(易错题精选)初中数学二次函数技巧及练习题含答案(1)

合集下载

(专题精选)初中数学二次函数易错题汇编附答案解析

(专题精选)初中数学二次函数易错题汇编附答案解析

(专题精选)初中数学二次函数易错题汇编附答案解析一、选择题1.已知抛物线y =x 2+2x ﹣m ﹣1与x 轴没有交点,则函数y =的大致图象是( )A .B .C .D .【答案】B 【解析】 【分析】由题意可求m <﹣2,即可求解. 【详解】∵抛物线y =x 2+2x ﹣m ﹣1与x 轴没有交点, ∴△=4﹣4(﹣m ﹣1)<0 ∴m <﹣2∴函数y =的图象在第二、第四象限, 故选B . 【点睛】本题考查了反比例函数的图象,二次函数性质,求m 的取值范围是本题的关键.2.要将抛物线2y x =平移后得到抛物线223y x x =++,下列平移方法正确的是( ) A .向左平移1个单位,再向上平移2个单位 B .向左平移1个单位,再向下平移2个单位 C .向右平移1个单位,再向上平移2个单位 D .向右平移1个单位,再向下平移2个单位 【答案】A 【解析】 【分析】原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(-1,2),由此确定平移办法. 【详解】y=x 2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(-1,2),抛物线y=x 2的顶点坐标是(0,0),则平移的方法可以是:将抛物线y=x 2向左平移1个单位长度,再向上平移2个单位长度. 故选:A . 【点睛】此题考查二次函数图象与几何变换.解题关键是将抛物线的平移问题转化为顶点的平移,寻找平移方法.3.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (1,0),对称轴为直线x =﹣1,当y >0时,x 的取值范围是( )A .﹣1<x <1B .﹣3<x <﹣1C .x <1D .﹣3<x <1【答案】D 【解析】 【分析】根据已知条件求出抛物线与x 轴的另一个交点坐标,即可得到答案. 【详解】解:∵抛物线y =ax 2+bx +c 与x 轴交于点A (1,0),对称轴为直线x =﹣1, ∴抛物线与x 轴的另一交点坐标是(﹣3,0), ∴当y >0时,x 的取值范围是﹣3<x <1. 所以答案为:D . 【点睛】此题考查抛物线的性质,利用对称轴及图象与x 轴的一个交点即可求出抛物线与x 轴的另一个交点坐标.4.方程2x 3x 10+-=的根可视为函数3y x =+的图象与函数1y x=的图象交点的横坐标,则方程3x 2x 10+-=的实根x 0所在的范围是( ) A .010<x <4B .011<x <43C .011<x <32D .01<x <12【答案】C 【解析】 【分析】首先根据题意推断方程x 3+2x-1=0的实根是函数y=x 2+2与1y x=的图象交点的横坐标,再根据四个选项中x 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x 3+2x-1=0的实根x 所在范围. 【详解】解:依题意得方程3x 2x 10+-=的实根是函数2y x 2=+与1y x=的图象交点的横坐标,这两个函数的图象如图所示,它们的交点在第一象限.当x=14时,21y x 2216=+=,1y 4x==,此时抛物线的图象在反比例函数下方; 当x=13时,21229y x =+=,1y 3x==,此时抛物线的图象在反比例函数下方; 当x=12时,21224y x =+=,1y 2x==,此时抛物线的图象在反比例函数上方; 当x=1时,2y x 23=+=,1y 1x==,此时抛物线的图象在反比例函数上方. ∴方程3x 2x 10+-=的实根x 0所在范围为:011<x <32. 故选C . 【点睛】此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.5.函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,则8x =时,函数值等于( ) A .5 B .52-C .52D .-5【答案】A 【解析】 【分析】根据二次函数的对称性,求得函数25y ax bx =++(0)a ≠的对称轴,进而判断与8x =的函数值相等时x 的值,由此可得结果. 【详解】∵函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,∴函数25y ax bx =++(0)a ≠的对称轴为:1742x +==, ∴8x =与0x =的函数值相等,∴当8x =时,250055y ax bx a b =++=⨯+⨯+=, 即8x =时,函数值等于5, 故选:A . 【点睛】本题主要考查二次函数的图象和对称性.掌握二次函数的对称性和对称轴的求法,是解题的关键.6.如图,坐标平面上,二次函数y =﹣x 2+4x ﹣k 的图形与x 轴交于A 、B 两点,与y 轴交于C 点,其顶点为D ,且k >0.若△ABC 与△ABD 的面积比为1:4,则k 值为何?( )A .1B .12C .43D .45【答案】D 【解析】 【分析】求出顶点和C 的坐标,由三角形的面积关系得出关于k 的方程,解方程即可. 【详解】解:∵y =﹣x 2+4x ﹣k =﹣(x ﹣2)2+4﹣k , ∴顶点D(2,4﹣k),C(0,﹣k), ∴OC =k , ∵△ABC 的面积=12AB•OC =12AB•k ,△ABD 的面积=12AB(4﹣k),△ABC 与△ABD 的面积比为1:4,∴k =14(4﹣k), 解得:k =45.故选:D . 【点睛】本题考查了抛物线与x 轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.7.将抛物线y=x2﹣4x+1向左平移至顶点落在y轴上,如图所示,则两条抛物线.直线y=﹣3和x轴围成的图形的面积S(图中阴影部分)是()A.5 B.6 C.7 D.8【答案】B【解析】【分析】B,C分别是顶点,A是抛物线与x轴的一个交点,连接OC,AB,阴影部分的面积就是平行四边形ABCO的面积.【详解】抛物线y=x2﹣4x+1=(x-2)2-3的顶点坐标C(2.-3), 向左平移至顶点落在y轴上,此时顶点B(0,-3),点A是抛物线与x轴的一个交点,连接OC,AB,如图,阴影部分的面积就是ABCO的面积,S=2×3=6;故选:B.【点睛】本题考查二次函数图象的性质,阴影部分的面积;能够将面积进行转化是解题的关键.8.抛物线y=ax2+bx+c的顶点为(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论,其中正确结论的个数为()①若点P(﹣3,m),Q(3,n)在抛物线上,则m<n;②c=a+3;③a+b+c<0;④方程ax2+bx+c=3有两个相等的实数根.A .1个B .2个C .3个D .4个【答案】C 【解析】试题分析:由抛物线与x 轴有两个交点,可知b 2-4ac >0,所以①错误;由抛物线的顶点为D (-1,2),可知抛物线的对称轴为直线x=-1,然后由抛物线与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,可知抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,因此当x=1时,y <0,即a+b+c <0,所以②正确; 由抛物线的顶点为D (-1,2),可知a-b+c=2,然后由抛物线的对称轴为直线x=2b a=-1,可得b=2a ,因此a-2a+c=2,即c-a=2,所以③正确;由于当x=-1时,二次函数有最大值为2,即只有x=-1时,ax 2+bx+c=2,因此方程ax2+bx+c-2=0有两个相等的实数根,所以④正确. 故选C .考点:二次函数的图像与性质9.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个【答案】C 【解析】 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据抛物线与x 轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断. 【详解】解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0, 故③正确;由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧, y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误. 故选:C . 【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.10.二次函数y=ax 2+bx+c (a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c >﹣3b ;(3)7a ﹣3b+2c >0;(4)若点A (﹣3,y 1)、点B (﹣12,y 2)、点C (7,y 3)在该函数图象上,则y 1<y 3<y 2;(5)若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<5<x 2.其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】B 【解析】根据题意和函数的图像,可知抛物线的对称轴为直线x=-2ba=2,即b=-4a ,变形为4a+b=0,所以(1)正确;由x=-3时,y >0,可得9a+3b+c >0,可得9a+c >-3c ,故(2)正确;因为抛物线与x 轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a ,可得a+4a+c=0,即c=-5a.代入可得7a ﹣3b+2c=7a+12a-5a=14a ,由函数的图像开口向下,可知a <0,因此7a ﹣3b+2c <0,故(3)不正确;根据图像可知当x <2时,y 随x 增大而增大,当x >2时,y 随x 增大而减小,可知若点A (﹣3,y 1)、点B (﹣12,y 2)、点C (7,y 3)在该函数图象上,则y 1=y 3<y 2,故(4)不正确;根据函数的对称性可知函数与x 轴的另一交点坐标为(5,0),所以若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<x 2,故(5)正确.正确的共有3个. 故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定,△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac=0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.11.二次函数2y ax bx c =++(,,a b c 是常数,0a ≠)的自变量x 与函数值y 的部分对应值如下表:且当12x =-时,与其对应的函数值0y >.有下列结论:①0abc >;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③0m <203n +<.其中,正确结论的个数是( ) A .0 B .1C .2D .3【答案】C 【解析】 【分析】首先确定对称轴,然后根据二次函数的图像和性质逐一进行分析即可求解. 【详解】∵由表格可知当x=0和x=1时的函数值相等都为-2 ∴抛物线的对称轴是:x=-2b a =12; ∴a 、b 异号,且b=-a ; ∵当x=0时y=c=-2 ∴c 0<∴abc >0,故①正确;∵根据抛物线的对称性可得当x=-2和x=3时的函数值相等都为t ∴2-和3是关于x 的方程2ax bx c t ++=的两个根;故②正确; ∵b=-a ,c=-2∴二次函数解析式:2-a -2=y ax x∵当12x =-时,与其对应的函数值0y >.∴3204a->,∴a83>;∵当x=-1和x=2时的函数值分别为m和n,∴m=n=2a-2,∴m+n=4a-4203>;故③错误故选:C.【点睛】本题考查了二次函数的综合题型,主要利用了二次函数图象与系数的关系,二次函数的对称性,二次函数与一元二次方程等知识点,要会利用数形结合的思想,根据给定自变量x 与函数值y的值结合二次函数的性质逐条分析给定的结论是关键.12.若用“*”表示一种运算规则,我们规定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下说法中错误的是()A.不等式(﹣2)*(3﹣x)<2的解集是x<3B.函数y=(x+2)*x的图象与x轴有两个交点C.在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数D.方程(x﹣2)*3=5的解是x=5【答案】D【解析】【分析】根据题目中所给的运算法则列出不等式,解不等式即可判定选项A;根据题目中所给的运算法则求得函数解析式,由此即可判定选项B;根据题目中所给的运算法则可得a*(a+1)=a(a+1)﹣a+(a+1)=a2+a+1=(a+12)2+34>0,由此即可判定选项C;根据题目中所给的运算法则列出方程,解方程即可判定选项D.【详解】∵a*b=ab﹣a+b,∴(﹣2)*(3﹣x)=(﹣2)×(3﹣x)﹣(﹣2)+(3﹣x)=x﹣1,∵(﹣2)*(3﹣x)<2,∴x﹣1<2,解得x<3,故选项A正确;∵y=(x+2)*x=(x+2)x﹣(x+2)+x=x2+2x﹣2,∴当y=0时,x2+2x﹣2=0,解得,x1=﹣x2=﹣1B正确;∵a*(a+1)=a(a+1)﹣a+(a+1)=a2+a+1=(a+12)2+34>0,∴在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数,故选项C正确;∵(x﹣2)*3=5,∴(x﹣2)×3﹣(x﹣2)+3=5,解得,x=3,故选项D错误;故选D . 【点睛】本题是阅读理解题,根据题目中所给的运算法则得到相应的运算式子是解决问题的关键.13.若A (-4,1y ),B (-3,2y ),C (1,3y )为二次函数y =x 2+4x -m 的图象上的三点,则1y ,2y ,3y 的大小关系是( ) A .1y <2y <3y B .3y <1y <2yC .2y <1y <3yD .1y <3y <2y【答案】C 【解析】 【分析】分别将点的坐标代入二次函数解析式,然后进行判断即可. 【详解】解:y 1=(-4)2+4×(-4)m -=16-16m - =m -, y 2=(-3)2+4×(-3)m - =9-12m - =3m --, y 3=12+4×m - 1=1+4m - =5m -, ∵-3m -<m -<5m -, ∴y 2<y 1<y 3. 故选:C. 【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键在于三个函数值的大小不受m 的影响.14.如图,在边长为4的正方形ABCD 中,动点P 从A 点出发,以每秒1个单位长度的速度沿AB 向B 点运动,同时动点Q 从B 点出发,以每秒2个单位长度的速度沿BC CD →方向运动,当P 运动到B 点时,P Q 、点同时停止运动.设P 点运动的时间为t 秒,APQ ∆的面积为S ,则表示S 与t 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】本题应分两段进行解答,①点P 在AB 上运动,点Q 在BC 上运动;②点P 在AB 上运动,点Q 在CD 上运动,依次得出S 与t 的关系式,即可判断得出答案.【详解】解:当点P 在AB 上运动,点Q 在BC 上运动时,此时,,2AP t BQ t ==2122APQ S t t t =⋅⋅=V ,函数图象为抛物线; 当点P 在AB 上运动,点Q 在BC 上运动时,此时,AP t =,APQ V 底边AP 上的高保持不变1422APQ S t t =⋅⋅=V ,函数图象为一次函数; 故选:D .【点睛】本题考查的知识点是函数图象,理解题意,分段求出S 与t 之间的函数关系是解此题的关键.15.若二次函数y =ax 2+bx +c (a ≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0),且x 1<x 2,图象上有一点M (x 0,y 0)在x 轴下方,对于以下说法:①b 2﹣4ac >0②x =x 0是方程ax 2+bx +c =y 0的解③x 1<x 0<x 2④a (x 0﹣x 1)(x 0﹣x 2)<0其中正确的是( )A .①③④B .①②④C .①②③D .②③【答案】B【解析】【分析】①根据二次函数图象与x 轴有两个不同的交点,结合根的判别式即可得出△=b 2-4ac >0,①正确;②由点M (x 0,y 0)在二次函数图象上,利用二次函数图象上点的坐标特征即可得出x=x 0是方程ax 2+bx+c=y 0的解,②正确;③分a >0和a <0考虑,当a >0时得出x 1<x 0<x 2;当a <0时得出x 0<x 1或x 0>x 2,③错误;④将二次函数的解析式由一般式转化为交点式,再由点M (x 0,y 0)在x 轴下方即可得出y 0=a (x 0-x 1)(x 0-x 2)<0,④正确.【详解】①∵二次函数y=ax 2+bx+c (a≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0),且x 1<x 2,∴方程ax 2+bx+c=0有两个不相等的实数根,∴△=b 2-4ac >0,①正确;②∵图象上有一点M (x 0,y 0),∴a +bx 0+c=y 0,∴x=x 0是方程ax 2+bx+c=y 0的解,②正确;③当a >0时,∵M (x 0,y 0)在x 轴下方,∴x 1<x 0<x 2;当a <0时,∵M (x 0,y 0)在x 轴下方,∴x 0<x 1或x 0>x 2,③错误;④∵二次函数y=ax 2+bx+c (a≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0), ∴y=ax 2+bx+c=a (x-x 1)(x-x 2),∵图象上有一点M (x 0,y 0)在x 轴下方,∴y 0=a (x 0-x 1)(x 0-x 2)<0,④正确;故选B .【点睛】本题考查了抛物线与x 轴的交点、二次函数图象上点的坐标特征以及二次函数图象与系数的关系,根据二次函数的相关知识逐一分析四条结论的正误是解题的关键.16.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A .B .C .D .【答案】B【解析】【分析】根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意.【详解】根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,∴选项B 符合题意,选项A 不合题意.故选B .【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题.17.已知二次函数2()y x h =-- (h 为常数),当自变量x 的值满足25x ≤≤时,与其对应的函数值y 的最大值为-1,则h 的值为( )A .3或6B .1或6C .1或3D .4或6【答案】B【解析】分析:分h <2、2≤h≤5和h >5三种情况考虑:当h <2时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h >5时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论.综上即可得出结论.详解:如图,当h <2时,有-(2-h )2=-1,解得:h 1=1,h 2=3(舍去);当2≤h≤5时,y=-(x-h )2的最大值为0,不符合题意;当h >5时,有-(5-h )2=-1,解得:h 3=4(舍去),h 4=6.综上所述:h 的值为1或6.故选B .点睛:本题考查了二次函数的最值以及二次函数的性质,分h <2、2≤h≤5和h >5三种情况求出h 值是解题的关键.18.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)【答案】C【解析】【分析】【详解】解:22224=()4y x mx x m m =-----,∴点M (m ,﹣m 2﹣4),∴点M′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8). 故选C .【点睛】本题考查二次函数的性质.19.已知二次函数y =a (x ﹣h )2+k 的图象如图所示,直线y =ax +hk 的图象经第几象限( )A .一、二、三B .一、二、四C .一、三、四D .二、三、四【答案】D【解析】【分析】 根据二次函数的图象和性质可得a <0,h <0,k >0,以此判断一次函数的图象所经过的象限即可.【详解】解:由函数图象可知,y =a (x ﹣h )2+k 中的a <0,h <0,k >0,∴直线y =ax +hk 中的a <0,hk <0,∴直线y =ax +hk 经过第二、三、四象限,故选:D .【点睛】本题考查了一次函数的图象的问题,掌握二次函数、一次函数的图象和性质是解题的关键.20.在平面直角坐标系中,点P 的坐标为()1,2,将抛物线21322y x x =-+沿坐标轴平移一次,使其经过点P ,则平移的最短距离为( )A .12B .1C .5D .52【答案】B【解析】【分析】先求出平移后P 点对应点的坐标,求出平移距离,即可得出选项.【详解】 解:21322y x x =-+=()215322x --, 当沿水平方向平移时,纵坐标和P 的纵坐标相同,把y=2代入得:解得:x=0或6,平移的最短距离为1-0=1;当沿竖直方向平移时,横坐标和P 的横坐标相同,把x=1代入得:解得:y=12-, 平移的最短距离为152=22⎛⎫--⎪⎝⎭, 即平移的最短距离是1,故选B.【点睛】本题考查了二次函数图象上点的坐标特征,能求出平移后对应的点的坐标是解此题的关键.。

(易错题精选)初中数学二次函数知识点总复习附答案解析(1)

(易错题精选)初中数学二次函数知识点总复习附答案解析(1)

(易错题精选)初中数学二次函数知识点总复习附答案解析(1)一、选择题1.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( )A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =-,21x =【答案】C【解析】【分析】【详解】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =. 故选C .考点:抛物线与x 轴的交点.2.如图,抛物线y=ax 2+bx+c (a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a ﹣b+c ,则P 的取值范围是( )A .﹣4<P <0B .﹣4<P <﹣2C .﹣2<P <0D .﹣1<P <0【答案】A【解析】【分析】【详解】 解:∵二次函数的图象开口向上,∴a >0.∵对称轴在y 轴的左边,∴b 2a-<0.∴b >0. ∵图象与y 轴的交点坐标是(0,﹣2),过(1,0)点,代入得:a+b ﹣2=0. ∴a=2﹣b ,b=2﹣a .∴y=ax 2+(2﹣a )x ﹣2.把x=﹣1代入得:y=a ﹣(2﹣a )﹣2=2a ﹣4,∵b >0,∴b=2﹣a >0.∴a <2.∵a >0,∴0<a <2.∴0<2a <4.∴﹣4<2a ﹣4<0,即﹣4<P <0.故选A .【点睛】本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键.3.对于二次函数()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭,下列说法正确的个数是( ) ①对于任何满足条件的a ,该二次函数的图象都经过点()2,1和()0,0两点;②若该函数图象的对称轴为直线0x x =,则必有001x <<;③当0x ≥时,y 随x 的增大而增大;④若()14,P y ,()()24,0Q m y m +>是函数图象上的两点,如果12y y >总成立,则112a ≤-. A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】根据二次函数的图象与性质(对称性、增减性)逐个判断即可.【详解】 对于()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭当2x =时,142(2)12y a a =+-=,则二次函数的图象都经过点()2,1当0x =时,0y =,则二次函数的图象都经过点()0,0则说法①正确 此二次函数的对称轴为1212124a x a a-=-=-+ 0a <Q1114a∴-+> 01x ∴>,则说法②错误 由二次函数的性质可知,抛物线的开口向下,当114x a<-+时,y 随x 的增大而增大;当114x a ≥-+时,y 随x 的增大而减小 因11104a-+>> 则当1014x a <-≤+时,y 随x 的增大而增大;当114x a ≥-+时,y 随x 的增大而减小即说法③错误0m >Q44m ∴+>由12y y >总成立得,其对称轴1144x a=-+≤ 解得112a ≤-,则说法④正确 综上,说法正确的个数是2个故选:B .【点睛】 本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.4.如图,抛物线2119y x =-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是( )A .2B .322C .52D .3【答案】A【解析】【分析】 根据抛物线解析式即可得出A 点与B 点坐标,结合题意进一步可以得出BC 长为5,利用三角形中位线性质可知OE=12BD ,而BD 最小值即为BC 长减去圆的半径,据此进一步求解即可.【详解】∵2119y x =-, ∴当0y =时,21019x =-,解得:=3x ±,∴A 点与B 点坐标分别为:(3-,0),(3,0),即:AO=BO=3,∴O 点为AB 的中点,又∵圆心C 坐标为(0,4),∴OC=4,∴BC 长度=2205OB C +=,∵O 点为AB 的中点,E 点为AD 的中点,∴OE 为△ABD 的中位线,即:OE=12BD , ∵D 点是圆上的动点,由图可知,BD 最小值即为BC 长减去圆的半径,∴BD 的最小值为4,∴OE=12BD=2, 即OE 的最小值为2,故选:A.【点睛】本题主要考查了抛物线性质与三角形中位线性质的综合运用,熟练掌握相关概念是解题关键.5.如图,二次函数y =ax 2+bx +c 的图象过点(-1,0)和点(3,0),有下列说法:①bc <0;②a +b +c >0;③2a +b =0;④4ac >b 2.其中错误的是( )A .②④B .①③④C .①②④D .②③④【答案】C【解析】【分析】 利用抛物线开口方向得到0a >,利用对称轴在y 轴的右侧得到0b <,利用抛物线与y 轴的交点在x 轴下方得到0c <,则可对A 进行判断;利用当1x =时,0y <可对B 进行判断;利用抛物线的对称性得到抛物线的对称轴为直线12b x a=-=,则可对C 进行判断;根据抛物线与x 轴的交点个数对D 进行判断.【详解】解:Q 抛物线开口向上,0a ∴>,Q 对称轴在y 轴的右侧,a ∴和b 异号,0b ∴<,Q 抛物线与y 轴的交点在x 轴下方,0c ∴<,0bc ∴>,所以①错误;Q 当1x =时,0y <,0a b c ∴++<,所以②错误;Q 抛物线经过点(1,0)-和点(3,0),∴抛物线的对称轴为直线1x =, 即12b a-=, 20a b ∴+=,所以③正确;Q 抛物线与x 轴有2个交点,∴△240b ac =->,即24ac b <,所以④错误.综上所述:③正确;①②④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小;一次项系数b 和二次项系数a 共同决定对称轴的位置(左同右异).常数项c 决定抛物线与y 轴交点(0,)c .抛物线与x 轴交点个数由△决定.6.在抛物线y =a (x ﹣m ﹣1)2+c (a≠0)和直线y =﹣12x 的图象上有三点(x 1,m )、(x 2,m )、(x 3,m ),则x 1+x 2+x 3的结果是( ) A .3122m -+ B .0 C .1 D .2 【答案】D【解析】【分析】 根据二次函数的对称性和一次函数图象上点的坐标特征即可求得结果.【详解】 解:如图,在抛物线y =a (x ﹣m ﹣1)2+c (a≠0)和直线y =﹣12x 的图象上有三点A (x 1,m )、B (x 2,m )、C (x 3,m ),∵y =a (x ﹣m ﹣1)2+c (a≠0)∴抛物线的对称轴为直线x =m+1, ∴232x x =m+1, ∴x 2+x 3=2m+2, ∵A (x 1,m )在直线y =﹣12x 上, ∴m =﹣12x 1, ∴x 1=﹣2m , ∴x 1+x 2+x 3=﹣2m+2m+2=2,故选:D .【点睛】本题考查了二次函数的对称性和一次函数图象上点的坐标特征,解题的关键是利用数形结合思想画出函数图形.7.如图,正方形ABCD 中,AB =4cm ,点E 、F 同时从C 点出发,以1cm /s 的速度分别沿CB ﹣BA 、CD ﹣DA 运动,到点A 时停止运动.设运动时间为t (s ),△AEF 的面积为S (cm 2),则S (cm 2)与t (s )的函数关系可用图象表示为( )A .B .C .D .【答案】D【解析】试题分析:分类讨论:当0≤t≤4时,利用S=S 正方形ABCD ﹣S △ADF ﹣S △ABE ﹣S △CEF 可得S=﹣t 2+4t ,配成顶点式得S=﹣(t ﹣4)2+8,此时抛物线的开口向下,顶点坐标为(4,8);当4<t≤8时,直接根据三角形面积公式得到S=(8﹣t )2=(t ﹣8)2,此时抛物线开口向上,顶点坐标为(8,0),于是根据这些特征可对四个选项进行判断.解:当0≤t≤4时,S=S 正方形ABCD ﹣S △ADF ﹣S △ABE ﹣S △CEF=4•4﹣•4•(4﹣t )﹣•4•(4﹣t )﹣•t•t=﹣t 2+4t=﹣(t ﹣4)2+8;当4<t≤8时,S=•(8﹣t )2=(t ﹣8)2.故选D .考点:动点问题的函数图象.8.小明从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①c >0,②abc <0,③a -b +c >0,④2b >4a c ,⑤2a =-2b ,其中正确结论是( ).A .①②④B .②③④C .③④⑤D .①③⑤【答案】C【解析】【分析】 由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】①由抛物线交y 轴于负半轴,则c<0,故①错误;②由抛物线的开口方向向上可推出a>0;∵对称轴在y 轴右侧,对称轴为x=2b a ->0, 又∵a>0,∴b<0;由抛物线与y 轴的交点在y 轴的负半轴上,∴c<0,故abc>0,故②错误;③结合图象得出x=−1时,对应y 的值在x 轴上方,故y>0,即a−b+c>0,故③正确; ④由抛物线与x 轴有两个交点可以推出b 2−4ac>0,故④正确;⑤由图象可知:对称轴为x=2b a -=12则2a=−2b ,故⑤正确;故正确的有:③④⑤.故选:C【点睛】本题考查了二次函数图象与系数关系,观察图象判断图象开口方向、对称轴所在位置、与x 轴交点个数即可得出二次函数系数满足条件.9.将抛物线y =x 2﹣4x +1向左平移至顶点落在y 轴上,如图所示,则两条抛物线.直线y =﹣3和x 轴围成的图形的面积S (图中阴影部分)是( )A .5B .6C .7D .8【答案】B【解析】【分析】 B ,C 分别是顶点,A 是抛物线与x 轴的一个交点,连接OC ,AB ,阴影部分的面积就是平行四边形ABCO 的面积.【详解】抛物线y =x 2﹣4x +1=(x-2)2-3的顶点坐标C(2.-3), 向左平移至顶点落在y 轴上,此时顶点B(0,-3),点A 是抛物线与x 轴的一个交点,连接OC ,AB ,如图,阴影部分的面积就是ABCO 的面积,S=2×3=6;故选:B .【点睛】本题考查二次函数图象的性质,阴影部分的面积;能够将面积进行转化是解题的关键.10.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②a +b +c =2;③a 12>;④b >1,其中正确的结论个数是( )A .1个B .2 个C .3 个D .4 个【答案】C【解析】【分析】 根据题意和函数图象,可以判断各个小题中的结论是否正确,本题得以解决.【详解】由图象可得,a >0,b >0,c <0,∴abc <0,故①错误,当x =1时,y =a +b +c =2,故②正确,当x =﹣1时,y =a ﹣b +c <0,由a +b +c =2得,a +c =2﹣b ,则a ﹣b +c =(a +c )﹣b =2﹣b ﹣b <0,得b >1,故④正确, ∵12b a ->-,a >0,得122b a >>,故③正确, 故选C .【点睛】本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.11.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A .B .C .D .【答案】B【解析】【分析】根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意.【详解】根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,∴选项B 符合题意,选项A 不合题意.故选B .【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题.12.已知二次函数223(0)y ax ax a a =--≠,关于此函数的图象及性质,下列结论中不一定成立的是( )A .该图象的顶点坐标为()1,4a -B .该图象与x 轴的交点为()()1,0,3,0-C .若该图象经过点()2,5-,则一定经过点()4,5D .当1x >时,y 随x 的增大而增大【答案】D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】解:y=a (x 2-2x-3)=a (x-3)(x+1)令y=0,∴x=3或x=-1,∴抛物线与x 轴的交点坐标为(3,0)与(-1,0),故B 成立;∴抛物线的对称轴为:x=1,令x=1代入y=ax 2-2ax-3a ,∴y=a-2a-3a=-4a ,∴顶点坐标为(1,-4a ),故A 成立;由于点(-2,5)与(4,5)关于直线x=1对称,∴若该图象经过点(-2,5),则一定经过点(4,5),故C 成立;当x >1,a >0时,y 随着x 的增大而增大,当x >1,a <0时,y 随着x 的增大而减少,故D 不一定成立;故选:D .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.13.如图是二次函数2y ax bx c =++的图象,其对称轴为1x =.下列结论:①0abc >;②20a b +=;③930a b c ++<;④若12310,,,23y y ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是抛物线上两点,则12y y >.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】 由抛物线开口方向得到a <0,根据对称轴得到b=-2a >0,由抛物线与y 轴的交点位置得到c >0,则可对①进行判断;由b=-2a 可对②进行判断;利用抛物线的对称性可得到抛物线与x 轴的另一个交点为(3,0),则可判断当x=3时,y=0,于是可对③进行判断;通过二次函数的增减性可对④进行判断.【详解】解:∵抛物线开口向下,∴a <0, ∵抛物线的对称轴为直线12b x a=-= ,∴b=-2a >0, ∵抛物线与y 轴的交点在x 轴上方, ∴c >0,∴abc <0,所以①错误;∵b=-2a ,∴2a+b=0,所以②正确;∵抛物线与x 轴的一个交点为(-1,0),抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点为(3,0),∴当x=3时,y=0,∴930a b c ++=,所以③错误;∵抛物线的对称轴为直线x=1,且抛物线开口向下,∴当x 1<时,y 随x 的增大而增大 ∵103132-<-< 点13,2y ⎛⎫- ⎪⎝⎭到对称轴的距离比点210,3y ⎛⎫- ⎪⎝⎭ 对称轴的距离近, ∴y 1>y 2,所以④正确.故选B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.14.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m≠﹣1),其中正确结论的个数是( )A.4个B.3个C.2个D.1个【答案】B【解析】【分析】【详解】解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.考点:二次函数图象与系数的关系15.若A(-4,1y),B(-3,2y),C(1,3y)为二次函数y=x2+4x-m的图象上的三点,则1y,2y,3y的大小关系是()A.1y<2y<3y B.3y<1y<2y C.2y<1y<3y D.1y<3y<2y【答案】C【解析】【分析】分别将点的坐标代入二次函数解析式,然后进行判断即可.解:y 1=(-4)2+4×(-4)m -=16-16m - =m -,y 2=(-3)2+4×(-3)m - =9-12m - =3m --,y 3=12+4×m - 1=1+4m - =5m -,∵-3m -<m -<5m -,∴y 2<y 1<y 3.故选:C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键在于三个函数值的大小不受m 的影响.16.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( ) A . B . C . D .【答案】C【解析】【分析】根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a >0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A 、D 不正确;由B 、C 中二次函数的图象可知,对称轴x=-2b a>0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B .故选C .17.平移抛物线2:L y x =得到抛物线L ',使得抛物线L '的顶点关于原点对称的点仍在抛物线L '上,下列的平移中,不能得到满足条件的抛物线L '的是( )A .向右平移1个单位,再向下平移2个单位B .向左平移1个单位,再向下平移2个单位C .向左平移32个单位,再向下平移92个单位 D .向左平移3个单位,再向下平移9个单位【答案】D【分析】通过各个选项的平移分别得到相应的函数关系式,再判断原点是否在该抛物线上即可.【详解】解:由A 选项可得L '为:2(1)2y x =--,则顶点为(1,-2),顶点(1,-2)关于原点的对称点为(-1,2),当x =-1时,y =2,则对称点在该函数图像上,故A 选项不符合题意;由B 选项可得L '为:2(1)2y x =+-,则顶点为(-1,-2),顶点(-1,-2)关于原点的对称点为(1,2),当x =1时,y =2,则对称点在该函数图像上,故B 选项不符合题意;由C 选项可得L '为:239()22y x =+-, 则顶点为(-32,-92),顶点(-32,-92)关于原点的对称点为(32,92), 当x =32时,y =92,则对称点在该函数图像上,故C 选项不符合题意; 由D 选项可得L '为:2(3)9y x =+-,则顶点为(-3,-9),顶点(-3,-9)关于原点的对称点为(3,9),当x =3时,y =27≠9,则对称点不在该函数图像上,故D 选项符合题意;故选:D .【点睛】本题考查了二次函数图像的平移,熟练掌握平移的规律“左加右减,上加下减”是解决本题的关键.18.如图1,在△ABC 中,∠B =90°,∠C =30°,动点P 从点B 开始沿边BA 、AC 向点C 以恒定的速度移动,动点Q 从点B 开始沿边BC 向点C 以恒定的速度移动,两点同时到达点C ,设△BPQ 的面积为y (cm 2).运动时间为x (s ),y 与x 之间关系如图2所示,当点P 恰好为AC 的中点时,PQ 的长为( )A .2B .4C .3D .3【答案】C【解析】【分析】点P 、Q 的速度比为3:3,根据x =2,y =63,确定P 、Q 运动的速度,即可求解.【详解】解:设AB =a ,∠C =30°,则AC =2a ,BC =3a ,设P 、Q 同时到达的时间为T ,则点P 的速度为3a T ,点Q 的速度为3a ,故点P 、Q 的速度比为3:3, 故设点P 、Q 的速度分别为:3v 、3v ,由图2知,当x =2时,y =63,此时点P 到达点A 的位置,即AB =2×3v =6v , BQ =2×3v =23v ,y =12⨯AB ×BQ =12⨯6v ×23v =63,解得:v =1, 故点P 、Q 的速度分别为:3,3,AB =6v =6=a ,则AC =12,BC =63,如图当点P 在AC 的中点时,PC =6,此时点P 运动的距离为AB +AP =12,需要的时间为12÷3=4,则BQ =3x =43,CQ =BC ﹣BQ =63﹣43=23,过点P 作PH ⊥BC 于点H ,PC =6,则PH =PC sin C =6×12=3,同理CH =3,则HQ =CH ﹣CQ =333,PQ 22PH HQ +39+3,故选:C .【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.19.在平面直角坐标系中,点P 的坐标为()1,2,将抛物线21322y x x =-+沿坐标轴平移一次,使其经过点P ,则平移的最短距离为( )A .12B .1C .5D .52【答案】B【解析】【分析】先求出平移后P 点对应点的坐标,求出平移距离,即可得出选项.【详解】 解:21322y x x =-+=()215322x --, 当沿水平方向平移时,纵坐标和P 的纵坐标相同,把y=2代入得:解得:x=0或6,平移的最短距离为1-0=1;当沿竖直方向平移时,横坐标和P 的横坐标相同,把x=1代入得:解得:y=12-, 平移的最短距离为152=22⎛⎫--⎪⎝⎭, 即平移的最短距离是1,故选B.【点睛】本题考查了二次函数图象上点的坐标特征,能求出平移后对应的点的坐标是解此题的关键.20.已知二次函数y =ax 2+bx+c 的图象如图所示,下列结i 论:①abc >0;②b 2﹣4ac >0;③2a+b =0;④a ﹣b+c <0.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 首先根据开口方向确定a 的取值范围,根据对称轴的位置确定b 的取值范围,根据抛物线与y 轴的交点确定c 的取值范围,根据抛物线与x 轴是否有交点确定b 2﹣4ac 的取值范围,根据x =﹣1函数值可以判断.【详解】解:Q 抛物线开口向下,0a ∴<,Q 对称轴12b x a=-=, 0b ∴>,Q 抛物线与y 轴的交点在x 轴的上方,0c ∴>,0abc ∴<,故①错误;Q 抛物线与x 轴有两个交点,240b ac ∴->,故②正确;Q 对称轴12b x a=-=, 2a b ∴=-, 20a b ∴+=,故③正确;根据图象可知,当1x =-时,0y a b c =-+<,故④正确;故选:C .【点睛】此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用是解题关键.。

中考数学易错题专题训练-二次函数练习题及答案

中考数学易错题专题训练-二次函数练习题及答案

一、二次函数真题与模拟题分类汇编(难题易错题)1.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位,故A'(2,4),B'(5,﹣5),∴S△OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.2.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.【答案】(1)b=﹣2a,顶点D的坐标为(﹣12,﹣94a);(2)2732748aa--;(3)2≤t<94.【解析】【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.【详解】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=-2a,∴y=ax2+ax+b=ax2+ax-2a=a(x+12)2-94a,∴抛物线顶点D 的坐标为(-12,-94a ); (2)∵直线y=2x+m 经过点M (1,0), ∴0=2×1+m ,解得m=-2,∴y=2x-2, 则2222y x y ax ax a -⎧⎨+-⎩==, 得ax 2+(a-2)x-2a+2=0,∴(x-1)(ax+2a-2)=0,解得x=1或x=2a-2, ∴N 点坐标为(2a-2,4a -6), ∵a <b ,即a <-2a ,∴a <0, 如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为122a x a =-=-, ∴E (-12,-3), ∵M (1,0),N (2a-2,4a -6), 设△DMN 的面积为S , ∴S=S △DEN +S △DEM =12|( 2a -2)-1|•|-94a -(-3)|=274−3a −278a , (3)当a=-1时, 抛物线的解析式为:y=-x 2-x+2=-(x+12)2+94,由222y x xy x⎧=--+⎨=-⎩,-x2-x+2=-2x,解得:x1=2,x2=-1,∴G(-1,2),∵点G、H关于原点对称,∴H(1,-2),设直线GH平移后的解析式为:y=-2x+t,-x2-x+2=-2x+t,x2-x-2+t=0,△=1-4(t-2)=0,t=94,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=-2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<94.【点睛】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.3.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在.请求出点P 的坐标; (3)有一个点M 从点A 出发,以每秒1个单位的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M 、N 运动到何处时,△MNB 面积最大,试求出最大面积.【答案】(1)二次函数的表达式为:y=x 2﹣4x+3;(2)点P 的坐标为:(0,2(0,3﹣2)或(0,-3)或(0,0);(3)当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【解析】【分析】(1)把A (1,0)和C (0,3)代入y=x 2+bx+c 得方程组,解方程组即可得二次函数的表达式;(2)先求出点B 的坐标,再根据勾股定理求得BC 的长,当△PBC 为等腰三角形时分三种情况进行讨论:①CP=CB ;②BP=BC ;③PB=PC ;分别根据这三种情况求出点P 的坐标; (3)设AM=t 则DN=2t ,由AB=2,得BM=2﹣t ,S △MNB=12×(2﹣t )×2t=﹣t 2+2t ,把解析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【详解】解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,103b c c ++=⎧⎨=⎩解得:b=﹣4,c=3,∴二次函数的表达式为:y=x 2﹣4x+3;(2)令y=0,则x 2﹣4x+3=0,解得:x=1或x=3,∴B (3,0),∴2点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB 时,2,∴2或OP=PC ﹣2﹣3∴P1(0,3+32),P2(0,3﹣32);②当PB=PC时,OP=OB=3,∴P3(0,-3);③当BP=BC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+32)或(0,3﹣32)或(﹣3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=1×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,2当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x 轴上方2个单位处或点N在对称轴上x轴下方2个单位处.4.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x元,每星期的销售量为y件.(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】(1)根据售量与售价x (元/件)之间的关系列方程即可得到结论.(2)设每星期利润为W 元,构建二次函数利用二次函数性质解决问题.【详解】解:(1)根据题意得,(60﹣x )×10+100=3×100,解得:x =40,60﹣40=20元,答:这一星期中每件童装降价20元;(2)设利润为w ,根据题意得,w =(x ﹣30)[(60﹣x )×10+100]=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.5.如图,在平面直角坐标系中,直线483y x =-+与x 轴,y 轴分别交于点A 、B ,抛物线24y ax ax c =-+经过点A 和点B ,与x 轴的另一个交点为C ,动点D 从点A 出发,以每秒1个单位长度的速度向O 点运动,同时动点E 从点B 出发,以每秒2个单位长度的速度向A 点运动,设运动的时间为t 秒,0﹤t ﹤5.(1)求抛物线的解析式;(2)当t 为何值时,以A 、D 、E 为顶点的三角形与△AOB 相似;(3)当△ADE 为等腰三角形时,求t 的值;(4)抛物线上是否存在一点F ,使得以A 、B 、D 、F 为顶点的四边形是平行四边形?若存在,直接写出F 点的坐标;若不存在,说明理由.【答案】(1)抛物线的解析式为228833y x x =-++;(2)t 的值为3011或5013; (3)t 的值为103或6017或258; (4)符合条件的点F 存在,共有两个1F (4,8),2(2F +,-8).【解析】(1)由B 、C 两点的坐标,利用待定系数法可求得抛物线的解析式;(2)利用△ADE ∽△AOB 和△AED ∽△AOB 即可求出t 的值;(3)过E 作EH ⊥x 轴于点H ,过D 作DM ⊥AB 于点M 即可求出t 的值;(4)分当AD 为边时,当AD 为对角线时符合条件的点F 的坐标.解:(1)A (6,0),B (0,8),依题意知36240{8a a c c -+==,解得2{38a c =-=, ∴228833y x x =-++. (2)∵ A (6,0),B (0,8),∴OA=6,OB=8,AB=10,∴AD=t ,AE=10-2t ,①当△ADE ∽△AOB 时,AD AE AO AB =,∴102610t t -=,∴3011t =; ②当△AED ∽△AOB 时,AE AD AO AB =,∴102610t t -=,∴5013t =; 综上所述,t 的值为3011或5013. (3) ①当AD=AE 时,t=10-2t ,∴103t =; ②当AE=DE 时,过E 作EH ⊥x 轴于点H ,则AD=2AH ,由△AEH ∽△ABO 得,AH=()31025t -,∴()61025t t -=,∴6017t =; ③当AD=DE 时,过D 作DM ⊥AB 于点M ,则AE=2AM ,由△AMD ∽△AOB 得,AM=35t ,∴61025t t -=,∴258t =; 综上所述,t 的值为103或6017或258. (4) ①当AD 为边时,则BF ∥x 轴,∴8F B y y ==,求得x=4,∴F (4,8); ②当AD 为对角线时,则8F B y y =-=-,∴2288833x x -++=-,解得2x =±∵x ﹥0,∴2x =+∴()28+-.综上所述,符合条件的点F 存在,共有两个1F (4,8),2(2F +,-8).“点睛”本题考查二次函数综合题、相似三角形等知识,解题的关键是学会待定系数法确定函数解析式,学会分类讨论,用方程的思想解决问题,属于中考压轴题.6.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32. (1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6).【解析】【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y y Q P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可.【详解】(1)当y=0时,14033x -=,解得x=4,即A (4,0),抛物线过点A ,对称轴是x=32,得161203322a c a -+=⎧⎪-⎨-=⎪⎩, 解得14a c =⎧⎨=-⎩,抛物线的解析式为y=x 2﹣3x ﹣4; (2)∵平移直线l 经过原点O ,得到直线m ,∴直线m 的解析式为y=13x . ∵点P 是直线1上任意一点, ∴设P (3a ,a ),则PC=3a ,PB=a .又∵PE=3PF ,∴PC PB PF PE=. ∴∠FPC=∠EPB .∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP ⊥PE .(3)如图所示,点E 在点B 的左侧时,设E (a ,0),则BE=6﹣a .∵CF=3BE=18﹣3a ,∴OF=20﹣3a .∴F (0,20﹣3a ).∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=4或a=8(舍去).∴Q (﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18,∴OF=3a ﹣20.∴F (0,20﹣3a ).∵PEQF 为矩形, ∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a . 将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去).∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.7.如图1,在平面直角坐标系中,直线1y x =-与抛物线2y x bx c =-++交于A B 、两点,其中(),0A m ,()4,B n .该抛物线与y 轴交于点C ,与x 轴交于另一点D .(1)求mn 、的值及该抛物线的解析式; (2)如图2.若点P 为线段AD 上的一动点(不与A D 、重合).分别以AP 、DP 为斜边,在直线AD 的同侧作等腰直角△APM 和等腰直角△DPN ,连接MN ,试确定△MPN 面积最大时P 点的坐标.(3)如图3.连接BD 、CD ,在线段CD 上是否存在点Q ,使得以A D Q 、、为顶点的三角形与△ABD 相似,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)265y x x =-+-;(2)当2m =,即2AP =时,MPN S ∆最大,此时3OP =,所以()3,0P ;(3)存在点Q 坐标为2-3(,)或78-33⎛⎫ ⎪⎝⎭,. 【解析】分析:(1)把A 与B 坐标代入一次函数解析式求出m 与n 的值,确定出A 与B 坐标,代入二次函数解析式求出b 与c 的值即可;(2)由等腰直角△APM 和等腰直角△DPN ,得到∠MPN 为直角,由两直角边乘积的一半表示出三角形MPN 面积,利用二次函数性质确定出三角形面积最大时P 的坐标即可; (3)存在,分两种情况,根据相似得比例,求出AQ 的长,利用两点间的距离公式求出Q 坐标即可.详解:(1)把A (m ,0),B (4,n )代入y =x ﹣1得:m =1,n =3,∴A (1,0),B (4,3). ∵y =﹣x 2+bx +c 经过点A 与点B ,∴101643b c b c -++=⎧⎨-++=⎩,解得:65b c =⎧⎨=-⎩,则二次函数解析式为y =﹣x 2+6x ﹣5; (2)如图2,△APM 与△DPN 都为等腰直角三角形,∴∠APM =∠DPN =45°,∴∠MPN =90°,∴△MPN 为直角三角形,令﹣x 2+6x ﹣5=0,得到x =1或x =5,∴D (5,0),即DP =5﹣1=4,设AP =m ,则有DP =4﹣m ,∴PM =2m ,PN =2(4﹣m ),∴S △MPN =12PM •PN =12×2m ×2(4﹣m )=﹣14m 2﹣m =﹣14(m ﹣2)2+1,∴当m =2,即AP =2时,S △MPN 最大,此时OP =3,即P (3,0);(3)存在,易得直线CD 解析式为y =x ﹣5,设Q (x ,x ﹣5),由题意得:∠BAD =∠ADC =45°,分两种情况讨论:①当△ABD ∽△DAQ 时,AB DA =BD AQ 4AQ ,解得:AQ 公式得:(x ﹣1)2+(x ﹣5)2=1283,解得:x =73,此时Q (73,﹣83);②当△ABD ∽△DQA 时,BD AQ=1,即AQ ,∴(x ﹣1)2+(x ﹣5)2=10,解得:x =2,此时Q (2,﹣3).综上,点Q 的坐标为(2,﹣3)或(73,﹣83). 点睛:本题属于二次函数综合题,涉及的知识有:待定系数法求函数解析式,二次函数的图象与性质,相似三角形的判定与性质,两点间的距离公式,熟练掌握各自的性质是解答本题的关键.8.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=14x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.【答案】(1)抛物线的解析式为y=14x2﹣x+1.(2)点P的坐标为(2813,﹣1).(3)定点F的坐标为(2,1).【解析】分析:(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.详解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x-2)2.∵该抛物线经过点(4,1),∴1=4a,解得:a=14,∴抛物线的解析式为y=14(x-2)2=14x2-x+1.(2)联立直线AB 与抛物线解析式成方程组,得:214114y x y x x ⎧⎪⎪⎨⎪-+⎪⎩==,解得:11114x y ⎧⎪⎨⎪⎩==,2241x y ⎧⎨⎩==, ∴点A 的坐标为(1,14),点B 的坐标为(4,1). 作点B 关于直线l 的对称点B′,连接AB′交直线l 于点P ,此时PA+PB 取得最小值(如图1所示).∵点B (4,1),直线l 为y=-1,∴点B′的坐标为(4,-3).设直线AB′的解析式为y=kx+b (k≠0),将A (1,14)、B′(4,-3)代入y=kx+b ,得: 1443k b k b ⎧+⎪⎨⎪+-⎩==,解得:131243k b ⎧-⎪⎪⎨⎪⎪⎩==, ∴直线AB′的解析式为y=-1312x+43, 当y=-1时,有-1312x+43=-1, 解得:x=2813, ∴点P 的坐标为(2813,-1). (3)∵点M 到直线l 的距离与点M 到点F 的距离总是相等,∴(m-x 0)2+(n-y 0)2=(n+1)2,∴m 2-2x 0m+x 02-2y 0n+y 02=2n+1.∵M (m ,n )为抛物线上一动点,∴n=14m 2-m+1, ∴m 2-2x 0m+x 02-2y 0(14m 2-m+1)+y 02=2(14m 2-m+1)+1, 整理得:(1-12-12y 0)m 2+(2-2x 0+2y 0)m+x 02+y 02-2y 0-3=0. ∵m 为任意值, ∴000220001110222220230y x y x y y ⎧--⎪⎪-+⎨⎪+--⎪⎩===,∴0021x y ⎧⎨⎩==, ∴定点F 的坐标为(2,1).点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P 的位置;(3)根据点M 到直线l 的距离与点M 到点F 的距离总是相等结合二次函数图象上点的坐标特征,找出关于x 0、y 0的方程组.9.我们知道,经过原点的抛物线解析式可以是()2y=ax bx a 0+≠。

新初中数学二次函数易错题汇编含答案(1)

新初中数学二次函数易错题汇编含答案(1)

新初中数学二次函数易错题汇编含答案(1) 一、选择题1.在平面直角坐标系内,已知点A(﹣1,0),点B(1,1)都在直线1122y x=+上,若抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,则a的取值范围是()A.a≤﹣2 B.a<98C.1≤a<98或a≤﹣2 D.﹣2≤a<98【答案】C【解析】【分析】分a>0,a<0两种情况讨论,根据题意列出不等式组,可求a的取值范围.【详解】∵抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,∴令1122x+=ax2﹣x+1,则2ax2﹣3x+1=0∴△=9﹣8a>0∴a<9 8①当a<0时,110111 aa++≤⎧⎨-+≤⎩解得:a≤﹣2∴a≤﹣2②当a>0时,110111 aa++≥⎧⎨-+≥⎩解得:a≥1∴1≤a<9 8综上所述:1≤a<98或a≤﹣2故选:C.本题考查二次函数图象与系数的关系,一次函数图象上点的坐标特征,二次函数图象点的坐标特征,利用分类讨论思想解决问题是本题的关键.2.抛物线y =-x 2+bx +3的对称轴为直线x =-1.若关于x 的一元二次方程-x 2+bx +3﹣t =0(t 为实数)在﹣2<x <3的范围内有实数根,则t 的取值范围是( )A .-12<t ≤3B .-12<t <4C .-12<t ≤4D .-12<t <3【答案】C【解析】【分析】根据给出的对称轴求出函数解析式为y =-x 2−2x +3,将一元二次方程-x 2+bx +3−t =0的实数根看做是y =-x 2−2x +3与函数y =t 的交点,再由﹣2<x <3确定y 的取值范围即可求解.【详解】解:∵y =-x 2+bx +3的对称轴为直线x =-1,∴b =−2,∴y =-x 2−2x +3,∴一元二次方程-x 2+bx +3−t =0的实数根可以看做是y =-x 2−2x +3与函数y =t 的交点,∵当x =−1时,y =4;当x =3时,y =-12,∴函数y =-x 2−2x +3在﹣2<x <3的范围内-12<y≤4,∴-12<t≤4,故选:C .【点睛】本题考查二次函数的图象及性质,能够将方程的实数根问题转化为二次函数与直线的交点问题是解题关键.3.要将抛物线2y x =平移后得到抛物线223y x x =++,下列平移方法正确的是( ) A .向左平移1个单位,再向上平移2个单位 B .向左平移1个单位,再向下平移2个单位 C .向右平移1个单位,再向上平移2个单位 D .向右平移1个单位,再向下平移2个单位【答案】A【解析】【分析】原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(-1,2),由此确定平移办法.【详解】y=x 2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(-1,2),抛物线y=x 2的顶点坐标是(0,0),则平移的方法可以是:将抛物线y=x 2向左平移1个单位长度,再向上平移2个单位长度. 故选:A .此题考查二次函数图象与几何变换.解题关键是将抛物线的平移问题转化为顶点的平移,寻找平移方法.4.如图,二次函数y =ax 2+bx +c 的图象过点A (3,0),对称轴为直线x =1,给出以下结论:①abc <0;②3a +c =0;③ax 2+bx ≤a +b ;④若M (﹣0.5,y 1)、N (2.5,y 2)为函数图象上的两点,则y 1<y 2.其中正确的是( )A .①③④B .①②3④C .①②③D .②③④【答案】C【解析】【分析】 根据二次函数的图象与性质即可求出答案.【详解】解:①由图象可知:a <0,c >0, 由对称轴可知:2b a ->0, ∴b >0,∴abc <0,故①正确;②由对称轴可知:2b a-=1, ∴b =﹣2a ,∵抛物线过点(3,0),∴0=9a+3b+c ,∴9a ﹣6a+c =0,∴3a+c =0,故②正确;③当x =1时,y 取最大值,y 的最大值为a+b+c ,当x 取全体实数时,ax 2+bx+c≤a+b+c ,即ax 2+bx≤a+b ,故③正确;④(﹣0.5,y 1)关于对称轴x =1的对称点为(2.5,y 1):∴y 1=y 2,故④错误;故选:C .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.5.已知二次函数y =ax 2+bx +c 的图象如图所示,有以下结论:①a +b +c <0;②a ﹣b +c >1;③abc >0;④9a ﹣3b +c <0;⑤c ﹣a >1.其中所有正确结论的序号是( )A .①②B .①③④C .①②③④D .①②③④⑤【答案】D【解析】【分析】 根据抛物线的开口方向可得出a 的符号,再由抛物线与y 轴的交点可得出c 的值,然后进一步根据对称轴以及抛物线得出当x 1=、 x 1=-、x 3=-时的情况进一步综合判断即可.【详解】由图象可知,a <0,c=1,对称轴:x=b12a-=-, ∴b=2a , ①由图可知:当x=1时,y <0,∴a+b+c <0,正确;②由图可知:当x=−1时,y >1,∴a −b+c >1,正确;③abc=2a 2>0,正确;④由图可知:当x=−3时,y <0,∴9a −3b+c <0,正确;⑤c−a=1−a >1,正确;∴①②③④⑤正确.故选:D .【点睛】本题主要考查了抛物线的函数图像性质的综合运用,熟练掌握相关概念是解题关键.6.抛物线y 1=ax 2+bx +c 与直线y 2=mx +n 的图象如图所示,下列判断中:①abc <0;②a +b +c >0;③5a -c =0;④当x <或x >6时,y 1>y 2,其中正确的个数有( )A .1B .2C .3D .4【答案】C【解析】【分析】【详解】 解:根据函数的开口方向、对称轴以及函数与y 轴的交点可知:a >0,b <0,c >0,则abc <0,则①正确;根据图形可得:当x=1时函数值为零,则a+b+c=0,则②错误;根据函数对称轴可得:-2b a=3,则b=-6a ,根据a+b+c=0可知:a-6a+c=0,-5a+c=0,则5a-c=0,则③正确;根据函数的交点以及函数图像的位置可得④正确.点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向上,则a 大于零,如果函数开口向下,则a 小于零;如果函数的对称轴在y 轴左边,则b 的符号与a 相同,如果函数的对称轴在y 轴右边,则b 的符号与a 相反;如果函数与x 轴交于正半轴,则c 大于零,如果函数与x 轴交于负半轴,则c 小于零;对于出现a+b+c 、a-b+c 、4a+2b+c 、4a-2b+c 等情况时,我们需要找具体的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界线,然后进行分情况讨论.7.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( )A .a +c =0B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2C .当函数在x <110时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n <2a 【答案】C【解析】【分析】根据二次函数的图象和性质对各项进行判断即可.【详解】解:∵函数经过点M (﹣1,2)和点N (1,﹣2),∴a ﹣b +c =2,a +b +c =﹣2,∴a +c =0,b =﹣2,∴A 正确;∵c =﹣a ,b =﹣2,∴y =ax 2﹣2x ﹣a ,∴△=4+4a 2>0,∴无论a 为何值,函数图象与x 轴必有两个交点,∵x 1+x 2=2a ,x 1x 2=﹣1, ∴|x 1﹣x 2|=2211a +>2, ∴B 正确;二次函数y =ax 2+bx +c (a >0)的对称轴x =﹣2b a =1a , 当a >0时,不能判定x <110时,y 随x 的增大而减小; ∴C 错误;∵﹣1<m <n <0,a >0,∴m +n <0,2a >0, ∴m +n <2a; ∴D 正确,故选:C .【点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.8.如图是函数223(04)y x x x =--≤≤的图象,直线//l x 轴且过点(0,)m ,将该函数在直线l 上方的图象沿直线l 向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值范围是( )A .m 1≥B .0m ≤C .01m ≤≤D .m 1≥或0m ≤【答案】C【解析】【分析】找到最大值和最小值差刚好等于5的时刻,则M 的范围可知.【详解】解:如图1所示,当t 等于0时,∵2(1)4y x =--,∴顶点坐标为(1,4)-,当0x =时,3y =-,∴(0,3)A -,当4x =时,5y =,∴(4,5)C ,∴当0m =时, (4,5)D -,∴此时最大值为0,最小值为5-;如图2所示,当1m =时,此时最小值为4-,最大值为1.综上所述:01m ≤≤,故选:C .【点睛】此题考查了二次函数与几何图形结合的问题,找到最大值和最小值的差刚好为5的m 的值为解题关键.9.已知抛物线y =x 2+2x ﹣m ﹣1与x 轴没有交点,则函数y =的大致图象是( ) A . B .C .D .【答案】B【解析】【分析】由题意可求m <﹣2,即可求解.【详解】∵抛物线y =x 2+2x ﹣m ﹣1与x 轴没有交点,∴△=4﹣4(﹣m ﹣1)<0∴m <﹣2∴函数y =的图象在第二、第四象限,故选B .【点睛】本题考查了反比例函数的图象,二次函数性质,求m 的取值范围是本题的关键.10.如图,抛物线2y ax bx c =++ 与x 轴交于点A (﹣1,0),顶点坐标(1,n ),与y 轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①abc >0;②3a +b <0;③﹣43≤a ≤﹣1;④a +b ≥am 2+bm (m 为任意实数);⑤一元二次方程2ax bx c n ++= 有两个不相等的实数根,其中正确的有( )A .2个B .3个C .4个D .5个【答案】B【解析】 解:∵抛物线开口向下,∴a <0,∵顶点坐标(1,n ),∴对称轴为直线x =1,∴2b a - =1,∴b =﹣2a >0,∵与y 轴的交点在(0,3),(0,4)之间(包含端点),∴3≤c ≤4,∴abc <0,故①错误;3a +b =3a +(﹣2a )=a <0,故②正确;∵与x 轴交于点A (﹣1,0),∴a ﹣b +c =0,∴a ﹣(﹣2a )+c =0,∴c =﹣3a ,∴3≤﹣3a ≤4,∴﹣43≤a ≤﹣1,故③正确; ∵顶点坐标为(1,n ),∴当x =1时,函数有最大值n ,∴a +b +c ≥am 2+bm +c ,∴a +b ≥am 2+bm ,故④正确;一元二次方程2ax bx c n ++=有两个相等的实数根x 1=x 2=1,故⑤错误.综上所述,结论正确的是②③④共3个.故选B .点睛:本题考查了抛物线与x 轴的交点,二次函数的性质,主要利用了二次函数的开口方向,对称轴,最值问题,以及二次函数图象上点的坐标特征,关键在于根据顶点横坐标表示出a 、b 的关系.11.二次函数y=ax 2+bx+c (a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c >﹣3b ;(3)7a ﹣3b+2c >0;(4)若点A (﹣3,y 1)、点B (﹣12,y 2)、点C (7,y 3)在该函数图象上,则y 1<y 3<y 2;(5)若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<5<x 2.其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】B【解析】 根据题意和函数的图像,可知抛物线的对称轴为直线x=-2b a=2,即b=-4a ,变形为4a+b=0,所以(1)正确; 由x=-3时,y >0,可得9a+3b+c >0,可得9a+c >-3c ,故(2)正确;因为抛物线与x 轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a ,可得a+4a+c=0,即c=-5a.代入可得7a ﹣3b+2c=7a+12a-5a=14a ,由函数的图像开口向下,可知a <0,因此7a ﹣3b+2c <0,故(3)不正确;根据图像可知当x <2时,y 随x 增大而增大,当x >2时,y 随x 增大而减小,可知若点A (﹣3,y 1)、点B (﹣12,y 2)、点C (7,y 3)在该函数图象上,则y 1=y 3<y 2,故(4)不正确;根据函数的对称性可知函数与x 轴的另一交点坐标为(5,0),所以若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<x 2,故(5)正确.正确的共有3个.故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.如图,抛物线y=ax2+bx+c(a>0)过原点O,与x轴另一交点为A,顶点为B,若△AOB为等边三角形,则b的值为()A3B.﹣3C.﹣3D.﹣3【答案】B【解析】【分析】根据已知求出B(﹣2,24b ba a-),由△AOB为等边三角形,得到2b4a=tan60°×(﹣2ba),即可求解;【详解】解:抛物线y=ax2+bx+c(a>0)过原点O,∴c=0,B(﹣2,24b ba a-),∵△AOB为等边三角形,∴2b4a=tan60°×(﹣2ba),∴b=﹣3故选B.【点睛】本题考查二次函数图象及性质,等边三角形性质;能够将抛物线上点的关系转化为等边三角形的边关系是解题的关键.13.如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x-12x2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是( )A.斜坡的坡度为1: 2B.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.当小球抛出高度达到7.5m时,小球距O点水平距离为3m【答案】D【解析】【分析】求出抛物线与直线的交点,判断A、C;根据二次函数的性质求出对称轴,根据二次函数性质判断B;求出当7.5y=时,x的值,判定D.【详解】解:214212y x xy x⎧=-+⎪⎪⎨⎪=⎪⎩,解得,11xy=⎧⎨=⎩,22772xy=⎧⎪⎨=⎪⎩,72∶7=1∶2,∴A正确;小球落地点距O点水平距离为7米,C正确;2142y x x=-21(4)82x=--+,则抛物线的对称轴为4x=,∴当4x>时,y随x的增大而减小,即小球距O点水平距离超过4米呈下降趋势,B正确,当7.5y=时,217.542x x=-,整理得28150x x-+=,解得,13x=,25x=,∴当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3m 或5m ,D 错误,符合题意;故选:D【点睛】本题考查的是解直角三角形的-坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.14.二次函数2y ax bx c =++(,,a b c 是常数,0a ≠)的自变量x 与函数值y 的部分对应值如下表:且当12x =-时,与其对应的函数值0y >.有下列结论:①0abc >;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③0m <203n +<.其中,正确结论的个数是( ) A .0B .1C .2D .3【答案】C【解析】【分析】 首先确定对称轴,然后根据二次函数的图像和性质逐一进行分析即可求解.【详解】∵由表格可知当x=0和x=1时的函数值相等都为-2∴抛物线的对称轴是:x=-2b a =12; ∴a 、b 异号,且b=-a ;∵当x=0时y=c=-2∴c 0<∴abc >0,故①正确;∵根据抛物线的对称性可得当x=-2和x=3时的函数值相等都为t∴2-和3是关于x 的方程2ax bx c t ++=的两个根;故②正确;∵b=-a ,c=-2∴二次函数解析式:2-a -2=y ax x ∵当12x =-时,与其对应的函数值0y >. ∴3204a ->,∴a 83>; ∵当x=-1和x=2时的函数值分别为m 和n ,∴m=n=2a-2,∴m+n=4a-4203;故③错误故选:C.【点睛】本题考查了二次函数的综合题型,主要利用了二次函数图象与系数的关系,二次函数的对称性,二次函数与一元二次方程等知识点,要会利用数形结合的思想,根据给定自变量x 与函数值y的值结合二次函数的性质逐条分析给定的结论是关键.15.抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:从上表可知,下列说法错误的是A.抛物线与x轴的一个交点坐标为(–2,0) B.抛物线与y轴的交点坐标为(0,6) C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的【答案】C【解析】【分析】【详解】解:当x=-2时,y=0,∴抛物线过(-2,0),∴抛物线与x轴的一个交点坐标为(-2,0),故A正确;当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,∴对称轴为x=12,故C错误;当x<12时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确;故选C.16.一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()A .B .C .D .【答案】B【解析】【分析】根据题中给出的函数图像结合一次函数性质得出a <0,b >0,再由反比例函数图像性质得出c <0,从而可判断二次函数图像开口向下,对称轴:2b x a =->0,即在y 轴的右边,与y 轴负半轴相交,从而可得答案.【详解】解:∵一次函数y=ax+b 图像过一、二、四,∴a <0,b >0,又∵反比例 函数y=c x 图像经过二、四象限, ∴c <0,∴二次函数对称轴:2b x a=->0, ∴二次函数y=ax 2+bx+c 图像开口向下,对称轴在y 轴的右边,与y 轴负半轴相交, 故答案为B.【点睛】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y 轴的交点坐标等确定出a 、b 、c 的情况是解题的关键.17.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A.4个B.3个C.2个D.1个【答案】C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.18.已知抛物线y=x2+2x上三点A(﹣5,y1),B(2.5,y2),C(12,y3),则y1,y2,y3满足的关系式为()A.y1<y2<y3 B.y3<y2<y1 C.y2<y1<y3 D.y3<y1<y2【答案】C【解析】【分析】首先求出抛物线y=x2+2x的对称轴,对称轴为直线x=-1;然后根据A、B、C的横坐标与对称轴的位置,接着利用抛物线的增减性质即可求解;由B离对称轴最近,A次之,C最远,则对应y的值大小可确定.【详解】∵抛物线y=x2+2x,∴x=-1,而A (-5,y 1),B (2.5,y 2),C (12,y 3),∴B 离对称轴最近,A 次之,C 最远,∴y 2<y 1<y 3.故选:C .【点睛】本题考查了二次函数的图象和性质,二次函数图象上点的坐标特征等知识点,能熟记二次函数的性质是解此题的关键.19.在同一平面直角坐标系中,函数3y x a =+与2+3y ax x =的图象可能是( ) A . B .C .D .【答案】C【解析】【分析】根据一次函数及二次函数的图像性质,逐一进行判断.【详解】解:A.由一次函数图像可知a >0,因此二次函数图像开口向上,但对称轴302a -<应在y 轴左侧,故此选项错误;B. 由一次函数图像可知a <0,而由二次函数图像开口方向可知a >0,故此选项错误;C. 由一次函数图像可知a <0,因此二次函数图像开口向下,且对称轴302a->在y 轴右侧,故此选项正确;D. 由一次函数图像可知a >0,而由二次函数图像开口方向可知a <0,故此选项错误; 故选:C .【点睛】本题考查二次函数与一次函数图象的性质,解题的关键是利用数形结合思想分析图像,本题属于中等题型.20.已知二次函数y=a(x﹣h)2+k的图象如图所示,直线y=ax+hk的图象经第几象限()A.一、二、三B.一、二、四C.一、三、四D.二、三、四【答案】D【解析】【分析】根据二次函数的图象和性质可得a<0,h<0,k>0,以此判断一次函数的图象所经过的象限即可.【详解】解:由函数图象可知,y=a(x﹣h)2+k中的a<0,h<0,k>0,∴直线y=ax+hk中的a<0,hk<0,∴直线y=ax+hk经过第二、三、四象限,故选:D.【点睛】本题考查了一次函数的图象的问题,掌握二次函数、一次函数的图象和性质是解题的关键.。

九年级数学上册 二次函数易错题(Word版 含答案)

九年级数学上册  二次函数易错题(Word版 含答案)

九年级数学上册二次函数易错题(Word版含答案)一、初三数学二次函数易错题压轴题(难)1.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,其中A(3,0),B(﹣1,0),与y轴交于点C,抛物线的对称轴交x轴于点D,直线y=kx+b1经过点A,C,连接CD.(1)求抛物线和直线AC的解析式:(2)若抛物线上存在一点P,使△ACP的面积是△ACD面积的2倍,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使线段AQ绕Q点顺时针旋转90°得到线段QA1,且A1好落在抛物线上?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)2y x2x3=-++;3y x=-+;(2)(﹣1,0)或(4,﹣5);(3)存在;(1,2)和(1,﹣3)【解析】【分析】(1)将点A,B坐标代入抛物线解析式中,求出b,c得出抛物线的解析式,进而求出点C 的坐标,再将点A,C坐标代入直线AC的解析式中,即可得出结论;(2)利用抛物线的对称性得出BD=AD,进而判断出△ABC的面积和△ACP的面积相等,即可得出结论;(3)分点Q在x轴上方和在x轴下方,构造全等三角形即可得出结论.【详解】解:(1)把A(3,0),B(﹣1,0)代入y=﹣x2+bc+c中,得93010b cb c-++=⎧⎨--+=⎩,∴23bc=⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3,当x=0时,y=3,∴点C的坐标是(0,3),把A(3,0)和C(0,3)代入y=kx+b1中,得11303k bb+=⎧⎨=⎩,∴113kb=-⎧⎨=⎩∴直线AC的解析式为y=﹣x+3;(2)如图,连接BC,∵点D是抛物线与x轴的交点,∴AD=BD,∴S△ABC=2S△ACD,∵S△ACP=2S△ACD,∴S△ACP=S△ABC,此时,点P与点B重合,即:P(﹣1,0),过B点作PB∥AC交抛物线于点P,则直线BP的解析式为y=﹣x﹣1①,∵抛物线的解析式为y=﹣x2+2x+3②,联立①②解得,1xy=-⎧⎨=⎩或45xy=⎧⎨=-⎩,∴P(4,﹣5),∴即点P的坐标为(﹣1,0)或(4,﹣5);(3)如图,①当点Q在x轴上方时,设AC与对称轴交点为Q',由(1)知,直线AC的解析式为y=﹣x+3,当x=1时,y=2,∴Q'坐标为(1,2),∵Q'D=AD=BD=2,∴∠Q'AB=∠Q'BA=45°,∴∠AQ'B=90°,∴点Q'为所求,②当点Q在x轴下方时,设点Q(1,m),过点A1'作A1'E⊥DQ于E,∴∠A1'EQ=∠QDA=90°,∴∠DAQ+∠AQD=90°,由旋转知,AQ=A1'Q,∠AQA1'=90°,∴∠AQD+∠A1'QE=90°,∴∠DAQ=∠A1'QE,∴△ADQ≌△QEA1'(AAS),∴AD=QE=2,DQ=A1'E=﹣m,∴点A1'的坐标为(﹣m+1,m﹣2),代入y=﹣x2+2x+3中,解得,m=﹣3或m=2(舍),∴Q的坐标为(1,﹣3),∴点Q的坐标为(1,2)和(1,﹣3).【点睛】本题考查的是二次函数的综合题,涉及解析式的求解,与三角形面积有关的问题,三角形“k”字型全等,解题的关键是利用数形结合的思想,设点坐标并结合几何图形的性质列式求解.2.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.【答案】(1)抛物线的解析式为:y=﹣x2+x+2(2)存在,P1(,4),P2(,),P3(,﹣)(3)当点E运动到(2,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.【解析】试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;(2)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P2,P3;作CH 垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF可求出S与a的关系式,由二次函数的性质就可以求出结论.试题解析:(1)∵抛物线y=﹣x2+mx+n经过A(﹣1,0),C(0,2).解得:,∴抛物线的解析式为:y=﹣x2+x+2;(2)∵y=﹣x2+x+2,∴y=﹣(x﹣)2+,∴抛物线的对称轴是x=.∴OD=.∵C(0,2),∴OC=2.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=CP2=CP3=CD.作CH⊥x轴于H,∴HP1=HD=2,∴DP1=4.∴P1(,4),P2(,),P3(,﹣);(3)当y=0时,0=﹣x2+x+2∴x1=﹣1,x2=4,∴B(4,0).设直线BC的解析式为y=kx+b,由图象,得,解得:,∴直线BC的解析式为:y=﹣x+2.如图2,过点C作CM⊥EF于M,设E(a,﹣a+2),F(a,﹣a2+a+2),∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a(0≤x≤4).∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a),=﹣a2+4a+(0≤x≤4).=﹣(a﹣2)2+∴a=2时,S 四边形CDBF 的面积最大=,∴E (2,1).考点:1、勾股定理;2、等腰三角形的性质;3、四边形的面积;4、二次函数的最值3.如图1.在平面直角坐标系xOy 中,抛物线2:C y ax bx c =++与x 轴相交于,A B 两点,顶点为()0,442D AB =,,设点(),0F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180︒,得到新的抛物线'C .()1求抛物线C 的函数表达式:()2若抛物线'C 与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围. ()3如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线'C 上的对应点P',设M 是C 上的动点,N 是'C 上的动点,试探究四边形'PMP N 能否成为正方形?若能,求出m 的值;若不能,请说明理由.【答案】()12142y x =-+;()2222m <<()3四边形'PMP N 可以为正方形,6m = 【解析】【分析】(1)由题意得出A,B 坐标,并代入,,AB D 坐标利用待定系数法求出抛物线C 的函数表达式;(2)根据题意分别求出当C '过点()0,4D 时m 的值以及当C '过点()22,0B 时m 的值,并以此进行分析求得; (3)由题意设(),P n n ,代入解出n ,并作HK OF ⊥,PH HK ⊥于H ,利用正方形性质以及全等三角形性质得出M 为()2,2m m --,将M 代入21: 42C y x =-+即可求得答案.【详解】解:()142AB =(), 22,0)2,0(2A B ∴-将,,A B D 三点代入得2 y ax bx c =++ 8220.8220.4a b c a b c c ⎧-+=⎪⎪++=⎨⎪=⎪⎩解得1204a b c ⎧=-⎪⎪=⎨⎪=⎪⎩2142y x ∴=-+; ()2如图21:42C y x =-+.关于(),0F m 对称的抛物线为()21:242C y x m '=-- 当C '过点()0,4D 时有()2140242m =-- 解得:2m =当C '过点()2,0B 时有()21022242m =- 解得:22m =222m ∴<<;()3四边形'PMP N 可以为正方形由题意设(),P n n ,P 是抛物线C 第一象限上的点2142n n ∴-+= 解得:122,2n n ==-(舍去)即()2,2P如图作HK OF ⊥,PH HK ⊥于H ,MK HK ⊥于K四边形PMP N '为正方形易证PHK FKM ≌2FK HP m ∴==-2MK HF ==M ∴为()2,2m m --∴将M 代入21: 42C y x =-+得 ()212242m m -=--+ 解得:126,0m m ==(舍去)∴当6m =时四边形PMP N ''为正方形.【点睛】本题考查二次函数综合题、中心对称变换、正方形的性质、全等三角形的判定和性质、一元二次方程的根与系数的关系等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题,难度大.4.已知抛物线2(0)y ax bx c a =++≠过点(0,2)A -.(1)若点(2,0)-也在该抛物线上,请用含a 的关系式表示b ;(2)若该抛物线上任意不同两点()11,M x y 、()22,N x y 都满足:当120x x <<时,()()12120x x y y --<;当120x x <<时,()()12120x x y y -->;若以原点O 为圆心,OA 为半径的圆与抛物线的另两个交点为B 、C (点B 在点C 左侧),且ABC ∆有一个内角为60,求抛物线的解析式;(3)在(2)的条件下,若点P 与点O 关于点A 对称,且O 、M 、N 三点共线,求证:PA 平分MPN ∠.【答案】(1)21b a =-;(2)22y x =-;(3)见解析.【解析】【分析】(1)把点()0,2-、()2,0-代入抛物线解析式,然后整理函数式即可得到答案.(2)根据二次函数的性质可得出抛物线的对称轴为y 轴、开口向上,进而可得出0b =,由抛物线的对称性可得出ABC ∆为等腰三角形,结合其有一个60︒的内角可得出ABC ∆为等边三角形,设线段BC 与y 轴交于点D ,根据等边三角形的性质可得出点C 的坐标,再利用待定系数法可求出a 值,此题得解;(3)由(1)的结论可得出点M 的坐标为1(x ,212)x -+、点N 的坐标为2(x ,222)x -+,由O 、M 、N 三点共线可得出212x x =-,进而可得出点N 及点'N 的坐标,由点A 、M 的坐标利用待定系数法可求出直线AM 的解析式,利用一次函数图象上点的坐标特征可得出点'N 在直线PM 上,进而即可证出PA 平分MPN ∠.【详解】解:(1)把点()0,2-、()2,0-分别代入,得2420c a b c =-⎧⎨-+=⎩. 所以21b a =-.(2),如图1,当120x x <<时,()()12120x x y y --<,120x x ∴-<,120y y ->,∴当0x <时,y 随x 的增大而减小;同理:当0x >时,y 随x 的增大而增大,∴抛物线的对称轴为y 轴,开口向上,0b ∴=.OA 为半径的圆与拋物线的另两个交点为B 、C ,ABC ∴∆为等腰三角形,又ABC ∆有一个内角为60︒,ABC ∴∆为等边三角形.设线段BC 与y 轴交于点D ,则BD CD =,且30OCD ∠=︒, 又2OB OC OA ===,·303CD OC cos ∴=︒=,·301OD OC sin =︒=. 不妨设点C 在y 轴右侧,则点C 的坐标为(3,1). 点C 在抛物线上,且2c =-,0b =,321a ∴-=,1a ∴=,∴抛物线的解析式为22y x =-.(3)证明:由(1)可知,点M 的坐标为1(x ,212)x -,点N 的坐标为2(x ,222)x -.如图2,直线OM 的解析式为()110y k x k =≠.O 、M 、N 三点共线,10x ∴≠,20x ≠,且22121222x x x x --=, 121222x x x x ∴-=-,()1212122x x x x x x -∴-=-,122x x ∴=-,即212x x =-, ∴点N 的坐标为12(x -,2142)x -. 设点N 关于y 轴的对称点为点'N ,则点'N 的坐标为12(x ,2142)x -. 点P 是点O 关于点A 的对称点,24OP OA ∴==,∴点P 的坐标为()0,4-.设直线PM 的解析式为24y k x =-,点M 的坐标为1(x ,212)x -,212124x k x ∴-=-,21212x k x +∴=,∴直线PM 的解析式为21124x y x x +=-.()222111221111224224·42x x x x x x x +-+-==-, ∴点'N 在直线PM 上,PA ∴平分MPN ∠. 【点睛】本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质、等边三角形的性质以及一次(二次)函数图象上点的坐标特征,解题的关键是:(1)利用二次函数图象上点的坐标特征求出a 、b 满足的关系式;(2)①利用等边三角形的性质找出点C 的坐标;②利用一次函数图象上点的坐标特征找出点'N 在直线PM 上.5.如图,若抛物线y =x 2+bx+c 与x 轴相交于A ,B 两点,与y 轴相交于点C ,直线y =x ﹣3经过点B ,C . (1)求抛物线的解析式;(2)点P 是直线BC 下方抛物线上一动点,过点P 作PH ⊥x 轴于点H ,交BC 于点M ,连接PC .①线段PM 是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P 运动的过程中,是否存在点M ,恰好使△PCM 是以PM 为腰的等腰三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.【答案】(1)y=x2﹣2x﹣3;(2)①有,94;②存在,(2,﹣3)或(32,2﹣2)【解析】【分析】(1)由直线表达式求出点B、C的坐标,将点B、C的坐标代入抛物线表达式,即可求解;(2)①根据PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94即可求解;②分PM=PC、PM=MC两种情况,分别求解即可.【详解】解:(1)对于y=x﹣3,令x=0,y=﹣3,y=0,x=3,故点B、C的坐标分别为(3,0)、(0,﹣3),将点B、C的坐标代入抛物线表达式得:9303b cc++=⎧⎨=-⎩,解得:32 cb=-⎧⎨=-⎩,故抛物线的表达式为:y=x2﹣2x﹣3;(2)设:点M(x,x﹣3),则点P(x,x2﹣2x﹣3),①有,理由:PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94,∵﹣1<0,故PM有最大值,当x=32时,PM最大值为:94;②存在,理由:PM2=(x﹣3﹣x2+2x+3)2=(﹣x2+3x)2;PC2=x2+(x2﹣2x﹣3+3)2;MC2=(x﹣3+3)2+x2;(Ⅰ)当PM=PC时,则(﹣x2+3x)2=x2+(x2﹣2x﹣3+3)2,解得:x=0或2(舍去0),故x=2,故点P(2,﹣3);(Ⅱ)当PM=MC时,则(﹣x2+3x)2=(x﹣3+3)2+x2,解得:x=0或2(舍去0和2),故x =3﹣2,则x 2﹣2x ﹣3=2﹣42, 故点P (3﹣2,2﹣42).综上,点P 的坐标为:(2,﹣3)或(3﹣2,2﹣42). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质等,其中(2)②,要注意分类求解,避免遗漏.6.如图,抛物线2(0)y ax bx c a =++≠与坐标轴的交点为()30A -,,()10B ,,()0,3C -,抛物线的顶点为D .(1)求抛物线的解析式.(2)若E 为第二象限内一点,且四边形ACBE 为平行四边形,求直线CE 的解析式. (3)P 为抛物线上一动点,当PAB ∆的面积是ABD ∆的面积的3倍时,求点P 的坐标.【答案】(1)223y x x =+-;(2)33y x =--;(3)点P 的坐标为()5,12-或()3,12.【解析】 【分析】(1)本题考查二次函数解析式的求法,可利用待定系数法,将点带入求解;(2)本题考查二次函数平行四边形存在性问题,可根据题干信息结合平行四边形性质确定动点位置,进一步利用待定系数法求解一次函数解析式;(3)本题考查二次函数与三角形面积问题,可先根据题干面积关系假设动点坐标,继而带入二次函数,列方程求解. 【详解】(1)∵抛物线2y ax bx c =++与坐标轴的交点为()30A -,,()10B ,,()0,3C -,∴93003a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得123a b c =⎧⎪=⎨⎪=-⎩∴抛物线的解析式为223y x x =+-. (2)如图,过点E 作EH x ⊥轴于点H ,则由平行四边形的对称性可知1AH OB ==,3EH OC ==. ∵3OA =,∴2OH =,∴点E 的坐标为()2,3-. ∵点C 的坐标为()0,3-,∴设直线CE 的解析式为()30y kx k =-< 将点()2,3E -代入,得233k --=,解得3k =-, ∴直线CE 的解析式为33y x =--.(3)∵2223(1)4y x x x =+-=+-,∴抛物线的顶点为()1,4D --.∵PAB ∆的面积是ABD ∆的面积的3倍, ∴设点P 为(),12t .将点(),12P t 代入抛物线的解析式223y x x =+-中,得22312t t +-=,解得3t =或5t =-, 故点P 的坐标为()5,12-或()3,12. 【点睛】本题考查二次函数与几何的综合,利用待定系数法求解解析式时还可以假设交点式,几何图形存在性问题求解往往需要利用其性质,假设动点坐标,列方程求解.7.如图,在平面直角坐标系中,矩形AOBC 的边AO 在x 轴的负半轴上,边OB 在y 轴的负半轴上.且AO =12,OB =9.抛物线y =﹣x 2+bx+c 经过点A 和点B . (1)求抛物线的表达式;(2)在第二象限的抛物线上找一点M ,连接AM ,BM ,AB ,当△ABM 面积最大时,求点M 的坐标;(3)点D 是线段AO 上的动点,点E 是线段BO 上的动点,点F 是射线AC 上的动点,连接EF ,DF ,DE ,BD ,且EF 是线段BD 的垂直平分线.当CF =1时. ①直接写出点D 的坐标 ;②若△DEF 的面积为30,当抛物线y =﹣x 2+bx+c 经过平移同时过点D 和点E 时,请直接写出此时的抛物线的表达式 .【答案】(1)y=﹣x2﹣514x﹣9;(2)M(﹣6,31.5);(3)①(﹣50)或(﹣3,0),②y=﹣x2﹣133x﹣4【解析】【分析】(1)利用待定系数法把问题转化为解方程组即可解决问题.(2)如图1中,设M(m,﹣m2﹣514m﹣9),根据S△ABM=S△ACM+S△MBC﹣S△ACB构建二次函数,利用二次函数的性质解决问题即可.(3)①分两种情形:如图2中,当点F在AC的延长线设时,连接DF,FB.设D(m,0).根据FD=FB,构建方程求解.当点F在线段AC上时,同法可得.②根据三角形的面积求出D,E的坐标,再利用待定系数法解决问题即可.【详解】解:(1)由题意A(﹣12,0),B(0,﹣9),把A,B的坐标代入y=﹣x2+bx+c,得到9 144120cb c=-⎧⎨--+=⎩,解得:5149bc⎧=-⎪⎨⎪=-⎩,∴抛物线的解析式为y=﹣x2﹣514x﹣9.(2)如图1中,设M(m,﹣m2﹣514m﹣9),S△ABM=S△ACM+S△MBC﹣S△ACB=12×9×(m+12)+12×12×(﹣m2﹣514m﹣9+9)﹣12×12×9=﹣6m2﹣72m=﹣6(m+6)2+216,∵﹣6<0,∴m=﹣6时,△ABM的面积最大,此时M(﹣6,31.5).(3)①如图2中,当点F在AC的延长线设时,连接DF,FB.设D(m,0).∵EF垂直平分线段BD,∴FD=FB,∵F(﹣12,﹣10),B(0,﹣9),∴102+(m+12)2=122+12,∴m=﹣12﹣55∴D(﹣50).当点F在线段AC上时,同法可得D(﹣3,0),综上所述,满足条件的点D的坐标为(﹣50)或(﹣3,0).故答案为(﹣50)或(﹣3,0).②由①可知∵△EF的面积为30,∴D(﹣3,0),E(0,﹣4),把D,E代入y=﹣x2+b′x+c′,可得'493''0cb c=-⎧⎨--+=⎩,解得:13'3'4bc⎧=-⎪⎨⎪=-⎩,∴抛物线的解析式为y=﹣x2﹣133x﹣4.故答案为:y=﹣x2﹣133x﹣4.【点睛】本题属于二次函数综合题,考查了二次函数的性质,待定系数法,线段的垂直平分线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.8.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)求直线AC的函数解析式;(3)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;【答案】(1)y=﹣23x2﹣43x+2;(2)223y x=+;(3)存在,(35,22-)【解析】【分析】(1)直接用待定系数法即可解答;(2)先确定C点坐标,设直线AC的函数解析式y=kx+b,最后用待定系数法求解即可;(3)连接PO,作PM⊥x轴于M,PN⊥y轴于N,然后求出△ACP面积的表达式,最后利用二次函数的性质求最值即可.【详解】解:(1)∵抛物线y=ax2+bx+2过点A(﹣3,0),B(1,0),∴0932 02a ba b=-+⎧⎨=++⎩解得2 343ab⎧=-⎪⎪⎨⎪=-⎪⎩,∴二次函数的关系解析式为y=﹣23x2﹣43x+2;(2)∵当x=0时,y=2,∴C(0,2)设直线AC的解析式为y kx b=+,把A、C两点代入得0=32k bb-+⎧⎨=⎩解得232kb⎧=⎪⎨⎪=⎩∴直线AC的函数解析式为223y x=+;(3)存在.如图: 连接PO,作PM⊥x轴于M,PN⊥y轴于N设点P坐标为(m,n),则n=224233m m--+),PN=-m,AO=3当x=0时,y=22400233-⨯-⨯+=2,∴点C的坐标为(0,2),OC=2∵PAC PAO PCO ACOS S S S=+-212411322()3223322m m m⎛⎫=⨯⋅--++⨯⋅--⨯⨯⎪⎝⎭=23m m--∵a=-1<0∴函数S△PAC=-m2-3m有最大值∴b当m=()33212-=--⨯-∴当m=32-时,S△PAC有最大值n=222423435223332322m m⎛⎫--+=-⨯-⨯+=⎪⎝⎭∴当△ACP 的面积最大时,P 的坐标为(35,22-). 【点睛】本题是二次函数压轴题,综合考查了二次函数的图象与性质、待定系数法、二次函数极值等知识点,根据题意表示出△PAC 的面积是解答本题的关键.9.如图,已知顶点为M (32,258)的抛物线过点D (3,2),交x 轴于A ,B 两点,交y 轴于点C ,点P 是抛物线上一动点. (1)求抛物线的解析式;(2)当点P 在直线AD 上方时,求△PAD 面积的最大值,并求出此时点P 的坐标;(3)过点P 作直线CD 的垂线,垂足为Q ,若将△CPQ 沿CP 翻折,点Q 的对应点为Q '.是否存在点P ,使Q '恰好落在x 轴上?若存在,求出点P 的坐标;若不存在,说明理由.【答案】(1)213222y x x =-++;(2)最大值为4,点P (1,3);(3)存在,点P 139313-+). 【解析】 【分析】(1)用待定系数法求解即可;(2)由△PAD 面积S =S △PHA +S △PHD ,即可求解;(3)结合图形可判断出点P 在直线CD 下方,设点P 的坐标为(a ,213222a a -++),当P 点在y 轴右侧时,运用解直角三角形及相似三角形的性质进行求解即可. 【详解】解:(1)设抛物线的表达式为:y =a (x ﹣h )2+k =a (x ﹣32)2+258, 将点D 的坐标代入上式得:2=a (3﹣32)2+258, 解得:a =﹣12,∴抛物线的表达式为:213222y x x =-++; (2)当x =0时,y =﹣12x 2+32x +2=2,即点C 坐标为(0,2),同理,令y =0,则x =4或﹣1,故点A 、B 的坐标分别为:(﹣1,0)、(4,0),过点P 作y 轴的平行线交AD 于点H , 由点A 、D 的坐标得,直线AD 的表达式为:y =12(x +1), 设点P (x ,﹣12x 2+32x +2),则点H (x ,12x +12), 则△PAD 面积为: S =S △PHA +S △PHD =12×PH ×(x D ﹣x A )=12×4×(﹣12x 2+32x +2﹣12x 12-)=﹣x 2+2x +3, ∵﹣1<0,故S 有最大值,当x =1时,S 有最大值,则点P (1,3);(3)存在满足条件的点P ,显然点P 在直线CD 下方,设直线PQ 交x 轴于F ,点P 的坐标为(a ,﹣12a 2+32a +2),当P 点在y 轴右侧时(如图2),CQ =a , PQ =2﹣(﹣12a 2+32a +2)=12a 2﹣32a , 又∵∠CQ ′O +∠FQ ′P =90°,∠COQ ′=∠Q ′FP =90°, ∴∠FQ ′P =∠OCQ ′,∴△COQ′∽△Q′FP,'''Q C Q PCO FQ=,即213222'a aaQ F-=,∴Q′F=a﹣3,∴OQ′=OF﹣Q′F=a﹣(a﹣3)=3,CQ=CQ′=22223213CO OQ+=+=,此时a=13,点P的坐标为(13,9313-+).【点睛】此题考查了二次函数的综合应用,综合考查了翻折变换、相似三角形的判定与性质,解答此类题目要求我们能将所学的知识融会贯通,属于中考常涉及的题目.10.在平面直角坐标系xOy中(如图),已知二次函数2y ax bx c=++(其中a、b、c 是常数,且a≠0)的图像经过点A(0,-3)、B(1,0)、C(3,0),联结AB、AC.(1)求这个二次函数的解析式;(2)点D是线段AC上的一点,联结BD,如果:3:2ABD BCDS S∆∆=,求tan∠DBC的值;(3)如果点E在该二次函数图像的对称轴上,当AC平分∠BAE时,求点E的坐标.【答案】(1)243y x x=-+-;(2)32;(3)E(2,73-)【解析】【分析】(1)直接利用待定系数法,把A、B、C三点代入解析式,即可得到答案;(2)过点D作DH⊥BC于H,在△ABC中,设AC边上的高为h,利用面积的比得到32ADDC=,然后求出DH和BH,即可得到答案;(3)延长AE至x轴,与x轴交于点F,先证明△OAB∽△OFA,求出点F的坐标,然后求出直线AF的方程,即可求出点E的坐标.【详解】解:(1)将A(0,-3)、B(1,0)、C(3,0)代入20y ax bx c a=++≠()得,03,0934,300a ba bc=+-⎧⎪=+-⎨⎪-=++⎩解得143abc=-⎧⎪=⎨⎪=-⎩,∴此抛物线的表达式是:243y x x=-+-.(2)过点D作DH⊥BC于H,在△ABC中,设AC边上的高为h,则11:():():3:222ABD BCDS S AD h DC h AD DC∆∆=⋅⋅==,又∵DH//y轴,∴25CH DC DHOC AC OA===.∵OA=OC=3,则∠ACO=45°,∴△CDH为等腰直角三角形,∴26355CH DH==⨯=.∴64255BH BC CH=-=-=.∴tan∠DBC=32DHBH=.(3)延长AE至x轴,与x轴交于点F,∵OA=OC=3,∴∠OAC=∠OCA=45°,∵∠OAB=∠OAC-∠BAC=45°-∠BAC,∠OFA=∠OCA-∠FAC=45°-∠FAC,∵∠BAC=∠FAC,∴∠OAB=∠OFA.∴△OAB∽△OFA,∴13 OB OAOA OF==.∴OF=9,即F(9,0);设直线AF的解析式为y=kx+b(k≠0),可得093k bb=+⎧⎨-=⎩,解得133kb⎧=⎪⎨⎪=-⎩,∴直线AF的解析式为:133y x=-,将x=2代入直线AF的解析式得:73y=-,∴E(2,73 -).【点睛】本题考查了相似三角形的判定和性质,二次函数的性质,求二次函数的解析式,等腰直角三角形的判定和性质,求一次函数的解析式,解题的关键是掌握二次函数的图像和性质,以及正确作出辅助线构造相似三角形.。

数学九年级上册 二次函数易错题(Word版 含答案)

数学九年级上册  二次函数易错题(Word版 含答案)

数学九年级上册二次函数易错题(Word版含答案)一、初三数学二次函数易错题压轴题(难)1.如图,二次函数y=ax2+bx+c交x轴于点A(1,0)和点B(3,0),交y轴于点C,抛物线上一点D的坐标为(4,3)(1)求该二次函数所对应的函数解析式;(2)如图1,点P是直线BC下方抛物线上的一个动点,PE//x轴,PF//y轴,求线段EF的最大值;(3)如图2,点M是线段CD上的一个动点,过点M作x轴的垂线,交抛物线于点N,当△CBN是直角三角形时,请直接写出所有满足条件的点M的坐标.【答案】(1)y=x2﹣4x+3;(2)EF的最大值为24;(3)M点坐标为可以为(2,3),(552+,3),(552-,3).【解析】【分析】(1)根据题意由A、B两点坐标在二次函数图象上,设二次函数解析式的交点式,将D点坐标代入求出a的值,最后将二次函数的交点式转化成一般式形式.(2)由题意可知点P在二次函数图象上,坐标为(p,p2﹣4p+3).又因为PF//y轴,点F 在直线BC上,P的坐标为(p,﹣p+3),在Rt△FPE中,可得FE2PF,用纵坐标差的绝对值可求线段EF的最大值.(3)根据题意求△CBN是直角三角形,分为∠CBN=90°和∠CNB=90°两类情况计算,利用三角形相似知识进行分析求解.【详解】解:(1)设二次函数的解析式为y=a(x﹣b)(x﹣c),∵y=ax2+bx+与x轴r的两个交点A、B的坐标分别为(1,0)和(3,0),∴二次函数解析式:y=a(x﹣1)(x﹣3).又∵点D(4,3)在二次函数上,∴(4﹣3)×(4﹣1)a=3,∴解得:a=1.∴二次函数的解析式:y=(x﹣1)(x﹣3),即y=x2﹣4x+3.(2)如图1所示.因点P 在二次函数图象上,设P (p ,p 2﹣4p+3). ∵y =x 2﹣4x+3与y 轴相交于点C , ∴点C 的坐标为(0,3). 又∵点B 的坐标为B (3,0), ∴OB =OC∴△COB 为等腰直角三角形. 又∵PF//y 轴,PE//x 轴, ∴△PEF 为等腰直角三角形. ∴EF 2PF .设一次函数的l BC 的表达式为y =kx+b , 又∵B (3,0)和C (0,3)在直线BC 上,303k b b +=⎧⎨=⎩, 解得:13k b =-⎧⎨=⎩,∴直线BC 的解析式为y =﹣x+3. ∴y F =﹣p+3.FP =﹣p+3﹣(p 2﹣4p+3)=﹣p 2+3p . ∴EF 2p 22. ∴线段EF 的最大值为,EF max 42-24. (3)①如图2所示:若∠CNB =90°时,点N 在抛物线上,作MN//y 轴,l//x 轴交y 轴于点E , BF ⊥l 交l 于点F .设点N 的坐标为(m ,m 2﹣4m+3),则点M 的坐标为(m ,3), ∵C 、D 两点的坐标为(0,3)和(4,3), ∴CD ∥x 轴.又∵∠CNE =∠NBF ,∠CEN =∠NFB =90°, ∴△CNE ∽△NBF . ∴CE NE =NFBF, 又∵CE =﹣m 2+4m ,NE =m ;NF =3﹣m ,BF =﹣m 2+4m ﹣3,∴24m mm-+=2343m m m --+-,化简得:m 2﹣5m+5=0. 解得:m 1=552+,m 2=552-.∴M 点坐标为(55+,3)或(55-,3)②如图3所示:当∠CBN =90°时,过B 作BG ⊥CD , ∵∠NBF =∠CBG ,∠NFB =∠BGC =90°, ∴△BFN ∽△CGB . ∵△BFN 为等腰直角三角形, ∴BF =FN ,∴0﹣(m 2﹣4m+3)=3﹣m . ∴化简得,m 2﹣5m+6=0. 解得,m =2或m =3(舍去) ∴M 点坐标为,(2,3).综上所述,满足题意的M 点坐标为可以为(2,3),(552+,3),(552-,3).【点睛】本题考查待定系数法求解函数解析式,二次函数和三角函数求值,三角形相似等相关知识点;同时运用数形结合和分类讨论的思想探究点在几何图形上的位置关系.2.在平面直角坐标系中,O 为坐标原点,抛物线L :y =ax 2﹣4ax (a >0)与x 轴正半轴交于点A .抛物线L 的顶点为M ,对称轴与x 轴交于点D . (1)求抛物线L 的对称轴.(2)抛物线L :y =ax 2﹣4ax 关于x 轴对称的抛物线记为L ',抛物线L '的顶点为M ',若以O 、M 、A 、M '为顶点的四边形是正方形,求L '的表达式.(3)在(2)的条件下,点P 在抛物线L 上,且位于第四象限,点Q 在抛物线L '上,是否存在点P 、点Q 使得以O 、D 、P 、Q 为顶点的四边形是平行四边形,若存在,求出点P 坐标,若不存在,请说明理由.【答案】(1)2x =;(2)2122y x x =-+ ;(3)存在,P 点的坐标为(33,3或(33,3-或(13,3或(13,3+-或31,2⎛⎫- ⎪⎝⎭【解析】 【分析】(1)根据抛物线的对称轴公式计算即可.(2)利用正方形的性质求出点M ,M ′的坐标即可解决问题.(3)分OD是平行四边形的边或对角线两种情形求解即可.【详解】解:(1)∵抛物线L:y=ax2﹣4ax(a>0),∴抛物线的对称轴x=﹣42aa=2.(2)如图1中,对于抛物线y=ax2﹣4ax,令y=0,得到ax2﹣4ax=0,解得x=0或4,∴A(4,0),∵四边形OMAM′是正方形,∴OD=DA=DM=DM′=2,∴M((2,﹣2),M′(2,2)把M(2,﹣2)代入y=ax2﹣4ax,可得﹣2=4a﹣8a,∴a=12,∴抛物线L′的解析式为y=﹣12(x﹣2)2+2=﹣12x2+2x.(3)如图3中,由题意OD=2.当OD 为平行四边形的边时,PQ =OD =2,设P (m ,12m 2﹣2m ),则Q [m ﹣2,﹣12(m ﹣2)2+2(m ﹣2)]或[m +2,﹣12(m +2)2+2(m +2)], ∵PQ ∥OD , ∴12m 2﹣2m =﹣12(m ﹣2)2+2(m ﹣2)或12m 2﹣2m =﹣12(m +2)2+2(m +2), 解得m =3±3或1±3,∴P (3+3,3)或(3﹣3,﹣3)或(1﹣3,3)和(1+3,﹣3), 当OD 是平行四边形的对角线时,点P 的横坐标为1,此时P (1,﹣32), 综上所述,满足条件的点P 的坐标为(3+3,3)或(3﹣3,﹣3)或(1﹣3,3)和(1+3,﹣3)或(1,﹣32). 【点睛】本题属于二次函数综合题,考查了二次函数的性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题3.如图,抛物线()250y ax bx a =+-≠经过x 轴上的点1,0A 和点B 及y 轴上的点C ,经过B C 、两点的直线为y x n =+.(1)求抛物线的解析式.(2)点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,PBE △的面积最大并求出最大值.(3)过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B C 、重合)作直线AM 的平行线交直线BC 于点Q .若点A M N Q 、、、为顶点的四边形是平行四边形,求点N 的横坐标.【答案】(1)265y x x =-+- (2)2t =;(3或4【解析】 【分析】(1)先确定A 、B 、C 三点的坐标,然后用待定系数法解答即可;(2)先求出AB 、BC 的长并说明△BOC 是等腰直角三角形,再求出点P 到BC 的高d为)454d BP sin t =⋅︒=-,则12PBESBE d =⨯⨯)()1244222t t t =⨯⨯-=-,再根据二次函数的性质即可确定最大值;(3)先求出454AM AB sin =⋅︒==N 作直线AM 的平行线交直线BC 于点,Q 则,再说明四边形AMNQ是平行四边形,得到NQ AM ==;再过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H 结合题意说明NQH 为等腰直角三角形,求得4NH ===;设()2,65N m m m -+-,则(),0G m ,(),5H m m -,最后分点N 在x 轴上方时、点N 在x 轴下方且5m >时和1m <三种情况解答即可. 【详解】解:()1因为直线y x n =+经过B C 、两点,且点B 在x 轴上,点C 在y 轴上, ∵()(),,00,B n C n -∴抛物线25y ax bx =+-经过点1,0A ,点(),0B n -,点()0,C n ,∴250505a b an bn n +-=⎧⎪--=⎨⎪-=⎩,解得51,6n a b =-⎧⎪=-⎨⎪=⎩所以抛物线的解析式为265y x x =-+-.()2∵()()()1,05,0,0,,5,A B C -∴4,AB BC BOC ==为等腰直角三角形, ∴45,ABC ∠=由题意得4,2,02BP t BE t t =-=<≤点P 到BE 的距离()4542d BP sin t =⋅︒=- 所以12PBESBE d =⨯⨯)()1244222t t t t =⨯⨯-=-;∵二次函数()()4f t t =-的函数图象开口向下,零点为0和4, ∴0422t +==时,∴()()()2242max f t f ==⨯-=即2t =时,PBE △的面积最大,且最大值为()3由题意得4542AM AB sin =⋅︒=⨯= 过点N 作直线AM 的平行线交直线BC 于点,Q 则,NQ BC ⊥ ∵点,A M N Q 、、为顶点的四边形是平行四边形,∴NQ AM ==过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H ∵:5BC l y x =-,∴NQH 为等腰直角三角形,∴4,NH ===设()2,65N m m m -+-, 则(),0G m ,(),5H m m -,①点N 在x 轴上方时,此时()()2655,NH m m m =-+---∴()()26554m m m -+---=,即()()140,m m --=解得1m =(舍,因为此时点N 与点A 重合)或4m =;②点N 在x 轴下方且5m >时,此时()()2565,NH m m m =---+- ∴()()25654m m m ---+-=,即2540,m m --=解得552m -=<(舍)或52m =③点N 在x 轴下方且1m <时,此时()()2565,NH m m m =---+-∴()()25654m m m ---+-=,即2540,m m --=解得5412m -=或5412m +=(舍)综上所述,5414,2m m +==,5412m -=符合题意, 即若点,A M N Q 、、为顶点的四边形是平行四边形, 点N 的横坐标为541-或4或541+.【点睛】本题主要考查了二次函数的性质、平行四边形的判定与性质,掌握二次函数的性质以及分类讨论思想是解答本题的关键4.如图1,抛物线2:C y x =经过变换可得到抛物线()1111:C y a x x b =-,1C 与x 轴的正半轴交于点1A ,且其对称轴分别交抛物线C 、1C 于点1B 、1D ,此时四边形111D OB A 恰为正方形;按上述类似方法,如图2,抛物线()1111:C y a x x b =-经过变换可得到抛物线()2222:C y a x x b =-,2C 与x 轴的正半轴交于点2A ,且对称轴分别交抛物线1C 、2C 于点2B 、2D ,此时四边形222OB A D 也恰为正方形;按上述类似方法,如图3,可得到抛物线()3333:C y a x x b =-与正方形333OB A D ,请探究以下问题: (1)填空:1a = ,1b = ; (2)求出2C 与3C 的解析式;(3)按上述类似方法,可得到抛物线():n n n n C y a x x b =-与正方形n n n OB A D (1n ≥). ①请用含n 的代数式直接表示出n C 的解析式;②当x 取任意不为0的实数时,试比较2018y 与2019y 的函数值的大小关系,并说明理由.【答案】(1)11a =,12b =;(2)22132y x x =-,23126y x x =-;(3)①()2212123n n y x x n -=-≥⨯,②20182019y y >. 【解析】 【分析】(1)求与x 轴交点A 1坐标,根据正方形对角线性质表示出B 1的坐标,代入对应的解析式即可求出对应的b 1的值,写出D 1的坐标,代入y 1的解析式中可求得a 1的值; (2)求与x 轴交点A 2坐标,根据正方形对角线性质表示出B 2的坐标,代入对应的解析式即可求出对应的b 2的值,写出D 2的坐标,代入y 2的解析式中可求得a 2的值,写出抛物线C 2的解析式;再利用相同的方法求抛物线C 3的解析式;(3)①根据图形变换后二次项系数不变得出a n =a 1=1,由B 1坐标(1,1)、B 2坐标(3,3)、B 3坐标(7,7)得B n 坐标(2n -1,2n -1),则b n =2(2n -1)=2n +1-2(n ≥1),写出抛物线C n 解析式.②根据规律得到抛物线C 2015和抛物线C 2016的解析式,用求差法比较出y 2015与y 2016的函数值的大小. 【详解】解:(1)y 1=0时,a 1x (x -b 1)=0, x 1=0,x 2=b 1, ∴A 1(b 1,0),由正方形OB 1A 1D 1得:OA 1=B 1D 1=b 1, ∴B 1(12b ,12b ),D 1(12b ,12b-), ∵B 1在抛物线c 上,则12b =(12b )2, 解得:b 1=0(不符合题意),b 1=2, ∴D 1(1,-1),把D 1(1,-1)代入y 1=a 1x (x -b 1)中得:-1=-a 1,∴a 1=1,故答案为1,2;(2)当20y =时,有()220a x x b -=,解得2x b =或0x =,()22,0A b ∴.由正方形222OB A D ,得2222B D OA b ==,222,22b b B ⎛⎫∴ ⎪⎝⎭,222,22b b D ⎛⎫- ⎪⎝⎭. 2B 在抛物线1C 上,2222222b b b ⎛⎫∴=- ⎪⎝⎭. 解得24b =或20b =(不合舍去),()22,2D ∴-2D 在抛物线2C 上,()22224a ∴-=-. 解得212a =. 2C ∴的解析式是()2142y x x =-,即22122y x x =-. 同理,当30y =时,有()330a x x b -=,解得3x b =,或0x =.()33,0A b ∴.由正方形333OB A D ,得3333B D OA b ==,333,22b b B ⎛⎫∴ ⎪⎝⎭,333,22b b D ⎛⎫- ⎪⎝⎭. 3B 在抛物线2C 上,2333122222b b b ⎛⎫∴=-⋅ ⎪⎝⎭. 解得312b =或30b =(不合舍去), ()36,6D ∴-3D 在抛物线3C 上,()366612a ∴-=-.解得316a =. 3C ∴的解析式是()31126y x x =-,即23126y x x =-.(3)解:①n C 的解析式是()2212123n n y x x n -=-≥⨯. ②由①可得2201820161223y x x =-⨯,2201920171223y x x =-⨯. 当0x ≠时,220182019201620171110233y y x >⎛⎫-=- ⎪⎝⎭, 20182019y y ∴>.【点睛】本题是二次函数与方程、正方形的综合应用,将函数知识与方程、正方形有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用正方形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.就此题而言:①求出抛物线与x 轴交点坐标⇔把y =0代入计算,把函数问题转化为方程问题;②利用正方形对角线相等且垂直平分表示出对应B 1、B 2、B 3、B n 的坐标;③根据规律之间得到解析式是关键.5.在平面直角坐标系中,将函数y =x 2﹣2mx+m (x≤2m ,m 为常数)的图象记为G ,图象G 的最低点为P(x 0,y 0).(1)当y 0=﹣1时,求m 的值.(2)求y 0的最大值.(3)当图象G 与x 轴有两个交点时,设左边交点的横坐标为x 1,则x 1的取值范围是 .(4)点A 在图象G 上,且点A 的横坐标为2m ﹣2,点A 关于y 轴的对称点为点B ,当点A 不在坐标轴上时,以点A 、B 为顶点构造矩形ABCD ,使点C 、D 落在x 轴上,当图象G 在矩形ABCD 内的部分所对应的函数值y 随x 的增大而减小时,直接写出m 的取值范围.【答案】(1或﹣1;(2)14;(3)0<x 1<1;(4)m =0或m >43或23≤m <1 【解析】【分析】(1)分m >0,m =0,m <0三种情形分别求解即可解决问题;(2)分三种情形,利用二次函数的性质分别求解即可;(3)由(1)可知,当图象G 与x 轴有两个交点时,m >0,求出当抛物线顶点在x 轴上时m 的值,利用图象法判断即可;(4)分四种情形:①m <0,②m =0,③m >1,④0<m≤1,分别求解即可解决问题.【详解】解:(1)如图1中,当m >0时,∵y=x2﹣2mx+m=(x﹣m)2﹣m2+m,图象G是抛物线在直线y=2m的左侧部分(包括点D),此时最底点P(m,﹣m2+m),由题意﹣m2+m=﹣1,解得m=51+或51-+(舍弃),当m=0时,显然不符合题意,当m<0时,如图2中,图象G是抛物线在直线y=2m的左侧部分(包括点D),此时最底点P是纵坐标为m,∴m=﹣1,综上所述,满足条件的m的值为512或﹣1;(2)由(1)可知,当m>0时,y0=﹣m2+m=﹣(m﹣12)2+14,∵﹣1<0,∴m=12时,y0的最大值为14,当m=0时,y0=0,当m<0时,y0<0,综上所述,y0的最大值为14;(3)由(1)可知,当图象G与x轴有两个交点时,m>0,当抛物线顶点在x轴上时,4m2﹣4m=0,∴m=1或0(舍弃),∴观察观察图象可知,当图象G与x轴有两个交点时,设左边交点的横坐标为x1,则x1的取值范围是0<x1<1,故答案为0<x1<1;(4)当m<0时,观察图象可知,不存在点A满足条件,当m=0时,图象G在矩形ABCD内的部分所对应的函数值y随x的增大而减小,满足条件,如图3中,当m>1时,如图4中,设抛物线与x轴交于E,F,交y轴于N,观察图象可知当点A在x轴下方或直线x=﹣m和y轴之间时(可以在直线x=﹣m上)时,满足条件.则有(2m﹣2)2﹣2m(2m﹣2)+m<0,解得m>43,或﹣m≤2m﹣2<0,解得23≤m<1(不合题意舍弃),当0<m≤1时,如图5中,当点A在直线x=﹣m和y轴之间时(可以在直线x=﹣m上)时,满足条件.即或﹣m≤2m﹣2<0,解得23≤m<1,综上所述,满足条件m的值为m=0或m>43或23≤m<1.【点睛】本题属于二次函数综合题,考查了二次函数的性质,矩形的性质,最值问题,不等式等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考压轴题.6.已知点P(2,﹣3)在抛物线L:y=ax2﹣2ax+a+k(a,k均为常数,且a≠0)上,L交y轴于点C,连接CP.(1)用a表示k,并求L的对称轴及L与y轴的交点坐标;(2)当L经过(3,3)时,求此时L的表达式及其顶点坐标;(3)横、纵坐标都是整数的点叫做整点.如图,当a<0时,若L在点C,P之间的部分与线段CP所围成的区域内(不含边界)恰有4个整点,求a的取值范围;(4)点M(x1,y1),N(x2,y2)是L上的两点,若t≤x1≤t+1,当x2≥3时,均有y1≥y2,直接写出t的取值范围.【答案】(1)k=-3-a;对称轴x=1;y轴交点(0,-3);(2)2y=2x-4x-3,顶点坐标(1,-5);(3)-5≤a <-4;(4)-1≤t ≤2.【解析】【分析】(1)将点P(2,-3)代入抛物线上,求得k 用a 表示的关系式;抛物线L 的对称轴为直线2a x==12a--,并求得抛物线与y 轴交点; (2)将点(3,3)代入抛物线的解析式,且k=-3-a ,解得a=2,k=-5,即可求得抛物线解析式与顶点坐标;(3)抛物线L 顶点坐标(1,-a-3),点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y 的取值分别为-2、-1、0、1,可得1<-a-3≤2,即可求得a 的取值范围;(4)分类讨论取a >0与a <0的情况进行讨论,找出1x 的取值范围,即可求出t 的取值范围.【详解】解:(1)∵将点P(2,-3)代入抛物线L :2y=ax -2ax+a+k ,∴-3=4a 4a a+k=a+k -+∴k=-3-a ;抛物线L 的对称轴为直线-2a x=-=12a,即x =1; 将x=0代入抛物线可得:y=a+k=a+(-3-a)=-3,故与y 轴交点坐标为(0,-3); (2)∵L 经过点(3,3),将该点代入解析式中,∴9a-6a+a+k=3,且由(1)可得k=-3-a ,∴4a+k=3a-3=3,解得a=2,k=-5,∴L 的表达式为2y=2x -4x-3;将其表示为顶点式:2y=2(x-1)-5,∴顶点坐标为(1,-5);(3)解析式L 的顶点坐标(1,-a-3),∵在点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y 的取值分别为-2、-1、0、1,∴1<-a-3≤2,∴-5≤a <-4;(4)①当a <0时,∵2x 3≥,为保证12y y ≥,且抛物线L 的对称轴为x=1,∴就要保证1x 的取值范围要在[-1,3]上,即t ≥-1且t+1≤3,解得-1≤t ≤2;②当a >0时,抛物线开口向上,t ≥3或t+1≤-1,解得:t ≥3或t ≤-2,但会有不符合题意的点存在,故舍去,综上所述:-1≤t ≤2.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,数形结合解题是关键.7.如图,若抛物线y=x2+bx+c与x轴相交于A,B两点,与y轴相交于点C,直线y=x﹣3经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,过点P作PH⊥x轴于点H,交BC于点M,连接PC.①线段PM是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P运动的过程中,是否存在点M,恰好使△PCM是以PM为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【答案】(1)y=x2﹣2x﹣3;(2)①有,94;②存在,(2,﹣3)或(32,2﹣2)【解析】【分析】(1)由直线表达式求出点B、C的坐标,将点B、C的坐标代入抛物线表达式,即可求解;(2)①根据PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94即可求解;②分PM=PC、PM=MC两种情况,分别求解即可.【详解】解:(1)对于y=x﹣3,令x=0,y=﹣3,y=0,x=3,故点B、C的坐标分别为(3,0)、(0,﹣3),将点B、C的坐标代入抛物线表达式得:9303b cc++=⎧⎨=-⎩,解得:32 cb=-⎧⎨=-⎩,故抛物线的表达式为:y=x2﹣2x﹣3;(2)设:点M(x,x﹣3),则点P(x,x2﹣2x﹣3),①有,理由:PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94,∵﹣1<0,故PM有最大值,当x=32时,PM最大值为:94;②存在,理由:PM2=(x﹣3﹣x2+2x+3)2=(﹣x2+3x)2;PC2=x2+(x2﹣2x﹣3+3)2;MC2=(x﹣3+3)2+x2;(Ⅰ)当PM=PC时,则(﹣x2+3x)2=x2+(x2﹣2x﹣3+3)2,解得:x=0或2(舍去0),故x=2,故点P(2,﹣3);(Ⅱ)当PM=MC时,则(﹣x2+3x)2=(x﹣3+3)2+x2,解得:x=0或3±2(舍去0和3+2),故x=3﹣2,则x2﹣2x﹣3=2﹣42,故点P(3﹣2,2﹣42).综上,点P的坐标为:(2,﹣3)或(3﹣2,2﹣42).【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质等,其中(2)②,要注意分类求解,避免遗漏.8.如图①抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.(1)试求抛物线的解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.【答案】(1)y=﹣x2+3x+4;(2)存在.P(﹣34,1916).(3)1539(,)24M--21139 (,) 24M-3521 (,) 24M【解析】【分析】(1)将A,B,C三点代入y=ax2+bx+4求出a,b,c值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=11 2∴﹣m2+3m+4=39 4 -,∴21139 (,) 24M-;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴322 2m∴m=5 2∴﹣m2+3m+4=21 4∴3521 (,) 24M综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为1539 (,)24M--21139 (,) 24M-3521 (,) 24M.【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.9.如图,在平面直角坐标系中,抛物线y=﹣12x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y=﹣12x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7.(1)求此抛物线的解析式.(2)求点N的坐标.(3)过点A的直线与抛物线交于点F,当tan∠FAC=12时,求点F的坐标.(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC 以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t5S与t的函数关系式.【答案】(1)y=﹣12x2+32x+2;(2)点N的坐标为(5,-3);(3)点F的坐标为:(3,2)或(173,﹣509);(4)25,04949(1044t tS tt⎧⎛≤≤⎪⎪⎝⎭=-<≤⎪⎪+<≤⎪⎩.【解析】【分析】(1)点A、C的坐标分别为(0,2)、(4,0),将点A、C坐标代入抛物线表达式即可求解;(2)抛物线的对称轴为:x=32,点N的横坐标为:37522+=,即可求解;(3)分点F在直线AC下方、点F在直线AC的上方两种情况,分别求解即可;(4)分0≤t≤5、当5<t<t【详解】解:(1)直线y=﹣12x+2经过A,C两点,则点A、C的坐标分别为(0,2)、(4,0),则c=2,抛物线表达式为:y=﹣12x2+bx+2,将点C坐标代入上式并解得:b=32,故抛物线的表达式为:y=﹣12x2+32x+2…①;(2)抛物线的对称轴为:x=32,点N的横坐标为:375 22+=,故点N的坐标为(5,-3);(3)∵tan∠ACO=2142AOCO===tan∠FAC=12,即∠ACO=∠FAC,①当点F在直线AC下方时,设直线AF交x轴于点R,∵∠ACO=∠FAC,则AR=CR,设点R(r,0),则r2+4=(r﹣4)2,解得:r=32,即点R的坐标为:(32,0),将点R、A的坐标代入一次函数表达式:y=mx+n得:230 2nm n=⎧⎪⎨+=⎪⎩,解得:432mn⎧=-⎪⎨⎪=⎩,故直线AR的表达式为:y=﹣43x+2…②,联立①②并解得:x=173,故点F(173,﹣509);②当点F在直线AC的上方时,∵∠ACO=∠F′AC,∴AF′∥x轴,则点F′(3,2);综上,点F的坐标为:(3,2)或(173,﹣509);(4)如图2,设∠ACO=α,则tanα=12AOCO=,则sinα5,cosα5①当0≤t 35时(左侧图),设△AHK移动到△A′H′K′的位置时,直线H′K′分别交x轴于点T、交抛物线对称轴于点S,则∠DST =∠ACO =α,过点T 作TL ⊥KH ,则LT =HH ′=t ,∠LTD =∠ACO =α,则DT ='52co 5c s 2os L HH T t αα===,DS =tan DT α, S =S △DST =12⨯DT ×DS =254t ; 35<t 35时(右侧图), 同理可得:S =''DGS T S 梯形=12⨯DG ×(GS ′+DT ′)=12⨯3+55﹣323594-; 35<t 53594+; 综上,S =2535,023593535,(245435935(5)1044t t t t t t ⎧⎛≤≤⎪ ⎪⎝⎭⎪⎪⎨-<≤⎪⎪⎪+<≤⎪⎩. 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形平移、图形的面积计算等,其中(3)、(4),要注意分类求解,避免遗漏.10.如图,直线3y x 与x 轴、y 轴分别交于点A ,C ,经过A ,C 两点的抛物线2y ax bx c =++与x 轴的负半轴的另一交点为B ,且tan 3CBO ∠=(1)求该抛物线的解析式及抛物线顶点D 的坐标;(2)点P 是射线BD 上一点,问是否存在以点P ,A ,B 为顶点的三角形,与ABC 相似,若存在,请求出点P 的坐标;若不存在,请说明理由【答案】(1)243y x x =++,顶点(2,1)D --;(2)存在,52,33P ⎛⎫-- ⎪⎝⎭或(4,3)-- 【解析】【分析】(1)利用直线解析式求出点A 、C 的坐标,从而得到OA 、OC ,再根据tan ∠CBO=3求出OB ,从而得到点B 的坐标,然后利用待定系数法求出二次函数解析式,整理成顶点式形式,然后写出点D 的坐标;(2)根据点A 、B 的坐标求出AB ,判断出△AOC 是等腰直角三角形,根据等腰直角三角形的性质求出AC ,∠BAC=45°,再根据点B 、D 的坐标求出∠ABD=45°,然后分①AB 和BP 是对应边时,△ABC 和△BPA 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可;②AB 和BA 是对应边时,△ABC 和△BAP 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可.【详解】解:(1)令y=0,则x+3=0,解得x=-3,令x=0,则y=3,∴点A (-3,0),C (0,3),∴OA=OC=3,∵tan ∠CBO=3OC OB=, ∴OB=1,∴点B (-1,0),把点A 、B 、C 的坐标代入抛物线解析式得, 93003a b c a b c c -+=⎧⎪-+=⎨⎪=⎩,解得:143a b c =⎧⎪=⎨⎪=⎩,∴该抛物线的解析式为:243y x x =++,∵y=x 2+4x+3=(x+2)2-1,∴顶点(2,1)D --;(2)∵A (-3,0),B (-1,0),∴AB=-1-(-3)=2,∵OA=OC,∠AOC=90°,∴△AOC是等腰直角三角形,∴AC=2OA=32,∠BAC=45°,∵B(-1,0),D(-2,-1),∴∠ABD=45°,①AB和BP是对应边时,△ABC∽△BPA,∴AB ACBP BA=,即2322BP=,解得BP=223,过点P作PE⊥x轴于E,则BE=PE=23×22=23,∴OE=1+23=53,∴点P的坐标为(-53,-23);②AB和BA是对应边时,△ABC∽△BAP,∴AB ACBA BP=,即2322=,解得BP=32过点P作PE⊥x轴于E,则BE=PE=2=3,∴OE=1+3=4,∴点P的坐标为(-4,-3);综合上述,当52,33P⎛⎫--⎪⎝⎭或(4,3)--时,以点P,A,B为顶点的三角形与ABC∆相似;【点睛】本题是二次函数综合题型,主要利用了直线与坐标轴交点的求解,待定系数法求二次函数解析式,等腰直角三角形的判定与性质,相似三角形的判定与性质,难点在于(2)要分情况讨论.。

九年级数学 二次函数易错题(Word版 含答案)

九年级数学 二次函数易错题(Word版 含答案)


综上所述, 点坐标为
故存在点Q,且这样的点有两个点.
【点睛】
(1)本题考查了利用待定系数法求二次函数解析式,根据已知条件选用顶点式较方便;
(2)本题是三角形面积的最值问题,解决这个问题应该在分析图形的基础上,引出自变量,再根据图形的特征列出面积的计算公式,用含自变量的代数式表示面积的函数式,然后求出最值.
则直线 的函数解析式为

(舍去),
点 的坐标为
综上可得,点 的坐标为 或
【点睛】
本题考查二次函数的图象及性质,一次函数的性质,熟练掌握二次函数的图象及性质,结合数形结合的思想和分类讨论的思想解题是解本题的关键.
2.如图所示,在平面直角坐标系中,抛物线 的顶点坐标为 ,并与 轴交于点 ,点 是对称轴与 轴的交点.
【答案】(1)(1,0);(2)① ;②存在,点 的坐标为 或 .
【解析】
【分析】
(1)直接令 ,即可求出点B的坐标;
(2)①令x=0,求出点C坐标为(0,a),再由△ABC的面积得到 (1−a)•(−a)=6即可求a的值,即可得到解析式;
②当点P在x轴上方时,直线OP的函数表达式为y=3x,则直线与抛物线的交点为P;当点P在x轴下方时,直线OP的函数表达式为y=-3x,则直线与抛物线的交点为P;分别求出点P的坐标即可.
【详解】
解: 抛物线顶点为
可设抛物线解析式为
将 代入 得
抛物线 ,即
连接 ,
设 点坐标为
当 时, 最大值为
存在,设点D的坐标为
过 作对称轴的垂线,垂足为 ,

在 中有
化简得
(舍去),
∴点D( ,-3)
连接 ,在 中
在以 为圆心, 为半径的圆与 轴的交点上

精选备战中考数学易错题专题复习二次函数及详细答案

精选备战中考数学易错题专题复习二次函数及详细答案

一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.【答案】(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)(1,2)M -;(3)P 的坐标为(1,2)--或(1,4)-或317(+-或317()--. 【解析】分析:(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;(2)设直线BC 与对称轴x=-1的交点为M ,此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.详解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+.∵对称轴为1x =-,且抛物线经过()1,0A ,∴把()3,0B -、()0,3C 分别代入直线y mx n =+,得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩, ∴直线y mx n =+的解析式为3y x =+.(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =,∴()1,2M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为()1,2-. (注:本题只求M 坐标没说要求证明为何此时MA MC +的值最小,所以答案未证明MA MC +的值最小的原因).(3)设()1,P t -,又()3,0B -,()0,3C ,∴218BC =,()2222134PB t t =-++=+,()()222213610PC t t t =-+-=-+, ①若点B 为直角顶点,则222BC PB PC +=,即:22184610t t t ++=-+解得:2t =-,②若点C 为直角顶点,则222BC PC PB +=,即:22186104t t t +-+=+解得:4t =,③若点P 为直角顶点,则222PB PC BC +=,即:22461018t t t ++-+=解得: 1317t +=2317t -=. 综上所述P 的坐标为()1,2--或()1,4-或3171,2⎛+- ⎝⎭或3171,2⎛- ⎝⎭. 点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.2.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。

易错压轴01 二次函数(十大易错压轴题型+举一反三+易错题通关)(解析版)

易错压轴01 二次函数(十大易错压轴题型+举一反三+易错题通关)(解析版)

易错压轴01二次函数易错压轴一:二次函数的图象与性质例1.已知二次函数2(1)5y x =--+,当a x b ≤≤且0ab <时,y 的最小值为2a ,最大值为2b ,则a b +的值为()A .2B .12C .3D .32【答案】B【分析】本题考查了二次函数的最值问题,二次函数的增减性,由题意可得0a <,0b >,则y 的最小值为2a 为负数,最大值为2b 为正数.最大值为2b 分两种情况:①结合抛物线顶点纵坐标的取值范围,求出 2.5b =,结合图象最小值只能由x a =时求出;②结合抛物线顶点纵坐标的取值范围,图象最大值只能由x b =求出,最小值只能由x a =求出.【详解】解:二次函数2(1)5y x =--+的大致图象如下:①当01a x b <≤≤<时,当x a =时,y 取最小值,即2215()a a =--+,例2.已知Rt ABC △的直角顶点C 与原点O 重合,点A ,B 都落在抛物线24y x =上,则AB 与y 轴的交点为;若OD AB ⊥于点D ,则点D 到点()1,0的最大距离为.则24AM m =,MO m =-,BN =90MAO MOA ∠+∠=︒ ,MOA ∠MAO BON ∴∠=∠,AMO ONB ∴∽ ,AM ON MO NB ∴=,即:2244m n m n=-,1OD AB ⊥ ,14OE =,F 为OE 中点,在Rt DOE △中,1128DF OE ==,练习1.定义:把二次函数()2y a x m n =++与()2y a x m n =---(0a ≠,m 、n 是常数)称作互为“旋转函数”,如果二次函数212y x bx =+-与2214y x cx c =--+(b 、c 是常数)互为“旋转函数”,则下列选项中正确的是()A .2c =-;B .14b c =;C .当x t =时,12y y t +=-;D .不论x 取何值,120y y +=练习2.若关于x 的方程2230x kx k -+-=的一个实数根13x ≥,另一个实数根20x ≤,则关于x 的二次函数223y x kx k =-+-图象的顶点到x 轴距离h 的取值范围是.练习3.已知二次函数()(2y ax a b x b a =-++、b 是常数,0).a ≠(1)若(4)(0),M m m ->在该二次函数的图象上,当0a <时,试判断代数式a b +的正负性;(2)已知对于任意的常数a 、(0)b a ≠,二次函数的图象始终过定点P ,求证:一次函数()()2331y k x k x =++≥图象上所有的点都高于点.P 【答案】(1)a b +为正(2)见解析【分析】本题主要考查了二次函数的图象与性质,解题时要熟练掌握并能灵活运用是关1.已知二次函数()240y ax ax c a =++>图象上的两点()15,y -和()22,x y ,若12y y >,则2x 的取值范围是()A .25x >-B .22x <-C .251x -<<D .252x -<<-2.已知抛物线2y ax bx =+,当3y ≥-时,自变量x 的取值范围是2x m ≤-或2(0)x m m ≥+>,若点(),9P n 在对称轴左侧的抛物线上,则n 的取值范围是.3.已知二次函数223y x x =+-.(1)将223y x x =+-写成()2y a x h k =-+的形式,并写出它的顶点坐标;(2)当40x -<<时,直接写出函数值y 的取值范围;(3)该二次函数的图象与直线y n =有两个交点A ,B ,若6AB >,直接写出n 的取值范围.【答案】(1)()214y x =+-,顶点坐标为()1,4--(2)45y -≤<(3)5n >【分析】(1)利用完全平方公式转化为顶点式,由顶点式写出顶点坐标;易错压轴二:二次函数的图象与系数的关系例1.对于二次函数2y ax bx c =++,定义函数()()2200ax bx c x y ax bx c x ⎧++≥⎪=⎨---<⎪⎩是它的相关函数.若一次函数1y x =+与二次函数24y x x c =-+的相关函数的图象恰好两个公共点,则c 的值可能是()A.1-B.0C.1D.22例2.抛物线2y ax bx c =++的对称轴是直线=1x -,且过点(1,0),顶点位于第二象限,其部分图象如图所示,给出以下判断;①0ab >且0c <;②420a b c -+>;③80a c +>;④直线22y x =+与抛物线2y ax bx c =++两个交点的横坐标分别为12x x ,,则12125x x x x ++=-.其中结论正确的是.练习1.如图,抛物线2(0)y ax bx c a =++≠的图象与x 轴交于(2,0)-,()1,0x ,其中101x <<.有下列五个结论:①0abc >;②0a b c -+>;③20a c +>;④()(2)0a b a b -->;⑤若m ,()n m n <为关于x 的一元二次方程()1(2)10a x x x +-+=的两个根,则21m n -<+<-.其中正确结论的个数是()A .4B .3C .2D .1【答案】B【分析】本题考查了二次函数图象与各项系数的符号,根据二次函数图象判断式子的符号,一元二次方程根与系数的关系,掌握二次函数图象与性质是解题的关键,注意数形结合.根据抛物线开口方向、对称轴的位置及抛物线与y 轴交点位置,可确定a 、b 、c 的符号,练习2.如图,二次函数²y ax bx c =++的图像与x 轴交于点(30),,对称轴为直线1x =,下列结论∶①<0abc ;②420a b c -+>;③30a c +=;④抛物线上有两点11(,)M x y 和22(,)N x y ,若121x x <<,且122x x +>,则12y y >,其中正确的是.(只填写序号)【答案】①③④【分析】本题考查了二次函数图像与系数的关系,二次函数的图像与性质,根据二次函数的图像判断式子的符号,数形结合是本题最大特点.由图像的开口方向、对称轴及图像与y 轴的交点位置可分别确定a 、b 、c 的符号,从而可判定①;由抛物线的对称性可确定当1x <-时,图像位于x 轴下方,从而当2x =-时练习3.已知二次函数()2210y ax ax a =-+≠,图象经过点()1,m -,()1,n ,()3,p .(1)当2m =-时.①求二次函数的表达式;②写出一个符合条件的x 的取值范围,使得y 随x 的增大而增大;(2)若在m ,n ,p 这三个实数中,只有一个是正数,求证:13a ≤-.【答案】(1)①221y x x =-++;②1x <.(2)见解析.【分析】本题考查待定系数法求二次函数解析式及二次函数的图象和性质,熟知二次函数的图象和性质是解题的关键.(1)①利用待定系数法即可解决问题;②根据所得二次函数的图象和性质即可解决问题;(2)由这三个点在抛物线上的位置即可解决问题.【详解】(1)①当2m =-时,将点()1,2--代入函数解析式得,1.已知二次函数2y ax bx c =++(0a ≠)与x 轴的一个交点为()4,0,其对称轴为直线1x =,其部分图象如图所示,有下列5个结论:①0abc <;②240b ac -<;③930a b c ++=;④80a c +=;⑤若关于x 的方程21ax bx c ++=-有两个实数根12,x x ,且满足12x x <,则12x <-,24x >.其中正确结论的个数为()A .5B .4C .3D .22.已知二次函数2(0)y ax bx c a =++<的图象与x 轴的一个交点坐标为(1,0)-,对称轴为直线1x =,下列论中∶①0a b c -+=;②若点()()()1233,,2,,4,y y y -均在该二次函数图象上,则123y y y <<;③若m 为任意实数,则24am bm c a ++≤-;④方程210ax bx c +++=的两实数根为12,x x ,且12x x <,则121,3x x <->.正确结论的序号为.∴与x 轴的另一个交点坐标为(3,0),2(0)y ax bx c a =++<的图象向上平移一个单位长度,即为21y ax bx c =+++的图象,∴21y ax bx c =+++的图象与x 轴的两个交点一个在(1,0)-的左侧,另一个在(3,0)的右侧,∴若方程210ax bx c +++=的两实数根为12,x x ,且12x x <,则121,3x x <->,故④正确;综上可知,正确的有①③④,故答案为:①③④3.在平面直角坐标系中,设二次函数22y ax bx =++(a ,b 是常数,0a ≠).(1)若2a =时,图象经过点()11,,求二次函数的表达式.(2)写出一组a ,b 的值,使函数22y ax bx =++的图象与x 轴只有一个公共点,并求此二次函数的顶点坐标.(3)已知,二次函数22y ax bx =++的图象和直线4y ax b =+都经过点()2m ,,求证:2212a b +≥.易错压轴三:根据二次函数的对称性求函数值例1.如图,抛物线21y a x =与抛物线22y a x bx =+相交于点()1,P m -,过点P 作x 轴的平行线,与两条抛物线分别交于点M ,N ,若点M 是PN 的中点,则12a a 的值是()A .12B .2C .13D .3将()1,P m -,代入1y a x =则12a a b =-,∴()1222a a a =--,∴123a a =,∴123a a =,故选:D .例2.已知二次函数2y ax bx c =++的图像过点(1,0)A -和(0,1)C .(1)若此抛物线的对称轴是直线12x=,点C与点P关于直线12x=对称,则点P的坐标是.(2)若此抛物线的顶点在第一象限,设t a b c=++,则t的取值范围是.练习1.设二次函数24y kx kx c =-+(k ,c 为实数)的图象过点()11,A x y ,()22,B x y ,()33,C x y 三点,且3212x x x <<<,13x x =,124x x +>,下列结论正确的是()A .若0k >,则312y y y =>B .若0k >,则321y y y >>C .若0k <,则123y y y >>D .若0k <,则213y y y >>练习2.已知22x m n =++和2x m n =+时,多项式246x x ++的值相等,则当x m n =+时,多项式的值为.【答案】2【分析】本题考查了二次函数的性质,令246y x x =++,可知对称轴为直线2x =-,根据题意,求出2x m n =+=-,即可求解.【详解】解:∵()224622y x x x =++=++,练习3.自变量x 的函数值我们通常记作()f x ,()f n 表示自变量x n =时,函数()f x 的函数值,已知函数()23f x x ax =-+,其中a 为常数.(1)若2a =,求()5f 的值;(2)若存在唯一一个自变量x 的值,使得另一个函数()()g x f x =,()2g x x =+,试求满足条件的a 的值;(3)若存在实数m 且12m -<≤,使得()()223f m f m =-+,试求实数a 的取值范围.1.设函数()y f x =对一切实数不均满足(5)(5)f x f x +=-,且方程()0f x =恰好有6个不同的实根,则这6个实根的和为()A .10B .12C .18D .30【答案】D【分析】本题考查函数的零点与方程的根的关系,解题的关键是看出函数的图象关于直线5x =对称,得到函数的零点是成对出现的.根据函数()f x 满足(5)(5)f x f x +=-,可得函数的图象关于5x =对称,从而得到方程()0f x =的6个实数解中有3对,每一对的和为10,由此可得结论.【详解】解:对于任意实数,函数()f x 不均满足(5)(5)f x f x +=-∴函数的图象关于5x =对称,∴函数的零点关于5x =对称,∴方程()0f x =的根关于5x =对称,∴方程()0f x =的6个实数解中有3对,∴成对的两个根之和等于2510⨯=,6∴个实根之和是10330⨯=,故选:D .2.已知关于直线1x =对称的抛物线2y x bx c =++经过()123,A n y +,()21,B n y -两点,且点A ,B 分别位于拋物线对称轴的两侧,则位于对称轴左侧的点是(填A 或B ),若此时12y y <,则n 的取值范围是.【答案】B 10n -<</01n >>-【分析】本题考查二次函数的图象和性质.解题的关键是掌握二次函数的增减性.根据抛物线对称轴为1x =,开口向上,根据已知条件分类讨论得出点B 在对称轴的左侧;根据12y y <,进而得出不等式,解不等式即可求解.【详解】解: 抛物线2y x bx c =++关于直线1x =对称,经过()123,A n y +,()21,B n y -两点,且点A ,B 分别位于拋物线对称轴的两侧,若点A 位于对称轴左侧,则23123111n n n n +<-⎧⎪+<⎨⎪->⎩,解得412n n n <-⎧⎪<-⎨⎪>⎩,不等式组无解,不符合题意;若点B 位于对称轴左侧,则23123111n n n n +>-⎧⎪+>⎨⎪-<⎩,解得412n n n >-⎧⎪>-⎨⎪<⎩,∴不等式组的解为12n -<<;此时12y y <,()()11231n n ∴-->+-,解得:0n <,∴10n -<<,综上,12y y <时,则n 的取值范围是10n -<<,故答案为:B ,10n -<<.3.设二次函数2223y x mx m =+-+(m 为常数)的图象为f .【特例感悟】(1)当2m =,30x -≤≤时,二次函数2223y x mx m =+-+(m 为常数)的最小值是______、最大值是______;【类比探索】(2)当直线()0y m m =-<与图象f 在第一象限内交A 、B 两点(点A 在点B 的左边),A 点横坐标a ,点B 的横坐标b ,7a b =,求在a x b ≤≤范围内二次函数2223y x mx m =+-+(m 为常数)的最大值与最小值的差;【纵深拓展】(3)①不论m 为何实数时,图象f 一定会经过一个定点,求出这个定点坐标;②当02x ≤≤时,二次函数2223y x mx m =+-+(m 为常数)的最大值为9,那么图象f 的对称轴与x 轴的交点横坐标会大于0小于2吗?试说明你的理由,并指出满足条件的对称轴与定点之间的距离.【答案】(1)51-,-;(2)最大值与最小值的差为9;(3)①定点坐标为()1,4;②当02x ≤≤时,图象f 的对称轴与x 轴的交点横坐标不能大于0小于2.理由见详解,定点()1,4分别到直线=1x -、3x =的距离都是2.【分析】(1)函数的对称轴为直线2x =-,则2415y x x =+-=-,当0x =时,2411y x x =+-=-,即可求解;(2)由28273a m a m=-⎧⎨=-⎩,整理得2716480m m +-=,得到图象f 的对称轴为4x =,进而求解;(3)①222232(1)3y x mx m x m x =+-+=+-+,当1x =时,无论m 为何实数,都有4y =,即可求解;②当02m ≤-≤时,抛物线开口向上,在0x m ≤≤-时,y 随x 的增大而减小,函数在2m x -≤≤时y 随x 的增大而增大,即可求解;当对称轴为2x m =->时,函数在02x ≤≤时y 随x 的增大而减小,同理可解.本题考查的是二次函数综合运用,涉及到二次函数的图象和性质,确定函数对称轴和分类求解是解题的关键.【详解】解:(1)当2m =,30x -≤≤时,241y x x =+-,函数的对称轴为直线2x =-,则2415y x x =+-=-,当0x =时,2411y x x =+-=-,易错压轴四:二次函数的最值问题例1.已知:()2110422m a a a =--≤≤,()414n b b =≤≤,2m n +=,则下列说法中正确的是()A .n 有最大值4,最小值1B .n 有最大值3,最小值32-C .n 有最大值3,最小值1D .n 有最大值3,最小值52例2.已知二次函数()2211y ax b x =--+(a ,b 为常数且0a >),当21x -≤≤-时,y随x 的增大而增大,则ab 的最大值为.练习1.4.已知二次函数()()22y x x m =---,当0x m ≤≤时,则()A .若4m >时,函数y 有最小值24m-B .若4m >时,函数y 有最小值24mC .若4m <时,函数y 有最小值24m-D .若4m <时,函数y 有最小值24m【答案】A【分析】本题主要考查了二次函数的性质,掌握根据二次函数的性质求二次函数最值的取值范围是解题的关键.先将二次函数解析式化成顶点式,然后根据各选项m 的取值范围,确定对称轴和m 的练习2.已知抛物线1C :228=-y x ,把1C 绕点()1,0旋转180︒,得到抛物线2C ,则2C 的解析式为;在1C 和2C 构成的封闭区域内作直线l y 轴,分别交1C 和2C 与点M ,N ,则MN 的最大值为.【答案】288y x x=-+12【分析】先求出抛物线1C 的顶点为(0,8)-,与x 轴交点为(2,0)和(2,0)-,由旋转的性质可得抛物线2C 的顶点为(2,8),2C 图像上的两点(0,0)和(4,0),设二次函数的顶点式,代入(0,0)即可求出解析式;设2(,28),M m m -则2(,28)N m m m -+,可得24(1)12MN m =--+,进而可求最值;【详解】解:在228=-y x 中,令0y =得2x =或2x =-,∴抛物线1C 的顶点为(0,8)-,与x 轴交点为(2,0)和(2,0)-,将(0,8)-绕点(1,0)旋转180︒,得到抛物线2C 的顶点为(2,8);将(2,0)和(2,0)-绕点(1,0)旋转180︒,分别得到2C 图像上的点(0,0)和(4,0);设抛物线2C 的解析式为2(2)8y a x =-+,把(0,0)代入得:048,a =+,解得2a =-,∴抛物线2C 的解析式为222(2)828y x x x =--+=-+;设2(,28),M m m -则(,2N m m -2228(28)MN m m m ∴=-+--由222828x x x x -+=-可得x ∵在1C 和2C 构成的封闭区域内作直线3131,m ∴-+<<+∴当1m =时,MN 取最大值故答案为:228y x x =-+;练习3.如图,在平面直角坐标系中,二次函数2y x bx c =++的图象经过点0,4A ⎛⎫- ⎪⎝⎭,点11,4B ⎛⎫ ⎪⎝⎭.(1)求此二次函数的解析式;(2)当22x -≤≤时,求二次函数2y x bx c =++的最大值和最小值;(3)点P 为此函数图象上任意一点,其僙坐标为m ,过点P 作PQ x ∥轴,点Q 的横坐标为21m -+.已知点P 与点Q 不重合,且线段PQ 的长度随m 的增大而减小.①求m 的取值范围;②当7PQ ≤时,直接写出线段PQ 与二次函数2123y x bx c x ⎛⎫=++-≤< ⎝⎭的图象只有1个交点时m 的取值范围.m 图象只有1个交点,直线13x =关于抛物线对称轴直线4132m ∴-<<-时,PQ 当423m -≤≤-时,PQ 综上所述,423m -≤≤-PQ 与图象有2个交点,1.如图,矩形ABCD 中,42AB AD ==,,E 为边AD 上一个动点,连接BE ,取BE 的中点G ,点G 绕点E 逆时针旋转90︒得到点F ,连接CF ,则CEF △面积的最小值是()A .4B .154C .3D .114∵矩形ABCD 中,4AB =∴A GEF EHF ∠=∠=∠=∴FEH EBA ∽,EF EG =∴FE FH EHEB EA AB==,2.若点(),1p 在抛物线214y x =上过y 轴上点E 作两条相互垂直的直线与抛物线分别交于A ,B ,C ,D ,且M ,N 分别是线段AB CD ,的中点,EMN 面积的最小值为.3.设二次函数214y ax x c =-+(a ,c 是常数)的图象与x 轴有交点.(1)若图象与x 轴交于A ,B 两点的坐标分别为(10)(30),,,,求函数1y 的表达式,并写出函数图象的顶点坐标.(2)若图象与x 轴只有一个交点,且过()a c ,,求此时a ,c 的值.(3)已知1a =,若函数1y 的表达式还可以写成()()1y x m x n =--(m ,n 为常数,m n ≠且2mn =),设二次函数()()2y x m x n =---,求12y y -的最小值.【答案】(1)2143y x x =-+;()21-,(2)当2a =时,2c =;当2a =-时,2c =-(3)4-【分析】(1)将(10)(30),,,代入214y ax x c =-+,可求13a c =⎧⎨=⎩,进而可得2143y x x =-+,化成顶点式可得顶点坐标;(2)令240ax x c -+=,由图象与x 轴只有一个交点,则()2440ac ∆=--=,即4ac =,将()a c ,代入214y ax x c =-+得,34c a a c =-+,可求2a =或2a =-或0a =(舍去),然后求解作答即可;易错压轴五:二次函数的平移问题例1.若抛物线242y x x =-+-向上平移()0m m >个单位后,在14x -<<范围内与x 轴只有一个交点,则m 的取值范围是()A .2m ≥B .02m <≤C .07m <≤D .27m ≤<【答案】D 【分析】先根据函数图象平移规则“上加下减求得平移后的函数解析式,根据二次函数的性质,结合函数的图象,进而可列出不等式组求解即可.【详解】解:根据题意,平移后的抛物线的表达式为242y x x m =-+-+,∵平移后抛物线的开口向下,对称轴为直线2x =,∴要使在14x -<<范围内与x 轴只有一个交点,只需=1x -时对应图象上的点在x 轴下方,4x =时对应函数图象上的点在x 轴上或x 轴上方,如图,∴1420161620m m ---+<⎧⎨-+-+≥⎩,解得27m ≤<,故选:D .【点睛】本题考查二次函数图象的平移、二次函数与x 轴的交点问题,解答的关键是掌握二次函数的性质,以及与方程、不等式的关系.例2.如图①是杭州亚运会的徽标中的钱江潮头,可近似地看成是顶点在y 轴上的二次函数,如图②所示,已知1OC =,6AB =.当潮头以2个单位每秒的速度向x 轴正方向移动的过程中,若记潮头起始位置所在的二次函数图象与坐标轴三个交点围成的面积为ABC S ,则经过秒后,潮头所在的抛物线与坐标轴的三个交点围成的面积恰好为ABC面积的一半.练习1.已知,二次函数21(,y ax bx a b =+-是常数,且0)a ≠的图象经过()2,1,(4,3)A B ,()4,1C -三个点中的两个点,平移该函数的图象,使其顶点始终在直线1y x =-上,则平移后所得抛物线与y 轴交点的纵坐标()A .有最大值为1B .有最大值为12-C .有最小值为1D .有最小值为12-【答案】B【分析】本题考查了二次函数图象的平移,一次函数的图象和性质,待定系数法的应用;首先判断出抛物线经过点A 、C ,利用待定系数法求出抛物线解析式,根据题意设出平移后的抛物线解析式,令0x =,得到纵坐标与平移距离之间的函数关系式,进而可得答案.【详解】解:∵()2,1,(4,3)A B 在直线1y x =-上,练习2.对某一个函数给出如下定义:若存在实数0m >,对于任意的函数值,都满足m y m -≤≤,则称这个函数是有界函数....,在所有满足条件的m 中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.将函数()212,0y x x t t =-+-≤≤≥的图象向上平移t 个单位,得到的函数的边界值n 满足是9542n ≤≤时,则t 的取值范围是.练习3.已知二次函数的图像L 过点0,2⎛⎫⎪⎝⎭,顶点坐标为()1,2-.(1)求这个二次函数的表达式;(2)L 与x 轴相交于A ,B 两点(点A 在点B 左侧),求A ,B 两点坐标;(3)将L 向上平移个()0k k >单位长度,与x 轴相交于1A ,1B 两点,若点(),0K k 在线段11A B 上,求k 的取值范围.1.如图,抛物线22y x x =+与直线2y x =+交于A 、B 两点,与直线2x =交于点P ,将抛物线沿着射线AB平移P经过的路程为()A.6B.132C.254D.142.如图,抛物线2286y x x =-+-与x 轴交于点A 、B ,把抛物线在x 轴及其上方的部分记作1C ,将1C 向右平移得2C ,2C 与x 轴交于点B 、D .若直线y x m =+与1C 、2C 共有2个不同的交点,则m 的取值范围是.当1y x m =+与抛物线1C :2286y x x =-+-相切时,令21286y x x x m =-+-=+,即2276x x m -+--根据相切可知方程有两个相等的解,即27∆=-解得118m =,当2y x m =+过点()1,0A 时,即:201m =+,解得21m =-,3.在平面直角坐标系xOy 中,已知抛物线2y x bx c =++与x 轴交于点(1,0)A -,(5,0)B .(1)求抛物线的表达式.(2)若抛物线22y x bx c mx =++-,当2123m x m -≤≤+时,y 有最大值12,求m 的值.(3)若将抛物线2y x bx c =++平移得到新抛物线2y x bx c n =+++,当23x -<<时,新抛物线与直线1y =有且只有一个公共点,直接写出n 的取值范围.①点时,则485191251n n +-+≥⎧⎨--+≤⎩解得69n -≤≤;②当抛物线245y x x =--与直线易错压轴六:二次函数与一元二次方程例1.将抛物线223y x x =-++中x 轴上方的部分沿x 轴翻折到x 轴下方,图像的其余部分不变,得到的新图像与直线y x m =+有4个交点,则m 的取值范围是()A .5m ≤-B .2154m -≤<-C .2134m -<<-D .3m ≥-【答案】C【分析】本题考查抛物线与x 轴的交点:把求二次函数2y ax bx c =++(a 、b 、c 是常数,0a ≠)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.解方程2230x x -++=得()1,0-,()3,0,再利用折叠的性质求出折叠部分的解析式为()()13y x x =+-,即()22313y x x x =---≤≤,然后求出直线y x m =+经过点()3,0时m 的值和当直线y x m =+与抛物线()22313y x x x =---≤≤有唯一公共点时m 的值,即可得解.掌握抛物线与x 轴交点坐标的求法及抛物线与直线交点坐标的求法是解题的关键.也考查了二次函数图像与几何变换.【详解】解:对抛物线223y x x =-++,当0y =时,得:2230x x -++=,解得:=1x -或3x =,∴抛物线与x 轴的交点为()1,0-、()3,0,∵将抛物线223y x x =-++中x 轴上方的部分沿x 轴翻折到x 轴下方,图像的其余部分不变,∴新图像中当13x -≤≤时,解析式为()()13y x x =+-,即2=23y x x --,如图,当直线y x m =+经过点()3,0时,此时直线y x m =+与新函数图像有3个交点,把()3,0代入直线y x m =+,解得:3m =-,将直线y x m =+向下平移时,有4个交点,例2.已知点()0,0.3A ,)B,()2,0.3C 在二次函数()20y ax bx c a =++≠的图象上,则方程20.70ax bx +-=的解为【答案】23-或3【分析】本题考查了二次函数的性质,。

(易错题精选)初中数学二次函数真题汇编附答案解析

(易错题精选)初中数学二次函数真题汇编附答案解析

(易错题精选)初中数学二次函数真题汇编附答案解析一、选择题1.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( )A .a +c =0B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2C .当函数在x <110时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n <2a 【答案】C【解析】【分析】根据二次函数的图象和性质对各项进行判断即可.【详解】解:∵函数经过点M (﹣1,2)和点N (1,﹣2),∴a ﹣b +c =2,a +b +c =﹣2,∴a +c =0,b =﹣2,∴A 正确;∵c =﹣a ,b =﹣2,∴y =ax 2﹣2x ﹣a ,∴△=4+4a 2>0,∴无论a 为何值,函数图象与x 轴必有两个交点,∵x 1+x 2=2a,x 1x 2=﹣1,∴|x 1﹣x 2|=>2, ∴B 正确;二次函数y =ax 2+bx +c (a >0)的对称轴x =﹣2b a =1a , 当a >0时,不能判定x <110时,y 随x 的增大而减小; ∴C 错误;∵﹣1<m <n <0,a >0,∴m +n <0,2a >0, ∴m +n <2a;∴D 正确,故选:C .【点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.2.如图是函数223(04)y x x x =--≤≤的图象,直线//l x 轴且过点(0,)m ,将该函数在直线l 上方的图象沿直线l 向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值范围是( )A .m 1≥B .0m ≤C .01m ≤≤D .m 1≥或0m ≤【答案】C【解析】【分析】 找到最大值和最小值差刚好等于5的时刻,则M 的范围可知.【详解】解:如图1所示,当t 等于0时,∵2(1)4y x =--,∴顶点坐标为(1,4)-,当0x =时,3y =-,∴(0,3)A -,当4x =时,5y =,∴(4,5)C ,∴当0m =时, (4,5)D -,∴此时最大值为0,最小值为5-;如图2所示,当1m =时,此时最小值为4-,最大值为1.综上所述:01m ≤≤,故选:C .【点睛】此题考查了二次函数与几何图形结合的问题,找到最大值和最小值的差刚好为5的m 的值为解题关键.3.如图,二次函数y =ax 2+bx +c 的图象过点(-1,0)和点(3,0),有下列说法:①bc <0;②a +b +c >0;③2a +b =0;④4ac >b 2.其中错误的是( )A .②④B .①③④C .①②④D .②③④【答案】C【解析】【分析】 利用抛物线开口方向得到0a >,利用对称轴在y 轴的右侧得到0b <,利用抛物线与y 轴的交点在x 轴下方得到0c <,则可对A 进行判断;利用当1x =时,0y <可对B 进行判断;利用抛物线的对称性得到抛物线的对称轴为直线12b x a=-=,则可对C 进行判断;根据抛物线与x 轴的交点个数对D 进行判断.【详解】解:Q 抛物线开口向上, 0a ∴>,Q 对称轴在y 轴的右侧,a ∴和b 异号,0b ∴<,Q 抛物线与y 轴的交点在x 轴下方,0c ∴<,0bc ∴>,所以①错误;Q 当1x =时,0y <,0a b c ∴++<,所以②错误;Q 抛物线经过点(1,0)-和点(3,0),∴抛物线的对称轴为直线1x =, 即12b a-=, 20a b ∴+=,所以③正确; Q 抛物线与x 轴有2个交点,∴△240b ac =->,即24ac b <,所以④错误.综上所述:③正确;①②④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小;一次项系数b 和二次项系数a 共同决定对称轴的位置(左同右异).常数项c 决定抛物线与y 轴交点(0,)c .抛物线与x 轴交点个数由△决定.4.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax 2+bx+c 的图象开口向下,∴a <0,∵二次函数y=ax 2+bx+c 的图象经过原点,∴c=0,∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧,∴a,b同号,∴b<0,∴一次函数y=ax+c,图象经过第二、四象限,反比例函数y=bx图象分布在第二、四象限,故选D.【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.5.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论,其中不正确的是()A.当m=-3时,函数图象的顶点坐标是(13,83)B.当m>0时,函数图象截x轴所得的线段长度大于3 2C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x>14时,y随x的增大而减小【答案】D【解析】分析:A、把m=-3代入[2m,1-m,-1-m],求得[a,b,c],求得解析式,利用顶点坐标公式解答即可;B、令函数值为0,求得与x轴交点坐标,利用两点间距离公式解决问题;C、首先求得对称轴,利用二次函数的性质解答即可;D、根据特征数的特点,直接得出x的值,进一步验证即可解答.详解:因为函数y=ax2+bx+c的特征数为[2m,1﹣m,﹣1﹣m];A、当m=﹣3时,y=﹣6x2+4x+2=﹣6(x﹣13)2+83,顶点坐标是(13,83);此结论正确;B、当m>0时,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得:x1=1,x2=﹣12﹣12m,|x2﹣x1|=32+12m>32,所以当m>0时,函数图象截x轴所得的线段长度大于32,此结论正确;C、当x=1时,y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0 即对任意m ,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x 轴上一个定点此结论正确.D 、当m <0时,y=2mx 2+(1﹣m )x+(﹣1﹣m ) 是一个开口向下的抛物线,其对称轴是:直线x=14m m-,在对称轴的右边y 随x 的增大而减小.因为当m <0时,11114444m m m -=->,即对称轴在x=14右边,因此函数在x=14右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选D .点睛:考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.6.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( )A .0<t <5B .﹣4≤t <5C .﹣4≤t <0D .t ≥﹣4【答案】B【解析】【分析】先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解;【详解】解:∵对称轴为直线x =2,∴b =﹣4,∴y =x 2﹣4x ,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4,∴二次函数y 的取值为﹣4≤y <5,∴﹣4≤t <5;故选:B .【点睛】本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键.7.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④【答案】D【解析】【分析】 根据抛物线开口方向得到a 0>,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a bc ++>,将23a b =-代入可得40c b ->.【详解】①根据抛物线开口方向得到0a >,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确.②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确.③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a bc ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。

初中数学 二次函数 知识点 易错题精选(含答案)

初中数学 二次函数 知识点 易错题精选(含答案)

数学数学二次函数知识点+易错题精选一、二次函数基本概念:1.二次函数的概念:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数a≠0,而b,c可以为零.二次函数的定义域是全体实数.2. 二次函数y=ax2+bx+c的结构特征:⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵ a,b,c是常数,a是二次项系数,b是一次项系数,c是常数项.二、基本形式1. 二次函数基本形式:y=ax2的性质:a 的绝对值越大,抛物线的开口越小。

2. y=ax2+c的性质:(上加下减)3. y=a(x-h)2的性质:(左加右减)4. y=a(x-h)2+k的性质:三、二次函数图象的平移1. 平移步骤:方法1:⑴将抛物线解析式转化成顶点式y=a(x-h)2+k,确定其顶点坐标(h,k);⑵保持抛物线y=ax2的形状不变,将其顶点平移到(h,k)处,具体平移方法如下:2. 平移规律在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.概括成八个字“左加右减,上加下减”.四、二次函数y=a(x-h)2+k与y=ax2+bx+c的比较从解析式上看,y=a(x-h)2+k与y=ax2+bx+c是两种不同的表达形式,后者通过配方可以得到前者,即,其中.五、二次函数y=ax2+bx+c图象的画法五点绘图法:利用配方法将二次函数y=ax2+bx+c化为顶点式y=a(x-h)2+k,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点(0,c)、以及(0,c)关于对称轴对称的点(2h,c)、与x轴的交点(x1,0),(x2,0)(若与x轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.六、二次函数y=ax2+bx+c的性质七、二次函数解析式的表示方法1. 一般式:y=ax2+bx+c(a,b,c为常数,a≠0);2. 顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0);3. 两根式:y=a(x-x1)(x-x2)(a≠0,x1,x2是抛物线与x轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即b2-4ac≥0时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数y=ax2+bx+c中,a作为二次项系数,显然a≠0.⑴当a>0时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大;⑵当a<0时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大.总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,∣a∣的大小决定开口的大小.2. 一次项系数b3. 常数项c⑴当c>0时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑵当c=0时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑶当c<0时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.总之,只要a,b,c都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x轴交点情况):一元二次方程ax2+bx+c=0是二次函数y=ax2+bx+c当函数值y=0时的特殊情况.图象与x轴的交点个数:2. 抛物线y=ax2+bx+c的图象与y轴一定相交,交点坐标为(0,c)3. 二次函数常用解题方法总结:⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数y=ax2+bx+c中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式ax2+bx+c本身就是所含字母x的二次函数;下面以a>0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数易错题精选一、选择题1.已知二次函数y=2(x+1)(x﹣a),其中a>0,且对称轴为直线x=2,则a的值是( )A.3B.5C.7D.不确定2.将抛物线y=-2x2+1向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )A.y=-2(x+1)2B.y=-2(x+1)2+2C.y=-2(x-1)2+2D.y=-2(x-1)2+13.若二次函数y=(m+1)x2-mx+m2-2m-3的图象经过原点,则m的值必为( )A.-1或3B.-1C.3D.-3或14.如图,二次函数y=ax2+bx+c(a>0)的图象与直线y=1交点坐标为(1,1),(3,1),则不等式ax2+bx+c﹣1>0的解集为()A.x>1B.1<x<3C.x<1或x>3D.x>35.下表是满足二次函数y=ax2+bx+c的五组数据,x1是方程ax2+bx+c=0的一个解,则下列选项的正确是()A.1.6<x<1.8B.1.8<x<2.0C.2.0<x<2.2D.2.2<x<2.46.在学习“一次函数与二元一次方程”时,我们知道了两个一次函数图像的交点坐标与其相应的二元一次方程组的解之间的关系.请通过此经验推断:在同一平面直角坐标系中,函数y=5x2-3x+4与y=4x2-x+3的图像交点个数有 ( )A.0个B.1个C.2个D.无数个7.在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则当t=4时,该物体所经过的路程为( )A.88米B.68米C.48米D.28米8.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣0.5x2D.y=0.5x29.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有()A.1个 B.2个 C.3个 D.4个10.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C纵坐标为y,能表示y与x的函数关系图象大致是()11.已知二次函数y=a(x-2)2+c,当x=x时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达1式正确的是()A.y1+y2>0B.y1﹣y2>0C.a(y1﹣y2)>0D.a(y1+y2)>012.如图,正方形ABCD中,AB=8 cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1 cm/s 的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为( B )二、填空题13.如果函数y=(k﹣3)+kx+1是二次函数,那么k的值一定是.14.抛物线y=2x2+x-3与x轴交点个数为_____个.15.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是.16.如图是某公园一圆形喷水池,水流在各个方向沿形状相同的抛物线落下,建立如图所示的坐标系,如果喷头所在处A(0,1.25),水流路线最高处M(1,2.25),如果不考虑其他因素,那么水池的半径至少要m,才能使喷出的水流不至落到池外.17.已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于.18.如图,抛物线y=ax2+bx+c的对称轴是x=-1.且过点(0.5,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a ﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是.(填写正确结论的序号)三、解答题19.如图所示,抛物线y=ax2+bx+c与直线y=﹣x+6分别交于x轴和y轴上同一点,交点分别是点B和点C,且抛物线的对称轴为直线x=4.(1)求出抛物线与x轴的两个交点A,B的坐标.(2)试确定抛物线的解析式.20.如图,有一个长为24米的篱笆,一面利用墙(墙的最大长度a为10米)围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式;(2)如果要围成面积为45平方米的花圃,AB的长为多少米?21.设抛物线y=mx2-2mx+3(m≠0)与x轴交于点A(a,0)和B(b,0).(1)若a=-1,求m,b的值;(2)若2m+n=3,求证:抛物线的顶点在直线y=mx+n上;(3)抛物线上有两点P(x1,p)和Q(x2,q),若x1<1<x2,且x1+x2>2,试比较p与q的大小.22.已知二次函数y=ax2-4x+c的图象过点(-1, 0)和点(2,-9).(1) 求该二次函数的解析式并写出其对称轴;(2) 已知点P(2 , -2),连结OP , 在x轴上找一点M,使△OPM是等腰三角形,请直接写出点M的坐标(不写求解过程).23.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,4),过点A作AB⊥y轴,垂足为B,连结OA。

(易错题精选)初中数学方程与不等式之二元二次方程组经典测试题附答案解析(1)

(易错题精选)初中数学方程与不等式之二元二次方程组经典测试题附答案解析(1)

(易错题精选)初中数学方程与不等式之二元二次方程组经典测试题附答案解析(1)一、选择题1.解方程:22310x y x y ⎧-=-⎨++=⎩【答案】12x y =⎧⎨=-⎩ 【解析】【分析】本题可用代入消元法进行求解,即把方程2写成x=-1-y ,代入方程1,得到一个关于y 的一元二次方程,求出y 值,进而求x .【详解】解:()()2231102x y x y ⎧-=-⎪⎨++=⎪⎩ 由(2)得:1x y =--(3)把(3)代入(1):22(1)3y y ---=-∴2y =-∴1x =原方程组的解是12x y =⎧⎨=-⎩【点睛】本题中考查了由一个二元一次方程和一个二元二次方程组成的方程组的解法,可用代入法求解.2.解方程组:2222295x xy y x y ⎧-+=⎨+=⎩. 【答案】1121x y =⎧⎨=-⎩,2212x y =⎧⎨=-⎩,3321x y =-⎧⎨=⎩,4412x y =-⎧⎨=⎩ 【解析】试题分析:变形方程组中的①,得两个一元一次方程,与组中的②联立得方程组,求解方程组即可.试题解析:解:2222295x xy y x y ⎧-+=⎨+=⎩①② 由①得:(x ﹣y )2=9所以x ﹣y =3③,x ﹣y =﹣3④③②与④②联立得:22223355x y x y x y x y -=-=-⎧⎧⎨⎨+=+=⎩⎩, 解方程组2235x y x y -=⎧⎨+=⎩,得:12122112x x y y ==⎧⎧⎨⎨=-=-⎩⎩,; 解方程组2235x y x y -=-⎧⎨+=⎩,得:34342112x x y y =-=-⎧⎧⎨⎨==⎩⎩,. 所以原方程组的解为:3124312422111122x x x x y y y y =-===-⎧⎧⎧⎧⎨⎨⎨⎨==-=-=⎩⎩⎩⎩,,,. 点睛:本题考查了二元二次方程组的解法,由两个二元二次方程组成的方程组,通常采用变形组中的一个二次方程为两个一元一次方程用代入法求解.3.解方程组:222023x xy y x y ⎧--=⎨+=⎩. 【答案】原方程组的解为1233x y =⎧⎨=-⎩,226535x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】分析:由①得出(x+y )(x-2y )=0,即可转化成两个二元一次方程组,求出方程组的解即可.详解:222023x xy y x y ⎧--⎨+⎩=①=② 由①得:(x+y )(x-2y )=0,x+y=0,x-2y=0,即原方程组化为023x y x y +⎧⎨+⎩==,2023x y x y -⎧⎨+⎩==, 解得:1233x y =⎧⎨=-⎩,226535x y ⎧=⎪⎪⎨⎪=⎪⎩, 即原方程组的解为1233x y =⎧⎨=-⎩,226535x y ⎧=⎪⎪⎨⎪=⎪⎩. 点睛:本题考查了解高次方程组,运用因式分解法把高次方程组转化成二次一次方程组是解此题的关键.4.已知1132x y =⎧⎨=-⎩是方程组22x y m x y n⎧+=⎨+=⎩的一组解,求此方程组的另一组解. 【答案】22-23x y =⎧⎨=⎩ 【解析】【分析】先将1132x y =⎧⎨=-⎩代入方程组22x y m x y n ⎧+=⎨+=⎩中求出m 、n 的值,然后再求方程组的另一组解.【详解】解:将1132x y =⎧⎨=-⎩代入方程组22x y m x y n⎧+=⎨+=⎩中得:131m n =⎧⎨=⎩ , 则方程组变形为:22131x y x y ⎧+=⎨+=⎩, 由x+y=1得:x=1-y ,将x=1-y 代入方程x 2+y 2=13中可得:y 2-y-6=0,即(y-3)(y+2)=0,解得y=3或y=-2,将y=3代入x+y=1中可得:x=-2;所以方程的另一组解为:22-23x y =⎧⎨=⎩ . 【点睛】用代入法解二元二次方程组是本题的考点,根据题意求出m 和n 的值是解题的关键.5.解方程组:224;20.x y x xy y +=⎧⎨+-=⎩ 【答案】121282,42x x y y ==⎧⎧⎨⎨=-=⎩⎩ 【解析】【分析】把2220x xy y +-=进行因式分解,化为两个一元一次方程,和4x y +=组成两个二元一次方程组,解方程即可.【详解】由②得:()()20x y x y +-=所以200x y x y +=-=或44200x y x y x y x y +=+=⎧⎧⎨⎨+=-=⎩⎩所以或, 121282,42x x y y ==⎧⎧⎨⎨=-=⎩⎩所以原方程组的解为. 【点睛】考查二元二次方程组的解法,把方程2220x xy y +-=进行因式分解,化为两个一元一次方程是解题的关键.6.解方程组:226,320.x y x xy y +=⎧⎨-+=⎩【答案】114,2;x y =⎧⎨=⎩223,3.x y =⎧⎨=⎩ 【解析】【分析】 先对x 2-3xy+2y 2=0分解因式转化为两个一元一次方程,然后联立①,组成两个二元一次方程组,解之即可.【详解】将方程22320x xy y -+= 的左边因式分解,得20x y -=或0x y -=.原方程组可以化为6,20x y x y +=⎧⎨-=⎩或6,0.x y x y +=⎧⎨-=⎩解这两个方程组得114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 所以原方程组的解是114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 【点睛】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.7.如图,在平面直角坐标系中,直线l :沿x 轴翻折后,与x 轴交于点A ,与y 轴交于点B ,抛物线与y 轴交于点D ,与直线AB 交于点E 、点F (点F 在点E 的右侧).(1)求直线AB的解析式;(2)若线段DF∥x轴,求抛物线的解析式;(3)如图,在(2)的条件下,过F作FH⊥x轴于点G,与直线l交于点H,在抛物线上是否存在P、Q两点(点P在点Q的上方),PQ与AF交于点M,与FH交于点N,使得直线PQ既平分△AFH的周长,又平分△AFH面积,如果存在,求出P、Q的坐标,若不存在,请说明理由.【答案】(1);(2);(3)(1,),(3,0).【解析】【分析】(1)设直线AB的解析式为y=kx+b,先求出直线与x轴、y轴交点坐标,根据沿x轴翻折,得到A、B的坐标,把A、B的坐标代入直线AB的解析式y=kx+b,即可求出直线AB的解析式;(2)设抛物线的顶点为P(h,0),得出抛物线解析式为:,根据DF∥x轴,得出F的坐标,把F的坐标代入直线AB 的解析式即可求出h的值,即可得到答案;(3)过M作MT⊥FH于T,得到Rt△MTF∽Rt△AGF,得到FT:TM:FM=FG:GA:FA=3:4:5,设FT=3k,TM=4k,FM=5k,求出FN的值,根据三角形的面积公式求出△MNF和△AFH的面积,根据之间的等量关系即可求出k的值,设直线MN的解析式为:y=kx+b,把M、N(6,-4),代入得到方程组,求出方程组的解即可得到直线MN的解析式,解由方程和的解即可得出P、Q的坐标.【详解】(1)解:设直线AB的解析式为y=kx+b直线与x轴、y轴交点分别为(-2,0),(0,),沿x轴翻折,∵直线,直线AB与x轴交于同一点(-2,0)∴A(-2,0).与y轴的交点(0,)与点B关于x轴对称∴B(0,),∴解得k=,b=,∴直线AB的解析式为.(2)解:设抛物线的顶点为Q(h,0),抛物线解析式为:∴D(0,).∵DF∥x轴,∴点F(2h,),又点F在直线AB上,∴,解得 h1=3,h2=(舍去),∴抛物线的解析式为.(3)解:过M作MT⊥FH于T,∴Rt△MTF∽Rt△AGF.∴FT:TM:FM=FG:GA:FA=3:4:5,设FT=3k,TM=4k,FM=5k,则FN=AH+HF+AF)-FM=16-5k,∴S△MNF=(AH+HF+AF)-FM=16-5k,又∵S△MNF=S△AFH.∴=24,解得k==或k=2 (舍去),∴FM=6,FT=,MT=,GN=4,TG=,∴M(,))、N(6,-4),代入得:=k+b且-4=6k+b,解得:k=,b=4,∴y=x+4,联立y=x+4与y=,求得P(1,),Q(3,0).答:存在P的坐标是(1,),Q的坐标是(3,0).【点睛】本题主要考查对用待定系数法求一次函数、二次函数的解析式,解二元一次方程组、解二元二次方程组,三角形相似的性质和判定,图形的旋转等知识点,综合运用这些性质进行计算是解此题的关键,此题是一个拔高的题目,有一定的难度.8.解方程组:2223,44 1.x y x xy y +=⎧⎨-+=⎩【答案】111,1;x y =⎧⎨=⎩221,57.5x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】分析:对②中的式子进行变形,把原来的二元二次方程转化为两个二元一次方程组,解方程即可.详解:2223441x y x xy y ①②+=⎧⎨-+=⎩由②得:()221x y -=即:21x y -=或21x y -=-所以原方程组可化为两个二元一次方程组: 23,21;x y x y +=⎧⎨-=⎩ 23,21;x y x y +=⎧⎨-=-⎩分别解这两个方程组,得原方程组的解是111,1;x y =⎧⎨=⎩ 221,57.5x y ⎧=⎪⎪⎨⎪=⎪⎩. 点睛:考查二元二次方程,对②中的式子进行变形,把原来的二元二次方程转化为两个二元一次方程组是解题的关键,需要学生掌握加减消元法.9.解方程组:2225210x y x y xy +=⎧⎨+--=⎩. 【答案】7343x y ⎧=⎪⎪⎨⎪=⎪⎩或12x y =⎧⎨=⎩. 【解析】【分析】将方程22210x y xy +--=变形整理求出1x y -=或1x y -=-,然后分别与25x y +=组成方程组,求出对应的x ,y 的值即可.【详解】解:2225210x y x y xy +=⎧⎨+--=⎩①②, 对②变形得:()21x y -=,∴1x y -=③或1x y -=-④,①-③得:34y =,解得:43y =, 把43y =代入①得:4253x +⨯=,解得:73x =; ①-④得:36y =,解得:2y =,把2y =代入①得:225x +⨯=,解得:1x =,故原方程组的解为:7343x y ⎧=⎪⎪⎨⎪=⎪⎩或12x y =⎧⎨=⎩. 【点睛】本题考查了解二元二次方程组,解二元二次方程组的基本思想是“转化”,这种转化包含“消元”和“降次”,掌握好消元和降次的方法和技巧是解二元二次方程组的关键.10.有一批机器零件共400个,若甲先单独做1天,然后甲、乙两人再合做2天,则还有60个未完成;若甲、乙两人合做3天,则可超产20个. 问甲、乙两人每天各做多少个零件?【答案】甲每天做60个零件,乙每天做80个零件.【解析】试题分析:根据题意,设甲每天做x 个零件,乙每天做y 个零件,然后根据根据题目中的两种工作方式列出方程组,解答即可.试题解析:设甲每天做x 个零件,乙每天做y 个零件.根据题意,得解这个方程组,得 答:甲每天做60个零件,乙每天做80个零件.11.解方程组:222(1)20(2)x y x xy y -=⎧⎨--=⎩【答案】121214,12x x y y ==⎧⎧⎨⎨=-=⎩⎩ 【解析】【分析】先由②得x +y =0或x−2y =0,再把原方程组可变形为:20x y x y -=⎧⎨+=⎩或220x y x y -=⎧⎨-=⎩,然后解这两个方程组即可.【详解】 222(1)20(2)x y x xy y -=⎧⎨--=⎩, 由②得:(x +y )(x−2y )=0,x +y =0或x−2y =0, 原方程组可变形为:20x y x y -=⎧⎨+=⎩或220x y x y -=⎧⎨-=⎩, 解得:12121412x x y y ==⎧⎧⎨⎨=-=⎩⎩,. 【点睛】此题考查了高次方程,关键是通过把原方程分解,由高次方程转化成两个二元一次方程,用到的知识点是消元法解方程组.12.解方程组:222449{0x xy y x xy ++=+=. 【答案】0{1.5x y ==,3{3x y =-=,0{ 1.5x y ==-,3{3x y ==-. 【解析】【分析】先把原方程组的每个方程化简,这样原方程组转化成四个方程组,求出每个方程组的解即可.【详解】 2224490x xy y x xy ⎧++=⎨+=⎩①②由①得:(x+2y )2=9,x +2y =±3,由②得:x (x+y )=0,x =0,x +y =0,即原方程组化为:230x y x +=⎧⎨=⎩,230x y x y +=⎧⎨+=⎩,230x y x +=-⎧⎨=⎩,230x y x y +=-⎧⎨+=⎩, 解得:01.5x y =⎧⎨=⎩,33x y =-⎧⎨=⎩,01.5x y =⎧⎨=-⎩,33x y =⎧⎨=-⎩,所以原方程组的解为:01.5x y =⎧⎨=⎩,33x y =-⎧⎨=⎩,01.5x y =⎧⎨=-⎩,33x y =⎧⎨=-⎩. 【点睛】本题考查了解二元一次方程组和解高次方程组,能把高次方程组转化成二元一次方程组是解此题的关键.13.解方程组: 22212320x y x xy y +=⎧⎨-+=⎩ 【答案】1144x y =⎧⎨=⎩,2263x y =⎧⎨=⎩ 【解析】【分析】首先把第二个方程左边分解因式,即可转化为两个一次方程,分别与第一个方程组成方程组,即可求解.【详解】解:由(2)得(x−y )(x−2y )=0.∴x −y =0或x−2y =0,原方程组可化为2120x y x y +=⎧⎨-=⎩,21220x y x y +=⎧⎨-=⎩, 解这两个方程组,得原方程组的解为:1144x y =⎧⎨=⎩,2263x y =⎧⎨=⎩. 【点睛】本题主要考查了高次方程组的解法,解题的基本思想是降次,掌握降次的方法是解高次方程的关键.14.解方程组:223403x xy y x y ⎧--=⎨-=⎩ 【答案】1141x y =⎧⎨=⎩或223232x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【解析】【分析】由代入消元法,消去一个未知数x ,得到关于y 的一元二次方程,然后用公式法解出y 的值,然后计算出x ,即可得到方程组的解.【详解】解:223403x xy y x y ⎧--=⎨-=⎩①②, 由②得:3x y =+③,把③代入①,得22(3)3(3)40y y y y +-+-=,整理得:26390y y +-=,∵2494692250b ac ∆=-=+⨯⨯=>,∴用求根公式法,得y =, 解得:1=1y ,232y =-; ∴14x =,232x =; ∴方程组的解为:1141x y =⎧⎨=⎩或223232x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【点睛】本题考查了解二元二次方程组,利用代入消元法把解方程组转变为解一元二次方程,掌握公式法解一元二次方程是解题的关键.15.(1)解方程组:221104100x y y ⎧+-=⎪-+= (2)(3)(2)(3)(10)(1)(3)(2)(12)x y x y x y x y +-=-+⎧⎨-+=++⎩【答案】(1)3x y ⎧=⎪⎨=⎪⎩139x y ⎧=⎪⎪⎨⎪=⎪⎩;(2)16x y =-⎧⎨=-⎩. 【解析】【分析】(1)将方程组的第二个方程移项、两边平方求出2x ,再代入第一个方程可求出y 的值,然后将y 的最代入第二个方程可求出x 的值,从而可得方程组的解;(2)将原方程组的两个方程通过去括号、合并同类项变形可得一个二元一次方程组,再利用加减消元法求解即可.【详解】(1)221104100x y y ⎧+-=⎪-+=①②由②410y =-两边平方化简得:22(1042)x y -=,即2284050x y y -+=代入①得:2940390y y -+=,即(3)(913)0y y --=解得:3y =或139y = 将3y =代入②12100-+=,解得:x =将139y =代入②1341009-⨯+=,解得:x =故原方程组的解为:3x y ⎧=⎪⎨=⎪⎩139x y ⎧=⎪⎪⎨⎪=⎪⎩; (2)(3)(2)(3)(10)(1)(3)(2)(12)x y x y x y x y +-=-+⎧⎨-+=++⎩去括号化简得:236103303312224xy x y xy x y xy x y xy x y -+-=+--⎧⎨+--=+++⎩,即2439x y x y -=⎧⎨+=-⎩①② +①②得:55x =-,解得:1x =-将1x =-代入①得:2(1)4y ⨯--=,解得:6y =-故原方程组的解为16x y =-⎧⎨=-⎩. 【点睛】本题考查了利用消元法解方程组,熟练掌握方程组的解法是解题关键.16.解方程组:2226691x y x xy y +=⎧⎨-+=⎩. 【答案】1411x y =⎧=⎨⎩,2216575x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】【分析】先由②得(x-3y)2=1,x-3y=1或x-3y=-1,再把原方程组分解为:2631x y x y +=⎧⎨-=⎩,2631,x y x y +=⎧⎨-=-⎩最后分别解这两个方程组即可. 【详解】解:2226691,x y x xy y +=⎧⎨-+=⎩①② 由②得:(x-3y)2=1,x-3y=1或x-3y=-1,所以原方程组变为:2631x y x y +=⎧⎨-=⎩,2631,x y x y +=⎧⎨-=-⎩解这两个方程组得:41x y =⎧⎨=⎩,16575xy ⎧=⎪⎪⎨⎪=⎪⎩所以原方程组的解为1411x y =⎧=⎨⎩,2216575x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】此题考查了解高次方程,解答此类题目一般是先把高次方程分解为低次方程,再分别解低次方程.17.温州三垟湿地的瓯柑名气很大,但今年经济不景气,某经销商为了打开销路,对1220斤瓯柑进行包装优惠出售.包装方式及售价如下图.假设用这两种包装方式恰好装完全部瓯柑.(1)若销售2箱纸盒装和3筐萝筐装瓯柑的收入共 元(请直接写出答案).(2)假如预计这批瓯柑全部售完,总销售额为3210元时.请问纸盒装包装了多少箱,箩筐装包装了多少筐?(3)但由于天气原因,瓯柑腐烂了a 斤(不能出售),在售价不变的情况下,为了保证总.销售额为....3210元,剩余瓯柑必须用以上两种方式重新包装,且恰好装完,那么纸盒装 箱, 箩筐装 箱.(请直接写出答案)【答案】(1)495;(2)纸盒装包装了16箱,箩筐装包装了18筐;(3)41,6【解析】(1)根据题意可得出方程解出即可;(2)设纸盒装包装了x 箱,箩筐装包装了y 筐,根据等量关系列出方程组,解出即可; (3)根据(3)问的条件直接写出答案即可.解:(1)495元(2)设纸盒装包装了x 箱,箩筐装包装了y 筐,根据题意得:20501220601253210x y x y +=⎧⎨+=⎩1618x y =⎧⎨=⎩解得 答:纸盒装包装了16箱,箩筐装包装了18筐.(3)41箱,6箱.“点睛”本题考查了二元一次方程组的应用,解题关键是仔细审题,理解题目所给条件,转化为方程思想求解.18.△ABC 中,BC >AC ,CD 平分∠ACB 交于AB 于D ,E ,F 分别是AC ,BC 边上的两点,EF 交于CD 于H ,(1)如图1,若∠EFC=∠A ,求证:CE•CD=CH •BC ;(2)如图2,若BH 平分∠ABC ,CE=CF ,BF=3,AE=2,求EF 的长;(3)如图3,若CE≠CF ,∠CEF=∠B ,∠ACB=60°,CH=5,CE=43,求AC BC的值.【答案】(1)见解析;(2)6 ; (3)57. 【解析】【分析】 (1)只要证明△ECH ∽△BCD ,可得EC BC =CH CD,即可推出CE•CD=CH•BC ; (2)如图2中,连接AH .只要证明△AEH ∽△HFB ,可得AE HF =EH FB ,推出FH 2=6,推出6,即可解决问题.(3)只要证明△ECF ∽△BCA ,求出CF 即可解决问题.【详解】(1)证明:如图1中,∵∠EFC+∠FEC+∠ECF=180°,∠A+∠B+∠ACB=180°,又∵∠EFC=∠A,∠ECF=∠ACB,∴∠CEF=∠B,∵∠ECH=∠DCB,∴△ECH∽△BCD,∴EC CH BC CD=,∴CE•CD=CH•BC.(2)解:如图2中,连接AH.∵BH、CH都是△ABC的角平分线,∴AH是△ABC的角平分线,∴∠BHC=180°﹣12(∠ABC+∠ACB)=180°﹣12(180°﹣∠BAC)=90°+12BAC=90°+∠HAE,∵CE=CF,∠HCE=∠HCF,∴CH⊥EF,HF=HE,∴∠CHF=90°,∵∠BHC=∠BHF+∠CHF=∠BHF+90°,∴∠HAE=∠BHF,∵∠CFE=∠CEF,∴∠AEH=∠BFH,∴△AEH∽△HFB,∴AE EH HF FB=,∴FH2=6,∴HE=HF=6,∴EF=26.(3)解:如图3中,作HM⊥AC于M,HN⊥BC于N.设HF=x,FN=y.∵∠HCM=∠HCN=30°,HC=5,∴HM=HN=52,53,∵∴∵S △HCF :S △HCE =FH :EH=FC :EC , ∴x():, 又∵x 2=y 2+(52)2, 解得∴CF=7, ∵∠CEF=∠B ,∠ECF=∠ACB ,∴△ECF ∽△BCA , ∴EC CF BC AC=,∴AC CF BC EC ===57. 【点睛】本题考查三角形综合题、相似三角形的判定和性质、角平分线的性质、二元二次方程组等知识,解题的关键是正确寻找相似三角形解决问题,学会构建方程组解决问题,属于中考压轴题.19.一个三位数的中间数字是0,其余的两个数字的和为9,且这两个数字颠倒后的三位数比这两个数字之积的33倍还多9,求此三位数.【答案】306【解析】【分析】设百位数字是x ,个位数字是y .则依据“两个数字的和为9;这两个数字颠倒后的三位数比这两个数字之积的33倍还多9”列出方程组.【详解】设百位数字是x ,个位数字是y .则9100339x y y x xy +⎧⎨++⎩==, 解得36x y ⎧⎨⎩==,90x y ⎧⎨⎩==(不符合题意,舍去). 答:这个三位数是306.【点睛】本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.20.解方程组:22222303x xy y x xy y ⎧--=⎨-+=⎩【答案】111,1.x y =⎧⎨=-⎩ 【解析】【分析】首先将由22230x xy y --=得30x y -=或0x y +=,分别与223x xy y -+=求解即可.【详解】解: 22222303x xy y x xy y ⎧--=⎨-+=⎩①② 由①得30x y -=或0x y +=,原方程组可化为22303x y x xy y -=⎧⎨-+=⎩;2203x y x xy y +=⎧⎨-+=⎩解这两个方程组得原方程组的解为11,7,7x y ⎧=⎪⎪⎨⎪=⎪⎩227x y ⎧=-⎪⎪⎨⎪=⎪⎩331,1,x y =-⎧⎨=⎩441,1.x y =⎧⎨=-⎩ 【点睛】此题考查二元二次方程,解题关键在于掌握运算法则.。

九年级数学二次函数易错题总结(含答案)

九年级数学二次函数易错题总结(含答案)

九年级数学二次函数易错题总结(含答案)一、选择题(本大题共10小题,共30.0分)1.已知二次函数y=ax2+2ax+3a−2(a是常数,且a≠0)的图象过点M(x1,−1),N(x2,−1),若MN的长不小于2,则a的取值范围是()A. a≥13B. 0<a≤13C. −13≤a<0 D. a≤−13【答案】B【解析】【分析】本题主要考查了二次函数与一元二次方程的关系及二次函数的性质,首先由点M(x1,−1),N(x2,−1),根据二次函数的性质可知M、N两点为对称点,将y=−1代入函数的解析式中得到关于x的一元二次方程,再根据一元二次方程的关于系数的关系建立关于a的不等式,解不等式即可.【解答】解:∵二次函数y=ax2+2ax+3a−2(a是常数,且a≠0)的图象过点M(x1,−1),N(x2,−1),∴−1=ax2+2ax+3a−2,则ax2+2ax+3a−1=0,设该方程的根为x1、x2,∵MN的长不小于2,∴|x1−x2|≥2,∵x1+x2=−2,x1x2=3a−2a,∴√(x1+x2)2−4x1x2≥2,∴当a<0时,无解,当x>0时,0<a≤13,故选B.2.已知二次函数y=(x+m−2)(x−m)+2,点A(x1,y1),B(x2,y2)(x1<x2)是其图象上两点,()A. 若x1+x2>2,则y1>y2B. 若x1+x2<2,则y1>y2C. 若x1+x2>−2,则y1>y2D. 若x1+x2<−2,则y1<y2【答案】B【解析】【分析】本题主要考查的是二次函数的性质,二次函数的图象上点的坐标特征的有关知识,首先确定抛物线的对称轴x=1,当x1+x2<2时,点A与点B在对称轴的左侧或点A在对称轴的左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离大,利用图象法即可判断.【解答】解:如图,当x=m或x=−m+2时,y=2,∴抛物线的对称轴x=m−m+22=1,∴当x1+x2<2时,点A与点B在对称轴的左侧或点A在对称轴的左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离大,观察图象可知,此时y1>y2,故选B.3.已知二次函数y=−x2+3mx−3n图象与x轴没有交点,则()A. 2m+n>43B. 2m+n<43C. 2m−n<43D. 2m−n>43【答案】C【解析】【试题解析】【分析】本题考查了二次函数的图象与系数的关系、抛物线与x轴的交点,解决本题的关键是抛物线与x轴没有交点时,判别式小于0的结论的熟练应用.根据二次函数y=−x2+3mx−3n图象与x轴没有交点可得判别式小于0,列出不等式求解即可.【解答】解:∵二次函数y=−x2+3mx−3n图象与x轴没有交点,∴△<0,即(3m)2−4×(−1)×(−3n)<0,9m2−12n<0,3m2<4n,∵抛物线开口向下,与x轴没有交点,∴−3n<0,∴n>0,当x=2时,y<0,即−4+6m−3n<0解得2m−n<43故选:C.4.已知二次函数y=−x²+3mx−3n,图像与x轴没有交点,则()A. 2m+n>43B. 2m+n<43C. 2m−n<43D. 2m−n>43【答案】C【解析】【分析】本题考查了以及二次函数的性质、二次函数图象与x轴的交点,关键是利用△=b2−4ac 和零之间的关系来确定图象与x轴交点的数目,即:当△>0时,函数与x轴有2个交点,当△=0时,函数与x轴有1个交点,当△<0时,函数与x轴无交点.函数y=−x2+3mx−3n的图象与x轴没有交点,用根的判别式:△<0,即可求出n>34m2,然后分别求解即可.【解答】解:∵二次函数y=−x2+3mx−3n,图像与x轴没有交点,令y=0,则0=−x2+3mx−3n,∴△=b2−4ac=9m2−12n<0,即:n>34m2,∴2m+n>2m+34m2=34(m+43)2−43≥−43,∴2m+n>−43,同理:2m−n<2m−34m2=−34(m−43)2+43≤43,即2m−n<43,故选:C.5.小明将如图两水平线l1、l2的其中一条当成x轴,且向右为正方向;两条直线l3、l4的其中一条当成y轴,且向上为正方向,并在此坐标平面中画出二次函数y=ax2−2a2x+1的图象,则()A. l1为x轴,l3为y轴B. l2为x轴,l3为y轴C. l1为x轴,l4为y轴D. l2为x轴,l4为y轴【答案】D【解析】解:∵抛物线的开口向下,∴a<0,∵抛物线的对称轴为:直线x=a<0,∴L4为y轴,∵抛物线与y轴的正半轴相交,∴L2为x轴;故选:D.根据抛物线的开口向下,可得a<0,求出对称轴为:直线x=a,则可确定L4为y轴,再根据图象与y轴交点,可得出L2为x轴,即可得出答案.本题考查了二次函数的性质,开口方向由a确定,与y轴的交点由c确定,左同右异确定b的符号.6.二次函数y=(x−1)(x−m+1)(m是常数),当−2≤x≤0时,y>0,则m的取值范围为()A. m<0B. m<1C. 0<m<1D. m>1【答案】D【解析】解:∵二次函数y =(x −1)(x −m +1)(m 是常数), ∴该函数的图象开口向上,与x 轴的交点为(1,0),(m −1,0), ∵当−2≤x ≤0时,y >0,∴当m −1≥1时,即m ≥2或当0<m −1<1,得1<m <2, 由上可得,m 的取值范围为m >1, 故选:D .根据二次函数y =(x −1)(x −m +1)(m 是常数),可以求得该函数与x 轴的交点,然后根据当−2≤x ≤0时,y >0和二次函数的性质即可得到m 的取值范围,本题得以解决. 本题考查抛物线与x 轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和分类讨论的方法解答.7. 已知y 关于x 的二次函数y =ax 2−6ax +1,当−1≤x ≤4,函数的最小值为−3,则a =( )A. −47B. −47或49C. 49D. −47或12【答案】B 【解析】 【分析】本题考查了二次函数的性质及最值,由y =ax 2−6ax +1=a (x −3)2−9a +1,可知当a >0时,最小值是−9a +1=−3,当a <0时,x =−1时,y 有最小值−3,则a +6a +1=−3,解关于a 的方程即可求得. 【解答】解:y =ax 2−6ax +1=a (x −3)2−9a +1, 其对称轴为直线x =3,当a >0时,最小值是−9a +1=−3,解得a =49;当a <0时,x =−1时,y 有最小值−3,则a +6a +1=−3,解得a =−47, 所以a 的值为49或−47, 故选:B .8. 二次函数y =(x −1)(x −m +1)(m 是常数),当−2≤x ≤0时,y >0,则m 的取值范围为( )A. m <0B. m <1C. 0<m <1D. m >1【答案】D【解析】解:∵二次函数y=(x−1)(x−m+1)(m是常数),∴该函数的图象开口向上,与x轴的交点为(1,0),(m−1,0),∵当−2≤x≤0时,y>0,∴当m−1≥1时,即m≥2或当0<m−1<1,得1<m<2,由上可得,m的取值范围为m>1,故选:D.根据二次函数y=(x−1)(x−m+1)(m是常数),可以求得该函数与x轴的交点,然后根据当−2≤x≤0时,y>0和二次函数的性质即可得到m的取值范围,本题得以解决.本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和分类讨论的方法解答.9.对于代数式ax2+bx+c(a≠0,x可取任意实数),下列说法正确的是()①存在实数p,q(p≠q),有ap2+bp+c=aq2+bq+c,则ax2+bx+c=a(x−p)(x−q)②存在实数m,n,s(m,n,s互不相等),使得am2+bm+c=an2+bn+c=as2+bs+c③如果ac>0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c④如果ac<0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+cA. ①④B. ②③C. ③④D. ④【答案】D【解析】【分析】本题考查代数式;将问题转化为函数思想求解是本题的解题关键.p,q不一定是以y=ax2+bx+c为函数与x轴的两个交点,故①错误;令y=ax2+ bx+c,根据二次函数的对称性,故②错误;若ac>0,当a>0,c>0时,且△≤0,故③错误.【解答】解:存在实数p、q(p≠q)有ap2+bp+c=aq2+bq+c,但是p,q不一定是以y=ax2+bx +c 为函数与x 轴的两个交点,故①错误;令y =ax 2+bx +c ,根据二次函数的对称性,只存在两个实数m 、n 、使am 2+bm +c =an 2+bn +c ;故②错误;若ac >0,当a >0,c >0时,且△≤0,不存在两个实数m <n ,使am 2+bm +c <0<an 2+bn +c ,故③错误; 故选:D .10. 二次函数y =(x −1)(x −m +1)(m 是常数),当−2≤x ≤0时,y >0,则m 的取值范围为( )A. m <0B. m <1C. 0<m <1D. m >1【答案】D【解析】解:∵二次函数y =(x −1)(x −m +1)(m 是常数), ∴该函数的图象开口向上,与x 轴的交点为(1,0),(m −1,0), ∵当−2≤x ≤0时,y >0,∴当m −1≥1时,即m ≥2,满足题意;或当0<m −1<1时,即1<m <2,也满足题意; 综上可得,m 的取值范围为m >1. 故选:D .根据二次函数y =(x −1)(x −m +1)(m 是常数),可以求得该函数与x 轴的交点,然后根据当−2≤x ≤0时,y >0和二次函数的性质即可得到m 的取值范围,本题得以解决. 本题考查抛物线与x 轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和分类讨论的方法解答.二、填空题(本大题共12小题,共36.0分)11. 当−3≤x ≤2时,函数y =ax²−4ax +2(a ≠0)的最大值是8,则a =_____.【答案】27或−32 【解析】 【分析】本题考查的是二次函数的性质,二次函数的最值,分类讨论有关知识,本题首先求得对称轴,根据x 的取值,分a >0和a <0两种情况讨论求得即可.【解答】解:∵函数y =ax 2−4ax +2(a ≠0)的对称轴为直线x =−−4a 2a=2,∴当a >0时,则x =−3时,函数y =ax 2−4ax +2(a ≠0)的最大值是8, ∴把x =−3代入得,9a +12a +2=8, 解得a =27;∴当a <0时,则x =2时,函数y =ax 2−4ax +2(a ≠0)的最大值是8, ∴把x =2代入得,4a −8a +2=8, 解得a =−32, 故答案为27或−32.12. 已知两点A(4,y 1),B(3,y 2)均在抛物线y =ax 2+bx +c(a ≠0)上,点C(x 0,y 0)是该抛物线的顶点,若y 1<y 2≤y 0,则x 0的取值范围是__________. 【答案】x 0<72 【解析】 【分析】本题考查了二次函数的性质,明确二次函数的对称性及函数值与对称轴远近的大小关系,是解题的关键.先判断出抛物线开口方向向下,进而按照A ,B 两点都在对称轴右侧或在对称轴两侧,分类讨论即可求解. 【解答】解:∵点C(x 0,y 0)是抛物线的顶点,y 1<y 2≤y 0, ∴抛物线有最大值,函数图象开口向下,∴当A(4,y 1),B(3,y 2)两点都在对称轴右侧时,x 0≤3;∴当A(4,y 1),B(3,y 2)两点在对称轴两侧时,则点B(3,y 2)离对称轴要近, ∴3<x 0<72,∴x 0的取值范围为:x 0<72 故答案为:x 0<72.13. 已知关于x 的二次函数y =ax 2+2ax +7a +3在−2≤x ≤5上的函数值始终是正的,则a 的取值范围_____________. 【答案】 a >0或−114<a <0 【解析】略14. 若二次函数y =ax 2+bx +c(a ≠0)的图象的顶点在第一象限,并且过点A(0,1)和点B(−1,0).设S =a +b +c ,则S 的取值范围是_______. 【答案】0<S <2 【解析】 【分析】本题考查了二次函数图象上点的坐标特点,二次函数的图像与性质, 需要灵活运用这些性质解题.将已知两点坐标代入二次函数解析式,得出c 的值及a 、b 的关系式,代入S =a +b +c 中消元,再根据对称轴的位置判断S 的取值范围即可. 【解答】解:将点(0,1)和(−1,0)分别代入抛物线解析式, 得c =1,a =b −1, ∴S =a +b +c =2b ,由题设知,对称轴x =−b2a >0且a <0, ∴2b >0.又由b =a +1及a <0可知2b =2a +2<2.∴0<S <2故本题答案为:0<S <2.15. 已知二次函数y =x 2−2(m −1)x +2m 2−m −2(m 为常数),若对于一切实数m和x 均有y ≥k ,则k 的最大值为 . 【答案】−134【解析】解:y =x 2−2(m −1)x +2m 2−m −2=(x −m +1)2+m 2+m −3, 当x =m −1时,y 有最小值m 2+m −3, 令w =m 2+m −3=(m +12)2−134≥−134,∵对于一切实数m 和x 均有y ≥k ,即k ≤w ,∵w ≥−134, ∴k ≤−134,故答案为−134.求出函数的最小值的取值范围即m 2+m −3=(m +12)2−134≥−134,由已知可知对于一切实数m 和x 均有y ≥k ,即k ≤w .本题考查二次函数的性质;熟练掌握二次函数的性质,能够将已知不等关系转化为函数的最值是解题的关键.16. 已知二次函数y =x 2−2(m −1)x +2m 2−m −2(m 为常数),若对于一切实数m和x 均有y ≥k ,则k 的最大值为____. 【答案】 −134 【解析】 【分析】本题主要考查二次函数的性质,根据二次函数的性质先将二次函数化为顶点式,求出最值,令w =m 2+m −3,根据对于一切实数m 和x 均有y ≥k ,即k ≤w ,和w 的取值范围可求解. 【解答】解:∵y =x 2−2(m −1)x +2m 2−m −2=(x −m +1)2+m 2+m −3, ∴当x =m −1时,y 有最小值m 2+m −3. 令w =m 2+m −3=(m +12)2−134≥−134,∵对于一切实数m 和x 均有y ≥k ,即k ≤w , ∵w ≥−134, ∴k ≤−134. 故答案为k ≤−134.17. 当−1≤a ≤14时,则抛物线y =−x 2+2ax +2−a 的顶点到x 轴距离的最小值为_______. 【答案】2916 【解析】 【分析】本题考查的是抛物线与x 轴的交点,熟知一元二次方程的根与抛物线与x 轴的交点之间的关系是解答此题的关键.得出抛物线y =−x 2+2ax +2−a 顶点的纵坐标表达式,把a 的取值代入即可. 【解答】解:∵抛物线y =−x 2+2ax +2−a 的顶点纵坐标=−4(2−a )−4a 2−4=2−a +a 2=(a −12)2+74, 又∵−1≤a ≤14,当a =14时,(14−12)2+74=2916,∴顶点到x 轴距离的最小值是2916. 故答案为:2916.18. 已知y =ax 2+bx +c(a ≠0)的图象经过点A(−1,1)和B(1,−1),且当−1≤x ≤1时,有−1≤y ≤1,则a 的取值范围是____. 【答案】−12≤a <0或0<a ≤12 【解析】 【分析】本题考查了二次函数的图象和性质和二次函数图象上点的坐标特征,能灵活运用性质是解此题的关键.把A 、B 的坐标代入函数解析式,即可求出a +c =0,b =−1,代入得出抛物线表达式为y =ax 2−x −a(a ≠0),得出对称轴为x =12a ,再进行判断即可. 【解答】解:∵抛物线y =ax 2+bx +c(a ≠0)经过点A(−1,1)和点B(1,−1), ∴a −b +c =1 ①,a +b +c =−1 ②, ①+ ②得:a+c=0,即a与c互为相反数, ①− ②得:b=−1,所以抛物线表达式为y=ax2−x−a(a≠0),∴对称轴为直线x=12a,当a<0时,抛物线开口向下,且x=12a<0,∵抛物线y=ax2−x−a(a≠0)经过点A(−1,1)和点B(1,−1),画图可知,当12a ≤−1时符合题意,此时−12≤a<0,当−1<12a<0时,图象不符合−1≤y≤1的要求,舍去,同理,当a>0时,抛物线开口向上,且x=12a>0,画图可知,当12a ≥1时符合题意,此时0<a≤12,当0<12a<1时,图象不符合−1≤y≤1的要求,舍去,综上所述:a的取值范围是−12≤a<0或0<a≤12,故答案为−12≤a<0或0<a≤12.19.已知二次函数y=x2−2(m−1)x+2m2−m−2(m为常数),若对于一切实数m和x均有y≥k,则k的最大值为______.【答案】−134【解析】解:y=x2−2(m−1)x+2m2−m−2=(x−m+1)2+m2+m−3,当x=m−1时,y有最小值m2+m−3,令w =m 2+m −3=(m +12)2−134≥−134,∵对于一切实数m 和x 均有y ≥k ,即k ≤w , ∵w ≥−134,∴k ≤−134, 故答案为−134.求出函数的最小值的取值范围即m 2+m −3=(m +12)2−134≥−134,由已知可知对于一切实数m 和x 均有y ≥k ,即k ≤w .本题考查二次函数的性质;熟练掌握二次函数的性质,能够将已知不等关系转化为函数的最值是解题的关键.20. 如图所示,已知二次函数y =ax 2+bx +c 的图象与x 轴交于A ,B 两点,与y 轴交于点C ,对称轴为直线x =1.直线y =−x +c 与抛物线y =ax 2+bx +c 交于C ,D 两点,D 点在x 轴下方且横坐标小于3,则下列结论:①a −b +c <0;②2a +b +c >0;③x(ax +b)≤a +b ;④a <−1.其中正确的有____________. 【答案】①②③④ 【解析】【分析】本题考查了二次函数图象与系数的关系,也考查了二次函数与不等式的关系,关键是得出x =3时,一次函数值比二次函数值大,根据二次函数的性质,二次函数图象与系数的关系,二次函数与不等式的关系逐一判断即可. 【解答】解:∵抛物线与x 轴的一个交点在(3,0)左侧, 而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点在(−1,0)右侧, ∴当x =−1时,y <0, ∴a −b +c <0,所以①正确; ∵抛物线与y 轴的交点在x 轴上方, ∴c >0,∵抛物线的对称轴为直线x =−b2a =1,∴b=−2a,∴2a+b+c=2a−2a+c>0,所以②正确;∵x=1时,二次函数有最大值,∴ax2+bx+c≤a+b+c,∴x(ax+b)≤a+b,所以③正确;∵直线y=−x+c与抛物线y=ax2+bx+c交于C,D两点,D点在x轴下方且横坐标小于3,∴x=3时,一次函数值比二次函数值大,即9a+3b+c<−3+c,而b=−2a,∴9a−6a<−3,解得a<−1,所以④正确.故答案为①②③④.21.已知四个点的坐标分别为A(−4,2),B(−3,1),C(−1,1),D(−2,2),若抛物线y=ax2与四边形ABCD的边没有交点,则a的取值范围为____.【答案】a<0或a>1或0<a<19【解析】【分析】本题考查了二次函数的性质,二次函数图象上点的坐标特征和二次函数图象与系数的关系.解题的关键是熟练掌握和运用二次函数的有关知识,熟练运用数形结合.画出图象,分几种情况讨论:当抛物线开口向下,抛物线和四边形ABCD的边没有交点;当抛物线开口向上,把点的坐标分别代入二次函数的解析式,求出a的值,再根据二次函数的性质,即可求出的a取值范围.【解答】解:如图,当抛物线开口向下,抛物y=ax2与四边形ABCD的边没有交点,∴a<0;当抛物线开口向上,把点C(−1,1)代入y=ax2,得1=(−1)2a,解得a=1,∵|a|越大,抛物线开口越小,|a|越小,抛物线开口越大,若抛物y=ax2与四边形ABCD的边没有交点,则a>1;把点B(−3,1)代入y=ax2,得1=(−3)2a,解得a=19,把点A(−4,2)代入y=ax2,得2=(−4)2a,解得a=18,∵抛物y=ax2与四边形ABCD的边没有交点,∴{0<a<19 0<a<18,解得0<a<19,综上,a的取值范围为a<0或a>1或0<a<19.故答案为a<0或a>1或0<a<19.22.二次函数,y=(x−1m)(mx−6m)(其中m>0)下列命题:①该函数图象过(6,0),②该函数图像顶点在第三象限③若当x<n时,都有y随x的增大而减小,则,n≤3+12m,正确的序号是【答案】①③【解析】【分析】本题主要考查的是二次函数的性质的有关知识,先把二次函数化简为一般式,求得对称轴与根的判别式,再根据二次函数的性质进行判断即可.【解答】解:∵y=(x−1m)(mx−6m)=mx2−(6m+1)x+6,∴对称轴为x=−−(6m+1)2m =3+12m,△=[−(6m+1)]2−24m=(6m−1)2≥0,当x=6时,y=0,∴该函数图象过(6,0);故 ①正确;∵y=(x−1m)(mx−6m)=mx2−(6m+1)x+6,∴对称轴为x=−−(6m+1)2m =3+12m>0,该函数图象顶点不在第三象限,故 ②错误;当x<n时,y随x的增大而减小,即n≤3+12m,故③正确.故答案为①③.三、解答题(本大题共19小题,共152.0分)23.在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0).(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求y1的表达式.(2)设函数y1的图象经过点(m,n),函数y2的图象经过点(1m ,1n),其中mn≠0,求m,n满足的关系式.(3)当0<x<1时,比较y1和y2的函数值的大小.【答案】解:(1)由题意,得到−b2=3,解得b=−6,∵函数y1的图象经过(a,−6),∴a2−6a+a=−6,解得a=2或3,∴函数y1=x2−6x+2或y1=x2−6x+3.(2)将点(m,n)代入y1,点(1m ,1n)代入y2,得:n=m2+mb+a①,1n =am2+bm+1②,将①两边都除以m2,得:nm2=1+bm+am2③,∴由②和③,得:1n =nm2,∵mn≠0,∴m2=n2;(3)①当0<x<1,a=1时,y1=x2+bx+1,y2=x2+bx+1,此时y1=y2;②当0<x<1,a>1时,y1−y2=x2+bx+a−(ax2+bx+1)=x2+bx+a−ax2−bx−1=(1−a)x2+ a−1=(a−1)(1−x2),∵a>1,∴a−1>0,又∵0<x<1,∴0<x2<1,∴1−x2>0,∴(a−1)(1−x2)>0,∴y1>y2;③当0<x<1,a<1时,y1−y2=x2+bx+a−(ax2+bx+1)=x2+bx+a−ax2−bx−1=(1−a)x2+ a−1=(a−1)(1−x2),∵a<1,∴a−1<0,又∵0<x<1,∴0<x2<1,∴1−x2>0,∴(a−1)(1−x2)<0,∴y1<y2.【解析】此题考查的是二次函数的性质和二次函数图象上点的坐标特征.(1)根据对称轴直线求出b的值,再将点的坐标代入y1,求出a的值,即可确定y1的表达式;(2)将点(m,n)代入y1,点(1m ,1n)代入y2,得到两个含有m,n的等式,将其中一个变形后可得到1n =nm2,再次变形可得结论;(3)分情况讨论当0<x<1,a=1时;当0<x<1,a>1时;当0<x<1,a<1时,利用作差法列式计算后判断即可.24.已知一个二次函数y1的图像与x轴的交点为(−2,0),(4,0)形状与二次函数y2=ax2相同,且y1的图像顶点在函数y=2x+b的图像上(a,b为常数),则请用含有a的代数式表示b.【答案】解:由题意得:y1=±a(x+2)(x−4)=±a(x−1)2±9a,顶点坐标为:(1,±9a),将顶点坐标代入函数y=2x+b表达式得:±9a=2+b,解得:b=9a−2或b=−9a−2,用含有a的代数式表示b为b=9a−2或b=−9a−2.【解析】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.由题意得:y1=±a(x+2)(x−4)=±a(x−1)2±9a,则顶点坐标为:(1,±9a),将顶点坐标代入函数y=2x+b表达式,即可求解.25.在平面直角坐标系xOy中,已知抛物线y1=x2−4x+4的顶点为D,直线y2=kx−2k(k≠0).(1)点D是否在直线y2=kx−2k上?请说明理由;(2)过x轴上一点M(t,0)(0≤t≤2)作x轴上的垂线,分别交y1,y2于点P,点Q.小明同学借助图象性质探究:当k满足什么条件时,存在实数t使得PQ=3.他发现以下结论:①当k>0时,存在满足条件的t;②当−2<k<−0.5时,不存在满足条件的t.你认为小明的判断是否正确?请说明理由.【答案】解:(1)∵y1=x2−4x+4=(x−2)2,∴点D的坐标为(2,0).当x=2时,y2=2k−2k=0,∴点D在直线y2=kx−2k上.(2)∵点M(t,0),∴点P(t,t2−4t+4),点Q(t,kt−2k),∴PQ=|t2−4t+4−(kt−2k)|=|t2−(4+k)t+(4+2k)|.①当P在Q点上方时,k>0∵PQ=3∴t2−(4+k)t+(4+2k)=3整理得t2−(4+k)t+(1+2k)=0,∵Δ=b2−4ac=(4+k)2−4(1+2k)=k2+12>0,∴当k>0时,存在满足条件的t值.①正确.②当P在Q点下方时,k<0∵PQ=3∴t2−(4+k)t+(4+2k)=−3即t2−(4+k)t+(7+2k)=0∵Δ=b2−4ac=(4+k)2−4(7+2k)=k2−12∴当存在PQ=3时,k2−12≥0∴k≤−2√3或k≥2√3(舍去)∴当−2<k<−0.5时,不存在满足条件的t②正确.【解析】本题是代数综合题,综合考查了一次函数和二次函数图象性质.解答时注意随着k值的变化讨论PQ的相对位置关系.(1)将抛物线解析式整理成顶点式形式,然后将顶点D的坐标代入y2=kx−2k即可(2)根据M点坐标可以得出P,Q的坐标,进而得到PQ=|t2−4t+4−(kt−2k)|= |t2−(4+k)t+(4+2k)|,①当P在Q点上方时,k>0,可得t2−(4+k)t+(1+ 2k)=0,根据根的判别式判断即可;②当P在Q点下方时,k<0,可得t2−(4+k)t+(7+2k)=0,根据判别式即可求解.26.函数y=ax2+bx+c(a≠0)的部分图象如图所示:①当y<0时,x的取值范围是__________;②方程ax2+bx+c=3的解是_________.【答案】①x<−5或x>1;②x1=−4,x2=0.【解析】【分析】本题主要考查的是二次函数的图象,二次函数的图象与一元二次方程,二次函数的性质等有关知识.①利用抛物线的对称性得到抛物线与x轴的另一个交点坐标为(−5,0),然后写出抛物线在x轴下方所对应的自变量的范围即可;②抛物线与y轴的交点为(0,3),利用抛物线对称性得到抛物线过点(−4,0),从而得到方程ax2+bx+c=3的解.【解答】解:①∵抛物线与x轴的一个交点坐标为(1,0),而抛物线的对称轴为直线x=−2,∴抛物线与x轴的另一个交点坐标为(−5,0),∴当y<0时,x的取值范围是x<−5或x>1;故答案为x<−5或x>1;②方程ax2+bx+c=3的解为x1=−4,x2=0.故答案为x1=−4,x2=0.27.已知二次函数y1=ax²+bx+c(a≠0)的图象经过三点(1,0),(−6,0),(0,−3).(1)求该二次函数的解析式.(2)若反比例函数y2=4x(x>0)图象与二次函数y1=ax²+bx+c(a≠0)的图象在第一象限内交于点A(x0,y o),x0落在两个相邻的正整数之间,请求出这两个相邻的正整数.(3)若反比例函数y2=kx(k>0,x>0)的图象与二次函数y1=ax²+bx+c(a≠0)的图象在第一象限内的交点为B,点B的横坐标为m,且满足3<m<4,求实数k的取值范围.【答案】解:(1)设抛物线解析式为y=a(x−1)(x+6),将(0,−3)代入,解得a=12.∴抛物线解析式为y1=12x2+52x−3.(2)画出二次函数y1=12x2+52x−3的图象以及反比例函数y2=4x(x>0)在第一象限内的图象,由图象可知,交点的横坐标x0落在1和2之间,从而得出这两个相邻的正整数为1与2.(3)由函数图象和函数性质可知:当3<x<4时,对y1=12x2+52x−3,y1随着x增大而增大,对y2=kx(k>0,x>0),y2随着x的增大而减小.因为B为二次函数图象与反比例函数图象的交点,所以当m=3时,由反比例函数图象在二次函数上方得y2>y1,即k3>12×32+52×3−3,解得k>27.同理,当m=4时,由二次函数图象在反比例上方得y1>y2,即12×42+52×4−3>k4,解k<60,所以k的取值范围为27<k<60.【解析】(1)已知抛物线与x轴的交点,可用交点式来设二次函数的解析式.然后将另一点的坐标代入即可求出函数的解析式.(2)画出二次函数y1=12x2+52x−3的图象以及反比例函数y2=4x(x>0)在第一象限内的图象,由图象进而可写出所求的两个正整数.(3)点B的横坐标m满足3<m<4,可通过x=3,x=4两个点上抛物线与反比例函数的大小关系即可求出k的取值范围.本题主要考查了待定系数法求二次函数的解析式,二次函数的性质,反比例函数图象上点的坐标特征,反比例函数的性质,在直角坐标系中作图、读图的能力是解题的关键.28.如图所示,矩形ABCD的四个顶点在正三角形EFG的边上,已知△EFG的边长为2,设边长AB为x,矩形ABCD的面积为S.求:(1)S关于x的函数表达式和自变量x的取值范围.(2)S的最大值及此时x的值.【答案】解:(1)过E作EM⊥FG,交DC于点N,∵四边形ABCD是矩形,∴CD//FG,AB=CD=x,∴△EDC∽△EFG,,∵△EFG是等边三角形,EM⊥FG,∴FM=12FG=1,∴EM=√22−12=√3,∴x2=√3−MN√3,∴MN=2√3−√3x2,∴S=AB·MN=x·2√3−√3x2=−√32x2+√3x(0<x<2);(2)S=−√32x2+√3x=−√32(x−1)2+√32,当x=1时,S最大=√32.【解析】本题考查了相似三角形的判定和性质,矩形的性质,等边三角形的性质,二次函数的性质,正确的理解题意是解题的关键.(1)根据矩形的性质得到△EDC∽△EFG,则,用x表示出MN的长,根据矩形的面积公式即可得到结论;(2)根据二次函数的性质即可得到结论.29.已知二次函数y=ax2+bx−3(a≠0),且a+b=3.(1)若其图象经过点(−3,0),求此二次函数的表达式.(2)若(m,n)为(1)中二次函数图象在第三象限内的点,请分别求m,n的取值范围.(3)点P(x 1,y 1),Q(x 2,y 2)是函数图象上两个点,满足x 1+x 2=2且x 1<x 2,试比较y 1和y 2的大小关系.【答案】解:(1)由题意得:{a +b =39a −3b −3=0,解得:{a =1b =2,∴此二次函数的表达式为:y =x 2+2x −3;(2)如图,∵y =x 2+2x −3=(x +1)2−4,且(m,n)是二次函数图象在第三象限内的点,∴−4≤n <0,当y =0时,x 2+2x −3=0, x =−3或1,∴图象过(1,0)和(−3,0), ∴−3<m <0;(3)由条件可得:y 1=ax 12+(3−a)x 1−3,y 2=ax 22+(3−a)x 2−3,∴y 2−y 1=(x 2−x 1)[a(x 2+x 1)+3−a], ∵x 1+x 2=2且x 1<x 2, ∴y 2−y 1=(x 2−x 1)(a +3), ①当a >−3时,y 2>y 1, ②当a =−3时,y 2=y 1, ③当a <−3时,y 2<y 1.【解析】(1)依据待定系数法可求得二次函数的解析式;(2)利用配方法可得:y =x 2+2x −3=(x +1)2−4,图象过(1,0)和(−3,0),可得结论; (3)根据已知得:b =3−a ,并将P 和Q 的坐标分别代入抛物线的解析式,并计算y 2−y 1=(x 2−x 1)(a +3),分情况讨论可得结论.本题主要考查的是二次函数的性质,抛物线与x 轴的交点,利用数形结合思想求得m 和n 的取值范围是解题的关键.30. 已知抛物线y =x 2+bx +c(b >0)的顶点为A 点,(1)当A(−1,−2)时,求b 与c 的值. (2)若直线y =mx +n(n ≠0)经过A 点,①当直线与抛物线都与y 轴交于同一点,求b 与m 的关系式;②当直线与抛物线的另一个交点B 的横坐标是方程x 2−mx +14=0的一个根.求m 的最小值.【答案】解:(1)∵抛物线y =x 2+bx +c(b >0)的顶点为A(−1,−2),∴{−b2=−14c−b 24=−2, 解得b =2,c =−1; (2)①把(−b 2,4c−b 24)代入y =mx +n 得4c−b 24=−b2m +n ,∵直线与抛物线都与y 轴交于同一点, 所以c =n , 所以4n−b 24=−bm 2+n ,整理得b =2m ;②设点A 的横坐标为x 1,点B 的横坐标为x 2, 则x 1=−b2①,令mx +n =x 2+bx +c ,整理得x 2+(b −m)x +c −n =0, 由根与系数的关系得, x 1+x 2=m −b②, 将①代入②,得 x 2=m −b 2③,把③代入x 2−mx +14=0,得, b 2−2mb +1=0, ∵b >0, ∴{m >04m 2−4≥0,解得m ≥1, ∴m 的最小值为1.【解析】(1)根据定顶点坐标公式求解;(2)①把A 代入y =mx +n ,再根据直线与抛物线与y 轴同交点,可确定b ,m 关系; ②设点A 的横坐标为x 1,点B 的横坐标为x 2,根据根与系数的关系可得x 1与x 2的关系,然后用m ,b 的代数式表示x 2,再将其代入方程x 2−mx +14=0,可得m 与b 的关系,从而确定m 最小值.本题考查二次函数根与系数的关系、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.31.已知一个二次函数y1的图象与x轴的交点为(−2,0),(4,0),形状与二次函数y2=ax2相同且开口方向与之相反,且y1的图象顶点在函数y=2x+b的图象上(a,b为常数),则请用含有a的代数式表示b.【答案】解:由题意得:y1=−a(x+2)(x−4)=−a(x−1)2+9a,顶点坐标为:(1,9a),将顶点坐标代入函数y=2x+b表达式得:9a=2+b,故b=9a−2.【解析】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.由题意得:y1=−a(x+2)(x−4)=−a(x−1)2+9a,则顶点坐标为:(1,9a),将顶点坐标代入函数y=2x+b表达式,即可求解.32.已知一个二次函数y1的图象与x轴的交点为(−4,0),(8,0),形状与二次函数y2=ax2相同,且y1的图象顶点在函数y=4x+b的图象上(a,b为常数),则请用含有a的代数式表示b.【答案】解:由题意得:y1=a(x+4)(x−8)=a(x−2)2−36a,顶点坐标为:(2,−36a),将顶点坐标代入函数y=4x+b表达式得:−36a=8+b,故b=−36a−8.【解析】本题考查的是二次函数的性质,一次函数图象点的坐标特征有关知识,由题意得:y1=a(x+4)(x−8)=a(x−2)2−36a,则顶点坐标为:(2,−36a),将顶点坐标代入函数y=4x+b表达式,即可求解.33.已知二次函数y=−x2+2kx+1−k(k是常数)(1)求此函数的顶点坐标.(2)当x≥1时,y随x的增大而减小,求k的取值范围.(3)当0≤x≤1时,该函数有最大值3,求k的值.【答案】解:(1)∵抛物线的解析式为y=−x2+2kx+1−k=−(x−k)2+1−k+k2,∴抛物线的顶点坐标为(k,1−k+k2);(2)∵抛物线的解析式为y=−(x−k)2+1−k+k2,∴当x≥k时,y随x的增大而减小,∵当x≥1时,y随x的增大而减小,∴k≤1.(3)①当k<0时,x=0时,函数值最大,最大值为1−k,∴1−k=3,解得k=−2;②当0≤k≤1时,最大值为1−k+k2,则1−k+k2=3,解得k=2(舍去)或−1(舍去);③当k>1时,x=1时,函数值最大,最大值为−1+2k+1−k,∴−1+2k+1−k=3,解得k=3综上,当0≤x≤1时,该函数有最大值3,则k=−2或k=3.【解析】本题考查二次函数的性质,二次函数的最值,分类讨论是解题的关键.(1)配方得到顶点式,可确定顶点坐标;(2)根据二次函数的性质即可得到k的取值;(3)分三种情况讨论,关键题意得到关于k的方程,解方程即可求得.34.已知二次函数y=ax2−4ax+3+b(a≠0).(1)求出二次函数图象的对称轴;(2)若该函数的图象经过点(1,3),且整数a,b满足4<a+|b|<9,求二次函数的表达式;(3)在(2)的条件下且a>0,当t≤x≤t+1时有最小值3,求t的值.2=2;【答案】解:(1)二次函数图象的对称轴是x=−−4a2a(2)该二次函数的图象经过点(1,3),∴a−4a+3+b=3,∴b=3a,把b=3a代入4<a+|b|<9,得4<a +3|a|<9.当a >0时,4<4a <9,则1<a <94. 而a 为整数, ∴a =2,则b =6,∴二次函数的表达式为y =2x 2−8x +9; 当a <0时,4<−2a <9,则−92<a <−2. 而a 为整数,∴a =−3或−4,则对应的b =−9或−12,∴二次函数的表达式为y =−3x 2+12x −6或y =−4x 2+16x −9; (3)在(2)的条件下,且a >0,所以y =2x 2−8x +9, 开口向上,对称轴为直线x =2, ①当t +1<2时,即t <1.y 随着x 的增大而减少,当x =t +1时,y 取得最小值.即2(t +1)2−8(t +1)+9=32,解得t 1=12,t 2=32(舍去), 所以t =12, ②当t ≤2≤t +1时,即1≤t ≤2. 此时,x =2时,y 取最小为1≠32, ③当t >2时,y 随着x 的增大而增大,当x =t 时,y 取得最小值. 即2t 2−8t +9=32,解得t 1=32(舍去),t 2=52 ,所以t =52, 综上可得:t 的值为12或52.。

二次函数易错题汇编含答案

二次函数易错题汇编含答案

二次函数易错题汇编含答案一、选择题1.如图是二次函数y =以2+云+。

的图象,有下面四个结论:①川c>0;@a-b + c>0; ®2a + 3b>0; ®c-4b>0,其中正确的结论是()A.①②B.①②③C.①③④D.①②④【答案】D【解析】【分析】八b八,八根据抛物线开口方向得到a > 0,根据对称轴x = -—> 0得至1」b < 0,根据抛物线与y 轴2 a的交点在x轴下方得到C < 0,所以abc > 0;x = -1时,由图像可知此时y > 0,所以b 1a -b +c > 0;由对称轴x =--=-,可得2a + 3b = 0 ;当x = 2时,由图像可知此时2 a 3y > 0,即4a + 2b + c > 0,将2a = -3b代入可得c - 4b > 0.【详解】b①根据抛物线开口方向得到a > 0,根据对称轴x =-丁〉0得至1」b < 0,根据抛物线与y 2 a轴的交点在x轴下方得到c < 0,所以abc > 0,故①正确.②x = 一1时,由图像可知此时y > 0,即a - b + c > 0,故②正确._ b 1③由对称轴x = -- = -,可得2a + 3b = 0,所以2a + 3b > 0错误,故③错误;2 a 3④当x = 2时,由图像可知此时y > 0,即4a + 2b + c > 0,将③中2a + 3b = 0变形为2 a = -3b,代入可得c - 4b > 0,故④正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。

2.已知二次函数y= ax2+bx+c的图象如图所示,那么下列结论中正确的是()A . ac >0B . b >0【答案】D 【解析】 【分析】根据二次函数的图象与性质即可求出答案. 【详解】A.由图象可知:a <0, c >0,・•・ac <0,故A 错误; bB.由对称轴可知:x = -- <0,2 a・•・b <0,故B 错误;b C.由对称轴可知:x = --- =- 1,2 a... b = 2 a ,・「x =1 时,y =0,... a +b +c =0,;.c =- 3 a ,a +c =a - 3a =- 2a >0,故 C 错误;故选D . 【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型. 3.已知抛物线y = 2x 2-4x + C 与直线y = 2有两个不同的交点.下列结论:①c < 4 ;②当x = 1时,y有最小值c - 2 ;③方程2x 2 - 4x + c - 2 = 0有两个不等实根;④若连接 、、人一一「,,一,人,口 “ — 八, 5 4t这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则c 二万;其中正确的结论的 个数是() A . 4 B . 3C . 2D . 1【答案】B 【解析】 【分析】根据“抛物线y = 2x 2 -4x + c 与直线y = 2有两个不同的交点〃即可判断①③;根据C. a+c <0D. a +b +c =0抛物 线的对称轴为直线x=1即可判断②;根据等腰直角三角形的性质,用c 表达出两个交点, 代入抛物线解析式计算即可判断④. 【详解】解::抛物线y = 2X 2- 4X + C 与直线y = 2有两个不同的交点,・ •, 2X 2 - 4X + c = 2有两个不相等的实数根,即2X 2 - 4X + c - 2 = 0有两个不相等的实数根,故③正确,.・.△ = 16 - 4 x 2 x (c - 2)> 0,解得:c < 4,故①正确;・ ・•抛物线的对称轴为直线x=1,且抛物线开口向上,・ ,.当x=1时,y = c-2为最小值,故②正确;若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形, 则顶点(1, c-2)到直线y=2的距离等于两交点距离的一半,・ ・•顶点(1, c-2)到直线y=2的距离为2- (c-2) =4-c ,,两交点的横坐标分别为1- (4-c ) =c-3与1+ (4-c ) =5-c ,两交点坐标为(c-3,2)与(5-c,2),将(c-3,2)代入 y = 2X 2- 4X + c 中得:2(c - 3)2 - 4(c - 3) + c = 27解得:c =5或c = 4・ ・, c < 4 ,7・ •・c =-,故④错误,・ •・正确的有①②③,故选:B . 【点睛】本题考查了二次函数与一元二次方程的关系以及二次函数的性质,解题的关键是熟练掌握 函数与方程之间的联系.4.已知抛物线y =x 2+ (2a +1) x +a 2 - a ,则抛物线的顶点不可能在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得. 【详解】2a +1 1抛物线y =x 2+ (2a +1) x +a 2 - a 的顶点的横坐标为:x = --- 2— = 一 a - 2-,4 a22- a)-(2a +1» 1纵坐标为:y = _________________ =- 2a - 4 ,3・••抛物线的顶点横坐标和纵坐标的关系式为:y=2x + 4 ,・•・抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.5.已知,二次函数y=ax2+bx+a2+b (aM)的图象为下列图象之一,则a的值为()【答案】A【解析】【分析】分别对图形进行讨论:若二次函数的图形为第一个,则b=0,其顶点坐标为(0, 32),与图形中的顶点坐标不符;若二次函数的图形为第二个,则b=0,根据顶点坐标有a2=3,由抛物线与x 的交点坐标得到X2=a,所以a=-4,它们相矛盾;若二次函数的图形为第三个,把点卜1, 0)代入解析式得到a-b+a2+b=0,解得a=-l;若二次函数的图形为第四个,把(-2 0) 和(0, 0)分别代入解析式可计算出a的值.【详解】解:若二次函数的图形为第一个,对称轴为y轴,则b=0, y=ax2+a2,其顶点坐标为(0,32),而a2>0,所以二次函数的图形不能为第一个;若二次函数的图形为第二个,对称轴为y轴,则b=0, y=ax2+a2, a2=3,而当y=0时,x2=-a,所以-a=4, a=-4,所以二次函数的图形不能为第二个;若二次函数的图形为第三个,令x=-l, y=0,则a-b+a2+b=0,所以a=-l;若二次函数的图形为第四个,令x=0, y=0,则a2+b=0①;令x=-2, y=0,则4a-2b+a2+b=0②,由①②得a=-2,这与图象开口向上不符合,所以二次函数的图形不能为第四个.故选A.【点睛】本题考查了二次函数y=ax2+bx+c(a,0)的图象与系数的关系:a>0,开口向上;a<0,开口. ... .............................................. b 一,,一, b 4ac - b2.... .............向下;抛物线的对称轴为直线><=:;顶点坐标为(;一, ----- );也考查了点在抛物线2a 2a 4a上则点的坐标满足抛物线的解析式.,C (1, y3)为二次函数片X2+4x—m的图象上的三6若羯 f y i),B(—3,y2)点,则y 1,y2,y3的大小关系是()A.y < y < yB.y < y < yC.y < y < yD.y < y < y1 2 3 3 1 2 2 1 3 1 3 2【答案】C【解析】【分析】分别将点的坐标代入二次函数解析式,然后进行判断即可.【详解】解:y i=(-4) 2+4X (-4) —m =16-16 —m = - m ,y2= (-3) 2+4X (-3) —m =9-12 —m = -3-m ,y『12+4x -m 1=1+4 -m =5 -m ,V-3 -m < -m <5 -m ,•••丫2<丫1<丫3.故选:C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键在于三个函数值的大小不受m的影响.7.二次函数y=ax2 + bx + c ( a,b,c是常数,a丰0 )的自变量%与函数值》的部分对应值如下表:且当x = -1时,与其对应的函数值y > 0.有下列结论:①abc > 0 ;②-2和3是关于20x的万程ax2 + bx + c = t的两个根;③0 < m + n < — .其中,正确结论的个数是() A. 0 B. 1 C. 2 D. 3【答案】C【解析】【分析】首先确定对称轴,然后根据二次函数的图像和性质逐一进行分析即可求解.【详解】•・•由表格可知当x=0和x=1时的函数值相等都为-2b 1二抛物线的对称轴是:x=--=-;2 a 2•a、b 异号,且b=-a;•二当x=0 时y=c=-2• c < 0.,.abc>0,故①正确;•・•根据抛物线的对称性可得当x=-2和x=3时的函数值相等都为t .,.-2和3是关于%的方程狈2 +bx + c = t 的两个根;故②正确; b=-a, c=-2,二次函数解析式:j =-ax-2,・,当%=-:时,与其对应的函数值y > 0.2.38..—a — 2> 0 ,..a > —; 4 3•・•当x=-1和x=2时的函数值分别为m 和n , .m=n=2a-2,20m+n=4a-4 > —;故③错误 故选:C . 【点睛】本题考查了二次函数的综合题型,主要利用了二次函数图象与系数的关系,二次函数的对 称性,二次函数与一元二次方程等知识点,要会利用数形结合的思想,根据给定自变量工 与函数值 》 的值结合二次函数的性质逐条分析给定的结论是关键.8.如图是抛物线y = ax 2+bx +c (。

中考数学二次函数(大题培优 易错 难题)含答案

中考数学二次函数(大题培优 易错 难题)含答案

一、二次函数 真题与模拟题分类汇编(难题易错题)1.在平面直角坐标系中,我们定义直线y=ax-a 为抛物线y=ax 2+bx+c (a 、b 、c 为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“衍生三角形”.已知抛物线223432333y x x =--+与其“衍生直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“衍生直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将△ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N ,若△AMN 为该抛物线的“衍生三角形”,求点N 的坐标;(3)当点E 在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F ,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E 、F 的坐标;若不存在,请说明理由. 【答案】(1)2323y=;(-2,231,0); (2)N 点的坐标为(0,3-3),(0,23+3); (3)E (-1,43F (023)或E (-1,43),F (-4103)【解析】 【分析】(1)由抛物线的“衍生直线”知道二次函数解析式的a 即可;(2)过A 作AD ⊥y 轴于点D ,则可知AN=AC ,结合A 点坐标,则可求出ON 的长,可求出N 点的坐标;(3)分别讨论当AC 为平行四边形的边时,当AC 为平行四边形的对角线时,求出满足条件的E 、F 坐标即可 【详解】 (1)∵23432333y x x =--+a=233-,则抛物线的“衍生直线”的解析式为2323y=x+33-; 联立两解析式求交点2234323332323y=x+33y x x ⎧=--+⎪⎪⎨⎪-⎪⎩,解得x=-2y=23⎧⎪⎨⎪⎩或x=1y=0⎧⎨⎩,∴A (-2,23),B (1,0); (2)如图1,过A 作AD ⊥y 轴于点D , 在223432333y x x =--+中,令y=0可求得x= -3或x=1, ∴C (-3,0),且A (-2,23),∴AC=22-++2133=(23)()由翻折的性质可知AN=AC=13, ∵△AMN 为该抛物线的“衍生三角形”, ∴N 在y 轴上,且AD=2, 在Rt △AND 中,由勾股定理可得 DN=22AN -AD =13-4=3, ∵OD=23,∴ON=23-3或ON=23+3,∴N 点的坐标为(0,23-3),(0,23+3);(3)①当AC 为平行四边形的边时,如图2 ,过F 作对称轴的垂线FH ,过A 作AK ⊥x 轴于点K ,则有AC ∥EF 且AC=EF , ∴∠ ACK=∠ EFH , 在△ ACK 和△ EFH 中ACK=EFHAKC=EHF AC=EF ∠∠⎧⎪∠∠⎨⎪⎩∴△ ACK ≌△ EFH ,∴FH=CK=1,HE=AK=23,∵抛物线的对称轴为x=-1,∴ F点的横坐标为0或-2,∵点F在直线AB上,∴当F点的横坐标为0时,则F(0,233),此时点E在直线AB下方,∴E到y轴的距离为EH-OF=23-233=433,即E的纵坐标为-433,∴ E(-1,-433);当F点的横坐标为-2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵ C(-3,0),且A(-2,23),∴线段AC的中点坐标为(-2.5,3),设E(-1,t),F(x,y),则x-1=2×(-2.5),y+t=23,∴x= -4,y=23-t,23-t=-233×(-4)+233,解得t=43-3,∴E(-1,43-3),F(-4,1033);综上可知存在满足条件的点F,此时E(-1,-433)、(0,233)或E(-1,43 -3),F(-4,1033)【点睛】本题是对二次函数的综合知识考查,熟练掌握二次函数,几何图形及辅助线方法是解决本题的关键,属于压轴题2.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B . (1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)﹣3;(2)y 13=x 2﹣3;(3)M 的坐标为(3632). 【解析】 【分析】(1)把C (0,﹣3)代入直线y =x +m 中解答即可;(2)把y =0代入直线解析式得出点B 的坐标,再利用待定系数法确定函数关系式即可; (3)分M 在BC 上方和下方两种情况进行解答即可. 【详解】(1)将C (0,﹣3)代入y =x +m ,可得: m =﹣3;(2)将y =0代入y =x ﹣3得: x =3,所以点B 的坐标为(3,0),将(0,﹣3)、(3,0)代入y =ax 2+b 中,可得:390b a b =-⎧⎨+=⎩, 解得:133a b ⎧=⎪⎨⎪=-⎩,所以二次函数的解析式为:y 13=x 2﹣3; (3)存在,分以下两种情况:①若M 在B 上方,设MC 交x 轴于点D , 则∠ODC =45°+15°=60°, ∴OD =OC •tan30°3=设DC 为y =kx ﹣33,0),可得:k 3=联立两个方程可得:233133y x y x ⎧=-⎪⎨=-⎪⎩, 解得:121203336x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩, 所以M 1(36);②若M 在B 下方,设MC 交x 轴于点E , 则∠OEC =45°-15°=30°, ∴OE =OC •tan60°=3设EC 为y =kx ﹣3,代入(30)可得:k 3=联立两个方程可得:2333133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩, 解得:12120332x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩, 所以M 23,﹣2).综上所述M 的坐标为(3,63,﹣2). 【点睛】此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.3.新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y (盒)与销售单价x (元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?【答案】(1)w=﹣2x 2+480x ﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润3200元(3)销售单价应定为100元 【解析】 【分析】 (1)用每件的利润()80x -乘以销售量即可得到每天的销售利润,即()()()80802320w x y x x =-=--+, 然后化为一般式即可;(2)把(1)中的解析式进行配方得到顶点式()221203200w x =--+,然后根据二次函数的最值问题求解;(3)求2400w =所对应的自变量的值,即解方程()2212032002400x --+=.然后检验即可. 【详解】(1)()()()80802320w x y x x =-=--+, 2248025600x x =-+-,w 与x 的函数关系式为:2248025600w x x =-+-; (2)()2224802560021203200w x x x =-+-=--+, 2080160x -<≤≤,,∴当120x =时,w 有最大值.w 最大值为3200.答:销售单价定为120元时,每天销售利润最大,最大销售利润3200元. (3)当2400w =时,()2212032002400x --+=. 解得:12100140x x ,.== ∵想卖得快,2140x ∴=不符合题意,应舍去.答:销售单价应定为100元.4.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x 元,每星期的销售量为y 件.(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】(1)根据售量与售价x(元/件)之间的关系列方程即可得到结论.(2)设每星期利润为W元,构建二次函数利用二次函数性质解决问题.【详解】解:(1)根据题意得,(60﹣x)×10+100=3×100,解得:x=40,60﹣40=20元,答:这一星期中每件童装降价20元;(2)设利润为w,根据题意得,w=(x﹣30)[(60﹣x)×10+100]=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.5.如图1,抛物线经过平行四边形的顶点、、,抛物线与轴的另一交点为.经过点的直线将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线上方抛物线上一动点,设点的横坐标为.(1)求抛物线的解析式;(2)当何值时,的面积最大?并求最大值的立方根;(3)是否存在点使为直角三角形?若存在,求出的值;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;(2)当t=时,△PEF的面积最大,其最大值为×,最大值的立方根为=;(3)存在满足条件的点P,t的值为1或【解析】试题分析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由A、C坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E点坐标,从而可求得直线EF的解析式,作PH⊥x轴,交直线l于点M,作FN⊥PH,则可用t表示出PM的长,从而可表示出△PEF的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x 轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.试题解析:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(﹣1,0),∴C(1,0),∴线段AC的中点为(,),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,∴直线l的解析式为y=﹣x+,联立直线l和抛物线解析式可得,解得或,∴F(﹣,),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,﹣t2+2t+3),M(t,﹣t+),∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,∴S△PEF=S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+×,∴当t=时,△PEF的面积最大,其最大值为×,∴最大值的立方根为=;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴,即,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去),综上可知存在满足条件的点P,t的值为1或.考点:二次函数综合题6.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线y=x2+bx+c的表达式;(2)点D为抛物线对称轴上一点,当△BCD是以BC为直角边的直角三角形时,求点D的坐标;(3)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值.【答案】(1)y=x2﹣4x+3;(2)(2,﹣1);(3)42【解析】试题分析:(1)利用待定系数法求抛物线解析式;(2)如图1,设D(2,y),利用两点间的距离公式得到BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,然后讨论:当BD为斜边时得到18+4+(y﹣3)2=1+y2;当CD 为斜边时得到4+(y﹣3)2=1+y2+18,再分别解方程即可得到对应D的坐标;(3)先证明∠CEF=90°得到△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图2,△EPG、△PHF都为等腰直角三角形,则PE=22PG,PF=2PH,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),接着利用t表示PF、PE,这样PE+EF=2PE+PF=﹣2t2+42t,然后利用二次函数的性质解决问题.试题解析:解:(1)把B(3,0),C(0,3)代入y=x2+bx+c得:9303b cc++=⎧⎨=⎩,解得:43bc=-⎧⎨=⎩,∴抛物线y=x2+bx+c的表达式为y=x2﹣4x+3;(2)如图1,抛物线的对称轴为直线x=﹣42-=2,设D(2,y),B(3,0),C(0,3),∴BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,当△BCD是以BC为直角边,BD为斜边的直角三角形时,BC2+DC2=BD2,即18+4+(y﹣3)2=1+y2,解得:y=5,此时D点坐标为(2,5);当△BCD是以BC为直角边,CD为斜边的直角三角形时,BC2+DB2=DC2,即4+(y﹣3)2=1+y2+18,解得:y=﹣1,此时D点坐标为(2,﹣1);(3)易得BC的解析式为y=﹣x+3.∵直线y=x+m与直线y=x平行,∴直线y=﹣x+3与直线y=x+m垂直,∴∠CEF=90°,∴△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图2,△EPG、△PHF都为等腰直角三角形,PE=22PG,PF=2PH,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),∴PF=2PH=2t,PG=﹣t+3﹣(t2﹣4t+3)=﹣t2+3t,∴PE=22PG=﹣22t2+322t,∴PE+EF=PE+PE+PF=2PE+PF=﹣2t2+32t+2t=﹣2t2+42t=﹣2(t﹣2)2+42,当t=2时,PE+EF的最大值为42.点睛:本题考查了二次函数的综合题.熟练掌握等腰直角三角形的性质、二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,记住两点间的距离公式.7.课本中有一道作业题:有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长是多少mm?小颖解得此题的答案为48mm,小颖善于反思,她又提出了如下的问题.(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm?请你计算.(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.【答案】(1)2407mm,4807mm;(2)PN=60mm,40PQ mm.【解析】【分析】(1)、设PQ=y(mm),则PN=2y(mm),AE=80-y(mm),根据平行得出△APN和△ABC 相似,根据线段的比值得出y的值,然后得出边长;(2)、根据第一题同样的方法得出y与x的函数关系式,然后求出S与x的函数关系式,根据二次函数的性质得出最大值.【详解】(1)、设PQ=y(mm),则PN=2y(mm),AE=80-y(mm)∵PN∥BC,∴=,△APN∽△ABC∴=∴=∴=解得 y=∴2y=∴这个矩形零件的两条边长分别为mm,mm(2)、设PQ=x (mm ),PN=y (mm ),矩形面积为S ,则AE=80-x (mm ).. 由(1)知=∴=∴ y=则S=xy===∵∴ S 有最大值∴当x=40时,S 最大=2400(mm 2) 此时,y==60 .∴面积达到这个最大值时矩形零件的两边PQ 、PN 长分别是40 mm ,60 mm . 考点:三角形相似的应用8.如图,已知抛物线2y ax bx c =++经过A (-3,0),B (1,0),C (0,3)三点,其顶点为D ,对称轴是直线l ,l 与x 轴交于点H .(1)求该抛物线的解析式;(2)若点P 是该抛物线对称轴l 上的一个动点,求△PBC 周长的最小值;(3)如图(2),若E 是线段AD 上的一个动点( E 与A 、D 不重合),过E 点作平行于y 轴的直线交抛物线于点F ,交x 轴于点G ,设点E 的横坐标为m ,△ADF 的面积为S . ①求S 与m 的函数关系式;②S 是否存在最大值?若存在,求出最大值及此时点E 的坐标; 若不存在,请说明理由.【答案】(1)2y x 2x 3=--+.(2)3210. (3)①2S m 4m 3=---.②当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2). 【解析】 【分析】(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可.(2)根据BC 是定值,得到当PB+PC 最小时,△PBC 的周长最小,根据点的坐标求得相应线段的长即可.(3)设点E 的横坐标为m ,表示出E (m ,2m+6),F (m ,2m 2m 3--+),最后表示出EF 的长,从而表示出S 于m 的函数关系,然后求二次函数的最值即可. 【详解】解:(1)∵抛物线2y ax bx c =++经过A (-3,0),B (1,0), ∴可设抛物线交点式为()()y a x 3x 1=+-.又∵抛物线2y ax bx c =++经过C (0,3),∴a 1=-. ∴抛物线的解析式为:()()y x 3x 1=-+-,即2y x 2x 3=--+. (2)∵△PBC 的周长为:PB+PC+BC ,且BC 是定值. ∴当PB+PC 最小时,△PBC 的周长最小. ∵点A 、点B 关于对称轴I 对称, ∴连接AC 交l 于点P ,即点P 为所求的点.∵AP=BP ,∴△PBC 的周长最小是:PB+PC+BC=AC+BC.∵A (-3,0),B (1,0),C (0,3),∴2,10. ∴△PBC 的周长最小是:3210.(3)①∵抛物线2y x 2x 3=--+顶点D 的坐标为(﹣1,4),A (﹣3,0),∴直线AD 的解析式为y=2x+6∵点E 的横坐标为m ,∴E (m ,2m+6),F (m ,2m 2m 3--+) ∴()22EF m 2m 32m 6m 4m 3=--+-+=---.∴()22DEF AEF 1111S S S EF GH EF AG EF AH m 4m 32m 4m 32222∆∆=+=⋅⋅+⋅⋅=⋅⋅=⋅---⋅=---.∴S 与m 的函数关系式为2S m 4m 3=---. ②()22S m 4m 3m 21=---=-++,∴当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2).9.如图1,已知一次函数y=x+3的图象与x 轴、y 轴分别交于A 、B 两点,抛物线2y x bx c =-++过A 、B 两点,且与x 轴交于另一点C .(1)求b 、c 的值;(2)如图1,点D 为AC 的中点,点E 在线段BD 上,且BE=2ED ,连接CE 并延长交抛物线于点M ,求点M 的坐标;(3)将直线AB 绕点A 按逆时针方向旋转15°后交y 轴于点G ,连接CG ,如图2,P 为△ACG 内以点,连接PA 、PC 、PG ,分别以AP 、AG 为边,在他们的左侧作等边△APR ,等边△AGQ ,连接QR ①求证:PG=RQ ;②求PA+PC+PG 的最小值,并求出当PA+PC+PG 取得最小值时点P 的坐标.【答案】(1)b=﹣2,c=3;(2)M (125-,5125);(3)①证明见解析;②PA+PC+PG 的最小值为19P 的坐标(﹣919,12319). 【解析】试题分析:(1)把A (﹣3,0),B (0,3)代入抛物线2y x bx c =-++即可解决问题.(2)首先求出A 、C 、D 坐标,根据BE=2ED ,求出点E 坐标,求出直线CE ,利用方程组求交点坐标M .(3)①欲证明PG=QR ,只要证明△QAR ≌△GAP 即可.②当Q 、R 、P 、C 共线时,PA+PG+PC 最小,作QN ⊥OA 于N ,AM ⊥QC 于M ,PK ⊥OA 于K ,由sin ∠ACM=AM AC =NQQC求出AM ,CM ,利用等边三角形性质求出AP 、PM 、PC ,由此即可解决问题.试题解析:(1)∵一次函数y=x+3的图象与x 轴、y 轴分别交于A 、B 两点,∴A (﹣3,0),B (0,3),∵抛物线2y x bx c =-++过A 、B 两点,∴3{930c b c =--+=,解得:2{3b c =-=,∴b=﹣2,c=3. (2),对于抛物线223y x x =--+,令y=0,则2230x x --+=,解得x=﹣3或1,∴点C 坐标(1,0),∵AD=DC=2,∴点D 坐标(﹣1,0),∵BE=2ED ,∴点E 坐标(23-,1),设直线CE 为y=kx+b ,把E 、C 代入得到:21{30k b k b -+=+=,解得:35{35k b =-=,∴直线CE 为3355y x =-+,由233{5523y x y x x =-+=--+,解得10x y =⎧⎨=⎩或125{5125x y =-=,∴点M 坐标(125-,5125). (3)①∵△AGQ ,△APR 是等边三角形,∴AP=AR ,AQ=AG ,∠QAC=∠RAP=60°,∴∠QAR=∠GAP ,在△QAR 和△GAP 中,∵AQ=AG ,∠QAR=∠GAP ,AR=AP ,∴△QAR ≌△GAP ,∴QR=PG .②如图3中,∵PA+PB+PC=QR+PR+PC=QC ,∴当Q 、R 、P 、C 共线时,PA+PG+PC 最小,作QN ⊥OA 于N ,AM ⊥QC 于M ,PK ⊥OA 于K .∵∠GAO=60°,AO=3,∴AG=QG=AQ=6,∠AGO=30°,∵∠QGA=60°,∴∠QGO=90°,∴点Q 坐标(﹣6,33),在RT △QCN 中,QN=33,CN=7,∠QNC=90°,∴QC=22QN NC +=219,∵sin ∠ACM=AM AC =NQQC,∴AM=65719,∵△APR 是等边三角形,∴∠APM=60°,∵PM=PR ,cos30°=AM AP ,∴AP=121919,PM=RM=61919,∴MC=22AC AM -=141919,∴PC=CM ﹣PM=81919,∵PK CP CK QN CQ CN ==,∴CK=2819,PK=12319,∴OK=CK ﹣CO=919,∴点P 坐标(﹣919,12319),∴PA+PC+PG 的最小值为219,此时点P 的坐标(﹣919,12319).考点:二次函数综合题;旋转的性质;最值问题;压轴题.10.复习课中,教师给出关于x的函数(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选择如下四条:①存在函数,其图像经过(1,0)点;②函数图像与坐标轴总有三个不同的交点;③当时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数;教师:请你分别判断四条结论的真假,并给出理由,最后简单写出解决问题时所用的数学方法.【答案】①真,②假,③假,④真,理由和所用的数学方法见解析.【解析】试题分析:根据方程思想,特殊与一般思想,反证思想,分类思想对各结论进行判断.试题解析:①真,②假,③假,④真.理由如下:①将(1,0)代入,得,解得.∴存在函数,其图像经过(1,0)点.∴结论①为真.②举反例如,当时,函数的图象与坐标轴只有两个不同的交点.∴结论②为假.③∵当时,二次函数(k是实数)的对称轴为,∴可举反例如,当时,二次函数为,当时,y随x的增大而减小;当时,y随x的增大而增大.∴结论③为假.④∵当时,二次函数的最值为,∴当时,有最小值,最小值为负;当时,有最大值,最大值为正.∴结论④为真.解决问题时所用的数学方法有方程思想,特殊与一般思想,反证思想,分类思想考点:1.曲线上点的坐标与方程的关系;2.二次函数的性质;3.方程思想、特殊元素法、反证思想和分类思想的应用.。

二次函数精选练习题及答案(1)

二次函数精选练习题及答案(1)

二次函数练习题及答案一、选择题1. 将抛物线23y x =先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则新抛物线的解析式是 ( ) A 23(2)1y x =++ B 。

23(2)1y x =+- C 。

23(2)1y x =-+ D.23(2)1y x =--2.将抛物线22+=x y 向右平移1个单位后所得抛物线的解析式是………………( ) A.32+=x y ; B.12+=x y ;C.2)1(2++=x y ; D.2)1(2+-=x y .3.将抛物线y= (x -1)2 +3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )A .y=(x —2)2B .y=(x -2)2+6C .y=x 2+6D .y=x 24.由二次函数1)3(22+-=x y ,可知( )A .其图象的开口向下B .其图象的对称轴为直线3x =-C .其最小值为1D .当x 〈3时,y 随x 的增大而增大5.如图,抛物线的顶点P 的坐标是(1,﹣3),则此抛物线对应的二次函数有( )A .最大值1B .最小值﹣3C .最大值﹣3D .最小值16.把函数()y f x ==246x x -+的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数的解析式是( ) A .2(3)3y x =-+ B .2(3)1y x =-+ C .2(1)3y x =-+ D .2(1)1y x =-+ 7.抛物线图像向右平移2个单位再向下平移3个单位,所得图像的解析式为,则b 、c 的值为A 。

b=2, c=2 B. b=2,c=0 C 。

b= —2,c=—1 D 。

b= —3, c=2二、填空题8.二次函数y=-2(x -5)2+3的顶点坐标是 .9.已知二次函数2y x bx c =-++中函数y 与自变量x 之间的部分对应值如下表所示,点11(,)A x y 、22(,)B x y 在函数图象上,当1201,23x x <<<<时,则1y 2y (填“>”或“<”).x0 1 2 3 y1-2 3 2 c bx x y ++=2322--=x x y10.在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式为 .11.求二次函数2245y x x =--的顶点坐标(___)对称轴____。

(易错题精选)初中数学二次函数难题汇编及答案解析

(易错题精选)初中数学二次函数难题汇编及答案解析
【解析】
【分析】
设出原数,表示出新数,利用解方程和函数性质即可求解.
【详解】
解:设原数为m,则新数为 ,
设新数与原数的差为y
则 ,
易得,当m=0时,y=0,则A错误

当 时,y有最大值.则B错误,D正确.
当y=21时, =21
解得 =30, =70,则C错误.
故答案选:D.
【点睛】
本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.
∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,
∴足球距离地面的最大高度为20.25m,故①错误,
∴抛物线的对称轴t=4.5,故②正确,
∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,
∵t=1.5时,y=11.25,故④错误,∴正确的有②③,
故选B.
11.如图是二次函数 的图象,有下面四个结论: ; ; ; ,其中正确的结论是
(易错题精选)初中数学二次函数难题汇编及答案解析
一、选择题
1.若二次函数y=x2﹣2x+2在自变量x满足m≤x≤m+1时的最小值为6,则m的值为( )
A. B.
C.1D.
【答案】B
【解析】
【分析】
由抛物线解析式确定出其对称轴为x=1,分m>1或m+1<1两种情况,分别确定出其最小值,由最小值为6,则可得到关于m的方程,可求得m的值.
【详解】
①由抛物线交y轴于负半轴,则c<0,故①错误;
②由抛物线的开口方向向上可推出a>0;
∵对称轴在y轴右侧,对称轴为x= >0,
又∵a>0,
∴b<0;

(易错题精选)初中数学二次根式知识点总复习附答案(1)

(易错题精选)初中数学二次根式知识点总复习附答案(1)

(易错题精选)初中数学二次根式知识点总复习附答案(1)一、选择题1.下列各式中,是最简二次根式的是( )A .12B .5C .18D .2a【答案】B【解析】【分析】判断一个二次根式是不是最简二次根式的方法,是逐个检查定义中的两个条件①被开方数不含分母②被开方数不含能开的尽方的因数或因式,据此可解答.【详解】(1)A 被开方数含分母,错误.(2)B 满足条件,正确. (3) C 被开方数含能开的尽方的因数或因式,错误.(4) D 被开方数含能开的尽方的因数或因式,错误.所以答案选B.【点睛】本题考查最简二次根式的定义,掌握相关知识是解题关键.2.实数a ,b 在数轴上对应点的位置如图所示,化简|a |+2(a b )-的结果是( )A .2a+bB .-2a+bC .bD .2a-b 【答案】B【解析】【分析】根据数轴得出0a <,0a b -<,然后利用绝对值的性质和二次根式的性质化简.【详解】解:由数轴可知:0a <,0b >,∴0a b -<,∴()()22a a b a b a a b -=-+-=-+, 故选:B .【点睛】本题考查了数轴、绝对值的性质和二次根式的性质,根据数轴得出0a <,0a b -<是解题的关键.3.下列各式计算正确的是( )A.2+b=2b B=C.(2a2)3=8a5D.a6÷ a4=a2【答案】D【解析】解:A.2与b不是同类项,不能合并,故错误;B不是同类二次根式,不能合并,故错误;C.(2a2)3=8a6,故错误;D.正确.故选D.4.)A.±3 B.-3 C.3 D.9【答案】C【解析】【分析】进行计算即可.【详解】,故选:C.【点睛】此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.5.若x、y4y=,则xy的值为()A.0 B.12C.2 D.不能确定【答案】C【解析】由题意得,2x−1⩾0且1−2x⩾0,解得x⩾12且x⩽12,∴x=12,y=4,∴xy=12×4=2.故答案为C.6.下列计算或运算中,正确的是()A .=B =C .=D .-=【答案】B【解析】【分析】 根据二次根性质和运算法则逐一判断即可得.【详解】A 、=BC 、=D 、-=,此选项错误;故选B .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及二次根式的性质.7.x 的取值范围是( )A .1x >-B .0x ≥C .1x ≥-D .任意实数【答案】C【解析】【分析】a 必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围.【详解】有意义,则10x +≥,故1x ≥-故选:C【点睛】考核知识点:二次根式有意义条件.理解二次根式定义是关键.8.一次函数y mx n =-+结果是( )A .mB .m -C .2m n -D .2m n -【答案】D【解析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0, ∴22()m n n -+=|m ﹣n |+|n | =m ﹣n ﹣n=m ﹣2n ,故选D .【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.9.下列计算正确的是( )A .+=B .﹣=﹣1C .×=6D .÷=3【答案】D【解析】【分析】根据二次根式的加减法对A 、B 进行判断;根据二次根式的乘法法则对C 进行判断;根据二次根式的除法法则对D 进行判断.【详解】解:A 、B与不能合并,所以A 、B 选项错误; C 、原式=×=,所以C 选项错误; D 、原式==3,所以D 选项正确.故选:D. 【点睛】本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10.在下列各组根式中,是同类二次根式的是( )A 212B 212C 4ab 4abD 1a -1a +【答案】B【解析】根据二次根式的性质化简,根据同类二次根式的概念判断即可.【详解】A =不是同类二次根式;B 2=是同类二次根式;C b ==D 不是同类二次根式;故选:B .【点睛】本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.11.若x +y =,x ﹣y =3﹣的值为( )A .B .1C .6D .3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y =,x ﹣y =3﹣,==1.故选:B .【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.12.9≤,则x 取值范围为( ) A .26x ≤≤B .37x ≤≤C .36x ≤≤D .17x ≤≤【答案】A【解析】【分析】先化成绝对值,再分区间讨论,即可求解.【详解】9,即:23579x x x x -+-+-+-≤,当2x <时,则23579x x x x -+-+-+-≤,得2x ≥,矛盾;当23x ≤<时,则23579x x x x -+-+-+-≤,得2x ≥,符合;当35x ≤<时,则23579x x x x -+-+-+-≤,得79≤,符合;当57x ≤≤时,则23579x x x x -+-+-+-≤,得6x ≤,符合;当7x >时,则23579x x x x -+-+-+-≤,得 6.5x ≤,矛盾;综上,x 取值范围为:26x ≤≤,故选:A .【点睛】本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟练运用二次根式的运算法则.13.下列计算错误的是( )A .BCD 【答案】A【解析】【分析】【详解】选项A ,不是同类二次根式,不能够合并;选项B ,原式=2÷=选项C ,原式=选项D ,原式==.故选A.14.下列计算或化简正确的是( )A .=BC 3=-D 3= 【答案】D【解析】解:A .不是同类二次根式,不能合并,故A 错误;B =,故B 错误;C 3=,故C 错误;D 3===,正确.故选D .15.a的取值范围是()A.a>1 B.a≥1C.a=1 D.a≤1【答案】B【解析】【分析】根据二次根式有意义的条件可得a﹣1≥0,再解不等式即可.【详解】由题意得:a﹣1≥0,解得:a≥1,故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.16.下列二次根式中,属于最简二次根式的是()A B C D【答案】C【解析】【分析】根据二次根式的定义即可求解.【详解】=2,故不是最简二次根式;故选C.【点睛】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.17.下列计算正确的是()A.=B=C.=D-=【答案】B【解析】【分析】根据二次根式的加减乘除运算法则逐一计算可得.【详解】A 、310与25-不是同类二次根式,不能合并,此选项错误;B 、 711111711⎛⎫⋅÷ ⎪ ⎪⎝⎭=71111117⋅⨯=71111117⨯⨯=11,此选项正确; C 、() 75153-÷=(53-15)÷3=5-5,此选项错误;D 、 1818339-=2222-=-,此选项错误; 故选B【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.18.若二次根式3x -在实数范围内有意义,则x 的取值范围是( )A .3x >B .3x ≠C .3x ≥D .0x ≥【答案】C【解析】【分析】先根据二次根式有意义的条件是被开方式大于等于0,列出关于x 的不等式,求出x 的取值范围即可.【详解】解:∵二次根式3x -在实数范围内有意义,∴x-3≥0,解得x≥3.故选:C .【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0.19.下列根式中属最简二次根式的是( )A .21a +B .12C .8D .2 【答案】A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A 、无法化简;B 、原式=;C 、原式=2;D 、原式=.考点:最简二次根式20.1=-,那么x的取值范围是()xA.x≥1B.x>1 C.x≤1D.x<16【答案】A【解析】【分析】根据等式的左边为算术平方根,结果为非负数,即x-1≥0求解即可.【详解】由于二次根式的结果为非负数可知:x-1≥0,解得,x≥1,故选A.【点睛】本题利用了二次根式的结果为非负数求x的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(易错题精选)初中数学二次函数技巧及练习题含答案(1)一、选择题1.若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”.例如:P (1,0)、Q (2,﹣2)都是“整点”.抛物线y =mx 2﹣4mx +4m ﹣2(m >0)与x 轴交于点A 、B 两点,若该抛物线在A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( )A .12≤m <1 B .12<m ≤1 C .1<m ≤2 D .1<m <2【答案】B 【解析】 【分析】画出图象,利用图象可得m 的取值范围【详解】∵y =mx 2﹣4mx +4m ﹣2=m (x ﹣2)2﹣2且m >0,∴该抛物线开口向上,顶点坐标为(2,﹣2),对称轴是直线x =2. 由此可知点(2,0)、点(2,﹣1)、顶点(2,﹣2)符合题意.①当该抛物线经过点(1,﹣1)和(3,﹣1)时(如答案图1),这两个点符合题意. 将(1,﹣1)代入y =mx 2﹣4mx +4m ﹣2得到﹣1=m ﹣4m +4m ﹣2.解得m =1. 此时抛物线解析式为y =x 2﹣4x +2.由y =0得x 2﹣4x +2=0.解得12120.622 3.42x x ==-≈+≈,. ∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意.则当m =1时,恰好有 (1,0)、(2,0)、(3,0)、(1,﹣1)、(3,﹣1)、(2,﹣1)、(2,﹣2)这7个整点符合题意.∴m ≤1.【注:m 的值越大,抛物线的开口越小,m 的值越小,抛物线的开口越大】答案图1(m =1时) 答案图2( m =时)②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意. 此时x 轴上的点 (1,0)、(2,0)、(3,0)也符合题意. 将(0,0)代入y =mx 2﹣4mx +4m ﹣2得到0=0﹣4m +0﹣2.解得m =12.此时抛物线解析式为y=12x2﹣2x.当x=1时,得13121122y=⨯-⨯=-<-.∴点(1,﹣1)符合题意.当x=3时,得13923122y=⨯-⨯=-<-.∴点(3,﹣1)符合题意.综上可知:当m=12时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,﹣1)、(3,﹣1)、(2,﹣2)、(2,﹣1)都符合题意,共有9个整点符合题意,∴m=12不符合题.∴m>12.综合①②可得:当12<m≤1时,该函数的图象与x轴所围成的区域(含边界)内有七个整点,故选:B.【点睛】考查二次函数图象与系数的关系,抛物线与x轴的交点,画出图象,数形结合是解题的关键.2.如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a﹣b+c,则P的取值范围是( )A.﹣4<P<0 B.﹣4<P<﹣2 C.﹣2<P<0 D.﹣1<P<0【答案】A【解析】【分析】【详解】解:∵二次函数的图象开口向上,∴a>0.∵对称轴在y轴的左边,∴b2a-<0.∴b>0.∵图象与y轴的交点坐标是(0,﹣2),过(1,0)点,代入得:a+b﹣2=0.∴a=2﹣b ,b=2﹣a .∴y=ax 2+(2﹣a )x ﹣2. 把x=﹣1代入得:y=a ﹣(2﹣a )﹣2=2a ﹣4, ∵b >0,∴b=2﹣a >0.∴a <2.∵a >0,∴0<a <2.∴0<2a <4.∴﹣4<2a ﹣4<0,即﹣4<P <0. 故选A . 【点睛】本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键.3.方程2x 3x 10+-=的根可视为函数3y x =+的图象与函数1y x=的图象交点的横坐标,则方程3x 2x 10+-=的实根x 0所在的范围是( ) A .010<x <4B .011<x <43C .011<x <32D .01<x <12【答案】C 【解析】 【分析】首先根据题意推断方程x 3+2x-1=0的实根是函数y=x 2+2与1y x=的图象交点的横坐标,再根据四个选项中x 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x 3+2x-1=0的实根x 所在范围. 【详解】解:依题意得方程3x 2x 10+-=的实根是函数2y x 2=+与1y x=的图象交点的横坐标,这两个函数的图象如图所示,它们的交点在第一象限.当x=14时,21y x 2216=+=,1y 4x ==,此时抛物线的图象在反比例函数下方; 当x=13时,21229y x =+=,1y 3x==,此时抛物线的图象在反比例函数下方; 当x=12时,21224y x =+=,1y 2x==,此时抛物线的图象在反比例函数上方; 当x=1时,2y x 23=+=,1y 1x==,此时抛物线的图象在反比例函数上方.∴方程3x 2x 10+-=的实根x 0所在范围为:011<x <32. 故选C . 【点睛】此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.4.如图是抛物线y=ax 2+bx+c (a≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a -b+c >0;②3a+b=0;③b 2=4a (c-n );④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C 【解析】 【分析】利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2ba=1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到244ac b a-=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断. 【详解】∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间. ∴当x=-1时,y >0, 即a-b+c >0,所以①正确;∵抛物线的对称轴为直线x=-2ba=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误; ∵抛物线的顶点坐标为(1,n ),∴244ac b a-=n , ∴b 2=4ac-4an=4a (c-n ),所以③正确;∵抛物线与直线y=n 有一个公共点, ∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,所以④正确. 故选C . 【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.5.如图是抛物线y =ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①4a ﹣2b +c >0;②3a +b >0;③b 2=4a (c ﹣n );④一元二次方程ax 2+bx +c =n ﹣1有两个互异实根.其中正确结论的个数是( )A .1个B .2个C .3个D .4个【答案】B 【解析】 【分析】根据二次函数图象和性质,开口向下,可得a<0,对称轴x=1,利用顶点坐标,图象与x 轴的交点情况,对照选项逐一分析即可. 【详解】①∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点在点(﹣2,0)和(﹣1,0)之间, ∴当x =﹣2时,y <0,即4a ﹣2b +c <0,所以①不符合题意;②∵抛物线的对称轴为直线x =﹣2ba=1,即b =﹣2a , ∴3a +b =3a ﹣2a =a <0,所以②不符合题意; ③∵抛物线的顶点坐标为(1,n ),∴244ac b a=n ,∴b 2=4ac ﹣4an =4a (c ﹣n ),所以③符合题意; ④∵抛物线与直线y =n 有一个公共点, ∴抛物线与直线y =n ﹣1有2个公共点,∴一元二次方程ax 2+bx +c =n ﹣1有两个不相等的实数根,所以④符合题意.故选:B .【点睛】本题考查了二次函数的图象和性质的应用,二次函数开口方向,对称轴,交点位置,二次函数与一次函数图象结合判定方程根的个数,掌握二次函数的图象和性质是解题的关键.6.如图,在四边形ABCD 中,//AD BC ,DC BC ⊥,4cm DC =,6cm BC =,3cm AD = ,动点P ,Q 同时从点B 出发,点P 以2cm /s 的速度沿折线BA AD DC--运动到点C ,点Q 以1cm/s 的速度沿BC 运动到点C ,设P ,Q 同时出发s t 时,BPQ ∆的面积为2cm y ,则y 与t 的函数图象大致是( )A .B .C .D .【答案】B 【解析】 【分析】分三种情况求出y 与t 的函数关系式. 当0≤t≤2.5时:P 点由B 到A ;当2.5≤t≤4时,即P 点在AD 上时;当4≤t≤6时,即P 点从D 到C 时.即可得出正确选项. 【详解】解:作AE ⊥BC 于E ,根据已知可得,AB 2=42+(6-3)2, 解得,AB=5cm . 下面分三种情况讨论:当0≤t≤2.5时:P 点由B 到A ,21442255y t t t ==gg g ,y 是t 的二次函数.最大面积= 5 cm 2; 当2.5≤t≤4时,即P 点在AD 上时,1422y t t =⨯=, y 是t 的一次函数且最大值=21448cm 2⨯⨯=; 当4≤t≤6时,即P 点从D 到C 时,()211226,2y t t t t =⋅-=-+y 是t 的二次函数 故符合y 与t 的函数图象是B . 故选:B . 【点睛】此题考查了函数在几何图形中的运用.解答本题的关键在于分类讨论求出函数解析式,然后进行判断.7.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】解:设原数为m ,则新数为21100m , 设新数与原数的差为y则2211100100y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确. 当y =21时,21100m m -+=21 解得1m =30,2m =70,则C 错误. 故答案选:D . 【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.8.二次函数2(,,y ax bx c a b c =++为常数,且0a ≠)中的x 与y 的部分对应值如表:下列结论错误的是( ) A .0ac < B .3是关于x 的方程()210ax b x c +-+=的一个根;C .当1x >时,y 的值随x 值的增大而减小;D .当13x -<<时,()210.ax b x c +-+>【答案】C 【解析】 【分析】根据函数中的x 与y 的部分对应值表,可以求得a 、b 、c 的值 然后在根据函数解析式及其图象即可对各个选项做出判断. 【详解】解:根据二次函数的x 与y 的部分对应值可知: 当1x =-时,1y =-,即1a b c -+=-, 当0x =时,3y =,即3c =, 当1x =时,5y =,即5a b c ++=,联立以上方程:135a b c c a b c -+=-⎧⎪=⎨⎪++=⎩,解得:133a b c =-⎧⎪=⎨⎪=⎩,∴233y x x =-++;A 、1330=-⨯=-<ac ,故本选项正确;B 、方程()210ax b x c +-+=可化为2230x x -++=,将3x =代入得:232339630-+⨯+=-++=,∴3是关于x 的方程()210ax b x c +-+=的一个根,故本选项正确;C 、233y x x =-++化为顶点式得:2321()24=--+y x , ∵10a =-<,则抛物线的开口向下,∴当32x >时,y 的值随x 值的增大而减小;当32x <时,y 的值随x 值的增大而增大;故本选项错误;D 、不等式()210ax b x c +-+>可化为2230x x -++>,令2y x 2x 3=-++,由二次函数的图象可得:当0y >时,13x -<<,故本选项正确; 故选:C . 【点睛】本题考查了待定系数法求二次函数解析式、二次函数的性质、二次函数与不等式的关系,根据表中数据求出二次函数解析式是解题的关键.9.已知抛物线224y x x c =-+与直线2y =有两个不同的交点.下列结论:①4c <;②当1x =时,y 有最小值2c -;③方程22420x x c -+-=有两个不等实根;④若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则52c =;其中正确的结论的个数是( ) A .4 B .3 C .2D .1【答案】B 【解析】 【分析】根据“抛物线224y x x c =-+与直线2y =有两个不同的交点”即可判断①③;根据抛物线的对称轴为直线x=1即可判断②;根据等腰直角三角形的性质,用c 表达出两个交点,代入抛物线解析式计算即可判断④. 【详解】解:∵抛物线224y x x c =-+与直线2y =有两个不同的交点,∴2242x x c -+=有两个不相等的实数根,即22420x x c -+-=有两个不相等的实数根,故③正确,∴1642(2)0c ∆=-⨯⨯->,解得:4c <,故①正确; ∵抛物线的对称轴为直线x=1,且抛物线开口向上, ∴当x=1时,2y c =-为最小值,故②正确;若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形, 则顶点(1,c-2)到直线y=2的距离等于两交点距离的一半, ∵顶点(1,c-2)到直线y=2的距离为2-(c-2)=4-c , ∴两交点的横坐标分别为1-(4-c )=c-3与1+(4-c )=5-c ∴两交点坐标为(c-3,2)与(5-c,2),将(c-3,2)代入224y x x c =-+中得:22(3)4(3)2c c c ---+=解得:72c =或4c = ∵4c <,∴72c =,故④错误, ∴正确的有①②③, 故选:B . 【点睛】本题考查了二次函数与一元二次方程的关系以及二次函数的性质,解题的关键是熟练掌握函数与方程之间的联系.10.如图,坐标平面上,二次函数y =﹣x 2+4x ﹣k 的图形与x 轴交于A 、B 两点,与y 轴交于C 点,其顶点为D ,且k >0.若△ABC 与△ABD 的面积比为1:4,则k 值为何?( )A .1B .12C .43D .45【答案】D 【解析】 【分析】求出顶点和C 的坐标,由三角形的面积关系得出关于k 的方程,解方程即可. 【详解】解:∵y =﹣x 2+4x ﹣k =﹣(x ﹣2)2+4﹣k , ∴顶点D(2,4﹣k),C(0,﹣k), ∴OC =k ,∵△ABC 的面积=12AB•OC =12AB•k ,△ABD 的面积=12AB(4﹣k),△ABC 与△ABD 的面积比为1:4, ∴k =14(4﹣k), 解得:k =45. 故选:D .【点睛】 本题考查了抛物线与x 轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.11.如图,矩形ABCD 中,AB =8,AD =4,E 为边AD 上一个动点,连接BE ,取BE 的中点G ,点G 绕点E 逆时针旋转90°得到点F ,连接CF ,则△CEF 面积的最小值是( )A .16B .15C .12D .11【答案】B【解析】 【分析】 过点F 作AD 的垂线交AD 的延长线于点H ,则△FEH ∽△EBA ,设AE=x ,可得出△CEF 面积与x 的函数关系式,再根据二次函数图象的性质求得最小值.【详解】解:过点F 作AD 的垂线交AD 的延长线于点H ,∵∠A=∠H=90°,∠FEB=90°,∴∠FEH=90°-∠BEA=∠EBA ,∴△FEH ∽△EBA ,∴ ,HF HE EF AE AB BE== G Q 为BE 的中点,1,2FE GE BE ∴== ∴ 1,2HF HE EF AE AB BE ===设AE=x , ∵AB 8,4,AD ==∴HF 1,4,2x EH == ,DH AE x ∴== CEF DHFC CED EHF S S S S ∆∆∆∴=+-11111(8)8(4)422222x x x x =++⨯--⨯• 2141644x x x x =+--- 2116,4x x =-+ ∴当12124x -=-=⨯ 时,△CEF 面积的最小值1421615.4=⨯-+= 故选:B .【点睛】本题通过构造K 形图,考查了相似三角形的判定与性质.建立△CEF 面积与AE 长度的函数关系式是解题的关键.12.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( )A .a +c =0B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2C .当函数在x <110时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n <2a 【答案】C【解析】【分析】根据二次函数的图象和性质对各项进行判断即可.【详解】解:∵函数经过点M (﹣1,2)和点N (1,﹣2),∴a ﹣b +c =2,a +b +c =﹣2,∴a +c =0,b =﹣2,∴A 正确;∵c =﹣a ,b =﹣2,∴y =ax 2﹣2x ﹣a ,∴△=4+4a 2>0,∴无论a 为何值,函数图象与x 轴必有两个交点,∵x 1+x 2=2a,x 1x 2=﹣1,∴|x 1﹣x 2|=>2, ∴B 正确;二次函数y =ax 2+bx +c (a >0)的对称轴x =﹣2b a =1a , 当a >0时,不能判定x <110时,y 随x 的增大而减小; ∴C 错误;∵﹣1<m <n <0,a >0,∴m +n <0,2a >0, ∴m +n <2a; ∴D 正确,故选:C .【点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.13.在平面直角坐标系内,已知点A (﹣1,0),点B (1,1)都在直线1122y x =+上,若抛物线y =ax 2﹣x +1(a ≠0)与线段AB 有两个不同的交点,则a 的取值范围是( )A.a≤﹣2 B.a<98C.1≤a<98或a≤﹣2 D.﹣2≤a<98【答案】C【解析】【分析】分a>0,a<0两种情况讨论,根据题意列出不等式组,可求a的取值范围.【详解】∵抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,∴令1122x+=ax2﹣x+1,则2ax2﹣3x+1=0∴△=9﹣8a>0∴a<9 8①当a<0时,110111 aa++≤⎧⎨-+≤⎩解得:a≤﹣2∴a≤﹣2②当a>0时,110111 aa++≥⎧⎨-+≥⎩解得:a≥1∴1≤a<9 8综上所述:1≤a<98或a≤﹣2故选:C.【点睛】本题考查二次函数图象与系数的关系,一次函数图象上点的坐标特征,二次函数图象点的坐标特征,利用分类讨论思想解决问题是本题的关键.14.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c >﹣3b ;(3)7a ﹣3b+2c >0;(4)若点A (﹣3,y 1)、点B (﹣12,y 2)、点C (7,y 3)在该函数图象上,则y 1<y 3<y 2;(5)若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<5<x 2.其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】B【解析】 根据题意和函数的图像,可知抛物线的对称轴为直线x=-2b a=2,即b=-4a ,变形为4a+b=0,所以(1)正确; 由x=-3时,y >0,可得9a+3b+c >0,可得9a+c >-3c ,故(2)正确;因为抛物线与x 轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a ,可得a+4a+c=0,即c=-5a.代入可得7a ﹣3b+2c=7a+12a-5a=14a ,由函数的图像开口向下,可知a <0,因此7a ﹣3b+2c <0,故(3)不正确;根据图像可知当x <2时,y 随x 增大而增大,当x >2时,y 随x 增大而减小,可知若点A (﹣3,y 1)、点B (﹣12,y 2)、点C (7,y 3)在该函数图象上,则y 1=y 3<y 2,故(4)不正确;根据函数的对称性可知函数与x 轴的另一交点坐标为(5,0),所以若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<x 2,故(5)正确.正确的共有3个.故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定,△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac=0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.15.如图,已知()4,1A --,线段AB 与x 轴平行,且2AB =,抛物线2y x mx n =-++经过点()0,3C 和()3,0D ,若线段AB 以每秒2个单位长度的速度向下平移,设平移的时间为t (秒).若抛物线与线段AB 有公共点,则t 的取值范围是( )A .010t ≤≤B .210t ≤≤C .28t ≤≤D .210t <<【答案】B【解析】【分析】 直接利用待定系数法求出二次函数,得出B 点坐标,分别得出当抛物线l 经过点B 时,当抛物线l 经过点A 时,求出y 的值,进而得出t 的取值范围;【详解】解:(1)把点C (0,3)和D (3,0)的坐标代入y=-x 2+mx+n 中,得,23330n m n =⎧⎨-++=⎩解得32n m =⎧⎨=⎩∴抛物线l 解析式为y=-x 2+2x+3,设点B 的坐标为(-2,-1-2t ),点A 的坐标为(-4,-1-2t ),当抛物线l 经过点B 时,有y=-(-2)2+2×(-2)+3=-5,当抛物线l 经过点A 时,有y=-(-4)2+2×(-4)+3=-21,当抛物线l 与线段AB 总有公共点时,有-21≤-1-2t≤-5,解得:2≤t≤10.故应选B【点睛】此题主要考查了二次函数综合以及不等式组的解法等知识,正确利用数形结合分析得出关于t 的不等式是解题关键.16.如图,已知将抛物线21y x =-沿x 轴向上翻折与所得抛物线围成一个封闭区域(包括边界),在这个区域内有5个整点(点M 满足横、纵坐标都为整数,则把点M 叫做“整点”).现将抛物线()()2120y a x a =++<沿x 轴向下翻折,所得抛物线与原抛物线所围成的封闭区域内(包括边界)恰有11个整点,则a 的取值范围是( )A .1a ≤-B .12a ≤-C .112a -<≤D .112a -≤<- 【答案】D【解析】【分析】 画出图象,利用图象可得m 的取值范围【详解】解:∵ ()()2120y a x a =++<∴该抛物线开口向下,顶点(-1,2),对称轴是直线x=-1.∴点(-1,2)、点(-1,1)、点(-1, 0)、点(-1,-1)、点(-1,-2)符合题意,此时x 轴.上的点(-2, 0)、(0, 0)也符合题意,将(0,1)代入()()2120y a x a =++<得到1=a+2.解得a=-1.将(1, 0)代入()()2120y a x a =++<得到0= 4a+2.解得a=1-2∵有11个整点,∴点(0,-1)、点(-2, -1)、点(-2,1)、点(0,1)也必须符合题意. 综上可知:当1-1a<-2≤ 时,点(-1,2)、点(-1,1)、点(-1, 0)、点(-1,-1)、点(-1,-2)、点(-2, 0)、(0,0)、点(0,-1)、点(-2,-1)、点(-2,1)、点(0, 1),共有11个整点符合题意, 故选: D.【点睛】本题考查了二次函数图象与系数的关系,抛物线与x 轴的交点的求法,利用图象解决问题是本题的关键.17.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax 2+bx+c 的图象开口向下,∴a <0,∵二次函数y=ax 2+bx+c 的图象经过原点,∴c=0,∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧,∴a ,b 同号,∴b <0,∴一次函数y=ax+c ,图象经过第二、四象限,反比例函数y=b x图象分布在第二、四象限, 故选D .【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.18.已知二次函数2()y x h =-- (h 为常数),当自变量x 的值满足25x ≤≤时,与其对应的函数值y的最大值为-1,则h的值为( )A.3或6 B.1或6 C.1或3 D.4或6【答案】B【解析】分析:分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.详解:如图,当h<2时,有-(2-h)2=-1,解得:h1=1,h2=3(舍去);当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;当h>5时,有-(5-h)2=-1,解得:h3=4(舍去),h4=6.综上所述:h的值为1或6.故选B.点睛:本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.19.在函数2yx=,3y x=+,2y x=的图象中,是中心对称图形,且对称中心是原点的图象共有()A.0个B.1个C.2个D.3个【答案】B【解析】【分析】根据中心对称图形的定义与函数的图象即可求解.【详解】y=x+3的图象是中心对称图形,但对称中心不是原点;y=x2图象不是中心对称图形;只有函数2yx=符合条件.故选:B.【点睛】本题考查函数的图象性质与中心对称图形的性质,熟练掌握相关知识是解题的关键.20.如图抛物线交轴于和点,交轴负半轴于点,且.有下列结论:①;②;③.其中,正确结论的个数是()A.B.C.D.【答案】C【解析】【分析】根据抛物线的开口方向,对称轴公式以及二次函数图象上点的坐标特征来判断a、b、c的符号以及它们之间的数量关系,即可得出结论.【详解】解:根据图象可知a>0,c<0,b>0,∴, 故③错误;∵.∴B(-c,0)∴抛物线y=ax2+bx+c与x轴交于A(-2,0)和B(-c,0)两点,∴, ac2-bc+c=0∴,ac-b+1=0,∴,故②正确;∴,b=ac+1∴,∴2b-c=2,故①正确;故选:C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.。

相关文档
最新文档