高考数学难点突破 难点17 三角形中的三角函数式
三角函数、解三角形高考常见题型解题思路及知识点总结.docx
三角函数、解三角形高考常见题型解题思路及知识点总结一、解题思路(一)解题思路思维导图(二)常见题型1.三角恒等变换已知正切值求正弦、余弦齐次式值问题 典例1:(2016年3卷)若tan 4α= ,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625【解析】2cos 2sin 2αα+=25641tan tan 41cos sin cos sin 4cos 2222=++=++ααααααα故选A .2.三角恒等变换给值求值问题典例2:(2016年2卷9)若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin 2α=( )(A )725(B )15(C )15-(D )725-【解析】∵3cos 45πα⎛⎫-= ⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D .3.图象法求三角函数()ϕω+=x A y sin ()00>>ω,A 性质 典例3:(2017年3卷6)设函数()cos()3f x x =+,则下列结论错误的是()A .()f x 的一个周期为2π-B .()y f x =的图像关于直线8π3x =对称C .()f x π+的一个零点为π6x =D .()f x 在π(,π)2单调递减【解析】函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图象可由cos y x =向左平移π3个单位得到,如图可知, ()f x 在π,π2⎛⎫ ⎪⎝⎭上先递减后递增,D 选项错误,故选D.4.复合函数法求三角函数()ϕω+=x A y sin ()00>>ω,A 性质π5.求三角函数()B x A y ++=ϕωsin ⎪⎭⎫⎝⎛<>>2,00πϕω,A 解析式 典例4:(2015年1卷8)函数=的部分图像如图所示,则的单调递减区间为( )(A )(B ) (C ) (D )【解析】由五点作图知,,解得,,所以,令,解得<<,,故单调减区间为(,),,故选D. 考点:三角函数图像与性质6.三角函数图象的平移与伸缩变换 典例5:(2017年1卷9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2()f x cos()x ωϕ+()f x 13(,),44k k k Z ππ-+∈13(2,2),44k k k Z ππ-+∈13(,),44k k k Z -+∈13(2,2),44k k k Z -+∈1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩=ωπ=4πϕ()cos()4f x x ππ=+22,4k x k k Z πππππ<+<+∈124k -x 324k +k Z ∈124k -324k +k Z ∈3π6π12写性质 根据解出x 的值或范围写出函数对称轴、对称中心、单调区间、最值等性质解题思路及步骤 注意事项求A 和B ()max min 12y y A =-,()max min 12y y B =+, 求ω 先求周期T ,再由求ωπ2=T 求ω 求ϕ代入已知点坐标,根据ϕ的具体范围求出ϕ,一般代入最值点,若代入与B y =的交点,注意区分是在增区间还是减区间上 求解析式写出解析式解题思路及步骤 注意事项写出变换法则 把变换前的函数看成抽象函数()x f y =,根据变换法则写出变换后的抽象函数 代入表达式根据原函数解析式写出变换后的解析式,例如:()x f y ==⎪⎭⎫⎝⎛+62sin 3πx 向右平移4π个单位后得函数⎪⎭⎫⎝⎛-=4πx f y =⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-32sin 3642sin 3πππx x ,其他变换都按这个方法确定变换后解析式C .把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2【解析】先变周期:先变相位:选D .7.解三角形知一求一问题8.解三角形知三求一问题典例6:(2017年2卷17)的内角的对边分别为,已知. (1)求;(2)若,的面积为2,求解析:(1)依题得.因为, 所以,所以,得(舍去)或.12π612π122cos sin sin 2sin 2sin 2223122y x x y x y x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==+⇒=+⇒=+=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭22cos sin sin sin sin 222633y x x y x x y x πππππ⎛⎫⎛⎫⎛⎫⎛⎫==+⇒=++=+⇒=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ABC △,,A B C ,,a b c ()2sin 8sin 2B AC +=cos B 6a c +=ABC △.b 21cos sin 8sin 84(1cos )22B B B B -==⋅=-22sin cos 1B B +=2216(1cos )cos 1B B -+=(17cos 15)(cos 1)0B B --=cos 1B =15cos 17B =(2)由∵可知,因为,所以,即,得.因为,所以,即,从而,即,解得.9.解三角形知二求最值(或范围)问题典例7:(2013年2卷17)∵ABC的内角A,B,C的对边分别为a,b,c,已知a=bcosC+csinB.(1)求B.(2)若b=2,求∵ABC面积的最大值.【解析】(1)因为a=bcosC+csinB,所以由正弦定理得:sinA=sinBcosC+sinCsinB,所以sin(B+C)=sinBcosC+sinCsinB,即cosBsinC=sinCsinB,因为sinC≠0,所以tanB=1,解得B=.4π(2)由余弦定理得:b2=a2+c2-2accos4π,即4=a2+c2ac,由不等式得a2+c2≥2ac,当且仅当a=c时,取等号,所以4≥(2)ac,解得,所以∵ABC的面积为12acsin4π≤4+1.所以∵ABC +1.典例8:(2011年1卷16)在中,的最大值为.令AB c=,BC a=,则由正弦定理得【解析】2,sin sin sina c ACA C B====2sin,2sin,c C a A∴==且120A C+=︒,222sin4sinAB BC c a C A∴+=+=+2sin4sin(120)C C=+︒-=2sin C+14(cos sin)4sin22C C C C+=++)Cϕ=(其中tan2ϕ=∴当90Cϕ+=︒时,2AB BC+取最大值为8sin17B=2ABCS=△1sin22ac B⋅=182217ac⋅=172ac=15cos17B=22215217a c bac+-=22215a c b+-=22()215a c ac b+--=2361715b--=2b=ABC60,B AC==2AB BC+二、知识点总结 (一)知识点思维导图(二)常用定理、公式及其变形1.同角三角函数关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.2.诱导公式:对于角α±π2k 与角α的三角函数关系“奇变偶不变,符号看象限”,这句话是对变化前的函数和角来说的. 例如在三角形,∵,∴A B C A B C ++=+=-ππ3.两角和与差公式:sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.。
高中数学《三角函数》详解+公式+精题(附讲解)
高中数学《三角函数》详解+公式+精题(附讲解)引言三角函数是中学数学的基本重要容之一,三角函数的定义及性质有许多独特的表现,是高考中对基础知识和基本技能进行考查的一个容。
其考查容包括:三角函数的定义、图象和性质,同角三角函数的基本关系、诱导公式、两角和与差的正弦、余弦、正切。
两倍角的正弦、余弦、正切。
、正弦定理、余弦定理,解斜三角形、反正弦、反余弦、反正切函数。
要求掌握三角函数的定义,图象和性质,同角三角函数的基本关系,诱导公式,会用“五点法”作正余弦函数及的简图;掌握基本三角变换公式进行求值、化简、证明。
了解反三角函数的概念,会由已知三角函数值求角并能用反三角函数符号表示。
由于新教材删去了半角公式,和差化积,积化和差公式等容,近年的高考基本上围绕三角函数的图象和三角函数的性质,以及简单的三角变换来进行考查,目的是考查考生对三角函数基础知识、基本技能、基本运算能力掌握情况。
2.近年来高考对三角部分的考查多集中在三角函数的图象和性质,重视对三角函数基础知识和技能的考查。
每年有 2 — 3 道选择题或填空题,或 1 — 2 道选择、填空题和 1 道解答题。
总的分值为 15 分左右,占全卷总分的约 10 左右。
( 1 )关于三角函数的图象立足于正弦余弦的图象,重点是函数的图象与 y=sinx 的图象关系。
根据图象求函数的表达式,以及三角函数图象的对称性。
如 2000 年第( 5 )题、( 17 )题的第二问。
( 2 )求值题这类问题在选择题、填空题、解答题中出现较多,主要是考查三角的恒等变换。
如 2002 年( 15 )题。
( 3 )关于三角函数的定义域、值域和最值问题( 4 )关于三角函数的性质(包括奇偶性、单调性、周期性)。
一般要先对已知的函数式变形,化为一角一函数处理。
如 2001 年( 7 )题。
( 5 )关于反三角函数, 2000 — 2002 年已连续三年不出现。
( 6 )三角与其他知识的结合(如 1999 年第 18 题复数与三角结合)今后有关三角函数仍将以选择题、填空题和解答题三种题型出现,难度不会太大,会控制在中等偏易的程度;三角函数如果在解答题出现的话,应放在前两题的位置,放在第一题的可能性最大,难度不会太大。
三角函数基本题型及解题方法
三角函数基本题型及解题方法三角函数基本题型及解题方法对于三角函数的问题,特别是一些创新型问题,对大多数同学来说可能会感到陌生。
这些问题主要考查学生对于重要数学思想和方法的掌握以及在考试时对自己心态的调整。
但是,我们可以使用特殊化方法来解决这些问题。
特殊化方法的解题依据是,题目所叙述的一般情形成立,则对特殊情形也应该成立。
若不成立,则必然选项是错误的。
特殊化方法一般有赋特殊值、特殊函数等。
一、单调性类问题例11)若A、B是锐角三角形ABC的两个内角,则点P(cosB-sinA。
sinB-cosA)在哪个象限?选项为A、B、C、D。
2)设α、β是一个钝角三角形的两个锐角,下列四个不等式中不正确的是?选项为A、B、C、D。
分析:这是依托基本的几何图形三角形,创新型的考查三角函数的单调性等重要性质的题目。
常规解法运算繁杂,用特殊化方法则可出奇制胜。
对于(1),赋A=B=60°,可知选B;对于(2),赋α=β=30°,可知选D。
例2若A、B、C是△XXX的三个内角,且A<B<C(C≠π/2),则下列结论中正确的是哪个?选项为A、B、C、D。
分析:赋A=30°,B=70°,C=80°,可知B、D错;赋A=30°,B=50°,C=100°,知C错。
故选A。
例3函数y=xcosx-sinx在下面哪个区间内是增函数?选项为A、B、C、D。
分析:所给函数的定义域显然是R,又令f(x)=xcosx-sinx,则f(π/2)=f(3π/2)=-1,f(π)=-π,f(π/6)=1,f(2π)=2π。
如对选项A,x从π/3到2π/3,y从-1,-π到1,不符合题意,同理可排除C、D。
例4函数y=2sin(π/6-2x)(x∈[0,π])为增函数的区间是哪个?选项为A、B、C、D。
分析:只需考虑区间端点处的函数值,有①x=0,y=1;②x=π/12,y=√3/2;③x=π/3,y=-2;④x=5π/6,y=1.可知选项B为正确答案。
(完整版)三角函数的常见解法
(完整版)三角函数的常见解法三角函数是数学中一种重要的函数类型,常见的三角函数包括正弦函数、余弦函数和正切函数。
在解决三角函数的问题时,常常需要采用不同的解法。
本文将介绍三角函数的常见解法。
1. 代数解法代数解法是一种基于代数运算的方法来解决三角函数的问题。
通过运用三角函数的性质和恒等式,我们可以利用代数运算的规律来求解。
例如,在解决三角方程sin(x) = 0时,可以通过运用正弦函数的性质得出解x = 0。
这是因为正弦函数的零点是周期性出现的,其周期为2π,因此解集为{x | x = kπ, k ∈ Z}。
2. 几何解法几何解法是一种基于几何关系的方法来解决三角函数的问题。
通过利用三角函数在几何上的意义和性质,我们可以通过几何图形的分析来求解。
例如,在解决三角方程cos(x) = 1/2时,可以通过考虑单位圆上的点对应的角度来求解。
由于余弦函数表示的是一个点在单位圆上的横坐标,而1/2对应的角度是π/3,因此解集为{x | x = π/3 +2kπ, k ∈ Z}。
3. 三角恒等式的应用三角恒等式是三角函数中一个重要的工具,通过运用三角恒等式,我们可以将复杂的三角函数问题化简为简单的表达式,从而求解问题。
例如,在解决三角方程sin(2x) = √3/2时,可以运用双倍角公式sin(2x) = 2sin(x)cos(x)来化简为2sin(x)cos(x) = √3/2。
然后,运用三角函数的定义sin(x) = √3/2时的解集,即{x | x = π/3 + 2kπ, k ∈ Z},可以求得原方程的解集。
以上是三角函数的常见解法,包括代数解法、几何解法和三角恒等式的应用。
通过灵活运用这些解法,我们可以解决各种三角函数问题。
在实际应用中,根据具体问题的特点选择合适的解法,可以更高效地求解三角函数的问题。
超实用高考数学专题复习:第四章三角函数解三角形 三角函数与解三角形热点问题
【尝试训练】 (2020·郑州质检)在△ABC 中,内角 A,B,C 的对边分别为 a,b,c, 若向量 m=2cos2C2 ,cos A-2 B,n=58,cos A-2 B,m·n=98. (1)求 tan Atan B 的值; (2)求c2a-bsai2n-Cb2的最小值. 解 (1)由题意可得 m·n=54cos2C2+cos2A-2 B=98, 即-58cos(A+B)+12cos(A-B)=0,展开可得 cos Acos B=9sin Asin B,
所以 f(x)的最小正周期 T=22π=π.
(2)由-π2+2kπ≤2x-π3≤π2+2kπ(k∈Z),得-1π2+kπ≤x≤51π2+kπ(k∈Z). 设 A=-4π,π4,B=x-1π2+kπ≤x≤51π2+kπ,k∈Z,易知 A∩B=-1π2,π4.
所以当 x∈-π4,π4时,f(x)在区间-1π2,π4上单调递增,在区间-π4,-1π2上单调 递减.
6+ 4
2 .
两角差正弦公式的应用
12′
[高考状元满分心得]
❶写全得步骤分:对于解题过程中得分点的步骤有则给分,无则没分,所以得分点
步骤一定要写全,如第(1)问中只要写出 0°<A<180°就有分,没写就扣 1 分,第(2)
问中 0°<C<120°也是如此.
❷写明得关键分:对于解题过程中的关键点,有则给分,无则没分,所以在答题时
教你如何审题——三角函数与平面向量
【例题】 (2020·湘赣十四校联考)已知向量 m=(sin x,-1),n=( 3,cos x),且函
数 f(x)=m·n. (1)若 x∈0,2π,且 f(x)=23,求 sin x 的值;
(2)在锐角三角形 ABC 中,内角 A,B,C 的对边分别为 a,b,c.若 a= 7,△ABC
高中数学三角函数知识点解题技巧总结
高中数学三角函数知识点解题技巧总结高中数学三角函数知识点总结高中数学三角函数知识点解题方法总结一、见“给角求值”问题,运用“新兴”诱导公式一步到位转换到区间(-90o,90o)的公式.1.sin(kπ+α)=(-1)ksinα(k∈Z);2.cos(kπ+α)=(-1)kcosα(k∈Z);3.tan(kπ+α)=(-1)ktanα(k∈Z);4.cot(kπ+α)=(-1)kcotα(k∈Z).二、见“sinα±cosα”问题,运用三角“八卦图”1.sinα+cosα;0(或0(或|cosα|óα的终边在Ⅱ、Ⅲ的区域内;4.|sinα|“化弦为一”:已知tanα,求sinα与cosα的齐次式,有些整式情形还可以视其分母为1,转化为sin2α+cos2α.六、见“正弦值或角的平方差”形式,启用“平方差”公式:1.sin(α+β)sin(α-β)=sin2α-sin2β;2.cos(α+β)cos(α-β)=cos2α-sin2β.七、见“sinα±cosα与sinαcosα”问题,起用平方法则:(sinα±cosα)2=1±2sinαcosα=1±sin2α,故1.若sinα+cosα=t,(且t2≤2),则2sinαcosα=t2-1=sin2α;2.若sinα-cosα=t,(且t2≤2),则2sinαcosα=1-t2=sin2α.八、见“tanα+tanβ与tanαtanβ”问题,启用变形公式:tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ=???九、见三角函数“对称”问题,启用图象特征代数关系:(A≠0)1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且横向于y轴的直线分别成直线型;2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称;3.同样,利用图象也可以得到向量y=Atan(wx+φ)和函数y=Acot(wx+φ)的对称性质。
专题1-1 三角函数 重难点、易错点突破(含答案)
专题1-1 三角函数重难点、易错点突破(建议用时:180分钟)1 同角三角函数关系巧应用同角三角函数的用途主要体现在三角函数的求值和恒等变形中各函数间的相互转化,下面结合常见的应用类型举例分析,体会其转化作用,展现同角三角函数关系的巧应用.一、知一求二例1 已知sin α=255,π2≤α≤π,则tan α=_________________________________.二、“1”的妙用例2 证明:1-sin 6x -cos 6x 1-sin 4x -cos 4x =32.三、齐次式求值例3 已知tan α=2,求值:(1)2sin α-3cos α4sin α-9cos α=________; (2)2sin 2α-3cos 2α=________.2 三角函数的性质总盘点三角函数的性质是高考考查的重点和热点内容之一,应用“巧而活”.要能够灵活地运用性质,必须在脑海中能及时地浮现出三角函数的图象.下面通过典型例题对三角函数的性质进行盘点,请同学们用心体会.一、定义域例1 函数y =cos x -12的定义域为________.二、值域与最值例2 函数y =cos(x +π3),x ∈(0,π3]的值域是________.三、单调性例3 已知函数f (x )=sin(π3-2x ),求: (1)函数f (x )的单调减区间;(2)函数f (x )在[-π,0]上的单调减区间.四、周期性与对称性例4 已知函数f (x )=sin(2ωx -π3)(ω>0)的最小正周期为π,则函数f (x )的图象的对称轴方程是________.五、奇偶性例5 若函数f (x )=sin x +φ3(φ∈[0,2π))是偶函数,则φ=________.1 善用数学思想——巧解题一、数形结合思想例1 在(0,2π)内,使sin x >cos x 成立的x 的取值范围是________.二、分类讨论思想例2 已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值.三、函数与方程的思想例3 函数f (x )=3cos x -sin 2x (π6≤x ≤π3)的最大值是________.四、转化与化归思想例4 比较下列两个数的大小tan(-13π4)与tan(-17π5).2 三角恒等变形的几个技巧三角函数是高考的热点,素以“小而活”著称.除了掌握基础知识之外,还要注意灵活运用几个常用的技巧.下面通过例题进行解析,希望对同学们有所帮助.一、灵活降幂例1 3-sin 70°2-cos 210°=________. 二、化平方式例2 化简求值:12-1212+12cos 2α(α∈(3π2,2π)).三、灵活变角例3 已知sin(π6-α)=13,则cos(2π3+2α)=________. 四、构造齐次弦式比,由切求弦例4 已知tan θ=-12,则cos 2θ1+sin 2θ的值是________. 五、分子、分母同乘以2n sin α求cos αcos 2αcos 4α·cos 8α…cos 2n -1α的值例5 求值:sin 10°sin 30°sin 50°sin 70°.1 数形结合百般好,形象直观烦琐少——构建正弦、余弦函数图象解题正弦、余弦函数的图象是本章的重点,也是高考的一个热点,它不仅能直观反映三角函数的性质,而且它还有着广泛的应用,若能根据问题的题设特点灵活构造图象,往往能直观、准确、快速解题.一、确定函数的值域例1 定义运算a ※b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,例如,1※2=1,则函数f (x )=sin x ※cos x 的值域为________.二、确定零点个数例2 函数f (x )=⎝⎛⎭⎫12x -sin x 在区间[0,2π]上的零点个数为________.三、确定参数的值例3 已知f (x )=sin(ωx +π3)(ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=_________.四、判断函数单调性例4 设函数f (x )=⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π3(x ∈R ),则f (x )________.(将正确说法的序号填上) ①在区间⎣⎡⎦⎤2π3,4π3上是单调增函数 ②在区间⎣⎡⎦⎤3π4,13π12上是单调增函数 ③在区间⎣⎡⎦⎤-π8,π4上是单调减函数 ④在区间⎣⎡⎦⎤π3,5π6上是单调减函数 五、确定参数范围例5 当0≤x ≤1时,不等式sinπx 2≥kx 恒成立,则实数k 的取值范围是________. 六、研究方程的实根例6 已知方程2sin ⎝⎛⎭⎫x +π4=k 在[0,π]上有两个实数根x 1,x 2,求实数k 的取值范围,并求x 1+x 2的值.2 聚焦三角函数最值的求解策略一、化为y =A sin(ωx +φ)+B 的形式求解例1 求函数f (x )=sin 4x +cos 4x +sin 2x cos 2x 2-sin 2x的最值.例2 求函数y =sin 2x +2sin x cos x +3cos 2x 的最小值,并写出y 取最小值时x 的集合.二、利用正弦、余弦函数的有界性求解例3 求函数y =2sin x +12sin x -1的值域.例4 求函数y =sin x +3cos x -4的值域.三、转化为一元二次函数在某确定区间上求最值例5 设关于x 的函数y =cos 2x -2a cos x -2a 的最小值为f (a ),写出f (a )的表达式.四、利用函数的单调性求解例7 求函数y =(1+sin x )(3+sin x )2+sin x的最值.例8 在Rt △ABC 内有一内接正方形,它的一条边在斜边BC 上,设AB =a ,∠ABC =θ,△ABC 的面积为P ,正方形面积为Q .求P Q的最小值.易错问题盘点一、求角时选择三角函数类型不当而致错例1 已知sin α=55,sin β=1010,α和β都是锐角,求α+β的值.二、忽视条件中隐含的角的范围而致错例2 已知tan 2α+6tan α+7=0,tan 2β+6tan β+7=0,α、β∈(0,π),且α≠β,求α+β的值.三、忽略三角形内角间的关系而致错例3 在△ABC 中,已知sin A =35,cos B =513,求cos C .四、忽略三角函数的定义域而致错例4 判断函数f (x )=1+sin x -cos x 1+sin x +cos x的奇偶性.五、误用公式a sin x +b cos x =a 2+b 2sin(x +φ)而致错例5 若函数f (x )=sin(x +θ)+cos(x -θ),x ∈R 是偶函数,求θ的值.专题1-1 三角函数重难点、易错点突破参考答案1 同角三角函数关系巧应用例1 解析 由sin α=255,且sin 2α+cos 2α=1得cos α=±55, 因为π2≤α≤π,可得cos α=-55,所以tan α=sin αcos α=-2. 答案 -2点评 已知某角的弦函数值求其他三角函数值时,先利用平方关系求另一弦函数值,再求切函数值,需要注意的是利用平方关系时,若没有角度的限制,要注意分类讨论.例2 证明 因为sin 2x +cos 2x =1,所以1=(sin 2x +cos 2x )3,1=(sin 2x +cos 2x )2,所以1-sin 6x -cos 6x 1-sin 4x -cos 4x =(sin 2x +cos 2x )3-sin 6x -cos 6x (sin 2x +cos 2x )2-sin 4x -cos 4x=3sin 4x cos 2x +3cos 4x sin 2x 2sin 2x cos 2x =3(sin 2x +cos 2x )2=32. 即原命题得证.点评 本题在证明过程中,充分利用了三角函数的平方关系,对“1”进行了巧妙的代换,使问题迎刃而解.例3 解析 (1)因为cos α≠0,分子分母同除以cos α,得2sin α-3cos α4sin α-9cos α=2tan α-34tan α-9=2×2-34×2-9=-1. (2)2sin 2α-3cos 2α=2sin 2α-3cos 2αsin 2α+cos 2α, 因为cos 2 α≠0,分子分母同除以cos 2α,得2sin 2α-3cos 2αsin 2α+cos 2α=2tan 2α-3tan 2α+1=2×22-322+1=1. 答案 (1)-1 (2)1点评 这是一组在已知tan α=m 的条件下,求关于sin α、cos α的齐次式值的问题.解这类问题需注意以下几点:(1)一定是关于sin α、cos α的齐次式(或能化为齐次式)的三角函数式;(2)因为cos α≠0,所以分子、分母可同时除以cos n α(n ∈N +).这样可以将所求式化为关于tan α的表达式,整体代入tan α=m 的值求解.2 三角函数的性质总盘点例1解析 由题意得cos x ≥12,所以2k π-π3≤x ≤2k π+π3,k ∈Z . 即函数的定义域是[2k π-π3,2k π+π3],k ∈Z . 答案 [2k π-π3,2k π+π3],k ∈Z 点评 解本题的关键是先列出保证函数式有意义的三角不等式,然后利用三角函数的图象或者单位圆中三角函数线求解.例2 解析 因为0<x ≤π3,所以π3<x +π3≤23π,f (x )=cos x 的图象如图所示: 可知cos 23π≤cos(x +π3)<cos π3,即-12≤y <12.故函数的值域是[-12,12). 答案 [-12,12) 点评 解本题的关键是从x 的范围入手,先求得ωx +φ的范围,再结合余弦函数的图象对应得出cos(ωx +φ)的范围,从而可得函数的值域或者最值.例3 解 由f (x )=sin(π3-2x )可化为f (x )=-sin(2x -π3). 所以原函数的单调减区间即为函数y =sin(2x -π3)的单调增区间. (1)令2k π-π2≤2x -π3≤2k π+π2,k ∈Z , 解得k π-π12≤x ≤k π+5π12,k ∈Z . 所以f (x )=sin(π3-2x )的单调减区间为[k π-π12,k π+5π12],k ∈Z . (2)在减区间[k π-π12,k π+5π12],k ∈Z 中, 令k =-1、0时,可以得到当x ∈[-π,0]时,f (x )=sin(π3-2x )的单调减区间为[-π,-7π12],[-π12,0]. 点评 解本题的关键是先把函数化为标准形式y =sin(ωx +φ),ω>0,然后把ωx +φ看做一个整体,根据y =sin x 的单调性列出不等式,求得递减区间的通解;如果要求某一个区间上的单调区间,再对通解中的k 进行取值,便可求得函数在这个区间上的单调区间.例4 解析 由T =π=2π2ω得ω=1, 所以f (x )=sin(2x -π3), 由2x -π3=π2+k π,k ∈Z ,解得f (x )的对称轴为x =5π12+k π2,k ∈Z . 答案 x =5π12+k π2,k ∈Z 点评 解本题的关键是先由周期公式求得ω的值,再解决对称轴问题,求解对称轴有两种方法:一种是直接求得函数的对称轴;另一种是根据对称轴的特征——对应的函数值为函数的最值解决.同样地,求解对称中心也有两种方法.例5 解析 函数是偶函数,所以函数关于x =0对称.由x +φ3=π2+k π,k ∈Z ,可得函数的对称轴方程是x =x 3π2+3k π-φ,k ∈Z .令3π2+3k π-φ=0,k ∈Z , 解得φ=3π2+3k π,k ∈Z ,又φ∈[0,2π),故φ=3π2. 答案 3π2点评 解本题的关键是把奇偶性转化为对称性解决:偶函数⇔函数图象关于y 轴对称;奇函数⇔函数图象关于原点对称.1 善用数学思想——巧解题例1 解析 在同一坐标系中画出y =sin x ,y =cos x ,x ∈(0,2π)的图象如图: 由图知,x ∈(π4,5π4).答案 (π4,5π4)点评 求解三角函数的方程、不等式时,通常利用函数的图象使问题变得更简单. 例2 解 角α的终边在直线3x +4y =0上, 在角α的终边上任取一点P (4t ,-3t )(t ≠0),则x =4t ,y =-3t , r =x 2+y 2=(4t )2+(-3t )2=5|t |.当t >0时,r =5t ,sin α=y r =-3t 5t =-35,cos α=x r =4t 5t =45,tan α=y x =-3t 4t =-34;当t <0时,r =-5t ,sin α=y r =-3t -5t =35,cos α=x r =4t -5t =-45,tan α=y x =-3t 4t =-34,综上可知,sin α=-35,cos α=45,tan α=-34; 或sin α=35,cos α=-45,tan α=-34.点评 (1)若角的终边位置象限不确定,应分类讨论.(2)若三角函数值含有变量,因变量取不同的值会导致不同的结果,需要讨论.例3 解析 f (x )=3cos x -sin 2x =cos 2x +3cos x -1=(cos x +32)2-74, 设cos x =t ,因为π6≤x ≤π3,所以由余弦函数的单调性可知,12≤cos x ≤32,即12≤t ≤32,又函数f (t )=(t +32)2-74在[12,32]上是单调增函数,故f (t )max =f (32)=54,所以f (x )的最大值为54. 答案 54点评 遇平方关系,可想到构造二次函数,再利用二次函数求解最大值. 例4 解 tan(-13π4)=-tan π4,tan(-17π5)=-tan 2π5.因为0<π4<2π5<π2,且y =tan x 在(0,π2)上是单调增函数,所以tan π4<tan 2π5.所以-tan π4>-tan 2π5,即tan(-13π4)>tan(-17π5).点评 三角函数值比较大小问题一般将其转化到某一三角函数的一个单调区间内,然后利用三角函数的单调性比较大小.另外诱导公式的使用也充分体现了将未知化为已知的化归与转化思想.2 三角恒等变形的几个技巧例1 解析3-sin 70°2-cos 210°=3-sin 70°2-1+cos 20°2=3-cos 20°3-cos 20°2=2.答案 2点评 常用的降幂技巧还有:因式分解降幂、用平方关系sin 2θ+cos 2θ=1进行降幂:如cos 4θ+sin 4θ=(cos 2θ+sin 2θ)2-2cos 2θsin 2θ=1-12sin 22θ,等等.例2 解 因为α∈(3π2,2π),所以α2∈(3π4,π), 所以cos α>0,sin α2>0,故原式=12-121+cos 2α2= 12-12cos α= sin 2α2=sin α2.点评 一般地,在化简求值时,遇到1+cos 2α、1-cos 2α、1+sin 2α、1-sin 2α常常化为平方式:2cos 2α、2sin 2α、(sin α+cos α)2、(sin α-cos α)2.例3 解析 cos(2π3+2α)=2cos 2(π3+α)-1=2sin 2(π6-α)-1=2×(13)2-1=-79.答案 -79点评 正确快速求解本题的关键是灵活运用已知角“π6-α”表示待求角“2π3+2α”,善于发现前者和后者的一半互余.例4 解析 cos 2θ1+sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ+2sin θcos θ=1-tan 2θ1+tan 2θ+2tan θ=1-141+14+2×(-12)=3414=3.答案 3点评 解本题的关键是先由二倍角公式和平方关系把“cos 2θ1+sin 2θ”化为关于sin θ和cos θ的二次齐次弦式比.例5 解 原式=12cos 20°cos 40°cos 80°=4sin 20°cos 20°cos 40°cos 80°8sin 20°=2sin 40°cos 40°cos 80°8sin 20°=sin 80°cos 80°8sin 20°=116·sin 160°sin 20°=116.点评 这类问题的解决方法是分子、分母同乘以最小角的正弦的倍数即可.1 数形结合百般好,形象直观烦琐少——构建正弦、余弦函数图象解题例1 解析 根据题设中的新定义,得f (x )=⎩⎪⎨⎪⎧sin x ,sin x ≤cos x ,cos x ,sin x >cos x ,作出函数f (x )在一个周期内的图象,如图可知函数f (x )的值域为⎣⎡⎦⎤-1,22. 答案 ⎣⎡⎦⎤-1,22点评 有关三角函数的值域的确定,常常作出函数的图象,借助于图象直观、准确地求解. 例2 解析 在同一直角坐标系内,画出y =⎝⎛⎭⎫12x及y =sin x 的图象,由图象可观察出交点个数为2. 答案 2点评 有关三角函数的交点个数的确定,常常作出函数的图象,借助于图象直观、准确求解.例3 解析 ∵f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)且f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3, 又f (x )在区间⎝⎛⎭⎫π6,π3内只有最小值、无最大值,画出函数大致图象,如图所示, ∴f (x )在π6+π32=π4处取得最小值.∴π4ω+π3=2k π-π2(k ∈Z ).∴ω=8k -103(k ∈Z ). ∵ω>0,∴当k =1时,ω=8-103=143;当k =2时,ω=16-103=383,此时在区间⎝⎛⎭⎫π6,π3内已存在最大值.故ω=143. 答案143点评 本小题考查对y =A sin(ωx +φ)的图象及性质的理解与应用,求解本题应注意两点:一是f (x )在π4处取得最小值;二是在区间⎝⎛⎭⎫π6,π3内只有最小值而无最大值,求解时作出其草图可以帮助解题.例4 解析 作出函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π3的图象如图所示.由图象可知②正确. 答案 ②点评 形如f (x )=|A sin(ωx +φ)+k |(A ≠0,ω≠0)的函数性质,可作出其图象,利用数形结合思想求解. 例5 解析 作出函数y =sinπx2,y =kx 的函数图象,如图所示.当k ≤0时,显然成立;当0<k ≤1时,由图象可知: sinπx2≥kx 在[0,1]上成立.综上所述,k ≤1. 答案 (-∞,1]点评 数形结合时,函数图象要根据题目需要作得精确可信,必要时应结合计算判断.本题讨论y =kx 与y =sinπx2的图象关系时,不要忘记k ≤0的情况. 例6 解 在同一坐标系内作出函数y 1=2sin ⎝⎛⎭⎫x +π4(0≤x ≤π)与y 2=k 的图象,如图所示.当x =0时,y 1=2sin ⎝⎛⎭⎫0+π4=1. 所以当k ∈[1,2)时,两曲线在[0,π]上有两个交点,即方程有两个实数根x 1、x 2,且x 1、x 2关于x =π4对称,x 1+x 2=π2.故实数k 的取值范围是[1,2),且x 1+x 2=π2.点评 本题通过函数图象的交点个数判断方程实数根的个数,应重视这种方法.2 聚焦三角函数最值的求解策略例1 解 原函数变形得:f (x )=(sin 2x +cos 2x )2-sin 2x cos 2x2-sin 2x=1-14sin 22x 2-sin 2x=⎝⎛⎭⎫1+12sin 2x ⎝⎛⎭⎫1-12sin 2x 2⎝⎛⎭⎫1-12sin 2x =14sin 2x +12.∴f (x )max =34,f (x )min =14.例2 解 原函数化简得:y =sin 2x +cos 2x +2=2sin ⎝⎛⎭⎫2x +π4+2. 当2x +π4=2k π+32π,k ∈Z ,即x =k π+58π,k ∈Z 时,y min =2- 2.此时x 的集合为{x |x =k π+58π,k ∈Z }.点评 形如y =a sin 2ωx +b sin ωx cos ωx +c cos 2ωx +d (a ,b ,c ,d 为常数)的式子,都能转化成y =A sin(2ωx +φ)+B 的形式求最值.例3 解 原函数整理得sin x =y +12(y -1).∵|sin x |≤1,∴⎪⎪⎪⎪⎪⎪y +12(y -1)≤1,解出y ≤13或y ≥3.即函数的值域为⎝⎛⎦⎤-∞,13∪[3,+∞). 例4解 原函数整理得sin x -y cos x =-4y -3,∴y 2+1sin(x +φ)=-4y -3, ∴sin(x +φ)=-4y -31+y 2.∵|sin(x +φ)|≤1,解不等式⎪⎪⎪⎪⎪⎪-4y -31+y 2≤1得:-12-2615≤y ≤-12+2615. 即值域为⎣⎢⎡⎦⎥⎤-12-2615,-12+2615.点评 对于形如y =a sin x +b c sin x +d 或y =a sin x +bc cos x +d 的这类函数,均可利用三角函数中弦函数的有界性去求最值.例5 解y =cos 2x -2a cos x -2a =2cos 2x -2a cos x -(2a +1)=2⎝⎛⎭⎫cos x -a 22-⎝⎛⎭⎫a 22+2a +1.当a2<-1,即a <-2时,f (a )=y min =1,此时cos x =-1. 当-1≤a 2≤1,即-2≤a ≤2时,f (a )=y min =-a 22-2a -1,此时cos x =a2.当a2>1,即a >2时,f (a )=y min =1-4a ,此时cos x =1. 综上所述,f (a )=⎩⎪⎨⎪⎧1(a <-2),-a22-2a -1(-2≤a ≤2),1-4a (a >2).点评 形如y =a sin 2x +b sin x +c 的三角函数可转化为二次函数y =at 2+bt +c 在区间[-1,1]上的最值问题解决.例6 解 设sin x +cos x =t ,t ∈[-2, 2 ],则2sin x cos x =t 2-1,原函数变为y =t 2+t +1,t ∈[-2,2 ],当t =-12时,y min =34;当t =2时,y max =3+ 2.点评 一般地,既含sin x +cos x (或sin x -cos x )又含sin x cos x 的三角函数采用换元法可以转化为t 的二次函数解最值.注意以下结论的运用,设sin x +cos x =t ,则sin x cos x =12(t 2-1);sin x -cos x =t ,则sin x cosx =12(1-t 2). 例7 解 y =sin 2x +4sin x +3sin x +2=(sin x +2)2-1sin x +2=(sin x +2)-1(sin x +2),令t =sin x +2,则t ∈[1,3],y =t -1t.利用函数单调性的定义易证函数y =t -1t 在[1,3]上为增函数.故当t =1即sin x =-1时,y min =0; 当t =3即sin x =1时,y max =83.例8 解 AC =a tan θ,P =12AB ·AC =12a 2tan θ.设正方形边长为x ,AG =x cos θ,BC =acos θ.BC 边上的高h =a sin θ,∵AG AB =h -x h ,即x cos θa =a sin θ-x a sin θ, ∴x =a sin θ1+sin θcos θ, ∴Q =x 2=a 2sin 2θ(1+sin θcos θ)2. 从而P Q =sin θ2cos θ·(1+sin θcos θ)2sin 2θ=(2+sin 2θ)24sin 2θ=1+⎝⎛⎭⎫sin 2θ4+1sin 2θ. 易知函数y =1t +t 4在区间(0,1]上是减少的, 所以当sin 2θ=1时,⎝⎛⎭⎫P Q min =94. 点评 一些复杂的三角函数最值问题,可以通过适当换元转化为简单的代数函数后,利用函数单调性巧妙解决.易错问题盘点例1 [错解] 因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010, sin(α+β)=sin αcos β+cos αsin β=55×31010+255×1010=22. 因为α,β∈⎝⎛⎭⎫0,π2,则α+β∈(0,π). 所以α+β=π4或3π4. [剖析] 由sin α=55,sin β=1010,α和β都是锐角,可以知道α和β都是定值,因此α+β也是定值,因此上述解法出现两个答案,其中就有一个是错误的.这是因为sin(α+β)在第一、第二象限没有区分度,应选择计算cos(α+β)的值.[正解] 因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010, cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22.因为α,β∈⎝⎛⎭⎫0,π2,则α+β∈(0,π), 所以α+β=π4.温馨点评 根据条件求角,主要有两步:(1)求角的某种三角函数值;(2)确定角的范围,从而确定所求角的值.完成第一步一般要选择相对角的范围区分度比较大的三角函数,且确定范围要尽量缩小.例2 [错解] 由题意知tan α、tan β是方程x 2+6x +7=0的两根,由根与系数的关系得:⎩⎪⎨⎪⎧tan α+tan β=-6 ①tan αtan β=7 ②∴tan(α+β)=tan α+tan β1-tan αtan β=-61-7=1.∵0<α<π,0<β<π,∴0<α+β<2π, ∴α+β=π4或α+β=54π.[剖析] 由①②知tan α<0,tan β<0,角α、β都是钝角.上述解法忽视了这一隐含条件.[正解] 由⎩⎪⎨⎪⎧tan α+tan β=-6,tan αtan β=7易知tan α<0,tan β<0.∵α、β∈(0,π), ∴π2<α<π,π2<β<π.∴π<α+β<2π.又∵tan(α+β)=1,∴α+β=54π.例3 [错解] 由sin A =35,得cos A =±45,由cos B =513,得sin B =1213,当cos A =45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.当cos A =-45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =5665.[剖析] 在△ABC 中,三个内角A 、B 、C 的和为π,解题时要充分利用这一定理.本题得到cos A =±45后,没有对cos A =-45这一结果是否合理进行检验,从而导致结论不正确.[正解] 由cos B =513>0,∴B ∈⎝⎛⎭⎫0,π2,且sin B =1213. 由sin A =35,得cos A =±45,当cos A =-45时,cos A <-12.∴A >2π3.∵sin B =1213>32,B ∈⎝⎛⎭⎫0,π2,∴B >π3. 故当cos A =-45时,A +B >π,与A 、B 是△ABC 的内角矛盾.∴cos A =45,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.例4 [错解] f (x )=1+sin x -cos x 1+sin x +cos x=1+2sin x 2cos x 2-⎝⎛⎭⎫1-2sin 2x 21+2sin x 2cos x 2+⎝⎛⎭⎫2cos 2x 2-1=2sin x2⎝⎛⎭⎫cos x 2+sin x 22cos x 2⎝⎛⎭⎫sin x 2+cos x 2=tan x2,由此得f (-x )=tan ⎝⎛⎭⎫-x 2=-tan x2=-f (x ), 因此函数f (x )为奇函数.[剖析] 运用公式后所得函数f (x )=tan x2的定义域为{}x |x ∈R ,x ≠2k π+π,k ∈Z .两函数的定义域不同,变形后的函数定义域扩大致错.[正解] 事实上,由1+sin x +cos x ≠0可得sin x +cos x ≠-1, 即2sin ⎝⎛⎭⎫x +π4≠-1,从而sin ⎝⎛⎭⎫x +π4≠-22, 所以x +π4≠2k π+5π4且x +π4≠2k π+7π4(k ∈Z ),故函数f (x )的定义域是⎩⎨⎧⎭⎬⎫x |x ≠2k π+π,且x ≠2k π+3π2,k ∈Z ,显然该定义域不关于原点对称. 所以函数f (x )为非奇非偶函数.例5 [错解] ∵f (x )=sin(x +θ)+cos(x -θ), ∴f (0)=sin θ+cos θ=2sin ⎝⎛⎭⎫θ+π4. ∵f (x )=sin(x +θ)+cos(x -θ)是偶函数, ∴|f (0)|=f (x )max = 2. ∴f (0)=2sin ⎝⎛⎭⎫θ+π4=±2, ∴sin ⎝⎛⎭⎫θ+π4=±1,∴θ+π4=k π+π2,k ∈Z . 即θ=k π+π4,k ∈Z .[剖析] 因为x +θ与x -θ是不同的角,所以函数f (x )的最大值不是2,上述解答把f (x )的最大值误当作2来处理.[正解] 因为f (x )=sin(x +θ)+cos(x -θ)是偶函数,所以f (x )=f (-x )对一切x ∈R 恒成立.即sin(x +θ)+cos(x -θ)=sin(-x +θ)+cos(-x -θ)恒成立. ∴[sin(x +θ)+sin(x -θ)]+[cos(x -θ)-cos(x +θ)]=0. ∴2sin x cos θ+2sin x sin θ=0恒成立. 即2sin x (cos θ+sin θ)=0恒成立. ∴cos θ+sin θ=0.∵cos θ+sin θ=2sin ⎝⎛⎭⎫θ+π4=0, ∴θ+π4=k π,即θ=k π-π4,k ∈Z .。
高考中常见的三角函数题型和解题方法-数学秘诀
第12讲 三角函数高考试题中的三角函数题相对比较传统,难度较低,位置靠前,重点突出。
因此,在复习过程中既要注重三角知识的基础性,突出三角函数的图象、周期性、单调性、奇偶性、对称性等性质。
以及化简、求值和最值等重点内容的复习,又要注重三角知识的工具性,突出三角与代数、几何、向量的综合联系,以及三角知识的应用意识。
一、知识整合1.熟练掌握三角变换的所有公式,理解每个公式的意义,应用特点,常规使用方法等;熟悉三角变换常用的方法——化弦法,降幂法,角的变换法等;并能应用这些方法进行三角函数式的求值、化简、证明;掌握三角变换公式在三角形中应用的特点,并能结合三角形的公式解决一些实际问题.2.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质;熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、特点,并会用五点画出函数sin()y A x ωϕ=+的图象;理解图象平移变换、伸缩变换的意义,并会用这两种变换研究函数图象的变化.二、高考考点分析20XX 年各地高考中本部分所占分值在17~22分,主要以选择题和解答题的形式出现。
主要考察内容按综合难度分,我认为有以下几个层次:第一层次:通过诱导公式和倍角公式的简单运用,解决有关三角函数基本性质的问题。
如判断符号、求值、求周期、判断奇偶性等。
第二层次:三角函数公式变形中的某些常用技巧的运用。
如辅助角公式、平方公式逆用、切弦互化等。
第三层次:充分利用三角函数作为一种特殊函数的图象及周期性、奇偶性、单调性、有界性等特殊性质,解决较复杂的函数问题。
如分段函数值,求复合函数值域等。
三、方法技巧1.三角函数恒等变形的基本策略。
(1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2θ=tanx ·cotx=tan45°等。
(2)项的分拆与角的配凑。
如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α=(α+β)-β,β=2βα+-2βα-等。
高考冲刺 三角函数公式及应用(提高)
高考冲刺 三角函数公式及应用编稿:孙永钊 审稿:张林娟【高考展望】高考对三角恒等式部分的考查仍会是中低档题,无论是小题还是大题中出现都是较容易的.主要有三种可能:(1)以小题形式直接考查:利用两角和与差以及二倍角公式求值、化简;(2)以小题形式与三角函数、向量、解三角形等知识相综合考查两角和与差以及二倍角等公式; (3)以解答题形式与三角函数、向量、解三角形、函数等知识相综合考查,对三角恒等变换的综合应用也可能与解三角形一起用于分析解决实际问题的应用问题,主要考查综合运用数学知识分析问题和解决问题的能力复习时,要注重对问题中角、函数名及其整体结构的分析,提高公式选择的恰当性,还要重视相关的思想方法,如数形结合思想、特值法、构造法、等价转换法等的总结和应用,这有利于缩短运算程序,提高解题效率 【知识升华】1.三角函数的化简与求值、证明的难点在于众多三角公式的灵活运用和解题突破口的合理选择,要认真分析所给式子的整体结构,分析各个三角函数及角的相互关系是灵活选用公式的基础,是恰当寻找解题思维起点的关键所在(1)化简,要求使三角函数式成为最简:项数尽量少,名称尽量少,次数尽量底,分母尽量不含三角函数,根号内尽量不含三角函数,能求值的求出值来;(2)求值,要注意象限角的范围、三角函数值的符号之间联系与影响,较难的问题需要根据上三角函数值进一步缩小角的范围(3)证明是利用恒等变换公式将等式的左边变同于右边,或右边变同于,或都将左右进行变换使其左右相等2.对于三角变换公式务必要知道其推导思路,从而清晰地“看出”它们之间的联系,它们的变化形式.如tan()(1tan tan )tan tan αβαβαβ+-=+, 221cos 1cos cos ,sin 2222αααα+-==等.从而可做到:正用、逆用、变形用自如使用各公式;三角变换公式除用来化简三角函数式外,还为研究三角函数图象及性质做准备。
3.三角函数恒等变形的基本策。
新教材高考数学临考题号押第17题解三角形含解析
押第17题 解三角形解三角形问题是高考的高频考点,命题大多放在解答题的第一题,主要考查利用三角形的内角和定理,正、余弦定理,三角形面积公式等知识解题,难度中等.解题时要灵活利用三角形的边角关系进行“边化角”或“角化边”,另外,要注意a +c ,ac ,a 2+c 2三者的关系.1.利用正、余弦定理求边和角的方法:(1)根据题目给出的条件(即边和角)作出相应的图形,并在图形中标出相关的位置. (2)选择正弦定理或余弦定理或二者结合求出待解问题.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到. (3)在运算求解过程中注意三角恒等变换与三角形内角和定理的应用. 2.常见结论:(1)三角形的内角和定理:π A B C ++=,常见变式:πA B C +=-,π222A B C+=-. (2)三角形中的三角函数关系:i in(s n s )A B C =+;()s os co c A B C =-+;sincos 22A B C +=;cos sin 22A B C+=. 3.在等式变形中,一般两边不要约去公因式,应移项提取公因式,以免造成漏解. 4.求三角形面积的方法:(1)若三角形中已知一个角(角的大小,或该角的正、余弦值),结合题意求夹这个角的两边或该两边之积,套公式求解;(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,套公式求面积,总之,结合图形恰当选择面积公式是解题的关键;(3)三角形面积公式中含有两边及其夹角,故根据题目的特点,若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解;若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.5.几何中的长度、角度的计算通常转化为三角形中边长和角的计算,这样就可以利用正、余弦定理解决问题.解决此类问题的关键是构造三角形,把已知和所求的量尽量放在同一个三角形中.1.(2021·湖南·高考真题)如图,在ABC 中,45B ∠=︒,点D 在BC 边上,且2CD =,3AD =,1cos 3ADC ∠=(1)求AC 的长; (2)求sin BAD ∠的值. 【详解】 (1)2CD =,3AD =,1cos 3ADC ∠=, ∴在ADC 中,由余弦定理得222222321cos 22323AD CD AC AC ADC AD CD +-+-∠===⋅⨯⨯,29,3AC AC =∴=∴(2)1cos 3ADC ∠=,所以22sin ADC ∠=又由题意可得=BAD ADC B ∠∠-∠,sin =sin()sin cos cos sin BAD ADC B ADC B ADC B ∴∠∠-∠=∠∠-∠∠222124232326=-=2.(2021·天津·高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 22A B C =2b =(I )求a 的值; (II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.【详解】(I )因为sin :sin :sin 22A B C =由正弦定理可得::22a b c =2b =,22,2a c ∴==;(II )由余弦定理可得2223cos 242222a b c C ab +-===⨯⨯;(III )3cos 4C =,sin C ∴==, 3sin 22sin cos 24C C C ∴===,291cos 22cos 121168C C =-=⨯-=, 所以sin 2sin 2cos cos 2sin 666C C C πππ⎛⎫-=- ⎪⎝⎭1182⨯=. 3.(2021·江苏·高考真题)已知向量()223sin ,cos a x x =-,()cos ,6b x =,设函数()f x a b =⋅.(1)求函数()f x 的最大值;(2)在锐角ABC 中,三个角A ,B ,C 所对的边分别为a ,b,c ,若()0,f B b =3sin 2sin 0A C -=,求ABC 的面积.【详解】(1)因为()223sin ,cos a x x =-,()cos ,6b x =,所以函数()f x ab =⋅2cos 6cos 23cos 23x x x x x =-+=++2233x π⎛⎫=++ ⎪⎝⎭∴当2sin 213x π⎛⎫+=⎪⎝⎭时,max ()3f x =(2)∵ABC 为锐角三角形,02B π∴<<.25233B πππ∴<+< 又()0f B=2si n 23B π⎛⎫∴+= ⎪⎝⎭24233B ππ+=3B π∴= 3sin 2sin 032A C a c -=∴=2221cos 22a cb B ac +-==即222971432a a a +-= 2,3a c ∴==1232ABCS∴=⨯⨯=4.(2021·北京·高考真题)在ABC 中,2cos c b B =,23C π=. (1)求B ;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:c =;条件②:ABC的周长为4+; 条件③:ABC【详解】(1)2cos c b B =,则由正弦定理可得sin 2sin cos C B B =, 2sin 2sin 3B π∴==23C π=,0,3B π⎛⎫∴∈ ⎪⎝⎭,220,3B π⎛⎫∈ ⎪⎝⎭,23B π∴=,解得6B π=;(2)若选择①:由正弦定理结合(1)可得sin 21sin 2c Cb B===与c 矛盾,故这样的ABC 不存在; 若选择②:由(1)可得6A π=,设ABC 的外接圆半径为R , 则由正弦定理可得2sin 6a b R R π===,22sin3c R π==,则周长24a b c R ++=+=+解得2R =,则2,a c ==由余弦定理可得BC 边上的中线的长度为:若选择③:由(1)可得6A π=,即a b =,则211sin 22ABCSabC a ===,解得a =则由余弦定理可得BC 边上的中线的长度为:=. 5.(2022·上海·高考真题)如图,矩形ABCD 区域内,D 处有一棵古树,为保护古树,以D 为圆心,DA 为半径划定圆D 作为保护区域,已知30AB =m,15AD =m,点E 为AB 上的动点,点F 为CD 上的动点,满足EF 与圆D 相切.(1)若∠ADE 20︒=,求EF 的长;(2)当点E 在AB 的什么位置时,梯形FEBC 的面积有最大值,最大面积为多少? (长度精确到0.1m,面积精确到0.01m²) 【解析】(1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ⊥,15DH AD == 则AE EH =,所以直角ADE 与直角HED △全等 所以20ADE HDE ∠=∠=︒在直角HED △中,tan2015tan20EH DH =︒=︒90250HDF ADE ∠=︒-∠=︒在直角FHD △中,tan5015tan50HF AD =︒=︒()sin 20sin5015tan 20tan5015cos20cos50EF EH HF ︒︒⎛⎫=+=︒+︒=+ ⎪︒︒⎝⎭()sin 2050sin 20cos50cos20sin501515cos20cos50cos20cos50︒+︒︒︒︒+︒︒=⨯=⨯︒︒︒︒sin 70151523.3cos 20cos50cos50︒=⨯=≈︒︒︒(2)设ADE θ∠=,902HDF θ∠=︒-,则15tan AE θ=,()15tan 902FH θ=︒- ()115151515tan 15tan 90215tan 222tan 2EFDS EF DH θθθθ⎛⎫=⨯⨯=⎡+︒-⎤=+ ⎪⎣⎦⎝⎭ 11515tan 22ADESAD AE θ=⨯⨯=⨯所以梯形AEFD 的面积为215152251tan 30tan 2tan 2tan 222tan ADE DEFS SSθθθθθ⎛⎫-⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭2251225122533tan 23tan 4tan 4tan 2θθθθ⎛⎫=+≥⨯⨯= ⎪⎝⎭ 当且当13tan tan θθ=,即3tan 3θ=时取得等号,此时315tan 15538.73AE θ==⨯=≈ 即当3tan 3θ=时,梯形AEFD 的面积取得最小值22532则此时梯形FEBC 的面积有最大值22531530255.142⨯-≈ 所以当8.7AE =时,梯形FEBC 的面积有最大值,最大值为255.141.(2022·山东枣庄·一模)在ABC 中,内角A,B ,C 所对的边分别为a ,b ,c ,且sinsin 2B Cb a B +=.求: (1)A ; (2)a cb-的取值范围. 【解析】(1) 因为sinsin 2B Cb a B +=, 所以sin cossin sin 2AB A B =, 因为()0,,sin 0B B π∈∴≠, ()1cos2sin cos 0,cos 0,sin =222222A A A A A A π∴=∈∴≠∴,,, 因为0,,22263A A A πππ<<∴=∴=. (2)由正弦定理,2sinsin()sin sin 33sin sin B a c A Cb BB ππ----== 331sin 222sin B B B-=31cos 1sin 2B B -=-21(12sin )1122222sin cos 22B B B B --=-=-,因为203B π<<,所以023B π<<,所以0tan 2B<所以111222B -<-<,所以a cb -的取值范围是1(,1)2-. 2.(2022·山东青岛·一模)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()22sin sin sin sin sin B C A B C -=-.(1)求角A ;(2)若5b =,BC,求边c . 【解析】(1)因为()22sin sin sin sin sin B C A B C -=-, 所以222sin sin sin sin sin B C A B C +-=, 所以由正弦定理得222b c a bc +-=,所以由余弦定理得2221cos 222b c a bc A bc bc +-===,因为()0,πA ∈,所以π3A =. (2)由三角形面积公式得1122ABC S ah ===△, 11πsin 5sin 223ABC S bc A c ==⨯⨯=△,=,即a =, 由余弦定理得22255a c c =+-,将a =代入上式得216800c c +-=, 解得4c =或20-(舍),所以边4c =.3.(2022·山东济南·一模)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足sin cos b A B =.(1)求B :(2)若D 为边AC 的中点,且BD 4c =,求a . 【解析】(1)解:由sin 3cos b A a B =及正弦定理, 得sin sin 3sin cos B A A B =, 因为sin 0A >,所以sin 3cos B B =, 又cos 0B ≠,所以tan 3B =, 因为()0,πB ∈,所以π3B =. (2)解:延长BD 到点M 使BD DM =,连接AM , 在ABM 中,4AB =,AM a =,27BM =,2π3BAM ∠=, 由余弦定理,得2222π2cos3BM AB AM AB AM =+-⋅⋅, 即24120a a +-=,解得2a =或6a =-(舍), 所以2a =.4.(2022·山东·潍坊一中模拟预测)如图,在梯形ABCD 中,//AB CD ,点E 在边CD 上,120C ∠=︒,23BC =,45CEB ∠=︒.(1)求BE ,CE ;(2)若7AB =,求sin AEB ∠. 【解析】(1)因为3BC =45CEB ∠=,120C ∠=,所以15CBE ∠=. 在EBC 中,2345sin120sin15BE CE==, 可得23sin1203245BE ⨯==23sin153345CE ⨯==(2)因为AB CD ∥,所以45CEB ABE ∠=∠=.在AEB △中,由余弦定理可得2222cos 45EA EB AB EB AB =+-⋅⋅ ()2223272327252=+-⨯⨯⨯=,所以5EA =. 因为222cos 2EA EB AB AEB EA EB +-∠=⋅2518492102532+-==-⨯⨯,所以72sin 10AEB ∠=. 5.(2022·山东烟台·一模)如图,四边形ABCD 中,222AB BC AB BC AC ++⋅=.(1)若33AB BC ==,求△ABC 的面积;(2)若3CD BC =,30CAD ∠=,120BCD ∠=,求∠ACB 的值. 【解析】(1)在△ABC 中,2221cos 222AB BC AC AB BC B AB BC AB BC +--⋅===-⋅⋅,因为0180B <<,所以120B =. 11333sin1203122ABC S AB BC =⋅=⨯⨯=△ (2)设ACB θ∠=,则120ACD θ∠=-,30ADC θ∠=+,60BAC θ∠=-. 在△ACD 中,由()sin 30sin 30AC CD θ=+,得()sin 30sin30AC CD θ+=. 在△ABC 中,由()sin120sin 60ACBC θ=-,得()sin120sin 60AC BC θ=-.联立上式,并由3CD BC =()()sin 30sin1203sin 30sin 60θθ+=-,整理得()()1sin 30sin 604θθ+-=,所以()1sin 6022θ+=, 因为060θ<<,所以10062068θ<+<,所以602150θ+=,解得45θ=,即∠ACB 的值为45.(限时:30分钟)1.在ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,若2A π≠,且__________. (1)求a 的值; (2)若23A π=,求ABC 周长的最大值. 从①3cos 3cos a B b A ac +=;②3cos cos 3a B ab A c +=;③cos cos 3b C c B +=这三个条件中选一个补充在上面问题中并作答.注:如果选择多个条件分别解答,按第一个解答计分. 【详解】解:(1)若选①,则由正弦定理得:3sin cos 3sin cos sin 3sin()sin 3sin sin A B B A a C A B a C C a C +=⇒+=⇒=,因为(0,)C π∈所以sin 0C ≠,因此3a =; 若选②,则由正弦定理得:3sin cos sin cos 3sin sin cos 3sin()3sin cos A B a B A C a B A A B A B +=⇒=+-sin cos 3cos sin a B A A B ⇒=,因为,(0,)A B π∈且2A π≠,所以sin 0,cos 0B A ≠≠, 因此3a =;若选③,则由正弦定理得:33sin sin cos sin cos sin sin()AB C C B A B C a a+=⋅⇒+=,因为(0,)A π∈且2A π≠,所以sin 0A ≠,因此3a =; (2)若23A π=,则由余弦定理得:222222cos 9b a b c c bc A b c =+-⋅⇒=++, 2229()9b c bc b c bc ⇒+-=-⇒+-=,又22b c bc +⎛⎫ ⎪⎝⎭,故22()()94b c b c ++-,即23b c +,当且仅当3b c ==, ∴a b c ++的最大值为33+ 2.已知函数()sin cos 3f x x x π⎛⎫=+⎪⎝⎭.(1)求()f x 的单调增区间;(2)ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且A 锐角,若3()4f A =-,5a =,3b c +=,求ABC 的面积. 【详解】(1)2cos 3sin sin cos 3sin ()sin 2222x x x x xf x x ⎛⎫=-=- ⎪ ⎪⎝⎭sin 2sin 23cos233344424x x x π⎛⎫+ ⎪⎝⎭=+-=-, 令222232k x k πππππ-≤+≤+,51212k Z k x k ππππ∈⇒-≤≤+,k Z ∈, ()f x 的单调增区间是5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2)sin 2333sin(2)0224433A A A k ππππ⎛⎫+ ⎪⎝⎭-=-⇒+=⇒+=,k Z ∈, ∵A 为锐角,∴3A π=,由余弦定理得:2222222cos 5()35a b c bc A b c bc b c bc =+-⇒+-=⇒+-= 又433b c bc +=⇒=面积11433sin 22323S bc A ==⨯⨯=. 3.如图,在平面四边形ABCD 中,5π6DAB ∠=,π4ADC ∠=,222AB AC ==,1CD =.(1)求cos ACD ∠的值; (2)求BC 的值. 【详解】(1)由正弦定理,得sin sin AC CDADC CAD=∠∠,1sin CAD =∠.所以1sin 2CAD ∠=,故π6CAD ∠=.所以ππππcos cos πcos 6464ACD ⎡⎤⎛⎫⎛⎫∠=-+=-+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ππππcos cos sin sin 64644=-+=. (2)由(1)可知π6CAD ∠=,所以2π3BAC ∠=. 由余弦定理,得2222π2cos 143BC AB AC AB AC =+-⋅⋅=,所以BC =4.已知锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足()20b c cosA cosC α--=.(1)求角A 的大小;(2)求cosB cosC +的取值范围. 【详解】(1)在ABC 中,由()20b c cosA acosC --=, 利用正弦定理得()20sinB sinC cosA sinAcosC --=, 所以()20sinBcosA sin A C -+=,即20sinBcosA sinB -=, 因为0B π<<,可得0sinB ≠,所以12cosA =, 又因为0A π<<,所以3A π=.(2)由(1)知3A π=,可得23B C π+=,可得23C B π=-, 所以23cosB cosC cosB cos B π⎛⎫+=+- ⎪⎝⎭2233cosB cosBcos sinBsin ππ⎛⎫=++ ⎪⎝⎭1226sinB cosB sin B π⎛⎫=+=+ ⎪⎝⎭, 因为ABC 为锐角三角形,所以02B π<<,02C <<π,且3A π=,所以62B ππ<<,2363B πππ<+<,所以126sin B π⎛⎫<+≤ ⎪⎝⎭故cosB cosC +的取值范围为⎤⎥⎝⎦.5.在①2π3θ=,②C 到OA ,③sin 14COD ∠=这三个条件中任选一个,补充在下面问题中并解答. 问题:已知圆心角为θππ2θ⎛⎫<<⎪⎝⎭的扇形AOB ,C 为弧AB 上一点,D 为线段OB 上一点,且3CD =,2OD =,//CD AO ,______,求AOC △的面积. 注:如果选择多个条件分别解答,按第一个解答计分. 【详解】 选择条件①: 设该扇形的半径为r .因为//CD AO ,所以ππ3CDO θ∠=-=. 在CDO 中,由余弦定理,得222π2cos 3CD OD CD OD OC +-⋅=,即2221322322r +-⨯⨯⨯=,解得r =在CDO 中,由正弦定理,得sin sin OC OD CDO OCD=∠∠,2sin AOC =∠,得sin 7AOC ∠=,所以AOC △的面积为2211sin 2272r AOC ∠=⨯⨯=. 选择条件②:因为//CD AO ,所以C 到OA 的距离等于O 到CD 的距离,所以sin 2CDO ∠=.因为ππ2θ<<,所以CDO ∠为锐角,所以π3CDO ∠=. 设该扇形的半径为r ,在CDO 中,由余弦定理,得222π2cos3CD OD CD OD OC +-⋅=,即2221322322r +-⨯⨯⨯=,解得r =在CDO 中,由正弦定理,得sin sin OC OD CDO OCD=∠∠,2sin AOC =∠,得sin 7AOC ∠=,所以AOC △的面积为2211sin 2272r AOC ∠=⨯⨯=. 选择条件③:设该扇形的半径为r .在CDO 中,由正弦定理,得sin sin CD ODCDO OCD=∠∠,即2sin 14OCD =∠,所以sin 7OCD ∠=.因为OD CD <,所以OCD ∠为锐角,则cos OCD =∠=. 在CDO 中,由余弦定理,得2222cos OD CD OC CD OC OCD =+-⋅⋅∠,即2222367r r =+-⋅,解得r =7.又27<,所以r =所以AOC △的面积为22111sin sin 722272r AOC OCD ∠=⨯⨯∠=⨯⨯=.。
高中数学考试的重点和难点有哪些?
高中数学考试的重点和难点有哪些?高中数学考试是学生高考升学的重要关卡,也是检验学生数学能力的重要指标。
本文将从教育专家的角度,深入分析高中数学考试的重点和难点,帮助学生更好地把握考试重点,突破学习难点。
一、高考数学考试重点1. 基础知识:高考数学考试以考察基础知识为主,函数的定义、导数、积分、数列、三角函数、向量、解析几何等基本概念和公式的理解和应用是考试的重中之重。
2. 逻辑推理:高考数学注重考查学生的逻辑推理能力,包括对数学概念的理解、分析问题的能力、运用数学工具解决问题的能力等。
3. 解题技巧:高考数学考试除了对基础知识的考核,还考查解题技巧。
例如,利用函数图像求最值,运用导数求极值,借用积分求面积等。
4. 应用能力:高考数学考试越来越重视对数学知识的实际应用。
例如,运用数学模型研究问题,利用数学方法解决经济、科技等领域的实际问题。
二、高考数学考试难点1. 抽象思维:高中数学很多概念比较抽象,例如函数、极限、导数、积分等,学生理解起来比较困难。
2. 逻辑推理:高中数学的逻辑推理难度相对较高,例如证明题、几何证明题,需要学生具备较强的逻辑思维能力。
3. 综合运用:高考数学考试经常将多个知识点融合在一起,要求学生能综合运用所学的知识解决问题。
4. 时间压力:高考数学考试时间有限,学生需要在有限的时间内完成大量题目,这就要求学生具备熟练的解题技巧和快速分析问题的能力。
三、如何应对考试重点与难点的方案1. 夯实基础:掌握基础知识是应对考试的最重要前提。
要认真学习教材,理解概念,记忆公式,并通过练习巩固知识。
2. 增强逻辑训练:要加强逻辑推理能力的训练,例如进行逻辑推理题的练习、分析数学证明过程、总结解题思路等。
3. 掌握解题技巧:学习并掌握各种解题技巧,例如函数图像法、导数法、积分法等,并通过练习将技巧应用自如。
4. 注重实际应用:平时学习过程中要重视数学知识的实际应用,将数学模型应用于实际问题,利用数学方法解决现实生活中的问题。
高考数学难点突破_难点16__三角函数式的化简与求值
高考数学难点突破_难点16__三角函数式的化简与求值在高考数学中,三角函数式的化简与求值是一个很常见的难点。
在解决这一难点时,我们需要掌握一些基本的化简公式和常用的解题技巧。
首先,我们来回顾一下一些常见的三角函数化简公式:1.两角之和的三角函数公式:sin(A+B) = sinA·cosB + cosA·sinBcos(A+B) = cosA·cosB - sinA·sinBtan(A+B) = (tanA + tanB) / (1 - tanA·tanB)2.两角之差的三角函数公式:sin(A-B) = sinA·cosB - cosA·sinBcos(A-B) = cosA·cosB + sinA·sinBtan(A-B) = (tanA - tanB) / (1 + tanA·tanB)3.倍角的三角函数公式:sin2A = 2sinA·cosAcos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2Atan2A = (2tanA) / (1 - tan^2A)4.半角的三角函数公式:sin(A/2) = ±√[(1 - cosA) / 2]cos(A/2) = ±√[(1 + cosA) / 2]tan(A/2) = ±√[(1 - cosA) / (1 + cosA)](在这里需要根据A的范围来确定取正还是取负)掌握了这些基本的化简公式后,我们可以运用它们来解决一些常见的难点问题。
1.求三角函数值:高考中经常会出现需要求一些特定角度的三角函数值的问题。
我们可以通过套用基本的化简公式,将所给的角度化简到我们熟悉的角度(如30°,45°,60°等),然后代入公式求值即可。
例如,要求sin75° 的值,我们可以化简为sin(45°+30°),然后套用两角之和的公式,得到sin45°·cos30° + cos45°·sin30°。
三角函数、解三角形高考常见题型解题思路及知识点总结
三角函数、解三角形高考常见题型解题思路及知识点总结一、解题思路(一)解题思路思维导图(二)常见题型1.三角恒等变换已知正切值求正弦、余弦齐次式值问题 典例1:(2016年3卷)若tan 4α= ,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625【解析】2cos 2sin 2αα+=25641tan tan 41cos sin cos sin 4cos 2222=++=++ααααααα故选A .2.三角恒等变换给值求值问题典例2:(2016年2卷9)若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin 2α=( )(A )725(B )15(C )15-(D )725-【解析】∵3cos 45πα⎛⎫-= ⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D .3.图象法求三角函数()ϕω+=x A y sin ()00>>ω,A 性质 典例3:(2017年3卷6)设函数()cos()3f x x =+,则下列结论错误的是()A .()f x 的一个周期为2π-B .()y f x =的图像关于直线8π3x =对称C .()f x π+的一个零点为π6x =D .()f x 在π(,π)2单调递减【解析】函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图象可由cos y x =向左平移π3个单位得到,如图可知, ()f x 在π,π2⎛⎫ ⎪⎝⎭上先递减后递增,D 选项错误,故选D.4.复合函数法求三角函数()ϕω+=x A y sin ()00>>ω,A 性质π5.求三角函数()B x A y ++=ϕωsin ⎪⎭⎫⎝⎛<>>2,00πϕω,A 解析式 典例4:(2015年1卷8)函数=的部分图像如图所示,则的单调递减区间为( )(A )(B ) (C ) (D )【解析】由五点作图知,,解得,,所以,令,解得<<,,故单调减区间为(,),,故选D. 考点:三角函数图像与性质6.三角函数图象的平移与伸缩变换 典例5:(2017年1卷9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2()f x cos()x ωϕ+()f x 13(,),44k k k Z ππ-+∈13(2,2),44k k k Z ππ-+∈13(,),44k k k Z -+∈13(2,2),44k k k Z -+∈1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩=ωπ=4πϕ()cos()4f x x ππ=+22,4k x k k Z πππππ<+<+∈124k -x 324k +k Z ∈124k -324k +k Z ∈3π6π12写性质 根据解出x 的值或范围写出函数对称轴、对称中心、单调区间、最值等性质解题思路及步骤 注意事项求A 和B ()max min 12y y A =-,()max min 12y y B =+, 求ω 先求周期T ,再由求ωπ2=T 求ω 求ϕ代入已知点坐标,根据ϕ的具体范围求出ϕ,一般代入最值点,若代入与B y =的交点,注意区分是在增区间还是减区间上 求解析式写出解析式解题思路及步骤 注意事项写出变换法则 把变换前的函数看成抽象函数()x f y =,根据变换法则写出变换后的抽象函数 代入表达式根据原函数解析式写出变换后的解析式,例如:()x f y ==⎪⎭⎫⎝⎛+62sin 3πx 向右平移4π个单位后得函数⎪⎭⎫⎝⎛-=4πx f y =⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-32sin 3642sin 3πππx x ,其他变换都按这个方法确定变换后解析式C .把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2【解析】先变周期:先变相位:选D .7.解三角形知一求一问题8.解三角形知三求一问题典例6:(2017年2卷17)的内角的对边分别为,已知. (1)求;(2)若,的面积为2,求解析:(1)依题得.因为, 所以,所以,得(舍去)或12π612π122cos sin sin 2sin 2sin 2223122y x x y x y x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==+⇒=+⇒=+=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭22cos sin sin sin sin 222633y x x y x x y x πππππ⎛⎫⎛⎫⎛⎫⎛⎫==+⇒=++=+⇒=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ABC △,,A B C ,,a b c ()2sin 8sin 2B AC +=cos B 6a c +=ABC △.b 21cos sin 8sin 84(1cos )22B B B B -==⋅=-22sin cos 1B B +=2216(1cos )cos 1B B -+=(17cos 15)(cos 1)0B B --=cos 1B =(2)由∵可知,因为,所以,即,得.因为,所以,即,从而,即,解得.9.解三角形知二求最值(或范围)问题典例7:(2013年2卷17)∵ABC的内角A,B,C的对边分别为a,b,c,已知a=bcosC+csinB.(1)求B.(2)若b=2,求∵ABC面积的最大值.【解析】(1)因为a=bcosC+csinB,所以由正弦定理得:sinA=sinBcosC+sinCsinB,所以sin(B+C)=sinBcosC+sinCsinB,即cosBsinC=sinCsinB,因为sinC≠0,所以tanB=1,解得B=.4π(2)由余弦定理得:b2=a2+c2-2accos4π,即4=a2+c2ac,由不等式得a2+c2≥2ac,当且仅当a=c时,取等号,所以4≥(2)ac,解得,所以∵ABC的面积为12acsin4π≤4+1.所以∵ABC +1.典例8:(2011年1卷16)在中,的最大值为.令AB c=,BC a=,则由正弦定理得【解析】2,sin sin sina c ACA C B====2sin,2sin,c C a A∴==且120A C+=︒,222sin4sinAB BC c a C A∴+=+=+2sin4sin(120)C C=+︒-=2sin C+14(cos sin)4sin22C C C C+=++)Cϕ=(其中tan2ϕ=∴当90Cϕ+=︒时,2AB BC+取最大值为8sin17B=2ABCS=△1sin22ac B⋅=182217ac⋅=172ac=15cos17B=22215217a c bac+-=22215a c b+-=22()215a c ac b+--=2361715b--=2b=ABC60,B AC==2AB BC+二、知识点总结 (一)知识点思维导图(二)常用定理、公式及其变形1.同角三角函数关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.2.诱导公式:对于角α±π2k 与角α的三角函数关系“奇变偶不变,符号看象限”,这句话是对变化前的函数和角来说的. 例如在三角形,∵,∴A B C A B C ++=+=-ππ3.两角和与差公式:sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.4.二倍角公式: (1)升幂公式:sin 2sin cos ααα=,2222cos 2cos sin 2cos 112sin ααααα=-=-=-,22tan tan 21tan ααα=-(2)降幂公式:221cos 21cos 2cos ,sin 22αααα+-==5.辅助角公式:sin cos a b αα+=22sin()a b αϕ++(辅助角ϕ所在象限由点(,)a b 的象限决 定,tan b aϕ=).6.正弦函数、余弦函数和正切函数的图象与性质:7.函数()()sin 0,0y x ωϕω=A +A >>的性质: 振幅:A ,周期:2πωT =,频率:12f ωπ==T ,相位:x ωϕ+,初相:ϕ.sin y x =cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦ ()k ∈Z 上是增函数;在 32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+ ⎪⎝⎭ ()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴函 数性 质8.函数x y sin =变换到函数()ϕω+=x A y sin 的两种途径 ∵的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.∵数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.9.正弦定理:2sin sin sin a b c R A B C ===;化边变形:sin 2a R A =,sin 2bR B =,sin 2c C R=; 化角变形:2sin a R =A ,2sin b R =B ,2sin c R C =;比例关系:::sin :sin :sin a b c C =A B .10.余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-; 2222cos c a b ab C =+-.边角互化变形:222cos 2b c a bc+-A =,ac b c a B 2cos 222-+=,ab c b a C 2cos 222-+=11.面积公式:(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)()c b a r S ++=21(r 为三角形内切圆半径)。
重点、难点突破
重点、难点突破重点、难点突破在高考数学复习的第二、三轮中要逐个突破:选择填空题、三角函数、概率、立体几何、导数、解析几何、数列等七种重要的题型;归纳整理出函数与方程、数形结合、分类讨论和化归与转化等重要的数学思想来提高解题能力,力争数学高分。
下面我们主要以“就题型论思想”的方式来重点研究如何突破高考数学中的一些重点和疑难点问题。
—、克服圆锥曲线小题例题1 : [2011年赣州市第一次摸底考试]已知点P{mA)是椭圆* +召=1(小>0)上的一点,许迅是椭圆的两个焦点,若呵朽的内切圆的3半径为则此椭圆的离心率为 ___________ •一命题意图:本题考查椭圆的定义、离心率和内切圆等基础知识,考查学生分析问题和知识迁移的能力,属于中档题。
易错原因:不能准确地找出基本元之间的等量关系。
重难点突破:内切圆半径有什么用呢?检索和内切圆相关联的知识:面积。
技巧与方法:从两个角度刻画鬥的面积从而得出基本元",b,c之间的等量关系。
2 2题型链接:[赣州市第一次摸底考试]椭圆匚+罕=1,M, N是椭圆上关于9 4原点对称的两动点,P为椭圆上任意一点,PM, PN的斜率为k v k2,则比1 + 1込1的最小值为()A、壬B、专C、扌D、扌3 2 3 9[点评]本题属于偏难题,区分度很好,方法多样、灵巧。
1、常规解法,主要考查知识:通法点差法,主要考查能力:分析问题的能力即如何想到点差法;2、解选择题方法:特殊值法、极端法和函数思想,即把M, N特殊为左右顶点,根据椭圆的对称性只要考虑点P在第一象限变化即可,极端化,当P为4上顶点时比1 + 1灯1=亍当P为右顶点时+ 当P从上顶点向右顶点运动时时比1 + 1妬I的值是増大的,所以选C。
二、拿稳三角函数例题2 : [2011年赣州市第一次摸底考试]在Z\ABC中,角A、B、C的对边分别为"、b、c,且a2-(b-c)2 =(2->]3)bcr(1)若sin Asin cos2-,求角A和角B的大小;2(2)求sinBsinC的最大值命题意图:本题考查余弦定理、倍角公式的变形及辅肋角公式等三角函数的核心知识,考查函数的思想。
高考数学难点突破_难点17__三角形中的三角函数式
高考数学难点突破_难点17__三角形中的三角函数式
三角形中的三角函数式是高考数学中的重点内容,也是考试中经常出
现的难点。
掌握了三角形中的三角函数式的相关知识,能够帮助我们更好
地解决与三角函数相关的问题。
三角形中的三角函数式主要包括正弦定理、余弦定理以及解三角形的
相关方法。
下面我们将逐一介绍这些内容。
首先,正弦定理是解决不规则三角形的重要方法之一、对于任意三角
形ABC,设三边分别为a、b、c,对应的角分别为A、B、C,则有正弦定
理的公式:
```
a/sinA = b/sinB = c/sinC
```
利用正弦定理,我们可以通过已知两边和夹角,计算出第三边的长度;或者通过已知两角和边长,计算出剩余边长。
其次,余弦定理也是解决不规则三角形的重要方法。
对于任意三角形ABC,设三边分别为a、b、c,对应的角分别为A、B、C,则有余弦定理的
公式:
```
c² = a² + b² - 2abcosC
```
利用余弦定理,我们可以通过已知三边的长度,计算出对应的角的大小;或者通过已知两边和夹角,计算出剩余边的长度。
另外,解三角形也是一个重要的应用。
对于已知三角形的一些条件,我们要求出三角形的各边长和角度大小。
此时,我们可以利用之前提到的正弦定理和余弦定理,结合其他相关的条件,进行方程的求解,进而求得所需的结果。
总的来说,三角形中的三角函数式是理解和解决三角形相关问题的重要工具。
掌握了正弦定理、余弦定理以及解三角形的相关方法,能够帮助我们更好地进行高考数学的复习和应对考试中相关题目的解答。
高三数学三角函数公式
高三数学三角函数公式高三数学三角函数公式大全进入高三,我们必须对自己所学的各科知识的有个全面的把握。
高三数学复习从基础复习到慢慢深入,高三学生学习高中数学,要掌握好高三数学公式。
以下是关于高三数学三角函数公式的相关内容,供大家参考!高三数学三角函数公式大全sinα=∠α的对边/斜边cosα=∠α的邻边/斜边tanα=∠α的对边/∠α的邻边cotα=∠α的邻边/∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA?-SinA?=1-2SinA?=2CosA?-1tan2A=(2tanA)/(1-tanA?)(注:SinA?是sinA的平方sin2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a=tana·tan(π/3+a)·tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina三角函数辅助角公式Asinα+Bcosα=(A?+B?)’(1/2)sin(α+t),其中sint=B/(A?+B?)’(1/2)cost=A/(A?+B?)’(1/2)tant=B/AAsinα+Bcosα=(A?+B?)’(1/2)cos(α-t),tant=A/B降幂公式sin?(α)=(1-cos(2α))/2=versin(2α)/2cos?(α)=(1+cos(2α))/2=covers(2α)/2tan?(α)=(1-cos(2α))/(1+cos(2α))三角函数推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos?α1-cos2α=2sin?α1+sinα=(sinα/2+cosα/2)?=2sina(1-sin?a)+(1-2sin?a)sina=3sina-4sin?acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos?a-1)cosa-2(1-sin?a)cosa=4cos?a-3cosasin3a=3sina-4sin?a=4sina(3/4-sin?a)=4sina[(√3/2)?-sin?a]=4sina(sin?60°-sin?a)=4sina(sin60°+sina)(sin60°-sina)=4sina__2sin[(60+a)/2]cos[(60°-a)/2]__2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos?a-3cosa=4cosa(cos?a-3/4)=4cosa[cos?a-(√3/2)?]=4cosa(cos?a-cos?30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa__2cos[(a+30°)/2]cos[(a-30°)/2]__{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)三角函数半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin?(a/2)=(1-cos(a))/2cos?(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角函数三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)三角函数两角和差cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)三角函数和差化积sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)三角函数积化和差sinαsinβ=[cos(α-β)-cos(α+β)]/2cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2三角函数诱导公式sin(-α)=-sinαcos(-α)=cosαtan(—a)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαsin(π/2+α)=cosαcos(π/2+α)=-sinαsin(π-α)=sinαcos(π-α)=-cosαsin(π+α)=-sinαcos(π+α)=-cosαtanA=sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+tan’(α/2)]cosα=[1-tan’(α/2)]/1+tan’(α/2)]tanα=2tan(α/2)/[1-tan’(α/2)]其它公式(1)(sinα)?+(cosα)?=1(2)1+(tanα)?=(secα)?(3)1+(cotα)?=(cscα)?证明下面两式,只需将一式,左右同除(sinα)?,第二个除(cosα)?即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)?+(cosB)?+(cosC)?=1-2cosAcosBcosC(8)(sinA)?+(sinB)?+(sinC)?=2+2cosAcosBcosC(9)si nα+sin(α+2π/n)+sin(α+2π__2/n)+sin(α+2π__3/n)+……+sin[α+2π__(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π__2/n)+cos(α+2π__3/n)+……+cos[α+2π__(n-1)/n]=0以及sin?(α)+sin?(α-2π/3)+sin?(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0高三数学学习技巧一、用好课本:侧重以下几个方面1.对数学概念重新认识,深刻理解其内涵与外延,区分容易混淆的概念。
高考数学难点突破_难点17__三角形中的三角函数式
难点17 三角形中的三角函数式三角形中的三角函数关系是历年高考的重点内容之一,本节主要帮助考生深刻理解正、余弦定理,掌握解斜三角形的方法和技巧.●难点磁场(★★★★★)已知△ABC 的三个内角A 、B 、C 满足A +C =2B .BC A cos 2cos 1cos 1-=+,求cos2CA -的值. ●案例探究[例1]在海岛A 上有一座海拔1千米的山,山顶设有一个观察站P ,上午11时,测得一轮船在岛北30°东,俯角为60°的B 处,到11时10分又测得该船在岛北60°西、俯角为30°的C 处。
(1)求船的航行速度是每小时多少千米;(2)又经过一段时间后,船到达海岛的正西方向的D 处,问此时船距岛A 有多远?命题意图:本题主要考查三角形基础知识,以及学生的识图能力和综合运用三角知识解决实际问题的能力.知识依托:主要利用三角形的三角关系,关键找准方位角,合理利用边角关系. 错解分析:考生对方位角识别不准,计算易出错.技巧与方法:主要依据三角形中的边角关系并且运用正弦定理来解决问题.解:(1)在Rt △P AB 中,∠APB =60° P A =1,∴AB =3 (千米) 在Rt △P AC 中,∠APC =30°,∴AC =33(千米) 在△ACB 中,∠CAB =30°+60°=90°)/(30261330330)3()33(2222时千米=÷=+=+=∴AB AC BC(2)∠DAC =90°-60°=30° sin DCA =sin(180°-∠ACB )=sin ACB =101033303==BCABsin CDA =sin(∠ACB -30°)=sin ACB ·cos30°-cos ACB ·sin30°10103=. 2010)133()10103(121232-=-⋅- 在△ACD 中,据正弦定理得CDAACDCA AD sin sin =,∴13392010)133(1010333sin sin +=-⋅=⋅=CDA DCA AC AD 答:此时船距岛A 为1339+千米. [例2]已知△ABC 的三内角A 、B 、C 满足A +C =2B ,设x =cos 2CA -,f (x )=cosB (CA cos 1cos 1+). (1)试求函数f (x )的解析式及其定义域; (2)判断其单调性,并加以证明; (3)求这个函数的值域. 命题意图:本题主要考查考生运用三角知识解决综合问题的能力,并且考查考生对基础知识的灵活运用的程度和考生的运算能力,属★★★★级题目.知识依托:主要依据三角函数的有关公式和性质以及函数的有关性质去解决问题. 错解分析:考生对三角函数中有关公式的灵活运用是难点,并且不易想到运用函数的单调性去求函数的值域问题.技巧与方法:本题的关键是运用三角函数的有关公式求出f (x )的解析式,公式主要是和差化积和积化和差公式.在求定义域时要注意|2CA -|的范围.解:(1)∵A +C =2B ,∴B =60°,A +C =120°,3421221)cos()cos(2cos2cos2cos cos cos cos 21)(22-=-+-=-++-+=⋅+⋅=x xx x C A C A CA C A C A C A x f∵0°≤|2C A -|<60°,∴x =cos 2C A -∈(21,1]又4x 2-3≠0,∴x ≠23,∴定义域为(21,23)∪(23,1]. (2)设x 1<x 2,∴f (x 2)-f (x 1)=342342211222---x x x x=)34)(34()34)((222212121--+-x x x x x x ,若x 1,x 2∈(23,21),则4x 12-3<0,4x 22-3<0,4x 1x 2+3>0,x 1-x 2<0,∴f (x 2)-f (x 1)<0即f (x 2)<f (x 1),若x 1,x 2∈(23,1],则4x 12-3>0. 4x 22-3>0,4x 1x 2+3>0,x 1-x 2<0,∴f (x 2)-f (x 1)<0.即f (x 2)<f (x 1),∴f (x )在(21,23)和(23,1]上都是减函数.(3)由(2)知,f (x )<f (21)=-21或f (x )≥f (1)=2. 故f (x )的值域为(-∞,-21)∪[2,+∞).●锦囊妙计本难点所涉及的问题以及解决的方法主要有: (1)运用方程观点结合恒等变形方法巧解三角形; (2)熟练地进行边角和已知关系式的等价转化;(3)能熟练运用三角形基础知识,正、余弦定理及面积公式与三角函数公式配合,通过等价转化或构建方程解答三角形的综合问题,注意隐含条件的挖掘.●歼灭难点训练 一、选择题1.(★★★★★)给出四个命题:(1)若sin2A =sin2B ,则△ABC 为等腰三角形;(2)若sin A =cos B ,则△ABC 为直角三角形;(3)若sin 2A +sin 2B +sin 2C <2,则△ABC 为钝角三角形;(4)若cos(A -B )cos(B -C )cos(C -A )=1,则△ABC 为正三角形.以上正确命题的个数是( )A.1B.2C.3D.4 二、填空题2.(★★★★)在△ABC 中,已知A 、B 、C 成等差数列,则2tan2tan 32tan 2tan CA C A ++的值为__________.3.(★★★★)在△ABC 中,A 为最小角,C 为最大角,已知cos(2A +C )=-34,sin B =54,则cos2(B +C )=__________.三、解答题4.(★★★★)已知圆内接四边形ABCD 的边长分别为AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积.5.(★★★★★)如右图,在半径为R 的圆桌的正中央上空挂一盏电灯,桌子边缘一点处的照度和灯光射到桌子边缘的光线与桌面的夹角θ的正弦成正比,角和这一点到光源的距离 r 的平方成反比,即I =k ·2sin rθ,其中 k 是一个和灯光强度有关的常数,那么怎样选择电灯悬挂的高度h ,才能使桌子边缘处最亮?6.(★★★★)在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,27cos 22sin 42=-+A C B .(1)求角A 的度数;(2)若a =3,b +c =3,求b 和c 的值.7.(★★★★)在△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且a 、b 、3c 成等比数列,又∠A -∠C =2π,试求∠A 、∠B 、∠C 的值. 8.(★★★★★)在正三角形ABC 的边AB 、AC 上分别取D 、E 两点,使沿线段DE 折叠三角形时,顶点A 正好落在边BC 上,在这种情况下,若要使AD 最小,求AD ∶AB 的值.参考答案难点磁场解法一:由题设条件知B =60°,A +C =120°. 设α=2CA -,则A -C =2α,可得A =60°+α,C =60°-α, ,43cos cos sin 43cos 41cos sin 23cos 211sin 23cos 211)60cos(1)60cos(1cos 1cos 1222-αα=α-αα=α+α+α-α=α-︒+α+︒=+C A 所以 依题设条件有,cos 243cos cos 2B-=-αα .2243cos cos ,21cos 2-=-αα∴=B整理得42cos 2α+2cos α-32=0(M )(2cos α-2)(22cos α+3)=0,∵22cos α+3≠0,∴2cos α-2=0.从而得cos222=-C A . 解法二:由题设条件知B =60°,A +C =120°22cos 1cos 1,2260cos 2-=+∴-=︒-CA①,把①式化为cos A +cos C =-22cos A cos C②,利用和差化积及积化和差公式,②式可化为)]cos()[cos(22cos 2cos 2C A C A CA C A -++-=-+③,将cos 2CA +=cos60°=21,cos(A +C )=-21代入③式得:)cos(2222cosC A C A --=-④ 将cos(A -C )=2cos 2(2C A -)-1代入 ④:42cos 2(2C A -)+2cos 2CA --32=0,(*),.222cos :,022cos 2,032cos 22,0)32cos 22)(222cos 2(=-=--∴=+-=+---C A C A C A C A C A 从而得歼灭难点训练一、1.解析:其中(3)(4)正确. 答案: B二、2.解析:∵A+B+C =π,A+C=2B ,.32tan 2tan 32tan 2tan)2tan 2tan 1(32tan 2tan ,3)2tan(,32=++-=+=+=+∴CA C A C A C A C A C A 故π答案:33.解析:∵A 为最小角∴2A +C =A +A +C <A+B+C =180°. ∵cos(2A +C )=-54,∴sin(2A+C )=53. ∵C 为最大角,∴B 为锐角,又sin B =54.故cos B =53. 即sin(A+C )=54,cos(A +C )=-53. ∵cos(B+C )=-cos A =-cos [(2A+C )-(A+C )]=-2524, ∴cos2(B+C )=2cos 2(B+C )-1=625527. 答案:625527三、4.解:如图:连结BD ,则有四边形ABCD 的面积:S =S △ABD +S △CDB =21·AB ·AD sin A +21·BC ·CD ·sin C ∵A+C =180°,∴sin A =sin C故S =21(AB ·AD +BC ·CD )sin A =21(2×4+6×4)sin A =16sin A由余弦定理,在△ABD 中,BD 2=AB 2+AD 2-2AB ·AD ·cos A =20-16cos A 在△CDB 中,BD 2=CB 2+CD 2-2CB ·CD ·cos C =52-48cos C ∴20-16cos A =52-48cos C ,∵cos C =-cos A ,∴64cos A =-32,cos A =-21,又0°<A <180°,∴A =120°故S =16sin120°=83.5.解:R =r cos θ,由此得:20,cos 1π<θ<θ=R r ,RR h Rk I Rk R k I R k R k r k I 22tan ,33sin ,392)32()()sin 1)(sin 1(sin 2)(2)cos (sin cos sin sin 232222222222222=θ==θ⋅≤⋅≤θ-θ-⋅θ⋅=θ⋅θ⋅=θ⋅θ⋅=θ⋅=此时时成立等号在由此得 .1221:23 2:3,3.3)(21221cos 2cos :)2(60,1800,21cos ,01cos 4cos 45cos 4)cos 1(4,271cos 2)]cos(1[2:,180272cos 2sin 4)1(:.6222222222222⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==+==+==-+∴=-+∴=-+=︒=∴︒<<︒=∴=+-=-+=+-+-︒=++=-+c b c b bc c b bc c b a bc a c b bc a c b A bca cb A A A A A A A A A C B C B A A C B 或得由代入上式得将由余弦定理得即得及由解 7.解:由a 、b 、3c 成等比数列,得:b 2=3ac∴sin 2B =3sin C ·sin A =3(-21)[cos(A +C )-cos(A -C )] ∵B =π-(A+C ).∴sin 2(A+C )=-23[cos(A+C )-cos 2π]即1-cos 2(A+C )=-23cos(A+C ),解得cos(A+C )=-21.∵0<A+C <π,∴A+C =32π.又A -C =2π∴A =127π,B =3π,C =12π.8.解:按题意,设折叠后A 点落在边BC 上改称P 点,显然A 、P 两点关于折线DE 对称,又设∠BAP =θ,∴∠DP A =θ,∠BDP =2θ,再设AB =a ,AD =x ,∴DP =x .在△ABC 中, ∠APB =180°-∠ABP -∠BAP =120°-θ,由正弦定理知:APBABBAP BP sin sin =.∴BP =)120sin(sin θθ-︒a 在△PBD 中,︒=-︒︒⋅==60sin 2sin )120sin(sin ,60sin sin ,sin sin θθθθx a x BP BDP BP DBP DP 从而所以,.3)260sin(23)120sin(2sin 60sin sin ++︒=-︒⋅︒⋅=∴θθθθaa x∵0°≤θ≤60°,∴60°≤60°+2θ≤180°,∴当60°+2θ=90°,即θ=15°时, sin(60°+2θ)=1,此时x 取得最小值)332(323-=+a a ,即AD 最小,∴AD ∶DB =23-3.Von Neumann说过:In mathematics you don't understand things .You just get used to them.掌握了课本,一般的数学题就都可以做了。
三角函数的概念与三角公式应用(4知识点+3重难点+7方法技巧+5易错易混)(解析版)2025高考数学
专题06三角函数的概念与三角恒等变换(思维构建+知识盘点+重点突破+方法技巧+易混易错)知识点1任意角与弧度制1、角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)象限角:以角的顶点为坐标原点,角的始边为x轴正半轴,建立平面直角坐标系.这样,角的终边(除端点外)在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,构成的角的集合是S={β|β=k·360°+α,k∈Z}.2、弧度制定义把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad知识点2任意角的三角函数三角函数正弦余弦正切定义设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么y 叫做α的正弦,记作sin αx 叫做α的余弦,记作cos αyx叫做α的正切,记作tan α各象限符号Ⅰ+++Ⅱ+--Ⅲ--+Ⅳ-+-三角函数线有向线段MP 为正弦线有向线段OM 为余弦线有向线段AT 为正切线知识点3同角三角函数基本关系式与诱导公式1、同角三角函数基本关系式(1)平方关系:sin 2α+cos 2α=1.(3)商数关系:sin αcos α=tan ≠π2+kπ,k ∈(3)基本关系式的几种变形①sin2α=1-cos 2α=(1+cos α)(1-cos α);cos 2α=1-sin 2α=(1+sin α)(1-sin α).②(sin α±cos α)2=1±2sin αcos α.③sin α=tan αcos ≠k π+π2,k ∈2、三角函数的诱导公式公式一二三四五六角2k π+α(k ∈Z )π+α-απ-απ2-απ2+α正弦sin α-sin α-sin αsin αcos αcos α余弦cos α-cos αcos α-cos αsin α-sin α正切tan αtan α-tan α-tan α口诀函数名改变,符号看象限函数名不变,符号看象限“奇变偶不变,符号看象限”中的奇、偶是指π/2的奇数倍和偶数倍,变与不变指函数名称的变化。
高考三角大题解法大全
高考数学中的三角大题是指综合运用三角函数、三角恒等式和三角方程等知识进行解答的题目。
以下是一些常见的三角大题解法:
1. 利用三角函数的性质:
-利用正弦定理、余弦定理、正切定义等三角函数的性质,建立方程并求解未知量。
-根据三角函数的周期性、对称性等特点,将复杂的三角函数表达式转化为简化形式,进而进行计算。
2. 运用三角恒等式:
-根据三角恒等式中的等价关系,将复杂的三角函数表达式化简成易于计算的形式。
-利用和差角、倍角、半角等三角恒等式,将复杂角度的三角函数表达式转化为简单角度的三角函数表达式。
3. 转化为三角方程:
-将三角函数表达式与已知条件相比较,通过建立等式或方程组,求解未知量的值。
-利用三角方程的性质,如周期性、对称性、解集范围等,求得满足条件的解。
4. 利用图形性质:
-利用三角函数图像在坐标平面上的性质,通过观察和分析图像,推导出所需的结果。
-利用几何图形的性质,如正多边形、扇形、三角形等的面积、角度关系等,求解相关问题。
5. 利用向量方法:
-利用向量的性质,将三角函数表达式转化为向量表达式,通过向量运算求解问题。
-利用向量的共线、垂直等关系,建立方程组求解未知量。
以上是一些常见的三角大题解法,但需要根据具体题目的要求和条件灵活运用,并注意合理化简和化繁为简的思路。
在备考过程中,多做相关的练习题和真题,加深对不同解法的理解和掌握,提高解题能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点17 三角形中的三角函数式三角形中的三角函数关系是历年高考的重点内容之一,本节主要帮助考生深刻理解正、余弦定理,掌握解斜三角形的方法和技巧.●难点磁场(★★★★★)已知△ABC 的三个内角A 、B 、C 满足A +C =2B .BC A cos 2cos 1cos 1-=+,求cos2CA -的值. ●案例探究[例1]在海岛A 上有一座海拔1千米的山,山顶设有一个观察站P ,上午11时,测得一轮船在岛北30°东,俯角为60°的B 处,到11时10分又测得该船在岛北60°西、俯角为30°的C 处。
(1)求船的航行速度是每小时多少千米;(2)又经过一段时间后,船到达海岛的正西方向的D 处,问此时船距岛A 有多远?命题意图:本题主要考查三角形基础知识,以及学生的识图能力和综合运用三角知识解决实际问题的能力.知识依托:主要利用三角形的三角关系,关键找准方位角,合理利用边角关系. 错解分析:考生对方位角识别不准,计算易出错.技巧与方法:主要依据三角形中的边角关系并且运用正弦定理来解决问题.解:(1)在Rt △P AB 中,∠APB =60° P A =1,∴AB =3 (千米) 在Rt △P AC 中,∠APC =30°,∴AC =33(千米) 在△ACB 中,∠CAB =30°+60°=90°)/(30261330330)3()33(2222时千米=÷=+=+=∴AB AC BC(2)∠DAC =90°-60°=30° sin DCA =sin(180°-∠ACB )=sin ACB =101033303==BCABsin CDA =sin(∠ACB -30°)=sin ACB ·cos30°-cos ACB ·sin30°10103=. 2010)133()10103(121232-=-⋅- 在△ACD 中,据正弦定理得CDAACDCA AD sin sin =,∴13392010)133(1010333sin sin +=-⋅=⋅=CDA DCA AC AD 答:此时船距岛A 为1339+千米.[例2]已知△ABC 的三内角A 、B 、C 满足A +C =2B ,设x =cos 2CA -,f (x )=cosB (CA cos 1cos 1+). (1)试求函数f (x )的解析式及其定义域; (2)判断其单调性,并加以证明; (3)求这个函数的值域. 命题意图:本题主要考查考生运用三角知识解决综合问题的能力,并且考查考生对基础知识的灵活运用的程度和考生的运算能力,属★★★★级题目.知识依托:主要依据三角函数的有关公式和性质以及函数的有关性质去解决问题. 错解分析:考生对三角函数中有关公式的灵活运用是难点,并且不易想到运用函数的单调性去求函数的值域问题.技巧与方法:本题的关键是运用三角函数的有关公式求出f (x )的解析式,公式主要是和差化积和积化和差公式.在求定义域时要注意|2CA -|的范围. 解:(1)∵A +C =2B ,∴B =60°,A +C =120°,3421221)cos()cos(2cos2cos2cos cos cos cos 21)(22-=-+-=-++-+=⋅+⋅=x xx x C A C A CA C A C A C A x f∵0°≤|2C A -|<60°,∴x =cos 2C A -∈(21,1]又4x 2-3≠0,∴x ≠23,∴定义域为(21,23)∪(23,1].(2)设x 1<x 2,∴f (x 2)-f (x 1)=342342211222---x x x x=)34)(34()34)((222212121--+-x x x x x x ,若x 1,x 2∈(23,21),则4x 12-3<0,4x 22-3<0,4x 1x 2+3>0,x 1-x 2<0,∴f (x 2)-f (x 1)<0即f (x 2)<f (x 1),若x 1,x 2∈(23,1],则4x 12-3>0. 4x 22-3>0,4x 1x 2+3>0,x 1-x 2<0,∴f (x 2)-f (x 1)<0.即f (x 2)<f (x 1),∴f (x )在(21,23)和(23,1]上都是减函数.(3)由(2)知,f (x )<f (21)=-21或f (x )≥f (1)=2. 故f (x )的值域为(-∞,-21)∪[2,+∞).●锦囊妙计本难点所涉及的问题以及解决的方法主要有: (1)运用方程观点结合恒等变形方法巧解三角形; (2)熟练地进行边角和已知关系式的等价转化;(3)能熟练运用三角形基础知识,正、余弦定理及面积公式与三角函数公式配合,通过等价转化或构建方程解答三角形的综合问题,注意隐含条件的挖掘.●歼灭难点训练 一、选择题1.(★★★★★)给出四个命题:(1)若sin2A =sin2B ,则△ABC 为等腰三角形;(2)若sin A =cos B ,则△ABC 为直角三角形;(3)若sin 2A +sin 2B +sin 2C <2,则△ABC 为钝角三角形;(4)若cos(A -B )cos(B -C )cos(C -A )=1,则△ABC 为正三角形.以上正确命题的个数是( )A.1B.2C.3D.4 二、填空题2.(★★★★)在△ABC 中,已知A 、B 、C 成等差数列,则2tan 2tan 32tan 2tan C A C A ++的值为__________.3.(★★★★)在△ABC 中,A 为最小角,C 为最大角,已知cos(2A +C )=-34,sin B =54,则cos2(B +C )=__________.三、解答题4.(★★★★)已知圆内接四边形ABCD 的边长分别为AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积.5.(★★★★★)如右图,在半径为R 的圆桌的正中央上空挂一盏电灯,桌子边缘一点处的照度和灯光射到桌子边缘的光线与桌面的夹角θ的正弦成正比,角和这一点到光源的距离 r 的平方成反比,即I =k ·2sin rθ,其中 k 是一个和灯光强度有关的常数,那么怎样选择电灯悬挂的高度h ,才能使桌子边缘处最亮?6.(★★★★)在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,27cos 22sin 42=-+A C B . (1)求角A 的度数;(2)若a =3,b +c =3,求b 和c 的值.7.(★★★★)在△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且a 、b 、3c 成等比数列,又∠A -∠C =2π,试求∠A 、∠B 、∠C 的值.8.(★★★★★)在正三角形ABC 的边AB 、AC 上分别取D 、E 两点,使沿线段DE 折叠三角形时,顶点A 正好落在边BC 上,在这种情况下,若要使AD 最小,求AD ∶AB 的值.参考答案难点磁场解法一:由题设条件知B =60°,A +C =120°. 设α=2CA -,则A -C =2α,可得A =60°+α,C =60°-α, ,4cos cos sin 4cos 4cos sin 23cos 211sin 23cos 211)60cos(1)60cos(1cos 1cos 1222-αα=α-αα=α+α+α-α=α-︒+α+︒=+C A 所以 依题设条件有,cos 243cos cos 2B-=-αα .2243cos cos ,21cos 2-=-αα∴=B整理得42cos 2α+2cos α-32=0(M )(2cos α-2)(22cos α+3)=0,∵22cos α+3≠0,∴2cos α-2=0.从而得cos222=-C A . 解法二:由题设条件知B =60°,A +C =120°22cos 1cos 1,2260cos 2-=+∴-=︒-CA①,把①式化为cos A +cos C =-22cos A cos C②,利用和差化积及积化和差公式,②式可化为)]cos()[cos(22cos 2cos2C A C A CA C A -++-=-+③,将cos2C A +=cos60°=21,cos(A +C )=-21代入③式得: )cos(2222cos C A C A --=- ④将cos(A -C )=2cos 2(2C A -)-1代入 ④:42cos 2(2C A -)+2cos 2CA --32=0,(*),.222cos :,022cos 2,032cos 22,0)32cos 22)(222cos 2(=-=--∴=+-=+---C A C A C A C A C A 从而得歼灭难点训练一、1.解析:其中(3)(4)正确. 答案: B二、2.解析:∵A+B+C =π,A+C=2B ,.32tan 2tan 32tan 2tan )2tan 2tan 1(32tan 2tan ,3)2tan(,32=++-=+=+=+∴CA C A C A C A C A C A 故π答案:33.解析:∵A 为最小角∴2A +C =A +A +C <A+B+C =180°. ∵cos(2A +C )=-54,∴sin(2A+C )=53. ∵C 为最大角,∴B 为锐角,又sin B =54.故cos B =53. 即sin(A+C )=54,cos(A +C )=-53. ∵cos(B+C )=-cos A =-cos [(2A+C )-(A+C )]=-2524, ∴cos2(B+C )=2cos 2(B+C )-1=625527. 答案:625527三、4.解:如图:连结BD ,则有四边形ABCD 的面积:S =S △ABD +S △CDB =21·AB ·AD sin A +21·BC ·CD ·sin C ∵A+C =180°,∴sin A =sin C 故S =21(AB ·AD +BC ·CD )sin A =21(2×4+6×4)sin A =16sin A 由余弦定理,在△ABD 中,BD 2=AB 2+AD 2-2AB ·AD ·cos A =20-16cos A 在△CDB 中,BD 2=CB 2+CD 2-2CB ·CD ·cos C =52-48cos C ∴20-16cos A =52-48cos C ,∵cos C =-cos A ,∴64cos A =-32,cos A =-21,又0°<A <180°,∴A =120°故S =16sin120°=83. 5.解:R =r cos θ,由此得:20,cos 1π<θ<θ=R r ,RR h Rk I Rk R k I R k R k r k I 22tan ,33sin ,392)32()()sin 1)(sin 1(sin 2)(2)cos (sin cos sin sin 232222222222222=θ==θ⋅≤⋅≤θ-θ-⋅θ⋅=θ⋅θ⋅=θ⋅θ⋅=θ⋅=此时时成立等号在由此得 .1221:23 2:3,3.3)(21221cos 2cos :)2(60,1800,21cos ,01cos 4cos 45cos 4)cos 1(4,271cos 2)]cos(1[2:,180272cos 2sin 4)1(:.6222222222222⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==+==+==-+∴=-+∴=-+=︒=∴︒<<︒=∴=+-=-+=+-+-︒=++=-+c b c b bc c b bc c b a bc a c b bc a c b A bca cb A A A A A A A A A C B C B A A C B 或得由代入上式得将由余弦定理得即得及由解 7.解:由a 、b 、3c 成等比数列,得:b 2=3ac∴sin 2B =3sin C ·sin A =3(-21)[cos(A +C )-cos(A -C )] ∵B =π-(A+C ).∴sin 2(A+C )=-23[cos(A+C )-cos 2π]即1-cos 2(A+C )=-23cos(A+C ),解得cos(A+C )=-21.∵0<A+C <π,∴A+C =32π.又A -C =2π∴A =127π,B =3π,C =12π.8.解:按题意,设折叠后A 点落在边BC 上改称P 点,显然A 、P 两点关于折线DE 对称,又设∠BAP =θ,∴∠DP A =θ,∠BDP =2θ,再设AB =a ,AD =x ,∴DP =x .在△ABC 中, ∠APB =180°-∠ABP -∠BAP =120°-θ由正弦定理知:APBABBAP BP sin sin =.∴BP =)120sin(sin θθ-︒a 在△PBD 中,︒=-︒︒⋅==60sin 2sin )120sin(sin ,60sin sin ,sin sin θθθθx a x BP BDP BP DBP DP 从而所以,.3)260sin(23)120sin(2sin 60sin sin ++︒=-︒⋅︒⋅=∴θθθθaa x∵0°≤θ≤60°,∴60°≤60°+2θ≤180°,∴当60°+2θ=90°,即θ=15°时, sin(60°+2θ)=1,此时x 取得最小值)332(323-=+a a ,即AD 最小,∴AD ∶DB =23-3.。