常数代换法以及基本不等式求解出21a b +的最小值. 【详解】因为直线220ax by +-=(),a b R+∈平分圆222460xy x y +---=,所以直线220ax by +-=过圆心,又因为圆的方程()()221211x y -+-=,所以圆心为()1,2,所以222a b +=,即1a b +=,所以()21212333b a a b a b a b a b ⎛⎫+=+⋅+=++≥+=+ ⎪⎝⎭ 取等号时222a b =即a =,此时21a b ==,故选:D. 【点睛】本题考查圆的对称性与基本不等式的综合应用,其中涉及到利用常数代换法求解最小值,对学生的理解与计算能力要求较高,难度一般.利用基本不等式求解最值时注意说明取等号的条件.11.B解析:B【分析】由圆的方程得圆心和半径,根据圆的周长被分为1:2,可推出圆心到直线的距离为1,即2221a b a b +-=+,化简整理后,再结合基本不等式的性质可得ab 的最小值,再求出11a b+的最大值.【详解】把圆222220x y x y +---=化成标准形式为22(1)(1)4x y -+-=,其中圆心为(1,1),半径为2.设直线与圆交于A 、B 两点,圆心为C , 因为直线把圆的周长分为1:2,所以13601203ACB ∠=⨯︒=︒, 所以圆心(1,1)C 到直线20ax by +-=的距离为12221a b a b+-=+,因为a ,1b >,所以202()a ab b -++=,由基本不等式的性质可知,22()4ab a b ab +=+, 当且仅当a b =时,等号成立,此时有2(22)ab +,所以21(2)1111122222(22)ab a b a b ab ab ab+++===++=+. 所以11a b +的最大值为22- 故选:B . 【点评】本题主要考查直线与圆的综合问题,除圆的标准方程、点到直线的距离公式等基础知识外,还涉及利用基本不等式的性质求最值,考查学生的逻辑推理能力和运算能力,属于中档题.12.D解析:D 【分析】由3x >,得到30x ->,化简113333y x x x x =+=-++--,结合基本不等式,即可求解. 【详解】因为3x >,所以30x ->,则11333533y x x x x =+=-++≥=--, 当且仅当133x x -=-,即4x =时取等号, 故选:D. 【点睛】本题主要考查了利用基本不等式求最值问题,其中解答中熟记基本不等式的“一正、二定、三相等”的条件,合理运算是解得的关键,着重考查推理与运算能力.二、填空题13.9【分析】由已知条件得出将代数式与相乘展开后利用基本不等式可求得的最小值【详解】因为正数满足所以即所以当且仅当即时等号成立故答案为:9【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条解析:9 【分析】 由已知条件得出11x y +=,将代数式1x y +与4y x+相乘,展开后利用基本不等式可求得4y x +的最小值. 【详解】因为正数,x y 满足10xy y -+=, 所以1xy y +=,即11x y+=,所以4144()()559y x y xy x y x xy +=++=++≥+=, 当且仅当2xy =,即3y =,23x =时,等号成立. 故答案为:9 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.【分析】化简得到结合基本不等式即可求解【详解】由可得则当且仅当时即等号成立所以的最小值为故答案为:【点睛】利用基本不等式求最值时要注意其满足的三个条件:一正二定三相等:(1)一正:就是各项必须为正数 解析:3【分析】 化简得到111111x x x x +=-++--,结合基本不等式,即可求解. 【详解】由1x >,可得10x ->,则11111311x x x x +=-++≥=--, 当且仅当111x x -=-时,即2x =等号成立, 所以11x x +-的最小值为3. 故答案为:3. 【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”: (1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.8【分析】由题意利用两个向量垂直的性质基本不等式求得的最大值可得要求式子的最小值【详解】解:向量且若均为正数则当且仅当时取等号则故答案为:8【点睛】本题主要考查两个向量垂直的性质基本不等式的应用属于解析:8 【分析】由题意利用两个向量垂直的性质,基本不等式,求得xy 的最大值,可得要求式子的最小值. 【详解】 解:向量(2,1)a y =-,(,3)b x =,且a b ⊥,∴23(1)0a b x y =+-=.若x ,y 均为正数,则23326x y xy +=,38xy ∴,当且仅当3232x y ==时,取等号. 则32233838y xx y xy++==,故答案为:8. 【点睛】本题主要考查两个向量垂直的性质,基本不等式的应用,属于中档题.16.【分析】由不等式恒成立转化为的最小值大于9构造利用基本不等式求的最小值【详解】当时等号成立若不等式恒成立则即即故答案为:【点睛】本题考查不等式恒成立求参数的取值范围重点考查利用1的变形利用基本不等式 解析:[)4,+∞【分析】由不等式恒成立,转化为221sin cos mx x+的最小值大于9,构造()22222211sin cos sin cos sin cos m m x x x x x x ⎛⎫+=++ ⎪⎝⎭,利用基本不等式求 221sin cos mx x +的最小值. 【详解】22sin cos 1x x += ,0m >()222222221cos sin sin cos 1sin cos sin cos m x m x x x m x x x x ⎛⎫∴++=+++ ⎪⎝⎭11m m ≥++=++ 当2222cos sin sin cos x m x x x=时,等号成立,若不等式2219sin cos mx x+≥恒成立,则19m ++≥,即)219≥134m ≥⇒≥.故答案为:[)4,+∞ 【点睛】本题考查不等式恒成立求参数的取值范围,重点考查利用”1”的变形,利用基本不等式求最小值,属于中档题型,本题的关键是根据22sin cos 1x x +=,已知变形为()22222211sin cos sin cos sin cos m m x x x x x x ⎛⎫+=++ ⎪⎝⎭. 17.【分析】根据平行四边形性质可得再结合基本不等式即可求出的最小值【详解】由平行四边形性质可得:由基本不等式可得:当且仅当时等号成立所以即所以所以的最小值为故答案为:【点睛】本题主要考查了向量的数量积的【分析】根据平行四边形性质可得()22222a b a b a b ++-=+,再结合基本不等式即可求出b的最小值. 【详解】由平行四边形性质可得:()22222a b a b a b++-=+,由基本不等式可得:()2222a b a b a b a b++-++-≥,当且仅当a b a b +=-时等号成立, 所以()()22222a b a ba b++-+≥,即()224212b+≥, 所以3b ≥,所以b 的最小值为. 【点睛】本题主要考查了向量的数量积的运算及基本不等式的应用,属于中档题.18.【分析】先根据三角形面积关系列等量关系再根据基本不等式求最值【详解】因为所以因此当且仅当即时取等号即的最小值为故答案为:【点睛】本题考查三角形面积公式利用基本不等式求最值考查综合分析求解能力属中档题 解析:16【分析】先根据三角形面积关系列,a c 等量关系,再根据基本不等式求最值. 【详解】 因为ABCABDBDCS SS=+,所以11111sin1201sin 601sin 601222ac a c a c=⨯⨯+⨯⨯∴+= 因此1199(9)()101016c a a c a c a c a c +=++=++≥+= 当且仅当911,1c a a c a c =+=即44,3a c ==时取等号 即9a c +的最小值为16 故答案为:16 【点睛】本题考查三角形面积公式、利用基本不等式求最值,考查综合分析求解能力,属中档题.19.【分析】设将关于的函数利用基本不等式即可求出值域【详解】设当时当且仅当时等号成立;同理当时当且仅当时等号成立;所以函数的值域为故答案为:【点睛】本题考查函数的值域注意基本不等式的应用属于基础题 解析:(),16671667,⎤⎡-∞-++∞⎦⎣【分析】设6x t -=,将()f x 关于t 的函数,利用基本不等式,即可求出值域. 【详解】设21663636,6,()16t t x t x t g t t t t++-==+==++,当0t >时,()6716g t ≥+,当且仅当37,376t x ==+时等号成立; 同理当0t <时,()6716g t ≤-+, 当且仅当37,376t x =-=-+时等号成立; 所以函数的值域为(),16671667,⎤⎡-∞-++∞⎦⎣. 故答案为: (),16671667,⎤⎡-∞-++∞⎦⎣. 【点睛】本题考查函数的值域,注意基本不等式的应用,属于基础题.20.6【分析】过点作设根据已知中树顶距地面米树上另一点距地面米人眼离地面米我们易求出即的表达式进而根据基本不等式求出的范围及取最大值时的值进而得到答案【详解】如图过点作则设由图可知:当且仅当时等号成立即解析:6 【分析】过点C 作CD AB ⊥,设CD x =,根据已知中树顶A 距地面212米,树上另一点B 距地面112米,人眼C 离地面32米.我们易求出tan ACB ∠,即tan()ACD BCD ∠-∠的表达式,进而根据基本不等式,求出tan ACB ∠的范围及tan ACB ∠取最大值时x 的值,进而得到答案. 【详解】 如图,过点C 作CD AB ⊥,则213922AD =-=,113422BD =-=,设CD x =,由图可知:94tan tan 555tan tan()94361tan ?tan 26121?ACD BCD x x ACB ACD BCD ACD BCD x x x x-∠-∠∠=∠-∠====+∠∠⨯++,当且仅当6x =时,等号成立.即6x =时,tan ACB ∠有最大值,此时ACB ∠最大. 故答案为: 6 【点睛】本题考查的知识点是三角函数的实际应用,两角差的正切公式,及基本不等式,其中构造适当的三角形,将问题转化为一个三角函数问题是解答本题的关键.三、解答题21.(1)33a -≤≤+2)答案见解析. 【分析】(1)一元二次不等式恒成立问题,由判别式可得参数范围.(2)不等式变形为[(2)](1)0x a x ---<,根据2a -和1的大小分类讨论得解集. 【详解】解:(1)由题意,不等式()2f x ≥-对于一切实数x 恒成立,等价于2(1)0x a x a --+≥对于一切实数x 恒成立.所以20(1)40a a ∆≤⇔--≤⇔33a -≤≤+(2)不等式()0f x <等价于2(1)20[(2)](1)0x a x a x a x --+-<⇔---<.当21a ->即3a >时,不等式可化为12x a <<-,不等式的解集为{}12x x a <<-; 当21a -=即3a =时,不等式可化为2(10)x -<,不等式的解集为∅; 当21a -<即3a <时,不等式可化为21a x -<<,此时{}21x a x -<<. 综上所述:当3a <时,不等式的解集为{}21x a x -<<; 当3a =时,不等式的解集为∅;当3a >时,不等式的解集为{}12x x a <<-. 【点睛】本题考查解一元二次不等式.掌握三个二次伯关系是解题关键.对含参数的一元二次不等式求解时需分类讨论,分类讨论一般有三个层次:一是二次项系数是否为0,不为0时二次项系数的正负,二是一元二次方程的判别式,三是在判别式大于0时,方程两根的大小.注意灵活分类.22.无 23.无24.无25.无26.无。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理
精心整理
一次函数应用题练习 姓名
1、 A 市和B 各有机床12台和6台,现运往C 市10台,D 市8台,若从A 市运一台到C 市,D 市各需要4万元和8万元,从B 市运一台到C 市,D 市各需3万
,最高产值是多少?
3. 为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费;超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水处理费,设某户每月用水量
精心整理
精心整理
为X(立方米),应交水费为Y(元)。

(1)分别写出用水未超过7立方米和多于7立方米时,y 与x 间的函数关系式;
(2)如果某单位共有用户50户,某月共交水费541.6元,且每户的用水量均未超过10立方米,求这个月用水未超过7立方米的用户最多可能有多少户?
4、某日通过某公路收费站的汽车中,共有3000辆次缴了通行费,其中大车每辆次缴通行费10元,小车每辆次缴通行费5元。

(1)设这一天小车缴通行费的辆次为X ,总的通行费收入为Y 元,试写出Y 关于X 的函数关系式。

(25元,(1(2。

相关文档
最新文档