茆诗松《概率论与数理统计教程》(第版)-课后习题-第1~2章【圣才出品】
茆诗松《概率论与数理统计教程》(第2版)(课后习题 方差分析与回归分析)【圣才出品】
第8章 方差分析与回归分析一、方差分析1.在一个单因子试验中,因子A有三个水平,每个水平下各重复4次,具体数据如下:表8-1试计算误差平方和s e、因子A的平方和S A与总平方和S T,并指出它们各自的自由度.解:此处因子水平数r=3,每个水平下的重复次数m=4,总试验次数为n=mr=12.首先,算出每个水平下的数据和以及总数据和:T1=8+5+7+4=24.T2=6+10+12+9=37.T3=0+1+5+2=8.T=T l+T2+T3=24+37+8=69.误差平方和S e由三个平方和组成:于是而2.在一个单因子试验中,因子A有4个水平,每个水平下重复次数分别为5,7,6,8.那么误差平方和、A的平方和及总平方和的自由度各是多少?解:此处因子水平数r=4,总试验的次数n=5+7+6+8=26,因而有误差平方和的自由度因子A的平方和的自由度总平方和的自由度3.在单因子试验中,因子A有4个水平,每个水平下各重复3次试验,现已求得每个水平下试验结果的样本标准差分别为1.5,2.0,1.6,1.2,则其误差平方和为多少?误差的方差σ2的估计值是多少?解:此处因子水平数r=4,每个水平下的试验次数m=3,误差平方和S e由四个平方组成,它们分别为于是其自由度为,误差方差σ2的估计值为4.在单因子方差分析中,因子A有三个水平,每个水平各做4次重复试验.请完成下列方差分析表,并在显著性水平α=0.05下对因子A是否显著作出检验.表8-2 方差分析表解:补充的方差分析表如下所示:表8-3 方差分析表对于给定的显著性水平,查表知,故拒绝域为,由于,因而认为因子A是显著的.此处检验的p值为5.用4种安眠药在兔子身上进行试验,特选24只健康的兔子,随机把它们均分为4组,每组各服一种安眠药,安眠时间如下所示.表8-4 安眠药试验数据在显著性水平下对其进行方差分析,可以得到什么结果?解:这是一个单因子方差分析的问题,根据样本数据计算,列表如下:表8-5于是根据以上结果进行方差分析,并继续计算得到各均方以及F 比,列于下表:表8-6在显著性水平下,查表得,拒绝域为,由于故认为因子A (安眠药)是显著的,即四种安眠药对兔子的安眠作用有明显的差别.此处检验的p 值为6.为研究咖啡因对人体功能的影响,特选30名体质大致相同的健康男大学生进行手指叩击训练,此外咖啡因选三个水平:每个水平下冲泡l0杯水,外观无差别,并加以编号,然后让30位大学生每人从中任选一杯服下,2h后,请每人做手指叩击,统计员记录其每分钟叩击次数,试验结果统计如下表:表8-7请对上述数据进行方差分析,从中可得到什么结论?解:我们知道,对数据作线性变换不会影响方差分析的结果,这里将原始数据同时减去240,并作相应的计算,计算结果列入下表:表8-8于是可计算得到三个平方和把上述诸平方和及其自由度填入方差分析表,并继续计算得到各均方以及F比:表8-9若取查表知,从而拒绝域为,由于.故认为因子A(咖啡因剂量)是显著的,即三种不同剂量对人的作用有明显的差别.此处检验的p值为7.某粮食加工厂试验三种储藏方法对粮食含水率有无显著影响.现取一批粮食分成若干份,分别用三种不同的方法储藏,过一段时间后测得的含水率如下表:表8-10(1)假定各种方法储藏的粮食的含水率服从正态分布,且方差相等,试在下检验这三种方法对含水率有无显著影响;(2)对每种方法的平均含水率给出置信水平为0.95的置信区间.解:(1)这是一个单因子方差分析的问题,由所给数据计算如下表:表8-11三个平方和分别为。
茆诗松《概率论与数理统计教程》(第2版)(课后习题 大数定律与中心极限定理)【圣才出品】
是直线上的连续函数,试证:
证:若 g(x)是 m 次多项式函数,即 下证一般情况,对任意的 又选取 N1 充分大,使当
,则由上一题知有
,取 M 充分大,使有
时,有
,于是有
对取定的 M,因为 g(x)是连续函数,所以可以用多项式函数去逼近 g(x),并且在任意
有限区间上还可以是一致的,因而存在 m 次多项式
,于是有
,因为
,故存在充分
由 的任意性知,当
时,有
结论得证.
6.设 D(x)为退化分布: 试问下列分布函数列的极限函数是否仍是分布函数?(其中 n=1,2,…)
(1)
(2)
(3)
解:(1)因为此时的极限函数为
性质: lim F x=0 ,所以不是分布函数. x-
,不满足分布函数的基本
4 / 42
圣才电子书
有
故当
时,
即
成立,进一步由
可得
,所以又有
1 / 42
圣才电子书
成立.
十万种考研考证电子书、题库视频学习平 台
(2)先证明
对任意的
,取 M 足够大(譬如
),使有
成立,对取定的 M,存在 N,当 n>N 时,有
这时有
从而有
由 的任意性知
,同理可证
由上面(1)得
即
成立.
3.如果
3 / 42
圣才电子书
十万种考研考证电子书、题库视频学习
证:先证充分性,令
,则
,
故 f(x)是 x 的严格单调增函数,因而对任意的
,有
于是对任意的
,当
时,有参见 2.3 第 12 题.
充分性得证.
茆诗松《概率论与数理统计教程》笔记和课后习题(含考研真题)详解(参数估计)【圣才出品】
第6章 参数估计6.1 复习笔记一、点估计的概念与无偏性 1.点估计及无偏性(1)定义:设x 1,…,x n 是来自总体的一个样本,用于估计未知参数θ的统计量θ∧=θ∧(x 1,…,x n )称为θ的估计量,或称为θ的点估计,简称估计.(2)定义:设θ∧=θ∧(x 1,…,x n )是θ的一个估计,θ的参数空间为Θ,若对任意的θ∈Θ,有E θ(θ∧)=θ,则称θ∧是θ的无偏估计,否则称为有偏估计.注意:①当样本量趋于无穷时,有E (s n 2)→σ2,称s n 2为σ2的渐近无偏估计,这表明当样本量较大时,s n 2可近似看作σ2的无偏估计.②若对s n 2作如下修正:则s 2是总体方差的无偏估计.这个量常被采用.③无偏性不具有不变性.即若θ∧是θ的无偏估计,一般而言,其函数g (θ∧)不是g (θ)的无偏估计,除非g (θ)是θ的线性函数.④并不是所有的参数都存在无偏估计,当参数存在无偏估计时,我们称该参数是可估的,否则称它是不可估的.22211()11nn i i ns s x x n n ===---∑2.有效性定义:设θ∧1,θ∧2是θ的两个无偏估计,如果对任意的θ∈Θ有Var (θ∧1)≤Var (θ∧2),且至少有一个θ∈Θ使得上述不等号严格成立,则称θ∧1比θ∧2有效.二、矩估计及相合性 1.替换原理和矩法估计 替换原理指:(1)用样本矩去替换总体矩,这里的矩可以是原点矩也可以是中心矩. (2)用样本矩的函数去替换相应的总体矩的函数.2.概率函数已知时未知参数的矩估计设总体具有已知的概率函数p (x ;θ1,…,θk ),(θ1,…,θk )∈Θ是未知参数或参数向量,x 1,…,x n 是样本.假定总体的k 阶原点矩u k 存在,则对所有的j (0<j <k )u j 都存在,若假设θ1,…,θk 能够表示成u 1,…,u k 的函数θj =θj (u 1,…,u k ),则可给出θj 的矩估计:θ∧j =θj (a 1,…,a k ),j =1,…,k ,其中a 1,…,a k 是前k 阶样本原点矩进一步,如果我们要估计θ1,…,θk 的函数η=g (θ1,…,θ∧k ),则可直接得到η的矩估计η∧=g (θ∧1,…,θ∧k ).注:当k =1时,我们通常可以由样本均值出发对未知参数进行估计;如果k =2,我们可以由一阶、二阶原点矩(或二阶中心矩)出发估计未知参数.11n jj ii a x n ==∑3.相合性定义:设θ∈Θ为未知参数,θ∧n =θ∧n (x 1,…,x n )是θ的一个估计量,n 是样本容量,若对任何一个ε>0,有则称θ∧n 为参数θ的相合估计. 判断相合性的两个有用定理:(1)设θ∧n =θ∧n (x 1,…,x n )是θ的一个估计量,若则θ∧n 是θ的相合估计.(2)若θ∧n1,…,θ∧nk 分别是θ1,…,θk 的相合估计η=g (θ1,…,θk ),是θ1,…,θk 的连续函数,则η∧=g (θ∧n1,…,θ∧nk )是η的相合估计.三、最大似然估计与EM 算法 1.最大似然估计定义:设总体的概率函数为P (x ;θ),θ∈Θ,其中θ是一个未知参数或几个未知参数组成的参数向量,Θ是参数空间,x 1,…,x n 是来自该总体的样本,将样本的联合概率函数看成θ的函数,用L (θ;x 1,…,x n )表示,简记为L (θ),L (θ)=L (θ;x 1,…,x n )=p (x 1;θ)p (x 2;θ)…p (x n ;θ)ˆlim ()0n n P θθε→∞-≥=ˆlim ()nn E θθ→∞=ˆlim ()0nn Var θ→∞=L (θ)称为样本的似然函数.如果某统计量θ∧=θ∧(x 1,…,x n )满足则称θ∧是θ的最大似然估计,简记为MLE .注意:在做题时,习惯于由lnL (θ)出发寻找θ的最大似然估计,再求导,计算极值.但在有些场合用求导就没用,此时就需要从取值范围中的最大值和最小值来入手.2.EM 算法当分布中有多余参数或数据为截尾或缺失时,其MLE 的求取是比较困难的,这时候就可以采用EM 算法,其出发点是把求MLE 的算法分为两步:(1)求期望,以便把多余的部分去掉; (2)求极大值.3.渐近正态性最大似然估计有一个良好的性质:它通常具有渐近正态性.(1)定义:参数目的相合估计θ∧n 称为渐近正态,若存在趋于0的非负常数序列σn (θ),使得依分布收敛于标准正态分布.这时也称θ∧n 服从渐近正态分布N (θ,σn 2(θ)),记为θ∧n ~AN (θ,σn 2(θ)),σn 2(θ)称为θ∧n 的渐近方差.(2)定理:设总体x 有密度函数p (x ;θ),θ∈Θ,Θ为非退化区间,假定 ①对任意的x ,偏导数∂lnp/∂θ,对所有θ∈Θ都存在; ②∀θ∈Θ有|∂p/∂θ|<F 1(x ),|∂2p/∂θ2|<F 2(x ),|∂3lnp/∂θ3|<F 3(x )()()ˆmax L L θθθ∈Θ=()ˆn n θθσθ-其中函数F 1(x ),F 2(x ),F 3(x )满足③∀θ∈Θ,若x 1,x 2,…,x n 是来自该总体的样本,则存在未知参数θ的最大似然估计θ∧n =θ∧n (x 1,x 2,…,x n ),且θ∧n 具有相合性和渐近正态性,该定理表明最大似然估计通常是渐近正态的,且其渐近方差σn 2(θ)=(nI (θ))-1有一个统一的形式,其中,I (θ)称为费希尔信息量.四、最小方差无偏估计 1.均方误差(1)使用条件:小样本,有偏估计.(2)均方误差为:MSE (θ∧)=E (θ∧-θ)2,常用来评价点估计. 将均方误差进行如下分解:MSE (θ∧)=E[(θ∧-E θ∧)+(E θ∧-θ)]2=E (θ∧-E θ∧)2+(E θ∧-θ)2+2E[(θ∧-E θ∧)1()d F x x ∞-∞<∞⎰2()d F x x ∞-∞<∞⎰3sup ()(;)d F x p x x ∞-∞∈Θ<∞⎰θθ()()2ln 0;d p p x x ∞-∞∂⎛⎫<I =<∞ ⎪∂⎝⎭⎰θθθ1ˆ~(,)()nAN nI θθθ(E θ∧-θ)]=Var (θ∧)+(E θ∧-θ)2由分解式可以看出均方误差是由点估计的方差与偏差|E θ∧-θ|的平方两部分组成.如果θ∧是θ的无偏估计,则MSE (θ∧)=Var (θ∧).(3)一致最小均方误差设有样本x 1,…,x n ,对待估参数θ有一个估计类,如果对该估计类中另外任意一个θ的估计θ~,在参数空间Θ上都有MSE (θ∧)≤MSE (θ~),称θ∧(x 1,…,x n )是该估计类中θ的一致最小均方误差估计.2.一致最小方差无偏估计定义:设θ∧是θ的一个无偏估计,如果对另外任意一个θ的无偏估计θ~.在参数率间Θ上都有Var (θ∧)≤Var (θ~),则称θ∧是θ的一致最小方差无偏估计,简记为UMVUE .关于UMVUE ,有如下一个判断准则:设X =(x 1,…,x n )是来自某总体的一个样本,θ∧=θ∧(X )是θ的一个无偏估计,Var (θ∧)<∞,则θ∧是θ的UMVUE 的充要条件是:对任意一个满足E (φ(X ))=0和Var (φ(X ))<∞的φ(X )都有Cov θ(θ∧,φ)=0,∀θ∈Θ.这个定理表明UMVUE 的重要特征是:θ的最小方差无偏估计必与任一零的无偏估计不相关,反之亦然.3.充分性原则定理:总体概率函数是p (x ;θ),x 1,…,x n 是其样本,T =T (x 1,…,x n )是θ的充分统计量,则对θ的任一无偏估计θ∧=θ∧(x 1,…,x n );令ˆ()E T θθ=。
茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解-第1章 随机事件与概率【圣
③对立事件一定是互不相容的事件,即 A∩B=∅.但互不相容的事件不一定是对立事件.
_
④A-B 可以记为 AB.
7.事件的运算性质
5 / 85
圣才电子书
(1)交换律
十万种考研考证电子书、题库视频学习平台
A∪B=B∪A,AB=BA
(2)结合律
(A∪B)∪C=A∪(B∪C)
n r 1
次所得的组合,此种重复组合总数为
r
,这里的 r 也允许大于 n.
上述四种排列组合及其总数计算公式在使用中要注意识别有序与无序、重复与不重复.
3.确定概率的频率方法 (1)确定概率的频率方法 在大量重复试验中,用频率的稳定值去获得概率的一种方法,其基本思想是: ①与考察事件 A 有关的随机现象可大量重复进行.
4.随机变量 定义:表示随机现象结果的变量,常用大写字母 X,Y,Z 表示. 注意:很多事件都用随机变量表示时,应写明随机变量的含义.在同一个随机现象中, 不同的设置可获得不同的随机变量,如何设置可按需要进行.
5.事件间的关系 假设在同一个样本空间 Ω(即同一个随机现象)中进行.事件间的关系与集合间关系
2.排列与组合公式 排列与组合都是计算“从 n 个元素中任取 r 个元素”的取法总数公式. 区别:组合公式是不讲究取出元素间的次序,否则用排列公式.而所谓讲究元素间的次 序,可以从实际问题中得以辨别,例如两个人相互握手是不讲次序的;而两个人排队是讲次 序的,因为“甲右乙左”与“乙右甲左”是两件事.
7 / 85
_
1-1-5),或用概率论的语言说“A 不发生”,即A=Ω-A.
_
图 1-1-5 A 的对立事件A
注意:
_
_
①对立事件是相互的,即 A 的对立事件是A,而A的对立事件是 A.必然事件 Ω 与不可
茆诗松《概率论与数理统计教程》课后习题
茆诗松《概率论与数理统计教程》课后习题本书是详解研究生入学考试指定考研参考书目为茆诗松《概率论与数理统计教程》的配套题库,每章包括以下四部分:第一部分为考研真题及详解。
本部分按教材章节从历年考研真题中挑选具有代表性的部分,并对其进行了详细的解答。
所选考研真题既注重对基础知识的掌握,让学员具有扎实的专业基础;又对一些重难点部分(包括教材中未涉及到的知识点)进行详细阐释,以使学员不遗漏任何一个重要知识点。
第二部分为课后习题及详解。
本部分对茆诗松编写的《概率论与数理统计教程》(第2版)教材每一章的课后习题进行了详细的分析和解答,并对个别知识点进行了扩展。
课后习题答案经过多次修改,质量上乘,特别适合应试作答和临考冲刺。
第三部分为章节题库及详解。
本部分严格按照茆诗松编写的《概率论与数理统计教程》(第2版)教材内容进行编写,每一章都精心挑选经典常见考题,并予以详细解答。
熟练掌握本书考题的解答,有助于学员理解和掌握有关概念、原理,并提高解题能力。
第四部分为模拟试题及详解。
参照茆诗松编写的《概率论与数理统计教程》(第2版)教材,根据历年考研真题的命题规律及热门考点精心编写了两套考前模拟试题,并提供详尽的解答。
通过模拟试题的练习,学员既可以用来检测学习该考试科目的效果,又可以用来评估对自己的应试能力。
本书提供电子书及打印版,方便对照复习。
目录第一部分考研真题第1章随机事件与概率第2章随机变量与分布第3章多维随机变量及其分布第4章大数定律与中心极限定理第5章统计量及其分布第6章参数估计第7章假设检验第8章方差分析与回归分析第二部分课后习题第1章随机事件与概率第2章随机变量及其分布第3章多维随机变量及其分布第4章大数定律与中心极限定理第5章统计量及其分布第6章参数估计第7章假设检验第8章方差分析与回归分析第三部分章节题库第1章随机事件与概率第2章随机变量与分布第3章多维随机变量及其分布第4章大数定律与中心极限定理第5章统计量及其分布第6章参数估计第7章假设检验第8章方差分析与回归分析第四部分模拟试题茆诗松《概率论与数理统计教程》(第2版)配套模拟试题及详解(一)茆诗松《概率论与数理统计教程》(第2版)配套模拟试题及详解(二)。
茆诗松《概率论与数理统计教程》笔记和课后习题(含考研真题)详解(随机变量及其分布)【圣才出品】
xk p xk 丌收敛,则称 X 癿数学期望丌存在.
k =1
(2)连续型随机变量
定义:设连续随机变量 x 癿密度凼数为 p(x).如果
x p xdx
则称
E
X
xp
x
dx
为 X 癿数学期望,或称作该分布 p(x)癿数学期望,简称期望或均值.若
x p x dx 丌收敛,则称 X 癿数学期望丌存在.
2.数学期望癿性质 按照数学期望 E(X)癿定义,E(X)由其分布唯一确定.若要求随机变量 X 癿一个凼
5 / 119
圣才电子书 十万种考研考证电子书、题库视频学习平台
数 g(X)癿数学期望,当然要先求出 Y=g(X)癿分布,再用此分布来求 E(Y).
lim
xx0
F
x
F
x0
即 F(x0+0)=F(x0)
返三个基本性质为判别某个凼数是否能成为分布凼数癿充要条件.
当 F(x)在 a 不 b 处连续时,有 F(a-0)=F(a),F(b-0)=F(b).
3.离散随机变量癿概率分布列
(1)定义:设 X 是一个离散随机变量,如果 X 癿所有可能叏值是 x1,x2,…,xn,…,
则称 X 叏 xi 癿概率 pi=p(xi)=P(X=xi),i=1,2,…n,…为 X 癿概率分布列或简称为
分布列,记为 X~{pi}.
分布列也可用下表来表示:
X
x1
x2
…
P P(x1) P(x2) …
茆诗松《概率论与数理统计教程》(第3版)章节题库(假设检验)【圣才出品】
第7章假设检验一、选择题1.在假设检验中,如果待检验的原假设为H0,那么犯第二类错误是指()。
A.H0成立,接受H0B.H0不成立,接受H0C.H0成立,拒绝H0D.H0不成立,拒绝H0【答案】B【解析】直接应用“犯第二类错误”=“取伪”=“H0不成立,接受H0的定义,B项正确。
2.关于总体X的统计假设H0属于简单假设的是()。
A.X服从正态分布,H0:EX=0B.X服从指数分布,H0:EX≥1C.X服从二项分布,H0:DX=5D.X服从泊松分布,H0:DX=3【答案】D【解析】A、B、C三项的假设都不能完全确定总体的分布,所以是复合假设,而D项的假设可以完全确定总体分布,因而是简单假设。
3.设X 1,X 2, …,X 16为正态总体X ~N (μ,4)的简单随机样本,设H 0:μ=0,H 1:μ≠0的拒绝域为{|X _|≥1/2},则犯第一类错误的概率为( )。
A .2Ф(1)-1B .2-2Ф(1)C .2-2Ф(1/2) D .2Ф(1/2)-1 【答案】B【解析】由题设可知,X —~N (μ,1/4)()0,1N ,当u =0时,2X —~N (0,1)。
犯第一类错误的概率为P{|X —|≥1/2|μ=0}=P{|2X —|≥1}=1-P{|2X —|<1}=1-P{-1<2X —<1}=1-Ф(1)+Ф(-1)=2-2Ф(1),故选B 。
二、填空题1.设X 1,X 2,…,X n 是来自正态总体N (μ,σ2)的简单随机样本,其中参数σ2未知,1ni i X X ==∑,2211()ni i Q X μ==-∑,2221()nii Q X X ==-∑,对假设H 0:σ2=σ02,在μ已知时用χ2检验统计量为______;在μ未知时使用χ2检验统计量为______。
【答案】22122200Q Q σσ;【解析】这是一个关于正态总体方差σ2的假设检验问题。
在μ已知时选用χ2检验统计量为()()222221122100ni ni i i X X Q n μμχχσσσ==-⎛⎫-===⎪⎝⎭∑∑~在μ未知时选用χ2检验统计量为()()22222122210001ni ni i i X X X X Q n χχσσσ==-⎛⎫-===- ⎪⎝⎭∑∑~2.假设X 1,X 2,…,X 36是取自正态总体 N (μ,0.04)的简单随机样本,其中μ为未知参数。
茆诗松《概率论与数理统计教程》笔记和课后习题(含考研真题)详解(假设检验)【圣才出品】
第7章假设检验7.1 复习笔记一、假设检验的基本思想与概念1.假设检验的基本思想(1)通过样本对一个假设作出“对”或“不对”的具体判断,检验的结果若是否定该命题,则称拒绝这个假设,否则就称为接受该假设.(2)若假设可用一个参数的集合表示,该假设检验问题称为参数假设检验问题,否则称为非参数假设检验问题.2.假设检验的基本步骤(1)建立假设;(2)选择检验统计量,给出拒绝域形式;注意:一个拒绝域W唯一确定一个检验法则,一个检验法则也唯一确定一个拒绝域.(3)选择显著性水平第一类错误:命题本为真,却由于随机性落入了拒绝域,而否定了命题.(弃真)第二类错误:命题本为假,由于随机性落入了接受域,而接受了命题.(取伪)犯第一类错误概率:α=pθ{(X∈W)},θ∈Θ0,也记为p{X∈W|H0};犯第二类错误概率:β=pθ{(X∈W_)},θ∈Θ1,也记为p{X∈W_|H1}.注意:α,β的控制是相反的,即减小α,会加大β.①势函数:设检验问题H0:θ∈Θ0 vs H1:θ∈Θ1的拒绝域为W,则样本观测值X落在拒绝域W内的概率称为该检验的势函数,记为g(θ)=pθ(X∈W),θ∈Θ=Θ0∪Θ1②显著性检验:对检验问题H0:θ∈Θ0 vs H1:θ∈Θ1,如果一个检验满足对任意的θ∈Θ0,都有g(θ)≤α,则称该检验是显著性水平为α的显著性检验,简称水平为α的检验.(4)给出拒绝域依据题意分析,确定统计量来给出拒绝域.(5)做出判断有了明确的拒绝域W后,根据样本观测值我们可以作出判断,决定假设是否成立.3.检验的p值定义:在一个假设检验问题中,利用样本观测值能够作出拒绝原假设的最小显著性水平,将检验的p值与假设的显著性水平α进行比较可以很容易作出检验的结论:①如果α≥p,则在显著性水平α下拒绝H0;②如果α<p,则在显著性水平α下接受H0.二、正态总体参数假设检验1.单个正态总体均值的检验设x1,…,x n是来自N(μ,σ2)的样本,单个正态总体均值的假设检验列表如下:2.假设检验与置信区间的关系检验的接受域与置信区间是一一对应的.3.两个正态总体均值差的检验设x1,…,x m是来自正态总体N(μ1,σ12)的样本,y1,…,y n是来自另一个正态总体N(μ2,σ22)的样本,两个样本相互独立,两个正态总体均值的假设检验如下表:注:1x yu -=2x y u -=t 1是服从自由度为n +m -1的t 分布的随机变量,t 2是服从自由度为l 的t 分布的随机变量.4.成对数据检验假定x ~N (μ1,σ12),y ~(μ2,σ22),且x 与y 独立,在正态性假定下,d =x -y ~N (μ,σd 2),其中μ=μ1-μ2,σd 2=σ12+σ22,将比较μ1与μ2的大小转化为考察μ是否为零,即考察如下检验问题:H 0:μ=0 vs H 1:μ≠0即把双样本的检验问题转化为单样本t 检验问题,这时检验的t 统计量为 其中在给定显著性水平α下,该检验问题的拒绝域是:W1={|t 2|≥t 1-α/2(n -1)},这就是1x y t -=2x y t -=2(dt d s =11ni i d d n ==∑1/2211()1n d i i s d d n =⎛⎫=- ⎪-⎝⎭∑成对数据的t检验.5.正态总体方差的检验(1)单个正态总体方差的χ2检验;(2)两个正态总体方差比的F检验.两正态总体方差的假设检验如下表:三、其他分布参数的假设检验1.指数分布参数的假设检验(1)提出假设:H0:θ≤θ0 vs H1:θ>θ0拒绝域:W1={χ2≥χ1-α2(2n)},p值:p1=P(χ2≥χ02).(2)提出假设:H0:θ≥θ0 vs H1:θ<θ0和H0:θ=θ0 vs H1:θ≠θ0。
茆诗松《概率论与数理统计教程》笔记和课后习题(含考研真题)详解(多维随机变量及其分布)【圣才出品】
为 n 次独立重复试验中 Ai 出现的次数,i=1,2,…,r.则(X1,X2,…,Xr)取值(n1,
n2,…,nr)的概率,即 A1 出现 n1 次,A2 出现 n2 次,……,Ar 出现 nr 次的概率为
P( X1 n1, X 2 n2 ,
n! , X r nr ) n1!n2!
pi1
pi2
pij
(2)联合分布列的基本性质:
①非负性:Pij≥0;
②正则性:Pij≥0,
pij 1
i1 j1
2 / 138
圣才电子书 十万种考研考证电子书、题库视频学习平台
求二维离散随机变量的联合分布列,关键是写出二维随机变量可能取的数对及其发生的 概率.
中仸意取出 n 个,若记 Xi 为取出的 n 个球中 i 号球的个数,i=1,2,…,r,则
P( X1 n1, X 2 n2 ,
N1 N2 Nr
,
Xr
nr )
n1
n2
N
nr
n
其中 n1+n2+…+nr=n
(3)多维均匀分布
故积分区域的边界线是否在积分区域内丌影响概率计算结果.
3 / 138
圣才电子书
5.常用多维分布
十万种考研考证电子书、次独立重复试验,如果每次试验有 r 个互丌相容结果:A1,A2,…Ar,之一发生,
且每次试验中 Ai 发生的概率为 pi=P(Ai),i=1,2,…,r,且 p1+p2+…+pr=1.记 Xi
设 D 为 Rn 中的一个有界区域,其度量(平面的为面积,空间的为体积等)为 SD,如
概率论与数理统计(茆诗松)第二版课后习题参考答案
第一章 随机事件与概率习题1.11. 写出下列随机试验的样本空间:(1)抛三枚硬币; (2)抛三颗骰子;(3)连续抛一枚硬币,直至出现正面为止;(4)口袋中有黑、白、红球各一个,从中任取两个球,先从中取出一个,放回后再取出一个; (5)口袋中有黑、白、红球各一个,从中任取两个球,先从中取出一个,不放回后再取出一个. 解:(1)Ω = {(0, 0, 0),(0, 0, 1),(0, 1, 0),(1, 0, 0),(0, 1, 1),(1, 0, 1),(1, 1, 1),(1, 1, 1)},其中出现正面记为1,出现反面记为0; (2)Ω = {(x 1 , x 2 , x 3):x 1 , x 2 , x 3 = 1, 2, 3, 4, 5, 6};(3)Ω = {(1),(0, 1),(0, 0, 1),(0, 0, 0, 1),…,(0, 0, …, 0, 1),…},其中出现正面记为1,出现反面记为0;(4)Ω = {BB ,BW ,BR ,WW ,WB ,WR ,RR ,RB ,RW},其中黑球记为B ,白球记为W ,红球记为R ; (5)Ω = {BW ,BR ,WB ,WR ,RB ,RW},其中黑球记为B ,白球记为W ,红球记为R .2. 先抛一枚硬币,若出现正面(记为Z ),则再掷一颗骰子,试验停止;若出现反面(记为F ),则再抛一枚硬币,试验停止.那么该试验的样本空间Ω是什么? 解:Ω = {Z1,Z2,Z3,Z4,Z5,Z6,FZ ,FF}. 3. 设A , B , C 为三事件,试表示下列事件:(1)A , B , C 都发生或都不发生; (2)A , B , C 中不多于一个发生; (3)A , B , C 中不多于两个发生; (4)A , B , C 中至少有两个发生. 解:(1)C B A ABC U ;(2)C B A C B A C B A C B A U U U ;(3)ABC 或C B A C B A C B A C B A BC A C B A C AB U U U U U U ; (4)ABC BC A C B A C AB U U U . 4. 指出下列事件等式成立的条件:(1)A ∪B = A ; (2)AB = A . 解:(1)当A ⊃ B 时,A ∪B = A ;(2)当A ⊂ B 时,AB = A .5. 设X 为随机变量,其样本空间为Ω = {0 ≤ X ≤ 2},记事件A = {0.5 < X ≤ 1},B = {0.25 ≤ X < 1.5},写出下列各事件:(1)B A ; (2)B A U ;(3)AB ; (4)B A U .解:(1)}5.11{}5.025.0{<<≤≤=X X B A U ;(2)Ω=≤≤=}20{X B A U ;(3)A X X AB =≤<≤≤=}21{}5.00{U ; (4)B X X B A =≤≤<≤=}25.1{}25.00{U U .6. 检查三件产品,只区分每件产品是合格品(记为0)与不合格品(记为1),设X 为三件产品中的不合格品数,指出下列事件所含的样本点:A =“X = 1”,B =“X > 2”,C =“X = 0”,D =“X = 4”.解:A = {(1, 0, 0),(0, 1, 0),(0, 0, 1)},B = {(1, 1, 1)},C = {(0, 0, 0)},D = ∅. 7. 试问下列命题是否成立?(1)A − (B − C ) = (A − B )∪C ;(2)若AB = ∅且C ⊂ A ,则BC = ∅; (3)(A ∪B ) − B = A ; (4)(A − B )∪B = A .解:(1)不成立,C B A AC B A AC B A C B A C B A C B A C B A U U U U )()()()(−≠−====−=−−;(2)成立,因C ⊂ A ,有BC ⊂ AB = ∅,故BC = ∅;(3)不成立,因A B A B A B B B A B B A B B A ≠−====−U U U )()(; (4)不成立,因A B A B B B A B B A B B A ≠===−U U U U U ))(()(. 8. 若事件ABC = ∅,是否一定有AB = ∅?解:不能得出此结论,如当C = ∅时,无论AB 为任何事件,都有ABC = ∅. 9. 请叙述下列事件的对立事件:(1)A =“掷两枚硬币,皆为正面”; (2)B =“射击三次,皆命中目标”;(3)C =“加工四个零件,至少有一个合格品”. 解:(1)=A “掷两枚硬币,至少有一个反面”;(2)=B “射击三次,至少有一次没有命中目标”; (3)=C “加工四个零件,皆为不合格品”. 10.证明下列事件的运算公式:(1)B A AB A U =; (2)B A A B A U U =.证:(1)A A B B A B A AB =Ω==)(U U ;(2)B A B A B A A A B A A U U U U U =Ω==)())((. 11.设F 为一事件域,若A n ∈F ,n = 1, 2, …,试证:(1)∅ ∈F ;(2)有限并∈=U ni i A 1F ,n ≥ 1;(3)有限交∈=I ni i A 1F ,n ≥ 1;(4)可列交∈+∞=I 1i i A F ;(5)差运算A 1 − A 2 ∈ F .证:(1)由事件域定义条件1,知 Ω ∈F ,再由定义条件2,可得∅∈Ω=F ;(2)在定义条件3中,取A n + 1 = A n + 2 = … = ∅,可得∈=∞==U U 11i i ni i A A F ;(3)由定义条件2,知∈n A A A ,,,21L F ,根据(2)小题结论,可得∈=U ni i A 1F ,再由定义条件2,知∈=U ni i A 1F ,即∈=I ni i A 1F ;(4)由定义条件2,知∈L L ,,,,21n A A A F ,根据定义条件3,可得∈∞=U 1i i A F ,再由定义条件2,知∈∞=U 1i i A F ,即∈∞=I 1i i A F ;(5)由定义条件2,知∈2A F ,根据(3)小题结论,可得∈21A A F ,即A 1 − A 2 ∈ F .习题1.21. 对于组合数⎟⎟⎠⎞⎜⎜⎝⎛r n ,证明:(1)⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛r n n r n ; (2)⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−−=⎟⎟⎠⎞⎜⎜⎝⎛r n r n r n 111; (3)nn n n n 210=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛L ; (4)12221−⋅=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n n L ; (5)⎟⎟⎠⎞⎜⎜⎝⎛+=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛n b a b n a n b a n b a 0110L ,n = min{a , b }; (6)⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n 210222L . 证:(1)⎟⎟⎠⎞⎜⎜⎝⎛=−=−−−=⎟⎟⎠⎞⎜⎜⎝⎛−r n r r n n r n n r n n r n n !)!(!)]!([)!(!; (2)⎟⎟⎠⎞⎜⎜⎝⎛=−=−+−−=−−−+−−−=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−−r n r n r n r n r r n r n r n r n r n r n r n r n )!(!!)]([)!(!)!1()!1(!)!1()!()!1()!1(111; (3)由二项式展开定理nn n n y n n y x n x n y x ⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=+−L 110)(,令x = y = 1,得 nn n n n 210=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛L ; (4)当1 ≤ r ≤ n 时,⎟⎟⎠⎞⎜⎜⎝⎛−−=−⋅−−=−⋅−=−⋅=⎟⎟⎠⎞⎜⎜⎝⎛11)!()!1()!1()!()!1(!)!(!!r n n r n r n n r n r n r n r n rr n r , 故12111101221−⋅=⎟⎟⎠⎞⎜⎜⎝⎛−−++⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n n n n n n n n n L L ; (5)因a ax a a x a a x ⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=+L 10)1(,b b x b b x b b x ⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=+L 10)1(, 两式相乘,其中x n 的系数为⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛0110b n a n b a n b a L ,另一方面ba b a b a x a b a x b a b a x x x ++⎟⎟⎠⎞⎜⎜⎝⎛+++⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+=+=++L 10)1()1()1(, 其中x n 的系数为⎟⎟⎠⎞⎜⎜⎝⎛+n b a ,即⎟⎟⎠⎞⎜⎜⎝⎛+=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛n b a b n a n b a n b a 0110L ; (6)在(5)小题结论中,取a = b = n ,有⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n n n n n n 20110L , 再由(1)小题结论,知⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛r n n r n ,即⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n 210222L . 2. 抛三枚硬币,求至少出现一个正面的概率.解:样本点总数n = 23 = 8,事件“至少出现一个正面”的对立事件为“三个都是反面”,其所含样本点个数为1, 即事件“至少出现一个正面”所含样本点个数为k = 8 − 1 = 7,故所求概率为87)(=A P . 3. 任取两个正整数,求它们的和为偶数的概率. 解:将所有正整数看作两个类“偶数”、“奇数”,样本点总数n = 22 = 4,事件“两个都是偶数”所含样本点个数为1,事件“两个都是奇数”所含样本点个数也为1, 即事件A =“它们的和为偶数”所含样本点个数k = 2,故所求概率为2142)(==A P .4. 掷两枚骰子,求下列事件的概率:(1)点数之和为6; (2)点数之和不超过6; (3)至少有一个6点. 解:样本点总数n = 62 = 36.(1)事件A 1 =“点数之和为6”的样本点有 (1, 5), (2, 4), (3, 3), (4, 2), (5, 1),即个数k 1 = 5,故所求概率为365)(1=A P ;(2)事件A 2 =“点数之和不超过6”的样本点有(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (5, 1), 即个数k 2 = 15,故所求概率为1253615)(2==A P ;(3)事件A 3 =“至少有一个6点”的样本点有(1, 6), (6, 1), (2, 6), (6, 2), (3, 6), (6, 3), (4, 6), (6, 4), (5, 6), (6, 5), (6, 6), 即个数k 3 = 11,故所求概率为3611)(3=A P .5. 考虑一元二次方程x 2 + Bx + C = 0,其中B , C 分别是将一颗骰子接连掷两次先后出现的点数,求该方程有实根的概率p 和有重根的概率q . 解:样本点总数n = 62 = 36,事件A 1 =“该方程有实根”,即B 2 − 4C ≥ 0,样本点有(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), (4, 4), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6),即个数k 1 = 19,故36191==n k p . 事件A 2 =“该方程有重根”,即B 2 − 4C = 0,样本点有(2, 1),(4, 4),即个数k 2 = 2,故1813622===n k q . 6. 从一副52张的扑克牌中任取4张,求下列事件的概率:(1)全是黑桃; (2)同花;(3)没有两张同一花色; (4)同色.解:样本点总数270725123449505152452=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)事件A 1 =“全是黑桃”所含样本点个数7151234101112134131=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=k , 故所求概率为0026.0270725715)(1==A P ;(2)事件A 2 =“同花”所含样本点个数2860123410111213441342=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛×=k , 故所求概率为0106.02707252860)(2==A P ;(3)事件A 3 =“没有两张同一花色”所含样本点个数k 3 = 13 × 13 × 13 × 13 = 28561,故所求概率为1055.027072528561)(3==A P ;(4)事件A 4 =“同色”所含样本点个数29900123423242526242624=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛×=k , 故所求概率为1104.027072529900)(4==A P .7. 设9件产品中有2件不合格品.从中不返回地任取2个,求取出的2个中全是合格品、仅有一个合格品和没有合格品的概率各为多少?解:样本点总数36128929=××=⎟⎟⎠⎞⎜⎜⎝⎛=n , 事件A 1 =“全是合格品”所含样本点个数211267271=××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为1273621)(1==A P ; 事件A 2 =“仅有一个合格品”所含样本点个数142712171=×=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为1873614)(2==A P ;事件A 3 =“没有合格品”所含样本点个数1223=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为361)(3=A P . 8. 口袋中有7个白球、3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:样本点总数4512910210=××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,事件A =“两个球颜色相同”所含样本点个数24122312672327=××+××=⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=k , 故所求概率为1584524)(==A P . 9. 甲口袋有5个白球、3个黑球,乙口袋有4个白球、6个黑球.从两个口袋中各任取一球,求取到的两个球颜色相同的概率. 解:样本点总数n = 8 × 10 = 80,事件A =“两个球颜色相同”所含样本点个数k = 5 × 4 + 3 × 6 = 38,故所求概率为40198038)(==A P .10.从n 个数1, 2, …, n 中任取2个,问其中一个小于k (1 < k < n ),另一个大于k 的概率是多少?解:样本点总数)1(212−=⎟⎟⎠⎞⎜⎜⎝⎛=n n n N , 事件A = “其中一个小于k ,另一个大于k ”所含样本点个数K = (k − 1)(n − k ), 故所求概率为)1())(1(2)(−−−=n n k n k A P .11.口袋中有10个球,分别标有号码1到10,现从中不返回地任取4个,记下取出球的号码,试求:(1)最小号码为5的概率; (2)最大号码为5的概率.解:样本点总数210123478910410=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=n , (1)事件A 1 =“最小号码为5”所含样本点个数10123345351=××××=⎟⎟⎠⎞⎜⎜⎝⎛=k , 故所求概率为21121010)(1==A P ; (2)事件A 2 =“最大号码为5”所含样本点个数4123234342=××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为10522104)(2==A P . 12.掷三颗骰子,求以下事件的概率:(1)所得的最大点数小于等于5; (2)所得的最大点数等于5. 解:样本点总数n = 63 = 216,(1)事件A 1 =“所得的最大点数小于等于5”所含样本点个数k 1 = 53 = 125,故所求概率为216125)(1=A P ; (2)事件A 2 =“所得的最大点数等于5”所含样本点个数k 2 = 53 − 43 = 61,故所求概率为21661)(2=A P .13.把10本书任意地放在书架上,求其中指定的四本书放在一起的概率. 解:样本点总数n = 10!,事件A =“其中指定的四本书放在一起”所含样本点个数k = 4! × 7!,故所求概率为30189101234!10!7!4)(=×××××=×=A P . 14.n 个人随机地围一圆桌而坐,求甲乙两人相邻而坐的概率. 解:样本点总数N = (n − 1)!,事件A =“甲乙两人相邻而坐”所含样本点个数k = 2! × (n − 2)!,故所求概率为12)!1()!2(!2)(−=−−×=n n n A P . 15.同时掷5枚骰子,试证明:(1)P {每枚都不一样} = 0.0926; (2)P {一对} = 0.4630; (3)P {两对} = 0.2315;(4)P {三枚一样} = 0.1543(此题有误); (5)P {四枚一样} = 0.0193; (6)P {五枚一样} = 0.0008. 解:样本点总数n = 65 = 7776,(1)事件“每枚都不一样”所含样本点个数72023456561=××××==A k ,故P {每枚都不一样}0926.07776720==; (2)事件“一对”所含样本点个数3600345124563525162=××××××=⋅⋅=A C A k , 故P {一对}4630.077763600==; (3)事件“两对”所含样本点个数18004122312451256142325263=×××××××××=⋅⋅⋅=A C C C k ,故P {两对}2315.077761800==; (4)事件“三枚一样”所含样本点个数15005123345652235164=××××××=⋅⋅=C A k ,故P {三枚一样}1929.077761500==; 事件“三枚一样且另两枚不一样”所含样本点个数12004512334562535164=×××××××=⋅⋅=A C A k ,故P {三枚一样且另两枚不一样}1543.077761200==; (5)事件“四枚一样”所含样本点个数15051234234561545165=××××××××=⋅⋅=A C A k ,故P {四枚一样}0193.07776150==; (6)事件“五枚一样”所含样本点个数6161555166=×=⋅⋅=A C A k ,故P {五枚一样}0008.077766==. 16.一个人把六根草紧握在手中,仅露出它们的头和尾.然后随机地把六个头两两相接,六个尾也两两相接.求放开手后六根草恰巧连成一个环的概率.解:在同一种六个头两两相接情况下,只需考虑六个尾两两相接的样本点总数n = 5 × 3 = 15,事件A =“放开手后六根草恰巧连成一个环”所含样本点个数k = 4 × 2 = 8,故所求概率为158)(=A P .17.把n 个“0”与n 个“1”随机地排列,求没有两个“1”连在一起的概率.解:样本点总数!!)!2(2n n n n n N ⋅=⎟⎟⎠⎞⎜⎜⎝⎛=,事件A =“没有两个‘1’连在一起”所含样本点个数11+=⎟⎟⎠⎞⎜⎜⎝⎛+=n n n k , 故所求概率为)!2()!1(!)(n n n A P +⋅=.18.设10件产品中有2件不合格品,从中任取4件,设其中不合格品数为X ,求X 的概率分布.解:样本点总数210123478910410=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=n , 事件X = 0所含样本点个数7011234567802480=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k , 故所求概率为3121070}0{===X P ; 事件X = 1所含样本点个数112212367812381=×××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k , 故所求概率为158210112}1{===X P ; 事件X = 2所含样本点个数281127822282=×××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为15221028}2{===X P . 19.n 个男孩,m 个女孩(m ≤ n + 1)随机地排成一排,试求任意两个女孩都不相邻的概率.解:样本点总数!!)!(m n m n n m n N ⋅+=⎟⎟⎠⎞⎜⎜⎝⎛+=,事件A =“任意两个女孩都不相邻”所含样本点个数)!1(!)!1(1m n m n m n k −+⋅+=⎟⎟⎠⎞⎜⎜⎝⎛+=, 故所求概率为)2()1)(()2()1()!1()!()!1(!)(+−++−+−=−+⋅++⋅=n m n m n m n n n m n m n n n A P L L .20.将3个球随机放入4个杯子中去,求杯子中球的最大个数X 的概率分布. 解:样本点总数n = 43 = 64,事件X = 1所含样本点个数24234341=××==A k ,故所求概率为836424}1{===X P ; 事件X = 2所含样本点个数363341323142=××==A C A k ,故所求概率为1696436}2{===X P ; 事件X = 3所含样本点个数4143==A k ,故所求概率为161644}3{===X P . 21.将12只球随意地放入3个盒子中,试求第一个盒子中有3只球的概率. 解:样本点总数n = 312 = 531441,事件A =“第一个盒子中有3只球”所含样本点个数11264051212310111223129=×××××=×⎟⎟⎠⎞⎜⎜⎝⎛=k , 故所求概率为2120.0531441112640)(==A P .22.将n 个完全相同的球(这时也称球是不可辨的)随机地放入N 个盒子中,试求:(1)某个指定的盒子中恰好有k 个球的概率; (2)恰好有m 个空盒的概率;(3)某指定的m 个盒子中恰好有j 个球的概率.解:样本点总数为N 取n 次的重复组合,即)!1(!)!1(1−⋅−+=⎟⎟⎠⎞⎜⎜⎝⎛−+=N n n N n n N M , (1)事件A 1 =“某个指定的盒子中恰好有k 个球”所含样本点个数为N − 1取n − k 次的重复组合,即)!2()!()!2(21)(11−⋅−−−+=⎟⎟⎠⎞⎜⎜⎝⎛−−−+=⎟⎟⎠⎞⎜⎜⎝⎛−−−+−=N k n k n N k n k n N k n k n N K , 故所求概率为)1()2)(1()1()1()1()!2()!()!1()!1(!)!2()(1−−+−+−+−⋅+−−=−⋅−⋅−+−⋅⋅−−+=k n N n N n N N k n n n N k n n N N n k n N A P L L ;(2)事件A 2 =“恰好有m 个空盒”所含样本点个数可分两步考虑:首先N 选m 次的组合,选出m 个空盒,而其余N − m 个盒中每一个都分别至少有一个球, 其次剩下的n − (N − m )个球任意放入这N − m 个盒中,即N − m 取n − (N − m )次的重复组合,则)!1()!()!(!)!1(!)(12−−⋅−+⋅−⋅−⋅=⎟⎟⎠⎞⎜⎜⎝⎛−−−⎟⎟⎠⎞⎜⎜⎝⎛=m N N m n m N m n N m N n n m N K ,故所求概率为)!1()!1()!()!(!)!1(!)!1(!)(2−+⋅−−⋅−+⋅−⋅−⋅⋅−⋅=n N m N N m n m N m N n n N A P ;(3)事件A 3 =“某指定的m 个盒子中恰好有j 个球”所含样本点个数为m 取j 次的重复组合乘以N − m 取n − j 次的重复组合,则)!1()!()!1(!)!1()!1(1)()(13−−⋅−⋅−⋅−−−+⋅−+=⎟⎟⎠⎞⎜⎜⎝⎛−−−+−⎟⎟⎠⎞⎜⎜⎝⎛−+=m N j n m j j m n N j m j n j n m N j j m K , 故所求概率为)!1()!1()!()!1(!)!1(!)!1()!1()(3−+⋅−−⋅−⋅−⋅−⋅⋅−−−+⋅−+=n N m N j n m j N n j m n N j m A P .23.在区间(0, 1)中随机地取两个数,求事件“两数之和小于7/5”的概率.解:设这两个数分别为x 和y ,有Ω = {(x , y ) | 0 < x < 1, 0 < y < 1},得m (Ω) = 1,事件A =“两数之和小于7/5”,有A = {(x , y ) | 0 < x +y < 7/5}, 得504153211)(2=⎟⎠⎞⎜⎝⎛×−=A m , 故所求概率为5041)()()(=Ω=m A m A P . 24.甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内到达的时间是等可能的.如果甲船的停泊时间是一小时,乙船的停泊时间是两小时,求它们中任何一艘都不需要等候码头空出的概率是多少?解:设甲乙两艘轮船到达码头的时间分别为x 和y 小时,有Ω = {(x , y ) | 0 ≤ x ≤ 24, 0 ≤ y ≤ 24},得m (Ω) = 242 = 576, 事件A =“它们中任何一艘都不需要等候码头空出”, 若甲先到,有x + 1 ≤ y ≤ 24;若乙先到,有y + 2 ≤ x ≤ 24;即A = {(x , y ) | 0 ≤ x ≤ 24, 0 ≤ y ≤ 24, x + 1 ≤ y ≤ 24或y + 2 ≤ x ≤ 24},得2101322212321)(22=×+×=A m , 故所求概率为11521013)()()(=Ω=m A m A P . 25.在平面上画有间隔为d 的等距平行线,向平面任意投掷一个边长为a , b , c (均小于d )的三角形,求三角形与平行线相交的概率.解:不妨设a ≥ b ≥ c ,三角形的三个顶点分别为A , B , C ,其对边分别为a , b , c ,相应三个角也记为A , B , C ,设O 为BC 的中点,点O 与最近的一条平行线的距离为x , 从点O 向三角形外作与平行线平行的射线OD , 若B , C 中点C 更靠近某条平行线,则记α = ∠COD ,否则记α = −∠BOD , 有π}π,20|),{(<<−≤≤=Ωααdx x ,得m (Ω) = π d ,事件E =“三角形与平行线相交”,当α ≥ 0时,如果C ≤ α < π,事件E 就是OC 与平行线相交; 如果0 ≤ α < C ,事件E 就是OC 或AC 与平行线相交; 当α < 0时,如果−π < α ≤ −B ,事件E 就是OB 与平行线相交;如果−B < α < 0,事件E 就是OB 或AB 与平行线相交.记}sin 2,|),{(1αααax C x E ≤≥=, )}sin(sin 2,0|),{(2αααα−+≤<≤=C b ax C x E ,}sin 2,|),{(3αααax B x E −≤−≤=,)}sin(sin 2,0|),{(4αααα++−≤<<−=B c ax B x E ,有E = E 1∪E 2∪E 3∪E 4,得∫∫−−−⎥⎦⎤⎢⎣⎡++−+⎟⎠⎞⎜⎝⎛−=0π)sin(sin 2sin 2)(BB d B c a d a E m ααααα∫∫+⎥⎦⎤⎢⎣⎡−++π0sin 2)sin(sin 2C C d a d C b a ααααα∫∫∫∫+−++++⎟⎠⎞⎜⎝⎛−=−−π0000πsin 2)sin()sin(sin 2ααααααααd a d C b d B c d a C B π0000πcos 2)cos()cos(cos 2ααααa C b B c aCB −−++−=−− 22cos cos 22a a C b b c B c a a +⎟⎠⎞⎜⎝⎛−−−++−⎟⎠⎞⎜⎝⎛−−=c b a a a c b a abc b a b ac b c a c c b a ++=−++=−+⋅−−+⋅−++=2222222222222,故所求概率为d cb a m E m E P π)()()(++=Ω=.方法二:设事件A , B , C 分别表示“边长为a , b , c 三条边与平行线相交”,事件E 表示“三角形与平行线相交”, 由于三角形与平行线相交时,将至少有两条边与平行线相交,即E = AB ∪AC ∪BC ,则由三个事件的加法公式得P (E ) = P (AB ) + P (AC ) + P (BC ) − 2 P (ABC ), 因ABC 表示“三条边都与平行线相交”,有P (ABC ) = 0, 则P (E ) = P (AB ) + P (AC ) + P (BC ),另一方面,由于三角形与平行线相交时,将至少有两条边与平行线相交, 有A = AB ∪AC ,B = AB ∪BC ,C = AC ∪BC ,则P (A ) = P (AB ) + P (AC ) − P (ABC ) = P (AB ) + P (AC ), P (B ) = P (AC ) + P (BC ),P (C ) = P (AC ) + P (BC ),可得P (A ) + P (B ) + P (C ) = [P (AB ) + P (AC )] + [P (AC ) + P (BC )] + [P (AC ) + P (BC )]= 2[P (AB ) + P (AC ) + P (BC )],根据蒲丰投针问题知d a A P π2)(=,d b B P π2)(=,dc C P π2)(=, 故dcb a C P B P A P BC P AC P AB P E P π)]()()([21)()()()(++=++=++=.26.在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交点在该直径上的位置是等可能的,即交点在直径上一个区间内的可能性与这区间的长度成比例,求任意画弦的长度大于R 的概率.1A解:设弦与垂直于弦的直径的交点与圆心的距离为x ,有Ω = {x | 0 ≤ x < R },得m (Ω) = R ,事件A =“弦的长度大于R ”,有2222⎟⎠⎞⎜⎝⎛>−R x R ,2243R x <,即}230|{R x x A <≤=,得R A m 23)(=,故所求概率为23)()()(=Ω=m A m A P . 27.设一个质点落在xOy 平面上由x 轴、y 轴及直线x + y = 1所围成的三角形内,而落在这三角形内各点处的可能性相等,即落在这三角形内任何区域上的概率与区域的面积成正比,试求此质点还满足y < 2x 的概率是多少?解:Ω = {(x , y ) | 0 < x < 1, 0 < y < 1, 0 < x + y < 1},得21)(=Ωm , 事件A =“满足y < 2x ”,有A = {(x , y ) | 0 < y < 1, y /2 ≤ x ≤ 1 − y },得3132121)(=××=A m , 故所求概率为32)()()(=Ω=m A m A P . 28.设a > 0,有任意两数x , y ,且0 < x < a ,0 < y < a ,试求xy < a 2/4的概率. 解:Ω = {(x , y ) | 0 ≤ x ≤ a , 0 ≤ y ≤ a },得m (Ω) = a 2,事件A =“xy < a 2/4”,有A = {(x , y ) | 0 ≤ x ≤ a , 0 ≤ y ≤ a , xy < a 2/4},即4ln 44ln 44)(22422422a a x a ax a dx x a a a A m aa aa +=⎟⎟⎠⎞⎜⎜⎝⎛−−=⎟⎟⎠⎞⎜⎜⎝⎛−−=∫, 故所求概率为5966.04ln 4141)()()(=+=Ω=m A m A P . 29.用主观方法确定:大学生中戴眼镜的概率是多少? (自己通过调查,作出主观判断)30.用主观方法确定:学生中考试作弊的概率是多少? (自己通过调查,作出主观判断)x习题1.31. 设事件A 和B 互不相容,且P (A ) = 0.3,P (B ) = 0.5,求以下事件的概率:(1)A 与B 中至少有一个发生; (2)A 和B 都发生; (3)A 发生但B 不发生. 解:(1)P (A ∪B ) = P (A ) + P (B ) = 0.3 + 0.5 = 0.8;(2)P (AB ) = 0;(3)P (A − B ) = P (A ) = 0.3.2. 设P (AB ) = 0,则下列说法哪些是正确的?(1)A 和B 不相容; (2)A 和B 相容;(3)AB 是不可能事件;(4)AB 不一定是不可能事件; (5)P (A ) = 0或P (B ) = 0; (6)P (A − B ) = P (A ). 解:(1)错误,当P (AB ) = 0时,A 和B 可能相容也可能不相容;(2)错误,当P (AB ) = 0时,A 和B 可能相容也可能不相容;(3)错误,当P (AB ) = 0时,A 和B 可能相容也可能不相容,即AB 不一定是不可能事件; (4)正确,当P (AB ) = 0时,A 和B 可能相容也可能不相容,即AB 不一定是不可能事件; (5)错误,当P (A ) > 0,P (B ) > 0时,只要A 和B 不相容,就有P (AB ) = 0; (6)正确,P (A − B ) = P (A ) − P (AB ) = P (A ).3. 一批产品分一、二、三级,其中一级品是二级品的三倍,三级品是二级品的一半,从这批产品中随机地抽取一个,试求取到二级品的概率. 解:设A , B , C 分别表示“取到一、二、三级品”,有P (A ) + P (B ) + P (C ) = 1,P (A ) = 3P (B ),)(21)(B P C P =, 则1)(29)(21)()(3==++B P B P B P B P ,即92)(=B P , 故取到二级品的概率92)(=B P .4. 从0, 1, 2, …, 9等十个数字中任意选出三个不同的数字,试求下列事件的概率:(1)A 1 = {三个数字中不含0和5}; (2)A 2 = {三个数字中不含0或5}; (3)A 3 = {三个数字中含0但不含5}.解:样本点总数1201238910310=××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)事件A 1所含样本点个数56123678381=××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故15712056)(1==A P ; (2)事件=2A “三个数字中含0和5”所含样本点个数8182=⎟⎟⎠⎞⎜⎜⎝⎛=A k ,故1514120112)(1)(22==−=A P A P ; (3)事件A 3所含样本点个数281278283=××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故30712028)(3==A P .5. 某城市中共发行3种报纸A , B , C .在这城市的居民中有45%订阅A 报、35%订阅B 报、25%订阅C 报,10%同时订阅A 报B 报、8%同时订阅A 报C 报、5%同时订阅B 报C 报、3%同时订阅A , B , C 报.求以下事件的概率: (1)只订阅A 报;(2)只订阅一种报纸的; (3)至少订阅一种报纸的; (4)不订阅任何一种报纸的.解:设A , B , C 分别表示“订阅报纸A , B , C ”,则P (A ) = 0.45,P (B ) = 0.35,P (C ) = 0.30,P (AB ) = 0.10,P (AC ) = 0.08,P (BC ) = 0.05,P (ABC ) = 0.03,(1))()()()()()())(()(ABC P AC P AB P A P AC AB P A P C B A P C B A P +−−=−=−=U U= 0.45 − 0.10 − 0.08 + 0.03 = 0.30;(2))()()()(B A P C B A P C B A P C B A C B A C B A P ++=U U ,因)()()()()()())(()(ABC P BC P AB P B P BC AB P B P C A B P C B A P +−−=−=−=U U= 0.35 − 0.10 − 0.05 + 0.03 = 0.23,)()()()()()())(()(ABC P BC P AC P C P BC AC P C P B A C P C B A P +−−=−=−=U U= 0.30 − 0.08 − 0.05 + 0.03 = 0.20,故73.020.023.030.0)()()()(=++=++=C B A P C B A P C B A P C B A C B A C B A P U U ; (3)P (A ∪B ∪C ) = P (A ) + P (B ) + P (C ) − P (AB ) − P (AC ) − P (BC ) + P (ABC )= 0.45 + 0.35 + 0.30 − 0.10 − 0.08 − 0.05 + 0.03 = 0.90;(4)10.090.01)(1(=−=−=C B A P C B A P U U .6. 某工厂一个班组共有男工9人、女工5人,现要选出3个代表,问选的3个代表中至少有1个女工的概率是多少?解:样本点总数364123121314314=××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,事件=A “选的3个代表中没有女工”所含样本点个数8412378939=××××=⎟⎟⎠⎞⎜⎜⎝⎛=A k ,故所求概率为1310364280364841)(1)(==−=−=A P A P . 7. 一赌徒认为掷一颗骰子4次至少出现一次6点与掷两颗骰子24次至少出现一次双6点的机会是相等的,你认为如何? 解:“掷一颗骰子4次”的样本点总数n 1 = 64 = 1296,事件=1A “没有出现6点”所含样本点个数为625541==A k ,则5177.0129667112966251)(1)(11==−=−=A P A P ; “掷两颗骰子24次”的样本点总数n 2 = (62 )24 = 36 24,事件=2A “没有出现双6点”所含样本点个数为2424235)16(2=−=A k ,则4914.036353636351)(1)(242424242422=−=−=−=A P A P ;故掷一颗骰子4次至少出现一次6点的机会比掷两颗骰子24次至少出现一次双6点的机会更大. 8. 从数字1, 2, …, 9中可重复地任取n 次,求n 次所取数字的乘积能被10整除的概率. 解:样本点总数N = 9 n ,因事件A =“n 次所取数字的乘积能被10整除”就是“至少取到一次数字5并且至少取到一次偶数”, 则事件=A “没有取到数字5或没有取到偶数”, 设事件B =“没有取到数字5”,C =“没有取到偶数”,则事件B 所含样本点个数为K B = 8 n ,事件C 所含样本点个数为K C = 5 n , 且事件BC =“没有取到数字5和偶数”所含样本点个数为K BC = 4 n ,故nnn n n n n n n n n BC P C P B P C B P A P A P 945899495981)()()(1)(1)(1)(+−−=+−−=+−−=−=−=U . 9. 口袋中有n − 1个黑球和1个白球,每次从口袋中随机地摸出一球,并换入一只黑球.问第k 次摸球时,摸到黑球的概率是多少? 解:样本点总数N = n k ,事件=A “第k 次摸球时摸到白球”,此时前n − 1次摸球时都必须是摸到黑球,则A 中所含样本点个数1)1(−−=k A n K ,故所求概率为kk nn A P A P 1)1(1)(1)(−−−=−=. 10.若P(A ) = 1,证明:对任一事件B ,有P (AB ) = P (B ).证:因P (A ) = 1,且A B A ⊂,有0)(1)()(=−=≤A P A P B A P ,则0)()()()(=−=−=AB P B P A B P A P ,故P (AB ) = P (B ).11.掷2n + 1次硬币,求出现的正面数多于反面数的概率. 解:设A =“出现的正面数多于反面数”,因掷奇数次硬币,出现的正面数与反面数不可能相等,事件=A “出现的反面数多于正面数”,由于掷一枚硬币出现正面与出现反面的可能性相同,则“出现的正面数多于反面数”与“出现的反面数多于正面数” 的可能性相同, 可得)()(A P A P =,又1()(=+A P A P ,故P (A ) = 0.5.12.有三个人,每个人都以同样的概率1/5被分配到5个房间中的任一间中,试求:(1)三个人都分配到同一个房间的概率; (2)三个人分配到不同房间的概率. 解:样本点总数n = 53 = 125,(1)事件A 1 =“三个人都分配到同一个房间”所含样本点个数为k 1 = 5,故所求概率为2511255)(1==A P ; (2)事件A 2 =“三个人分配到不同房间”所含样本点个数为60345352=××==A k ,故所求概率为251212560)(2==A P . 13.一间宿舍住有5位同学,求他们之中至少有2个人生日在同一个月份的概率.解:首先假设一个人的生日在每一个月份的可能性相同,样本点总数n = 125,事件=A “每个人生日都在不同月份”所含样本点个数为512A k A =, 故所求概率为6181.014489121)(1)(5512==−=−=A A P A P . 14.某班n 个战士各有1支归个人保管使用的枪,这些枪的外形完全一样,在一次夜间紧急集合中,每人随机地取了1支枪,求至少有1人拿到自己的枪的概率.解:设A i =“第i 个战士拿到自己的枪”,n i ,,2,1L =,有==i ni A 1U “至少有1人拿到自己的枪”,因)()1()()()()(2111111n n nk j i kjinj i jini i i ni A A A P A A A P A A P A P A P L L U ⋅−+++−=−≤<<≤≤<≤==∑∑∑,且n n n A P i 1!)!1()(=−=,)1(1!)!2()(−=−=n n n n A A P j i ,)2)(1(1)(−−=n n n A A A P k j i ,……, 故!)1(!31!211!1)1()2)(1(1)1(11)(11321n n C n n n C n n C n n A P n nn n n n i ni −−=−+−+−=⋅−+−−−⋅+−⋅−×=L L U . 15.设A , B 是两事件,且P (A ) = 0.6,P (B ) = 0.8,问: (1)在什么条件下P (AB )取到最大值,最大值是多少? (2)在什么条件下P (AB )取到最小值,最小值是多少? 解:(1)因P (AB ) ≤ min{P (A ), P (B )} = P (A ) = 0.6,故当P (AB ) = P (A ) 时,P (AB )取到最大值0.6;(2)因P (AB ) = P (A ) + P (B ) − P (A ∪B ) ≥ P (A ) + P (B ) − 1 = 0.4,故当P (A ∪B ) = 1时,P (AB )取到最小值0.4. 注:若A ⊂ B ,有AB = A ,可得P (AB ) = P (A ),但不能反过来,由P (AB ) = P (A ),得出A ⊂ B ;若A ∪B = Ω,可得P (A ∪B ) = 1,但不能反过来,由P (A ∪B ) = 1,得出A ∪B = Ω. 16.已知事件A , B 满足)()(B A P AB P I =,记P (A ) = p ,试求P (B ).解:因)()()(1)(1)()()(AB P B P A P B A P B A P B A P AB P +−−=−===U U I ,有1 − P (A ) − P (B ) = 0,故P (B ) = 1 − P (A ) = 1 − p .17.已知P (A ) = 0.7,P (A − B ) = 0.4,试求)(AB P .解:因P (A − B ) = P (A ) − P (AB ),有P (AB ) = P (A ) − P (A − B ) = 0.7 − 0.4 = 0.3,故7.0)(1(=−=AB P AB P . 18.设P (A ) = 0.6,P (B ) = 0.4,试证)()(B A P AB P I =.证:)()(4.06.01)()()(1)(1)()(AB P AB P AB P B P A P B A P B A P B A P =+−−=+−−=−==U U I . 19.对任意的事件A , B , C ,证明:(1)P (AB ) + P (AC ) − P (BC ) ≤ P (A );(2)P (AB ) + P (AC ) + P (BC ) ≥ P (A ) + P (B ) + P (C ) − 1. 证:(1)因P (AB ∪AC ) = P (AB ) + P (AC ) − P (ABC ),且 (AB ∪AC ) ⊂ A ,ABC ⊂ BC ,有P (AB ∪AC ) ≤ P (A ),P (ABC ) ≤ P (BC ),故P (AB ) + P (AC ) − P (BC ) = P (AB ∪AC ) + P (ABC ) − P (BC ) ≤ P (AB ∪AC ) ≤ P (A ). (2)因P (A ∪B ∪C ) = P (A ) + P (B ) + P (C ) − P (AB ) − P (AC ) − P (BC ) + P (ABC ),故P (AB ) + P (AC ) + P (BC ) = P (A ) + P (B ) + P (C ) + P (ABC ) − P (A ∪B ∪C )≥ P (A ) + P (B ) + P (C ) + P (ABC ) − 1 ≥ P (A ) + P (B ) + P (C ) − 1.20.设A , B , C 为三个事件,且P (A ) = a ,P (B ) = 2a ,P (C ) = 3a ,P (AB ) = P (AC ) = P (BC ) = b ,证明:a ≤ 1/4,b ≤ 1/4.证:因P (B ∪C ) = P (B ) + P (C ) − P (BC ) = 5a − b ,且a = P (A ) ≥ P (AB ) = b ,则P (B ∪C ) = 5a − b ≥ 4a ,即4a ≤ 1,故a ≤ 1/4且b ≤ a ≤ 1/4.21.设事件A , B , C 的概率都是1/2,且)()(C B A P ABC P I I =,证明:2 P (ABC ) = P (AB ) + P (AC ) + P (BC ) − 1/2.证:因)(1)()()(C B A P C B A P C B A P ABC P U U U U I I −==== 1 − P (A ) − P (B ) − P (C ) + P (AB ) + P (AC ) + P (BC ) − P (ABC ),故2 P (ABC ) = P (AB ) + P (AC ) + P (BC ) + 1 − P (A ) − P (B ) − P (C ) = P (AB ) + P (AC ) + P (BC ) − 1/2. 22.证明:(1)P (AB ) ≥ P (A ) + P (B ) − 1;(2)P (A 1 A 2 …A n ) ≥ P (A 1) + P (A 2) + … + P (A n ) − (n − 1). 证:(1)因P (A ∪B ) = P (A ) + P (B ) − P (AB ),故P (AB ) = P (A ) + P (B ) − P (A ∪B ) ≥ P (A ) + P (B ) − 1;(2)用数学归纳法证明,当n = 2时,由(1)小题知结论成立,设当n = k 时,结论成立,即P (A 1 A 2 …A k ) ≥ P (A 1) + P (A 2) + … + P (A k ) − (k − 1), 则P (A 1 A 2 …A k A k + 1) ≥ P (A 1 A 2 …A k ) + P (A k + 1) − 1≥ P (A 1) + P (A 2) + … + P (A k ) − (k − 1) + P (A k + 1) − 1 = P (A 1) + P (A 2) + … + P (A k ) + P (A k + 1) − k ,即当n = k + 1时,结论成立,故由数学归纳法知P (A 1 A 2 …A n ) ≥ P (A 1) + P (A 2) + … + P (A n ) − (n − 1). 23.证明:41|)()()(|≤−B P A P AB P . 证:因)()()](1)[()]()()[()()()()(A P A P A P AB P B A P AB P A P AB P B P A P AB P −−=+−=−,且0 ≤ P (AB )[1 − P (A )] ≤ P (A )[1 − P (A )],)](1)[(()()()(0A P A P A P A P B A P A P −=≤≤, 故)}()()],(1)[(max{|)()()](1)[(||)()()(|A P A P A P AB P B A P A P A P AB P B P A P AB P −≤−−=−4121)(41)]([)()](1)[(22≤⎥⎦⎤⎢⎣⎡−−=−=−≤A P A P A P A P A P .习题1.41. 某班级学生的考试成绩数学不及格的占15%,语文不及格的占5%,这两门课都不及格的占3%.(1)已知一学生数学不及格,他语文也不及格的概率是多少? (2)已知一学生语文不及格,他数学也不及格的概率是多少? 解:设A =“数学不及格”,B =“语文不及格”,有P (A ) = 0.15,P (B ) = 0.05,P (AB ) = 0.03,(1)所求概率为2.015.003.0)()()|(===A P AB P A B P ; (2)所求概率为6.005.003.0)()()|(===B P AB P B A P . 2. 设一批产品中一、二、三等品各占60%, 35%, 5%.从中任意取出一件,结果不是三等品,求取到的是一等品的概率.解:设A , B , C 分别表示“取出一、二、三等品”,有P (A ) = 0.6,P (B ) = 0.35,P (C ) = 0.05,故所求概率为191205.016.0)(1)()()()|(=−=−==C P A P C P C A P C A P . 3. 掷两颗骰子,以A 记事件“两颗点数之和为10”,以B 记事件“第一颗点数小于第二颗点数”,试求条件概率P (A | B ) 和P (B | A ). 解:样本点总数n = 6 2 = 36,则事件A 中的样本点有 (4, 6), (5, 5), (6, 4),即个数k A = 3,有363)(=A P , 事件B 中所含样本点个数k B = 5 + 4 + 3 + 2 + 1 + 0 = 15,有3615)(=B P ,事件AB 中的样本点有 (4, 6),即个数k C = 1,有361)(=AB P , 故1513615361)()()|(===B P AB P B A P ,31363361)()()|(===A P AB P A B P .4. 以某种动物由出生活到10岁的概率为0.8,而活到15岁的概率为0.5,问现年为10岁的这种动物能活到15岁的概率是多少?解:设A , B 分别表示“这种动物能活到10岁, 15岁”,有P (A ) = 0.8,P (B ) = 0.5,故所求概率为858.05.0)()()()()|(====A P B P A P AB P A B P .5. 设10件产品中有4件不合格品,从中任取两件,已知其中一件是不合格品,求另一件也是不合格品的概率.解:设A =“其中一件是不合格品”,B =“两件都是不合格品”,有AB = B ,样本点总数45210=⎟⎟⎠⎞⎜⎜⎝⎛=n , 事件A 中所含样本点个数30624241614=+=⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=A k ,得4530)(=A P , 事件AB = B 中所含样本点个数624=⎟⎟⎠⎞⎜⎜⎝⎛=B k ,得456)()(==B P AB P ,故所求概率为2.04530456)()()|(===A P AB P A B P . 6. 设n 件产品中有m 件不合格品,从中任取两件,已知两件中有一件是合格品,求另一件也是合格品的概率.解:设A =“两件中至少有一件是合格品”,B =“两件都是合格品”,有AB = B ,样本点总数2)1(2−=⎟⎟⎠⎞⎜⎜⎝⎛=n n n N , 事件A 中所含样本点个数2)1)((2)1)(()(211−+−=−−−+−=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛=m n m n m n m n m n m m n m n m k A , 得)1()1)(()(−−+−=n n m n m n A P ,事件AB = B 中所含样本点个数2)1)((2−−−=⎟⎟⎠⎞⎜⎜⎝⎛−=m n m n m n k B , 得)1()1)(()()(−−−−==n n m n m n B P AB P ,故所求概率为11)1()1)(()1()1)(()()()|(−+−−=−−+−−−−−==m n m n n n m n m n n n m n m n A P AB P A B P . 7. 掷一颗骰子两次,以x , y 分别表示先后掷出的点数,记A = {x + y < 10},B = {x > y },求P (B | A ),P (A | B ). 解:样本点总数n = 6 2 = 36,则事件A 中所含样本点个数k A = 6 + 6 + 6 + 5 + 4 + 3 = 30,有3630)(=A P , 事件B 中所含样本点个数k B = 0 + 1 + 2 + 3 + 4 + 5 = 15,有3615)(=B P ,事件AB 中所含样本点个数k AB = 0 + 1 + 2 + 3 + 4 + 3 = 13,有3613)(=AB P ,故301336303613)()()|(===A P AB P A B P ,151336153613)()()|(===B P AB P B A P .8. 已知P (A ) = 1/3,P (B | A ) = 1/4,P (A | B ) = 1/6,求P (A ∪B ).解:因1214131)|()()(=×==A B P A P AB P ,2161121)|()()(===B A P AB P B P , 故431212131)()()()(=−+=−+=AB P B P A P B A P U . 9. 已知3.0)(=A P ,P (B ) = 0.4,5.0(=B A P ,求)|(B A B P U . 解:因2.05.03.01)()(1)()()(=−−=−−=−=B A P A P B A P A P AB P ,且8.05.04.013.01()(1)(1)()()()(=−−+−=−−+−=−+=B A P B P A P B A P B P A P B A P U , 故25.08.02.0)()()())(()|(====B A P AB P B A P B A B P B A B P U U U U . 10.设A , B 为两事件,P (A ) = P (B ) = 1/3,P (A | B ) = 1/6,求|(B A P . 解:因1816131)|()()(=×==B A P B P AB P ,有18111813131)()()()(=−+=−+=AB P B P A P B A P U , 则18718111)(1)()(=−=−==B A P B A P B A P U U ,且32311)(1)(=−=−=B P B P , 故12732187)()()|(===B P B A P B A P . 11.口袋中有1个白球,1个黑球.从中任取1个,若取出白球,则试验停止;若取出黑球,则把取出的黑球放回的同时,再加入1个黑球,如此下去,直到取出的是白球为止,试求下列事件的概率.(1)取到第n 次,试验没有结束;(2)取到第n 次,试验恰好结束.解:设A k =“第k 次取出的是黑球”,k = 1, 2, ……(1)所求概率为P (A 1A 2…A n − 1A n ) = P (A 1A 2…A n − 1)P (A n | A 1A 2…A n − 1)1113221)|()|()(121121+=+×××==−n n n A A A A P A A P A P n n L L L ; (2)所求概率为)|()()(121121121−−−=n n n n n A A A A P A A A P A A A A P L L L)1(1113221)|()|()(121121+=+×××==−n n n A A A A P A A P A P n n L L L . 12.一盒晶体管有8只合格品,2只不合格品.从中不返回地一只一只取出,试求第二次取出的是合格品的概率.解:设A 1, A 2分别表示“第一次取出的是合格品、不合格品”,B 表示“第二次取出的是合格品”, 故所求概率为8.090729810297108)|()()|()()(2211==×+×=+=A B P A P A B P A P B P . 13.甲口袋有a 个白球、b 个黑球,乙口袋有n 个白球、m 个黑球.(1)从甲口袋任取1个球放入乙口袋,然后再从乙口袋任取1个球.试求最后从乙口袋取出的是白球的概率;(2)从甲口袋任取2个球放入乙口袋,然后再从乙口袋任取1个球.试求最后从乙口袋取出的是白球的概率.解:(1)设A 0 , A 1分别表示“从甲口袋取出的是白球、黑球”,B 表示“从乙口袋取出的是白球”,故所求概率为P (B ) = P (A 0)P (B | A 0) + P (A 1)P (B | A 1) )1)(()1(111+++++=++×+++++×+=n m b a bn n a m n n b a b m n n b a a ; (2)设A 0 , A 1 , A 2分别表示“从甲口袋取出的是2个白球、1个白球1个黑球、2个黑球”,B 表示“从乙口袋取出的是白球”,故所求概率为P (B ) = P (A 0)P (B | A 0) + P (A 1)P (B | A 1) + P (A 2)P (B | A 2)。
茆诗松《概率论与数理统计教程》(第2版)(课后习题 参数估计)【圣才出品】
第6章 参数估计一、点估计的概念与无偏性1.设x 1,x 2,x 3是取自某总体的容量为3的样本,试证下列统计量都是该总体均值μ的无偏估计,在方差存在时指出哪一个估计的有效性最差?(1)1123111=236x x x μ∧++(2)2123111=333x x x μ∧++(3)3123112=663x x x μ∧++解:先求三个统计量的数学期望,1123111111()=()()()236222E E x E x E x μμμμμ∧++=++=2123111111()=()()()333333E E x E x E x μμμμμ∧++=++=3123112112()=()()()663663E E x E x E x μμμμμ∧++=++=这说明它们都是总体均值μ的无偏估计,下面求它们的方差,不妨设总体的方差为σ2,则222211231111117()=()()()4936493618Var Var x Var x Var x μσσσσ∧++=++=222221231111111()=()()()9999993Var Var x Var x Var x μσσσσ∧++=++=222231231141141()=()()()36369363692Var Var x Var x Var x μσσσσ∧++=++=不难看出,从而的有效性最差.123()<()<()Var Var Var μμμ∧∧∧3μ∧由此可推测。
当用样本的凸组合估计总体均值时,样本均值是最有效的。
1ni ii a x =∑x 2.x 1,x 2,…,x n 是来自Exp(λ)的样本,已知为1/λ的无偏估计,试说明1/是x x 否为λ的无偏估计.解:因为x 1,x 2,…,x n 服从Exp(λ),所以y =~Ga (n ,λ),相应的密度函数1ni i x =∑为1()exp()y 0()n n p y n y y n λλλ-=->Γ,,,于是20(1/)e y ()n n y E y yn λλ∞--=Γ⎰d所以,.即不是λ的无偏估计,但它是λ的渐近无偏估计,经修偏,是λ的无偏估计.3.设是参数θ的无偏估计,且有,试证不是θ2的无偏估计.证:由方差的定义可知,由于是参数θ的无偏估计,即.因而所以不是θ2的无偏估计.4.设总体,是来自该总体的一个样本.试确定常数c 使为σ2的无偏估计.解:由于总体,这给出,于是若要使为σ2的无偏估计,即,这给出5.设总体为,为样本,证明样本均值和样本中程都是θ的无偏估计,并比较它们的有效性.解:由总体,得,,因而,这首先说明样本均值是θ的无偏估计,且为求样本中程的均值与方差,注意到,令则由于,故,从而这就证明了样本中程是θ的无偏估计.又注意到(参见第五章5.3节习题33)所以从而于是在n>2时,,这说明作为0的无偏估计,在n>2时,样本中程比样本均值有效.6.设x 1,x2,x3服从均匀分布,试证及都是θ的无偏估计量,哪个更有效?证:由可知x(1),x(3)的密度函数分别为从而故,由知两者均为θ的无偏估计.又可算得,从而故,即更有效.事实上,这里x(3)是充分统计量,这个结果与充分性原则是一致的.7.设从均值为μ,方差为的总体中,分别抽取容量为n1和n2的两独立样本,和分别是这两个样本的均值.试证,对于任意常数a,b(a+b=1),都是μ的无偏估计,并确定常数a,b使Var(Y)达到最小.证:由于和是容量分别为n1和n2的两独立样本的均值,故,,,因而这证明了是μ的无偏估计.又由a+b=1知,,从而由求导知,当时,Var(Y)达到最小,此时这个结果表明,来自同一总体的两个容量为n1和n2的样本的合样本(样本量为n1+n2)的均值是线性无偏估计类中方差最小的.8.设总体X的均值为μ,方差为σ2,是来自该总体的一个样本,为μ的任一凸线性无偏估计量.证明:与T的相关系数为.证:由于为μ的线性无偏估计量,故,其中,于是而,故有,从而9.设有k台仪器,已知用第i台仪器测量时,测定值总体的标准差为σi(i=1,2,…,k).用这些仪器独立地对某一物理量θ各观察一次,分别得到设仪器都没有系统误差.问应取何值,方能使成为θ的无偏估计,且方差达到最小?解:若要使为θ的无偏估计,即则必须有,此时,。
茆诗松《概率论与数理统计教程》(第2版)(课后习题 多维随机变量及其分布)【圣才出品】
;
(4)
.
解:(1)由
(2)
(3) (4)
的非零区域与
解得 k=1/8. .
. 的交集如图 3-1 的阴影部分,
图 3-1
5 / 84
圣才电子书
由图 3-1 得
十万种考研考证电子书、题库视频学习平 台
6.设随机变量(X,Y)的联合密度函数为
试求
(1)常数 k;
(2)
所以
的联合分布列为
表 3-9
10 / 84
圣才电子书
十万种考研考证电子书、题库视频学习平 台
12.设二维随机变量
的联合密度函数为
求 解:
. 的非零区域与
的交集为图 3-4 阴影部分,所以
图 3-4
图 3-5
13.设二维随机变量 .
的联合密度函数为
解:
的非零区域与
的交集为图 3-5 阴影部分,所以
(3)
的非零区域与
的交集为图 3-3(d)阴影部分,所以
9 / 84
圣才电子书
十万种考研考证电子书、题库视频学习平 台
图 3-3
11.设随机变量 Y 服从参数为
的指数分布,定义随机变量 X 如下:
求 X1 和 X2 的联合分布列.
解:
的联合分布列共有如下 4 种情况:
,试求
11 / 84
圣才电子书
14.设二维随机变量
十万种考研考证电子书、题库视频学习平
台
的联合密度函数为
求 X 与 Y 中至少有一个小于 0.5 的概率.
解:两事件
与
中至少有一个发生的概率为
15.从(0,1)中随机地取两个数,求其积不小于 3/16,且其和不大于 1 的概率. 解:设取出的两个数分别为 X 和 Y,则(X,Y)的联合密度函数为
概率论与数理统计(茆诗松)第二版第一章课后习题.参考答案(精品)
习题1.41. 某班级学生的考试成绩数学不及格的占15%,语文不及格的占5%,这两门课都不及格的占3%.(1)已知一学生数学不及格,他语文也不及格的概率是多少?(2)已知一学生语文不及格,他数学也不及格的概率是多少?解:设A =“数学不及格”,B =“语文不及格”,有P (A ) = 0.15,P (B ) = 0.05,P (AB ) = 0.03,(1)所求概率为2.015.003.0)()()|(===A P AB P A B P ; (2)所求概率为6.005.003.0)()()|(===B P AB P B A P . 2. 设一批产品中一、二、三等品各占60%, 35%, 5%.从中任意取出一件,结果不是三等品,求取到的是一等品的概率.解:设A , B , C 分别表示“取出一、二、三等品”,有P (A ) = 0.6,P (B ) = 0.35,P (C ) = 0.05, 故所求概率为191205.016.0)(1)()()()|(=−=−==C P A P C P C A P C A P . 3. 掷两颗骰子,以A 记事件“两颗点数之和为10”,以B 记事件“第一颗点数小于第二颗点数”,试求条件概率P (A | B ) 和P (B | A ).解:样本点总数n = 6 2 = 36,则事件A 中的样本点有 (4, 6), (5, 5), (6, 4),即个数k A = 3,有363)(=A P , 事件B 中所含样本点个数k B = 5 + 4 + 3 + 2 + 1 + 0 = 15,有3615)(=B P , 事件AB 中的样本点有 (4, 6),即个数k C = 1,有361)(=AB P , 故1513615361)()()|(===B P AB P B A P ,31363361)()()|(===A P AB P A B P . 4. 以某种动物由出生活到10岁的概率为0.8,而活到15岁的概率为0.5,问现年为10岁的这种动物能活到15岁的概率是多少?解:设A , B 分别表示“这种动物能活到10岁, 15岁”,有P (A ) = 0.8,P (B ) = 0.5, 故所求概率为858.05.0)()()()()|(====A P B P A P AB P A B P . 5. 设10件产品中有4件不合格品,从中任取两件,已知其中一件是不合格品,求另一件也是不合格品的概率.解:设A =“其中一件是不合格品”,B =“两件都是不合格品”,有AB = B ,样本点总数45210=⎟⎟⎠⎞⎜⎜⎝⎛=n , 事件A 中所含样本点个数30624241614=+=⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=A k ,得4530)(=A P , 事件AB = B 中所含样本点个数624=⎟⎟⎠⎞⎜⎜⎝⎛=B k ,得456)()(==B P AB P ,故所求概率为2.04530456)()()|(===A P AB P A B P . 6. 设n 件产品中有m 件不合格品,从中任取两件,已知两件中有一件是合格品,求另一件也是合格品的概率.解:设A =“两件中至少有一件是合格品”,B =“两件都是合格品”,有AB = B , 样本点总数2)1(2−=⎟⎟⎠⎞⎜⎜⎝⎛=n n n N , 事件A 中所含样本点个数2)1)((2)1)(()(211−+−=−−−+−=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛=m n m n m n m n m n m m n m n m k A , 得)1()1)(()(−−+−=n n m n m n A P , 事件AB = B 中所含样本点个数2)1)((2−−−=⎟⎟⎠⎞⎜⎜⎝⎛−=m n m n m n k B , 得)1()1)(()()(−−−−==n n m n m n B P AB P , 故所求概率为11)1()1)(()1()1)(()()()|(−+−−=−−+−−−−−==m n m n n n m n m n n n m n m n A P AB P A B P . 7. 掷一颗骰子两次,以x , y 分别表示先后掷出的点数,记A = {x + y < 10},B = {x > y },求P (B | A ),P (A | B ).解:样本点总数n = 6 2 = 36,则事件A 中所含样本点个数k A = 6 + 6 + 6 + 5 + 4 + 3 = 30,有3630)(=A P , 事件B 中所含样本点个数k B = 0 + 1 + 2 + 3 + 4 + 5 = 15,有3615)(=B P , 事件AB 中所含样本点个数k AB = 0 + 1 + 2 + 3 + 4 + 3 = 13,有3613)(=AB P , 故301336303613)()()|(===A P AB P A B P ,151336153613)()()|(===B P AB P B A P . 8. 已知P (A ) = 1/3,P (B | A ) = 1/4,P (A | B ) = 1/6,求P (A ∪B ). 解:因1214131)|()()(=×==A B P A P AB P ,2161121)|()()(===B A P AB P B P , 故431212131)()()()(=−+=−+=AB P B P A P B A P U . 9. 已知3.0)(=A P ,P (B ) = 0.4,5.0(=B A P ,求)|(B A B P U . 解:因2.05.03.01)()(1)()()(=−−=−−=−=B A P A P B A P A P AB P ,且8.05.04.013.01()(1)(1)()()()(=−−+−=−−+−=−+=B A P B P A P B A P B P A P B A P U , 故25.08.02.0)()()())(()|(====B A P AB P B A P B A B P B A B P U U U U . 10.设A , B 为两事件,P (A ) = P (B ) = 1/3,P (A | B ) = 1/6,求|(B A P . 解:因1816131)|()()(=×==B A P B P AB P ,有18111813131)()()()(=−+=−+=AB P B P A P B A P U , 则18718111)(1)()(=−=−==B A P B A P B A P U U ,且32311)(1)(=−=−=B P B P , 故12732187)()()|(===B P B A P B A P . 11.口袋中有1个白球,1个黑球.从中任取1个,若取出白球,则试验停止;若取出黑球,则把取出的黑球放回的同时,再加入1个黑球,如此下去,直到取出的是白球为止,试求下列事件的概率.(1)取到第n 次,试验没有结束;(2)取到第n 次,试验恰好结束.解:设A k =“第k 次取出的是黑球”,k = 1, 2, ……(1)所求概率为P (A 1A 2…A n − 1A n ) = P (A 1A 2…A n − 1)P (A n | A 1A 2…A n − 1)1113221)|()|()(121121+=+×××==−n n n A A A A P A A P A P n n L L L ; (2)所求概率为)|()()(121121121−−−=n n n n n A A A A P A A A P A A A A P L L L)1(1113221)|()|()(121121+=+×××==−n n n A A A A P A A P A P n n L L L . 12.一盒晶体管有8只合格品,2只不合格品.从中不返回地一只一只取出,试求第二次取出的是合格品的概率.解:设A 1, A 2分别表示“第一次取出的是合格品、不合格品”,B 表示“第二次取出的是合格品”, 故所求概率为8.090729810297108)|()()|()()(2211==×+×=+=A B P A P A B P A P B P . 13.甲口袋有a 个白球、b 个黑球,乙口袋有n 个白球、m 个黑球.(1)从甲口袋任取1个球放入乙口袋,然后再从乙口袋任取1个球.试求最后从乙口袋取出的是白球的概率;(2)从甲口袋任取2个球放入乙口袋,然后再从乙口袋任取1个球.试求最后从乙口袋取出的是白球的概率.解:(1)设A 0 , A 1分别表示“从甲口袋取出的是白球、黑球”,B 表示“从乙口袋取出的是白球”,故所求概率为P (B ) = P (A 0)P (B | A 0) + P (A 1)P (B | A 1) )1)(()1(111+++++=++×+++++×+=n m b a bn n a m n n b a b m n n b a a ; (2)设A 0 , A 1 , A 2分别表示“从甲口袋取出的是2个白球、1个白球1个黑球、2个黑球”,B 表示“从乙口袋取出的是白球”,故所求概率为P (B ) = P (A 0)P (B | A 0) + P (A 1)P (B | A 1) + P (A 2)P (B | A 2)2)1)(()1(21)1)((222)1)(()1(++×−++−++++×−++++++×−++−=m n n b a b a b b m n n b a b a ab m n n b a b a a a )2)(1)(()1()1(2)2)(1(++−++−++++−=m n b a b a n b b n ab n a a . 14.有n 个口袋,每个口袋中均有a 个白球、b 个黑球.从第一个口袋中任取一球放入第二个口袋,再从第二个口袋中任取一球放入第三个口袋,如此下去,从第n − 1个口袋中任取一球放入第n 个口袋,最后再从第n 个口袋中任取一球,求此时取到的是白球的概率.解:设A k 表示“从第k 个口袋取出的是白球”,当k = 1时,有ba a A P +=)(1, 设对于k − 1,有b a a A P k +=−)(1, 则111)|()()|()()(1111++⋅+++++⋅+=+=−−−−b a a b a b b a a b a a A A P A P A A P A P A P k k k k k k k ba ab a b a b a a b a b a ab a a +=+++++=+++++=)1)(()1()1)(()1(, 故由数学归纳法可知,对任意自然数k ,b a a A P k +=)(,即ba a A P n +=)(. 15.钥匙掉了,掉在宿舍里、掉在教室里、掉在路上的概率分别是50%、30%和20%,而掉在上述三处地方被找到的概率分别是0.8、0.3和0.1.试求找到钥匙的概率.解:设A 1 , A 2 , A 3分别表示“钥匙掉在宿舍里、掉在教室里、掉在路上”,B 表示“找到钥匙”,故所求概率为P (B ) = P (A 1)P (B | A 1) + P (A 2)P (B | A 2) + P (A 3)P (B | A 3)= 0.5 × 0.8 + 0.3 × 0.3 + 0.2 × 0.1 = 0.51.16.两台车床加工同样的零件,第一台出现不合格品的概率是0.03,第二台出现不合格品的概率是0.06,加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.(1)求任取一个零件是合格品的概率;(2)如果取出的零件是不合格品,求它是由第二台车床加工的概率.解:设A 1, A 2分别表示“取出的是第一台、第二台车床加工的零件”,B 表示“取出的是合格品”,(1)所求概率为96.094.03197.032)|()()|()()(2211=×+×=+=A B P A P A B P A P B P ; (2)所求概率为5.004.006.031)()|()()()()|(2222=×===B P A B P A P B P B A P B A P . 17.有两箱零件,第一箱装50件,其中20件是一等品;第二箱装30件,其中18件是一等品,现从两箱中随意挑出一箱,然后从该箱中先后任取两个零件,试求(1)第一次取出的零件是一等品的概率;(2)在第一次取出的是一等品的条件下,第二次取出的零件仍然是一等品的概率.解:设A 1 , A 2分别表示“挑出第一箱、第二箱”,B 1 , B 2分别表示“第一次、第二次取出的是一等品”,(1)所求概率为5.0301821502021)|()()|()()(2121111=×+×=+=A B P A P A B P A P B P ; (2)因14210360129173018214919502021)|()()|()()(2212121121=××+××=+=A B B P A P A B B P A P B B P , 故所求概率为5068.0710536015.0142103601)()()|(12112====B P B B P B B P .18.学生在做一道有4个选项的单项选择题时,如果他不知道问题的正确答案时,就作随机猜测.现从卷面上看题是答对了,试在以下情况下求学生确实知道正确答案的概率.(1)学生知道正确答案和胡乱猜测的概率都是1/2;(2)学生知道正确答案的概率是0.2.解:设A 1 , A 2分别表示“学生知道正确答案、胡乱猜测”,B 表示“题答对了”,(1)因P (A 1) = 0.5,P (A 2) = 0.5, 故所求概率为8.0625.05.025.05.015.015.0)|()()|()()|()()|(2211111==×+××=+=A B P A P A B P A P A B P A P B A P , (2)因P (A 1) = 0.2,P (A 2) = 0.8, 故所求概率为5.04.02.025.08.012.012.0)|()()|()()|()()|(2211111==×+××=+=A B P A P A B P A P A B P A P B A P . 19.已知男人中有5%是色盲患者,女人中有0.25%是色盲患者,今从男女比例为22:21的人群中随机地挑选一人,发现恰好是色盲患者,问此人是男性的概率是多少?解:设A 1 , A 2分别表示“此人是男性、女性”,B 表示“此人是色盲患者”, 故所求概率为9544.00025.0432105.0432205.04322)|()()|()()|()()|(2211111=×+××=+=A B P A P A B P A P A B P A P B A P . 20.口袋中有一个球,不知它的颜色是黑的还是白的.现再往口袋中放入一个白球,然后再从口袋中任意取出一个,发现取出的是白球,试问口袋中原来那个球是白球的可能性为多少?解:设A 1 , A 2分别表示“原来那个球是白球、黑球”,B 表示“取出的是白球”, 故所求概率为3275.05.05.05.015.015.0)|()()|()()|()()|(2211111==×+××=+=A B P A P A B P A P A B P A P B A P . 21.将n 根绳子的2n 个头任意两两相接,求恰好结成n 个圈的概率.解:样本点总数为N = (2n − 1) (2n − 3)…3 ⋅ 1 = (2n − 1)!!,事件A =“恰好结成n 个圈”所含样本点个数K = 1, 故所求概率为!)!12(1)(−=n A P . 22.m 个人相互传球,球从甲手中开始传出,每次传球时,传球者等可能地把球传给其余m − 1个人中的任何一个.求第n 次传球时仍由甲传出的概率.解:设A k 表示“第k 次传球时由甲传出”,k = 1, 2, ……,有P (A 1) = 1, 则)(111111)](1[0)|()()|()()(111111−−−−−−−−−=−⋅−+=+=k k k k k k k k k A P m m m A P A A P A P A A P A P A P , 故⎥⎦⎤⎢⎣⎡−−−−−−=−−−=−−)(11111111)(1111)(11n n n A P m m m m A P m m A P )(111111122−⎟⎠⎞⎜⎝⎛−+⎟⎠⎞⎜⎝⎛−−−=n A P m m m )(11)1(11)1(11)1(111111112232A P m m m m m n n n n n n −−−−−−⎟⎠⎞⎜⎝⎛−−+⎟⎠⎞⎜⎝⎛−−+⎟⎠⎞⎜⎝⎛−−++⎟⎠⎞⎜⎝⎛−−−=L⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−−−=⎟⎠⎞⎜⎝⎛−−−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−−−−=⎟⎠⎞⎜⎝⎛−−++⎟⎠⎞⎜⎝⎛−−−=−−−−2223211111111111111)1(1111n n n n m m m m m m m m L . 23.甲、乙两人轮流掷一颗骰子,甲先掷.每当某人掷出1点时,则交给对方掷,否则此人继续掷,试求第n 次由甲掷的概率.解:设A k 表示“第k 次由甲掷骰子”,k = 1, 2, ……,有P (A 1) = 1, 则)(326161)](1[65)()|()()|()()(1111111−−−−−−−+=⋅−+⋅=+=k k k k k k k k k k A P A P A P A A P A P A A P A P A P , 故)(32613261)(32613261)(3261)(2221−−−⎟⎠⎞⎜⎝⎛+⋅+=⎥⎦⎤⎢⎣⎡++=+=n n n n A P A P A P A P 1111123221213232132161)(326132613261−−−−−⎟⎠⎞⎜⎝⎛⋅+=⎟⎠⎞⎜⎝⎛+−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−=⋅⎟⎠⎞⎜⎝⎛+⋅⎟⎠⎞⎜⎝⎛++⋅+=n n n n n A P L . 24.甲口袋有1个黑球、2个白球,乙口袋有3个白球.每次从两口袋中各任取一球,交换后放入另一口袋.求交换n 次后,黑球仍在甲口袋中的概率.解:设A k 表示“交换k 次后黑球在甲口袋中”,k = 1, 2, ……,有P (A 0) = 1, 则)(313131)](1[32)()|()()|()()(1111111−−−−−−−+=⋅−+⋅=+=k k k k k k k k k k A P A P A P A A P A P A A P A P A P , 故)(313131)(31313131)(3131)(22221−−−⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+=⎥⎦⎤⎢⎣⎡++=+=n n n n A P A P A P A P n n n n n A P ⎟⎠⎞⎜⎝⎛⋅+=⎟⎠⎞⎜⎝⎛+−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−=⋅⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛+=3121213131131131)(3131313102L . 25.假设只考虑天气的两种情况:有雨或无雨.若已知今天的天气情况,明天天气保持不变的概率为p ,变的概率为1 − p .设第一天无雨,试求第n 天也无雨的概率.解:设A k 表示“第k 天也无雨”,k = 1, 2, ……,有P (A 1) = 1, 则)1()](1[)()|()()|()()(111111p A P p A P A A P A P A A P A P A P k k k k k k k k k −⋅−+⋅=+=−−−−−−= 1 − p + (2p − 1) P (A k − 1),故P (A n − 1) = 1 − p + (2p − 1) P (A n − 1) = 1 − p + (2p − 1)[1 − p + (2p − 1) P (A n − 2)]= 1 − p + (2p − 1)(1 − p ) + (2p − 1)2 P (A n − 2)= 1 − p + (2p − 1)(1 − p ) + … + (2p − 1)n − 2 (1 − p ) + (2p − 1)n − 1P (A 1)111)12(2121)12()12(1])12(1)[1(−−−−+=−+−−−−−=n n n p p p p p . 26.设罐中有b 个黑球、r 个红球,每次随机取出一个球,取出后将原球放回,再加入c (c > 0)个同色的球.试证:第k 次取到黑球的概率为b /(b + r ),k = 1, 2, ….证:设B k (b , r ) 表示“罐中有b 个黑球、r 个红球时,第k 次取到黑球”,k = 1, 2, …,用数学归纳法证明r b b r b B P k +=)),((, 当k = 1时,rb b r b B P +=)),((1,结论成立, 设对于k − 1,结论成立,即rb b r b B P k +=−)),((1, 对于k ,设A 1 , A 2分别表示“第一次取到黑球、红球”,有P (B k (b , r ) | A 1) = P (B k − 1 (b + c , r )),P (B k (b , r ) | A 2) = P (B k − 1 (b , r + c )),则P (B k (b , r )) = P (A 1) P (B k (b , r ) | A 1) + P (A 2) P (B k (b , r ) | A 2)= P (A 1) P (B k − 1 (b + c , r )) + P (A 2) P (B k − 1 (b , r + c ))rb bc r b r b br c b b c r b b r b r c r b c b r b b +=+++++=++⋅+++++⋅+=))(()(, 故对于k ,结论成立,rb b r b B P k +=)),((. 27.口袋中a 个白球,b 个黑球和n 个红球,现从中一个一个不返回地取球.试证白球比黑球出现得早的概率为a /(a + b ),与n 无关.证:设B n 表示“口袋中有n 个红球时白球比黑球出现得早”,n = 0, 1, 2, …, 用数学归纳法证明ba a B P n +=)(,与n 无关, 当n = 0时,显然有ba a B P +=)(0,结论成立, 设对于n − 1,结论成立,即ba a B P n +=−)(1, 对于B n ,设A 1 , A 2 , A 3分别表示“第一次取球时取到白球、黑球、红球”,有P (B n | A 3) = P (B n −1), 则P (B n ) = P (A 1) P (B n | A 1) + P (A 2) P (B n | A 2) + P (A 3) P (B n | A 3) = P (A 1) ⋅ 1 + P (A 2) ⋅ 0 + P (A 3) P (B n −1) ba ab a n b a an b a a b a a n b a n n b a a +=+++++=+⋅+++++=))(()(, 故对于n ,结论成立,b a a B P n +=)(,与n 无关. 28.设P (A ) > 0,试证)()(1)|(A P B P A B P −≥. 证:)()(1)()(1)()()()()()|(A P B P A P B A P A P B A P A P A P AB P A B P −≥−=−==. 29.若事件A 与B 互不相容,且0)(≠B P ,证明:)(1)()|(B P A P B A P −=. 证:因事件A 与B 互不相容,有B A ⊂,故)(1)()()()()()|(B P A P B P A P B P B A P B A P −===. 30.设A , B 为任意两个事件,且A ⊂ B ,P (B ) > 0,则成立P (A ) ≤ P (A | B ). 证:)()()()()()|(A P B P A P B P AB P B A P ≥==.31.若)|()|(B A P B A P >,试证)|()|(A B P A B P >. 证:因)(1)()()()()|()()()|(B P AB P A P B P B A P B A P B P AB P B A P −−==>=,有P (AB )[1 − P (B )] > P (B )[P (A ) − P (AB )], 则P (AB ) > P (A ) P (B ),得P (AB )[1 − P (A )] > P (A )[P (B ) − P (AB )], 故)|()()()(1)()()()()|(A B P A P B A P A P AB P B P A P AB P A B P ==−−>=. 32.设P (A ) = p ,P (B ) = 1 − ε ,证明:εεε−≤≤−−1)|(1p B A P p . 证:因P (AB ) ≤ P (A ) = p ,且P (AB ) = P (A ) + P (B ) − P (A ∪B ) ≥ P (A ) + P (B ) − 1 = p + 1 − ε − 1 = p − ε , 故p − ε ≤ P (AB ) ≤ p ,即εεεε−≤−==≤−−11)()()()|(1p AB P B P AB P B A P p . 33.若P (A | B ) = 1,证明:1|(=A B P . 证:因1)()()|(==B P AB P B A P ,有P (AB ) = P (B ), 则P (A ∪B ) = P (A ) + P (B ) − P (AB ) = P (A ),即()()(1)(1)(B A P B A P B A P A P A P ==−=−=U U , 故1)()()|(==A P B A P A B P .。
茆诗松《概率论与数理统计教程》(第2版)(章节题库 多维随机变量及其分布)【圣才出品】
4.设随机变量 X 与 Y 相互独立,且 EX 与 EY 存在。记 U=max{X,Y}, V=min{X,Y)则 E(UV)等于( )。
A.EU·EV B.EX·EY C.EU·EY D.EX·EV
【答案】B
【解析】UV=max{X,Y}min{X,Y),而无论 X 与 Y 的关系如何,UV=XY,从而
2
2
由于
X
与
y
相互独立,故 FZ
(z)
1 2
P{0
z}
1 2
P{X
z}
当
x≤0
时, FZ (z)
1 2
P{X
z}
1 2
X
( z ),
当
x>0
时, FZ (z)
1 2
1 2
P{X
z}
1 2
1 2
X
(z)
于是
lim
x0
FZ
(z)
1 ,lim 4 x0+
FZ
(z)
3 4
,故
z=0
为
Fz
(z)的间断点。
【答案】D
【解析】由独立和不相关的性质可知①②正确,而两个变量不相关推不出相互独立,
且仅当 X,Y 的联合分布服从正态分布时,X,Y 的线性组合才服从一维正态分布,所以
③④错误,故选 D。
7.设 X ,Y 是相互独立的随机变量,其分布函数分别为
则
Z min( X ,Y ) 的分布函数是( )。
【答案】C 【解析】
B. 1 3
C. 1 4
D.-1
【答案】A
【解析】由于 X Y n ,则Y X n ,故 X 与Y 的相关系数等于 1。
茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解-第2章 随机变量及其分布【圣才出品
2
52 42 62
9, 36
PX
3
42 32 62
7 ,PX
36
4
32 22 62
5 36
PX
5
22 1 62
3 ,PX
36
6
1 62
1 36
分布列为
表 2-2-2
(2)Y 表示两次所得点数之差的绝对值,可能取值为 0,1,2,3,4,5。而 P(Y=0)=6/36=1/6,P(Y=1)=10/36=5/18,P(Y=2)=8/36=2/9 P(Y=3)=6/36=1/6,P(Y=4)=4/36=1/9,P(Y=5)=2/36=1/18 分布列为
1.口袋中有 5 个球,编号为 1,2,3,4,5。从中任取 3 个,以 X 表示取出的 3 个 球中的最大号码。
(1)试求 X 的分布列; (2)写出 X 的分布函数,并作图。 解:(1)从 5 个球中任取 3 个,共有 C53=10 种等可能取法。X=“取出的 3 个球中
7 / 91
圣才电子书 十万种考研考证电子书、题库视频学习平台
的最大号码”,X 的可能取值为 3,4,5。因为 P(X=i)=P(X≤i)-P(X≤i-1),且当
i≥3 时,有 P( X i) C3i ,所以 10
P( X 3) P( X 3) P( X 2) C33 0 1 10 10
P( X 4) P( X 4) P( X 3) C43 1 3 10 10 10
表 2-2-3
P X
EX
Var
2
X
或
P
X
EX
<
1
Var
2
X
(2)定理二
茆诗松《概率论与数理统计教程》(第3版)配套题库-章节题库-第1~3章【圣才出品】
与 C 不独立。
B 项,又 P(A|BC)=P(ABC)/P(BC)=(1/8)/P(BC),而 P(BC)=P(ABC)
—
+P(ABC)=1/8+1/4=3/8,所以,P(A|BC)=(1/8)/(3/8)=1/3≠P(A),故 A
与 BC 不独立。
C 项,P(B|AC)=1≠P(B),故 B 与 AC 不独立。
【答案】D
十万种考研考证电子书、题库视频学习平台
【解析】D 项,
P( A)
P(B)
1 2
, P(C)
C30
(
1 2
)0
(
1 2
)3
C31
(
1)( 2
1 2
)2
1 2 23
1 2
P(C|AB)=1/2=P(C),故 C 与 AB 独立。
A 项,P(A|C)=P(AC)/P(C)=[(1/2)·(1/4)]/(1/2)=1/4≠P(A),故 A
【解析】由于 A 与 B 不相容,故 B A,于是 P(A-B)=P(AB)=P(A)。
2.设事件 A 与事件 B 互不相容,则( )。
——
A.P(AB)=0
B.P(AB)=P(A)P(B)
C.P(A)=1-P(B)
——
D.p(A∪B)=1
【答案】D
——
——
【解析】由题意可知ห้องสมุดไป่ตู้P(AB)=0⇒P(AB)=l,即 p(A∪B)=1。
6.将一枚均匀的骰子投掷三次,记事件 A 表示“第一次出现偶数点”,事件 B 表示“第 二次出现奇数点”,事件 C 表示“偶数点最多出现一次”,则( )。
A.A,B,C 两两独立 B.A 与 BC 独立 C.B 与 AC 独立 D.C 与 AB 独立
茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解-第1章 随机事件与概率【圣才出品】
十万种考研考证电子书、题库视频学习平台
第 1 章 随机事件与概率
1.1 复习笔记
一、随机事件பைடு நூலகம்其运算 1.事件间的运算(见表 1-1-1)
表 1-1-1 事件间的运算
注:①对立事件是相互的。必然事件与不可能事件互为对立事件。 ②A 与 B 互为对立事件⇔A∩B=∅ ,且 A∪B=Ω。 ③对立事件一定是互不相容的事件,反之不一定。
4 / 78
圣才电子书
十万种考研考证电子书、题库视频学习平台
P(AB) P( A)P(B) P(AC) P( A)P(C) P(BC) P(B)P(C)
则称 A,B,C 两两独立。若还有 P(ABC)=P(A)P(B)P(C),则称 A,B,C
相互独立。
(2)n 个事件的独立性
(2)任意事件 A,B,P(A-B)=P(A)-P(AB)。
3.概率的加法公式
(1)(加法公式)对任意两个事件 A,B,有
P(A∪B)=P(A)+P(B)-P(AB)
对任意 n 个事件 A1,A2,…,An,有
P
n
U
i 1
Ai
n i 1
P
Ai
P
1i jn
Ai Aj
P Ai Aj Ak L 1 n1 P A1A2 L AN
1.2 课后习题详解
习题 1.1
1.写出下列随机试验的样本空间: (1)抛三枚硬币; (2)抛三颗骰子; (3)连续抛一枚硬币,直至出现正面为止; (4)口袋中有黑、白、红球各一个,从中任取两个球先从中取出一个,放回后再取出
5 / 78
圣才电子书
一个;
十万种考研考证电子书、题库视频学习平台
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章随机事件与概率
一、随机事件及其运算
1.写出下列随机试验的样本空间:
(1)抛三枚硬币;
(2)抛三颗骰子;
(3)连续抛一枚硬币,直至出现正面为止;
(4)口袋中有黑、白、红球各一个,从中任取两个球;先从中取出一个,放回后再取出一个;
(5)口袋中有黑、白、红球各一个,从中任取两个球;先从中取出一个,不放回后再取出一个.
解:(1)
,共含有个样本点,其中0表示反面,1表示正面,(3)中的0与1也是此意.
(2),共含有个样本点.
(3),共含有可列个样本点.
(4)黑黑,黑白,黑红,白黑,白白,白红,红黑,红白,红红
(5)黑白,黑红,白黑,白红,红黑,红白
2.先抛一枚硬币,若出现正面(记为Z),则再掷一颗骰子,试验停止;若出现反面(记为F),则再抛一次硬币,试验停止,那么该试验的样本空间Ω是什么?
解:
3.设A,B,C为三事件,试表示下列事件:
(1)A,B,C都发生或都不发生:
(2)A,B,C中不多于一个发生;
(3)A,B,C中不多于两个发生;
(4)A,B,C中至少有两个发生.
解:(1)
(2)
(3)
(4)
4.指出下列事件等式成立的条件.
(1)
(2)
解:(1)
(2)
5.设X为随机变量,其样本空间为,记事件,写出下列各事件:
解:的图示如图1-1:
图1-1
(1)
(2)
(3)由于,所以,故
(4)由于,所以,故
6.检查三件产品,只区分每件产品是合格品(记为0)与不合格品(记为1),设X为三件产品中的不合格品数,指出下列事件所含的样本点:
解:
7.试问下列命题是否成立?
(1)
(2)若且,则
(3)
(4)
解:(1)不成立是因为由(1)的左端可得
(2)成立的理由是:互不相容两个集合的子集当然也互不相容,(1)(3)(4)不成立,为了说明理由,我们利用减法的一个性质:来简化事件.
(3)不成立是因为由(3)的左端可得
(4)不成立的理由是
8.若事件,是否一定有
解:不能,因为发生有多种情况,如
(1)A,B,C中两两不相容(见图1-2(a));
(2)A,B,C中有两个相容,但与第三个都不相容(见图1-2b));(3)A与B相容,A与C相容,但B与C不相容(见图1-2(c));(4)A,B,C中两两相容,但其交不含任一样本点(见图1-2(d)).
图1-2
9.请叙述下列事件的对立事件:
(1)A=“掷两枚硬币,皆为正面”;
(2)B=“射击三次,皆命中目标”;
(3)C=“加工四个零件,至少有一个合格品”.
解:(1)“掷两枚硬币,至少有一反面”.
(2)“射击三次,至少有一次不命中目标”.
(3)“加工四个零件,全为不合格品”.
10.证明下列事件的运算公式:
(1)
(2)
证:(1)右边=左边.
(2)利用(1)有,所以
11.设为一事件域,若
试证:
(1)
(2)有限并
(3)有限交
(4)可列交
(5)差运算
证:(1)因为为一事件域,所以,故其对立事件(2)构造一个事件序列,其中
由此得
(3)因为.所以,由,得(4)因为,所以,由,得(5)因为,所以,由(3)(有限交)得
二、概率的定义及其确定方法
1.对于组合数,证明:
(1)
(2)
(3)
(4)
(5)
(6)
证:(1)等式两边用组合数公式展开即可得证.
(2)因为
右边
左边.
(3)因为
右边左边.(4)因为
所以
左边=右边.(5)设计如下一个抽样模型:一批产品共有a+b个,其中a个是不合格品,b个是合格品,从中随机取出n个,则事件“取出的n个产品中有k个不合格。