圆周运动实例

合集下载

圆周运动的实例及临界问题

圆周运动的实例及临界问题

圆周运动的实例及临界问题一、汽车过拱形桥1.汽车在拱形桥最高点时,向心力:F 合=mg -N =m v 2R.支持力:N =mg -mv 2R<mg ,汽车处于失重状态. 2.汽车对桥的压力N ′与桥对汽车的支持N 是一对相互作用力,大小相等,所以汽车通过最高点时的速度越大,汽车对桥面的压力就越小.例1 一辆质量m =2 t 的轿车,驶过半径R=90 m 的一段凸形桥面,g =10 m/s 2,求:(1)轿车以10 m/s 的速度通过桥面最高点时,对桥面的压力是多大?(2)在最高点对桥面的压力等于轿车重力的一半时,车的速度大小是多少?解析 (1)轿车通过凸形桥面最高点时,受力分析如图所示:合力F =mg -N ,由向心力公式得mg -N =m v 2R,故桥面的支持力大小N =mg -m v2R=(2 000×10-2000×10290) N ≈×104 N 根据牛顿第三定律,轿车在桥面最高点时对桥面压力的大小为×104N. (2)对桥面的压力等于轿车重力的一半时,向心力F ′=mg -N ′=,而F ′=m v ′2R ,所以此时轿车的速度大小v ′=错误!=错误! m/s ≈21.2 m/s 答案 (1)×104N (2)21.2 m/s 二、圆锥摆模型 1.运动特点:人及其座椅在水平面内做匀速圆周运动,悬线旋转形成一个圆锥面. 图12.运动分析:将“旋转秋千”简化为圆锥摆模型(如图1所示) (1)向心力:F 合=mg tan_α(2)运动分析:F 合=mω2r =mω2l sin α(3)缆绳与中心轴的夹角α满足cos α=g ω2l. 图6例2 如图6所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面做匀速圆周运动,以下物理量大小关系正确的是( )A .速度v A >vB B .角速度ωA >ωBC .向心力F A >F BD .向心加速度a A >a B解析 设漏斗的顶角为2θ,则小球的合力为F 合=mgtan θ,由F =F 合=mgtan θ=mω2r =m v 2r=ma ,知向心力F A =F B ,向心加速度a A =a B ,选项C 、D错误;因r A >r B ,又由v = grtan θ和ω=gr tan θ知v A >v B 、ωA <ωB ,故A 对,B 错.答案 A三、火车转弯1.运动特点:火车转弯时做圆周运动,具有向心加速度,需要向心力. 2.铁路弯道的特点:转弯处外轨略高于内轨,铁轨对火车的支持力斜向弯道的内侧,此支持力与火车所受重力的合力指向圆心,为火车转弯提供了一部分向心力.例3 铁路在弯道处的内、外轨道高度是不同的,已知内、外轨道平面与水平面的夹角为θ,如图7所示,弯道处的圆弧半径为R ,若质量为m 的火车转弯时速度等于gR tan θ,则( ) A .内轨对内侧车轮轮缘有挤压 B .外轨对外侧车轮轮缘有挤压 C .这时铁轨对火车的支持力等于mgcos θD .这时铁轨对火车的支持力大于mgcos θ解析 由牛顿第二定律F 合=m v 2R,解得F 合=mg tanθ,此时火车受重力和铁路轨道的支持力作用,如图所示,N cos θ=mg ,则N =mg cos θ,内、外轨道对火车均无侧向压力,故C 正确,A 、B 、D 错误. 答案 C课后巩固训练2.(圆锥摆模型)两个质量相同的小球,在同一水平面内做匀速圆周运动,悬点相同,如图9所示,A 运动的半径比B 的大,则( )A .A 所需的向心力比B 的大 B .B 所需的向心力比A 的大C .A 的角速度比B 的大D .B 的角速度比A 的大解析 小球的重力和绳子的拉力的合力充当向心力,设悬线与竖直方向夹角为θ,则F =mg tanθ=mω2l sin θ,θ越大,向心力F 越大,所以A 对,B 错;而ω2=gl cos θ=gh.故两者的角速度相同,C 、D 错.答案 A3.半径为R 的光滑半圆球固定在水平面上(如图2所示),顶部有一小物体A ,今给它一个水平初速度v 0=Rg ,则物体将( )A .沿球面下滑至M 点B .沿球面下滑至某一点N ,便离开球面做斜下抛运动C .沿半径大于R 的新圆弧轨道做圆周运动D .立即离开半圆球做平抛运动答案 D解析 当v 0=gR 时,所需向心力F =m v 20R=mg ,此时,物体与半球面顶部接触但无弹力作用,物体只受重力作用,故做平抛运动.4.质量为m 的飞机,以速率v 在水平面内做半径为R 的匀速圆周运动,空气对飞机作用力的大小等于( )A .m g 2+v 4R 2 B .m v 2RC .mv 4R 2-g 2D .mg解析 空气对飞机的作用力有两个作用效果,其一:竖直方向的作用力使飞机克服重力作用而升空;其二:水平方向的作用力提供向心力,使飞机可在水平面内做匀速圆周运动.对飞机的受力情况进行分析,如图所示.飞机受到重力mg 、空气对飞机的作用力F 升,两力的合力为F ,方向沿水平方向指向圆心.由题意可知,重力mg 与F垂直,故F 升=m 2g 2+F 2,又F =m v 2R ,联立解得F升=m g 2+v 4R2. 图3答案 A5.质量不计的轻质弹性杆P 插在桌面上,杆端套有一个质量为m 的小球,今使小球沿水平方向做半径为R 的匀速圆周运动,角速度为ω,如图4所示,则杆的上端受到的作用力大小为( )A .m ω2RD .不能确定 答案 C解析 小球在重力和杆的作用力下做匀速圆周运动.这两个力的合力充当向心力必指向圆心,如图所示.用力的合成法可得杆对球的作用力:N =(mg )2+F 2=m 2g 2+m 2ω4R 2,根据牛顿第三定律,小球对杆的上端的作用力N ′=N ,C 正确.图56.火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶速度为v ,则下列说法中正确的是( )A .当以v 的速度通过此弯路时,火车重力与轨道面支持力的合力提供向心力B .当以v 的速度通过此弯路时,火车重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力C .当速度大于v 时,轮缘挤压外轨D .当速度小于v 时,轮缘挤压外轨解析 当以v 的速度通过此弯路时,向心力由火车的重力和轨道的支持力的合力提供,A 对,B 错;当速度大于v 时,火车的重力和轨道的支持力的合力小于向心力,外轨对轮缘有向内的弹力,轮缘挤压外轨,C 对,D 错.答案 AC解析 设赛车的质量为m ,赛车受力分析如图所示,可见:F 合=mg tan θ,而F 合=m v 2r,故v =gr tan θ.7.如图11,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小x =0.4 m .设物块所受的最大静摩擦力等于滑动摩擦力,重力加速度g取10 m/s 2.求:图11(1)物块做平抛运动的初速度大小v 0; (2)物块与转台间的动摩擦因数μ. 答案 (1)1 m/s (2)解析 (1)物块做平抛运动,竖直方向有 H =12gt 2① 水平方向有x =v 0t ②联立①②两式得v 0=x g 2H =1 m/s ③ (2)物块离开转台时,最大静摩擦力提供向心力,有 μmg =m v 20R ④ 联立③④得μ=v 20gR = 8.(多选)如图5所示,质量为m 的物体,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直固定放置,开口向上,滑到最低点时速度大小为v ,若物体与球壳之间的动摩擦因数为μ,则物体在最低点时,下列说法正确的是( )图5 A .受到的向心力为mg +m v 2RB .受到的摩擦力为μm v 2RC .受到的摩擦力为μ(mg +m v 2R)D .受到的合力方向斜向左上方解析 物体在最低点做圆周运动,则有F N -mg =m v 2R ,解得F N =mg +m v 2R,故物体受到的滑动摩擦力F f =μF N =μ(mg +m v 2R),A 、B 错误,C 正确.物体受到竖直向下的重力、水平向左的摩擦力和竖直向上的支持力(支持力大于重力),故物体所受的合力斜向左上方,D 正确. 答案 CD临界问题分析一:水平面内圆周运动的临界问题处理临界问题的解题步骤(1)判断临界状态:有些题目中有“刚好”“恰好”“正好”等字眼,明显表明题述的过程存在着临界点;若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应着临界状态;若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在着极值,这个极值点也往往对应着临界状态.(2)确定临界条件:判断题述的过程存在临界状态之后,要通过分析弄清临界状态出现的条件,并以数学形式表达出来. (3)选择物理规律:当确定了物体运动的临界状态和临界条件后,要分别对不同的运动过程或现象,选择相对应的物理规律,然后列方程求解.例1 如图8所示,高速公路转弯处弯道圆半径R =100 m ,汽车轮胎与路面间的动摩擦因数μ=.最大静摩擦力与滑动摩擦力相等,若路面是水平的,问汽车转弯时不发生径向滑动(离心现象)所允许的最大速率v m 为多大?当超过v m 时,将会出现什么现象?(g =9.8 m/s 2)解析 在水平路面上转弯,向心力只能由静摩擦力提供,设汽车质量为m ,则f m =μmg ,则有m v 2m R=μmg ,v m =μgR ,代入数据可得v m ≈15 m/s =54 km/h.当汽车的速度超过54 km/h 时,需要的向心力m v 2R大于最大静摩擦力,也就是说提供的合外力不足以维持汽车做圆周运动所需的向心力,汽车将做离心运动,严重的将会出现翻车事故.答案 54 km/h 汽车做离心运动或出现翻车事故2.[相对滑动的临界问题](2014·新课标全国Ⅰ·20)(多选)如图6所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )图6A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg解析小木块a、b做圆周运动时,由静摩擦力提供向心力,即f=mω2R.当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a:f a=mω2a l,当f a=kmg时,kmg=mω2a l,ωa=kgl;对木块b:f b=mω2b·2l,当f b=kmg时,kmg=mω2b·2l,ωb=kg2l,所以b先达到最大静摩擦力,选项A正确;两木块滑动前转动的角速度相同,则f a=mω2l,f b=mω2·2l,f a<f b,选项B错误;当ω=kg2l时b刚开始滑动,选项C正确;当ω=2kg3l时,a没有滑动,则f a=mω2l=23kmg,选项D错误.答案AC3.[接触与脱离的临界问题]如图8所示,用一根长为l=1 m的细线,一端系一质量为m=1 kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为F T.(g取10 m/s2,结果可用根式表示)求:图8(1)若要小球刚好离开锥面,则小球的角速度ω0至少为多大?(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大?解析(1)若要小球刚好离开锥面,则小球只受到重力和细线的拉力,受力分析如图所示.小球做匀速圆周运动的轨迹圆在水平面上,故向心力水平,在水平方向运用牛顿第二定律及向心力公式得:mg tan θ=mω20l sin θ解得:ω20=gl cos θ即ω0=gl cos θ=522 rad/s.(2)同理,当细线与竖直方向成60°角时,由牛顿第二定律及向心力公式得:mg tan α=mω′2l sin α解得:ω′2=gl cos α,即ω′=gl cos α=2 5 rad/s.二:竖直面内圆周运动的临界问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管)约束模型”.210.[过山车的分析](多选)如图9所示甲、乙、丙、丁是游乐场中比较常见的过山车,甲、乙两图的轨道车在轨道的外侧做圆周运动,丙、丁两图的轨道车在轨道的内侧做圆周运动,两种过山车都有安全锁(由上、下、侧三个轮子组成)把轨道车套在了轨道上,四个图中轨道的半径都为R,下列说法正确的是( )图9A.甲图中,当轨道车以一定的速度通过轨道最高点时,座椅一定给人向上的力B.乙图中,当轨道车以一定的速度通过轨道最低点时,安全带一定给人向上的力C.丙图中,当轨道车以一定的速度通过轨道最低点时,座椅一定给人向上的力D .丁图中,轨道车过最高点的最小速度为gR 解析 在甲图中,当速度比较小时,根据牛顿第二定律得,mg -F N =m v 2R,即座椅给人施加向上的力,当速度比较大时,根据牛顿第二定律得,mg+F N =m v 2R,即座椅给人施加向下的力,故A 错误;在乙图中,因为合力指向圆心,重力竖直向下,所以安全带给人一定是向上的力,故B 正确;在丙图中,当轨道车以一定的速度通过轨道最低点时,合力方向向上,重力竖直向下,则座椅给人的作用力一定竖直向上,故C 正确;在丁图中,由于轨道车有安全锁,可知轨道车在最高点的最小速度为零,故D 错误. 答案 BC11.[杆模型分析](2014·新课标Ⅱ·17)如图10所示,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g .当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )图10A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12mv 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =mv 2R ,所以在最低点时大环对小环的支持力F N =mg +mv 2R=5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C正确,选项A 、B 、D 错误. 答案 C。

圆周运动的实例分析

圆周运动的实例分析

物体沿圆的内轨道运动
A
mg
N
N
N
【例题5】质量为m的小球在竖直平面内的圆形轨道内侧运动,若经最高点不脱离轨道的临界速度为v,则当小球以2v速度经过最高点时,小球对轨道的压力大小为( ) 0 mg 3mg 5mg
C
2、轻杆模型
五、竖直平面内圆周运动
质点被一轻杆拉着在竖直面内做圆周运动
质点在竖直放置的光滑细管内做圆周运动
过最高点的最小速度是多大?
V=0

R
【例题6】用一轻杆栓着质量为m的物体,在竖直平面内做圆周运动,则下列说法正确的是( ) A.小球过最高点时,杆的张力可以为零 B.小球过最高点时的最小速度为零 C.小球刚好过最高点是的速度是 D.小球过最高点时,杆对小球的作用力可以与球所受的重力方向相反
BD
【例题4】如图所示,火车道转弯处的半径为r,火车质量为m,两铁轨的高度差为h(外轨略高于内轨),两轨间距为L(L>>h),求: 火车以多大的速率υ转弯时,两铁轨不会给车轮沿转弯半径方向的侧压力? υ是多大时外轨对车轮有沿转弯半径方向的侧压力? υ是多大时内轨对车轮有沿转弯半径方向的侧压力?
四、汽车过拱形桥
T
mg
T
mg
过最高点的最小速度是多大?
O
【例题1】如图所示,一质量为m的小球用长为L的细绳悬于O点,使之在竖直平面内做圆周运动,小球通过最低点时速率为v,则小球在最低点时细绳的张力大小为多少? O mg T
【例题2】用细绳栓着质量为m的物体,在竖直平面内做圆周运动,圆周半径为R。则下列说法正确的是 A.小球过最高点时,绳子的张力可以为零 B.小球过最高点时的最小速度为零 C.小球刚好过最高点是的速度是 D.小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相反

圆周运动的实例分析

圆周运动的实例分析

圆周运动的实例分析圆周运动是指物体在固定圆周上做匀速旋转的运动。

它在生活中有着广泛的应用,例如车轮的旋转、地球绕太阳的公转等。

本文将通过分析两个具体实例来说明圆周运动的特点和应用。

实例一:车轮的旋转当车辆行驶时,车轮就会以一个轴为中心进行匀速旋转,这就是典型的圆周运动。

车轮的旋转不仅能够驱动车辆前进,还可以改变行驶方向。

根据牛顿第一定律,车轮受到的作用力与向心加速度成正比。

当车辆加速时,作用力增加,车轮的旋转速度也会增加,从而使车辆更快地行驶。

相反,当车辆减速或停止时,车轮的旋转速度也会相应减小或停止。

这种以车轮为例的圆周运动,为我们提供了便利的交通工具。

实例二:地球绕太阳的公转地球围绕太阳做匀速的圆周运动,这就是地球的公转。

这种公转使地球维持着相对稳定的轨道,保持了恒定的距离和倾斜角度,从而使我们能够有四季的交替和昼夜的变化。

地球公转的轨迹是一个近似于椭圆的轨道,太阳位于椭圆焦点之一。

地球公转的周期是365.24天,也就是一年的长度。

这个周期的长短决定了季节的变化和地球上生物的繁衍。

除了以上两个实例,圆周运动还广泛应用于其他领域。

例如,在工程中,我们常常需要使用电机来驱动各种设备的旋转,如风扇、洗衣机等。

这些旋转运动都是圆周运动的实例。

在体育竞技中,篮球、足球等球类运动都有着明显的圆周运动特点。

球员的投篮和射门都需要进行准确的角度和力度的控制,以确保球能够按照预定的轨道运动。

总之,圆周运动在我们的生活中随处可见,它是物体在固定圆周上做匀速旋转的运动。

不仅在自然界中存在着典型的实例,如车轮的旋转和地球的公转,而且在我们的日常生活和工程技术中也广泛应用。

圆周运动的特点和应用使得我们的生活更加便利、丰富多样,并为科学研究和技术发展提供了基础。

6.4圆周运动的实例分析1(火车转弯)

6.4圆周运动的实例分析1(火车转弯)
c大. 当于火火车车行转驶弯速所度需V的<向V0心时力,重,火力车与力.
N
向心 F力
G
火车弯道内低外高,这样的设计有什么道理?
1.铁路弯道的特点:弯道处外轨 略高于 内轨
2.火车转弯时铁轨对火车的支持力不是竖直向 上的,而是斜向弯道的 内侧 .支持力与重力的 合力指向 圆心 .
火车质量为m在倾角为θ、半径为r的轨道上转 弯时,若铁轨不受侧向压力,求此时火车的 这个速度多大?
mgtan m v2
第4节 生活中的圆周运动
实例一:旋转秋千
1、“旋转秋千”中揽绳跟中心 轴的夹角与哪些因素有关? 2、体重不同的人做在秋千上旋 转时,揽绳与中心轴的夹角相 同吗?

F合
mg
实例二:火车转弯
在铁道弯道处,稍微留意一下, 就能发现内、外轨道的高度略 有不同。你能解释其中的原因 吗?
一、火车转弯
如果轨道高度相同,火车转弯向心力谁来提供? 如果铁道弯道的内外轨一样高,火车转弯时, 由外轨对轮缘的弹力提供向心力,由于质量太 大,因此需要很大的向心力,靠这种方法得到 向心力,不仅铁轨和车轮极易受损,还可能使 火车侧翻.
r
v gr tan
高速公路转弯处和场地自行车比赛的赛道,路 面往往有一定的倾斜度。说说这样设计的原因。
拓展:改变速度
讨论:
a. 当火车转弯所需的向心力完全由重力 与轨道对它的支持力的合力提供时,轮 缘与内外轨均无测向压力,此时火车行 使的速度称为理想行驶速度V0.
F = mV20/R.
b. 当火车行驶速度V> V0 时,重力与支持 的合力不足以提供火车转弯所需的向心 力,火车轮缘与外轨相互挤压,外轨对轮缘 有测向压力.

圆周运动实例分析

圆周运动实例分析

圆周运动实例分析圆周运动是一种物体绕固定轴旋转的运动方式,它在日常生活和科学研究中有着广泛的应用。

下面将以多种实例来分析圆周运动。

实例一:地球公转地球绕着太阳公转是一个经典的圆周运动实例。

地球绕着太阳运动的轨道近似为一个椭圆,但是由于地球到太阳的距离相对较远,可以近似为一个圆周运动。

地球与太阳之间的重力提供了地球公转的向心力,使得地球保持在固定的轨道上。

这个圆周运动的周期为一年,即将地球绕公转一周所需要的时间。

实例二:卫星绕地球运动人造卫星绕地球运动也是一个常见的圆周运动实例。

卫星在地球轨道上运行时,地球的引力提供了卫星运动所需的向心力,使得卫星保持在圆周轨道上。

卫星的圆周运动速度称为轨道速度,是卫星绕地球一周所需的时间和轨道的半径所决定的。

实例三:风车旋转风车旋转也可以看作是一种圆周运动。

当风吹来时,风叶会受到风的力推动,从而开始转动。

风叶的运动轨迹是一个近似于圆周的曲线。

旋转的轴心是固定的,风向则决定了旋转的方向。

风车的旋转速度取决于风的强度和风叶的设计。

实例四:车轮滚动车轮的滚动也可以看作是一种圆周运动。

当车轮开始滚动时,轮胎与地面之间的摩擦力提供了一个向心力,使得车轮保持在一条直线上。

我们可以观察到车轮的外侧速度较大,而内侧速度较小,这是因为车轮在滚动过程中,中心处的点相对于半径较大的外侧点要走更长的路程。

实例五:转盘游乐设备转盘游乐设备也是一个典型的圆周运动实例。

当转盘开始旋转时,内侧的座椅相对于外侧的座椅要经历一个更小的半径,因此内侧的座椅速度较小,而外侧的座椅速度较大。

这种圆周运动会给乘坐者带来旋转的感觉,增加乘坐的刺激性。

总的来说,圆周运动在日常生活和科学研究中非常常见,上述实例仅仅是其中的几个例子。

人们通过对圆周运动的观察和研究,不仅可以深化对运动规律的理解,还可以为工程设计和科学实验提供有价值的参考。

3圆周运动的实例分析

3圆周运动的实例分析

3圆周运动的实例分析圆周运动是物体在绕着固定轴线做旋转运动的一种形式。

在自然界和科学实验中,圆周运动是非常常见的现象。

本文将通过分析三个实例来说明圆周运动的特点和应用。

第一个实例是地球围绕太阳的公转。

地球每年绕着太阳做一圈,形成一个近似椭圆的轨道。

这个运动符合圆周运动的特征:地球始终围绕着太阳旋转,轴线是固定不变的。

地球的公转速度恒定且方向一致,因此地球与太阳之间的距离也是保持不变的。

这个实例的重要应用是确定地球的运行轨道和计算地球公转的时间。

第二个实例是电子在原子核周围的轨道运动。

原子核带正电荷,电子带负电荷,它们之间形成静电力。

因此,电子会受到中心力的作用,绕着原子核做圆周运动。

这个实例也符合圆周运动的特点:电子的运动轨道是固定的,轴线是静止的原子核。

电子的速度恒定且方向一致,因此距离原子核的距离保持不变。

这个实例的重要应用是解释原子的结构和性质。

第三个实例是汽车在直道上行驶时的转弯运动。

当汽车在直道上行驶时,可以看作是做着圆周运动。

汽车的轮胎信号和地面之间会产生摩擦力,并提供一个向心力。

这个向心力使汽车沿着弯道做圆周运动。

这个实例也符合圆周运动的特点:汽车的运动轨道是固定的,轴线是路面。

汽车的速度恒定且方向一致,因此转弯时,汽车与弯道之间的距离保持不变。

这个实例的重要应用是研究汽车的制动和转向性能。

总结起来,圆周运动是一种常见的物理现象,在自然界和科学实验中有广泛的应用。

地球围绕太阳的公转、电子在原子核周围的轨道运动和汽车在直道上行驶时的转弯运动都是典型的圆周运动实例。

通过分析这些实例,我们可以深入了解圆周运动的特点和应用。

圆周运动实例1汽车过拱桥

圆周运动实例1汽车过拱桥
向心力方向始终指向圆心, 与汽车的运动方向垂直。
汽车过拱桥的速度和加速度分析
速度分析
01
汽车在拱桥上行驶的速度大小和方向不断变化,导致向心力大
小和方向也随之变化。
加速度分析
02
由于向心力的作用,汽车在拱桥上行驶时会产生加速度,加速
度的大小和方向也随速度的变化而变化。
安全速度限制
03
为了确保汽车安全通过拱桥,应限制汽车的速度在安全范围内。
险。
拓展研究
通过对圆周运动实例的研究,可 以进一步探索更复杂的运动形式 和现象,推动科学技术的发展。
02
圆周运动的基本概念
角速度
角速度是指单位时间内物体转过的角 度,用希腊字母ω表示,单位是弧度/ 秒。
角速度的公式:ω=θ/t,其中θ是物体 转过的角度,t是时间。
线速度
线速度是指物体在圆周上移动的快慢程度,用符号v表示,单 位是米/秒。

汽车过拱桥是一个典型的圆周运 动问题,需要建立数学模型来描 述汽车的运动轨迹和受力情况。
定义变量和参数
需要定义汽车的质量、速度、摩 擦力、重力加速度等参数,以及 拱桥的高度、宽度、曲率半径等 参数。
建立方程
根据牛顿第二定律和向心力公式, 建立汽车过拱桥的数学方程,包 括运动方程和受力方程。
05
结论
研究成果总结
汽车在通过拱桥时,受到重力和支持力的作用,同时由于向心力的作用,汽车会沿 着圆周路径运动。
实验结果表明,汽车在过拱桥时,向心力与速度、质量和半径有关,速度越大、质 量越小、半径越小,所需的向心力越大。
实验还发现,当汽车的速度达到一定程度时,向心力会超过路面所能承受的极限, 导致汽车发生侧滑或翻滚。
重力与支持力的关系

圆周运动的实例及临界问题

圆周运动的实例及临界问题

圆周运动的实例及临界问题一、汽车过拱形桥1.汽车在拱形桥最高点时,向心力:F 合=mg -N =m v 2R.支持力:N =mg -mv 2R<mg ,汽车处于失重状态.2.汽车对桥的压力N ′与桥对汽车的支持N 是一对相互作用力,大小相等,所以汽车通过最高点时的速度越大,汽车对桥面的压力就越小.例1 一辆质量m =2 t 的轿车,驶过半径R =90 m 的一段凸形桥面,g =10 m/s 2,求:(1)轿车以10 m/s 的速度通过桥面最高点时,对桥面的压力是多大? (2)在最高点对桥面的压力等于轿车重力的一半时,车的速度大小是多少?解析 (1)轿车通过凸形桥面最高点时,受力分析如图所示:合力F =mg -N ,由向心力公式得mg -N =m v 2R,故桥面的支持力大小N =mg -m v 2R=(2 000×10-2 000×10290) N ≈1.78×104 N根据牛顿第三定律,轿车在桥面最高点时对桥面压力的大小为1.78×104 N.(2)对桥面的压力等于轿车重力的一半时,向心力F ′=mg -N ′=0.5mg ,而F ′=m v ′2R,所以此时轿车的速度大小v ′=0.5gR =0.5×10×90 m/s ≈21.2 m/s答案 (1)1.78×104 N (2)21.2 m/s 二、圆锥摆模型1.运动特点:人及其座椅在水平面内做匀速圆周运动,悬线旋转形成一个圆锥面.图1 2.运动分析:将“旋转秋千”简化为圆锥摆模型(如图1所示)(1)向心力:F 合=mg tan_α (2)运动分析:F 合=mω2r =mω2l sin α (3)缆绳与中心轴的夹角α满足cos α=g ω2l . 图6例2 如图6所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面做匀速圆周运动,以下物理量大小关系正确的是( ) A .速度v A >v B B .角速度ωA >ωBC .向心力F A >F BD .向心加速度a A >a B解析 设漏斗的顶角为2θ,则小球的合力为F 合=mg tan θ,由F =F 合=mg tan θ=mω2r =m v 2r=ma ,知向心力F A =F B ,向心加速度a A =a B ,选项C 、D错误;因r A >r B ,又由v =grtan θ和ω=gr tan θ知v A >v B 、ωA <ωB ,故A 对,B 错.答案 A三、火车转弯1.运动特点:火车转弯时做圆周运动,具有向心加速度,需要向心力.2.铁路弯道的特点:转弯处外轨略高于内轨,铁轨对火车的支持力斜向弯道的内侧,此支持力与火车所受重力的合力指向圆心,为火车转弯提供了一部分向心力.例3铁路在弯道处的内、外轨道高度是不同的,已知内、外轨道平面与水平面的夹角为θ,如图7所示,弯道处的圆弧半径为R,若质量为m的火车转弯时速度等于gR tan θ,则( ) A.内轨对内侧车轮轮缘有挤压B.外轨对外侧车轮轮缘有挤压C.这时铁轨对火车的支持力等于mgcos θD.这时铁轨对火车的支持力大于mgcos θ解析由牛顿第二定律F合=m v2R,解得F合=mg tan θ,此时火车受重力和铁路轨道的支持力作用,如图所示,N cos θ=mg,则N=mgcos θ,内、外轨道对火车均无侧向压力,故C正确,A、B、D错误.答案C课后巩固训练2.(圆锥摆模型)两个质量相同的小球,在同一水平面内做匀速圆周运动,悬点相同,如图9所示,A运动的半径比B的大,则( )A.A所需的向心力比B的大B.B所需的向心力比A的大C.A的角速度比B的大D.B的角速度比A的大解析小球的重力和绳子的拉力的合力充当向心力,设悬线与竖直方向夹角为θ,则F=mg tan θ=mω2l sin θ,θ越大,向心力F越大,所以A对,B错;而ω2=gl cos θ=gh.故两者的角速度相同,C、D错.答案A3.半径为R的光滑半圆球固定在水平面上(如图2所示),顶部有一小物体A,今给它一个水平初速度v0=Rg,则物体将( )A.沿球面下滑至M点B.沿球面下滑至某一点N,便离开球面做斜下抛运动C.沿半径大于R的新圆弧轨道做圆周运动D.立即离开半圆球做平抛运动答案D解析当v0=gR时,所需向心力F=mv20R=mg,此时,物体与半球面顶部接触但无弹力作用,物体只受重力作用,故做平抛运动.4.质量为m的飞机,以速率v在水平面内做半径为R的匀速圆周运动,空气对飞机作用力的大小等于( )A.m g2+v4R2B.mv2RC.mv4R2-g2D.mg解析空气对飞机的作用力有两个作用效果,其一:竖直方向的作用力使飞机克服重力作用而升空;其二:水平方向的作用力提供向心力,使飞机可在水平面内做匀速圆周运动.对飞机的受力情况进行分析,如图所示.飞机受到重力mg 、空气对飞机的作用力F 升,两力的合力为F ,方向沿水平方向指向圆心.由题意可知,重力mg与F 垂直,故F 升=m 2g 2+F 2,又F =m v 2R,联立解得F 升=mg 2+v 4R2.图3答案 A5.质量不计的轻质弹性杆P 插在桌面上,杆端套有一个质量为m 的小球,今使小球沿水平方向做半径为R 的匀速圆周运动,角速度为ω,如图4所示,则杆的上端受到的作用力大小为( )A .m ω2RB.m 2g 2-m 2ω4R 2C.m 2g 2+m 2ω4R 2 D .不能确定 答案 C解析 小球在重力和杆的作用力下做匀速圆周运动.这两个力的合力充当向心力必指向圆心,如图所示.用力的合成法可得杆对球的作用力:N =(mg )2+F 2=m 2g 2+m 2ω4R 2,根据牛顿第三定律,小球对杆的上端的作用力N ′=N ,C 正确.图56.火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶速度为v ,则下列说法中正确的是( )A .当以v 的速度通过此弯路时,火车重力与轨道面支持力的合力提供向心力B .当以v 的速度通过此弯路时,火车重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力C .当速度大于v 时,轮缘挤压外轨D .当速度小于v 时,轮缘挤压外轨解析 当以v 的速度通过此弯路时,向心力由火车的重力和轨道的支持力的合力提供,A 对,B 错;当速度大于v 时,火车的重力和轨道的支持力的合力小于向心力,外轨对轮缘有向内的弹力,轮缘挤压外轨,C 对,D 错.答案 AC解析 设赛车的质量为m ,赛车受力分析如图所示,可见:F 合=mg tan θ,而F 合=m v 2r ,故v =gr tan θ.7.如图11,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小x =0.4 m .设物块所受的最大静摩擦力等于滑动摩擦力,重力加速度g 取10 m/s 2.求:图11(1)物块做平抛运动的初速度大小v 0; (2)物块与转台间的动摩擦因数μ. 答案 (1)1 m/s (2)0.2解析 (1)物块做平抛运动,竖直方向有H =12gt 2①水平方向有x =v 0t ② 联立①②两式得v 0=xg2H=1 m/s ③ (2)物块离开转台时,最大静摩擦力提供向心力,有μmg =m v 20R④联立③④得μ=v 20gR=0.28.(多选)如图5所示,质量为m 的物体,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直固定放置,开口向上,滑到最低点时速度大小为v ,若物体与球壳之间的动摩擦因数为μ,则物体在最低点时,下列说法正确的是( )图5A .受到的向心力为mg +m v 2RB .受到的摩擦力为μm v 2RC .受到的摩擦力为μ(mg +m v 2R)D .受到的合力方向斜向左上方解析 物体在最低点做圆周运动,则有F N -mg=m v 2R,解得F N =mg +m v 2R ,故物体受到的滑动摩擦力F f =μF N =μ(mg +m v 2R),A 、B 错误,C 正确.物体受到竖直向下的重力、水平向左的摩擦力和竖直向上的支持力(支持力大于重力),故物体所受的合力斜向左上方,D 正确. 答案 CD临界问题分析 一:水平面内圆周运动的临界问题处理临界问题的解题步骤(1)判断临界状态:有些题目中有“刚好”“恰好”“正好”等字眼,明显表明题述的过程存在着临界点;若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应着临界状态;若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在着极值,这个极值点也往往对应着临界状态. (2)确定临界条件:判断题述的过程存在临界状态之后,要通过分析弄清临界状态出现的条件,并以数学形式表达出来.(3)选择物理规律:当确定了物体运动的临界状态和临界条件后,要分别对不同的运动过程或现象,选择相对应的物理规律,然后列方程求解.例1 如图8所示,高速公路转弯处弯道圆半径R =100 m ,汽车轮胎与路面间的动摩擦因数μ=0.23.最大静摩擦力与滑动摩擦力相等,若路面是水平的,问汽车转弯时不发生径向滑动(离心现象)所允许的最大速率v m 为多大?当超过v m 时,将会出现什么现象?(g =9.8 m/s 2)解析 在水平路面上转弯,向心力只能由静摩擦力提供,设汽车质量为m ,则f m =μmg ,则有mv 2mR=μmg ,v m =μgR ,代入数据可得v m ≈15 m/s =54 km/h.当汽车的速度超过54 km/h 时,需要的向心力m v 2R大于最大静摩擦力,也就是说提供的合外力不足以维持汽车做圆周运动所需的向心力,汽车将做离心运动,严重的将会出现翻车事故.答案 54 km/h 汽车做离心运动或出现翻车事故2.[相对滑动的临界问题](2014·新课标全国Ⅰ·20)(多选)如图6所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )图6 A .b 一定比a 先开始滑动 B .a 、b 所受的摩擦力始终相等C .ω= kg2l是b 开始滑动的临界角速度 D .当ω= 2kg3l时,a 所受摩擦力的大小为kmg 解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :f a =mω 2a l ,当f a =kmg 时,kmg =mω 2a l ,ωa = kg l;对木块b :f b =mω 2b ·2l ,当f b =kmg 时,kmg =mω 2b ·2l ,ωb =kg2l,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则f a =mω2l ,f b =mω2·2l ,f a <f b ,选项B 错误;当ω=kg 2l时b 刚开始滑动,选项C 正确;当ω=2kg3l时,a 没有滑动,则f a =mω2l =23kmg ,选项D 错误.答案 AC3.[接触与脱离的临界问题]如图8所示,用一根长为l =1 m 的细线,一端系一质量为m =1 kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为F T .(g 取10 m/s 2,结果可用根式表示)求:图8(1)若要小球刚好离开锥面,则小球的角速度ω0至少为多大?(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大?解析 (1)若要小球刚好离开锥面,则小球只受到重力和细线的拉力,受力分析如图所示.小球做匀速圆周运动的轨迹圆在水平面上,故向心力水平,在水平方向运用牛顿第二定律及向心力公式得:mg tan θ=mω 20l sin θ 解得:ω 20=gl cos θ即ω0= g l cos θ=52 2 rad/s. (2)同理,当细线与竖直方向成60°角时,由牛顿第二定律及向心力公式得:mg tan α=mω′2l sin α 解得:ω′2=g l cos α,即ω′=g l cos α=2 5rad/s.二:竖直面内圆周运动的临界问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管)约束模型”. 2 绳模型 杆模型 常见类型均是没有支撑的小球 均是有支撑的小球 过最高点的临界条件 由mg =m v 2r 得v 临=gr 由小球恰能做圆周运动得v 临=010.[过山车的分析](多选)如图9所示甲、乙、丙、丁是游乐场中比较常见的过山车,甲、乙两图的轨道车在轨道的外侧做圆周运动,丙、丁两图的轨道车在轨道的内侧做圆周运动,两种过山车都有安全锁(由上、下、侧三个轮子组成)把轨道车套在了轨道上,四个图中轨道的半径都为R,下列说法正确的是( )图9A.甲图中,当轨道车以一定的速度通过轨道最高点时,座椅一定给人向上的力B.乙图中,当轨道车以一定的速度通过轨道最低点时,安全带一定给人向上的力C.丙图中,当轨道车以一定的速度通过轨道最低点时,座椅一定给人向上的力D.丁图中,轨道车过最高点的最小速度为gR解析在甲图中,当速度比较小时,根据牛顿第二定律得,mg-F N=mv2R,即座椅给人施加向上的力,当速度比较大时,根据牛顿第二定律得,mg+F N=mv2R,即座椅给人施加向下的力,故A错误;在乙图中,因为合力指向圆心,重力竖直向下,所以安全带给人一定是向上的力,故B正确;在丙图中,当轨道车以一定的速度通过轨道最低点时,合力方向向上,重力竖直向下,则座椅给人的作用力一定竖直向上,故C正确;在丁图中,由于轨道车有安全锁,可知轨道车在最高点的最小速度为零,故D错误.答案BC11.[杆模型分析](2014·新课标Ⅱ·17)如图10所示,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g.当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )图10A.Mg-5mg B.Mg+mg C.Mg+5mg D.Mg+10mg解析设大环半径为R,质量为m的小环下滑过程中遵守机械能守恒定律,所以12mv2=mg·2R.小环滑到大环的最低点时的速度为v=2gR,根据牛顿第二定律得F N-mg=mv2R,所以在最低点时大环对小环的支持力F N=mg+mv2R=5mg.根据牛顿第三定律知,小环对大环的压力F N′=F N=5mg,方向向下.对大环,据平衡条件轻杆对大环的拉力T=Mg+F N′=Mg+5mg.根据牛顿第三定律,大环对轻杆拉力的大小为T′=T=Mg+5mg,故选项C正确,选项A、B、D错误.答案C(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的配合和支持)。

生活中圆周运动

生活中圆周运动

03
通过微积分可以计算圆周运动的轨矢量运算在处理复杂问题时的作用
描述圆周运动的物体的位置和速度
矢量运算可以用来描述圆周运动的物体的位置和速度,通过矢量的加法和减法可以得到物体在不 同时刻的位置和速度。
分析圆周运动的合成和分解
通过矢量运算可以分析圆周运动的合成和分解,如将复杂的圆周运动分解为简单的匀速直线运动 和匀变速直线运动的合成。
03
钟表、指南针等日常用品
钟表指针的旋转、指南针的指向都涉及圆周运动,这些日常用品的设计
和使用都离不开圆周运动原理。
促进科技发展,推动社会进步
航天器轨道设计
航天器的轨道设计需要精确计算和控制圆周运动的参数, 以确保航天器能够按照预定轨道稳定运行,这对于人类的 太空探索和科学研究具有重要意义。
精密机械制造
三角函数在圆周运动中应用
1 2
描述匀速圆周运动的物体的位置
三角函数可以用来描述匀速圆周运动的物体在某 个时刻的位置,通过角度和半径的关系,可以准 确地确定物体的坐标。
分析圆周运动的周期性
三角函数具有周期性,因此可以用来分析圆周运 动的周期性,如转速、周期、频率等。
3
计算向心加速度和向心力
在向心加速度和向心力的计算中,需要用到三角 函数的导数和积分,以及三角函数之间的关系, 如正弦定理、余弦定理等。
波动可以通过不同的介质进行传播,如固体、液体和气体。在传播过程中,波动会遵循一定的传播规 律,如反射、折射和衍射等。此外,波动的传播速度会受到介质性质的影响。
曲线运动在自然界和人类活动中的普遍性
自然界中的曲线运动
地球围绕太阳公转、月亮围绕地球旋转 、行星的自转等都是自然界中的曲线运 动现象。这些运动遵循着天体物理学的 规律,呈现出周期性和稳定性。

高中物理:竖直平面内的圆周运动

高中物理:竖直平面内的圆周运动

高中物理:竖直平面内的圆周运动 (竖直平面内的圆周运动——是典型的变速圆周运动)(圆周运动实例) ①火车转弯 ②汽车过拱桥、凹桥3③飞机做俯冲运动时,飞行员对座位的压力。

④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。

⑤万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、重力与弹力的合力——锥摆、(关健要搞清楚向心力怎样提供的)(1)火车转弯:设火车弯道处内外轨高度差为h ,内外轨间距L ,转弯半径R 。

由于外轨略高于内轨,使得火车所受重力和支持力的合力F 合提供向心力。

为转弯时规定速度)(得由合0020sin tan v LRgh v R v m L hmg mg mg F ===≈=θθR g v ⨯=θtan 0(是内外轨对火车都无摩擦力的临界条件)①当火车行驶速率V 等于V 0时,F 合=F 向,内外轨道对轮缘都没有侧压力 ②当火车行驶V 大于V 0时,F 合<F 向,外轨道对轮缘有侧压力,F 合+N=R2mv③当火车行驶速率V 小于V 0时,F 合>F 向,内轨道对轮缘有侧压力,F 合-N'=R2mv即当火车转弯时行驶速率不等于V 0时,其向心力的变化可由内外轨道对轮缘侧压力自行调节,但调节程度不宜过大,以免损坏轨道。

火车提速靠增大轨道半径或倾角来实现2.解决匀速圆周运动问题的一般方法(1)明确研究对象,必要时将它从转动系统中隔离出来。

(2)找出物体圆周运动的轨道平面,从中找出圆心和半径。

(3)分析物体受力情况,千万别臆想出一个向心力来。

(4)建立直角坐标系(以指向圆心方向为x 轴正方向)将力正交分解。

(5)⎪⎩⎪⎨⎧=∑===∑02222y x F R Tm R m R v m F )(建立方程组πω3.离心运动在向心力公式F n =mv 2/R 中,F n 是物体所受合外力所能提供的向心力,mv 2/R 是物体作圆周运动所需要的向心力。

匀速圆周运动实例

匀速圆周运动实例

展示火车转弯的情形,提出问题:火车能在高出路面的工 字型轨道滚滚向前而不越轨一寸,这是为什么?火车能安 全的通过弯道,这又是为什么?
1、 “水流星”模型 课件展示杂技演员表演“水流星”节目,我们发现不管演员怎样抡,水都
不会从杯里洒出,甚至杯子在竖直面内运动到最高点时,已经杯口朝下,水 也不会从杯子里洒出。这是为什么?
① 当v< gr 时,N<0,实际情况杯底不可能给水向上的力,所以,此时水
将会流出杯子。
1、在水平面上转弯的汽车,向心力是( B )
A、重力和支持力的合力
பைடு நூலகம்
B、静摩檫力
C、滑动摩檫力
D、重力、支持力和牵引力的合力
2、质量为m的小球在竖直平面内的圆形轨道内侧运动,若经 最高点不脱离轨道的临界速度为v,则当小球以2v速度经过最 高点时,小球对轨道的压力大小为( C ) A、0 B、mg C、3mg D、5mg
解: 设水的质量为m,杯子运动到最高点时速率为v,
绳长为r则有: N+mg=mv2/r
∵N≥0 ∴v≥ gr
① 当v= gr时,N=0,水在杯中刚好不流出,
此时水作圆周运动所需向心力刚好完全由重力提供, 此为临界条件。
② 当v> gr 时,N>0,杯底对水有一向下的
力的作用,此时水作圆周运动所需向心力由N和重力G的合力提供。
3、把总质量为M的盛有水的桶,系在长L的绳子一端,使
桶在竖直平面内绕绳另一端做圆周运动,要使桶运动到最高
点时水不流出,水桶这时速度应
,而这时绳中拉力的
最小值为

5、质量是1×103kg的汽车驶过一座拱桥,已知桥顶点桥面 的圆弧半径是90m,g=10m/s2。 求: (1 )汽车以15 m/s的速度驶过桥顶时,汽车对桥面的压力; (2) 汽车以多大的速度驶过桥顶时,汽车对桥面的压力为 零?

生活中的圆周运动

生活中的圆周运动

第7节生活中的圆周运动1.火车转弯处,外轨略高于内轨,使得火车所受支持力和重力的合力提供向心力。

2.汽车过拱形桥时,在凸形桥的桥顶上,汽车对桥的压力小于汽车重力,汽车在桥顶的安全行驶速度小于gR ;汽车在凹形桥的最低点处,汽车对桥的压力大于汽车的重力。

3.绕地球做匀速圆周运动的航天器中,宇航员具有指向地心的向心加速度,处于失重状态。

4.做圆周运动的物体,当合外力突然消失或不足以提供向心力时, 物体将做离心运动。

1.铁路的弯道(1)火车在弯道上的运动特点:火车在弯道上运动时做圆周运动,因而具有向心加速度,由于其质量巨大,需要很大的向心力。

(2)转弯处内外轨一样高的缺点:如果转弯处内外轨一样高,则由外轨对轮缘的弹力提供向心力,这样铁轨和车轮极易受损。

(3)铁路弯道的特点: ①转弯处外轨略高于内轨。

②铁轨对火车的支持力不是竖直向上的,而是斜向弯道内侧。

③铁轨对火车的支持力与火车所受重力的合力指向轨道的圆心,它提供了火车做圆周运动的向心力。

2.拱形桥(1)向心力来源(最高点和最低点):汽车做圆周运动,重力和桥面的支持力的合力提供向心力。

(2)动力学关系:①如图5-7-1所示,汽车在凸形桥的最高点时,满足的关系为mg -F N =m v 2R ,F N =mg -m v 2R,由牛顿第三定律可知汽车对桥面的压力大小等于支持力,因此汽车在凸形桥上运动时,对桥的压力小于重力。

当 图5-7-1v =gR 时,其压力为零。

②如图5-7-2所示,汽车经过凹形桥的最低点时,F N-mg =m v 2R ,F N =mg +m v 2R,汽车对桥面的压力大小F N ′=F N 。

图5-7-2汽车过凹形桥时,对桥的压力大于重力。

3.航天器中的失重现象 (1)航天器在近地轨道的运动:①对于航天器,重力充当向心力, 满足的关系为mg =m v 2R ,航天器的速度v =gR 。

②对于航天员,由重力和座椅的支持力提供向心力,满足的关系为mg -F N =m v 2R 。

竖直平面内的圆周运动

竖直平面内的圆周运动

分析:
F2
A
最高点:
V1(V2)
v mg F1 m R

2 1
v mg F2 m R
2 2
F1 G
;
R
F3
V3 G
v 最低点: F3 mg m R
思考:小球在最高点的最小速度 可以是多少?什么时候外管壁对 小球有压力,什么时候内管壁对 小球有支持力?什么时候内外管 壁都没有压力?
要通过最高点,此时轻杆的拉力需要大 于等于5mg,速度 V 5gR
拓展:物体在管型轨道内的运动
如图,有一内壁光滑竖直放 置的管型轨道半径为R,内 有一质量为m的小球,沿其 竖直方向上的做变速圆周运 动,小球的直径刚好与管的 内径相等
(1)小球在运动到最高点的时候速度与受力 的关系是怎样的? (2)小球运动到最低点的时候速度与受力的 关系又是怎样?
练习5
杆长为 L ,球的质量为 m ,杆连球在竖直平面内绕 轴 O 自由转动,已知在最高点处,杆对球的弹力大小 为F=1/2mg,求这时小球的速度大小。 解:小球所需向心力向下,本题中 F=1/2mg<mg, 所以弹力的方向可能向上,也可能向下。
⑴若F 向上,则
mv 2 mg F , L
⑵若F 向下,则
v vmin gr

当质点的速度小于这一值时,质点将运动不到最
2、最低点: 最低点的向心力方程:
mV FN mg R
2
V
可知此时绳子的拉力不可能为零,其最小值为 mg,速度为零,但不能通过最高点。 要通过最高点,此时绳子的拉力需要大于等 于6mg,速度 V 5gR
拓展:物体沿竖直内轨运动
练习1
绳系着装有水的桶,在竖直平面内做圆周运动, 水的质量为0.5Kg,绳长60Cm,求: (1)最高点水不流出的最小速率; (2)水在最高点速率为3m/s时,水对桶底的压力。

圆周运动实例

圆周运动实例

拓展:汽车转弯
思考:汽车在水平地面上转弯是什么力提供向 心力的呢?
N
f静
mg
关于向心力
1:来源:分析和解决匀速圆周运动的问题, 关键的是要把向心力的来源搞清楚。 2:说明: a:向心力是按效果命名的力; b:任何一个力或几个力的合力只要它的作用 效果是使物体产生向心加速度,它就是物体所 受的向心力; c:不能认为做匀速圆周运动的物体除了受到 另外物体的作用外,还要另外受到向心力。
5.8 生活中的圆周运动
►情景引入:
►情景引入:
赛车事故
水流星
圆 周 运 动 的 实 例
一、水平面内的圆周运动(火车转弯)
思考:
• 在平直轨道上匀速 行驶的火车,所受 的合力为零,从内 外铁轨相平的情况 分析,火车在转弯 时是什么力提供向 心力?这种方法在 实际中可取吗?为 什么?
• 为了使铁轨不受到 损坏,在铁轨铺设 方面,应该采取怎 样的措施呢?
建凹形桥,也叫“过水路面”。请你根据上面分析汽 车通过凸形桥的思路,分析一下汽车通过凹形桥最低 点时对桥的压力比汽车的重量大些还是小些? N 解:汽车通过底部时,受力如图:
由牛顿第二定律: 2 v - mg m N r2 由牛顿第三定律:N ' N mg + m
超重
G
m +mv N r g
铁路的弯道 ——内外轨道一样高
F F向心力
N
v2 m r
F
G 外轨对轮缘的弹力提供向心力
车轮介绍
内轮
内轨
外轮 外轨
研究与讨论
请设计一个方案让火车沿轨道安全通过弯道
设计方案思想简述 画出草图 简单计算说明 可行性分析
• 【学生活动】设计火车弯道 • 学生分组讨论,提出可行性方案

圆周运动的实例

圆周运动的实例

圆周运动的实例1.水平圆盘上的物体与圆盘相对静止绕过圆盘圆心的竖直轴转动.【例】 汽车在水平路面转弯可以看成是圆周运动.转弯半径是R,轮胎与地面的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力.为了防止汽车侧滑,则汽车转弯的速度不能超过多少?(νgR v =)2.圆锥摆.【例】(2008广东)有一种叫“飞椅”的游乐项目,示意图如图所示,长为L 的钢绳一端系着座椅,另一端固定在半径为r 的水平转盘边缘,转盘可绕穿过其中心的竖直轴转动.当转盘以角速度ω匀速转动时,钢绳与转轴在同一竖直平面内,与竖直方向的夹角为θ,不计钢绳的重力,求转盘转动的角速度ω与夹角θ的关系.(Lsin θr gtan θω+=)3.小球沿光滑漏斗壁在某一水平面内做匀速圆周运动.【例】如图,内壁光滑的圆锥的轴线垂直于水平面,圆锥固定不动,两个质量相同的球A 、B 紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则( AB ) A.球A 的线速度必大于球B 的线速度 B.球A 的角速度必小于球B 的角速度 C.球A 的运动周期必小于球B 的运动周期 D.球A 对筒壁的压力必大于球B 对筒壁的压力 【例】(2009广东)(1)为了清理堵塞河道的冰凌,空军实施投弹爆破。

飞机在河道上空高H 处以速度v 0水平匀速飞行,投掷下炸弹并击中目标。

求炸弹刚脱离飞机到击中目标所飞行的水平距离及击中目标时的速度大小。

(不计空气阻力) (2)如图所示,一个竖直放置的圆锥筒可绕其中心轴OO 1转动,筒内壁粗糙,筒口半径和筒高分别为R 和H,筒内壁A 点的高度为筒高的一半.内壁上有一质量为m 的小物块.求: ①当筒不转动时,物块静止在筒壁A 点受到的摩擦力和支持力的大小;②当物块在A 点随筒做匀速转动,且其所受到的摩擦力为零时,筒转动的角速度. (① 22f HR mgh F +=, 22N HR mgR F +=,②R2gH ω=)4.汽车、火车在弯道行驶.【例】公路拐弯处路面造的内低外高,设路面与水平面的夹角为θ,设拐弯路段时半径为R 的圆弧,当车速为v 时车轮与路面之间的横向(即垂直于前进方向)摩擦力为零,则θ应等于多少? (Rgv tan θ2=)Lr θ【例】公路急转弯处通常是交通事故多发地带。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如图所示,当汽车通过拱桥顶点时的速度为10m/s时,车对桥的压力是车重的3/4,如果要使汽车在粗糙的桥面行驶至桥顶时,不受摩擦力的作用,则汽车通过桥的速度应为A.15m/s;B.20m/s;C.25m/s; D.30m/sB如图所示,已知m A=2m B=3m c,它们距轴的关系是,三物体与转盘表面的动摩擦因数相同,当转盘的速度逐渐增大时A.物体A先滑动 B.物体B先滑动C.物体C先滑动 D.B、C同时开始滑动B(10分)如图所示一辆质量为500kg的汽车静止在一座半径为40m的圆弧形拱桥顶部.(取g=10m/s2)(1)此时汽车对圆弧形拱桥的压力是多大?(2)如果汽车以6m/s的速度经过拱桥的顶部,则汽车对圆弧形拱桥的压力是多大?(3)汽车以多大速度通过拱桥的顶部时,汽车对圆弧形拱桥的压力恰好为零?甲、乙两名溜冰运动员,正在表演冰上芭蕾舞,已知男演员M甲=60kg,女演员M乙=40kg,当两人面对面拉着手做匀速圆周运动时,如图所示,两人相距0.9m,下列判断正确的是A.两人的运动半径不同,甲为0.42m,乙为0.48mB.两人的运动半径相同,都是0.45mC.两人的角速度相同D.两人的线速度相同C如图所示的是杂技演员表演的“水流星”。

一根细长绳的一端,系着一个盛了水的容器。

以绳的另一端为圆心,使容器在竖直平面内做半径为R的圆周运动。

N为圆周的最高点,M为圆周的最低点。

若“水流星”通过最低点时的速度。

则下列判断正确的是A.“水流星”到最高点时的速度为零B.“水流星”通过最高点时,有水从容器中流出C.“水流星”通过最高点时,水对容器底没有压力D.“水流星”通过最高点时,绳对容器有向下的拉力C如图所示,一轻杆一端固定质量为m的小球,以另一端O为圆心,使小球做半径为R的圆周运动,以下说法正确的是()A.小球过最高点时,杆所受的弹力可以等于零B.小球过最高点的最小速度为C.小球过最高点时,杆对球的作用力可以与球所受重力方向相反,此时重力不可能小于杆对球的作用力D.小球过最高点时,杆对球的作用力一定与小球所受重力方向相反AC长度为L=0.4m的轻质细杆OA,A端连有一质量为m=2kg的小球,如图所示,小球以O点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是1m/s,g取10m/s2,则此时细杆对小球作用力为( )A.15N,方向向上 B.15N,方向向下C.5N,方向向上 D.5N,方向向下A图所示,半径为R,内径很小的光滑半圆管竖直放置。

两个质量均为m的小球a、b以不同的速度进入管内,a通过最高点A时,对管壁上部的压力为3mg,b通过最高点A时,对管壁下部的压力为0.75mg,求a、b两球落地点间的距离。

两个小球在最高点时,受重力和管壁的作用力,这两个力的合力作为向心力,离开轨道后两球均做平抛运动,A、B两球落地点间的距离等于它们平抛运动的水平位移之差。

对A球:3mg+mg=m(2分)v A=(1分)对B球:mg-0.75mg=m(2分)v B = (1分)由平抛运动规律可得落地时它们的水平位移为:s A =v A t=v A =4 R (2分)s B =v B t=v B =R (1分)∴s A -s B =3R (1分)如图,铁路转弯处外轨应略高于内轨,火车必须按规定的速度行驶,则转弯时( )A .火车所需向心力沿水平方向指向弯道内侧B .弯道半径越大,火车所需向心力越大C .火车的速度若小于规定速度,火车将做离心运动D .火车若要提速行驶,弯道的坡度(即为轨道与水平面的夹角)应适当增大AD铁路在弯道处的内外轨道高低是不同的,已知内外轨道对水平面倾角为θ(如图),弯道处的圆弧半径为R ,若质量为m 的火车转弯时速度小于,则( )A .内轨对内侧车轮轮缘有挤压;B .外轨对外侧车轮轮缘有挤压;C .这时铁轨对火车的支持力小于mg/cosθ;D .这时铁轨对火车的支持力大于mg/cosθ.AC火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定。

若在某转弯处规定行驶的速度为v 则下列说法中正确的是A.当火车以v 的速度通过此弯路时,火车所受重力与轨道面支持力的合力提供向心力B.当火车以v 的速度通过此弯路时,火车所受重力、轨道面支持力和外轨对轮缘弹力的 合力提供向心力C.当火车速度大于v 时,轮缘挤压外轨D.当火车速度小于v 时,轮缘挤压外轨如图所示,具有圆锥形状的回转器(陀螺),半径为R,绕它的轴在光滑的桌面上以角速度快速旋转,同时以速度向左运动,若回转器的轴一直保持竖直,为使回转器底部从左侧桌子边缘滑出后不会与桌子边缘发生碰撞,至少应等于A.B.C.D.D如图一内壁光滑的圆锥筒的轴线垂直于水平面,锥筒固定不动,有两个质量相同的小球A 和B紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则A.球A的线速度必定大于球B的线速度B.球A的角速度必定小于球B的角速度C.球A的运动周期必定小于球B的运动周期D.球A对筒壁的压力必定大于球B对筒壁的压力A B如图所示,P、Q两个相同的小球在同一个固定的圆台形空桶内,在两个不同高度的水平面上,沿光滑桶壁做匀速圆周运动。

下列判断正确的是()A. P、Q做圆周运动的周期相同B. P、Q对桶壁的压力大小相同C. P所受的向心力较大D. P做圆周运动的线速度较大BAC如图所示,匀速转动的水平圆盘上放有质量均为m的小物体A、B,AB间用细线沿半径方向相连.它们到转轴的距离分别为RA =0.2 m、RB=0.3m.A、B与盘面间的最大静摩擦力均为重力的0.4倍.g取10m/s2,试求:(1)当细线上开始出现张力时圆盘的角速度ω(2)当A开始滑动时圆盘的角速度ω(3)在A即将滑动时,烧断细线,A、B将分别做什么运动?:(1)当细线上开始出现张力时,表明B与盘间的静摩擦力已达最大,则:①……………… (2分)解得:②……………………(1分)(2)当A开始滑动时,表明A与盘间的静摩擦力也已达最大,则:对A:③……………………(2分)对B:④ ……………………(2分)由③④两式联解得:⑤…………………(1分)(3)烧断细线,A与盘间静摩擦力减小,继续随盘做半径为R A=20cm的圆周运动。

而B由于最大静摩擦力不足以提供向心力而做离心运动。

…………………………………………………………(2分)图甲为游乐园中“空中飞椅”的游戏设施,它的基本装置是将绳子上端固定在转盘的边缘上,绳子的下端连接座椅,人坐在座椅上随转盘旋转而在空中飞旋。

若将人和座椅看成一个质点,则可简化为如图乙所示的物理模型,其中P为处于水平面内的转盘,可绕竖直转轴OO'转动,设绳长l=10m,质点的质量m=60kg,转盘静止时质点与转轴之间的距离d=4.0m,转盘逐渐加速转动,经过一段时间后质点与转盘一起做匀速圆周运动,此时绳与竖直方向的夹角θ=37º(不计空气阻力及绳重,且绳不可伸长,sin37º=0.6,cos37º=0.8)求质点与转盘一起做匀速圆周运动时,(1)绳子拉力的大小;(2)转盘角速度的大小。

甲乙:(1)如图所示,对人和座椅进行受力分析:(3分)(2)根据牛顿第二定律有:(4分)如图所示,用一根长为l =1m 的细线,一端系一质量为m =1kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=370,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T .求(取g =10m/s 2,结果可用根式表示): ⑴若要小球离开锥面,则小球的角速度ω0至少为多大?⑵若细线与竖直方向的夹角为600,则小球的角速度ω'为多大?⑶细线的张力T 与小球匀速转动的加速度ω有关,请在坐标纸上画出ω的取值范围在0到ω'之间时的T —ω2的图象(要求标明关键点的坐标值).固定的光滑圆弧轨道ABC 处在竖直平面内,圆轨道半径为R ,半径OA 处于水平方向,OB 处于竖直方向,∠BOC=60°,如图11所示.一个小物块质量为m ,从A 处由静止开始滑下,沿圆弧轨道运动,到达B 点时的速度大小为v=,试求小物块经过B 点时对轨道的压力的大小和方向.3mg ,方向竖直向下【试题分析】B如图所示,小球被系在轻绳的一端,能以O 为圆心在竖直平面内做半径为0.4m 的圆周运动,运动过程中,空气阻力不计.绳子能承受的最大拉力为小球重力的8倍,重力加速度m/s 2。

求:(1)要使小球恰能通过圆周的最高点B 时,小球在最高点B 的速度大小?(2)要使小球做圆周运动时,绳子不断,小球在最低点A的最大速度?(3)改变小球在最低点A的速度大小,小球在竖直面内做曲线运动,使绳子始终不松弛且不被拉断,小球在最低点A的速度取值范围?在B点:则(2)在A点,绳子的拉力最大临界状态:则(3)当小球上升高度h<R时,小球摆动:当小球上升高度h>R时,小球做完整的圆周运动能过顶点:从A到B:即图3-11所示,光滑水平面AB与竖直面内的半圆形导轨在B点相接,导轨半径为R.一个质量为m的物体将弹簧压缩至A点后由静止释放,在弹力作用下物体获得某一向右速度后脱离弹簧,当它经过B点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半个圆周运动到达C点.试求:(1)弹簧开始时的弹性势能.(2)物体从B点运动至C点克服阻力做的功.(3)物体离开C点后落回水平面时的动能.解(1)物块在B点时由牛顿第二定律得①②由机械能守恒知③(2)由牛顿第二定律知④由题意N C=0 ⑤得⑥由B→C:由动能定理⑦解得:即克服摩擦阻力做功(3)得评分标准:第一、二问各5分,第三问4分如图所示,竖直平面内有一段不光滑的斜直轨道与光滑的圆形轨道相切,切点P与圆心O的连线与竖直方向的夹角为θ=60°,圆形轨道的半径为R,一质量为m的小物块从斜轨道上A点由静止开始下滑,然后沿圆形轨道运动,A点相对圆形轨道底部的高度h=7R,物块通过圆形轨道最高点B时,与轨道间的压力大小为3mg。

求:(1)物块通过轨道最高点时的速度大小?(2)物块通过轨道最低点B时对轨道的压力大小?(3)物块与斜直轨道间的动摩擦因数μ=?:(1)对物块通过轨道最高点C时受力分析:C点:………(4分)得:………………(2分)(2)从最低点B到最高点C:…(2分)物块通过轨道最低点B时:……………(2分)得:……………………(1分)根据牛顿第三定律,物块通过轨道最低点B时对轨道的压力大小为…(1分)(3)根椐动能定理,由A运动到B有:………………(4分)………………(2分)解得μ=………………(2分)细绳一端系着质量M=8kg的物体静止在水平面,另一端通过光滑小孔吊着质量m=2kg的物体,M的中点与圆孔的距离r=0.2m,已知M与水平面间的动摩擦因数为0.2,现使此物体M随转台绕中心轴转动,问转台角速度ω在什么范围m会处于静止状态?(g=10 m/s2)小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动,当球某次运动到最低点,绳突然断掉,球飞行水平距离d后落地,如图所示。

相关文档
最新文档