概率统计第一章习题_部分1

合集下载

《概率论与数理统计》习题及答案

《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。

2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。

8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。

11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。

14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。

17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。

概率统计第一章习题答案

概率统计第一章习题答案

第一章 随机事件及其概率1.解:(1){}67,5,4,3,2=S(2){} ,4,3,2=S(3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S =2.解:81)(,21)(,41)(===AB P B P A P ∴ )()()()(AB P B P A P B A P -+= 85812141=-+=)()()(AB P B P B A P -==838121=-=87811)(1)(=-=-=AB P AB P )])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB ⊂218185=-= 3.解:用A 表示事件“取到的三位数不包括数字1”25189********)(191918=⨯⨯==C C C A P 4、解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330”(1) 455443)(2515141413⨯⨯⨯⨯==A C C C C A P = 2) 455421452)(251514122512⨯⨯⨯⨯+⨯⨯=+=A C C C A C B P = 五、解:用A 表示事件“4只中恰有2只白球,1只红球,1只黑球”,用B 表示事件“4只中至少有2只红球”,用C 表示事件“4只中没有只白球”(1)412131425)(C C C C A P ==495120=338 (2)4124838141)(C C C C B P +-==16567495201= 或16567)(4124418342824=++=C C C C C C B P(3)99749535)(41247===C C C P 6.解:用A 表示事件“某一特定的销售点取得k 张提货单”n kn k n MM C A P --=)1()( 7、解:用A 表示事件“3只球至少有1只配对”,用B 表示事件“没有配对”(1)3212313)(=⨯⨯+=A P 或321231121)(=⨯⨯⨯⨯-=A P (2)31123112)(=⨯⨯⨯⨯=B P 八、解 1.0)(,3.0)(,5.0)(===AB P B P A P(1)313.01.0)()()(===B P AB P B A P , 515.01.0)()()(===A P AB P A B P 7.01.03.05.0)()()()(=-+=-+=AB P B P A P B A P)()()()()()]([)(B A P AB P B A P AB A P B A P B A A P B A A P ===757.05.0== 717.01.0)()()()])([()(====B A P AB P B A P B A AB P B A AB P 1)()()()]([)(===AB P AB P AB P AB A P AB A P (2)设{}次取到白球第i A i = 4,3,2,1=i那么)()()()()(32142131214321A A A A P A A A P A A P A P A A A A P =0408.020592840124135127116==⨯⨯⨯= 九、解: 用A 表示事件“取到的两只球中至少有1只红球”,用B 表示事件“两只都是红球”方式1 651)(2422=-=C C A P ,61)(2422==C C B P ,61)()(==B P AB P 516561)()()(===A P AB P A B P方式2 在减缩样本空间中计算51)(=A B P 10、解:A 表示事件“一病人以为自己得了癌症”,用B 表示事件“病人确实得了癌症” 由已知得,%40)(%,10)(%,45)(%,5)(====B A P B A P B A P AB P(1)B A AB B A AB A 与, =互斥5.045.005.0)()()()(=+=+==∴B A P AB P B A AB P A P同理 15.01.005.0)()()()(=+=+==B A P AB P B A AB P B P(2)1.05.005.0)()()(===A P AB P A B P (3)2.05.01.0)()()(,5.05.01)(1)(====-=-=A P B A P A B P A P A P (4)17985.045.0)()()(,85.015.01)(1)(====-=-=B P B A P B A P B P B P (5)3115.005.0)()()(===B P AB P B A P 1一、解:用A 表示事件“任取6张,排列结果为ginger ”92401)(61113131222==A A A A A A P 1二、解:用A 表示事件“A 该种疾病具有症状”,用B 表示事件“B 该种疾病具有症状” 由已知2.0)(=B A P 3.0)(=B A P 1.0)(=AB P(1),B A AB B A B A S =且B A AB B A B A ,,,互斥()6.01.03.02.0)()()(=++=++=∴AB P B A P B A P B A P4.06.01)(1)()(=-=-==B A P B A P B A P()()()4.0)(1=---=AB P B A P B A P B A P(2)()()()6.01.03.02.0)(=++=++=AB P B A P B A P AB B A B A P (3)B A AB B =, B A AB ,互斥4.03.01.0)()()()(=+=+==B A P AB P B A AB P B P)()()(])[()(B P AB P B P B AB P B AB P ==414.01.0== 13、解:用i A 表示事件“讯号由第i 条通信线输入”,,4,3,2,1=i B 表示“讯号无误差地被同意” ;2.0)(,1.0)(,3.0)(,4.0)(4321====A P A P A P A P9998.0)(1=A B P ,9999.0)(2=A B P ,,9997.0)(3=A B P 9996.0)(4=A B P 由全概率公式得9996.02.09997.01.09999.03.09998.04.0)()()(41⨯+⨯+⨯+⨯==∑=ii i A B P A P B P 99978.0=14、解:用A 表示事件“确实患有关节炎的人”,用B 表示事件“检验患有关节炎的人”由已知 1.0)(=A P ,85.0)(=A B P ,04.0)(=A B P ,那么 9.0)(=A P ,85.0)(=A B P ,96.0)(=A B P ,由贝叶斯公式得017.096.09.015.01.015.01.0)()()()()()()(=⨯+⨯⨯=+=A B P A P A B P A P A B P A P B A P 1五、解:用A 表示事件“程序交与打字机A 打字”,B 表示事件“程序交与打字机B 打字”,C 表示事件“程序交与打字机C 打字”;D 表示事件“程序因运算机发生故障被打坏” 由已知得 6.0)(=A P ,3.0)(=B P ,1.0)(=C P ;01.0)(=A D P ,05.0)(=B D P ,04.0)(=C D P由贝叶斯公式得)()()()()()()()()(C D P C P B D P B P A D P A P A D P A P D A P ++=24.025604.01.005.03.001.06.001.06.0==⨯+⨯+⨯⨯= )()()()()()()()()(C D P C P B D P B P A D P A P B D P B P D B P ++= 6.05304.01.005.03.001.06.005.03.0==⨯+⨯+⨯⨯= )()()()()()()()()(C D P C P B D P B P A D P A P C D P C P D A P ++= 16.025604.01.005.03.001.06.004.01.0==⨯+⨯+⨯⨯=1六、解:用A 表示事件“收到可信讯息”,B 表示事件“由密码钥匙传送讯息” 由已知得 95.0)(=A P ,05.0)(=A P ,1)(=A B P ,001.0)(=A B P由贝叶斯公式得999947.0001.005.0195.0195.0)()()()()()()(≈⨯+⨯⨯=+=A B P A P A B P A P A B P A P B A P 17、解:用A 表示事件“第一次得H ”,B 表示事件“第二次得H ”,C 表示事件“两次得同一面”那么 ,21)(,21)(==B P A P ,21211)(2=+=C P ,4121)(2==AB P ,4121)(2==BC P ,4121)(2==AC P )()()(),()()(),()()(C P A P AC P C P B P BC P B P A P AB P ===∴C B A ,,∴两两独立 而41)(=ABC P ,)()()()(C P B P A P ABC P ≠ C B A ,,∴不是彼此独立的1八、解:用A 表示事件“运动员A 进球”,B 表示事件“运动员B 进球”,C 表示事件“运动员C 进球”,由已知得 5.0)(=A P ,7.0)(=B P ,6.0)(=C P那么 5.0)(=A P ,3.0)(=B P ,4.0)(=C P(1){})(C B A C B A C B A P P =恰有一人进球)()()(C B A P C B A P C B A P ++= (C B A C B A C B A ,,互斥))()()()()()()()()(C P B P A P C P B P A P C P B P A P ++= 相互独立)C B A ,,( 29.06.03.05.04.07.05.04.03.05.0=⨯⨯+⨯⨯+⨯⨯= (2){})(C B A BC A C AB P P =恰有二人进球)()()(C B A P BC A P C AB P ++= (C B A BC A C AB ,,互斥))()()()()()()()()(C P B P A P C P B P A P C P B P A P ++= 相互独立)C B A ,,( 44.06.03.05.06.07.05.04.07.05.0=⨯⨯+⨯⨯+⨯⨯=(3){})(C B A P P =至少有一人进球)(1C B A P -=)(1C B A P -=)()()(1C P B P A P -= 相互独立)C B A ,,(4.03.05.01⨯⨯-=94.0=19、解:用i A 表示事件“第i 个供血者具有+-RH A 血型”, ,3,2,1=i B 表示事件“病人获救”,4321321211A A A A A A A A A A B =4321321211,,,A A A A A A A A A A 互斥,i A ( ,3,2,1=i )彼此独立()()(1P A P B P +=∴+)21A A )()(4321321A A A A P A A A P +8704.04.06.04.06.04.06.04.032=⨯+⨯+⨯+=20、解:设i A 表示事件“可靠元件i ” i=1,2,3,4,5 ,B 表示事件“系统可靠”由已知得p A P i =)(1,2,3,4,5)(i = 54321,,,,A A A A A 相互独立法1:54321A A A A A B = )()(54321A A A A A P B P =∴()()()()()()542154332154321A A A A P A A A P A A A P A A P A P A A P ---++= ()54321A A A A A P + 543322p p p p p p p +---++= ()相互独立54321,,,,A A A A A543222p p p p p +--+=法2:)(1)(54321A A A A A P B P -=)()()(154321A A P A P A A P -= ()相互独立54321,,,,A A A A A()()]1][1)][(1[154321A A P A P A A P ----=()()()]1][1)][()(1[154321A P A P A P A P A P ----= ()相互独立54321,,,,A A A A A ()()()221111p p p ----=543222p p p p p +--+=2一、解:用A 表示事件“真含有杂质”,用B 表示事件“次检验认为不含有杂质次检验认为含有杂质次检验中有123”由已知得 4.0)(=A P ,6.0)(=A P ,8.0)(=A B P ,9.0)(=A B P由贝叶斯公式得9.01.06.02.08.04.02.08.04.0)()()()()()()(223223223⨯⨯⨯+⨯⨯⨯⨯⨯⨯=+=C C C A B P A P A B P A P A B P A P B A P 905.016981536==。

概率论与数理统计第一章习题及答案

概率论与数理统计第一章习题及答案

概率论与数理统计习题 第一章 概率论的基本概念习题1-1 设C B A ,,为三事件,用C B A ,,的运算关系表示下列各事件.(1)A 发生,B 与C 不发生, (2)A 与B 都发生,而C 不发生,(3)C B A ,,中至少有一个发生,(4)C B A ,,都发生,(5)C B A ,,都不发生, (6)C B A ,,中不多于一个发生, (7)C B A ,,中不多于两个发生, (8)C B A ,,中至少有两个发生,解(1)A 发生,B 与C 不发生表示为C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生表示为C AB 或AB -ABC 或AB -C (3)A ,B ,C 中至少有一个发生表示为A+B+C (4)A ,B ,C 都发生,表示为ABC(5)A ,B ,C 都不发生,表示为C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生,相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生相当于C B A ,,中至少有一个发生。

故表示为ABC C B A 或++(8)A ,B ,C 中至少有二个发生。

相当于AB ,BC ,AC 中至少有一个发生。

故表示为AB +BC +AC习题1-2 设B A ,为两事件且6.0)(=A P ,7.0)(=B P ,问(1)在什么条件下)(AB P 取得最大值,最大值是多少?(2)在什么条件下)(AB P 取得最小值,最小值是多少?解 由P (A ) = 0.6,P (B ) = 0.7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾).从而由加法定理得P (AB )=P (A )+P (B )-P (A ∪B )(*)(1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0.6,(2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。

概率统计课后习题解答第1章

概率统计课后习题解答第1章

21.某车间有 5 台车床,每台车床由于种种原因,时常需要停车,设各台车 床停车或开车是相互独立的, 若每台车床在任一时刻处于停车状态的概率为 1/3, 试分别求在任一时刻车间里有 0,3,5 台车床处于停车状态的概率. 解:此题为 5 重伯努利概型。 22.设甲、乙两个篮球运动员投篮命中率分别为 0.7 和 0.6,现每人投篮三次, 试求: (1)两人进球数相等的概率。 (2)甲比乙进球数多的概率。 解:设甲、乙两人的进球数分别为 x 和 y,则 ( 1) 1 1 P( X Y ) 0.330.43 C3 0.7 0.32 C3 0.6 0.42 C32 0.7 2 0.3 C32 0.62 0.4 0.730.63 0.321 ( 2) 1 1 P( X Y ) C3 0.7 0.32 0.43 C32 0.7 2 0.3(0.43 C3 0.6 0.42 ) 3 3 1 2 2 2 0.7 (0.4 C3 0.6 0.4 C3 0.6 0.4) 0.436 23.一商店出售的某种型号的晶体管是甲、乙、丙三家工厂生产的,其中乙 厂产品占总数的 50%,另两家工厂的产品各占 25%,已知甲、乙、丙各厂产品 合格率分别为 0.90、0.80、0.70,试求随意取出一只晶体管是合格品的概率。 解:设 A 表示随意取出一只晶体管是合格品,Bi(i=1,2,3)分别表示取出的 产品由甲、乙、丙厂家生产,则由全概率公式有
P ( A B ) 1 P ( A B ) 1 P ( A B ) 1 r.
12.已知 P(A)=0.7; P( A B )=0.3,试求 P( AB )。 解:由 P( AB ) P( A AB) P( A) P( AB) 0.7 P( AB) 得 P( AB) 0.7 0.3 0.4 ,从而 P( AB )=10.4 = 0.6。 注意:教材上题目印刷错误 13.盒中有 10 小球,其中有 4 个是红色,从中任取两球,已知取出的两球至 少有一个是红色,求另一球也是红色的概率。 解:设取出的两球至少有一个是红色用 A 表示,则 P( A) P( A1 ) P( A2 )

概率统计第一章概率论的基础知识习题与答案

概率统计第一章概率论的基础知识习题与答案

概率统计第一章概率论的基础知识习题与答案概率论与数理统计概率论的基础知识习题一、选择题1、下列关系正确的是( )。

A、0∈∅B、{0}∅=∅⊂D、{0}∅∈C、{0}答案:C2、设{}{}2222=+==+=,则( )。

P x y x y Q x y x y(,)1,(,)4A、P Q⊂B、P Q<C、P Q⊂与P Q⊃都不对D、4P Q=答案:C二、填空1、6个学生和一个老师并排照相,让老师在正中间共有________种排法。

答案:6!720=2、5个教师分配教5门课,每人教一门,但教师甲只能教其中三门课,则不同的分配方法有____________种。

答案:723、编号为1,2,3,4,5的5个小球任意地放到编号为A、B、C、D、E、F的六个小盒子中,概率论的基础知识第 1 页(共 19 页)每一个盒至多可放一球,则不同的放法有_________种。

答案:()65432720⨯⨯⨯⨯=4、设由十个数字0,1,2,3, ,9的任意七个数字都可以组成电话号码,则所有可能组成的电话号码的总数是_______________。

答案:710个5、九名战士排成一队,正班长必须排在前头,副班长必须排在后头,共有_______________种不同的排法。

答案:77!5040P==6、平面上有10个点,其中任何三点都不在一直线上,这些点可以确定_____个三角形。

答案:1207、5个篮球队员,分工打右前锋,左前锋,中锋,左后卫右后卫5个位置共有_____________种分工方法?答案:5!120=8、6个毕业生,两个留校,另4人分配到4个概率论的基础知识第 2 页(共 19 页)不同单位,每单位1人。

则分配方法有______种。

答案:(6543)360⨯⨯⨯=9、平面上有12个点,其中任意三点都不在一条直线上,这些点可以确定_____________条不同的直线。

答案:6610、编号为1,2,3,4,5的5个小球,任意地放到编号为A,B,C,D,E,F,的六个小箱子中,每个箱子中可放0至5个球,则不同的放法有___________种。

概率论与数理统计习题及答案第一章

概率论与数理统计习题及答案第一章

习题1-21. 选择题(1) 设随机事件A ,B 满足关系A B ⊃,则下列表述正确的是( ). (A) 若A 发生, 则B 必发生. (B) A , B 同时发生.(C) 若A 发生, 则B 必不发生. (D) 若A 不发生,则B 一定不发生.解 根据事件的包含关系, 考虑对立事件, 本题应选(D).(2) 设A 表示“甲种商品畅销, 乙种商品滞销”, 其对立事件A 表示( ). (A) 甲种商品滞销, 乙种商品畅销. (B) 甲种商品畅销, 乙种商品畅销. (C) 甲种商品滞销, 乙种商品滞销.(D) 甲种商品滞销, 或者乙种商品畅销.解 设B 表示“甲种商品畅销”,C 表示“乙种商品滞销”,根据公式B C B C =, 本题应选(D).2. 写出下列各题中随机事件的样本空间:(1) 一袋中有5只球, 其中有3只白球和2只黑球, 从袋中任意取一球, 观察其颜色; (2) 从(1)的袋中不放回任意取两次球, 每次取出一个, 观察其颜色; (3) 从(1)的袋中不放回任意取3只球, 记录取到的黑球个数; (4) 生产产品直到有10件正品为止, 记录生产产品的总件数. 解 (1) {黑球,白球}; (2) {黑黑,黑白,白黑,白白}; (3) {0,1,2};(4) 设在生产第10件正品前共生产了n 件不合格品,则样本空间为{10|0,1,2,n n +=}.3. 设A, B, C 是三个随机事件, 试以A, B, C 的运算关系来表示下列各事件: (1) 仅有A 发生;(2) A , B , C 中至少有一个发生; (3) A , B , C 中恰有一个发生; (4) A , B , C 中最多有一个发生; (5) A , B , C 都不发生;(6) A 不发生, B , C 中至少有一个发生. 解 (1) ABC ; (2) A B C ; (3) ABC ABC ABC ; (4) ABCABC ABC ABC ; (5) ABC ; (6) ()A BC .4. 事件A i 表示某射手第i 次(i =1, 2, 3)击中目标, 试用文字叙述下列事件: (1) A 1∪A 2; (2) A 1∪A 2∪A 3; (3)3A ; (4) A 2-A 3; (5)23A A ; (6)12A A .解 (1) 射手第一次或第二次击中目标;(2) 射手三次射击中至少击中目标;(3) 射手第三次没有击中目标;(4) 射手第二次击中目标,但是第三次没有击中目标;(5) 射手第二次和第三次都没有击中目标;(6) 射手第一次或第二次没有击中目标.习题1-31. 选择题 (1) 设A, B 为任二事件, 则下列关系正确的是( ).(A)()()()P A B P A P B -=-. (B)()()()P A B P A P B =+.(C)()()()P AB P A P B =. (D)()()()P A P AB P AB =+.解 由文氏图易知本题应选(D).(2) 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是 ( ).(A) A 和B 互不相容. (B) AB 是不可能事件.(C) AB 未必是不可能事件. (D) P (A )=0或P (B )=0. 解 本题答案应选(C).○2. 设P (AB )=P (AB ), 且P (A )=p ,求P (B ). 解 因 ()1()1()()()()P AB P AB P A P B P AB P AB =-=--+=, 故()()1P A P B +=. 于是()1.P B p =-3. 已知()0.4P A =,()0.3P B =,()0.4P A B =, 求()P AB .解 由公式()()()()P A B P A P B P AB =+-知()0.3P AB =. 于是()()()0.1.P AB P A P AB =-=4. 设A , B 为随机事件,()0.7P A =,()0.3P A B -=, 求()P AB . 解 由公式()()()P A B P A P AB -=-可知,()0.4P AB =. 于是()0.6P AB =.5. 设A , B 是两个事件, 且()0.6P A =, ()0.7P B =.问: (1) 在什么条件下()P AB 取到最大值, 最大值是多少? (2) 在什么条件下()P AB 取到最小值, 最小值是多少?解 ()()()()P AB P A P B P A B =+-=1.3()P A B -.(1) 如果A B B =, 即当A B ⊂时, P B A P =)( ()B =0.7, 则()P AB 有最大值是0.6 .(2) 如果)(B A P =1,或者A B S =时, ()P AB 有最小值是0.3 .6. 已知1()()()4P A P B P C ===,()0P AB =, 1()()12P AC P BC ==, 求A , B , C 全不发生的概率.解 因为ABC AB ⊂,所以0()P ABC P AB ≤≤()=0, 即有()P ABC =0. 由概率一般加法公式得()()()()()()()()7.12P A B C P A P B P C P AB P AC P BC P ABC =++---+= 由对立事件的概率性质知A ,B , C 全不发生的概率是5()()1()12P ABC P A B C P AB C ==-=.习题1-41. 选择题在5件产品中, 有3件一等品和2件二等品. 若从中任取2件, 那么以0.7为概率的事件是( ).(A) 都不是一等品. (B) 恰有1件一等品. (C) 至少有1件一等品. (D) 至多有1件一等品.解 至多有一件一等品包括恰有一件一等品和没有一等品, 其中只含有一件一等品的概率为113225C C C ⨯, 没有一等品的概率为023225C C C ⨯, 将两者加起即为0.7. 答案为(D ).2. 从由45件正品、5件次品组成的产品中任取3件. 求: (1) 恰有1件次品的概率; (2) 恰有2件次品的概率; (3) 至少有1件次品的概率; (4) 至多有1件次品的概率; (5) 至少有2件次品的概率.解 (1) 恰有1件次品的概率是12545350C C C ;(2) 恰有2件次品的概率是21545350C C C ; (3 )至少有1件次品的概率是1-03545350C C C ; (4) 至多有1件次品的概率是03545350C C C +12545350C C C ; (5) 至少有2件次品的概率是21545350C C C +30545350C C C .3. 袋中有9个球, 其中有4个白球和5个黑球. 现从中任取两个球. 求:(1) 两个球均为白球的概率;(2) 两个球中一个是白的, 另一个是黑的概率; (3)至少有一个黑球的概率.解 从9个球中取出2个球的取法有29C 种,两个球都是白球的取法有24C 种,一黑一白的取法有1154C C 种,由古典概率的公式知道(1) 两球都是白球的概率是2924C C ;(2)两球中一黑一白的概率是115429C C C ;(3)至少有一个黑球的概率是12924C C -.4. 在区间(0, 1)中随机地取两个数, 求下列事件的概率:(1) 两数之和小于65;(2) 两数之积小于14;(3) 以上两个条件同时满足;(4) 两数之差的绝对值小于12的概率.解 设X , Y 为所取的两个数, 则样本空间S = {(X , Y )|0<X , Y <1}.,(1) P {X +Y <65}=1441172550.68125-⨯⨯=≈;(2) P {XY <14}=11411111ln 40.64444dx x⨯+=+≈⎰;(3) P {X +Y <65, XY <14} =0.2680.932110.2680.932516161()()5545x dx dx x dx x ⨯+-++-⎰⎰⎰≈0.593. (4) 解 设x , y 为所取的两个数, 则样本空间Ω = {(x , y )|0<x , y <1}, 记A = {(x , y )|(x , y )∈S , |x -y |<12}. 参见图1-1.图1-1 第2题样本空间故 111123222()14AS P A S Ω-⨯⨯⨯===, 其中 S A , S Ω分别表示A 与Ω的面积.习题1-51. 选择题(1) 设随机事件A , B 满足P (A |B )=1, 则下列结论正确的是( )(A) A 是必然事件. (B) B 是必然事件. (C) AB B =. (D)()()P AB P B =.解 由条件概率定义可知选(D).(2) 设A , B 为两个随机事件, 且0()1P A <<, 则下列命题正确的是( ).(A) 若()()P AB P A =, 则A , B 互斥.(B) 若()1P BA =, 则()0P AB =.(C) 若()()1P AB P AB +=, 则A , B 为对立事件. (D) 若(|)1P B A =, 则B 为必然事件.解 由条件概率的定义知选(B ).2. 从1,2,3,4中任取一个数, 记为X , 再从1,2,…,X 中任取一个数, 记为Y ,求P {Y =2}. 解 解 P {Y =2}=P {X =1}P {Y =2|X =1}+P {X =2}P {Y =2|X =2}+P {X =3}P {Y =2|X =3}+P {X =4}P {Y =2|X =4}=41×(0+21+31+41)=4813. 3. 口袋中有b 个黑球、r 个红球, 从中任取一个, 放回后再放入同颜色的球a 个. 设B i ={第i 次取到黑球}, 求1234()P B B B B .解 用乘法公式得到)|()|()|()()(32142131214321B B B B P B B B P B B P B P B B B B P =.32ar b ar a r b r a r b a b r b b +++⋅++⋅+++⋅+=注意, a = 1和a = 0分别对应有放回和无放回抽样.4. 甲、乙、丙三人同时对某飞机进行射击, 三人击中的概率分别为0.4, 0.5, 0.7. 飞机被一人击中而被击落的概率为0.2, 被两人击中而被击落的概率为0.6, 若三人都击中, 飞机必定被击落. 求该飞机被击落的概率.解 目标被击落是由于三人射击的结果, 但它显然不能看作三人射击的和事件. 因此这属于全概率类型. 设A 表示“飞机在一次三人射击中被击落”, 则(0,1,2,3)i B i =表示“恰有i 发击中目标”.i B 为互斥的完备事件组. 于是没有击中目标概率为0()0.60.50.30.09P B =⨯⨯=, 恰有一发击中目标概率为1()0.40.50.30.60.50.30.60.50.70.36P B =⨯⨯+⨯⨯+⨯⨯=,恰有两发击中目标概率为2()0.40.50.30.60.50.70.40.50.70.41P B =⨯⨯+⨯⨯+⨯⨯=,恰有三发击中目标概率为3()0.40.50.70.14P B =⨯⨯=.又已知 0123(|)0,(|)0.2,(|)0.6,(|)1P A B P A B P A B P A B ====, 所以由全概率公式得到 3()()(|)0.360.20.410.60.1410.458.iii P A P B P A B ===⨯+⨯+⨯=∑5. 在三个箱子中, 第一箱装有4个黑球, 1个白球; 第二箱装有3个黑球, 3个白球; 第三箱装有3个黑球, 5个白球. 现任取一箱, 再从该箱中任取一球.(1) 求取出的球是白球的概率;(2) 若取出的为白球, 求该球属于第二箱的概率.解 (1)以A 表示“取得球是白球”,i H 表示“取得球来至第i 个箱子”,i =1,2,3. 则P (i H )=13, i =1,2,3, 123115(|),(|),(|)528P A H P A H P A H ===. 由全概率公式知P (A )=112233()(|)()(|)()(|)P H P A H P H P A H P H P A H ++=12053. (2) 由贝叶斯公式知 P (2|H A )=222()()(|)20()()53P AH P H P A H P A P A ==6. 某厂甲、乙、丙三个车间生产同一种产品, 其产量分别占全厂总产量的40%, 38%,22%, 经检验知各车间的次品率分别为0.04, 0.03, 0.05. 现从该种产品中任意取一件进行检查.(1) 求这件产品是次品的概率;(2) 已知抽得的一件是次品, 问此产品来自甲、乙、丙各车间的概率分别是多少?解 设A 表示“取到的是一件次品”, i B (i =1, 2, 3)分别表示“所取到的产品来自甲、乙、丙工厂”. 易知,123,,B B B 是样本空间S 的一个划分, 且122()0.4,()0.38,()0.22P B P B P B ===,12(|)0.04,(|)0.03P A B P A B ==,3(|)0.05P A B =.(1) 由全概率公式可得112233()(|)()(|)()(|)()P A P A B P B P A B P B P A B P B =++0.40.040.380.030.220.050.0384.=⨯+⨯+⨯=.(2) 由贝叶斯公式可得111(|)()0.40.045(|)()0.038412P A B P B P B A P A ⨯===,222(|)()0.380.0319(|)()0.038464P A B P B P B A P A ⨯===,333(|)()0.220.0555(|)()0.0384192P A B P B P B A P A ⨯===.习题1-61. 选择题(1) 设随机事件A 与B 互不相容, 且有P (A )>0, P (B )>0, 则下列关系成立的是( ).(A) A , B 相互独立. (B) A , B 不相互独立.(C) A , B 互为对立事件. (D) A , B 不互为对立事件. 解 用反证法, 本题应选(B).(2) 设事件A 与B 独立, 则下面的说法中错误的是( ).(A) A 与B 独立. (B) A 与B 独立.(C)()()()P AB P A P B =. (D) A 与B 一定互斥.解 因事件A 与B 独立, 故AB 与,A 与B 及A 与B 也相互独立. 因此本题应选(D). (3) 设事件A 与 B 相互独立, 且0<P (B )<1, 则下列说法错误的是( ).(A)(|)()P A B P A =. (B) ()()()P AB P A P B =.(C) A 与B 一定互斥. (D)()()()()()P A B P A P B P A P B =+-.解 因事件A 与B 独立, 故AB 与也相互独立, 于是(B)是正确的. 再由条件概率及一般加法概率公式可知(A)和(D)也是正确的. 从而本题应选(C).2.设A , B 是任意两个事件, 其中A 的概率不等于0和1, 证明P (B |A )=)(A B P 是事件A 与B 独立的充分必要条件.证 由于A 的概率不等于0和1, 故题中两个条件概率都存在.充分性. 因事件A 与B 独立, 知事件A 与B 也独立, 因此()(),()()P B A P B P B A P B ==,从而()()P B A P B A =.必要性. 已知()()P BA PB A =, 由条件概率公式和对立事件概率公式得到()()()()()1()()P AB P AB P B P AB P A P A P A -==-,移项得[]()1()()()()(),P AB P A P A P B P A P AB -=-化简得 P (AB )=P (A )P (B ), 因此A 和B 独立.3. 设三事件A , B 和C 两两独立, 满足条件:,ABC =∅1()()()2P A P B P C ==<, 且9()16P A B C =,求()P A .解 根据一般加法公式有()()()()()()()()P A B C P A P B P C P AC P AB P BC P ABC =++---+.由题设可知 A , B 和C 两两相互独立,,ABC =∅ 1()()()2P A P B P C ==<, 因此有2()()()[()],()()0,P AB P AC P BC P A P ABC P ====∅=从而29()3()3[()]16P AB C P A P A =-=,于是3()4P A =或1()4P A =, 再根据题设1()2P A <, 故1()4P A =.4. 某人向同一目标独立重复射击, 每次射击命中目标的概率为p (0<p <1), 求此人第4次射击时恰好第2次命中目标的概率.解 “第4次射击恰好第2次命中” 表示4次射击中第4次命中目标, 前3次射击中有一次命中目标. 由独立重复性知所求概率为1223(1)C p p -.5. 甲、乙两人各自向同一目标射击, 已知甲命中目标的概率为 0.7, 乙命中目标的概率为0.8. 求:(1) 甲、乙两人同时命中目标的概率;(2) 恰有一人命中目标的概率; (3) 目标被命中的概率.解 甲、乙两人各自向同一目标射击应看作相互独立事件. 于是(1) ()()()0.70.80.56;P AB P A P B ==⨯=(2) ()()0.70.20.30.80.38;P AB P AB +=⨯+⨯= (3)()()()()()0.70.80.560.94.P A B P A P B P A P B =+-=+-=总 习 题 一1. 选择题:设,,A B C 是三个相互独立的随机事件, 且0()1P C <<, 则在下列给定的四对事件中不相互独立的是( ).(A)A B 与C . (B)AC 与C .(C) A B -与C . (D) AB 与C .解 由于A , B , C 是三个相互独立的随机事件, 故其中任意两个事件的和、差、交、并与另一个事件或其逆是相互独立的, 根据这一性质知(A), (C), (D)三项中的两事件是相互独立的, 因而均为干扰项, 只有选项(B)正确..2. 一批产品由95件正品和5件次品组成, 先后从中抽取两件, 第一次取出后不再放回.求: (1) 第一次抽得正品且第二次抽得次品的概率; (2) 抽得一件为正品, 一件为次品的概率.解 (1) 第一次抽得正品且第二次抽得次品的概率为9551910099396⨯=⨯.(1) 抽得一件为正品,一件为次品的概率为95559519.10099198⨯+⨯=⨯3. 设有一箱同类型的产品是由三家工厂生产的. 已知其中有21的产品是第一家工厂生产的, 其它二厂各生产41. 又知第一、第二家工厂生产的产品中有2%是次品, 第三家工厂生产的产品中有4%是次品. 现从此箱中任取一件 产品, 求取到的是次品的概率.解 从此箱中任取一件产品, 必然是这三个厂中某一家工厂的产品. 设A ={取到的产品是次品},B i ={取到的产品属于第i 家工厂生产}, i =1, 2, 3. 由于B i B j =∅(i ≠j, i , j =1, 2, 3)且B 1∪B 2∪B 3=S , 所以B 1, B 2, B 3是S 的一个划分. 又 P (B 1)=21, P (B 2) =41, P (B 3)=41, P (A | B 1)=1002, P (A | B 2)=1002, P (A | B 3)=1004,由全概率公式得P (A )=P (B 1)P (A |B 1)+P (B 2)P (A |B 2)+P (B 3)P (A | B 3)=100441100241100221⨯+⨯+⨯=0.025. 4. 某厂自动生产设备在生产前须进行调整. 假定调整良好时, 合格品为90%; 如果调整不成功, 则合格品有30%. 若调整成功的概率为75%, 某日调整后试生产, 发现第一个产品合格. 问设备被调整好的概率是多少?解 设A ={设备调整成功}, B ={产品合格}. 则全概率公式得到()()(|)()(|)0.750.90.250.30.75P B P A P B A P A P B A =+=⨯+⨯=.由贝叶斯公式可得()0.750.9(|)0.9()0.75()(|)()P AB P A B P B P A P B A P B ⨯====.5. 将两份信息分别编码为A 和B 传递出去. 接收站收到时, A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01, 信息A 与信息B 传送的频繁程度为2:1. 若接收站收到的信息是A , 问原发信息是A 的概率是多少?解 以D 表示事件“将信息A 传递出去”,以D 表示事件“将信息B 传递出去”,以R 表示事件“接收到信息A ”,以R 表示事件“接收到信息B ”.已知21()0.02,()0.01,(),()33P R D P R D P D P D ====.由贝叶斯公式知()()()196()()197()()()()P R D P D P DR P D R P R P R D P D P R D P D ===+.。

概率统计第一章复习题

概率统计第一章复习题

第一章练习题一、选择题1.对事件B A ,,下列命题正确的是:( )A. 如果B A ,互不相容,则B A ,也互不相容B. 如果B A ,相容,则B A ,也相容C. 如果B A ,互不相容,且()()0,0>>B P A P ,则B A ,互相独立D. 如果B A ,互相独立,则B A ,也互相独立2.某人射击时,中靶的概率为3/4,如果射击直到中靶为止,则射击次数为3的概率为 ( ).3)43(. A 41)43(.2⨯B 43)41(.2⨯C 3)41(.D 3.设()8.0=A P ,()7.0=B P ,()8.0|=B A P ,则下列结论正确的是( )A. 事件A 与B 互不相容B. B A ⊂C. 事件A 与B 互相独立D. ()()()B P A P B A P +=Y 4. 事件)(C B A ⋃的含义是( )(1)A 出现 (2)A 出现且B ,C 都不出现 (3)A 出现,B 和C 中至少有一个不出现。

5. 设事件A 、B 相互独立,()()0,0>>B P A P , 则( )Φ=AB A . ()()()B P A P B A P B =-. ()()A P B P C -=1. ()0|.=A B P D6. 设()0=AB P ,则( ).A) B A ,互不相容 B) B A ,相互独立 C) ()()00==B P A P 或 D)()()A P B A P =-7. 设B A ,为两个随机事件,且有()1|=AB C P ,则( )正确.A) ()()()1-+≤B P A P C P B) ()()AB P C P =C) ()()()1-+≥B P A P C P D) ()()B A P C P +=二、填空题1. 设B A ,为两个不相容事件,则=-)(B A P _________.2. 设()()()321321,,;31A A A A P A P A P ===相互独立,则 (1) 321,,A A A 至少出现一个的概率为 ,(2)321,,A A A 恰好出现一个的概率为 , (3)321,,A A A 最多出现一个的概率为 .3. 设C B A ,,为三个随机事件,用C B A ,,表示下列事件:(1)C B A ,,中至少有一事件发生_______________, 其对立事件为______________;(2)C B A ,,中至多有一事件发生_______________,C B A ,,中恰好有一事件发生___________________.4. 己知()5.0=A P ,()6.0=B P , ()8.0|=A B P ,则()B A P Y = .5. 设()(),6.0,3.0==B A P A P Y 那么(1)若A 和B 互不相容,则()=B P ,(2)若A 和B 相互独立,则()=B P , (3)若B A ⊂,则()=B P .6. 设事件A 表示“甲产品畅销,乙产品滞销”,则其对立事件A 表示 .7. 某射手在三次独立射击中至少命中一次的概率为, 则该射手在一次射击中命中的概率为 .8. 如果事件A 和B 满足V AB =,则称事件A 与事件B 为 事件;如果事件A 和B 满足U B A =⋃,V AB =,则称事件A 与事件B 为 事件.三、计算题1. 设试验为从装有三个白球(记号为1,2,3)与两个黑球(记号为4,5)的袋中任取两个球,(1)观察取出的两个球的颜色。

《概率论与数理统计》习题及答案--第一章

《概率论与数理统计》习题及答案--第一章
《概率论与数理统计》习题及答案
第一章
1.写出下列随机试验的样本空间及下列事件中的样本点:
( 1)掷一颗骰子,记录出现的点数 . A ‘出现奇数点’ ; ( 2)将一颗骰子掷两次, 记录出现点数 . A ‘两次点数之和为
一次的点数,比第二次的点数大 2’;
Байду номын сангаас10’,B ‘第
( 3)一个口袋中有 5 只外形完全相同的球,编号分别为 1,2,3,4,5 ;从中同时
解 ( 1) A1 A2 A3 ;( 2) A1 A2 A3 ;( 3) A1 A2 A3 ( 4) A1 A2 A1 A3 A2 A3 。
A1 A2 A3
A1 A2 A3 ;
4.在电话号码中任取一个电话号码,求后面四个数字全不相同的概率。
解 设 A ‘任取一电话号码后四个数字全不相同’ ,则
P( A)
(2,3,5), (2, 4,5), (1,3,5)}
A {(1, 2,3), (1,2, 4), (1,2,5), (1,3, 4), (1,3,5), (1,4,5)}
( 4) S {( ab, , ), ( , ab, ), ( , ,ab), (a,b, ), ( a, ,b), (b, a, ),
(b, , a), ( , a, b,), ( ,b, a)} ,其中‘ ’表示空盒;
A {( ab, , ), (a, b, ), ( a, , b), (b, a, ), (b, , a)} 。
( 5) S {0,1, 2, }, A {0,1, 2,3, 4}, B {3, 4, } 。 2.设 A, B,C 是随机试验 E 的三个事件,试用 A, B,C 表示下列事件:
( 1)仅 A 发生; ( 2) A, B, C 中至少有两个发生; ( 3) A, B, C 中不多于两个发生; ( 4) A, B, C 中恰有两个发生; ( 5) A, B, C 中至多有一个发生。

概率统计习题集(含答案)

概率统计习题集(含答案)

第一章 随机事件及其概率一、选择题:1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( )A .AB AC + B .()A B C + C .ABCD .A B C ++2.设B A ⊂ 则 ( )A .()P AB =1-P (A ) B .()()()P B A P B A -=-C . P(B|A) = P(B)D .(|)()P AB P A =3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一定独立A .()()()P AB P A P B = B .P (A|B )=0C .P (A|B )= P (B )D .P (A|B )= ()P A4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( )A .a-bB .c-bC .a(1-b)D .b-a5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 互不独立D .A 与B 互不相容6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ⊃,则一定成立的关系式是( )A .P (A|B )=1 B .P(B|A)=1C .(|A)1p B =D .(A|)1p B =7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A .()AB B A -= B .()A B B A -⊃C .()A B B A -⊂D .()A B B A -=8.设事件A 与B 互不相容,则有 ( )A .P (AB )=p (A )P (B ) B .P (AB )=0C .A 与B 互不相容D .A+B 是必然事件9.设事件A 与B 独立,则有 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (AB )=0D .P (A+B )=110.对任意两事件A 与B ,一定成立的等式是 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (A|B )=P (A )D .P (AB )=P (A )P (B|A )11.若A 、B 是两个任意事件,且P (AB )=0,则 ( )A .A 与B 互斥 B .AB 是不可能事件C .P (A )=0或P (B )=0D .AB 未必是不可能事件12.若事件A 、B 满足A B ⊂,则 ( )A .A 与B 同时发生 B .A 发生时则B 必发生C .B 发生时则A 必发生D .A 不发生则B 总不发生13.设A 、B 为任意两个事件,则P (A-B )等于 ( )A . ()()PB P AB - B .()()()P A P B P AB -+C .()()P A P AB -D .()()()P A P B P AB --14.设A 、B 、C 为三事件,则AB BC AC 表示 ( )A .A 、B 、C 至少发生一个 B .A 、B 、C 至少发生两个C .A 、B 、C 至多发生两个D .A 、B 、C 至多发生一个15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 相互对立D .A 与B 互不独立16.设随机实际A 、B 、C 两两互斥,且P (A )=0.2,P (B )=0.3,P (C )=0.4,则PA B C -= ()( ). A .0.5 B .0.1 C .0.44 D .0.317掷两枚均匀硬币,出现一正一反的概率为 ( )A .1/2B .1/3C .1/4D .3/418.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率为2p ,则该零件加工的成品率为 ( )A .121p p --B .121p p -C .12121p p p p --+D .122p p --19.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( )。

概率论与数理统计第一章习题参考答案

概率论与数理统计第一章习题参考答案

概率论与数理统计第一章习题参考答案第一章随机事件及其概率1.解决方案:(1)s??2,3,4,5,67? (2) s??2,3,4,?? (3) s??h、 th,tth,??(4)s??hh,ht,t1,t2,t3,t4,t5,t6?2.解:?p(a)?14,p(b)?12,p(ab)?1814? 12? 18? 58? p(a?b)?p(a)?p(b)?p(ab)?p(ab)?p(b)?p(ab)=?p(ab)?1?p(ab)?1?1812??7818?38p[(a?b)(ab)]?p[(a?b)?(ab)]p(ab)p(ab)(abab)5818123.解决方案:使用a表示事件“获得的三位数不包含数字1”P(a)?C8C9C990011?8.9? 9900? 一千八百二十五4、解:用a表示事件“取到的三位数是奇数”,用b表示事件“取到的三位数大于330”(1)p(a)?c3c4c4ca121525111?3?4?45?5?41=0.482) p(b)?c2a5?c2c4c5a5121?2.5.4.1.2.45? 5.4=0.485、解:用a表示事件“4只中恰有2只白球,1只红球,1只黑球”,用b表示事件“4只中至少有2只红球”,用c表示事件“4只中没有只白球”(1)p(a)?c5c4c3c12132114=1204954=833(2) p(b)?1.c4c8?c8c412=202195?67165或p(b)?c4c8?c4c8?c4c41222314?67165一(3)p(c)?c7c4412?35495?7996.解决方案:使用a表示事件“在特定销售点获得的K提单”P(a)?cn(m?1)mnkn?K7、解:用a表示事件“3只球至少有1只配对”,用b表示事件“没有配对”(1)p(a)?(2)p(b)?3?13?2?12?1?13?2?1??2313或p(a)?1?2.1.13? 2.1.238、解p(a)?0.5,p(b)?0.3,p(ab)?0.1p(ab)p(b)p(ab)p(a)(1)p(ab)??0.10.30.10.5? 1315,p(ba)p(a?b)?p(a)?p(b)?p(ab)?0.5? 0.3? 0.1? 零点七p[a(a?b)]p(a?b)p(a?ab)p(a?b)p(ab)p(a?b)p(aa?b)p(ab)p(a?b)0.10.717?0.50.7?57 p(aba?b)?p[(ab)(a?b)]p(a?b)p(ab)p(ab)p(aab)?p[a(ab)]p(ab)??1(2)设定人工智能??第一次拿到白球?我1,2,3,4则p(a1a2a3a4)?p(a1)p(a2a1)p(a3a1a2)p(a4a1a2a3)?611?712?513?412?84020592?0.04089.解决方案:用a表示“两个球中至少有一个红球”,用B表示“两个都是红球”。

概率论与数理统计第一章总习题答案

概率论与数理统计第一章总习题答案

概率论与数理统计课后习题答案第一章总习题1.填空题(1)假设B A ,是两个随机事件,且B A AB ⋅=,则()A B =U ,()=AB ;解:AB A B AB A B =⋅⇔= 即AB 与A B U 互为对立事件,又AB A B ⊂U 所以()(),.AB A B A B AB A B AB Ω==∅==(2)假设B A ,是任意两个事件,则()()()()()P A B A B A B A B ⎡⎤=⎣⎦ .解:()()()()()()P A⎡=⎣()()0P B==.(3).已知41)()()(===C P B P A P , 0)(=AB P , 161)()(==BC P AC P 。

则事件A 、B 、C 全不发生的概率为解:所求事件的概率即为()P ABC ,又,ABC AB ⊂从而()()00,P ABC P AB ≤≤=则()0P ABC =,所以()()()1P ABC P A B C P A B C ==-()()()()()()()31311.488P A P B P C P AB P AC P BC P ABC =---+++-=-+=2.选择题(1)设8.0)(=A P ,7.0)(=B P ,()8.0=B A P ,则下列结论正确的是().(A )事件A 与事件B 相互独立;(B )事件A 与事件B 互逆; (C )A B ⊃;(D )()()()P A B P A P B =+ .解:因为()56.0)()(==B A P B P AB P ,而56.0)()(=B P A P ,即)()()(B P A P AB P =,所以事件A 与事件B 相互独立,选(A ).(2)设B A ,为两个互逆的事件,且0)(>A P ,0)(>B P ,则下列结论正确的是().(A )()0>A B P ;(B )())(A P B A P =;(C )()0=B A P ;(D ))()()(B P A P AB P =. 解:因为B A ,为两个互逆的事件,所以当事件B 发生时,事件A 是不会发生的,故()0=B A P .选(C ).(3)设1)(0<<A P ,1)(0<<B P ,()()1=+B A P B A P ,则下列结论正确的是().(A )事件A 与事件B 互不相容;(B )事件A 与事件B 互逆; (C )事件A 与事件B 不互相独立;(D )事件A 与事件B 互相独立.解:因为()()()()()()()()()()1111P A B P A B P AB P AB P A B P A B P B P B P B P B⋅+=⇔+=⇔+=-()()()()()()()()()()111111P AB P A B P AB P A P B P AB P B P B P B P B ---+⇔+=⇔+=⇔-- ()()[]()()()()[]()()[]⇔-=+--+-B P B P AB P B P A P B P B P AB P 111)()()(B P A P AB P =,所以事件A 与事件B 互相独立.选(D ).3.从五双不同的鞋子中任取四只,求取得的四只鞋子中至少有两只配成一双的概率. 解:此题考虑逆事件求解比较方便,即取得的四只鞋子中不能配成一双.设A 表示“取得的四只鞋子中至少有两只配成一双”,则()4101212124511)(C C C C C A P A P -=-=2113=.4.(找次品问题)盒中有4只次品晶体管,6只正品晶体管,随机地抽取一只进行测试,直到4只次品晶体管都找到为止,求第4次品晶体管在第五次测试中被发现的概率.解:设i A 表示“第i 次找到次品晶体管”()5,4,3,2,1=i ,则所求概率为:()54321543215432154321A A A A A A A A A A A A A A A A A A A A P ⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅⋅⋅()()()()()432153214213121A A A A A P A A A A P A A A P A A P A P ⋅⋅⋅⋅⋅⋅=()()()()()432153214213121A A A A A P A A A A P A A A P A A P A P ⋅⋅⋅⋅⋅⋅+ ()()()()()432153214213121A A A A A P A A A A P A A A P A A P A P ⋅⋅⋅⋅⋅⋅+ ()()()()()432153214213121A A A A AP A A A AP A A A P A A P A P ⋅⋅⋅⋅⋅⋅+61768293104617286931046172839610461728394106⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯=1052617283941064=⎪⎭⎫⎝⎛⨯⨯⨯⨯=.5.(讨论奖金分配的公平性问题)在一次羽毛球比赛中,设立奖金1000元.比赛规定:谁先胜三盘,谁获得全部奖金.设甲、乙两人的球技相当,现已打了三盘,甲2胜1负.由于特殊原因必须中止比赛.问这1000元应如何分配才算公平?解:应以预期获胜的概率为权重来分配这笔奖金,于是求出甲、乙两人获胜的预期概率即可.比赛采取的应是五局三胜制,比赛已打三盘,甲胜两盘,甲若再胜一盘即可获胜.甲获胜的预期概率为:()()()()43212121544544=⨯+=+=+A P A P A P A A A P .于是,甲应分得1000元奖金中的750100043=⨯元,乙分得250元.6.(彩票问题) 一种福利彩票称为幸福35选7,即从01,02,…,35中不重复地开出7个基本号码和一个特殊号码.中奖规则如下表所示.(1)试求各等奖的中奖概率(1,2,,7);i p i = (2) 试求中奖的概率.解:(1) 因为不重复地选号码是一种不放回抽样,所以样本空间Ω含有735C 个样本点.要中奖应把抽样看成是在三种类型中抽取:第一类号码:7个基本号码; 第二类号码:1个特殊号码; 第三类号码:27个无用号码。

概率论与数理统计(经管类)课后习题_第一章

概率论与数理统计(经管类)课后习题_第一章

P (A3|B) =
PB
%% .
通过计算得出第二产成产的概率最大.
0.2319
习题 1.4
1. 设 P(A)=0.4, P A B (1) A 与 B 互不相容; (2) A 与 B 相互独立;
(3) A B. 解: (1) P(B)= P A B
0.7,求在下列条件下分别求 P(B): P A 0.7 0.4 0.3;
(2)P A B (3) P A B
1 P A P B ,P B 1
PA B PA
P A P B P AB P A P B
1 0.5 0.5; P A =0.7.
2. 甲乙两人独立地各向同一目标射击一次,其中命中率分别为 0.6 和 0.7,求目标被命中的概率.若已知
目标被命中,求它是甲射中的概率.
P =
AB
=P
A
P AB = .
.
0.4
PA
PA
.
3.设 P(A)= ,P(B|A)= , P(A|B)= ,求 P A B
解:P(AB)= P(A)* (B|A)=
,
P AB
P(B)=
P A|B
PA B
PA
PB
P AB
11 1 4 6 12
1 3
4.设P A 0.3, P B
解: P B|A B
0.4, P AB 0.5, 求 P B|A B .
11.设 P(A)=0.7,P(B)=0.6,P(A‐B)=0.3,求P AB , P A B , P AB . 解: P AB 1 P AB 1 P A P A B 1 0.4 0.6 P A B P A P B P AB P A P B P A P A B P AB 1 P A B 1 0.9 0.1

概率统计-第一章-答案

概率统计-第一章-答案

第一章参考答案第一章练习一一、填空:1、b 表示不中,z 表示中(1) zzz,zzb,zbz,bzz,zbb,bzb,bbz,bbb(2)0,1,2,3,4,5 (3)1,2,3,4,5,(4)z,bz,bbz,bbbz,bbbbz. …2、(1)A B ⋃(2)AB (3)AB A B ⋃(4)AB (5)__B A AB ⋃3、(1)A B C ⋃⋃ (2)ABC A BC ABC ABC ⋃⋃⋃4、(1)成立(2)不成立(3)不成立(4)成立5、(1)∅(2)]2,5.1[)1,5.0()25.0,0[⋃⋃(3)B (4) A6、(1)11,279 (2)121二、解答题:1、不相容A 与D ,B 与D ,C 与D 。

相容B 与C , 对立事件B 与D2、(1){奇奇,奇偶,偶奇,偶偶} (2)1C AB A B =⋃、2C A B AB =⋃,3、a/a+b第一章练习二一、1-5 1、 ( A ) 2、(C ) 3、 ( B) 4、 ( B )二、1、p -1, 2、0.82 3、1-p-q 4、c-b,(c-b)/(1-b)三、1、(1)0.4 (2)0.2 2、0.993、52.0)(,7.0)/(,7.0)/(=⋃==B A P A B P B A P第一章练习三一、1、132、0.843、31P -4、0.684 二、1、0.55 2、0.18;49 3、 47 4、 (1) 0.0125 (2) 0.64 5、05.0)99.0(95.0)99.0(1≤⇒≥-x x三、事件A 、B 独立,当且仅当()()()()P AB P A B P A B P A B =必要性易证充分性:[()()][()()]()[1()()()]P B P AB P A P AB P AB P A P B P AB --=--+ 化简可得()()()P A P B P AB =第一章练习四(小结)一、1、 ( C ) 2、( B ) 3、 (A) 4、 (B )5、(B )二、1、0.6 2、(1-p )(1-q ) 3、0.243 4、0.7,0; 0.58,0.12; 0.4,0.3;5、31 三、1、68117, 2、2021 3、(1)n n n k k N -- ,4、0.93 5、0.0077; 6、4ln 4143- 四、 1、A,B 独立 ,A 、C 独立,但A 与C B 可能不独立,2、由1)(=A P 易知,且)()(B P AB P =,)()()(B P B P A P =,故有)()()(B P A P AB P =所以事件A 与事件B 必定相互独立五、证明:A 与B 独立⇒A 与B 独立⇒)()/(),()/(B P A B P B P A B P == ⇒)/()/(A B P A B P =,)/()/(A B P A B P =⇒()()()()()1()()P A B P A B P B P A B P A P A P A -==-⇒()[1()]()[()()]P AB P A P A P B P AB -=-⇒)()()(B P A P AB P =。

概率论与数理统计(第三版)课后答案习题1

概率论与数理统计(第三版)课后答案习题1

第一章事件与概率1.写出下列随机试验的样本空间。

(1)记录一个班级一次概率统计考试的平均分数(设以百分制记分)。

(2)同时掷三颗骰子,记录三颗骰子点数之和。

(3)生产产品直到有10件正品为止,记录生产产品的总件数。

(4)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

(5)在单位正方形内任意取一点,记录它的坐标。

(6)实测某种型号灯泡的寿命。

解 (1)},100,,1,0{n i n i ==Ω其中n为班级人数。

(2)}18,,4,3{ =Ω。

(3)},11,10{ =Ω。

(4)=Ω{00,100,0100,0101,0110,1100,1010,1011,0111,1101,0111,1111},其中0表示次品,1表示正品。

(5)=Ω{(x,y)0<x<1,0<y<1}。

(6)=Ω{ t t 0}。

2.设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列各事件,。

(1)A 发生,B 与C 不发生。

(2)A 与B 都发生,而C 不发生。

(3)A,B,C中至少有一个发生。

(4)A,B,C都发生。

(5)A,B,C都不发生。

(6)A,B,C中不多于一个发生。

(7)A,B,C至少有一个不发生。

(8)A,B,C中至少有两个发生。

解(1)C B A,(2)CAB,(3)+,(4)ABC,(5)CA+CBA,B(6)C+或BA+ABCAB+B+,A+CCCBAABC(7)C+,A+B(8)BCAB++或ACCAB⋃⋃A⋃BCABCBAC3.指出下列命题中哪些成立,哪些不成立,并作图说明。

(1)B=(2)AABBAB B A =(3)AB B A B =⊂则若, (4)若 A B B A ⊂⊂则,(5)C B A C B A = (6) 若Φ=AB 且A C ⊂, 则Φ=BC解 : (1) 成立,因为B A B B B A B B A ==))((。

概率论与数理统计练习题第一章答案

概率论与数理统计练习题第一章答案

概率论与数理统计练习题 (公共)系 专业 班 姓名 学号第一章 随机事件及其概率(一)一.选择题1.对掷一颗骰子的试验,在概率论中将“出现奇数点”称为 [ C ](A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件 2.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ⋃表示 [ C ] (A )二人都没射中 (B )二人都射中 (C )二人没有都射着 (D )至少一个射中3.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D ] \(A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销4.在电炉上安装了4个温控器,其显示温度的误差是随机的。

在使用过程中,只要有两个温控器显示的温度不低于临界温度0t ,电炉就断电。

以E 表示事件“电炉断电”,设(1)(2)(3)(4)T T T T ≤≤≤为4个温控器显示的按递增排列的温度值,则事件E 等于 (考研题2000) [ C ](A )(1)0{}T t ≥ (B )(2)0{}T t ≥ (C )(3)0{}T t ≥ (D )(3)0{}T t ≥ 5.掷两颗均匀的骰子,事件“点数之和为3”的概率是[ B ] (A )136 (B )118 (C )112 (D )1116.A 、B 为两事件,若()0.8,()0.2,()0.4P A B P A P B ⋃===,则[ B ](A )()0.32P A B = (B )()0.2P A B = (C )()0.4P B A -= (D )()0.48P B A =7.有6本中文书和4本外文书,任意往书架摆放,则4本外文书放在一起的概率是 [ D ] ` (A )4!6!10!⋅ (B )710 (C )410 (D )4!7!10!⋅二、填空题:1.设1()()()4P A P B P C ===,1()0,()()8P AB P AC P BC ===,则A 、B 、C 全不发生的概率为 1/2 。

概率论与数理统计教材第1章习题

概率论与数理统计教材第1章习题

47
1.20 把10本书任意地放在书架上, 求其中指定的 3本放在一起的概率。
解 基本事件的总数:
N P10 设A =“指定的3本放在一起”,
则A所包含的基本事件的数:
M P3 P8
∴ P( A) M P3 P8 8!3! 1 0.067 N P10 10! 15
48
1.21. 1~100个共100个数中任取一个数,求这个数能被2或3 或5整除的概率。
(1) (2) (3) (4)
A表示B
表示
表A示B
表示
AB
AA
; ; ; ;
解答
返回
1.3设A, B, C 表示三个事件, 试将下列事件用A, B, C 表示.
(1)A, B, C 都发生. (2)A, B, C 都不发生. (3)A, B, C 不都发生. (4)A, B, C 中至少有一个发生. (5)A, B, C 中至少有二个发生. (6)A, B, C 中恰好有一个发生. (7)A, B, C 中最多有一个发生. (8)A 发生而 B, C 都不发生. (9)A 不发生但 B, C 中至少有一个发生.
解: 设A= “被2整除”
B=“பைடு நூலகம்3整除”
C=“被5整除”
PA 50 PB 33 PC 20
100
100
100
PAB 16 PAC 10 PBC 6
100
100
100
PABC 3
100
所以所求事件的概率为
PA BC
PA PB PC PAB PBC PAC PABC
0.74
解答
返回
1.19 某工厂生产的100个产品中,有5个次品, 从这批产品中任取一半来检查,设A表示发现次品 不多于1个,求A的概率。

概率统计习题课一

概率统计习题课一

生产的概率? 解:(2)设Ai表示取到第i 个工厂产品,i=1,2,3,B表示取到次品,
由题意得: P(A1)=0.5,P(A2)=P(A3)=0.25
P(B|A1)=0.02,P(B|A2)=0.02,P(B|A3)=0.04 由Bayes公式得:
P( A1 | B)
P( A1 )P(B | A1 )
5
• P(A)=0.4,P(B)=0.3,P(A+B)=0.6, 求P(A-B).
• P(A)=0.7,P(A-B)=0.3,求P(s -AB)
• P(A) =P(B) = P(C) =1/4, P(AB)=0, P(AC)=P(BC)=1/6,求A、B、C都不出现的概率。
• A、B都出现的概率与 A、B 都不出现的概率相等, P(A)=p,求P(B).
(3)有利于事件C的基本事件数为62-2×2=32,P(C)=32/36=8/9
注意①若改为无放回地抽取两次呢? ②若改为一次抽取两个呢?
3
• AB=φ,P(A)=0.6,P(A+B)=0.8,求 B的逆事件 的概率。
解:由P(A+B)=P(A)+P(B)-P(AB)=P(A)+P(B) 得:P(B)=P(A+B)-P(A)=0.8-0.6=0.2,
P(B) P( A)P(B | A) P( A)P(B | A)
=(4/10)×(3/9)+(6/10)×(4/9)
= 6/15
12 市场上某种商品由三个厂家同时供获,其供应量为:甲
厂家是乙厂家的2倍,乙.丙两个厂家相等,且各厂产品的次品 率为2%,2%,4%, (1)求市场上该种商品的次品率.
=0.8×0.7×0.4=0.224

概率论与数理统计第一章习题参考解答

概率论与数理统计第一章习题参考解答

《概率论与数理统计》第一章参考解答(仅供参考,不妥之处及时指出)习题1.1(略)习题1.21.解 141414185()()()()()()()()000P A B C P A P B P C P AB P AC P BC P ABC ++=++−−−+=++−−−+=.2.解 ,()()()()0.40.50.70.2P AB P A P B P A B =+−=+−=∪()()()0.40.20.2P A B P A P AB −=−=−=,()()()0.50.20.3P B A P B P AB −=−=−=。

3.解 用、A B 、分别表示任选的一位该年龄段的市民喜欢读报、C A B 报、C 报,依题设 ()0.45,()0.34,()0.20,P A P B P C ===()0.10,()0.06,()0.04,()0.01P AB P AC P BC P ABC ====)。

(1) 任选的一位该年龄段的市民至少喜欢读一种报纸的概率()()()()()()()(0.450.340.200.100.060.040.010.80.P A B C P A P B P C P AB P AC P BC P ABC ++=++−−−+=++−−−+= (2) 任选的一位该年龄段的市民三种报纸都不喜欢读的概率()()1()10.800.20.P ABC P A B C P A B C =++=−++=−=(3) 任选的一位该年龄段的市民只喜欢读报的概率 A ()()()()()[()()]0.450.100.060.010.30P ABC P AB P ABC P A P AB P AC P ABC =−=−−−=−−+=。

(4) 同理可以求得:任选的一位该年龄段的市民只喜欢读B 报的概率()()()()()[()()]0.340.100.040.010.21,P ABC P AB P ABC P B P AB P BC P ABC =−=−−−=−−+= 任选的一位该年龄段的市民只喜欢读报的概率 C ()()()()()[()()]0.200.060.040.010.11,P ABC P AC P ABC P C P AC P BC P ABC =−=−−−=−−+= 故任选的一位该年龄段的市民只喜欢读一种报报的概率()()()()0.300.210.110.62P ABC ABC ABC P ABC P ABC P ABC ++=++=++=。

《概率论与数理统计》第一章-习题及答案

《概率论与数理统计》第一章-习题及答案

《概率论与数理统计》第一章习题及答案习题1.11. 将一枚匀整的硬币抛两次,事务C,分别表示“第一次出现A,B正面”,“两次出现同一面”,“至少有一次出现正面”。

试写出样本空间及事务C,中的样本点。

A,B解:{=Ω(正,正),〔正,反〕,〔反,正〕,〔反,反〕} {=A(正,正),〔正,反〕};{=B〔正,正〕,〔反,反〕} {=C(正,正),〔正,反〕,〔反,正〕}2. 在掷两颗骰子的试验中,事务D,,分别表示“点数之和为A,BC偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。

试写出样本空间及事务D-+,-,,中AB-,ABCABCBCA的样本点。

解:{})6,6(,=Ω;),2,6(),1,6(,),2,1(),1,1(),6,2(,),2,2(),1,2(),6,1(,{})1,3(),2,2(),3,1(),1,1(AB;={})1,2(),2,1(),6,6(),4,6(),2,6(,+BA;=),5,1(),3,1(),1,1(A;C=Φ{})2,2(),1,1(BC;={})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(BA-DC-=-3. 以C,分别表示某城市居民订阅日报、晚报和体育报。

试用A,B,表示以下事务:A,BC〔1〕只订阅日报;〔2〕只订日报和晚报;〔3〕只订一种报; 〔4〕正好订两种报; 〔5〕至少订阅一种报; 〔6〕不订阅任何报; 〔7〕至多订阅一种报; 〔8〕三种报纸都订阅; 〔9〕三种报纸不全订阅。

解:〔1〕C B A ; 〔2〕C AB ;〔3〕C B A C B A C B A ++; 〔4〕BC A C B A C AB ++;〔5〕C B A ++; 〔6〕C B A ;〔7〕C B A C B A C B A C B A +++或C B C A B A ++ 〔8〕ABC ; 〔9〕C B A ++4. 甲、乙、丙三人各射击一次,事务321,,A A A 分别表示甲、乙、丙射中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.若事件 A, B 同时发生时,事件 C 一定发生,则( (A) P( AB) P(C ) (C) P( A) P( B) P(C ) 1
( B) P( A) P( B) P(C ) 1 (D) P( A) P( B) P(C )
4. 设 A, B, C 是 三 个 随 机 事 件 , 且 有 A B , A C , P ( A) 0.9, P ( B C ) 0.8 , 则
P( A BC ) (
(A) 0.1

( B) 0.6
(C) 0.8
(D) 0.7
二.填空题 1. 投掷一颗色子, A 表示“出现奇数点” , B 表示“出现点数小于 5 ” ,则 A B 表 示
. . .
2.设 A, B 为随机事件,P( A) 0.4 ,P( A B) 0.7 , 若 A, B 互不相容则 P( B) 3.设 A, B 为两个随机事件, 则 P ( AB ) P( A) 0.7 , P( A B) 0.3 ,
4. 设 A, B, C 表示三个事件, P ( A) P ( B )
1 1 , P (C ) , 且 4 3

P( AB ) P ( BC ) 0, P ( AC )
1 , 则 A, B 中至少有一个不发生的概率是 12
.
A, B, C 中至少有一个发生的概率是
5. A, B, C 为 3 个事件,试用 A, B, C 的运算关系式表示下列事件. (1) A, B, C 不都发生: ;
第一章 随Байду номын сангаас事件与概率
(一) 事件与概率
一. 选择题 1.设 A, B, C 表示三个事件,则 A B C 表示( (A) A, B, C 中有一个发生 (C) A, B, C 中不多于一个发生 )
(B) A, B, C 中恰有两个发生 (D) A, B, C 都不发生 ) (D) )
2.设 A, B 为二随机事件,则 ( AB AB )( A A B ) ( (A) A ( B) B (C) AB
1
(2) A, B, C 都不发生: (3) A, B, C 中至少有两个发生: (4) A, B, C 中至多有两个发生: (5) A, B, C 中只有一个发生: (6) A, B, C 中至少有一个发生:
; ; ; ; .
三.计算题 1.设 A, B 为两随机事件,且 P( A) 0.6 , P( B) 0.7 ,求: (1)在什么条件下 P( AB ) 取到最大值?最大值是多少? (2)在什么条件下 P( AB ) 取到最小值?最小值是多少? (3)若 P( A B) 0.2 ,求 P( AB ) , P( A B) , P( B A) , P ( A B ) .
2
相关文档
最新文档