大学物理电磁学总复习(下)
大学物理电磁学
大学物理电磁学是物理学的一个重要分支,主要研究电磁现象的规律和本质。
电磁学在科学技术、工业生产和日常生活中都有着广泛的应用。
本文将从电磁学的基本概念、基本定律和电磁波的传播等方面对大学物理电磁学进行介绍。
一、基本概念1.电荷:电荷是物质的一种属性,分为正电荷和负电荷。
电荷间的相互作用规律是:同种电荷相互排斥,异种电荷相互吸引。
2.电场:电场是电荷及变化磁场周围空间里存在的一种特殊物质,它对放入其中的电荷有作用力。
电场的强度用电场强度E表示,单位是牛/库仑。
3.磁场:磁场是磁体周围空间里存在的一种特殊物质,它对放入其中的磁体有作用力。
磁场的强度用磁感应强度B表示,单位是特斯拉。
4.电磁波:电磁波是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量。
电磁波在真空传播速度与光速一样,速度为30万千米/秒。
二、基本定律1.库仑定律:库仑定律是描述电荷之间相互作用的定律,其内容为:真空中两点电荷间的作用力与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力在它们的连线上。
2.安培定律:安培定律是描述电流和电流激发磁场的定律,其内容为:电流I1通过一条无限长直导线时,在距离导线r处产生的磁场强度H1与I1成正比,与r成反比,即H1与I1r成反比。
磁场方向垂直于电流方向和通过点的平面。
3.法拉第电磁感应定律:法拉第电磁感应定律是描述磁场变化引起电场变化的定律,其内容为:穿过电路的磁通量发生变化时,产生感应电动势。
感应电动势的大小与磁通量变化率成正比,与电路的匝数成正比。
4.麦克斯韦方程组:麦克斯韦方程组是描述电磁场分布和电磁波传播的四个偏微分方程,包括库仑定律、法拉第电磁感应定律、安培定律和位移电流定律。
三、电磁波的传播1.电磁波的发射:电磁波的产生通常是通过振荡电路实现的。
当振荡电路中的电场和磁场相互垂直且同相振荡时,电磁波便会产生并向外传播。
大学物理电磁学综合复习试题2
2.用力F 把电容器中的电介质拉出,在图(a )和图(b )两种情况下,电容
器中储存的静电能量将:
A .均减少;
B .均增加;
C .(a )中减少,(b )中增加;
D .(a )中增加,(b )中减少。
3.在静电场中,高斯定理告诉我们:
A .高斯面内不包围电荷,则面上各点E 的大小处处为零;
B .高斯面上各点的E 只与面内电荷有关,与面外电荷无关;
C .穿过高斯面的E 通量,仅与面内电荷有关,但与面内电荷如何分布
无关;
D .穿过高斯面的
E 通量为零,则面上各点的E 必为零。
4.下列说法中,正确的是:
A .初速度为零的点电荷置于静电场中,将一定沿一条电场线运动;
(a)
(b)
F
充电后仍与 电源连接
充电后与 电源断开
第2题图。
大学物理期末复习习题-电磁学.docx
电磁学:(20学时,44题)弟一早1.两个点电荷分別带电q和2g,相距/,试问将第三个点电荷方在何处它所受的合力为零?2.两个带电都是q的点电荷,相距/,连线中点为O;现将另一点电荷Q放置在连线中垂面上距O点x处。
(1)试求点电荷Q所受的力;(2)若点电荷Q开始是静止的,然后让它自由运动,试问它将如何运动?分别就0和g同号以及异号两种情况加以讨论。
3.如图,把电偶极矩为p二/的电偶极子放在点电荷Q的电场中,电偶极子的中心O 到Q的距离为r,设「》1。
试求:p//QO(图(a))和卩丄QO (图(b))时电偶极子所受的力和力矩。
% ----- 丄。
2_ ----- ,H --- -- 1 H ----- r-- H<•>(b)第3题4.如图为一种电四极子,它由两个相同的电偶极子卩二"组成,这两个电偶极子在同一直线上,但方向相反,他们的负电荷重合在一起。
试证明在它们的延长线上离中心(即负电荷所在处)厂出卩点的场强为E = ^—(当厂>>/时),式中的Q = 2ql24码厂叫做电四极矩。
卄一为p•••具T -----------第4题5.半径为/?的半球面上均匀带电,电荷面密度为(7。
试求面心处的电场强度。
6.一无限大均匀带电平面,电荷的面密度为(T,其上挖去一半径为R的圆洞。
试求洞的轴线上离洞心为厂处的电场强度。
7.如图,电荷分布在内半径为d外半径为b的球壳体内,电荷体密度为p = A/r f式中4是常数,厂是壳体内某一点到球心的距离。
今在球心放一个点电荷Q,为使球壳体内各处电场强度的大小都相等试求4的值。
第7题8.如图为一无限长带电体系,其横截面由两个半径分别为&和R2的圆相交而成,两圆中心相距为a, a<(R1+R2),半径为&的区域内充满电荷体密度为p的均匀正电荷,半径为R2的区域内充满电荷体密度为-P的均匀负电荷,试求重叠区域内的电场强度。
大学物理复习题
大学物理复习题(电磁学部分)一、选择题1.三个一样大小的绝缘金属小球A 、B 、C ,A 、B 两小球带有等量同号电荷,它们之间的距离远大于小球本身的直径,相互作用力为F ,若将不带电的小球C 引入,先和A 小球接触,然后和B 小球接触后移去,这时A 小球与B 小球间的相互作用力将变为: A .F/2 B. F/4 C. F/8 D. 3F/8 2、电场中高斯面上各点的电场强度是由:A 、分布在高斯面内的电荷决定的;B 、分布在高斯面外的电荷决定的;C 、空间所有的电荷决定的;D 、高斯面内电荷代数和决定的。
3、以下说法正确的是:A 、场强为零的地方,电势一定为零;电势为零的地方,均强也一定为零。
B 、场强大小相等的地方,电势也相等,等势面上各点场强大小相等。
C 、带正电的物体,电势一定是正的,不带电的物体,电势一定等于零。
D 、沿着均场强的方向,电势一定降低。
4.关于导体有以下几种说法: A .接地的导体都不带电。
B .接地的导体可带正电,也可带负电。
C .一导体的电势零,则该导体不带电。
D .任何导体,只要它所带的电量不变,则其电势也是不变的。
5.在半径为R 的均匀带电球面上,任取面积元S ∆,则此面积元上的电荷所受的电场力应是: A 0 ; B2S σε⋅∆(σ是电荷面密度); C22Sσε⋅∆ ; D 以上说法都不对。
6.平行板电容器在接入电源后,把两板间距拉大,则电容器的:A 电容增大;B 电场强度增大;C 所带电量增大;D 电容、电量及两板内场强都减小。
7.一个电阻,一个电感线圈和一个电容器与交流电源组成串联电路,通过电容器的电流应与下列哪一个的电压同位相A 电阻;B 电感线圈;C 电容器;D 全电路。
8.以下关于磁场的能量密度正确的是: A 、22B Bw μ=B 、012B w E B ε=⨯C 、012B w B μ=D 、22B w B μ=9.如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中点O 转动,并能靠近或离开ab .当电流方向如图所示时,导线cd 将A .顺时针转动同时离开ab ;B .顺时针转动同时靠近ab ;C .逆时针转动同时离开ab ;D .逆时针转动同时靠近ab 。
大学物理电磁学知识点总结
大学物理电磁学知识点总结篇一:大学物理电磁学知识点总结大学物理电磁学总结一、三大定律库仑定律:在真空中,两个静止的点电荷q1和q2之间的静电相互作用力与这两个点电荷所带电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着两个点电荷的连线,同号电荷相斥,异号电荷相吸。
uuurqqurF21=k122errurur高斯定理:a)静电场:Φe=EdS=∫s∑qiiε0(真空中)b)稳恒磁场:Φm=uurrBdS=0∫s环路定理:a)静电场的环路定理:b)安培环路定理:二、对比总结电与磁∫LurrLEdl=0∫urrBdl=0∑Ii(真空中)L电磁学静电场稳恒磁场稳恒磁场电场强度:E磁感应强度:B定义:B=ururF定义:E=(N/C)q0基本计算方法:1、点电荷电场强度:E=urrurdF(dF=Idl×B)(T)Idlsinθ方向:沿该点处静止小磁针的N极指向。
基本计算方法:urqurer4πε0r21ruruIdl×er0r1、毕奥-萨伐尔定律:dB=24πr2、连续分布的电流元的磁场强度:2、电场强度叠加原理:urnur1E=∑Ei=4πε0i=1rqiuueri∑r2i=1inrururur0Idl×erB=∫dB=∫4πr23、安培环路定理(后面介绍)4、通过磁通量解得(后面介绍) 3、连续分布电荷的电场强度:urρdVurE=∫ev4πεr2r0urdSururλdlurE=∫er,E=∫es4πεr2l4πεr2r004、高斯定理(后面介绍)5、通过电势解得(后面介绍)几种常见的带电体的电场强度公式:几种常见的磁感应强度公式:1、无限长直载流导线外:B=2、圆电流圆心处:电流轴线上:B=ur1、点电荷:E=qurer4πε0r210I2R0I2πr2、均匀带电圆环轴线上一点:urE=B=3、圆rqxi22324πε0(R+x)R2IN2(x2+R2)3210α23、均匀带电无限大平面:E=2ε0(N为线圈匝数)4、无限大均匀载流平面:B=4、均匀带电球壳:E=0(r<R)(α是流过单位宽度的电流)urE=qurer(r>R)4πε0r25、无限长密绕直螺线管内部:B=0nI(n是单位长度上的线圈匝数)6、一段载流圆弧线在圆心处:B=(是弧度角,以弧度为单位)7、圆盘圆心处:B=rurqr(rR)20I4πR0ωR2(是圆盘电荷面密度,ω圆盘转动的角速度)6、无限长直导线:E=λ2πε0xλ0(r>R)2πε0r7、无限长直圆柱体:E=E=λr(r<R)4πε0R2电场强度通量:N·m2·c-1)(磁通量:wb)(sΦe=∫dΦe=∫EcosθdS=∫ssururEdS通量uurrΦm=∫dΦm=∫BdS=∫BcosθdSsss若为闭合曲面:Φe=∫sururEdS若为闭合曲面:uurrΦm=BdS=BcosθdS∫∫ss均匀电场通过闭合曲面的通量为零。
大学物理电磁复习题
大学物理电磁复习题一、选择题1. 根据库仑定律,两个点电荷之间的力的大小与它们的电荷量的乘积成正比,与它们之间的距离的平方成反比。
如果两个点电荷的电荷量分别为 \( q_1 \) 和 \( q_2 \),它们之间的距离为 \( r \),则它们之间的力 \( F \) 为:A. \( F = k \frac{q_1 q_2}{r^2} \)B. \( F = k \frac{q_1^2}{r^2} \)C. \( F = k \frac{q_2^2}{r^2} \)D. \( F = k \frac{q_1 + q_2}{r^2} \)2. 电场强度的定义式是:A. \( E = \frac{F}{q} \)B. \( E = \frac{q}{F} \)C. \( E = \frac{F}{r^2} \)D. \( E = \frac{q}{r} \)3. 电容器的电容定义式是:A. \( C = \frac{Q}{V} \)B. \( C = \frac{V}{Q} \)C. \( C = \frac{Q}{I} \)D. \( C = \frac{I}{V} \)二、填空题4. 电流强度的单位是________。
5. 欧姆定律的数学表达式为 \( V = IR \),其中 \( V \) 表示电压,\( I \) 表示电流,\( R \) 表示________。
6. 根据法拉第电磁感应定律,当线圈中的磁通量发生变化时,线圈中会产生感应电动势,其大小与磁通量的变化率成正比,表达式为\( \varepsilon = \frac{d\Phi_B}{dt} \),其中 \( \varepsilon \) 表示________,\( \Phi_B \) 表示________。
三、简答题7. 简述安培环路定理的主要内容。
8. 什么是楞次定律?它在电磁学中有什么应用?四、计算题9. 一个平行板电容器,其电容为 \( 100 \mu F \),两板间距为\( 1 \) 厘米,求两板间的电场强度。
大学物理电磁学题库及答案
一、选择题:(每题3分) 1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为(A) 2πr 2B . (B) πr 2B .(C) 0. (D) 无法确定的量. [ B ]2、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为(A) πr 2B . (B) 2 πr 2B .(C) -πr 2B sin α. (D) -πr 2B cos α. [ D ]3、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为(A) 0.90. (B) 1.00.(C) 1.11. (D) 1.22. [ C ]4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A) 方向垂直环形分路所在平面且指向纸内.(B) 方向垂直环形分路所在平面且指向纸外. (C) 方向在环形分路所在平面,且指向b .(D) 方向在环形分路所在平面内,且指向a .(E) 为零.[E ]5、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P .[ D ]6、边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为(A) 01=B ,02=B . (B) 01=B ,l I B π=0222μ. (C) lI B π=0122μ,02=B . (D) l I B π=0122μ,lI B π=0222μ. [ ]7、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为a(A) R 140πμ. (B) R120πμ. (C) 0. (D) R 140μ. [ ] 8、一个电流元l I d 位于直角坐标系原点 ,电流沿z 轴方向 ,点P (x ,y ,z )的磁感强度沿x 轴的分量是:(A) 0.(B) 2/32220)/(d )4/(z y x l Iy ++π-μ.(C) 2/32220)/(d )4/(z y x l Ix ++π-μ.(D) )/(d )4/(2220z y x l Iy ++π-μ. [ ]9、电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为虽然B 3= 0,但021≠+B B . (D) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. [ ]10、电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 与圆心O 三点在同一直线上.设直电流1、2及圆环电流分别在O 点产生的磁感强度为1B 、2B 及3B ,则O 点的磁感强度的大小(B) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为021=+B B ,B 3 = 0.(C) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0.(D) B ≠ 0,因为虽然B 1 = B 2 = 0,但B 3≠ 0.(E) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0. [ ]11、电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小(C) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0.(C) B ≠ 0,因为虽然B 3 = 0、B 1= 0,但B 2≠ 0. (D) B ≠ 0,因为虽然021≠+B B ,但3B ≠ 0. [ ]12、电流由长直导线1沿平行bc 边方向经过a 点流入由电阻均匀的导线构成的正三角形线框,由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).已知直导线上的电流为I ,三角框的每一边长为l .若载流导线1、2和三角框中的电流在三角框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为021=+B B ,B 3= 0. (C) B ≠0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠0,因为虽然B 3= 0,但021≠+B B . [ ]13、电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿半径方向流出,经长直导线2返回电源(如图).已知直导线上电流为I ,圆环的半径为R ,且a 、b 与圆心O 三点在一直线上.若载流直导线1、2和圆环中的电流在O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点磁感强度的大小为(D) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠ 0,因为虽然B 3 = 0,但021≠+B B . [ ]14、电流由长直导线1沿切向经a 点流入一个电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上.设长直载流导线1、2和圆环中的电流分别在O 点产生的磁感强度为1B 、2B 、3B ,则圆心处磁感强度的大小(E) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0.(C) B ≠ 0,因为B 1≠ 0、B 2≠ 0,B 3≠ 0. (D) B ≠ 0,因为虽然B 3 = 0,但021≠+B B . [ ]15、电流由长直导线1沿半径方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿半径方向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,∠aOb =30°.若长直导线1、2和圆环中的电流在圆心O 点产生的磁感强度分别用1B 、2B 、3B 表示,则圆心O 点的磁感强度大小 (F) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为虽然B 3= 0,但021≠+B B . (D) B ≠ 0,因为B 3≠ 0,021≠+B B ,所以0321≠++B B B . [ ]16、如图所示,电流由长直导线1沿ab 边方向经a 点流入由电阻均匀的导线构成的正方形框,由c 点沿dc 方向流出,经长直导线2返回电源.设载流导线1、2和正方形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 、3B 表示,则O 点的磁感强度大小(A) B = 0,因为B1 = B2 = B3 = 0.(B) B = 0,因为虽然B 1≠ 0、B2≠ 0,但021=+B B .B 3 = 0 (C) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠ 0,因为虽然B 3= 0,但021≠+B B . [ ]17、 如图所示,电流I 由长直导线1经a 点流入由电阻均匀的导线构成的正方形线框,由b 点流出,经长直导线2返回电源(导线1、2的延长线均通过O 点).设载流导线1、2和正方形线框中的电流在框中心O 点产生的磁感强度分别用 1B 、2B 、3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0、B 3≠ 0,但0321=++B B B . (C) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠ 0,因为虽然B 3= 0,但021≠+B B . [ ]18、在一平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流i 的大小相等,其方向如图所示.问哪些区域中有某些点的磁感强度B 可能为零?(A) 仅在象限Ⅰ. (B) 仅在象限Ⅱ. (C) 仅在象限Ⅰ,Ⅲ. (D) 仅在象限Ⅰ,Ⅳ.(E) 仅在象限Ⅱ,Ⅳ. [ ]19、如图,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为(A) B 1 = B 2. (B) B 1 = 2B 2.(C) B 1 = 21B 2. (D) B 1 = B 2 /4. [ ]20、边长为L 的一个导体方框上通有电流I ,则此框中心的磁感强度(A) 与L 无关. (B) 正比于L 2.(C) 与L 成正比. (D) 与L 成反比. (E) 与I 2有关. [ ]21、如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中哪一个是正确的? (A) I l H L 2d 1=⎰⋅ . (B) I l H L =⎰⋅2d 1 2C q 4(C) I l H L -=⎰⋅3d . (D)I l H L -=⎰⋅4d .[ ]22、如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知 (A) 0d =⎰⋅L l B ,且环路上任意一点B = 0. (B) 0d =⎰⋅L l B ,且环路上任意一点B ≠0.(C) 0d ≠⎰⋅Ll B ,且环路上任意一点B ≠0.(D) 0d ≠⎰⋅L l B ,且环路上任意一点B =常量. [ ]23、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B 沿图中闭合路径L 的积分⎰⋅L l Bd(A) I 0μ. (B) I 031μ. (C) 4/0I μ. (D) 3/20I μ. [ ]24、若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对称性,则该磁场分布(A) 不能用安培环路定理来计算.(B) 可以直接用安培环路定理求出.(C) 只能用毕奥-萨伐尔定律求出.(D) 可以用安培环路定理和磁感强度的叠加原理求出. [ ]25、取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则 (A) 回路L 内的∑I 不变,L 上各点的B 不变. (B) 回路L 内的∑I 不变,L 上各点的B 改变. (C) 回路L 内的∑I 改变,L 上各点的B 不变. (D) 回路L 内的∑I 改变,L 上各点的B 改变. [ ]26、距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为(A) 3×10-5 T . (B) 6×10-3 T .(C) 1.9×10-2T . (D) 0.6 T .(已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ]27、在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:L 1 2 I 3 (a) (b)⊙(A) =⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B = (B) ≠⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B =. (C) =⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B ≠. (D) ≠⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B ≠. [ ] 28、如图,一个电荷为+q 、质量为m 的质点,以速度v 沿x 轴射入磁感强度为B 的均匀磁场中,磁场方向垂直纸面向里,其范围从x = 0延伸到无限远,如果质点在x = 0和y = 0处进入磁场,则它将以速度v -从磁场中某一点出来,这点坐标是x = 0 和(A) qB m y v +=. (B) qBm y v 2+=. (C)qB m y v 2-=. (D) qBm y v -=. [ ]29、一运动电荷q ,质量为m ,进入均匀磁场中,(A) 其动能改变,动量不变. (B) 其动能和动量都改变.(C) 其动能不变,动量改变. (D) 其动能、动量都不变. [ ]30、A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设R A ,R B 分别为A 电子与B 电子的轨道半径;T A ,T B 分别为它们各自的周期.则(A) R A ∶R B =2,T A ∶T B =2. (B) R A ∶R B 21=,T A ∶T B =1. (C) R A ∶R B =1,T A ∶T B 21=. (D) R A ∶R B =2,T A ∶T B =1. [ ]31、一铜条置于均匀磁场中,铜条中电子流的方向如图所示.试问下述哪一种情况将会发生?(A) 在铜条上a 、b 两点产生一小电势差,且U a > U b . (B) 在铜条上a 、b 两点产生一小电势差,且U a < U b . (C) 在铜条上产生涡流. (D) 电子受到洛伦兹力而减速. ]32、一电荷为q 的粒子在均匀磁场中运动,下列哪种说法是正确的?(A) 只要速度大小相同,粒子所受的洛伦兹力就相同.(B) 在速度不变的前提下,若电荷q 变为-q ,则粒子受力反向,数值不变.(C) 粒子进入磁场后,其动能和动量都不变.(D) 洛伦兹力与速度方向垂直,所以带电粒子运动的轨迹必定是圆.[ ]×× ×33、一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将(A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v .(D) 反比于B ,反比于v .[ ]34、图为四个带电粒子在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是(A) Oa . (B) Ob .(C) Oc . (D) Od . [ ]35、如图所示,在磁感强度为B 的均匀磁场中,有一圆形载流导线,a 、b 、c 是其上三个长度相等的电流元,则它们所受安培力大小的关系为(A) F a > F b > F c . (B) F a < F b < F c .(C) F b > F c > F a . (D) F a > F c > F b . [ ]36、如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中点O 转动,并能靠近或离开ab .当电流方向如图所示时,导线cd 将 (A) 顺时针转动同时离开ab . (B) 顺时针转动同时靠近ab .(C) 逆时针转动同时离开ab .(D) 逆时针转动同时靠近ab . [ ]37、两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 (A) R r I I 22210πμ. (B) Rr I I 22210μ. (C) rR I I 22210πμ. (D) 0. [ ]38、两根平行的金属线载有沿同一方向流动的电流.这两根导线将:(A) 互相吸引. (B) 互相排斥.(C) 先排斥后吸引. (D) 先吸引后排斥. [ ]39、有一N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场B 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩M m 值为(A) 2/32IB Na . (B) 4/32IB Na .(C) ︒60sin 32IB Na . (D) 0. [ ]OO r R I 1 I 240、有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y轴上,且线圈可绕y 轴自由转动,则线圈将(A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动.(D) 如何转动尚不能判定. [ ]41、若一平面载流线圈在磁场中既不受力,也不受力矩作用,这说明:(A) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行.(B) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行.(C) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直.(D) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直.[ ] 42、图示一测定水平方向匀强磁场的磁感强度B (方向见图)的实验装置.位于竖直面内且横边水平的矩形线框是一个多匝的线圈.线框挂在天平的右盘下,框的下端横边位于待测磁场中.线框没有通电时,将天平调节平衡;通电后,由于磁场对线框的作用力而破坏了天平的平衡,须在天平左盘中加砝码m 才能使天平重新平衡.若待测磁场的磁感强度增为原来的3倍,而通过线圈的电流减为原来的21,磁场和电流方向保持不变,则要使天平重新平衡,其左盘中加的砝码质量应为(A) 6m . (B) 3m /2.(C) 2m /3. (D) m /6.(E) 9m /2. [ ]43、如图,无限长直载流导线与正三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将(A) 向着长直导线平移.(B) 离开长直导线平移.(C) 转动. (D) 不动. [ ]44、四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为 (A) I a B π=02μ. (B) I aB 2π=02μ. (C) B = 0. (D) I aB π=0μ. [ ]45、一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等.设R = 2r ,则两螺线管中的磁感强度大小B R 和B r 应满足:BI 1 I I a(A) B R = 2 B r . (B) B R = B r .(C) 2B R = B r . (D) B R = 4 B r . [ ]46、四条平行的无限长直导线,垂直通过边长为a =20 cm 的正方形顶点,每条导线中的电流都是I =20 A ,这四条导线在正方形中心O 点产生的磁感强度为(μ0 =4π×10-7 N ·A -2)(A) B =0. (B) B = 0.4×10-4 T .(C) B = 0.8×10-4 T. (D) B =1.6×10-4 T . [ ]47、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的(A) 4倍和1/8. (B) 4倍和1/2.(C) 2倍和1/4. (D) 2倍和1/2. [ ] 48、关于稳恒电流磁场的磁场强度H ,下列几种说法中哪个是正确的? (A) H 仅与传导电流有关. (B) 若闭合曲线内没有包围传导电流,则曲线上各点的H 必为零. (C) 若闭合曲线上各点H 均为零,则该曲线所包围传导电流的代数和为零. (D) 以闭合曲线L为边缘的任意曲面的H 通量均相等. [ ]49、图示载流铁芯螺线管,其中哪个图画得正确?(即电源的正负极,铁芯的磁性,磁力线方向相互不矛盾.)[ ]50、附图中,M 、P 、O 为由软磁材料制成的棒,三者在同一平面内,当K 闭合后,(A) M 的左端出现N 极. (B) P 的左端出现N 极.(C) O 的右端出现N 极. (D) P 的右端出现N 极.[ ]51、如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为2.0 A 时,测得铁环内的磁感应强度的大小B 为1.0 T ,则可求得铁环的相对磁导率μr 为(真空磁导率μ 0 =4π×10-7 T ·m ·A -1)(A) 7.96×102 (B) 3.98×102 (C) 1.99×102 (D) 63.3 [ ]52、磁介质有三种,用相对磁导率μr 表征它们各自的特性时,(A) 顺磁质μr >0,抗磁质μr <0,铁磁质μr >>1.(B) 顺磁质μr >1,抗磁质μr =1,铁磁质μr >>1.a M O P(C) 顺磁质μr >1,抗磁质μr <1,铁磁质μr >>1.(D) 顺磁质μr <0,抗磁质μr <1,铁磁质μr >0. [ ]53、顺磁物质的磁导率:(A) 比真空的磁导率略小. (B) 比真空的磁导率略大.(C) 远小于真空的磁导率. (D) 远大于真空的磁导率. [ ]54、用细导线均匀密绕成长为l 、半径为a (l >> a )、总匝数为N 的螺线管,管内充满相对磁导率为μr 的均匀磁介质.若线圈中载有稳恒电流I ,则管中任意一点的(A) 磁感强度大小为B = μ0 μ r NI .(B) 磁感强度大小为B = μ r NI / l .(C) 磁场强度大小为H = μ 0NI / l .(D) 磁场强度大小为H = NI / l . [ ]55、一闭合正方形线圈放在均匀磁场中,绕通过其中心且与一边平行的转轴OO ′转动,转轴与磁场方向垂直,转动角速度为ω,如图所示.用下述哪一种办法可以使线圈中感应电流的幅值增加到原来的两倍(导线的电阻不能忽略)?(A) 把线圈的匝数增加到原来的两倍. (B) 把线圈的面积增加到原来的两倍,而形状不变.(C) 把线圈切割磁力线的两条边增长到原来的两倍.(D) 把线圈的角速度ω增大到原来的两倍.[ ]56、一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是(A) 线圈绕自身直径轴转动,轴与磁场方向平行.(B) 线圈绕自身直径轴转动,轴与磁场方向垂直.(C) 线圈平面垂直于磁场并沿垂直磁场方向平移.(D) 线圈平面平行于磁场并沿垂直磁场方向平移.[ ]57、如图所示,一矩形金属线框,以速度v 从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正)[ ]B I O (D)I O (C)O (B)58、两根无限长平行直导线载有大小相等方向相反的电流I ,并各以d I /d t 的变化率增长,一矩形线圈位于导线平面内(如图),则:(A) 线圈中无感应电流.(B) 线圈中感应电流为顺时针方向.(C) 线圈中感应电流为逆时针方向.(D) 线圈中感应电流方向不确定.[ ]59、将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势.(B) 铜环中感应电动势大,木环中感应电动势小.(C) 铜环中感应电动势小,木环中感应电动势大.(D) 两环中感应电动势相等. [ ]60、在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流(A) 以情况Ⅰ中为最大. (B) 以情况Ⅱ中为最大.(C) 以情况Ⅲ中为最大. (D) 在情况Ⅰ和Ⅱ中相同. [ ]61、一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B 中,另一半位于磁场之外,如图所示.磁场B 的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感应电流,应使 (A) 线环向右平移. (B) 线环向上平移. (C) 线环向左平移. (D) 磁场强度减弱. [ ]62、如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪一种情况可以做到? (A) 载流螺线管向线圈靠近.(B) 载流螺线管离开线圈. (C) 载流螺线管中电流增大.(D) 载流螺线管中插入铁芯. [ ]63、如图所示,闭合电路由带铁芯的螺线管,电源,滑线变阻器组成.问在下列哪一种情况下可使线圈中产生的感应电动势与原电流I的方向相反. (A) 滑线变阻器的触点A 向左滑动. (B) 滑线变阻器的触点A 向右滑动. (C) 螺线管上接点B 向左移动(忽略长螺线管的电阻). (D) 把铁芯从螺线管中抽出. [ ]Ib d b d bcd v v I64、 一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO ′轴,以匀角速度ω旋转(如图所示).设t =0时,线框平面处于纸面内,则任一时刻感应电动势的大小为(A) 2abB | cos ω t |. (B) ω abB(C)t abB ωωcos 21.(D) ω abB | cosω t |. (E) ω abB | sin ω t |. [ ]65、一无限长直导体薄板宽为l ,板面与z 轴垂直,板的长度方向沿y 轴,板的两侧与一个伏特计相接,如图.整个系统放在磁感强度为B 的均匀磁场中,B 的方向沿z 轴正方向.如果伏特计与导体平板均以速度v 向y 轴正方向移动,则伏特计指示的电压值为(A) 0.(B) 21v Bl .(C) v Bl . (D) 2v Bl . [ ]66、一根长度为L 的铜棒,在均匀磁场 B 中以匀角速度ω绕通过其一端O 的定轴旋转着,B 的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成θ 角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势是:(A) )cos(2θωω+t B L . (B) t B L ωωcos 212. (C) )cos(22θωω+t B L . (D) B L 2ω.(E)B L 221ω. [ ] 67、如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ]68、如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω 与B 同方向),BC 的长度为棒长的31,则 (A) A 点比B 点电势高. (B) A 点与B 点电势相等.(B) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点.[ ]69、如图所示,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O 作逆时针方向匀角速转动,O 点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时.图(A)—(D)的 --t 函数图象中哪一条属于半圆形导线回路中产生的感应电动势? [ ]B ☜ t O (A) ☜ tO (C) ☜ t O (B) ☜ tO (D)70、如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab 向右平移时,cd(A) 不动.(B) 转动. (C) 向左移动. (D) 向右移动.[ ]71、有两个线圈,线圈1对线圈2的互感系数为M 21,而线圈2对线圈1的互感系数为M 12.若它们分别流过i 1和i 2的变化电流且ti t i d d d d 21>,并设由i 2变化在线圈1中产生的互感电动势为 12,由i 1变化在线圈2中产生的互感电动势为 21,判断下述哪个论断正确.(A) M 12 = M 21, 21 = 12.(B) M 12≠M 21, 21 ≠ 12.(C) M 12 = M 21, 21 > 12.(D) M 12 = M 21, 21 < 12. [ ]72、已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数(A) 都等于L 21. (B) 有一个大于L 21,另一个小于L 21. (C) 都大于L 21. (D) 都小于L 21. [ ]73、面积为S 和2 S 的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用Φ21表示,线圈2的电流所产生的通过线圈1的磁通用Φ12表示,则Φ21和Φ12的大小关系为: (A) Φ21 =2Φ12. (B) Φ21 >Φ12.(C) Φ21 =Φ12. (D) Φ21 =21Φ12. [ ]74、如图所示的电路中,A 、B 是两个完全相同的小灯泡,其内阻r >>R ,L 是一个自感系数相当大的线圈,其电阻与R 相等.当开关K 接通和断开时,关于灯泡A 和B 的情况下面哪一种说法正确?(A) K 接通时,I A >I B . (B) K 接通时,I A =I B . (C) K 断开时,两灯同时熄灭.(D) K 断开时,I A =I B . [ ]75、用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m =(A) 只适用于无限长密绕螺线管. (B) 只适用于单匝圆线圈.(C) 只适用于一个匝数很多,且密绕的螺绕环.(D) 适用于自感系数L一定的任意线圈. [ ] ca b d N M B76、两根很长的平行直导线,其间距离d 、与电源组成回路如图.已知导线上的电流为I ,两根导线的横截面的半径均为r 0.设用L 表示两导线回路单位长度的自感系数,则沿导线单位长度的空间内的总磁能W m 为 (A) 221LI .(B) 221LI ⎰∞+π-+0d π2])(2π2[2002r r r r d I r I I μμ (C) ∞.(D) 221LI 020ln 2r d I π+μ [ ]77、真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为(A) 200)2(21a I πμμ (B) 200)2(21aI πμμ (C) 20)2(21I a μπ (D) 200)2(21aI μμ [ ] 78、电位移矢量的时间变化率t D d /d 的单位是A )库仑/米2 (B )库仑/秒C )安培/米2 (D )安培•米279、对位移电流,有下述四种说法,请指出哪一种说法正确.(A) 位移电流是指变化电场.(B) 位移电流是由线性变化磁场产生的.(C) 位移电流的热效应服从焦耳─楞次定律.(D) 位移电流的磁效应不服从安培环路定理. [ ] 80、在感应电场中电磁感应定律可写成t l E LK d d d Φ-=⎰⋅ ,式中K E 为感应电场的电场强度.此式表明: (A) 闭合曲线L 上K E 处处相等.(B) 感应电场是保守力场.(C) 感应电场的电场强度线不是闭合曲线.(D) 在感应电场中不能像对静电场那样引入电势的概念. [ ]二、填空题(每题4分)81、一磁场的磁感强度为k c j b i a B ++= (SI),则通过一半径为R ,开口向z轴正方向的半球壳表面的磁通量的大小为____________Wb .82、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量Φ=__________.若通过S 面上某面元S d 的元磁通为d Φ,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d Φ',则d Φ∶d Φ'=_________________.83、在非均匀磁场中,有一电荷为q 的运动电荷.当电荷运动至某点时,其速率为v ,运动方向与磁场方向间的夹角为α ,此时测出它所受的磁力为f m .则该运动电荷所在处的磁感强度的大小为________________.磁力f m 的方向一定垂直________________________________________________________________.84、沿着弯成直角的无限长直导线,流有电流I =10 A .在直角所决定的平面内,距两段导线的距离都是a =20 cm 处的磁感强度B =____________________.(μ0 =4π×10-7 N/A 2)85、在真空中,将一根无限长载流导线在一平面内弯成如图所示的形状,并通以电流I ,则圆心O 点的磁感强度B 的值为_________________.86、电流由长直导线1沿切向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿切线流出,经长直导线2返回电源(如图).已知直导线上的电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上,则O 点的磁感强度的大小为______________.87、在真空中,电流由长直导线1沿半径方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上的电流强度为I ,圆环半径为R .a 、b 和圆心O 在同一直线上,则O 处的磁感强度B 的大小为__________________________.88、如图,球心位于O 点的球面,在直角坐标系xOy 和xOz 平面上的两个圆形交线上分别流有相同的电流,其流向各与y 轴和z 轴的正方向成右手螺旋关系.则由此形成的磁场在O 点的方向为________________.89、如图,两根导线沿半径方向引到铁环的上A 、A ′两点,并在很远处与电源相连,则环中心的磁感强度为____________.90、一质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105 m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =__________________,该带电 质点轨道运动的磁矩p m =___________________.(μ0 =4π×10-7 H ·m -1)。
大学物理电磁学复习题含答案
题8-12图8-12 两个无限大的平行平面都均匀带电.电荷的面密度分别为1σ和2σ.解: 如题8-12图示.两带电平面均匀带电.电荷面密度分别为1σ与2σ.两面间. n E)(21210σσε-= 1σ面外. n E)(21210σσε+-= 2σ面外. n E)(21210σσε+=n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体.如题8-13图所示.试求:两球心O 与O '点的场强.并证明小球空腔内的电场是均匀的. 解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合.见题8-13图(a).(1) ρ+球在O 点产生电场010=E.ρ-球在O 点产生电场dπ4π3430320r E ερ= ∴ O 点电场d33030r E ερ= ; (2) ρ+在O '产生电场'dπ4d 3430301E ερπ=' ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r'.相对O 点位矢为r (如题8-13(b)图)则 03ερrEPO=. 03ερr E O P '-=' ,∴ 0003'3)(3ερερερd OO r r E E E OP PO P=='-=+='∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C .两电荷距离d=0.2cm.把这电偶极子放在1.0×105N ·C -1.解: ∵ 电偶极子p在外场E 中受力矩E p M⨯=∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C.2q =3.0×10-8C.相距1r =42cm.要把它们之间的距离变为2r =25cm.需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r - 61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示.在A .B 两点处放有电量分别为+q ,-q 的点电荷.AB 间距离为2R .现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点.解: 如题8-16图示0π41ε=O U 0)(=-R q Rq0π41ε=O U )3(R q R q -R q0π6ε-=∴ Rqq U U qA o C O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O解: (1)由于电荷均匀分布与对称性.AB 和CD 段电荷在O 点产生的场强互相抵消.取θd d R l =则θλd d R q =产生O 点Ed 如图.由于对称性.O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势.以0=∞U⎰⎰===AB200012ln π4π4d π4d RRx x xxU ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg.电子电量e =1.60×10-19C) 解: 设均匀带电直线电荷密度为λ.在电子轨道处场强 rE 0π2ελ=电子受力大小 re eE F e0π2ελ==∴ rv mr e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅8-19 空气可以承受的场强的最大值为E =30kV ·cm -1.超过这个数值时空气要发生火花放电.今有一高压平行板电容器.极板间距离为d =0.5cm.解: 平行板电容器内部近似为均匀电场 ∴ 4105.1d ⨯==E U V8-20 根据场强E与电势U 的关系U E -∇= .求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q .半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图)解: (1)点电荷 rqU 0π4ε=题 8-20 图∴ 0200π4r r q r r U E ε=∂∂-= 0r为r 方向单位矢量. (2)总电量q .半径为R 的均匀带电圆环轴上一点电势220π4x R qU +=ε∴ ()ix R qxi xU E 2/3220π4+=∂∂-=ε(3)偶极子l q p=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4r ql llr qU εθθθε=+--=∴ 30π2cos r p r U Erεθ=∂∂-= 30π4sin 1r p U r E εθθθ=∂∂-=8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说.(1)相向的两面上.电荷的面密度总是大小相等而符号相反;(2)相背的两面上. 证: 如题8-21图所示.设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ.2σ.3σ.4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时.有0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P .则其场强为零.并且它是由四个均匀带电平面产生的场强叠加而成的.即222204321=---εσεσεσεσ 又∵ +2σ3=σ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等.符号相同.8-22 三个平行金属板A .B 和C 的面积都是200cm 2.A 和B 相距4.0mm.A 与C 相距2.0 mm .B .C 都接地.如题8-22图所示.如果使A 板带正电3.0×10-7C.略去边缘效应.问B 板和C 板上的感应电荷各是多少?以地的电势为零.则A 板的电势是多少?解: 如题8-22图示.令A 板左侧面电荷面密度为1σ.右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =.即 ∴ AB AB AC AC E E d d = ∴ 2d d21===ACAB AB AC E E σσ 且 1σ+2σSq A =得 ,32Sq A =σ Sq A 321=σ而 7110232-⨯-=-=-=A Cq S qσCC10172-⨯-=-=S q B σ (2)301103.2d d ⨯===AC AC AC A E U εσV8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳.现给内球壳带电+q .(1)(2)先把外球壳接地.然后断开接地线重新绝缘.*(3)再使内球壳接地.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +.且均匀分布.其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R q rr q r E U εε (2)外壳接地时.外表面电荷q +入地.外表面不带电.内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-.外壳外表面带电量为+-q q ' (电荷守恒).此时内球壳电势为零.且π4'π4'π4'202010=+-+-=R q q R q R q U A εεε 得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R q R R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远.并用导线与地相联.在与球心相距为R d 3=处有一点电荷+q .试求:金属球上的感应电荷的电量.解: 如题8-24图所示.设金属球感应电荷为q '.则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+Rq R q εε 得 -='q 3q8-25 有三个大小相同的金属小球.小球1.2带有等量同号电荷.相距甚远.其间的库仑力为0F .试求: (1)用带绝缘柄的不带电小球3先后分别接触1.2后移去.小球1.2之间的库仑力; (2)小球3依次交替接触小球1.2很多次后移去.小球1.2 解: 由题意知 202π4r q F ε=(1)小球3接触小球1后.小球3和小球1均带电2q q =',小球3再与小球2接触后.小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后.每个小球带电量均为32q .∴ 小球1、2间的作用力00294π432322F r qq F==ε *8-26 如题8-26图所示.一平行板电容器两极板面积都是S.相距为d .分别维持电势A U =U .B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间.片的面积也是S.片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ.2σ.3σ.4σ,5σ,6σ如图所示.由静电平衡条件.电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+65432154326543002101σσσσσσσσσσεσσσσεσσd U S qSq d U U C S S q B A解得 Sq 261==σσSq dU2032-=-=εσσ Sq dU2054+=-=εσσ所以CB 间电场 S qd U E00422εεσ+==)2d(212d 02Sq U E U U CB C ε+===注意:因为C 片带电.所以2U U C ≠.若C 片不带电.显然2U U C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳.介质相对介电常数为r ε.金属球带电Q .试求: (1)电介质内、外的场强;(2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sdrd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强303π4,π4r rQ E r Qr D ε==外(2)介质外)(2R r >电势rQ E U 0rπ4r d ε=⋅=⎰∞外介质内)(21R r R <<电势2020π4)11(π4R Q R r q rεεε+-=)11(π420R r Q r r-+=εεε (3)金属球的电势r d r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=222020π44πdr R R Rr r Qdr rQ εεε)11(π4210R R Q r r-+=εεε 8-28 如题8-28图所示.在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示.充满电介质部分场强为2E .真空部分场强为1E.自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D .22σ=D而 101E D ε=,202E D r εε=d21U E E == ∴r D D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面.长度均为l .半径分别为1R 和2R (2R >1R ).且l >>2R -1R .两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时.求:(1)在半径r 处(1R <r <2R =.厚度为dr.长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S 则 rlDS D S π2d )(=⋅⎰当)(21R r R <<时.Q q =∑ ∴ rlQ D π2= (1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w Wεευπ4d d π2π8d d 22222===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε(3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε==*8-30 金属球壳A 和B 的中心相距为r .A 和B 原来都不带电.现在A 的中心放一点电荷1q .在B 的中心放一点电荷2q .如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力.2q 有无加速度;(2)去掉金属壳B .求1q 作用在2q 上的库仑力.此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律.即2210π41r q q F ε=但2q 处于金属球壳中心.它受合力..为零.没有加速度. (2)去掉金属壳B .1q 作用在2q 上的库仑力仍是2210π41r q q F ε=.但此时2q 受合力不为零.有加速度.题8-30图 题8-31图8-31 如题8-31图所示.1C =0.25μF.2C =0.15μF.3C =0.20μF .1C 上电压为50V .求:AB U . 解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U86)35251(5021=+=+=U U U AB V8-32 1C 和2C 两电容器分别标明“200 pF 、500 V”和“300 pF、900 V”.把它们串联起来后等值电容是多少?如果两端加上1000 V .是否会击穿?解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U .而100021=+U U∴ 6001=U V ,4002=U V 即电容1C 电压超过耐压值会击穿.然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源.再将每一电容器的正极板与另一电容器的负极板相联.试求:(1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示.设联接后两电容器带电分别为1q ,2q题8-33图 则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112121201021U U U C U C q q U C U C q q q q解得 (1) =1q U C C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C +=8-34 半径为1R =2.0cm 的导体球.外套有一同心的导体球壳.壳的内、外半径分别为2R =4.0cm 和3R =5.0cm.当内球带电荷Q =3.0×10-8C .求:(1)整个电场储存的能量;(2)如果将导体壳接地.计算储存的能量;(3)此电容器的电容值.解: 如图.内球带电Q .外球壳内表面带电Q -.外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r r Q E ε = 3R r >时 302π4r r Q E ε = ∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r r Q W εε⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r r Q W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε 41082.1-⨯=J(2)导体壳接地时.只有21R r R <<时30π4r r Q E ε =,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J (3)电容器电容 )11/(π422102R R Q W C-==ε 121049.4-⨯=F。
大学物理电磁学总结
大学物理电磁学总结电磁学部分总结静电场部分第一部分:静电场的基本性质和规律电场是物质的一种存在形态,它同实物一样也具有能量、动量、质量等属性。
静电场的物质特性的外在表现是:(1)电场对位于其中的任何带电体都有电场力的作用(2)带电体在电场中运动, 电场力要作功——电场具有能量1、描述静电场性质的基本物理量是场强和电势,掌握定义及二者间的关系。
电场强度 E =q 0∞ W a 电势 U a ==E ⋅d rq 0a2、反映静电场基本性质的两条定理是高斯定理和环路定理Φe =E ⋅d S =ε0∑qL E ⋅d r =0要掌握各个定理的内容,所揭示的静电场的性质,明确定理中各个物理量的含义及影响各个量的因素。
重点是高斯定理的理解和应用。
3、应用(1)、电场强度的计算1q E =r 02a) 、由点电荷场强公式 4πεr 及场强叠加原理 E = ∑ E 计i 0算场强一、离散分布的点电荷系的场强1q i E =∑E i =∑r 2i 0i i 4πεr 0i二、连续分布带电体的场强 d q E =⎰d E =⎰r 204πε0r其中,重点掌握电荷呈线分布的带电体问题b) 、由静电场中的高斯定理计算场源分布具有高度对称性的带电体的场强分布一般诸如球对称分布、轴对称分布和面对称分布,步骤及例题详见课堂笔记。
还有可能结合电势的计算一起进行。
c) 、由场强和电势梯度之间的关系来计算场强(适用于电势容易计算或电势分布已知的情形),掌握作业及课堂练习的类型即可。
(2)、电通量的计算a) 、均匀电场中S 与电场强度方向垂直b) 、均匀电场,S 法线方向与电场强度方向成θ角E =-gradU =-∇U∂U ∂U ∂U =-(i +j +k )∂x ∂y ∂zc) 、由高斯定理求某些电通量(3)、电势的计算a) 、场强积分法(定义法)——计算U P =⎰E ⋅d rb) 、电势叠加法——q i ⎰电势叠加原理计算⎰∑U i =∑4πεr⎰0iU =⎰dq ⎰dU =⎰⎰⎰4πε0r ⎰第二部分:静电场中的导体和电介质一、导体的静电平衡状态和条件导体内部和表面都没有电荷作宏观定向运动的状态称为静电平衡状态。
大学物理2期末复习
(A) 4倍和 1 / 8 ,
(B) 4倍和 1 / 2 ,
(C) 2倍和 1 / 4 , (D) 2倍和 1 / 2 。
[B]
11
B 0I
2R
B1
0I
2R
, B2
2
0I
2r
.
R 2r
B2 2 R 4 B1 r
Pm IS Pm R2I , Pm 2r 2I.
Pm Pm
2
r2 R2
(A) 1 /(2a) (B) 1 / a (C) 1/ 2a (D) 1/ a
(x) 2 1 cos2 3x
a 2a
x 5a 6
(5 a) 2 1 6 2a
[A]
29
21.氢原子中处于2P态的电子,描述其量子态的四个 量子数(n,,m ,ms)可能取的值为:
(A) (3,2,1,-1/2) (B) (2,0,0,1/2) (C) (2,1,-1,-1/2)(D) (1,0,0,1/2)
(A) 7.96 102 , (B) 3.98 102 ,
(C) 1.99 102 , (D) 63.3 。
[B ]
B 0r nI
19
13. 如图,两个线圈 P 和 Q 并联地接到一电动势恒定 的电源上,线圈 P 的自感和电阻分别是线圈 Q 的两 倍。当达到稳定状态后,线圈 P 的磁场能量与 Q 的 磁场能量的比值是:
M
dI dt
)
(L
M
Hale Waihona Puke )dI dt1
2
(2L
2M
)
dI dt
比较: L dI
dt
17
11. 顺磁物质的磁导率:
(A)比真空的磁导率略小,
大学物理电磁学总结(精华)ppt课件(2024)
34
创新实验设计思路分享
组合实验法
将多个相关实验进行组合设计,以提高实验 效率和准确性。
对比实验法
通过对比不同条件下的实验结果,探究物理 现象的本质和规律。
仿真模拟法
利用计算机仿真技术模拟实验过程,以降低 成本和提高安全性。
2024/1/28
改进测量方法
针对传统测量方法的不足之处进行改进和创 新,提高测量精度和效率。
2024/1/28
23
自感和互感现象分析
自感现象是指一个线圈中的电 流发生变化时,在线圈自身中 产生感应电动势的现象。
互感现象是指两个相邻的线圈 中,一个线圈中的电流发生变 化时,在另一个线圈中产生感 应电动势的现象。
2024/1/28
自感和互感现象的产生都与磁 场的变化有关,它们是电磁感
应现象的重要组成部分。
麦克斯韦方程组可以推导出电磁波的存在和传播,是无线通信的理论基础 。
18
电磁波产生条件与传播方式
01
02
03
电磁波产生的条件是变 化的电场或磁场,即振 荡电路中的电荷或电流
。
电磁波的传播方式是横 波,电场和磁场相互垂 直且与传播方向垂直。
电磁波在真空中的传播 速度等于光速,且在不 同介质中的传播速度不
7
02
静电场与恒定电流
2024/1/28
8
静电场中的导体和电介质
静电场中的导体特性
静电感应现象
静电平衡条件
2024/1/28
9
静电场中的导体和电介质
导体表面电荷分布
电介质极化现象
电偶极子概念
2024/1/28
10
静电场中的导体和电介质
电介质极化机制
大学物理(电磁学部分)试题库及答案解析
大学物理(电磁学部分)试题库及答案解析一、 选择题1.库仑定律的适用范围是()A 真空中两个带电球体间的相互作用; ()B 真空中任意带电体间的相互作用; ()C 真空中两个正点电荷间的相互作用; ()D 真空中两个带电体的大小远小于它们之间的距离。
〔 D 〕2.在等量同种点电荷连线的中垂线上有A 、B 两点,如图所示,下列结论正确的是()A A B E E ,方向相同;()B A E 不可能等于B E ,但方向相同;()C A E 和B E 大小可能相等,方向相同;()D A E 和B E 大小可能相等,方向不相同。
〔 C 〕4.下列哪一种说法正确()A 电荷在电场中某点受到的电场力很大,该点的电场强度一定很大;()B 在某一点电荷附近的任一点,若没放试验电荷,则这点的电场强度为零;()C 若把质量为m 的点电荷q 放在一电场中,由静止状态释放,电荷一定沿电场线运动;()D 电场线上任意一点的切线方向,代表点电荷q 在该点获得加速度的方向。
〔 D 〕5.带电粒子在电场中运动时()A 速度总沿着电场线的切线,加速度不一定沿电场线切线;()B 加速度总沿着电场线的切线,速度不一定沿电场线切线;()C 速度和加速度都沿着电场线的切线;()D 速度和加速度都不一定沿着电场线的切线。
〔 B 〕7.在真空中的静电场中,作一封闭的曲面,则下列结论中正确的是A.通过封闭曲面的电通量仅是面内电荷提供的B.封闭曲面上各点的场强是面内电荷激发的C.由高斯定理求得的场强仅由面内电荷所激发的D.由高斯定理求得的场强是空间所有电荷共同激发的〔 D 〕9、下面说法正确的是(A)等势面上各点场强的大小一定相等;(B)在电势高处,电势能也一定高;(C)场强大处,电势一定高;(D)场强的方向总是从电势高处指向低处〔 D 〕10、已知一高斯面所包围的体积内电量代数和为零,则可肯定:(A )高斯面上各点场强均为零。
(B )穿过高斯面上每一面元的电通量均为零。
大学物理复习题(电磁学)
【课后习题】 第12章 一、填空题1、两个大小完全相同的带电金属小球,电量分别为2q 和-1q ,已知它们相距为r 时作用力为F ,则将它们放在相距3r 位置同时其电量均减半,相互作用力大小为____1/36________F 。
2、电场强度可以叙述为电场中某一点上单位正电荷所受的_____电场力___________;电场中某一点的电势可以叙述为:单位正电荷在该点所具有的__电势能_________。
3、真空环境中正电荷q 均匀地分布在半径为R 的细圆环上,在环环心O 处电场强度为____0________,环心的电势为__R q o πε4/_________。
4、高斯定理表明磁场是 无源 场,而静电场是有源场。
任意高斯面上的静电场强度通量积分结果仅仅取决于该高斯面内全部电荷的代数和。
现有图1-1所示的三个闭合曲面S 1、S 2、S 3,通过这些高斯面的电场强度通量计算结果分别为:⎰⎰⋅=Φ11S SE d ,⎰⎰⋅=Φ22S SE d ,⎰⎰⋅=Φ33S SE d ,则1=___o q ε/_______;2+3=___o q ε/-_______。
5、静电场的场线只能相交于___电荷或无穷远________。
6、两个平行的无限大均匀带电平面,其电荷面密度分别如图所示,则A 、B 、C 三个区域的电场强度大小分别为:E A =_o εσ/4________;E B =_o εσ/________;E C =__o εσ/4_______。
7、由一根绝缘细线围成的边长为l 的正方形线框,使它均匀带电,其电荷线密度为,则在正方形中心处的电场强度的大小E =____0____________.8、初速度为零的正电荷在电场力的作用下,总是从__高____电势处向_低____电势处运动。
9、静电场中场强环流为零,这表明静电力是__保守力_________。
10、如图所示,在电荷为q 的点电荷的静电场中,将一电荷为q 0的试验电荷从a 点经任意路径移动到b 点,外力所作的功W =___⎪⎪⎭⎫ ⎝⎛-12114r r Qq πε___________.11、真空中有一半径为R 的均匀带电半园环,带电量为Q ,设无穷远处为电势零点,则圆心O 处的电势为___R Q 04πε_________;若将一带电量为q 的点电荷从无穷远处移到O 点,电场力所作的功为__RqQ04πε__________。
大学物理 电磁学
大学物理:电磁学电磁学是物理学的一个分支,主要研究电磁现象、电磁辐射、电磁场以及它们与物质之间的相互作用。
在本文中,我们将探讨电磁学的基本概念、历史背景、研究领域以及在现实生活中的应用。
一、基本概念1、电荷与电荷密度电荷是物质的一种属性,它可以产生电场。
电荷分为正电荷和负电荷。
电荷的分布可以用电荷密度来描述,它表示单位体积内所包含的电荷数量。
2、电场与电场强度电场是空间中由电荷产生的力线所形成的场。
电场强度是描述电场强弱的物理量,它与电荷密度有关。
3、磁场与磁感应强度磁场是由电流或磁体产生的场。
磁感应强度是描述磁场强弱的物理量,它与电流密度和磁场中的电荷有关。
4、电磁波电磁波是由电磁场产生的波动现象,它包括无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等。
二、历史背景电磁学的研究可以追溯到17世纪和18世纪,当时科学家们开始研究静电和静磁现象。
19世纪初,英国物理学家迈克尔·法拉第发现了电磁感应定律,即变化的磁场可以产生电流。
1864年,英国物理学家詹姆斯·克拉克·麦克斯韦将法拉第的发现与自己的研究结合起来,提出了著名的麦克斯韦方程组,预言了电磁波的存在。
三、研究领域1、静电学:研究静止电荷所产生的电场、电势、电容、电导等性质。
2、静磁学:研究静止磁场以及磁体和电流所产生的磁场和磁场分布。
3、电磁感应:研究变化的磁场和电场以及它们之间的相互作用和变化规律。
4、电磁波:研究电磁波的产生、传播、散射、反射和吸收等性质以及在各种介质中的行为。
四、应用电磁学在现实生活中有着广泛的应用,如:1、电力工业:利用电磁感应原理发电、输电和用电。
2、通信工程:利用电磁波传递信息,包括无线电通信、微波通信、光纤通信等。
3、电子技术:利用电磁学原理制造电子设备,如电视机、计算机、雷达等。
4、磁悬浮技术:利用磁力使物体悬浮,减少摩擦和能耗。
5、医学成像:利用电磁波和磁场进行医学诊断和治疗。
大学物理电磁学题库及答案
大学物理电磁学题库及答案(1)世界上已知动物种类约有150万种,其中昆虫约100万种,是动物王国中种类最多的。
(2)昆虫的特点:具有六条腿、两对翅、头胸腹三部分组成、触角和复眼等。
(3)昆虫对人类的作用:有些昆虫可以作为药用;有些昆虫可以传播植物的病菌;有些昆虫可以传播花粉;有些昆虫是农作物的害虫,有些昆虫是农作物的益虫。
(4)濒临灭绝的动物:我国有许多动物已经灭绝,如麋鹿、华南虎、大熊猫、东北虎等。
世界上有些动物也濒临灭绝,如鲸、海豚、北极熊等。
我们应该保护动物,不乱捕杀,从保护动物,维护生态平衡的角度出发,尽可能地少捕杀动物。
(1)植物的分类:根据植物是否有根茎叶分为植物分为藻类植物、苔藓植物、蕨类植物和种子植物。
种子植物又分为裸子植物和被子植物。
(2)种子植物的特点:具有种子;种子的基本结构是种皮和胚;胚包括胚根、胚芽和胚轴。
(3)种子植物与人类的关系:我们吃的粮食、蔬菜和水果都来自于种子植物。
种子植物与人类的关系非常密切。
(1)常见的金属材料:铁、铜、铝等。
金属具有良好的导电性和导热性。
(2)金属的特性:绝大多数金属具有延展性,可以抽成丝,也可以压成薄片;金属一般具有良好的光泽;金属容易导电;金属容易导热;金属都有良好的延展性;金属都是晶体等。
(3)合金:一种金属与另一种或几种金属或非金属熔合在一起具有金属特性的物质。
合金比组成它的纯金属的硬度大、熔点低、抗腐蚀性强。
青铜是铜锡合金,黄铜是铜锌合金等。
电磁学是物理学的一个分支,研究电磁现象的规律和应用。
电磁学涉及的领域非常广泛,包括电学、磁学、电磁场、电磁波等等。
在大学物理课程中,电磁学通常是一个重要的组成部分,需要掌握一系列相关的公式和定理。
以下是大学物理电磁学公式全集,供大家参考。
在真空中,电荷的分布可以用高斯定理来描述。
公式如下:其中,E是电场强度,S是闭合曲面,ρ是电荷密度,ε是真空中的介电常数。
该定理告诉我们,在闭合曲面内的电荷量等于通过该曲面的电场线的总条数。
大学物理下知识点归纳
大学物理下知识点归纳大学物理是一门研究自然界基础规律的学科,它涉及到多个领域,如力学、电磁学、光学、热学、量子力学等。
在学习大学物理的过程中,有一些重要的知识点需要归纳总结,以下是一些关键的知识点:1.力学:力学是研究物体运动和受力的学科。
其中,牛顿三定律是力学中最基础的定律,包括惯性定律、运动方程和作用反作用定律。
此外,还有质点运动、力的合成与分解、摩擦力、弹性碰撞等内容。
2.电磁学:电磁学是研究电荷与电磁场相互作用的学科。
其中,库伦定律描述了静电场中的电荷相互作用,高斯定理、环路定理和安培定律描述了电场和磁场的分布和相互关系。
此外,静电场和稳恒电流产生的磁场、电磁感应等概念也是电磁学中的重要内容。
3.光学:光学是研究光的传播和光与物质相互作用的学科。
光的传播速度与介质折射率的关系、光的干涉、衍射和偏振等是光学中的重要知识点。
此外,光与物质相互作用产生的色散、吸收和发射也是光学中重要的内容。
4.热学:热学是研究物体和能量转化的学科。
热力学定律、热容量和热传导等是热学中的主要知识点。
此外,理想气体的状态方程、气体的内能和熵以及热机和热泵的工作原理也是热学的重要内容。
5.量子力学:量子力学是研究微观世界的学科。
波粒二象性和不确定性原理是量子力学的核心概念。
此外,玻尔模型、波函数和薛定谔方程、量子力学中的算符和测量等也是量子力学中的重要内容。
6.相对论:相对论是研究高速运动物体的物理学理论。
狭义相对论中的洛伦兹变换、时间膨胀和长度收缩等是相对论的主要知识点。
相对论还涉及到质能关系、黑洞和宇宙学等内容。
以上只是大学物理中的一部分知识点,每个知识点还有更加深入的内容和应用。
要全面掌握大学物理,需要理论与实践相结合,通过课堂学习和实验操作来加深对知识点的理解和应用能力。
同时,还需要通过习题和实验报告的完成来巩固知识点,培养解决问题的能力。
通过不断学习和实践,我们可以更好地理解自然界的规律,为未来的科学研究和技术发展做出贡献。
大学物理电磁学总结
引言概述:电磁学是物理学的重要分支,涉及到电荷和电场、磁体和磁场的相互作用以及电磁波等内容。
大学物理课程中的电磁学部分是学生们理解自然界电磁现象的重要基础。
本文将介绍大学物理电磁学的主要内容,包括电荷、电场、磁场、电磁波的特性等。
通过细致的分析和阐述,希望能够帮助读者更全面地理解电磁学的基本原理和概念。
正文内容:1.电荷与电场1.1原子结构和电荷1.2电场概念与电场强度1.3高斯定律1.4电势和电势差1.5电场中的电势能2.磁场与电磁感应2.1磁场概念与磁场强度2.2磁感应强度与磁通量2.3安培环路定理2.4法拉第电磁感应定律2.5洛伦兹力和电磁感应中的能量转换3.电磁波与光3.1电磁波的概念和性质3.2麦克斯韦方程组3.3光的干涉和衍射3.4光的偏振和光的折射3.5光的反射和全反射4.电磁场的辐射和传播4.1辐射和辐射场4.2真空中的电磁波传播4.3大气中的电磁波传播4.4地球表面的电磁波传播4.5电磁波与介质相互作用5.应用与发展5.1电磁学在通信技术中的应用5.2电磁学在医学影像中的应用5.3电磁学在材料科学中的应用5.4电磁学在能源领域中的应用5.5电磁学的新发展与研究方向总结:通过对大学物理电磁学的详细阐述,我们了解了电荷与电场、磁场与电磁感应、电磁波与光、电磁场的辐射和传播以及电磁学的应用与发展等主要内容。
电磁学是物理学中一个充满魅力的领域,它不仅深刻地揭示了自然界的规律,更为现代科技的发展做出了不可替代的贡献。
希望本文能够帮助读者对电磁学有更深入的认识,并能够进一步挖掘和应用电磁学的知识。
期望电磁学的研究能够在未来取得更多的突破,为人类社会的进步和发展做出更大的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l
dx
★ 电源电动势 非静电力——电源
把其他形式能量电能
电源电动势:
大小:电源内, 单位正电荷从负极正极, 非静电力所作功 方向:负极(低电势)正极(高电势)
i
()
()
E非 .dl , i E非 .dl
L
非静电力集 中在电池内
非静电力存在于 整个电流回路
B LE.dl S t .dS
一、电磁感应的基本规律 1、电磁感应现象
产生I感的根本原因?
——当穿过闭合导体回路 的变化时, 回路中产生I感
2、法拉第电磁感应定律 数学表式:
d ( N ) i dt
Note:
d B.d S B cos dS
BS Br -Hc S (remanent magnetic induction)
Hc— 矫顽力(coercive force) 磁滞是由于晶体缺陷和内应力、
Hc H 以及磁畴在外磁场减退时, 就近 -Br -BS
0
沿易磁化方向排列而造成的。 “磁滞损耗” (hysteresis loss)
磁滞回线
d m i 普遍适用, 但须存在回路, dt
3、楞次定律(Lenz law) 内容: I感所激发的磁场, 总是阻止引起I感的 磁通量的变化 作用:判定I感的方向,用右手螺旋定则
例、长直导线I=I0sint(I0,常 量),线圈(长l, 宽a,左侧距离直导 线为d),求任一瞬时线圈中的i
正比于B~H 回线所围的面积。
3
三 . 硬磁和软磁材料
1. 硬磁材料 (hard magnetic material) Hc大 (>102A/m),一般Hc 为104-106A/m,
B B
Br 也大, 一般为103-104 G。 特点: 磁滞回线“胖”,
Hc H
磁滞损耗大, 适合制作永久磁铁、
碳钢、钨钢
1 4 2 解:ob段: ob B ( L ) , o 2 5 a 1 1 2 oa段: oa B ( L ) , 2 5 3 ab=ob-oa BL2 (ba) 10
b
[3] 长直导线电流I, 共面金属棒(长L,绕O在平 面内以转动),求当金属棒转至与直导线垂直时, 棒内感应电动势?
涡流
▲ 热效应
大块导体中的感应电流称“涡流”。
(eddy current)
电磁冶炼:
交流电源
矿石 高(中)频炉
dΦ r2 dt 导体板面 r 电阻 R r B 板面 涡电流i / R r 2 2 单位长度上的发热功率 P热 i r 越外圈发热越厉害,符合表面淬火的要求。
当T Tc时,又恢复铁磁性。
Fe :Tc = 767℃
Ni :Tc = 357℃ Co :Tc = 1117℃
演示 居里点(KD045)
7
五 . 磁致伸缩
B变 M磁畴方向改变 晶格间距改变
— 铁磁体长度和体积改变 磁致伸缩。 长度相对改变约10-5量级,某些材料在低 温下可达10 -1; 磁致伸缩有一定固有频率, 当外磁场变 化频率和固有频率一致时,发生共振, 可用于制作激振器、超声波发生器等。
1
演示 巴克豪森效应(KD046)
BN跳跃
放大
B
BS tg m m
跃变
B∼H
S
b
c
tg i i
∼H
a
H=0
H 0 a
i
m
H b
0
0 H
H
H
H H
(可逆)
(不可逆)
S
(不可逆) (饱和)
2
2.磁滞回线(hysteresis loop) B落后于H的变化,称为磁滞现象。 B Br— 剩余磁感强度
令
Rm Rm
磁通势 (magnetomotive m force)
磁阻(magnetic resistance)
9
l 把 Φ 和 Rm 与电路相比, Rm Rm S
m
~ ,
m
Φ ~ I, Rm ~ R, ~ Rm l S 0 l Rm S r 0 r
8
§9.6 简单磁路 (magnetic circuit) B, H, S, , 0 H d l NI
铁芯
( l )
NI
Hl H NI B, H, Φ Φ l, S, l NI S S 0
Φ
NI l S S 0
L
(v B ).dl (一般表式)
2、产生机理
宏观原因: 微观机制: f 洛 ( e)v B ,
f
a
F电
b
v
f洛 E非 v B, e b b i E非 dl (v B ) dl
S
2、感生电场 E感与变化磁场的关系
由电动势定义, i E非 dl , 法拉第定律,
B E感 dl dS t
d B i .dS , dt t
3、感生电动势的计算 B (1) 感 E感 .dl .dS L t d ( 2) 感 N dt
磁芯(记忆元件)等。
4
“矩磁材料”
B Br
可作记忆元件
-Hc Hc H -Br Br
“0” “1”
-Br
5
2. 软磁材料(soft magnetic material ) Hc小(<102A/m),一般约Hc 为1A/m 。
B
特点: 磁滞损耗小, 适于制作交流
m大
Br Hc H
B Br
i大 磁滞回线“瘦”,
S
B.dS 0 l H .d ( I I
d m B E L .dl dt t dS
其他形式? 物理意义c wave
1、电磁波的传播速度
真空中:
E
y E
v
x
Z
介质中:
L C 振荡: C
电磁场封闭 在 L、C 中
q(t)
I(t)
L C
电磁场 较开放
L
-q(t)
H线
电偶极振子天线 电磁场完全开放
偶极振子
北京正负电子对撞机(BEPC) (储存环周长240m,电子最大能量 2.8GeV)
作业:9-6,10-2,10-18
第十章 电磁感应
(Electromagnetic Induction)
D LH .dl ( I 0 I d ) S ( J 传 t ).dS
dE Id S , dt
B L E感 .dl t dS
2、Maxwell方程组 D.dS q0 ,
S
D ).dS 0 d ) (J传 L S t E E静 E感, B B传导 B位,
d
a
0 I 解: B , dS ldx x 2 x 0I d BdS ldx 2 d a Il dx 0 I 0l d a 0 d ln( ) sin t d 2 x 2 d 0 I 0 l d a d i ln( ) cos t dt 2 d
i ∫( B ) d l L v
a
a
3、计算方法 1> 用电动势定义: i E非 .dl (v B ).dl
L L
i Blv
2> 用法拉第电磁感应定律: d i dt
应用实例――交流发电机原理
t 0时, S n // B
BN跳跃
放大
B
BS tg m m
跃变
B∼H S
c
b
tg i i
∼H
H 0 m BS — 饱和磁感强度(saturation magnetic induction)
a
i
m — 最大磁导率
0
i — 起始磁导率
巴克豪森效应(Barkhausen effect) 可用作 金相结构分析, 测晶粒度、 杂质分布、 应力分布, , 且是无损探测、 快捷简便。
0 I aL ( L - a ln ) 2 a
*
三、感生电动势、感生电场
Induced electromotive force
1、感生电动势 产生原因——Maxwell假设1861
“变化的磁场会产生感生电场”
B L S
感生电场/涡旋电场
电力线闭合,非静电场感生电动势 E感 .dS 0
B.S BS cos BS cos t d i BS sin t dt
1、长直导线电流I=10A, 附近有金属棒AB (长l=0.2m,v=2m/s,d=0.1m),求动=? v 0 I 0I 解: B , d i Bvdx vdx I 2 x 2x A dx B d d l I x 0 动 d i vdx d 2x 0I d l v ln 4 .4 10 6 V (方向BA,A>B) 2 d 若速度向下,? 若AB//I,?
二、动生电动势
motional electromotive force
1、表达式
(1) i Blv (右手定则: ba)
dS lvdt i B B Blv dt dt dt 仅适用于 B , l , v 垂直时