高中数学 第二讲 参数方程复习巩固学案 新人教A版选修
高中数学第二章参数方程复习课学案新人教A版选修4-4(2021年整理)
2018-2019学年高中数学第二章参数方程复习课学案新人教A版选修4-4 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第二章参数方程复习课学案新人教A版选修4-4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第二章参数方程复习课学案新人教A版选修4-4的全部内容。
第二章参数方程复习课[整合·网络构建][警示·易错提醒]1.参数方程化为普通方程的易错点将参数方程化为普通方程时,很容易改变变量的取值范围,从而使得两种方程所表示的曲线不一致.2.圆锥曲线中的三点注意事项(1)注意不要将椭圆方程中的参数的几何意义与圆的方程中的参数的几何意义相混淆.(2)把圆锥曲线的参数方程化为普通方程时注意变量x(或y)的变化.(3)利用参数方程的参数求轨迹方程时,注意参数的特殊取值.3.关注直线参数方程中参数t具有几何意义的前提条件t具有几何意义的前提条件是直线参数方程为标准形式.4.圆的渐开线和摆线的两个易错点(1)对圆的渐开线和摆线的概念理解不透导致错误.(2)弄不清圆的渐开线和摆线的参数方程导致错误。
专题一求曲线的参数方程用参数方程求动点的轨迹方程,其基本思想是选取适当的参数作为中间变量,使动点横、纵坐标分别与参数有关,从而得到动点的参数方程,然后再消去参数,化为普通方程.如果动点轨迹与直线、圆、圆锥曲线等有关,那么通常取直线、圆、圆锥曲线的参数方程中的参数作为中间变量.[例1]过点P(-2,0)作直线l与圆x2+y2=1交于A、B两点,设A、B的中点为M,求M的轨迹的参数方程.解:设M(x,y),A(x1,y1),B(x2,y2),直线l的方程为x=ty-2。
高中数学 第二讲《参数方程》全部教案 新人教A版选修4-4
曲线的参数方程教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
2.分析圆的几何性质,选择适当的参数写出它的参数方程。
3.会进行参数方程和普通方程的互化。
教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。
参数方程和普通方程的互化。
教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。
参数方程和普通方程的等价互化。
教学过程一.参数方程的概念1.探究:(1)平抛运动: 为参数)t gt y tx (215001002⎪⎩⎪⎨⎧-== 练习:斜抛运动:为参数)t gt t v y t v x (21sin cos 200⎪⎩⎪⎨⎧-⋅=⋅=αα2.参数方程的概念 (见教科书第22页) 说明:(1)一般来说,参数的变化X 围是有限制的。
(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。
例1.(教科书第22页例1)已知曲线C 的参数方程是⎩⎨⎧+==1232t y tx (t 为参数) (1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值。
)0,1()21,21()21,31()7,2()(2cos sin 2D C B A y x ,、,、,、的坐标是表示的曲线上的一个点为参数、方程θθθ⎩⎨⎧==A 、一个定点B 、一个椭圆C 、一条抛物线D 、一条直线二.圆的参数方程)(sin cos 为参数t t r y t r x ⎩⎨⎧==ωω)(sin cos 为参数θθθ⎩⎨⎧==r y r x说明:(1)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。
(2)在建立曲线的参数方程时,要注明参数及参数的取值X 围。
例2.(教科书第24页例2)思考:你能回答教科书第25页的思考吗?三.参数方程和普通方程的互化1.阅读教科书第25页,明确参数方程和普通方程的互化的方法。
高中数学《参数方程的概念》教案新人教A版选修
高中数学《参数方程的概念》教案新人教A版选修一、教学目标:1. 让学生理解参数方程的概念,了解参数方程与普通方程的区别和联系。
2. 培养学生运用参数方程解决实际问题的能力。
3. 通过对参数方程的学习,提高学生的数学思维能力和创新意识。
二、教学内容:1. 参数方程的定义及基本形式。
2. 参数方程与普通方程的互化。
3. 参数方程在实际问题中的应用。
三、教学重点与难点:1. 重点:参数方程的概念,参数方程与普通方程的互化。
2. 难点:参数方程在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探索参数方程的概念及应用。
2. 利用数形结合法,帮助学生直观地理解参数方程与普通方程的关系。
3. 运用实例分析法,让学生学会将实际问题转化为参数方程求解。
五、教学过程:1. 导入:引导学生回顾普通方程的知识,激发学生对参数方程的兴趣。
2. 新课讲解:讲解参数方程的定义、基本形式及与普通方程的关系。
3. 案例分析:分析参数方程在实际问题中的应用,如物体的运动轨迹、电路问题等。
4. 练习与讨论:学生分组讨论,尝试将实际问题转化为参数方程求解,教师给予指导。
5. 总结与拓展:总结本节课的主要内容,布置课后作业,引导学生深入研究参数方程的性质和应用。
六、教学评估:1. 课后作业:布置有关参数方程的概念理解、形式转换和实际应用的练习题,以巩固所学知识。
2. 课堂问答:通过提问的方式检查学生对参数方程的理解程度,以及能否将实际问题转化为参数方程。
3. 小组讨论:评估学生在小组讨论中的参与程度和合作能力,以及他们在解决问题时的创造性思维。
七、课后作业:1. 复习参数方程的概念和基本形式。
2. 完成课后练习题,包括将普通方程转化为参数方程,以及运用参数方程解决实际问题。
3. 探索参数方程在其他学科中的应用,如物理学、工程学等。
八、教学资源:1. 教材:新人教A版选修《高中数学》。
2. 多媒体课件:用于展示参数方程的图形和实例。
高中数学 第2讲 参数方程 4 渐开线与摆线学案 新人教A版选修4-4(2021年整理)
2016-2017学年高中数学第2讲参数方程4 渐开线与摆线学案新人教A 版选修4-4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第2讲参数方程4 渐开线与摆线学案新人教A版选修4-4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第2讲参数方程4 渐开线与摆线学案新人教A版选修4-4的全部内容。
四渐开线与摆线1.借助教具或计算机软件,观察圆在直线上滚动时圆上定点的轨迹(平摆线)、直线在圆上滚动时直线上定点的轨迹(渐开线),了解平摆线和渐开线的生成过程,并能推导出它们的参数方程.(重点)2.通过阅读材料,了解其他摆线(变幅平摆线、变幅渐开线、外摆线、内摆线、环摆线)的生成过程;了解摆线在实际应用中的实例.(难点)[基础·初探]教材整理1 渐开线及其参数方程阅读教材P40~P41“思考”及以上部分,完成下列问题.1.把线绕在圆周上,假设线的粗细可以忽略,拉着线头逐渐展开,保持线与圆相切,线头的轨迹就叫做圆的渐开线,相应的定圆叫做渐开线的基圆.2.设基圆的半径为r,圆的渐开线的参数方程是错误!(φ为参数).教材整理2 摆线及其参数方程阅读教材P41~P42,完成下列问题.1.当一个圆沿着一条定直线无滑动地滚动时,圆周上的一个定点运动的轨迹叫做平摆线,简称摆线,又叫旋轮线.2.设圆的半径为r,圆滚动的角为φ,那么摆线的参数方程是错误!(φ是参数).错误!(φ为参数)表示的是( )A.半径为5的圆的渐开线的参数方程B.半径为5的圆的摆线的参数方程C.直径为5的圆的渐开线的参数方程D.直径为5的圆的摆线的参数方程【解析】根据圆的渐开线与摆线的参数方程可知B正确.【答案】B[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:圆的渐开线的参数方程A,B对应的参数分别是错误!和错误!,求A,B两点的距离.【导学号:91060027】【思路探究】先写出圆的渐开线的参数方程,再把A,B对应的参数代入参数方程可得对应的A,B两点的坐标,然后使用两点之间的距离公式可得A,B之间的距离.【自主解答】根据条件可知圆的半径是1,所以对应的渐开线参数方程是错误!(φ为参数),分别把φ=错误!和φ=错误!代入,可得A,B两点的坐标分别为A错误!,B错误!。
第二讲 参数方程 章末复习方案 课件(人教A选修4-4)
,即圆心为(1,-1),半径为 4 的圆
22 4 - 2 = 62,
2
[例 7]
t x=-1+2 直线 y= 3t 2
(t 为参数)与圆 x2+y2=a(a>0)相
交于 A、B 两点,设 P(-1,0),且|PA|∶|PB|=1∶2,求实数 a 的 值.
[解]
法一:直线参数方程可化为:y= 3(x+1) ,
2
4· π=8. sin 24
8
[例 9]
过点 B(0, -a)作双曲线 x2-y2=a2 右支的割线 BCD,
又过右焦点 F 作平行于 BD 的直线,交双曲线于 G、H 两点. |BC| |BD| 求证:|GF|· =2. |FH|
[证明] 为
当 a>0 时,设割线的倾斜角为 α,则它的参数方程
法二:将直线参数方程代入圆方程得 t2-t+1-a=0 设方程两根为 t1、t2,则 3 Δ=1-4(1-a)>0⇒a>4. t1+t2=1,t1· =1-a.(*) t2 由参数 t 的几何意义知 |PA| t1 1 |PA| t2 1 |PB|=-t2=2或|PB|=-t1=2. t1 1 由t =-2,解得 a=3. 2
能根据条件求椭圆、双曲线、抛物线的参数方程,并利用圆 锥曲线的参数方程解最值、直线与圆锥曲线的位置关系等问题. [例 8] AB 的长. 已知点 P(3,2)平分抛物线 y2=4x 的一条弦 AB,求弦
[解]
设弦 AB 所在的直线方程为 (t 为参数),
x=3+tcos α y=2+tsin α
[例 3]
1 x=t+ t sin θ, ① 已知参数方程 y=t-1cos θ, ② t
(t≠0).
第二讲 参数方程 章末复习方案 课件(人教A选修4-4)
能根据条件求椭圆、双曲线、抛物线的参数方程,并利用圆 锥曲线的参数方程解最值、直线与圆锥曲线的位置关系等问题. [例 8] AB 的长. 已知点 P(3,2)平分抛物线 y2=4x 的一条弦 AB,求弦
[解]
设弦 AB 所在的直线方程为 (t 为参数),
x=3+tcos α y=2+tsin α
y= 3x+1 联立方程 2 2 x +y =a
消去 y,得:4x2+6x+3-a=0. 设 A(x1,y1)、B(x2,y2)(不妨设 x1<x2),则
Δ=36-16(3-a)>0,① 3 x1+x2=-2,② 3-a x1·2= 4 ,③ x |PA| -1-x1 1 |PB|= x2+1 =2,④ 由①②③④解得 a=3.
x2 y2 x2 y2 平方相减得sin 2θ-cos 2θ=4,即4sin 2θ-4cos 2θ=1, 它表示中心在原点,实轴长为 4|sin θ|,虚轴长为 4|cos θ|, 焦点在 x 轴上的双曲线. 当 θ=kπ(k∈Z)时,x=0,它表示 y 轴; π 1 当 θ=kπ+2(k∈Z)时,y=0,x=± (t+ t ). 1 1 ∵t+ t ≥2(t>0 时)或 t+ t ≤-2(t<0 时), ∴|x|≥2.∴方程为 y=0(|x|≥2),它表示 x 轴上以(-2,0)和 (2,0)为端点的向左、向右的两条射线.
[解] 设 M(x,y),A(x1,y1),B(x2,y2),直线 l 的方程为 x =ty-2 x=ty-2 由 2 2 消去 x 得(1+t2)y2-4ty+3=0 x +y =1
4t 2t ∴y1+y2= ,则 y= . 1+t2 1+t2 -2 2t2 x=ty-2= 2-2= 1+t 1+t2 由 Δ=(4t)2-12(1+t2)>0 得 t2>3. x= -22 1+t ∴M 的轨迹的参数方程为 y= 2t 1+t2
高中数学 第2讲 参数方程 2 圆锥曲线的参数方程学案 新人教A版选修4-4-新人教A版高中选修4-
二 圆锥曲线的参数方程1.理解椭圆的参数方程及其应用.(重点) 2.了解双曲线、抛物线的参数方程.3.能够利用圆锥曲线的参数方程解决最值、有关点的轨迹问题.(难点、易错点)[基础·初探]教材整理1 椭圆的参数方程阅读教材P 27~P 29“思考”及以上部分,完成下列问题.普通方程参数方程x 2a 2+y2b 2=1(a >b >0) ⎩⎪⎨⎪⎧ x =a cos φy =b sin φ(φ为参数)y 2a 2+x2b 2=1(a >b >0) ⎩⎪⎨⎪⎧x =b cos φy =a sin φ(φ为参数)椭圆⎩⎪⎨⎪⎧x =4cos φy =5sin φ(φ为参数)的离心率为( )A.45 B.35 C.34D.15【解析】 由椭圆方程知a =5,b =4,∴c 2=9,c =3,e =35.【答案】 B教材整理2 双曲线的参数方程 阅读教材P 29~P 32,完成下列问题.普通方程参数方程x 2a 2-y2b 2=1(a >0,b >0) ⎩⎪⎨⎪⎧x =a sec φy =b tan φ(φ为参数)下列双曲线中,与双曲线⎩⎨⎧x =3sec θ,y =tan θ(θ为参数)的离心率和渐近线都相同的是( )A.y 23-x 29=1B.y 23-x 29=-1 C.y 23-x 2=1 D.y 23-x 2=-1 【解析】 由x =3sec θ得, x 2=3cos 2θ=3sin 2θ+cos 2θcos 2θ=3tan 2θ+3, 又∵y =tan θ,∴x 2=3y 2+3,即x 23-y 2=1.经验证可知,选项B 合适. 【答案】 B教材整理3 抛物线的参数方程阅读教材P 33~P 34“习题”以上部分,完成下列问题. 1.抛物线y2=2px 的参数方程是⎩⎪⎨⎪⎧x =2pt 2y =2pt(t 为参数).2.参数t 表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.若点P (3,m )在以点F 为焦点的抛物线⎩⎪⎨⎪⎧x =4t2y =4t (t 为参数)上,则|PF |=________.【解析】 抛物线为y 2=4x ,准线为x =-1, |PF |等于点P (3,m )到准线x =-1的距离,即为4. 【答案】 4[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑:疑问2: 解惑: 疑问3: 解惑:椭圆的参数方程及应用将参数方程⎩⎪⎨⎪⎧x =5cos θ,y =3sin θ(θ为参数)化为普通方程,并判断方程表示曲线的焦点坐标.【思路探究】 根据同角三角函数的平方关系,消去参数,化为普通方程,进而研究曲线形状和几何性质.【自主解答】 由⎩⎪⎨⎪⎧x =5cos θy =3sin θ得⎩⎪⎨⎪⎧cos θ=x5,sin θ=y3,两式平方相加,得x 252+y 232=1.∴a =5,b =3,c =4.因此方程表示焦点在x 轴上的椭圆,焦点坐标为F 1(4,0)和F 2(-4,0).椭圆的参数方程⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ,(θ为参数,a ,b 为常数,且a >b >0)中,常数a ,b分别是椭圆的长半轴长和短半轴长,焦点在长轴上.[再练一题]1.若本例的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =5sin θ,(θ为参数),则如何求椭圆的普通方程和焦点坐标?【解】 将⎩⎪⎨⎪⎧x =3cos θ,y =5sin θ,化为⎩⎪⎨⎪⎧x3=cos θ,y5=sin θ,两式平方相加,得x 232+y 252=1.其中a =5,b =3,c =4.所以方程的曲线表示焦点在y 轴上的椭圆,焦点坐标为F 1(0,-4)与F 2(0,4).双曲线参数方程的应用求证:双曲线x 2a 2-y 2b2=1(a >0,b >0)上任意一点到两渐近线的距离的乘积是一个定值.【思路探究】 设出双曲线上任一点的坐标,可利用双曲线的参数方程简化运算.【自主解答】 由双曲线x 2a 2-y 2b2=1,得两条渐近线的方程是:bx +ay =0,bx -ay =0, 设双曲线上任一点的坐标为(a sec φ,b tan φ), 它到两渐近线的距离分别是d 1和d 2, 则d 1·d 2=|ab sec φ+ab tan φ|b 2+a 2·|ab sec φ-ab tan φ|b 2+-a 2=|a 2b2sec 2 φ-tan 2 φ|a 2+b 2=a 2b2a 2+b2(定值).在研究有关圆锥曲线的最值和定值问题时,使用曲线的参数方程非常简捷方便,其中点到直线的距离公式对参数形式的点的坐标仍适用,另外本题要注意公式sec 2φ-tan 2φ=1的应用.[再练一题]2.如图221,设P 为等轴双曲线x 2-y 2=1上的一点,F 1、F 2是两个焦点,证明:|PF 1|·|PF 2|=|OP |2.图221【证明】 设P (sec φ,tan φ), ∵F 1(-2,0),F 2(2,0), ∴|PF 1|=sec φ+22+tan 2φ=2sec 2φ+22sec φ+1,|PF 2|=sec φ-22+tan 2φ=2sec 2φ-22sec φ+1,|PF 1|·|PF 2|=2sec 2φ+12-8sec 2φ=2sec 2φ-1.∵|OP |2=sec 2φ+tan 2φ=2sec 2φ-1, ∴|PF 1|·|PF 2|=|OP |2.抛物线的参数方程设抛物线y 2=2px 的准线为l ,焦点为F ,顶点为O ,P 为抛物线上任一点,PQ ⊥l于Q ,求QF 与OP 的交点M 的轨迹方程.【导学号:91060021】【思路探究】 解答本题只要解两条直线方程组成的方程组得到交点的参数方程,然后化为普通方程即可.【自主解答】 设P 点的坐标为(2pt 2,2pt )(t 为参数), 当t ≠0时,直线OP 的方程为y =1tx ,QF 的方程为y =-2t ⎝⎛⎭⎪⎫x -p 2,它们的交点M (x ,y )由方程组 ⎩⎪⎨⎪⎧y =1t x y =-2t ⎝ ⎛⎭⎪⎫x -p 2确定,两式相乘,消去t ,得y 2=-2x ⎝ ⎛⎭⎪⎫x -p 2,∴点M 的轨迹方程为2x 2-px +y 2=0(x ≠0). 当t =0时,M (0,0)满足题意,且适合方程2x 2-px +y 2=0. 故所求的轨迹方程为2x 2-px +y 2=0.1.抛物线y2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt(t 为参数),参数t 为任意实数,它表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.2.用参数法求动点的轨迹方程,其基本思想是选取适当的参数作为中间变量,使动点的坐标分别与参数有关,从而得到动点的参数方程,然后再消去参数,化为普通方程.[再练一题]3.已知抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt(t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E ,若|EF |=|MF |,点M 的横坐标是3,则p =________.【解析】 根据抛物线的参数方程可知抛物线的标准方程是y 2=2px ,所以y 2M =6p ,所以E ⎝ ⎛⎭⎪⎫-p 2,±6p ,F ⎝ ⎛⎭⎪⎫p 2,0,所以p2+3=p 2+6p ,所以p 2+4p -12=0,解得p =2(负值舍去).【答案】 2[构建·体系]圆锥曲线的参数方程—⎪⎪⎪—椭圆的参数方程—双曲线的参数方程—抛物线的参数方程1.参数方程⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数)化为普通方程为( )A .x 2+y 24=1 B .x 2+y 22=1C .y 2+x 24=1D .y 2+x 24=1【解析】 易知cos θ=x ,sin θ=y2,∴x 2+y 24=1,故选A.【答案】 A2.方程⎩⎪⎨⎪⎧x cos θ=a ,y =b cos θ(θ为参数,ab ≠0)表示的曲线是( )【导学号:91060022】A .圆B .椭圆C .双曲线D .双曲线的一部分【解析】 由x cos θ=a ,∴cos θ=ax, 代入y =b cos θ,得xy =ab ,又由y =b cos θ知,y ∈[-|b |,|b |], ∴曲线应为双曲线的一部分. 【答案】 D3.圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)的焦点坐标是________.【解析】 将参数方程化为普通方程为y 2=4x ,表示开口向右,焦点在x 轴正半轴上的抛物线,由2p =4⇒p =2,则焦点坐标为(1,0).【答案】 (1,0) 4.在直角坐标系xOy中,已知曲线C 1:⎩⎪⎨⎪⎧x =t +1,y =1-2t(t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,则a =________.【解析】 ∵⎩⎪⎨⎪⎧x =t +1,y =1-2t ,消去参数t 得2x +y -3=0.又⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ,消去参数θ得x 2a 2+y 29=1.方程2x +y -3=0中,令y =0得x =32,将⎝ ⎛⎭⎪⎫32,0代入x 2a 2+y 29=1,得94a 2=1. 又a >0,∴a =32.【答案】 325.已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),求它们的交点坐标.【解】 将⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)化为普通方程得:x 25+y 2=1(0≤y ≤1,x ≠-5),将x =54t 2,y =t 代入得:516t 4+t 2-1=0,解得t 2=45,∴t =255(y =t ≥0),x =54t 2=54×45=1,∴交点坐标为⎝⎛⎭⎪⎫1,255.我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)学业分层测评(七) (建议用时:45分钟)[学业达标]一、选择题1.曲线C :⎩⎨⎧x =3cos φ,y =5sin φ(φ为参数)的离心率为( )A.23B.35C.32D.53【解析】 由题设,得x 29+y 25=1,∴a 2=9,b 2=5,c 2=4,因此e =c a =23.【答案】 A 2.已知曲线⎩⎪⎨⎪⎧x =3cos θy =4sin θ(θ为参数,0≤θ≤π)上一点P ,原点为O ,直线PO 的倾斜角为π4,则P 点坐标是( )A .(3,4) B.⎝⎛⎭⎪⎫322,22 C .(-3,-4) D.⎝ ⎛⎭⎪⎫125,125 【解析】 因为y -0x -0=43tan θ=tan π4=1,所以tan θ=34,所以cos θ=45,sin θ=35,代入得P 点坐标为⎝ ⎛⎭⎪⎫125,125.【答案】 D3.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2,y =2+sin α(α为参数)的普通方程是( )A .y 2-x 2=1 B .x 2-y 2=1C .y 2-x 2=1(1≤y ≤3) D .y 2-x 2=1(|x |≤2)【解析】 因为x 2=1+sin α, 所以sin α=x 2-1.又因为y 2=2+sin α=2+(x 2-1), 所以y 2-x 2=1.∵-1≤sin α≤1,y =2+sin α, ∴1≤y ≤3,∴普通方程为y 2-x 2=1,y ∈[1,3]. 【答案】 C4.点P (1,0)到曲线⎩⎪⎨⎪⎧x =t2y =2t (参数t ∈R )上的点的最短距离为( )A .0B .1 C. 2D .2【解析】 d 2=(x -1)2+y 2=(t 2-1)2+4t 2=(t 2+1)2, 由t 2≥0得d 2≥1,故d min =1. 【答案】 B5.方程⎩⎪⎨⎪⎧x =2t-2-ty =2t +2-t(t 为参数)表示的曲线是( )【导学号:91060023】A .双曲线B .双曲线的上支C .双曲线的下支D .圆【解析】 将参数方程的两个等式两边分别平方,再相减,得:x 2-y 2=(2t -2-t )2-(2t +2-t )2=-4,即y 2-x 2=4.又注意到2t>0,2t+2-t≥22t ·2-t=2,得y ≥2. 可见与以上参数方程等价的普通方程为:y 2-x 2=4(y ≥2).显然它表示焦点在y 轴上,以原点为中心的双曲线的上支. 【答案】 B 二、填空题6.已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t y =4sin t(t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为________.【解析】 由⎩⎪⎨⎪⎧x =2cos π3=1,y =4sin π3=23,得点M 的坐标为(1,23) 直线OM 的斜率k =231=2 3.【答案】 2 37.设曲线C 的参数方程为⎩⎪⎨⎪⎧x =t ,y =t 2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.【解析】 ⎩⎪⎨⎪⎧x =t ,y =t2化为普通方程为y =x 2,由于ρcos θ=x ,ρsin θ=y ,所以化为极坐标方程为ρsin θ=ρ2cos 2θ,即ρcos 2θ-sin θ=0.【答案】 ρcos 2θ-sin θ=08.在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t (t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________.【解析】 由⎩⎨⎧x =t ,y =t ,得y =x ,又由⎩⎨⎧x =2cos θ,y =2sin θ,得x 2+y 2=2.由⎩⎨⎧y =x ,x 2+y 2=2,得⎩⎪⎨⎪⎧x =1,y =1,即曲线C 1与C 2的交点坐标为(1,1). 【答案】 (1,1) 三、解答题9.如图222所示,连接原点O 和抛物线y =12x 2上的动点M ,延长OM 到点P ,使|OM |=|MP |,求P 点的轨迹方程,并说明是什么曲线?图222【解】 抛物线标准方程为x2=2y ,其参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t 2,得M (2t,2t 2).设P (x ,y ),则M 是OP 中点.∴⎩⎪⎨⎪⎧2t =x +02,2t 2=y +02,∴⎩⎪⎨⎪⎧x =4t y =4t2(t 为参数),消去t 得y =14x 2,是以y 轴对称轴,焦点为(0,1)的抛物线.10.已知直线l 的极坐标方程是ρcos θ+ρsin θ-1=0.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,椭圆C 的参数方程是⎩⎪⎨⎪⎧x =2cos θy =sin θ(θ为参数),求直线l 和椭圆C 相交所成弦的弦长.【解】 由题意知直线和椭圆方程可化为:x +y -1=0,① x 24+y 2=1,②①②联立,消去y 得:5x 2-8x =0, 解得x 1=0,x 2=85.设直线与椭圆交于A 、B 两点,则A 、B 两点直角坐标分别为(0,1),⎝ ⎛⎭⎪⎫85,-35,则|AB |=⎝ ⎛⎭⎪⎫-35-12+⎝ ⎛⎭⎪⎫852=825,故所求的弦长为825.[能力提升]1.P 为双曲线⎩⎪⎨⎪⎧x =4sec θ,y =3tan θ(θ为参数)上任意一点,F 1,F 2为其两个焦点,则△F 1PF 2重心的轨迹方程是( )A .9x 2-16y 2=16(y ≠0) B .9x 2+16y 2=16(y ≠0) C .9x 2-16y 2=1(y ≠0) D .9x 2+16y 2=1(y ≠0)【解析】 由题意知a =4,b =3,可得c =5, 故F 1(-5,0),F 2(5,0),设P (4sec θ,3tan θ),重心M (x ,y ),则x =-5+5+4sec θ3=43sec θ,y =0+0+3tan θ3=tan θ.从而有9x 2-16y 2=16(y ≠0). 【答案】 A2.若曲线⎩⎪⎨⎪⎧x =sin 2θ,y =cos θ-1(θ为参数)与直线x =m 相交于不同两点,则m 的取值范围是( )A .RB .(0,+∞)C .(0,1)D .[0,1)【解析】 将曲线⎩⎪⎨⎪⎧x =sin 2θ,y =cos θ-1化为普通方程得(y +1)2=-(x -1)(0≤x ≤1).它是抛物线的一部分,如图所示,由数形结合知0≤m <1.【答案】 D3.对任意实数,直线y =x +b 与椭圆⎩⎪⎨⎪⎧x =2cos θy =4sin θ(0≤θ≤2π),恒有公共点,则b 的取值范围是________.【解析】 将(2cos θ,4sin θ)代入y =x +b 得: 4sin θ=2cos θ+b .∵恒有公共点,∴以上方程有解.令f (θ)=4sin θ-2cos θ=25sin(θ+φ)⎝ ⎛⎭⎪⎫tan φ=12,∴-25≤f (θ)≤25, ∴-25≤b ≤2 5. 【答案】 [-25,25]4.在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧x =3cos αy =sin α(α为参数).(1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.【解】 (1)把极坐标系下的点P ⎝⎛⎭⎪⎫4,π2化为直角坐标,得点(0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上.(2)因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α),从而点Q 到直线l 的距离为d =|3cos α-sin α+4|2=2cos ⎝⎛⎭⎪⎫α+π6+42=2cos ⎝ ⎛⎭⎪⎫α+π6+22,由此得,当cos ⎝ ⎛⎭⎪⎫α+π6=-1时,d 取得最小值,且最小值为 2.。
数学新人教A版选修第二讲《参数方程》全部教案
数学新人教A版选修4-4 第二讲《参数方程》全部教案曲线的参数方程教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
2.分析圆的几何性质,选择适当的参数写出它的参数方程。
3.会进行参数方程和普通方程的互化。
教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。
参数方程和普通方程的互化。
教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。
参数方程和普通方程的等价互化。
教学过程一.参数方程的概念1.探究:(1)平抛运动:练习:斜抛运动:2.参数方程的概念(见教科书第22页)说明:(1)一般来说,参数的变化范围是有限制的。
(2)参数是联系变量x,y的桥梁,可以有实际意义,也可无实际意义。
例1.(教科书第22页例1)已知曲线C的参数方程是 (t 为参数)(1)判断点M1(0,1),M2(5,4)与曲线C的位置关系;(2)已知点M3(6,a)在曲线C上,求a的值。
A、一个定点B、一个椭圆C、一条抛物线D、一条直线二.圆的参数方程说明:(1)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。
(2)在建立曲线的参数方程时,要注明参数及参数的取值范围。
例2.(教科书第24页例2)思考:你能回答教科书第25页的思考吗?[来源:Z三.参数方程和普通方程的互化1.阅读教科书第25页,明确参数方程和普通方程的互化的方法。
注意,在参数方程和普通方程的互化中,必须使x,y 的取值范围保持一致。
例3.(教科书第25页例3)例4.(教科书第26页例4)2.你能回答教科书第26页的思考吗?四.课堂练习(教科书第26页习题)五.巩固与反思1.本节学习的数学知识2.本节学习的数学方法巩固与提高1.与普通方程xy=1表示相同曲线的参数方程(t为参数)是(D)A. B.C. D.2.下列哪个点在曲线上(C)[来源:]A.(2,7)B.C.D.(1,0)3.曲线的轨迹是(D)A.一条直线B.一条射线C.一个圆D.一条线段4.方程表示的曲线是(D)A.余弦曲线B.与x轴平行的线段C.直线D.与y轴平行的线段5.曲线上的点到两坐标轴的距离之和的最大值是(D)A.B.C.1D.6.方程(t为参数)所表示的一族圆的圆心轨迹是(D)A.一个定点B.一个椭圆C.一条抛物线D.一条直线7.直线与圆相切,那么直线的倾斜角为(A)A.或B.或C.或D.或8.曲线的一个参数方程为。
高中数学《参数方程》学案2 新人教A版选修4-4
新课标选修4_参数方程与极坐标一. 本周学习内容:《平面解析几何》第三章“参数方程与极坐标”全章小结与巩固提高,主要包括:(1)知识要点与方法的回顾;(2)典型例题分析与讲解;(3)单元检测。
二. 重点、难点:1. 参数方程与普通方程的区别与联系:在求曲线的方程时,一般地需要建立曲线上动点P(x,y)的坐标x,y之间满足的等量关系F(x,y)=0,这样得到的方程F(x,y)=0就是曲线的普通方程;而有时要想得到联系x,y的方程F(x,y)=0是比较困难的,于是可以通过引入某个中间变量t,使之与曲线上动点P的坐标x,y间接地联系起来,此时可得到方程组显然,参数方程与普通方程的最明显的区别是其方程形式上的区别,更大的区别是普通方程反映了曲线上任一点坐标x,y的直接关系,而参数方程则反映了x,y的间接关系。
尽管参数方程与普通方程有很大的区别,但他们之间又有着密切的联系,这种联系表现在两方面:(1)这两种方程都是同一曲线的不同的代数表现形式,是同一事物的两个方面;(2)这两种方程之间可以进行互化,通过消参可以把参数方程化为普通方程,而通过引入参数,也可把普通方程化为参数方程。
需要注意的是,在将两种方程互化的过程中,要注意两种方程(在表示同一曲线的)等价性,即注意参数的取值范围对x,y的取值范围的影响。
实质上,参数的思想方法就是在运动变化的哲学思想指导下的函数的思想方法,因此也可认为引入参数就是引入函数的自变量。
参数法在求曲线的轨迹方程,以及研究某些最值问题时是一种常用的甚至是简捷的解题方法。
2. 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法。
3. 化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t,先确定一个关系x=f(t)(或y= (t)),再代入普通方程F(x,y)=0,求得另一关系y= (t)(或x=f(t))。
一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标)。
高中数学第二讲参数方程二第1课时椭圆的参数方程学案含解析新人教A版选修4_4
二圆锥曲线的参数方程第一课时椭圆的参数方程考纲定位重难突破1.知道椭圆的参数方程,参数的意义.2.会用椭圆的参数方程解决简单问题.重点:理解和掌握椭圆的参数方程.难点:椭圆的参数方程在实际问题中的应用.授课提示:对应学生用书第25页[自主梳理]椭圆的参数方程1.中心在原点,焦点在x轴上的椭圆x2a2+y2b2=1的参数方程是⎩⎪⎨⎪⎧x=a cos φ,y=b sin φ(φ是参数),规定参数φ的取值范围是[0,2π).2.中心在(h,k)的椭圆普通方程为(x-h)2a2+(y-k)2b2=1,则其参数方程为⎩⎪⎨⎪⎧x=h+a cos φ,y=k+b sin φ(φ是参数).[双基自测]1.椭圆⎩⎪⎨⎪⎧x=sin θ,2y=cos θ(θ为参数)的一个焦点坐标为()A.⎝⎛⎭⎫22,0B.⎝⎛⎭⎫0,22C.⎝⎛⎭⎫32,0D.⎝⎛⎭⎫0,32解析:由题知椭圆的普通方程为x2+4y2=1.可知椭圆的焦点坐标为⎝⎛⎭⎫±32,0,故选C.答案:C2.过点(-3,2)且与曲线⎩⎪⎨⎪⎧x=3cos φ,y=2sin φ(φ为参数)有相同焦点的椭圆的方程是() A.x215+y210=1 B.x2152+y2102=1C.x210+y215=1 D.x2102+y2152=1解析:由题易知曲线⎩⎪⎨⎪⎧x=3cos φ,y=2sin φ化为普通方程为x29+y24=1.∴焦点坐标为(±5,0),又所求椭圆过点(-3,2),代入求得选A.答案:A3.椭圆⎩⎪⎨⎪⎧x =3+17cos θ,y =8sin θ-2(θ为参数)的中心坐标为________.解析:椭圆的普通方程为(x -3)2172+(y +2)282=1.∴椭圆的中心坐标为(3,-2). 答案:(3,-2)4.椭圆x 24+y 22=1的参数方程是________;椭圆(x -1)225+(y +1)216=1的参数方程是________.答案:⎩⎨⎧x =2cos φ,y =2sin φ(φ为参数,φ∈[0,2π))⎩⎪⎨⎪⎧x =1+5cos φ,y =-1+4sin φ(φ为参数,φ∈[0,2π))授课提示:对应学生用书第25页探究一 用椭圆参数方程求最值[例1] 在椭圆x 216+y 212=1上找一点,使这一点到直线x -2y -12=0的距离最小.[解析] 由题意,椭圆的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =23sin θ(θ为参数),则d =|4cos θ-43sin θ-12|5=455|cos θ-3sin θ-3| =455⎪⎪⎪⎪2cos ⎝⎛⎭⎫θ+π3-3, 当cos ⎝⎛⎭⎫θ+π3=1时,d min =455,此时取θ+π3=0,∴θ=-π3,∴⎩⎨⎧x =4cos ⎝⎛⎭⎫-π3=2,y =23sin ⎝⎛⎭⎫-π3=-3,∴所求点坐标是(2,-3).本题有多种解法,可以利用直线与椭圆相切,转化为平行直线间距离求解,也可以利用距离公式结合二次函数配方解决,但相比之下,参数方程的方法最简单有效.1.(2016·高考全国卷Ⅲ)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 解析:(1)C 1的普通方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值, d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π3-2. 当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为(32,12).探究二 利用椭圆的参数方程求轨迹方程[例2] 已知A ,B 分别是椭圆x 236+y 29=1的右顶点和上顶点,动点C 在该椭圆上运动,求△ABC 的重心的轨迹方程.[解析] 由于动点C 在椭圆上运动,可设C 的坐标为(6cos θ,3sin θ),由于点C 不与A ,B 重合,故θ∈⎝⎛⎭⎫0,π2∪⎝⎛⎭⎫π2,2π. 设△ABC 的重心G 的坐标为(x ,y ).依题意,知A (6,0),B (0,3),由三角形的重心坐标公式,得⎩⎪⎨⎪⎧x =6+0+6cos θ3,y =0+3+3sin θ3,即⎩⎪⎨⎪⎧x =2+2cos θ,y =1+sin θ.其中θ∈⎝⎛⎭⎫0,π2∪⎝⎛⎭⎫π2,2π,这就是重心G 的参数方程,消去参数θ,得(x -2)24+(y -1)2=1,点(4,1)及(2,2)除外,所以△ABC 的重心的轨迹方程为(x -2)24+(y -1)2=1,点(4,1)及(2,2)除外.利用圆锥曲线的参数方程直接设出圆锥曲线上的点的坐标,从而可以便捷地表示出其他的相关点,为求动点的轨迹带来了方便.2.如图,已知圆的方程为x 2+y 2=12,椭圆的方程为x 225+y 216=1,过原点的射线交圆于A 点,交椭圆于B 点,过A ,B 分别作x 轴和y 轴的平行线,求所作两直线的交点P 的轨迹方程.解析:设A ⎝⎛⎭⎫22cos α,22sin α,B (5cos θ,4sin θ),则所求轨迹的参数方程为⎩⎪⎨⎪⎧x =5cos θ, ①y =22sin α. ②由O ,A ,B 三点共线,知k OA =k OB ,从而tan α=45tan θ , ③由①得tan 2θ=25-x 2x2, ④由②得tan 2α=2y 21-2y 2. ⑤将③两边平方得tan 2α=1625tan 2θ, ⑥把④⑤代入⑥化简整理得8x 2+9x 2y 2+400y 2=200,所求轨迹方程为8x 2+9x 2y 2+400y 2=200.探究三 利用椭圆的参数方程解决恒成立问题[例3] 已知椭圆x 24+y 2=1上任一点M (除短轴端点外)与短轴两端点B 1,B 2的连线分别交x 轴于P 、Q 两点,求证:|OP |·|OQ |为定值.[证明] 设M (2cos φ,sin φ),φ为参数,B 1(0,-1),B 2(0,1). 则MB 1的方程:y +1=sin φ+12cos φ·x ,令y =0,则x =2cos φsin φ+1,即|OP |=⎪⎪⎪⎪⎪⎪2cos φ1+sin φ.MB 2的方程:y -1=sin φ-12cos φ·x ,令y =0,则x =2cos φ1-sin φ.∴|OQ |=⎪⎪⎪⎪⎪⎪2cos φ1-sin φ.∴|OP |·|OQ |=⎪⎪⎪⎪⎪⎪2cos φ1+sin φ×⎪⎪⎪⎪⎪⎪2cos φ1-sin φ=4.即|OP |·|OQ |=4为定值.利用参数方程证明定值(或恒成立)问题,首先是用参数把要证明的定值(或恒成立的式子)表示出来,然后利用条件消去参数,得到一个与参数无关的定值即可.3.曲线⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(a >b >0)上一点M 与两焦点F 1、F 2所成角为∠F 1MF 2=α.求证:△F 1MF 2的面积为b 2tan α2.证明:∵M 在椭圆上, ∴由椭圆的定义,得: |MF 1|+|MF 2|=2a ,两边平方, 得|MF 1|2+|MF 2|2+2|MF 1|·|MF 2|=4a 2.在△F 1MF 2中,由余弦定理,得|MF 1|2+|MF 2|2-2|MF 1||MF 2|cos α=|F 1F 2|2=4c 2. 由两式,得|MF 1||MF 2|=b 2cos 2α2.故S △F 1MF 2=12|MF 1||MF 2|sin α=b 2tan α2.椭圆参数方程的综合应用[典例] (本题满分10分)已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =2cos φ,y =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为(2,π3).(1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|P A |2+|PB |2+|PC |2+|PD |2的取值范围. [解析] (1)由已知可得A ⎝⎛⎭⎫2cos π3,2sin π3, B ⎝⎛⎭⎫2cos ⎝⎛⎭⎫π3+π2,2sin ⎝⎛⎭⎫π3+π2, C ⎝⎛⎭⎫2cos ⎝⎛⎭⎫π3+π,2sin ⎝⎛⎭⎫π3+π, D ⎝⎛⎭⎫2cos ⎝⎛⎭⎫π3+3π2,2sin ⎝⎛⎭⎫π3+3π2, 即A (1,3),B (-3,1),C (-1,-3),D (3,-1).5分 (2)设P (2cos φ,3sin φ), 令S =|P A |2+|PB |2+|PC |2+|PD |2,则S =16cos 2φ+36sin 2φ+16=32+20sin 2φ.9分 因为0≤sin 2φ≤1,所以S 的取值范围是[32,52].10分[规律探究] 由于椭圆上任一点的坐标可通过参数方程描述为参数的函数,所以可通过用参数方程设出椭圆上动点坐标的方法,解决求离心率、几何图形面积、目标函数最值及证明恒等式问题.[随堂训练] 对应学生用书第27页1.曲线⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数)的长轴长为( )A .2B .4C .6D .8解析:将曲线的参数方程化为普通方程,得x 2+y 24=1,它表示焦点在y 轴上的椭圆,其长轴长为4.答案:B2.椭圆⎩⎪⎨⎪⎧x =3cos φ,y =5sin φ(φ为参数)的两个焦点坐标是( )A .(0,-3),(0,3)B .(0,-4),(0,4)C .(4,0),(-4,0)D .(3,0),(-3,0)解析:由椭圆⎩⎪⎨⎪⎧x =3cos φ,y =5sin φ(φ为参数)可知a =5,b =3,c =a 2-b 2=4,且焦点在y轴上,焦点坐标为(0,-4),(0,4),所以选B.答案:B 3.椭圆(x -1)2+y 22=1上离直线x +y -2=0最远和最近点到该直线的距离分别为( ) A.62,22 B.6+22,22 C.2+32,0 D.2+62,0 解析:设椭圆上的点P 的坐标为(1+cos θ,2sin θ),可求得d max =2+62,d min =0.另外本题还可利用相切的充要条件来解答.答案:D。
2021学年高中数学第二讲参数方程四渐开线与摆线学案新人教A版选修4_4
四 渐开线与摆线学习目标 1.了解圆的渐开线的参数方程.2.了解摆线的生成过程及它的参数方程.3.学习并体会用向量知识推导运动轨迹曲线的方法和步骤.知识点一 渐开线思考 把绕在圆盘上的细绳展开,细绳外端点的轨迹是一条曲线,看看曲线的形状.假设要建立曲线的参数方程,请试着确定一下参数.答案 根据动点满足的几何条件,我们以基圆圆心O 为原点,直线OA 为x 轴,建立平面直角坐标系,如下图.设基圆的半径为r ,绳子外端M 的坐标为(x ,y ).显然,点M 由角φ惟一确定.梳理 圆的渐开线及其参数方程 (1)定义把线绕在圆周上,假设线的粗细可以忽略,拉着线头的外端点,保持线与圆相切,外端点的轨迹就叫做圆的渐开线,相应的定圆叫做渐开线的基圆. (2)参数方程设基圆的半径为r ,圆的渐开线的参数方程是⎩⎪⎨⎪⎧x =r (cos φ+φsin φ),y =r (sin φ-φcos φ)(φ是参数).知识点二 摆线思考 当一个圆沿着一条定直线无滑动地滚动时,圆周上一个定点的轨迹是什么? 答案 摆线.梳理 摆线及其参数方程 (1)定义当一个圆沿着一条定直线无滑动地滚动时,圆周上的一个定点的轨迹叫做平摆线,简称摆线,又叫做旋轮线. (2)参数方程设圆的半径为r ,圆滚动的角为φ,那么摆线的参数方程是⎩⎪⎨⎪⎧x =r (φ-sin φ),y =r (1-cos φ)(φ是参数).类型一 圆的渐开线例1 求半径为4的圆的渐开线的参数方程.解 以圆心为原点O ,绳端点的初始位置为M 0,向量OM 0―→的方向为x 轴正方向,建立坐标系,设渐开线上的任意点M (x ,y ),绳拉直时和圆的切点为A ,故OA ⊥AM ,按渐开线定义,弧0AM 的长和线段AM 的长相等,记OA →和x 轴正向所夹的角为θ(以弧度为单位),那么|AM |=0AM =4θ.作AB 垂直于x 轴,过M 点作AB 的垂线,由三角函数和向量知识,得OA →=(4cos θ,4sin θ). 由几何知识知,∠MAB =θ,AM →=(4θsin θ,-4θcos θ), 得OM →=OA →+AM →=(4cos θ+4θsin θ,4sin θ-4θcos θ) =(4(cos θ+θsin θ),4(sin θ-θcos θ)). 又OM →=(x ,y ), 因此所求的参数方程为⎩⎪⎨⎪⎧x =4(cos θ+θsin θ),y =4(sin θ-θcos θ).反思与感悟 圆的渐开线的参数方程中,字母r 表示基圆的半径,字母φ是指绳子外端运动时绳子上的定点M 相对于圆心的张角.跟踪训练1 圆的渐开线方程为⎩⎪⎨⎪⎧x =cos φsin30°+φsin φsin30°,y =sin φcos60°-φcos φcos60°(φ为参数),那么该基圆半径为________,当圆心角φ=π时,曲线上点A 的直角坐标为________. 答案 12 ⎝ ⎛⎭⎪⎫-12,π2解析 ⎩⎪⎨⎪⎧x =cos φsin 30°+φsin φsin 30°,y =sin φcos 60°-φcos φcos 60°,即⎩⎪⎨⎪⎧x =12(cos φ+φsin φ),y =12(sin φ-φcos φ)(φ为参数).∴基圆半径r =12.当φ=π时,x =-12,y =π2,∴A 的直角坐标为⎝ ⎛⎭⎪⎫-12,π2. 类型二 平摆线例2 一个圆的参数方程为⎩⎪⎨⎪⎧x =3cos φ,y =3sin φ(φ为参数),那么圆的摆线方程中与参数φ=π2对应的点A 与点B ⎝ ⎛⎭⎪⎫3π2,2之间的距离为________.答案10解析 由圆的参数方程⎩⎪⎨⎪⎧x =3cos φ,y =3sin φ知,圆的方程为x 2+y 2=9,∴圆的圆心为(0,0),半径r =3,∴圆上定点M 的摆线的参数方程为⎩⎪⎨⎪⎧x =3(φ-sin φ),y =3(1-cos φ)(φ为参数).当φ=π2时,x =3×⎝ ⎛⎭⎪⎫π2-1=3π2-3,y =3×(1-0)=3,∴A ⎝⎛⎭⎪⎫3π2-3,3,∴|AB |=(-3)2+12=10.反思与感悟 (1)摆线的参数方程摆线的参数方程为⎩⎪⎨⎪⎧x =r (φ-sin φ),y =r (1-cos φ)(φ为参数),其中r :生成圆的半径,φ:圆在直线上滚动时,点M 绕圆心作圆周运动转过的角度∠ABM .(2)将参数φ的值代入渐开线或摆线的参数方程可以确定对应点的坐标,进而可求渐开线或摆线上两点间的距离.跟踪训练2 一个圆的摆线的参数方程是⎩⎪⎨⎪⎧x =3φ-3sin φ,y =3-3cos φ(φ为参数),那么该摆线一个拱的高度是________;一个拱的跨度为________. 答案 6 6π解析 当φ=π时,y =3-3cos π=6为拱高;当φ=2π时,x =3×2π-3sin 2π=6π为跨度.1.圆⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ(θ为参数)的平摆线上一点的纵坐标为0,那么其横坐标可能是( )A .πB .3πC .6πD .10π答案 C2.当φ=2π时,圆的渐开线⎩⎪⎨⎪⎧x =6(cos φ+φsin φ),y =6(sin φ-φcos φ)(φ为参数)上的点是( )A .(6,0)B .(6,6π)C .(6,-12π)D .(-π,12π)答案 C3.如下图,四边形ABCD 是边长为1的正方形,曲线AEFGH …叫做“正方形的渐开线〞,其中AE ,EF ,FG ,GH …的圆心依次按B ,C ,D ,A 循环,它们依次相连接,那么曲线AEFGH 的长是( )A .3πB .4πC .5πD .6π答案 C解析 根据渐开线的定义可知,AE 是半径为1的14圆周长,长度为π2,继续旋转可得EF 是半径为2的14圆周长,长度为π;FG 是半径为3的14圆周长,长度为3π2;GH 是半径为4的14AEFGH 的长是5π. 4.一个圆的摆线方程是⎩⎪⎨⎪⎧x =4φ-4sin φ,y =4-4cos φ(φ为参数),求该圆的面积和对应的圆的渐开线的参数方程.解 首先根据摆线的参数方程可知,圆的半径为4, 所以面积为16π,该圆对应的渐开线的参数方程是⎩⎪⎨⎪⎧x =4cos φ+4φsin φ,y =4sin φ-4φcos φ(φ为参数).1.圆的渐开线的参数方程中,字母r 表示基圆的半径,字母φ是指绳子外端运动时绳子上的定点M 相对于圆心的张角.2.由圆的摆线的参数方程的形式可知,只要确定了摆线生成圆的半径,就能确定摆线的参数方程.3.由于渐开线、摆线的方程复杂,所以不宜用普通方程来表示.一、选择题1.圆的渐开线的参数方程是⎩⎪⎨⎪⎧x =cos θ+θsin θ,y =sin θ-θcos θ(θ为参数),那么此渐开线对应的基圆的周长是( ) A .π B .2π C .3π D .4π答案 B2.摆线⎩⎪⎨⎪⎧x =2(t -sin t ),y =2(1-cos t )(t 为参数,0≤t <2π)与直线y =2的交点的直角坐标是( )A .(π-2,2),(3π+2,2)B .(π-3,2),(3π+3,2)C .(π,2),(-π,2)D .(2π-2,2),(2π+2,2)答案 A3.给出以下说法:①圆的渐开线的参数方程不能转化为普通方程;②圆的渐开线也可以转化为普通方程,但是转化后的普通方程比拟麻烦,且不容易看出坐标之间的关系,所以常使用参数方程研究圆的渐开线问题;③在求圆的摆线和渐开线方程时,如果建立的坐标系原点和坐标轴选取不同,可能会得到不同的参数方程;④圆的渐开线和x 轴一定有交点而且是惟一的交点. 其中正确的说法有( ) A .①③ B .②④ C .②③ D .①③④答案 C 4.圆的渐开线⎩⎨⎧x =2(cos t +t sin t ),y =2(sin t -t cos t )(t 为参数)上与t =π4对应的点的直角坐标为( )A.⎝⎛⎭⎪⎫1+π4,1-π4B.⎝⎛⎭⎪⎫1-π4,1+π4C.⎝ ⎛⎭⎪⎫-1-π4,1-π4D.⎝⎛⎭⎪⎫1+π4,-1-π4答案 A5.圆的渐开线的参数方程为⎩⎪⎨⎪⎧x =r (cos φ+φsin φ),y =r (sin φ-φcos φ) (φ为参数),点A ⎝ ⎛⎭⎪⎫32,0是此渐开线上的一点,那么渐开线对应的基圆的周长是( ) A.32π B .3π C .4π D .6π答案 B解析 由点A ⎝ ⎛⎭⎪⎫32,0在渐开线上, 得⎩⎪⎨⎪⎧32=r (cos φ+φsin φ),0=r (sin φ-φcos φ),易知φ=0,那么r =32,故基圆的周长为3π.6.圆的渐开线方程为⎩⎪⎨⎪⎧x =2(cos φ+φsin φ),y =2(sin φ-φcos φ)(φ为参数),当φ=π时,渐开线上的对应点的坐标为( ) A .(-2,2π) B .(-2,π) C .(4,2π) D .(-4,2π)答案 A解析 将φ=π代入⎩⎪⎨⎪⎧x =2(cos φ+φsin φ),y =2(sin φ-φcos φ),可得⎩⎪⎨⎪⎧x =2×(-1+π×0),y =2×[0-π×(-1)],即⎩⎪⎨⎪⎧x =-2,y =2π.二、填空题7.基圆直径为10,那么其渐开线的参数方程为__________________.答案 ⎩⎪⎨⎪⎧x =5(cos φ+φsin φ),y =5(sin φ-φcos φ)(φ为参数)8.有一标准的齿轮,其齿廓线的基圆直径为22mm ,那么齿廓所在的摆线的参数方程为__________________. 答案 ⎩⎪⎨⎪⎧x =11(φ-sin φ),y =11(1-cos φ)(φ为参数)解析 因为基圆直径为22 mm , 所以基圆半径为11 mm ,所以摆线的参数方程为⎩⎪⎨⎪⎧x =11(φ-sin φ),y =11(1-cos φ)(φ为参数).9.圆的渐开线的参数方程是⎩⎪⎨⎪⎧x =6(cos t +t sin t ),y =6(sin t -t cos t )(t 为参数),那么该渐开线的基圆的半径为________,参数t =2π3对应的点的直角坐标是_______________________________________. 答案 6 (-3+23π,33+2π)解析 由参数方程,得基圆的半径rt =2π3代入参数方程,得⎩⎨⎧x =-3+23π,y =33+2π,即参数t =2π3对应的点的直角坐标是(-3+23π,33+2π). 10.圆的方程为x 2+y 2=4,点P 为其渐开线上一点,对应的参数φ=π2,那么点P 的坐标为________. 答案 (π,2)解析 由题意知,圆的半径r =2,其渐开线的参数方程为⎩⎪⎨⎪⎧x =2(cos φ+φsin φ),y =2(sin φ-φcos φ)(φ为参数).当φ=π2时,x =π,y =2,故点P 的坐标为(π,2).三、解答题11.给出直径为6的圆,分别写出对应的渐开线的参数方程和摆线的参数方程. 解 以圆的圆心为原点,一条半径所在的直线为x 轴,建立直角坐标系. 又圆的直径为6,所以半径为3,所以圆的渐开线的参数方程为⎩⎪⎨⎪⎧x =3cos φ+3φsin φ,y =3sin φ-3φcos φ(φ为参数).以圆周上的某一定点为原点,以定直线为x 轴,建立直角坐标系,所以摆线的参数方程为⎩⎪⎨⎪⎧x =3φ-3sin φ,y =3-3cos φ(φ为参数).12.圆的参数方程是⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ(θ为参数),求此圆的摆线中,参数φ=π2对应的点A 与点B ⎝⎛⎭⎪⎫3π2,2之间的距离.解 由圆的参数方程,得圆的半径r =3,那么其摆线的参数方程为⎩⎪⎨⎪⎧x =3(φ-sin φ),y =3(1-cos φ)(φ为参数).把φ=π2代入摆线的参数方程,得⎩⎪⎨⎪⎧x =3⎝ ⎛⎭⎪⎫π2-1,y =3,故点A 与点B 之间的距离 |AB |=⎝ ⎛⎭⎪⎫3π2+3-3π22+(2-3)2=10.13.一个圆的平摆线方程是x =2φ-2sin φ,y =2-2cos φ(φ为参数),求该圆的周长,并写出平摆线上最高点的坐标. 解 由平摆线方程知,圆的半径为2,φ=π时,y 有最大值4,平摆线具有周期性,周期为4π.∴平摆线上最高点的坐标为(2π+4k π,4)(k ∈Z ). 四、探究与拓展14.如图,△ABC 是正三角形,曲线ABCDEF …叫做“正三角形的渐开线〞,其中弧CD ,弧DE ,弧EF …的圆心依次按A ,B ,C 循环,它们依次相连接,如果AB =1,那么曲线CDEF 的长是( )A .8πB .6πC .4πD .2π答案 C解析 ∵∠CAD ,∠DBE ,∠ECF 是等边三角形的外角, ∴∠CAD =∠DBE =∠ECF =120°. 又AC =1,∴BD =2,CE =3, ∴弧CD 的长=13×2π×1,弧DE 的长=13×2π×2,弧EF 的长=13×2π×3,∴曲线CDEF 的长=13×2π×1+13×2π×2+13×2π×3=4π.15.渐开线方程为⎩⎪⎨⎪⎧x =6(cos φ+φsin φ),y =6(sin φ-φcos φ)(φ为参数)的基圆的圆心在原点,把基圆的横坐标伸长为原来的2倍得到曲线C ,求曲线C 的方程,及焦点坐标. 解 由渐开线方程可知,基圆的半径为6,那么圆的方程为x 2+y 2=36. 把横坐标伸长为原来的2倍,得到椭圆方程x 24+y 2=36,即x 2144+y 236=1, 对应的焦点坐标为(63,0)和(-63,0).。
高中数学《参数方程的概念》教案新人教A版选修
高中数学《参数方程的概念》教案新人教A版选修一、教学目标:1. 让学生理解参数方程的概念,掌握参数方程的基本形式和特点。
2. 培养学生运用参数方程解决实际问题的能力。
3. 提高学生对数学方程美的欣赏能力,激发学生学习数学的兴趣。
二、教学内容:1. 参数方程的定义和基本形式。
2. 参数方程与直角坐标方程的互化。
3. 参数方程在实际问题中的应用。
三、教学重点与难点:1. 重点:参数方程的概念,参数方程的基本形式和特点。
2. 难点:参数方程与直角坐标方程的互化,以及参数方程在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生从实际问题中发现参数方程的必要性。
2. 运用数形结合法,帮助学生直观地理解参数方程的特点。
3. 采用合作学习法,鼓励学生相互讨论,共同探讨参数方程的解题方法。
五、教学过程:1. 导入:通过一个实际问题,引导学生思考如何用数学方法描述物体的运动轨迹。
2. 新课讲解:讲解参数方程的定义、基本形式和特点,举例说明参数方程在实际问题中的应用。
3. 案例分析:分析几个典型的实际问题,让学生学会运用参数方程解决问题。
5. 巩固练习:布置一些练习题,让学生巩固所学知识。
7. 作业布置:布置一些有关参数方程的应用题,让学生课后思考。
六、教学评估:1. 课堂问答:通过提问,了解学生对参数方程概念的理解程度。
2. 练习题:收集学生完成的练习题,评估学生对参数方程的掌握情况。
3. 小组讨论:观察学生在小组讨论中的表现,了解学生的合作能力和解决问题的能力。
七、教学拓展:1. 介绍其他形式的参数方程,如极坐标方程、参数曲线等。
2. 探讨参数方程在其他学科中的应用,如物理学、工程学等。
八、课后反思:2. 学生反思:让学生写下对本节课学习的收获和困惑,以便教师了解学生的学习情况。
九、教学资源:1. 教材:新人教A版选修《高中数学》。
2. 网络资源:有关参数方程的图片、视频和案例。
3. 教具:黑板、粉笔、投影仪等。
【推荐K12】2018版高中数学第二讲参数方程学案新人教A版选修4_4
第二讲 参数方程一 曲线的参数方程 1 参数方程的概念 2 圆的参数方程[学习目标]1.理解曲线参数方程的有关概念.2.掌握圆的参数方程.3.能够根据圆的参数方程解决最值问题. [知识链接]曲线的参数方程中,参数是否一定具有某种实际意义?在圆的参数方程中,参数θ有什么实际意义?提示 联系x ,y 的参数t (θ,φ,…)可以是一个有物理意义或几何意义的变数,也可以是无实际意义的任意实数.圆的参数方程中,其中参数θ的几何意义是OM 0绕点O 逆时针旋转到OM 的位置时,OM 0转过的角度. [预习导引] 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数:⎩⎪⎨⎪⎧x =f (t )y =g (t )①,并且对于 t 的每一个允许值,由方程组①所确定的点M (x ,y )都在这条曲线上,那么方程组①就叫做这条曲线的参数方程,联系变数x ,y 之间关系的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出的点的坐标间的关系的方程叫做普通方程.2.圆的参数方程(1)如图所示,设圆O 的半径为r ,点M 从初始位置M 0开始出发,按逆时针方向在圆O 上作均速圆周运动,设M (x ,y ),点M 转过的角度是θ,则⎩⎪⎨⎪⎧x =r ·cos θ,y =r ·sin θ(θ为参数),这就是圆心在原点,半径为r 的圆的参数方程. (2)圆心为C (a ,b ),半径为r 的圆的普通方程与参数方程要点一 参数方程的概念 例1 已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =1+2t ,y =at2(t 为参数,a ∈R ),点M (-3,4)在曲线C 上.(1)求常数a 的值;(2)判断点P (1,0)、Q (3,-1)是否在曲线C 上? 解 (1)将M (-3,4)的坐标代入曲线C 的参数方程⎩⎪⎨⎪⎧x =1+2t ,y =at 2,得⎩⎪⎨⎪⎧-3=1+2t ,4=at 2,消去参数t ,得a =1.(2)由(1)可得,曲线C 的参数方程是⎩⎪⎨⎪⎧x =1+2t ,y =t 2, 把点P 的坐标(1,0)代入方程组,解得t =0,因此P 在曲线C 上,把点Q 的坐标(3,-1)代入方程组,得到⎩⎪⎨⎪⎧3=1+2t ,-1=t 2,这个方程组无解,因此点Q 不在曲线C 上. 规律方法 点与曲线的位置关系满足某种约束条件的动点的轨迹形成曲线,点与曲线的位置关系有两种:点在曲线上、点不在曲线上.(1)对于曲线C 的普通方程f (x ,y )=0,若点M (x 1,y 1)在曲线上,则点M (x 1,y 1)的坐标是方程f (x ,y )=0的解,即有f (x 1,y 1)=0,若点N (x 2,y 2)不在曲线上,则点N (x 2,y 2)的坐标不是方程f (x ,y )=0的解,即有f (x 2,y 2)≠0. (2)对于曲线C 的参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )(t 为参数),若点M (x 1,y 1)在曲线上,则⎩⎪⎨⎪⎧x 1=f (t ),y 1=g (t )对应的参数t 有解,否则参数t 不存在.跟踪演练1 已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数,0≤θ<2π).判断点A (2,0),B ⎝⎛⎭⎪⎫-3,32是否在曲线C 上?若在曲线上,求出点对应的参数的值.解 把点A (2,0)的坐标代入⎩⎪⎨⎪⎧x =2cos θy =3sin θ,得cos θ=1,且sin θ=0,由于0≤θ<2π,解之得θ=0,因此点A (2,0)在曲线C 上,对应参数θ=0,同理,把B ⎝⎛⎭⎪⎫-3,32代入参数方程,得⎩⎪⎨⎪⎧-3=2cos θ,32=3sin θ.∴⎩⎪⎨⎪⎧cos θ=-32,sin θ=12.又0≤θ<2π,∴θ=56π,所以点B ⎝ ⎛⎭⎪⎫-3,32在曲线C 上,对应θ=56π.要点二 圆的参数方程及其应用例2 设曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),直线l 的方程为x -3y +2=0,则曲线C 上到直线l 距离为71010的点的个数为( ) A.1 B.2 C.3D.4解析 由⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ.得(x -2)2+(y +1)2=9.曲线C 表示以(2,-1)为圆心,以3为半径的圆, 则圆心C (2,-1)到直线l 的距离d =710=71010<3, 所以直线与圆相交.所以过圆心(2,-1)与l 平行的直线与圆的2个交点满足题意,又3-d <71010,故满足题意的点有2个. 答案 B规律方法 1.本题利用三角函数的平方关系,消去参数;数形结合,判定直线与圆的位置关系.2.参数方程表示怎样的曲线,一般是通过消参,得到普通方程来判断,特别要注意变量的取值范围.跟踪演练2 已知实数x ,y 满足(x -1)2+(y -1)2=9,求x 2+y 2的最大值和最小值.解 由已知,可把点(x ,y )视为圆(x -1)2+(y -1)2=9上的点,设⎩⎪⎨⎪⎧x =1+3cos θ,y =1+3sin θ(θ为参数).则x 2+y 2=(1+3cos θ)2+(1+3sin θ)2=11+6(sin θ+cos θ)=11+62sin ⎝ ⎛⎭⎪⎫θ+π4.∵-1≤sin ⎝ ⎛⎭⎪⎫θ+π4≤1,∴11-62≤x 2+y 2≤11+6 2.∴x 2+y 2的最大值为11+62,最小值为11-6 2. 要点三 参数方程的实际应用例3 某飞机进行投弹演习,已知飞机离地面高度为H =2 000 m ,水平飞行速度为v 1=100 m/s ,如图所示.(1)求飞机投弹t s 后炸弹的水平位移和离地面的高度;(2)如果飞机追击一辆速度为v 2=20 m/s 同向行驶的汽车,欲使炸弹击中汽车,飞机应在距离汽车的水平距离多远处投弹?(g =10 m/s 2)解 (1)如图所示,建立平面直角坐标系,设炸弹投出机舱的时刻为0 s ,在时刻t s 时其坐标为M (x ,y ),由于炸弹作平抛运动,依题意,得⎩⎪⎨⎪⎧x =100t ,y =2 000-12gt 2, 即⎩⎪⎨⎪⎧x =100t ,y =2 000-5t 2,令y =2 000-5t 2=0,得t =20(s ),所以飞机投弹t s 炸弹的水平位移为100t m ,离地面的高度为(2 000-5t 2)m ,其中,0≤t ≤20.(2)由于炸弹水平分运动和汽车的运动均为匀速直线运动,以汽车参考系.水平方向S 相对=v 相对t ,所以飞机应距离汽车投弹的水平距离为s =(v 1-v 2)t =(100-20)×20=1 600(m).规律方法 本题通过点的坐标的参数方程利用运动学知识使问题得解.由于水平抛出的炸弹做平抛运动,可以分解为在水平方向上的匀速直线运动和竖直方向上的自由落体运动,炸弹飞行的时间也就是它作自由落体运动所用的时间. 跟踪演练3 如果本例条件不变,求:(1)炸弹投出机舱10 s 后这一时刻的水平位移和高度各是多少m?(2)如果飞机迎击一辆速度为v 2=20 m/s 相向行驶的汽车,欲使炸弹击中汽车,飞机应在距离汽车的水平距离多远处投弹?解 (1)将t =10代入⎩⎪⎨⎪⎧x =100t ,y =2 000-5t 2,得⎩⎪⎨⎪⎧x =1 000,y =1 500, 所以炸弹投出机舱10 s 后这一时刻的水平位移和高度分别是1 000 m 和1 500 m. (2)由于炸弹水平分运动和汽车的运动均为匀速直线运动,以汽车为参考系.水平方向s 相对=v 相对t ,所以飞机应距离汽车投弹的水平距离为s =(v 1+v 2)t =(100+20)×20=2 400(m).1.曲线的普通方程直接地反映了一条曲线上点的横、纵坐标之间的联系,而参数方程是通过参数反映坐标变量x 、y 间的间接联系.在具体问题中的参数可能有相应的几何意义,也可能没有什么明显的几何意义.曲线的参数方程常常是方程组的形式,任意给定一个参数的允许取值就可得到曲线上的一个对应点,反过来,对于曲线上的任一点也必然对应着参数相应的允许取值.2.求曲线参数方程的主要步骤第一步,画出轨迹草图,设M (x ,y )是轨迹上任意一点的坐标.画图时要注意根据几何条件选择点的位置,以利于发现变量之间的关系.第二步,选择适当的参数.参数的选择要考虑以下两点:一是曲线上每一点的坐标x ,y 与参数的关系比较明显,容易列出方程;二是x ,y 的值可以由参数唯一确定.第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可以省略.1.下列方程:(1)⎩⎪⎨⎪⎧x =m ,y =m (m 为参数);(2)⎩⎪⎨⎪⎧x =m ,y =n (m ,n 为参数);(3)⎩⎪⎨⎪⎧x =1,y =2;(4)x +y =0中,参数方程的个数为( ) A.1 B.2 C.3D.4解析 由参数方程的概念知⎩⎪⎨⎪⎧x =my =m是参数方程,故选A.答案 A2.当参数θ变化时,由点P (2cos θ,3sin θ)所确定的曲线过点( ) A.(2,3)B.(1,5)C.⎝⎛⎭⎪⎫0,π2D.(2,0)解析 当2cos θ=2,即cos θ=1,3sin θ=0.∴过点(2,0). 答案 D3.参数方程⎩⎪⎨⎪⎧x =t +1t ,y =2(t 为参数)表示的曲线是( )A.两条直线B.一条射线C.两条射线D.双曲线解析 当t >0时⎩⎪⎨⎪⎧x ≥2,y =2,是一条射线;当t <0时,⎩⎪⎨⎪⎧x ≤-2,y =2,也是一条射线,故选C. 答案 C4.已知⎩⎪⎨⎪⎧x =t +1y =t 2(t 为参数),若y =1,则x =________. 解析 当y =1时,t 2=1,∴t =±1,当t =1时,x =2;当t =-1时,x =0.∴x 的值为2或0. 答案 2或05.已知直线y =x 与曲线⎩⎪⎨⎪⎧x =1+2cos α,y =2+2sin α,(α为参数)相交于两点A 和B ,求弦长|AB |.解 由⎩⎪⎨⎪⎧x =1+2cos α,y =2+2sin α,得⎩⎪⎨⎪⎧x -1=2cos α,y -2=2sin α.∴(x -1)2+(y -2)2=4,其圆心为(1,2),半径r =2,则圆心(1,2)到直线y =x 的距离d =|1-2|12+(-1)2=22. ∴|AB |=2r 2-d 2=222-⎝ ⎛⎭⎪⎫222=14.一、基础达标1.已知O 为原点,参数方程⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数)上的任意一点为A ,则|OA |=( )A.1B.2C.3D.4解析 |OA |=x 2+y 2=cos 2θ+sin 2θ=1,故选A. 答案 A2.已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =a +2cos θ,y =2sin θ(θ为参数),曲线C 不经过第二象限,则实数a 的取值范围是( )A.a ≥2B.a >3C.a ≥1D.a <0解析 ∵曲线C 的参数方程是⎩⎪⎨⎪⎧x =a +2cos θ,y =2sin θ(θ为参数),∴化为普通方程为(x -a )2+y2=4,表示圆心为(a ,0),半径等于2的圆.∵曲线C 不经过第二象限,则实数a 满足a ≥2,故选A. 答案 A3.圆心在点(-1,2),半径为5的圆的参数方程为( )A.⎩⎪⎨⎪⎧x =5-cos θ,y =5+2sin θ(0≤θ<2π)B.⎩⎪⎨⎪⎧x =2+5cos θ,y =-1+5sin θ(0≤θ<2π)C.⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<π)D.⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π) 解析 圆心在点C (a ,b ),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =a +r cos θ,y =b +r sin θ,(θ∈[0,2π)).故圆心在点(-1,2),半径为5的圆的参数方程为⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π).答案 D4.将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程为( ) A.y =x -2B.y =x +2C.y =x -2(2≤x ≤3)D.y =x +2(0≤y ≤1)解析 将参数方程中的θ消去,得y =x -2.又x ∈[2,3]. 答案 C5.若点(-3,-33)在参数方程⎩⎪⎨⎪⎧x =6cos θ,y =6sin θ(θ为参数)的曲线上,则θ=________.解析 将点(-3,-33)的坐标代入参数方程⎩⎪⎨⎪⎧x =6cos θ,y =6sin θ(θ为参数)得⎩⎪⎨⎪⎧cos θ=-12,sin θ=-32,解得θ=4π3+2k π,k ∈Z . 答案4π3+2k π,k ∈Z 6.已知圆C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin θ=1,则直线l 与圆C 的交点的直角坐标为________.解析 由圆C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α.可求得其在直角坐标系下的方程为x 2+(y -1)2=1,由直线l 的极坐标方程ρsin θ=1可求得其在直角坐标系下的方程为y =1,由⎩⎪⎨⎪⎧y =1,x 2+(y -1)2=1可解得⎩⎪⎨⎪⎧x =±1,y =1.所以直线l 与圆C 的交点的直角坐标为(-1,1),(1,1). 答案 (-1,1),(1,1)7.已知曲线C :⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ(θ为参数),如果曲线C 与直线x +y +a =0有公共点,求实数a 的取值范围.解 ∵⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ,∴x 2+(y +1)2=1.∵圆与直线有公共点,则d =|0-1+a |2≤1,解得1-2≤a ≤1+ 2. 二、能力提升8.若P (2,-1)为圆O ′:⎩⎪⎨⎪⎧x =1+5cos θ,y =5sin θ(0≤θ<2π)的弦的中点,则该弦所在直线l的方程是( ) A.x -y -3=0 B.x +2y =0 C.x +y -1=0D.2x -y -5=0解析 ∵圆心O ′(1,0),∴k PO ′=-1.∴k l =1. ∴直线l 方程为x -y -3=0. 答案 A9.如图,以过原点的直线的倾斜角θ为参数,则圆x 2+y 2-x =0的参数方程为________.解析 将x 2+y 2-x =0配方,得⎝ ⎛⎭⎪⎫x -122+y 2=14,∵圆的直径为1.设P (x ,y ),则x =|OP |cosθ=1×cos θ×cos θ=cos 2θ,y =|OP |sin θ=1×cos θ×sin θ=sin θcos θ,∴圆x 2+y 2-x =0的参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).答案 ⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数)10.曲线⎩⎪⎨⎪⎧x =1,y =sin t +1(t 为参数)与圆x 2+y 2=4的交点坐标为________.解析 ∵sin t ∈[-1,1],∴y ∈[0,2].∵方程⎩⎪⎨⎪⎧x =1,y =sin t +1表示的曲线是线段x =1(0≤y ≤2).令x =1,由x 2+y 2=4,得y 2=3, ∵0≤y ≤2,∴y = 3. 答案 (1,3)11.设点M (x ,y )在圆x 2+y 2=1上移动,求点P (x +y ,xy )的轨迹. 解 设点M (cos θ,sin θ)(0≤θ<2π),点P (x ′,y ′).则⎩⎪⎨⎪⎧x ′=cos θ+sin θ, ①y ′=cos θsin θ, ② ①2-2×②,得x ′2-2y ′=1.即x ′2=2⎝⎛⎭⎪⎫y ′+12.∴所求点P 的轨迹为抛物线x 2=2⎝ ⎛⎭⎪⎫y +12的一部分⎝⎛⎭⎪⎫|x |≤2,|y |≤12.12.已知点M (x ,y )是圆x 2+y 2+2x =0上的动点,若4x +3y -a ≤0恒成立,求实数a 的取值范围.解 由x 2+y 2+2x =0,得(x +1)2+y 2=1,又点M 在圆上,∴x =-1+cos θ,且y =sin θ(θ为参数),因此4x +3y =4(-1+cos θ)+3sin θ=-4+5sin(θ+φ)≤-4+5=1.(φ由 tan φ=43确定)∴4x +3y 的最大值为1.若4x +3y -a ≤0恒成立,则a ≥(4x +3y )max , 故实数a 的取值范围是[1,+∞). 三、探究与创新13.已知圆系方程为x 2+y 2-2ax cos φ-2ay sin φ=0(a >0,且为已知常数,φ为参数) (1)求圆心的轨迹方程;(2)证明圆心轨迹与动圆相交所得的公共弦长为定值. (1)解 由已知圆的标准方程为:(x -a cos φ)2+(y -a sin φ2)=a 2(a >0).设圆心坐标为(x ,y ),则⎩⎪⎨⎪⎧x =a cos φ,y =a sin φ(φ为参数),消参数得圆心的轨迹方程为x 2+y 2=a 2.(2)证明 由方程⎩⎪⎨⎪⎧x 2+y 2-2ax cos φ-2ay sin φ=0x 2+y 2=a 2得公共弦的方程:2ax cos φ+2ay sin φ=a 2,即x cos φ+y sin φ-a2=0,圆x 2+y 2=a2的圆心到公共弦的距离d =a2为定值.∴弦长l =2a 2-⎝ ⎛⎭⎪⎫a 22=3a (定值). 3 参数方程和普通方程的互化[学习目标]1.了解参数方程化为普通方程的意义.2.掌握参数方程化为普通方程的基本方法.3.能够利用参数方程化为普通方程解决有关问题. [知识链接]普通方程化为参数方程,参数方程的形式是否唯一?提示 不一定唯一.普通方程化为参数方程,关键在于适当选择参数,如果选择的参数不同,那么所得的参数方程的形式也不同. [预习导引]参数方程与普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t ),就是曲线的参数方程.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.要点一 把参数方程化为普通方程例1 在方程⎩⎪⎨⎪⎧x =a +t cos θy =b +t sin θ,(a ,b 为正常数)中,(1)当t 为参数,θ为常数时,方程表示何种曲线? (2)当t 为常数,θ为参数时,方程表示何种曲线?解 方程⎩⎪⎨⎪⎧x =a +t cos θ, ①y =b +t sin θ, ②(a ,b 是正常数),(1)①×sin θ-②×cos θ得x sin θ-y cos θ-a sin θ+b cos θ=0. ∵cos θ、sin θ不同时为零,∴方程表示一条直线. (2)(i)当t 为非零常数时,原方程组为⎩⎪⎨⎪⎧x -at=cos θ, ③y -b t =sin θ. ④③2+④2得(x -a )2t 2+(y -b )2t2=1, 即(x -a )2+(y -b )2=t 2,它表示一个圆. (ii)当t =0时,表示点(a ,b ).规律方法 1.消去参数的常用方法:将参数方程化为普通方程,关键是消去参数,如果参数方程是整式方程,常用的消元法有代入消元法、加减消元法.如果参数方程是分式方程,在运用代入消元或加减消元之前要做必要的变形.另外,熟悉一些常见的恒等式至关重要,如sin 2α+cos 2α=1,(e x +e -x )2-(e x -e -x )2=4,⎝ ⎛⎭⎪⎫1-k 21+k 22+⎝ ⎛⎭⎪⎫2k 1+k 22=1等.2.把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x 及y 的取值范围的影响.本题启示我们,形式相同的方程,由于选择参数的不同,可表示不同的曲线.跟踪演练1 参数方程⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数)化成普通方程为________.解析 ∵⎩⎪⎨⎪⎧x =cos α,y =1+sin α,cos 2α+sin 2α=1,∴x 2+(y -1)2=1. 答案 x 2+(y -1)2=1要点二 把普通方程化成参数方程 例2 求方程4x 2+y 2=16的参数方程: (1)设y =4sin θ,θ为参数;(2)若令y =t (t 为参数),如何求曲线的参数方程?若令x =2t (t 为参数),如何求曲线的参数方程?解 (1)把y =4sin θ代入方程,得到4x 2+16sin 2θ=16,于是4x 2=16-16sin 2θ=16cos 2θ,∴x =±2cos θ. ∴4x 2+y 2=16的参数方程是⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ和⎩⎪⎨⎪⎧x =-2cos θ,y =4sin θ(θ为参数) (2)将y =t 代入椭圆方程4x 2+y 2=16,得4x 2+t 2=16, 则x 2=16-t 24.∴x =±16-t 22.因此,椭圆4x 2+y 2=16的参数方程是⎩⎪⎨⎪⎧x =16-t 22y =t ,和⎩⎪⎨⎪⎧x =-16-t 22,y =t(t 为参数). 同理将x =2t 代入椭圆4x 2+y 2=16,得椭圆的参数方程为⎩⎨⎧x =2t ,y =41-t 2和⎩⎨⎧x =2t ,y =-41-t 2(t 为参数).规律方法 1.将圆的普通方程化为参数方程 (1)圆x 2+y 2=r2的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数);(2)圆(x -a )2+(y -b )2=r 2的参数方程为⎩⎪⎨⎪⎧x =a +r cos θ,y =b +r sin θ(θ为参数).2.普通方程化为参数方程关键是引入参数(例如x =f (t ),再计算y =g (t )),并且要保证等价性.若不可避免地破坏了同解变形,则一定要通过x =f (t ),y =g (t ),调整t 的取值范围,使得在普通方程转化为参数方程的过程中,x ,y 的取值范围保持一致.跟踪演练2 设y =tx (t 为参数),则圆x 2+y 2-4y =0的参数方程是________.解析 把y =tx 代入x 2+y 2-4y =0得x =4t 1+t 2,y =4t21+t 2,∴参数方程为⎩⎪⎨⎪⎧x =4t 1+t 2,y =4t21+t 2.(t 为参数).答案 ⎩⎪⎨⎪⎧x =4t1+t 2,y =4t 21+t 2.(t 为参数)要点三 参数方程的应用例3 已知x 、y 满足x 2+(y -1)2=1,求: (1)3x +4y 的最大值和最小值; (2)(x -3)2+(y +3)2的最大值和最小值. 解 由圆的普通方程x 2+(y -1)2=1得圆的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ.(θ∈[0,2π)).(1)3x +4y =3cos θ+4sin θ+4=4+5sin(θ+φ), 其中tan φ=34,且φ的终边过点(4,3).∵-5≤5sin(θ+φ)≤5,∴-1≤4+5sin(θ+φ)≤9, ∴3x +4y 的最大值为9,最小值为-1.(2)(x -3)2+(y +3)2=(cos θ-3)2+(sin θ+4)2=26+8sin θ-6cos θ=26+10sin(θ+φ). 其中tan φ=-34.且φ的终边过点(4,-3).∵-10≤10sin(θ+φ)≤10,∴16≤26+10sin(θ+φ)≤36, 所以(x -3)2+(y +3)2的最大值为36,最小值为16.规律方法 1.运用参数思想解题的关键在于参数的选择.选择参数时,应注意所选择的参数易于与两个坐标产生联系.由于三角函数的巨大作用,常选择角为参数,若轨迹与运动有关,常选择时间为参数.2.解决与圆有关的最大值和最小值问题,常常设圆的参数方程,然后转化为求三角函数的最大值和最小值问题.3.注意运用三角恒等式求最值:a sin θ+b cos θ=a 2+b 2sin(θ+φ).其中tan φ=b a(a ≠0),且φ的终边过点(a ,b ).跟踪演练3 如图,已知点P 是圆x 2+y 2=16上的一个动点,定点A (12,0),当点P 在圆上运动时,利用参数方程求线段PA 的中点M 的轨迹.解 因为圆x2+y 2=16的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数),所以可设点P (4cos θ,4sin θ),设点M (x ,y ),由线段中点坐标公式得⎩⎪⎨⎪⎧x =4cos θ+122,y =4sin θ2(θ为参数),即点M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =2cos θ+6,y =2sin θ(θ为参数),所以点M 的轨迹是以点(6,0)为圆心、2为半径的圆.1.参数方程和普通方程的互化参数方程化为普通方程,可通过代入消元法和三角恒等式消参法消去参数方程中的参数,通过曲线的普通方程来判断曲线的类型.由普通方程化为参数方程要选定恰当的参数,寻求曲线上任一点M 的坐标x ,y 和参数的关系,根据实际问题的要求,我们可以选择时间、角度、线段长度、直线的斜率、截距等作为参数. 2.同一道题参数的选择往往不是唯一的,适当地选择参数,可以简化解题的过程,降低计算量,提高准确率.求轨迹方程与求轨迹有所不同,求轨迹方程只需求出方程即可,而求轨迹往往是先求出轨迹方程,然后根据轨迹方程指明轨迹是什么图形.3.参数方程与普通方程的等价性把参数方程化为普通方程后,很容易改变了变量的取值范围,从而使得两种方程所表示的曲线不一致,因此我们要注意参数方程与普通方程的等价性.1.与普通方程x 2+y -1=0等价的参数方程为(t 为参数)( )A.⎩⎪⎨⎪⎧x =sin t y =cos 2t B.⎩⎪⎨⎪⎧x =cos ty =sin 2t C.⎩⎨⎧x =1-ty =tD.⎩⎪⎨⎪⎧x =tan t y =1-tan 2t 解析 A 化为普通方程为x 2+y -1=0,x ∈[-1,1],y ∈[0,1].B 化为普通方程为x 2+y -1=0,x ∈[-1,1],y ∈[0,1].C 化为普通方程为x 2+y -1=0,x ∈[0,+∞),y ∈(-∞,1].D 化为普通方程为x 2+y -1=0,x ∈R ,y ∈R . 答案 D2.将参数方程⎩⎪⎨⎪⎧x =t +1t,y =t 2+1t2(t 为参数)化为普通方程为________.解析 由x =t +1t 得x 2=t 2+1t 2+2,又y =t 2+1t 2,∴x 2=y +2.∵t 2+1t2≥2,∴y ≥2.答案 x 2-y =2(y ≥2) 3.参数方程⎩⎪⎨⎪⎧x =sin 2θ,y =sin θ+cos θ(θ为参数)表示的曲线的普通方程是________.解析 y 2=(sin θ+cos θ)2=sin 2θ+2sin θcos θ+cos 2θ=1+2sin θcos θ=1+x ,又x =sin 2θ∈[-1,1],∴曲线的普通方程是y 2=x +1(-1≤x ≤1).答案 y 2=x +1(-1≤x ≤1)4.已知某条曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =at 2(其中t 是参数,a ∈R ),点M (5,4)在该曲线上. (1)求常数a ;(2)求曲线C 的普通方程.解 (1)由题意,可知⎩⎪⎨⎪⎧1+2t =5,at 2=4,故⎩⎪⎨⎪⎧t =2,a =1,所以a =1.(2)由已知及(1)可得,曲线C 的方程为⎩⎪⎨⎪⎧x =1+2t ,y =t 2,由第一个方程,得t =x -12,代入第二个方程,得y =⎝ ⎛⎭⎪⎫x -122,即(x -1)2=4y 为所求.一、基础达标1.曲线⎩⎪⎨⎪⎧x =|sin θ|,y =cos θ(θ为参数)的方程等价于( )A.x =1-y 2B.y =1-x 2C.y =±1-x 2D.x 2+y 2=1解析 由x =|sin θ|得0≤x ≤1;由y =cos θ得-1≤y ≤1.故选A. 答案 A2.已知直线l :⎩⎪⎨⎪⎧x =2+t ,y =-2-t (t 为参数)与圆C :⎩⎪⎨⎪⎧x =2cos θ+1,y =2sin θ(θ为参数),则直线l 的倾斜角及圆心C 的直角坐标分别是( ) A.π4,(1,0) B.π4,(-1,0) C.3π4,(1,0) D.3π4,(-1,0) 解析 直线消去参数得直线方程为y =-x ,所以斜率k =-1即倾斜角为3π4.圆的标准方程为(x -1)2+y 2=4,圆心坐标为(1,0). 答案 C3.参数方程⎩⎪⎨⎪⎧x =1-t 21+t2,y =2t1+t2(t 为参数)化为普通方程为( )A.x 2+y 2=1B.x 2+y 2=1去掉(0,1)点 C.x 2+y 2=1去掉(1,0)点 D.x 2+y 2=1去掉(-1,0)点解析 x 2+y 2=⎝ ⎛⎭⎪⎫1-t 21+t 22+⎝ ⎛⎭⎪⎫2t 1+t 22=1,又∵x =-1时,1-t 2=-(1+t 2)不成立,故去掉点(-1,0). 答案 D4.若x ,y 满足x 2+y 2=1,则x +3y 的最大值为( ) A.1 B.2 C.3D.4解析 由于圆x 2+y 2=1的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ,(θ为参数),则x +3y =3sin θ+cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π6,故x +3y 的最大值为2.故选B. 答案 B5.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB |=________. 解析 由ρcos θ=4,知x =4.又⎩⎪⎨⎪⎧x =t 2,y =t 3,∴x 3=y 2(x ≥0). 由⎩⎪⎨⎪⎧x =4,x 3=y 2,得⎩⎪⎨⎪⎧x =4,y =8或⎩⎪⎨⎪⎧x =4,y =-8. ∴|AB |=(4-4)2+(8+8)2=16. 答案 166.在极坐标系中,圆C 1的方程为ρ=42cos ⎝⎛⎭⎪⎫θ-π4,以极点为坐标原点,极轴为x 轴的正半轴建立平面坐标系,圆C 2的参数方程⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(θ为参数),若圆C 1与C 2相切,则实数a =________.解析 圆C 1的直角坐标方程为x 2+y 2=4x +4y ,其标准方程为(x -2)2+(y -2)2=8,圆心为(2,2),半径长为22,圆C 2的圆心坐标为(-1,-1),半径长为|a |,由于圆C 1与圆C 2外切,则|C 1C 2|=22+|a |=32或|C 1C 2|=|a |-22=32⇒a =±2或a =±5 2. 答案 ±2或±5 27.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =t -1t,y =3⎝ ⎛⎭⎪⎫t +1t ,(t 为参数,t >0).求曲线C 的普通方程.解 由x =t -1t两边平方得x 2=t +1t-2,又y =3⎝ ⎛⎭⎪⎫t +1t ,则t +1t =y 3(y ≥6). 代入x 2=t +1t -2,得x 2=y 3-2.∴3x 2-y +6=0(y ≥6).故曲线C 的普通方程为3x 2-y +6=0(y ≥6). 二、能力提升8.已知在平面直角坐标系xOy 中圆C 的参数方程为:⎩⎨⎧x =3+3cos θ,y =1+3sin θ(θ为参数),以Ox为极轴建立极坐标系,直线极坐标方程为:ρcos ⎝ ⎛⎭⎪⎫θ+π6=0,则圆C 截直线所得弦长为( ) A. 2 B.2 2 C.3 2D.4 2解析 圆C 的参数方程为⎩⎨⎧x =3+3cos θy =1+3sin θ的圆心为(3,1),半径为3,直线普通方程为ρ⎝⎛⎭⎪⎫cos θcos π6-sin θsin π6=32x -12y =0,即3x -y =0,圆心C (3,1)到直线3x -y =0的距离为d =|(3)2-1|3+1=1,所以圆C 截直线所得弦长|AB |=2r 2-d 2=232-12=4 2. 答案 D9.过原点作倾斜角为θ的直线与圆⎩⎪⎨⎪⎧x =4+2cos α,y =2sin α相切,则θ=________.解析 直线为y =x tan θ,圆为(x -4)2+y 2=4,直线与圆相切时,易知tan θ=±33,∴θ=π6或5π6.答案π6或5π610.在直角坐标系xOy 中,已知曲线C 1:⎩⎪⎨⎪⎧x =t +1,y =1-2t (t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θy =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,则a =________.解析 曲线C 1的普通方程为2x +y =3,曲线C 2的普通方程为x 2a 2+y 29=1,直线2x +y =3与x轴的交点坐标为⎝ ⎛⎭⎪⎫32,0,故曲线x 2a 2+y 29=1也经过这个点,代入解得a =32(舍去-32). 答案 3211.在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立坐标系.已知直线l上两点M ,N 的极坐标分别为(2,0),⎝ ⎛⎭⎪⎫233,π2,圆C 的参数方程为⎩⎨⎧x =2+2cos θ,y =-3+2sin θ(θ为参数).(1)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系.解 (1)由题意知,M ,N 的平面直角坐标分别为(2,0),⎝⎛⎭⎪⎫0,233.又P 为线段MN 的中点,从而点P 的平面直角坐标为⎝ ⎛⎭⎪⎫1,33,故直线OP 的平面直角坐标方程为y =33x . (2)因为直线l 上两点M ,N 的平面直角坐标分别为(2,0),⎝⎛⎭⎪⎫0,233,所以直线l 的平面直角坐标方程为x +3y -2=0. 又圆C 的圆心坐标为(2,-3),半径为r =2,圆心到直线l 的距离d =|2-3-2|2=32<r ,故直线l 与圆C 相交.12.已知曲线C 1:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),曲线C 2:⎩⎪⎨⎪⎧x =22t -2,y =22t(t 为参数).(1)指出C 1,C 2各是什么曲线,并说明C 1与C 2公共点的个数;(2)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线C ′1,C ′2.写出C ′1,C ′2的参数方程.C ′1与C ′2公共点的个数和C 1与C 2公共点的个数是否相同?说明你的理由.解 (1)C 1是圆,C 2是直线.C 1的普通方程为x 2+y 2=1, 圆心C 1(0,0),半径r =1.C 2的普通方程为x -y +2=0.因为圆心C 1到直线x -y +2=0的距离为1,所以C 2与C 1只有一个公共点.(2)压缩后的参数方程分别为C ′1:⎩⎪⎨⎪⎧x =cos θ,y =12sin θ(θ为参数),C ′2:⎩⎪⎨⎪⎧x =22t -2,y =24t (t 为参数),化为普通方程为C ′1:x 2+4y 2=1,C ′2:y =12x +22,联立消元得2x 2+22x +1=0, 其判别式Δ=(22)2-4×2×1=0,所以压缩后的直线C ′2与椭圆C ′1仍然只有一个公共点,和C 1与C 2公共点的个数相同. 三、探究与创新13.已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解 (1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t 消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0,将⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ代入x 2+y 2-8x -10y +16=0得,ρ2-8ρcosθ-10ρsin θ+16=0,∴C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0; (2)C 2的普通方程为x 2+y 2-2y =0,由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0, 解得⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =0,y =2.∴C 1与C 2的交点的极坐标分别为⎝⎛⎭⎪⎫2,π4,⎝ ⎛⎭⎪⎫2,π2.二 圆锥曲线的参数方程[学习目标]1.掌握椭圆的参数方程及应用.2.了解双曲线、抛物线的参数方程.3.能够利用圆锥曲线的参数方程解决最值、有关点的轨迹问题. [知识链接]1.椭圆的参数方程中,参数φ是OM 的旋转角吗? 提示 椭圆的参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数)中的参数φ不是动点M (x ,y )的旋转角,它是点M 所对应的圆的半径OA (或OB )的旋转角,称为离心角,不是OM 的旋转角. 2.双曲线的参数方程中,参数φ的三角函数sec φ的意义是什么? 提示 sec φ=1cos φ,其中φ∈[0,2π)且φ≠π2,φ≠32π. 3.类比y 2=2px (p >0),你能得到x 2=2py (p >0)的参数方程吗?提示 ⎩⎪⎨⎪⎧x =2pt ,y =2pt 2(p >0,t 为参数,t ∈R .) [预习导引] 1.椭圆的参数方程2.双曲线的参数方程3.抛物线的参数方程(1)抛物线y 2=2px 的参数方程是⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t ∈R ,t 为参数).(2)参数t 表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.要点一 椭圆参数方程的应用 例1 已知A 、B 分别是椭圆x 236+y 29=1的右顶点和上顶点,动点C 在该椭圆上运动,求△ABC 重心G 的轨迹的普通方程.解 由题意知A (6,0),B (0,3).由于动点C 在椭圆上运动,故可设动点C 的坐标为(6cos θ,3sin θ),点G 的坐标为(x ,y ),由三角形重心的坐标公式可得⎩⎪⎨⎪⎧x =6+0+6cos θ3,y =0+3+3sin θ3(θ为参数),即⎩⎪⎨⎪⎧x =2+2cos θ,y =1+sin θ.故重心G 的轨迹的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =1+sin θ(θ为参数).规律方法 本题的解法体现了椭圆的参数方程对于解决相关问题的优越性.运用参数方程显得很简单,运算更简便.跟踪演练1 已知曲线C 1:⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t (t 为参数),曲线C 2:x 264+y 29=1.(1)化C 1为普通方程,C 2为参数方程;并说明它们分别表示什么曲线?(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:x -2y -7=0距离的最小值.解 (1)由⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t ,得⎩⎪⎨⎪⎧cos t =x +4,sin t =y -3. ∴曲线C 1:(x +4)2+(y -3)2=1,C 1表示圆心是(-4,3),半径是1的圆.曲线C 2:x 264+y 29=1表示中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆.其参数方程为⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ,(θ为参数)(2)依题设,当t =π2时,P (-4,4);且Q (8cos θ,3sin θ),故M ⎝ ⎛⎭⎪⎫-2+4cos θ,2+32sin θ. 又C 3为直线x -2y -7=0,M 到C 3的距离d =55|4cos θ-3sin θ-13| =55|5cos(θ+φ)-13|, 从而当cos θ=45,sin θ=-35时,⎝ ⎛⎭⎪⎫其中φ由sin φ=35,cos φ=45确定,cos(θ+φ)=1,d 取得最小值855.要点二 双曲线参数方程的应用例2 求证:双曲线x 2a 2-y 2b 2=1(a >0,b >0)上任意一点到两渐近线的距离的乘积是一个定值.证明 由双曲线x 2a 2-y 2b2=1,得两条渐近线的方程是:bx +ay =0,bx -ay =0,设双曲线上任一点的坐标为(a sec φ,b tan φ), 它到两渐近线的距离分别是d 1和d 2,则d 1·d 2=|ab sec φ+ab tan φ|b 2+a 2·|ab sec φ-ab tan φ|b 2+(-a )2=|a 2b 2(sec 2φ-tan 2φ)|a 2+b 2=a 2b2a 2+b 2(定值).规律方法 在研究有关圆锥曲线的最值和定值问题时,使用曲线的参数方程非常简捷方便,其中点到直线的距离公式对参数形式的点的坐标仍适用,另外本题要注意公式sec 2φ-tan 2φ=1的应用.跟踪演练2 如图,设P 为等轴双曲线x 2-y 2=1上的一点,F 1、F 2是两个焦点,证明:|PF 1|·|PF 2|=|OP |2.证明 设P (sec φ,tan φ),∵F 1(-2,0),F 2(2,0), ∴|PF 1|=(sec φ+2)2+tan 2φ =2sec 2φ+22sec φ+1, |PF 2|=(sec φ-2)2+tan 2φ=2sec 2φ-22sec φ+1,|PF 1|·|PF 2|=(2sec 2φ+1)2-8sec 2φ=2sec 2φ-1. ∵|OP |2=sec 2φ+tan 2φ=2sec 2φ-1, ∴|PF 1|·|PF 2|=|OP |2. 要点三 抛物线参数方程的应用例3 设抛物线y 2=2px 的准线为l ,焦点为F ,顶点为O ,P 为抛物线上任一点,PQ ⊥l 于Q ,求QF 与OP 的交点M 的轨迹方程.解 设P 点的坐标为(2pt 2,2pt )(t 为参数), 当t ≠0时,直线OP 的方程为y =1tx ,QF 的方程为y =-2t ⎝⎛⎭⎪⎫x -p 2,它们的交点M (x ,y )由方程组⎩⎪⎨⎪⎧y =1txy =-2t ⎝ ⎛⎭⎪⎫x -p 2确定,两式相乘,消去t ,得y 2=-2x ⎝ ⎛⎭⎪⎫x -p 2,∴点M 的轨迹方程为2x 2-px +y 2=0(x ≠0).当t =0时,M (0,0)满足题意,且适合方程2x 2-px +y 2=0. 故所求的轨迹方程为2x 2-px +y 2=0.规律方法 1.抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数),参数t 为任意实数,它表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.2.用参数法求动点的轨迹方程,其基本思想是选取适当的参数作为中间变量,使动点的坐标分别与参数有关,从而得到动点的参数方程,然后再消去参数,化为普通方程.跟踪演练3 已知抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E ,若|EF |=|MF |,点M 的横坐标是3,则p =________. 解析 根据抛物线的参数方程可知抛物线的标准方程是y 2=2px ,所以y 2M =6p ,所以E ⎝ ⎛⎭⎪⎫-p 2,±6p ,F ⎝ ⎛⎭⎪⎫p 2,0,所以p 2+3=p 2+6p ,所以p 2+4p -12=0,解得p =2(负值舍去).答案 21.圆的参数方程⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ中的参数θ是半径OM 的旋转角,椭圆参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ中的参数φ是椭圆上点M 的离心角.2.椭圆(x -m )2a 2+(y -n )2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =m +a cos φ,y =n +b sin φ(φ为参数).3.双曲线的参数方程中,参数φ的三角函数cot φ、sec φ、csc φ的意义分别为cot φ=1tan φ,sec φ=1cos φ,csc φ=1sin φ. 4.抛物线y 2=2px 的参数方程⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数),由于y x =1t ,因此t 的几何意义是抛物线的点(除顶点外)与抛物线的顶点连线的斜率的倒数.5.利用圆锥曲线的参数方程,可以方便求解一些需要曲线上点的两个坐标独立表示的问题,如求最大值、最小值问题、轨迹问题等.1.参数方程⎩⎪⎨⎪⎧x =e t+e -t,y =2(e t -e -t)(t 为参数)的普通方程是( ) A.抛物线 B.一条直线 C.椭圆D.双曲线解析 由参数方程⎩⎪⎨⎪⎧2x =2e t+2e -t,y =2(e t -e -t)平方相减可得4x 2-y 2=16,即x 24-y 216=1,故答案为D. 答案 D2.椭圆⎩⎪⎨⎪⎧x =4+5cos φ,y =3sin φ(φ为参数)的焦点坐标为( )A.(0,0),(0,-8)B.(0,0),(-8,0)C.(0,0),(0,8)D.(0,0),(8,0)解析 利用平方关系化为普通方程:(x -4)225+y29=1.∴焦点(0,0),(8,0). 答案 D3.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2,y =2+sin α(α为参数)表示的普通方程是________.解析 因x 2=1+sin α,y 2=2+sin α,所以y 2-x 2=1,又因x =sinα2+cos α2=2sin ⎝ ⎛⎭⎪⎫α2+π4,所以答案为y 2-x 2=1(|x |≤2且y ≥1). 答案 y 2-x 2=1(|x |≤2且y ≥1)4.点P (1,0)到曲线⎩⎪⎨⎪⎧x =t 2,y =2t (参数t ∈R )上的点的最短距离为( )A.0B.1C. 2D.2解析 d 2=(t 2-1)2+4t 2=(t 2+1)2.∵t ∈R ,∴d 2min =1,∴d min =1. 答案 B5.已知点P 是椭圆x 24+y 2=1上任意一点,求点P 到直线l :x +2y =0的距离的最大值. 解 因为P 为椭圆x 24+y 2=1上任意一点,故可设P (2cos θ,sin θ),其中θ∈[0,2π).又直线l :x +2y =0. 因此点P 到直线l 的距离d =|2cos θ+2sin θ|12+22=22⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫θ+π45.又θ∈[0,2π),∴d max =225=2105, 即点P 到直线e :x +2y =0的距离的最大值为2105.一、基础达标1.参数方程⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数)化为普通方程为( )。
高中数学第二讲参数方程学案新人教A版选修8.doc
第二讲 参数方程一 曲线的参数方程 1 参数方程的概念 2 圆的参数方程[学习目标]1.理解曲线参数方程的有关概念.2.掌握圆的参数方程.3.能够根据圆的参数方程解决最值问题. [知识链接]曲线的参数方程中,参数是否一定具有某种实际意义?在圆的参数方程中,参数θ有什么实际意义?提示 联系x ,y 的参数t (θ,φ,…)可以是一个有物理意义或几何意义的变数,也可以是无实际意义的任意实数.圆的参数方程中,其中参数θ的几何意义是OM 0绕点O 逆时针旋转到OM 的位置时,OM 0转过的角度. [预习导引] 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数:⎩⎪⎨⎪⎧x =f (t )y =g (t )①,并且对于 t 的每一个允许值,由方程组①所确定的点M (x ,y )都在这条曲线上,那么方程组①就叫做这条曲线的参数方程,联系变数x ,y 之间关系的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出的点的坐标间的关系的方程叫做普通方程.2.圆的参数方程(1)如图所示,设圆O 的半径为r ,点M 从初始位置M 0开始出发,按逆时针方向在圆O 上作均速圆周运动,设M (x ,y ),点M 转过的角度是θ,则⎩⎪⎨⎪⎧x =r ·cos θ,y =r ·sin θ(θ为参数),这就是圆心在原点,半径为r 的圆的参数方程.(2)圆心为C (a ,b ),半径为r 的圆的普通方程与参数方程要点一 参数方程的概念 例1 已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =1+2t ,y =at2(t 为参数,a ∈R ),点M (-3,4)在曲线C 上.(1)求常数a 的值;(2)判断点P (1,0)、Q (3,-1)是否在曲线C 上? 解 (1)将M (-3,4)的坐标代入曲线C 的参数方程⎩⎪⎨⎪⎧x =1+2t ,y =at 2,得⎩⎪⎨⎪⎧-3=1+2t ,4=at 2,消去参数t ,得a =1.(2)由(1)可得,曲线C 的参数方程是⎩⎪⎨⎪⎧x =1+2t ,y =t 2, 把点P 的坐标(1,0)代入方程组,解得t =0,因此P 在曲线C 上,把点Q 的坐标(3,-1)代入方程组,得到⎩⎪⎨⎪⎧3=1+2t ,-1=t 2,这个方程组无解,因此点Q 不在曲线C 上. 规律方法 点与曲线的位置关系满足某种约束条件的动点的轨迹形成曲线,点与曲线的位置关系有两种:点在曲线上、点不在曲线上.(1)对于曲线C 的普通方程f (x ,y )=0,若点M (x 1,y 1)在曲线上,则点M (x 1,y 1)的坐标是方程f (x ,y )=0的解,即有f (x 1,y 1)=0,若点N (x 2,y 2)不在曲线上,则点N (x 2,y 2)的坐标不是方程f (x ,y )=0的解,即有f (x 2,y 2)≠0. (2)对于曲线C 的参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )(t 为参数),若点M (x 1,y 1)在曲线上,则⎩⎪⎨⎪⎧x 1=f (t ),y 1=g (t )对应的参数t 有解,否则参数t 不存在.跟踪演练1 已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数,0≤θ<2π).判断点A (2,0),B ⎝⎛⎭⎪⎫-3,32是否在曲线C 上?若在曲线上,求出点对应的参数的值.解 把点A (2,0)的坐标代入⎩⎪⎨⎪⎧x =2cos θy =3sin θ,得cos θ=1,且sin θ=0,由于0≤θ<2π,解之得θ=0,因此点A (2,0)在曲线C 上,对应参数θ=0,同理,把B ⎝⎛⎭⎪⎫-3,32代入参数方程,得⎩⎪⎨⎪⎧-3=2cos θ,32=3sin θ.∴⎩⎪⎨⎪⎧cos θ=-32,sin θ=12.又0≤θ<2π,∴θ=56π,所以点B ⎝ ⎛⎭⎪⎫-3,32在曲线C 上,对应θ=56π.要点二 圆的参数方程及其应用例2 设曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),直线l 的方程为x -3y +2=0,则曲线C 上到直线l 距离为71010的点的个数为( ) A.1 B.2 C.3D.4解析 由⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ.得(x -2)2+(y +1)2=9.曲线C 表示以(2,-1)为圆心,以3为半径的圆, 则圆心C (2,-1)到直线l 的距离d =710=71010<3, 所以直线与圆相交.所以过圆心(2,-1)与l 平行的直线与圆的2个交点满足题意,又3-d <71010,故满足题意的点有2个.答案 B规律方法 1.本题利用三角函数的平方关系,消去参数;数形结合,判定直线与圆的位置关系.2.参数方程表示怎样的曲线,一般是通过消参,得到普通方程来判断,特别要注意变量的取值范围.跟踪演练2 已知实数x ,y 满足(x -1)2+(y -1)2=9,求x 2+y 2的最大值和最小值. 解 由已知,可把点(x ,y )视为圆(x -1)2+(y -1)2=9上的点,设⎩⎪⎨⎪⎧x =1+3cos θ,y =1+3sin θ(θ为参数).则x 2+y 2=(1+3cos θ)2+(1+3sin θ)2 =11+6(sin θ+cos θ)=11+62sin ⎝ ⎛⎭⎪⎫θ+π4. ∵-1≤sin ⎝ ⎛⎭⎪⎫θ+π4≤1,∴11-62≤x 2+y 2≤11+6 2.∴x 2+y 2的最大值为11+62,最小值为11-6 2. 要点三 参数方程的实际应用例3 某飞机进行投弹演习,已知飞机离地面高度为H =2 000 m ,水平飞行速度为v 1=100 m/s ,如图所示.(1)求飞机投弹t s 后炸弹的水平位移和离地面的高度;(2)如果飞机追击一辆速度为v 2=20 m/s 同向行驶的汽车,欲使炸弹击中汽车,飞机应在距离汽车的水平距离多远处投弹?(g =10 m/s 2)解 (1)如图所示,建立平面直角坐标系,设炸弹投出机舱的时刻为0 s ,在时刻t s 时其坐标为M (x ,y ),由于炸弹作平抛运动,依题意,得⎩⎪⎨⎪⎧x =100t ,y =2 000-12gt 2,即⎩⎪⎨⎪⎧x =100t ,y =2 000-5t 2, 令y =2 000-5t 2=0,得t =20(s ),所以飞机投弹t s 炸弹的水平位移为100t m ,离地面的高度为(2 000-5t 2)m ,其中,0≤t ≤20.(2)由于炸弹水平分运动和汽车的运动均为匀速直线运动,以汽车参考系.水平方向S 相对=v 相对t ,所以飞机应距离汽车投弹的水平距离为s =(v 1-v 2)t =(100-20)×20=1 600(m).规律方法 本题通过点的坐标的参数方程利用运动学知识使问题得解.由于水平抛出的炸弹做平抛运动,可以分解为在水平方向上的匀速直线运动和竖直方向上的自由落体运动,炸弹飞行的时间也就是它作自由落体运动所用的时间. 跟踪演练3 如果本例条件不变,求:(1)炸弹投出机舱10 s 后这一时刻的水平位移和高度各是多少m?(2)如果飞机迎击一辆速度为v 2=20 m/s 相向行驶的汽车,欲使炸弹击中汽车,飞机应在距离汽车的水平距离多远处投弹? 解 (1)将t =10代入⎩⎪⎨⎪⎧x =100t ,y =2 000-5t 2,得⎩⎪⎨⎪⎧x =1 000,y =1 500,所以炸弹投出机舱10 s 后这一时刻的水平位移和高度分别是1 000 m 和1 500 m. (2)由于炸弹水平分运动和汽车的运动均为匀速直线运动,以汽车为参考系.水平方向s 相对=v 相对t ,所以飞机应距离汽车投弹的水平距离为s =(v 1+v 2)t =(100+20)×20=2 400(m).1.曲线的普通方程直接地反映了一条曲线上点的横、纵坐标之间的联系,而参数方程是通过参数反映坐标变量x 、y 间的间接联系.在具体问题中的参数可能有相应的几何意义,也可能没有什么明显的几何意义.曲线的参数方程常常是方程组的形式,任意给定一个参数的允许取值就可得到曲线上的一个对应点,反过来,对于曲线上的任一点也必然对应着参数相应的允许取值.2.求曲线参数方程的主要步骤第一步,画出轨迹草图,设M (x ,y )是轨迹上任意一点的坐标.画图时要注意根据几何条件选择点的位置,以利于发现变量之间的关系.第二步,选择适当的参数.参数的选择要考虑以下两点:一是曲线上每一点的坐标x ,y 与参数的关系比较明显,容易列出方程;二是x ,y 的值可以由参数唯一确定.第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可以省略.1.下列方程:(1)⎩⎪⎨⎪⎧x =m ,y =m (m 为参数);(2)⎩⎪⎨⎪⎧x =m ,y =n (m ,n 为参数);(3)⎩⎪⎨⎪⎧x =1,y =2;(4)x +y =0中,参数方程的个数为( ) A.1 B.2 C.3D.4解析 由参数方程的概念知⎩⎪⎨⎪⎧x =my =m 是参数方程,故选A.答案 A2.当参数θ变化时,由点P (2cos θ,3sin θ)所确定的曲线过点( ) A.(2,3)B.(1,5)C.⎝⎛⎭⎪⎫0,π2D.(2,0)解析 当2cos θ=2,即cos θ=1,3sin θ=0.∴过点(2,0). 答案 D3.参数方程⎩⎪⎨⎪⎧x =t +1t ,y =2(t 为参数)表示的曲线是( )A.两条直线B.一条射线C.两条射线D.双曲线解析 当t >0时⎩⎪⎨⎪⎧x ≥2,y =2,是一条射线;当t <0时,⎩⎪⎨⎪⎧x ≤-2,y =2,也是一条射线,故选C.答案 C 4.已知⎩⎪⎨⎪⎧x =t +1y =t2(t 为参数),若y =1,则x =________.解析 当y =1时,t 2=1,∴t =±1,当t =1时,x =2;当t =-1时,x =0.∴x 的值为2或0. 答案 2或05.已知直线y =x 与曲线⎩⎪⎨⎪⎧x =1+2cos α,y =2+2sin α,(α为参数)相交于两点A 和B ,求弦长|AB |.解 由⎩⎪⎨⎪⎧x =1+2cos α,y =2+2sin α,得⎩⎪⎨⎪⎧x -1=2cos α,y -2=2sin α.∴(x -1)2+(y -2)2=4,其圆心为(1,2),半径r =2,则圆心(1,2)到直线y =x 的距离d =|1-2|12+(-1)2=22. ∴|AB |=2r 2-d 2=222-⎝ ⎛⎭⎪⎫222=14.一、基础达标1.已知O 为原点,参数方程⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数)上的任意一点为A ,则|OA |=( )A.1B.2C.3D.4解析 |OA |=x 2+y 2=cos 2θ+sin 2θ=1,故选A. 答案 A2.已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =a +2cos θ,y =2sin θ(θ为参数),曲线C 不经过第二象限,则实数a 的取值范围是( )A.a ≥2B.a >3C.a ≥1D.a <0解析 ∵曲线C 的参数方程是⎩⎪⎨⎪⎧x =a +2cos θ,y =2sin θ(θ为参数),∴化为普通方程为(x -a )2+y2=4,表示圆心为(a ,0),半径等于2的圆.∵曲线C 不经过第二象限,则实数a 满足a ≥2,故选A.答案 A3.圆心在点(-1,2),半径为5的圆的参数方程为( )A.⎩⎪⎨⎪⎧x =5-cos θ,y =5+2sin θ(0≤θ<2π)B.⎩⎪⎨⎪⎧x =2+5cos θ,y =-1+5sin θ(0≤θ<2π)C.⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<π)D.⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π) 解析 圆心在点C (a ,b ),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =a +r cos θ,y =b +r sin θ,(θ∈[0,2π)).故圆心在点(-1,2),半径为5的圆的参数方程为⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π).答案 D4.将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程为( ) A.y =x -2B.y =x +2C.y =x -2(2≤x ≤3)D.y =x +2(0≤y ≤1)解析 将参数方程中的θ消去,得y =x -2.又x ∈[2,3]. 答案 C5.若点(-3,-33)在参数方程⎩⎪⎨⎪⎧x =6cos θ,y =6sin θ(θ为参数)的曲线上,则θ=________.解析 将点(-3,-33)的坐标代入参数方程⎩⎪⎨⎪⎧x =6cos θ,y =6sin θ(θ为参数)得⎩⎪⎨⎪⎧cos θ=-12,sin θ=-32,解得θ=4π3+2k π,k ∈Z .答案4π3+2k π,k ∈Z 6.已知圆C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin θ=1,则直线l 与圆C 的交点的直角坐标为________.解析 由圆C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α.可求得其在直角坐标系下的方程为x 2+(y -1)2=1,由直线l 的极坐标方程ρsin θ=1可求得其在直角坐标系下的方程为y =1,由⎩⎪⎨⎪⎧y =1,x 2+(y -1)2=1可解得⎩⎪⎨⎪⎧x =±1,y =1.所以直线l 与圆C 的交点的直角坐标为(-1,1),(1,1). 答案 (-1,1),(1,1)7.已知曲线C :⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ(θ为参数),如果曲线C 与直线x +y +a =0有公共点,求实数a 的取值范围. 解 ∵⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ,∴x 2+(y +1)2=1.∵圆与直线有公共点,则d =|0-1+a |2≤1,解得1-2≤a ≤1+ 2. 二、能力提升8.若P (2,-1)为圆O ′:⎩⎪⎨⎪⎧x =1+5cos θ,y =5sin θ(0≤θ<2π)的弦的中点,则该弦所在直线l的方程是( ) A.x -y -3=0 B.x +2y =0 C.x +y -1=0D.2x -y -5=0解析 ∵圆心O ′(1,0),∴k PO ′=-1.∴k l =1. ∴直线l 方程为x -y -3=0. 答案 A9.如图,以过原点的直线的倾斜角θ为参数,则圆x 2+y 2-x =0的参数方程为________.解析 将x 2+y 2-x =0配方,得⎝ ⎛⎭⎪⎫x -122+y 2=14,∵圆的直径为1.设P (x ,y ),则x =|OP |cosθ=1×cos θ×cos θ=cos 2θ,y =|OP |sin θ=1×cos θ×sin θ=sin θcos θ,∴圆x 2+y 2-x =0的参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).答案 ⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数)10.曲线⎩⎪⎨⎪⎧x =1,y =sin t +1(t 为参数)与圆x 2+y 2=4的交点坐标为________. 解析 ∵sin t ∈[-1,1],∴y ∈[0,2].∵方程⎩⎪⎨⎪⎧x =1,y =sin t +1表示的曲线是线段x =1(0≤y ≤2).令x =1,由x 2+y 2=4,得y 2=3, ∵0≤y ≤2,∴y = 3. 答案 (1,3)11.设点M (x ,y )在圆x 2+y 2=1上移动,求点P (x +y ,xy )的轨迹. 解 设点M (cos θ,sin θ)(0≤θ<2π),点P (x ′,y ′).则⎩⎪⎨⎪⎧x ′=cos θ+sin θ, ①y ′=cos θsin θ, ② ①2-2×②,得x ′2-2y ′=1.即x ′2=2⎝⎛⎭⎪⎫y ′+12.∴所求点P 的轨迹为抛物线x 2=2⎝ ⎛⎭⎪⎫y +12的一部分⎝⎛⎭⎪⎫|x |≤2,|y |≤12.12.已知点M (x ,y )是圆x 2+y 2+2x =0上的动点,若4x +3y -a ≤0恒成立,求实数a 的取值范围.解 由x 2+y 2+2x =0,得(x +1)2+y 2=1,又点M 在圆上,∴x =-1+cos θ,且y =sin θ(θ为参数),因此4x +3y =4(-1+cos θ)+3sin θ=-4+5sin(θ+φ)≤-4+5=1.(φ由 tan φ=43确定)∴4x +3y 的最大值为1.若4x +3y -a ≤0恒成立,则a ≥(4x +3y )max , 故实数a 的取值范围是[1,+∞). 三、探究与创新13.已知圆系方程为x 2+y 2-2ax cos φ-2ay sin φ=0(a >0,且为已知常数,φ为参数) (1)求圆心的轨迹方程;(2)证明圆心轨迹与动圆相交所得的公共弦长为定值. (1)解 由已知圆的标准方程为:(x -a cos φ)2+(y -a sin φ2)=a 2(a >0).设圆心坐标为(x ,y ),则⎩⎪⎨⎪⎧x =a cos φ,y =a sin φ(φ为参数),消参数得圆心的轨迹方程为x 2+y 2=a 2.(2)证明 由方程⎩⎪⎨⎪⎧x 2+y 2-2ax cos φ-2ay sin φ=0x 2+y 2=a 2得公共弦的方程:2ax cos φ+2ay sin φ=a 2,即x cos φ+y sin φ-a2=0,圆x 2+y 2=a2的圆心到公共弦的距离d =a2为定值.∴弦长l =2a 2-⎝ ⎛⎭⎪⎫a 22=3a (定值). 3 参数方程和普通方程的互化[学习目标]1.了解参数方程化为普通方程的意义.2.掌握参数方程化为普通方程的基本方法.3.能够利用参数方程化为普通方程解决有关问题. [知识链接]普通方程化为参数方程,参数方程的形式是否唯一?提示 不一定唯一.普通方程化为参数方程,关键在于适当选择参数,如果选择的参数不同,那么所得的参数方程的形式也不同. [预习导引]参数方程与普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t ),就是曲线的参数方程.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.要点一 把参数方程化为普通方程例1 在方程⎩⎪⎨⎪⎧x =a +t cos θy =b +t sin θ,(a ,b 为正常数)中,(1)当t 为参数,θ为常数时,方程表示何种曲线? (2)当t 为常数,θ为参数时,方程表示何种曲线?解 方程⎩⎪⎨⎪⎧x =a +t cos θ, ①y =b +t sin θ, ②(a ,b 是正常数),(1)①×sin θ-②×cos θ得x sin θ-y cos θ-a sin θ+b cos θ=0. ∵cos θ、sin θ不同时为零,∴方程表示一条直线. (2)(i)当t 为非零常数时,原方程组为⎩⎪⎨⎪⎧x -at=cos θ, ③y -b t =sin θ. ④③2+④2得(x -a )2t 2+(y -b )2t2=1, 即(x -a )2+(y -b )2=t 2,它表示一个圆. (ii)当t =0时,表示点(a ,b ).规律方法 1.消去参数的常用方法:将参数方程化为普通方程,关键是消去参数,如果参数方程是整式方程,常用的消元法有代入消元法、加减消元法.如果参数方程是分式方程,在运用代入消元或加减消元之前要做必要的变形.另外,熟悉一些常见的恒等式至关重要,如sin 2α+cos 2α=1,(e x +e -x )2-(e x -e -x )2=4,⎝ ⎛⎭⎪⎫1-k 21+k 22+⎝ ⎛⎭⎪⎫2k 1+k 22=1等.2.把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x 及y 的取值范围的影响.本题启示我们,形式相同的方程,由于选择参数的不同,可表示不同的曲线.跟踪演练1 参数方程⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数)化成普通方程为________.解析 ∵⎩⎪⎨⎪⎧x =cos α,y =1+sin α,cos 2α+sin 2α=1,∴x 2+(y -1)2=1. 答案 x 2+(y -1)2=1要点二 把普通方程化成参数方程 例2 求方程4x 2+y 2=16的参数方程: (1)设y =4sin θ,θ为参数;(2)若令y =t (t 为参数),如何求曲线的参数方程?若令x =2t (t 为参数),如何求曲线的参数方程?解 (1)把y =4sin θ代入方程,得到4x 2+16sin 2θ=16,于是4x 2=16-16sin 2θ=16cos 2θ,∴x =±2cos θ. ∴4x 2+y 2=16的参数方程是⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ和⎩⎪⎨⎪⎧x =-2cos θ,y =4sin θ(θ为参数) (2)将y =t 代入椭圆方程4x 2+y 2=16,得4x 2+t 2=16, 则x 2=16-t 24.∴x =±16-t 22.因此,椭圆4x 2+y 2=16的参数方程是⎩⎪⎨⎪⎧x =16-t 22y =t ,和⎩⎪⎨⎪⎧x =-16-t 22,y =t(t 为参数).同理将x =2t 代入椭圆4x 2+y 2=16,得椭圆的参数方程为⎩⎨⎧x =2t ,y =41-t 2和⎩⎨⎧x =2t ,y =-41-t 2(t为参数).规律方法 1.将圆的普通方程化为参数方程 (1)圆x 2+y 2=r2的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数);(2)圆(x -a )2+(y -b )2=r2的参数方程为⎩⎪⎨⎪⎧x =a +r cos θ,y =b +r sin θ(θ为参数).2.普通方程化为参数方程关键是引入参数(例如x =f (t ),再计算y =g (t )),并且要保证等价性.若不可避免地破坏了同解变形,则一定要通过x =f (t ),y =g (t ),调整t 的取值范围,使得在普通方程转化为参数方程的过程中,x ,y 的取值范围保持一致.跟踪演练2 设y =tx (t 为参数),则圆x 2+y 2-4y =0的参数方程是________.解析 把y =tx 代入x 2+y 2-4y =0得x =4t 1+t 2,y =4t21+t 2,∴参数方程为⎩⎪⎨⎪⎧x =4t1+t 2,y =4t21+t 2.(t 为参数).答案 ⎩⎪⎨⎪⎧x =4t1+t 2,y =4t 21+t 2.(t 为参数)要点三 参数方程的应用例3 已知x 、y 满足x 2+(y -1)2=1,求: (1)3x +4y 的最大值和最小值; (2)(x -3)2+(y +3)2的最大值和最小值. 解 由圆的普通方程x 2+(y -1)2=1 得圆的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ.(θ∈[0,2π)).(1)3x +4y =3cos θ+4sin θ+4=4+5sin(θ+φ), 其中tan φ=34,且φ的终边过点(4,3).∵-5≤5sin(θ+φ)≤5,∴-1≤4+5sin(θ+φ)≤9, ∴3x +4y 的最大值为9,最小值为-1.(2)(x -3)2+(y +3)2=(cos θ-3)2+(sin θ+4)2=26+8sin θ-6cos θ=26+10sin(θ+φ). 其中tan φ=-34.且φ的终边过点(4,-3).∵-10≤10sin(θ+φ)≤10,∴16≤26+10sin(θ+φ)≤36, 所以(x -3)2+(y +3)2的最大值为36,最小值为16.规律方法 1.运用参数思想解题的关键在于参数的选择.选择参数时,应注意所选择的参数易于与两个坐标产生联系.由于三角函数的巨大作用,常选择角为参数,若轨迹与运动有关,常选择时间为参数.2.解决与圆有关的最大值和最小值问题,常常设圆的参数方程,然后转化为求三角函数的最大值和最小值问题.3.注意运用三角恒等式求最值:a sin θ+b cos θ=a 2+b 2sin(θ+φ).其中tan φ=ba(a ≠0),且φ的终边过点(a ,b ).跟踪演练3 如图,已知点P 是圆x 2+y 2=16上的一个动点,定点A (12,0),当点P 在圆上运动时,利用参数方程求线段PA 的中点M 的轨迹.解 因为圆x2+y 2=16的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数),所以可设点P (4cos θ,4sin θ),设点M (x ,y ),由线段中点坐标公式得⎩⎪⎨⎪⎧x =4cos θ+122,y =4sin θ2(θ为参数),即点M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =2cos θ+6,y =2sin θ(θ为参数),所以点M 的轨迹是以点(6,0)为圆心、2为半径的圆.1.参数方程和普通方程的互化参数方程化为普通方程,可通过代入消元法和三角恒等式消参法消去参数方程中的参数,通过曲线的普通方程来判断曲线的类型.由普通方程化为参数方程要选定恰当的参数,寻求曲线上任一点M 的坐标x ,y 和参数的关系,根据实际问题的要求,我们可以选择时间、角度、线段长度、直线的斜率、截距等作为参数. 2.同一道题参数的选择往往不是唯一的,适当地选择参数,可以简化解题的过程,降低计算量,提高准确率.求轨迹方程与求轨迹有所不同,求轨迹方程只需求出方程即可,而求轨迹往往是先求出轨迹方程,然后根据轨迹方程指明轨迹是什么图形.3.参数方程与普通方程的等价性把参数方程化为普通方程后,很容易改变了变量的取值范围,从而使得两种方程所表示的曲线不一致,因此我们要注意参数方程与普通方程的等价性.1.与普通方程x 2+y -1=0等价的参数方程为(t 为参数)( )A.⎩⎪⎨⎪⎧x =sin t y =cos 2t B.⎩⎪⎨⎪⎧x =cos ty =sin 2t C.⎩⎨⎧x =1-ty =tD.⎩⎪⎨⎪⎧x =tan t y =1-tan 2t解析 A 化为普通方程为x 2+y -1=0,x ∈[-1,1],y ∈[0,1].B 化为普通方程为x 2+y -1=0,x ∈[-1,1],y ∈[0,1].C 化为普通方程为x 2+y -1=0,x ∈[0,+∞),y ∈(-∞,1].D 化为普通方程为x 2+y -1=0,x ∈R ,y ∈R . 答案 D2.将参数方程⎩⎪⎨⎪⎧x =t +1t,y =t 2+1t2(t 为参数)化为普通方程为________.解析 由x =t +1t 得x 2=t 2+1t 2+2,又y =t 2+1t 2,∴x 2=y +2.∵t 2+1t2≥2,∴y ≥2.答案 x 2-y =2(y ≥2)3.参数方程⎩⎪⎨⎪⎧x =sin 2θ,y =sin θ+cos θ(θ为参数)表示的曲线的普通方程是________.解析 y 2=(sin θ+cos θ)2=sin 2θ+2sin θcos θ+cos 2θ=1+2sin θcos θ=1+x ,又x =sin 2θ∈[-1,1],∴曲线的普通方程是y 2=x +1(-1≤x ≤1).答案 y 2=x +1(-1≤x ≤1) 4.已知某条曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =at2(其中t 是参数,a ∈R ),点M (5,4)在该曲线上.(1)求常数a ;(2)求曲线C 的普通方程. 解 (1)由题意,可知⎩⎪⎨⎪⎧1+2t =5,at 2=4,故⎩⎪⎨⎪⎧t =2,a =1,所以a =1.(2)由已知及(1)可得,曲线C 的方程为⎩⎪⎨⎪⎧x =1+2t ,y =t 2,由第一个方程,得t =x -12,代入第二个方程,得y =⎝ ⎛⎭⎪⎫x -122,即(x -1)2=4y 为所求.一、基础达标1.曲线⎩⎪⎨⎪⎧x =|sin θ|,y =cos θ(θ为参数)的方程等价于( )A.x =1-y 2B.y =1-x 2C.y =±1-x 2D.x 2+y 2=1解析 由x =|sin θ|得0≤x ≤1;由y =cos θ得-1≤y ≤1.故选A. 答案 A2.已知直线l :⎩⎪⎨⎪⎧x =2+t ,y =-2-t (t 为参数)与圆C :⎩⎪⎨⎪⎧x =2cos θ+1,y =2sin θ(θ为参数),则直线l 的倾斜角及圆心C 的直角坐标分别是( ) A.π4,(1,0) B.π4,(-1,0) C.3π4,(1,0) D.3π4,(-1,0) 解析 直线消去参数得直线方程为y =-x ,所以斜率k =-1即倾斜角为3π4.圆的标准方程为(x -1)2+y 2=4,圆心坐标为(1,0). 答案 C3.参数方程⎩⎪⎨⎪⎧x =1-t21+t2,y =2t1+t2(t 为参数)化为普通方程为( )A.x 2+y 2=1B.x 2+y 2=1去掉(0,1)点 C.x 2+y 2=1去掉(1,0)点 D.x 2+y 2=1去掉(-1,0)点解析 x 2+y 2=⎝ ⎛⎭⎪⎫1-t 21+t 22+⎝ ⎛⎭⎪⎫2t 1+t 22=1,又∵x =-1时,1-t 2=-(1+t 2)不成立,故去掉点(-1,0). 答案 D4.若x ,y 满足x 2+y 2=1,则x +3y 的最大值为( ) A.1 B.2 C.3D.4解析 由于圆x 2+y 2=1的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ,(θ为参数),则x +3y =3sin θ+cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π6,故x +3y 的最大值为2.故选B. 答案 B5.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB |=________. 解析 由ρcos θ=4,知x =4.又⎩⎪⎨⎪⎧x =t 2,y =t 3,∴x 3=y 2(x ≥0). 由⎩⎪⎨⎪⎧x =4,x 3=y 2,得⎩⎪⎨⎪⎧x =4,y =8或⎩⎪⎨⎪⎧x =4,y =-8. ∴|AB |=(4-4)2+(8+8)2=16. 答案 166.在极坐标系中,圆C 1的方程为ρ=42cos ⎝⎛⎭⎪⎫θ-π4,以极点为坐标原点,极轴为x 轴的正半轴建立平面坐标系,圆C 2的参数方程⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(θ为参数),若圆C 1与C 2相切,则实数a =________.解析 圆C 1的直角坐标方程为x 2+y 2=4x +4y ,其标准方程为(x -2)2+(y -2)2=8,圆心为(2,2),半径长为22,圆C 2的圆心坐标为(-1,-1),半径长为|a |,由于圆C 1与圆C 2外切,则|C 1C 2|=22+|a |=32或|C 1C 2|=|a |-22=32⇒a =±2或a =±5 2. 答案 ±2或±5 27.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =t -1t,y =3⎝ ⎛⎭⎪⎫t +1t ,(t 为参数,t >0).求曲线C 的普通方程.解 由x =t -1t两边平方得x 2=t +1t-2,又y =3⎝ ⎛⎭⎪⎫t +1t ,则t +1t =y 3(y ≥6). 代入x 2=t +1t -2,得x 2=y 3-2.∴3x 2-y +6=0(y ≥6).故曲线C 的普通方程为3x 2-y +6=0(y ≥6). 二、能力提升8.已知在平面直角坐标系xOy 中圆C 的参数方程为:⎩⎨⎧x =3+3cos θ,y =1+3sin θ(θ为参数),以Ox为极轴建立极坐标系,直线极坐标方程为:ρcos ⎝ ⎛⎭⎪⎫θ+π6=0,则圆C 截直线所得弦长为( ) A. 2 B.2 2 C.3 2D.4 2解析 圆C 的参数方程为⎩⎨⎧x =3+3cos θy =1+3sin θ的圆心为(3,1),半径为3,直线普通方程为ρ⎝⎛⎭⎪⎫cos θcos π6-sin θsin π6=32x -12y =0,即3x -y =0,圆心C (3,1)到直线3x -y =0的距离为d =|(3)2-1|3+1=1,所以圆C 截直线所得弦长|AB |=2r 2-d 2=232-12=4 2. 答案 D9.过原点作倾斜角为θ的直线与圆⎩⎪⎨⎪⎧x =4+2cos α,y =2sin α相切,则θ=________.解析 直线为y =x tan θ,圆为(x -4)2+y 2=4,直线与圆相切时,易知tan θ=±33,∴θ=π6或5π6.答案π6或5π610.在直角坐标系xOy 中,已知曲线C 1:⎩⎪⎨⎪⎧x =t +1,y =1-2t (t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θy =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,则a =________.解析 曲线C 1的普通方程为2x +y =3,曲线C 2的普通方程为x 2a 2+y 29=1,直线2x +y =3与x轴的交点坐标为⎝ ⎛⎭⎪⎫32,0,故曲线x 2a 2+y 29=1也经过这个点,代入解得a =32(舍去-32). 答案 3211.在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立坐标系.已知直线l上两点M ,N 的极坐标分别为(2,0),⎝ ⎛⎭⎪⎫233,π2,圆C 的参数方程为⎩⎨⎧x =2+2cos θ,y =-3+2sin θ(θ为参数).(1)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系.解 (1)由题意知,M ,N 的平面直角坐标分别为(2,0),⎝⎛⎭⎪⎫0,233.又P 为线段MN 的中点,从而点P 的平面直角坐标为⎝ ⎛⎭⎪⎫1,33,故直线OP 的平面直角坐标方程为y =33x . (2)因为直线l 上两点M ,N 的平面直角坐标分别为(2,0),⎝⎛⎭⎪⎫0,233,所以直线l 的平面直角坐标方程为x +3y -2=0. 又圆C 的圆心坐标为(2,-3),半径为r =2,圆心到直线l 的距离d =|2-3-2|2=32<r ,故直线l 与圆C 相交.12.已知曲线C 1:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),曲线C 2:⎩⎪⎨⎪⎧x =22t -2,y =22t(t 为参数).(1)指出C 1,C 2各是什么曲线,并说明C 1与C 2公共点的个数;(2)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线C ′1,C ′2.写出C ′1,C ′2的参数方程.C ′1与C ′2公共点的个数和C 1与C 2公共点的个数是否相同?说明你的理由.解 (1)C 1是圆,C 2是直线.C 1的普通方程为x 2+y 2=1, 圆心C 1(0,0),半径r =1.C 2的普通方程为x -y +2=0.因为圆心C 1到直线x -y +2=0的距离为1,所以C 2与C 1只有一个公共点.(2)压缩后的参数方程分别为C ′1:⎩⎪⎨⎪⎧x =cos θ,y =12sin θ(θ为参数),C ′2:⎩⎪⎨⎪⎧x =22t -2,y =24t (t 为参数),化为普通方程为C ′1:x 2+4y 2=1,C ′2:y =12x +22,联立消元得2x 2+22x +1=0, 其判别式Δ=(22)2-4×2×1=0,所以压缩后的直线C ′2与椭圆C ′1仍然只有一个公共点,和C 1与C 2公共点的个数相同. 三、探究与创新13.已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解 (1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t 消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0,将⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ代入x 2+y 2-8x -10y +16=0得,ρ2-8ρcosθ-10ρsin θ+16=0,∴C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0; (2)C 2的普通方程为x 2+y 2-2y =0,由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0, 解得⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =0,y =2.∴C 1与C 2的交点的极坐标分别为⎝⎛⎭⎪⎫2,π4,⎝ ⎛⎭⎪⎫2,π2.二 圆锥曲线的参数方程[学习目标]1.掌握椭圆的参数方程及应用.2.了解双曲线、抛物线的参数方程.3.能够利用圆锥曲线的参数方程解决最值、有关点的轨迹问题. [知识链接]1.椭圆的参数方程中,参数φ是OM 的旋转角吗? 提示 椭圆的参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数)中的参数φ不是动点M (x ,y )的旋转角,它是点M 所对应的圆的半径OA (或OB )的旋转角,称为离心角,不是OM 的旋转角. 2.双曲线的参数方程中,参数φ的三角函数sec φ的意义是什么? 提示 sec φ=1cos φ,其中φ∈[0,2π)且φ≠π2,φ≠32π. 3.类比y 2=2px (p >0),你能得到x 2=2py (p >0)的参数方程吗?提示 ⎩⎪⎨⎪⎧x =2pt ,y =2pt 2(p >0,t 为参数,t ∈R .)[预习导引] 1.椭圆的参数方程2.双曲线的参数方程3.抛物线的参数方程 (1)抛物线y2=2px 的参数方程是⎩⎪⎨⎪⎧x =2pt 2,y =2pt(t ∈R ,t 为参数).(2)参数t 表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.要点一 椭圆参数方程的应用 例1 已知A 、B 分别是椭圆x 236+y 29=1的右顶点和上顶点,动点C 在该椭圆上运动,求△ABC 重心G 的轨迹的普通方程.解 由题意知A (6,0),B (0,3).由于动点C 在椭圆上运动,故可设动点C 的坐标为(6cos θ,3sin θ),点G 的坐标为(x ,y ),由三角形重心的坐标公式可得⎩⎪⎨⎪⎧x =6+0+6cos θ3,y =0+3+3sin θ3(θ为参数),即⎩⎪⎨⎪⎧x =2+2cos θ,y =1+sin θ.故重心G 的轨迹的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =1+sin θ(θ为参数).规律方法 本题的解法体现了椭圆的参数方程对于解决相关问题的优越性.运用参数方程显得很简单,运算更简便.跟踪演练1 已知曲线C 1:⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t (t 为参数),曲线C 2:x 264+y 29=1.(1)化C 1为普通方程,C 2为参数方程;并说明它们分别表示什么曲线?(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:x -2y -7=0距离的最小值. 解 (1)由⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t ,得⎩⎪⎨⎪⎧cos t =x +4,sin t =y -3.∴曲线C 1:(x +4)2+(y -3)2=1,C 1表示圆心是(-4,3),半径是1的圆.曲线C 2:x 264+y 29=1表示中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆.其参数方程为⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ,(θ为参数)(2)依题设,当t =π2时,P (-4,4);且Q (8cos θ,3sin θ),故M ⎝ ⎛⎭⎪⎫-2+4cos θ,2+32sin θ. 又C 3为直线x -2y -7=0,M 到C 3的距离d =55|4cos θ-3sin θ-13| =55|5cos(θ+φ)-13|, 从而当cos θ=45,sin θ=-35时,⎝ ⎛⎭⎪⎫其中φ由sin φ=35,cos φ=45确定,cos(θ+φ)=1,d 取得最小值855.要点二 双曲线参数方程的应用例2 求证:双曲线x 2a 2-y 2b 2=1(a >0,b >0)上任意一点到两渐近线的距离的乘积是一个定值.证明 由双曲线x 2a 2-y 2b2=1,得两条渐近线的方程是:bx +ay =0,bx -ay =0,设双曲线上任一点的坐标为(a sec φ,b tan φ), 它到两渐近线的距离分别是d 1和d 2,则d 1·d 2=|ab sec φ+ab tan φ|b 2+a 2·|ab sec φ-ab tan φ|b 2+(-a )2=|a 2b 2(sec 2φ-tan 2φ)|a 2+b 2=a 2b2a 2+b 2(定值).规律方法 在研究有关圆锥曲线的最值和定值问题时,使用曲线的参数方程非常简捷方便,其中点到直线的距离公式对参数形式的点的坐标仍适用,另外本题要注意公式sec 2φ-tan 2φ=1的应用.跟踪演练2 如图,设P 为等轴双曲线x 2-y 2=1上的一点,F 1、F 2是两个焦点,证明:|PF 1|·|PF 2|=|OP |2.证明 设P (sec φ,tan φ),∵F 1(-2,0),F 2(2,0), ∴|PF 1|=(sec φ+2)2+tan 2φ =2sec 2φ+22sec φ+1,|PF 2|=(sec φ-2)2+tan 2φ =2sec 2φ-22sec φ+1,|PF 1|·|PF 2|=(2sec 2φ+1)2-8sec 2φ=2sec 2φ-1. ∵|OP |2=sec 2φ+tan 2φ=2sec 2φ-1, ∴|PF 1|·|PF 2|=|OP |2. 要点三 抛物线参数方程的应用例3 设抛物线y 2=2px 的准线为l ,焦点为F ,顶点为O ,P 为抛物线上任一点,PQ ⊥l 于Q ,求QF 与OP 的交点M 的轨迹方程.解 设P 点的坐标为(2pt 2,2pt )(t 为参数), 当t ≠0时,直线OP 的方程为y =1tx ,QF 的方程为y =-2t ⎝⎛⎭⎪⎫x -p 2,它们的交点M (x ,y )由方程组⎩⎪⎨⎪⎧y =1tx y =-2t ⎝ ⎛⎭⎪⎫x -p 2确定,两式相乘,消去t ,得y 2=-2x ⎝ ⎛⎭⎪⎫x -p 2,∴点M 的轨迹方程为2x 2-px +y 2=0(x ≠0).当t =0时,M (0,0)满足题意,且适合方程2x 2-px +y 2=0. 故所求的轨迹方程为2x 2-px +y 2=0.规律方法 1.抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数),参数t 为任意实数,它表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.2.用参数法求动点的轨迹方程,其基本思想是选取适当的参数作为中间变量,使动点的坐标分别与参数有关,从而得到动点的参数方程,然后再消去参数,化为普通方程.跟踪演练3 已知抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E ,若|EF |=|MF |,点M 的横坐标是3,则p =________. 解析 根据抛物线的参数方程可知抛物线的标准方程是y 2=2px ,所以y 2M =6p ,所以E ⎝⎛⎭⎪⎫-p 2,±6p ,F ⎝⎛⎭⎪⎫p 2,0,所以p 2+3=p 2+6p ,所以p 2+4p -12=0,解得p =2(负值舍去). 答案 21.圆的参数方程⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ中的参数θ是半径OM 的旋转角,椭圆参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ中的参数φ是椭圆上点M 的离心角.2.椭圆(x -m )2a 2+(y -n )2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =m +a cos φ,y =n +b sin φ(φ为参数).3.双曲线的参数方程中,参数φ的三角函数cot φ、sec φ、csc φ的意义分别为cot φ=1tan φ,sec φ=1cos φ,csc φ=1sin φ. 4.抛物线y 2=2px 的参数方程⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数),由于y x =1t ,因此t 的几何意义是抛物线的点(除顶点外)与抛物线的顶点连线的斜率的倒数.5.利用圆锥曲线的参数方程,可以方便求解一些需要曲线上点的两个坐标独立表示的问题,如求最大值、最小值问题、轨迹问题等.1.参数方程⎩⎪⎨⎪⎧x =e t+e -t,y =2(e t -e -t)(t 为参数)的普通方程是( ) A.抛物线 B.一条直线 C.椭圆D.双曲线解析 由参数方程⎩⎪⎨⎪⎧2x =2e t+2e -t,y =2(e t -e -t)平方相减可得4x 2-y 2=16,即x 24-y 216=1,故答案为D. 答案 D2.椭圆⎩⎪⎨⎪⎧x =4+5cos φ,y =3sin φ(φ为参数)的焦点坐标为( )A.(0,0),(0,-8)B.(0,0),(-8,0)C.(0,0),(0,8)D.(0,0),(8,0)解析 利用平方关系化为普通方程:(x -4)225+y 29=1.∴焦点(0,0),(8,0). 答案 D3.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2,y =2+sin α(α为参数)表示的普通方程是________.解析 因x 2=1+sin α,y 2=2+sin α,所以y 2-x 2=1,又因x =sinα2+cos α2=2sin ⎝ ⎛⎭⎪⎫α2+π4,所以答案为y 2-x 2=1(|x |≤2且y ≥1). 答案 y 2-x 2=1(|x |≤2且y ≥1)4.点P (1,0)到曲线⎩⎪⎨⎪⎧x =t 2,y =2t (参数t ∈R )上的点的最短距离为( )A.0B.1C. 2D.2解析 d 2=(t 2-1)2+4t 2=(t 2+1)2.∵t ∈R ,∴d 2min =1,∴d min =1. 答案 B5.已知点P 是椭圆x 24+y 2=1上任意一点,求点P 到直线l :x +2y =0的距离的最大值. 解 因为P 为椭圆x 24+y 2=1上任意一点,故可设P (2cos θ,sin θ),其中θ∈[0,2π).又直线l :x +2y =0. 因此点P 到直线l 的距离d =|2cos θ+2sin θ|12+22=22⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫θ+π45.又θ∈[0,2π),∴d max =225=2105, 即点P 到直线e :x +2y =0的距离的最大值为2105.。
2021学年高中数学第二讲参数方程复习课学案新人教A版选修4_4
第二讲 参数方程复习课学习目标 1.梳理知识要点,构建知识网络.2.进一步稳固对参数方程等相关概念的理解和认识.3.能综合应用极坐标、参数方程解决问题.1.参数方程的定义一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ),①并且对于t 的每一个允许值,由方程组①所确定的点M (x ,y )都在这条曲线上,那么方程组①就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.参数方程中的参数可以是有物理意义或几何意义的变数,也可以是没有明显实际意义的变数.2.常见曲线的参数方程 (1)直线过定点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程的标准形式为⎩⎪⎨⎪⎧x =x 0+t cos α,y =x 0+t sin α(t为参数). (2)圆 ①圆x 2+y 2=r2的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数);②圆(x -a )2+(y -b )2=r 2的参数方程为⎩⎪⎨⎪⎧x =a +r cos θ,y =b +r sin θ(θ为参数).(3)椭圆中心在原点,对称轴为坐标轴的椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数). (4)双曲线中心在原点,对称轴为坐标轴的双曲线b 2x 2-a 2y 2=a 2b 2(a >0,b >0)的参数方程为⎩⎪⎨⎪⎧x =a sec φ,y =b tan φ(φ为参数).(5)抛物线抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2ptan 2α,y =2ptan α(α为参数)或⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数).类型一 参数方程化为普通方程 例1 把以下参数方程化为普通方程:(1)⎩⎪⎨⎪⎧x =cos θ-4sin θ,y =2cos θ+sin θ(θ为参数);(2)⎩⎪⎨⎪⎧x =a (e t +e -t )2,y =b (e t-e-t)2(t 为参数,a ,b >0).解 (1)关于cos θ,sin θ的方程组⎩⎪⎨⎪⎧x =cos θ-4sin θ,y =2cos θ+sin θ,变形得⎩⎪⎨⎪⎧sin θ=y -2x9,cos θ=x +4y9.∴⎝⎛⎭⎪⎫x +4y 92+⎝ ⎛⎭⎪⎫y -2x 92=cos 2θ+sin 2θ=1,即5x 2+4xy +17y 2-81=0.(2)由⎩⎪⎨⎪⎧x =a (e t +e -t )2,y =b (e t-e-t)2,解得⎩⎪⎨⎪⎧2x a =e t +e -t, ①2yb =e t-e-t,②∴①2-②2,得4x 2a 2-4y2b2=4,∴x 2a 2-y 2b2=1(x >0). 反思与感悟 参数方程化为普通方程的考前须知(1)在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致,由参数方程化为普通方程时需要考虑x 的取值范围,注意参数方程与消去参数后所得的普通方程同解性的判定. (2)消除参数的常用方法:①代入消参法;②三角消参法;③根据参数方程的特征,采用特殊的消参手段.跟踪训练1 判断方程⎩⎪⎨⎪⎧x =sin θ+1sin θ,y =sin θ-1sin θ(θ是参数且θ∈(0,π))表示的曲线的形状.解 ∵x 2-y 2=⎝ ⎛⎭⎪⎫sin θ+1sin θ2-⎝ ⎛⎭⎪⎫sin θ-1sin θ2=4, 即x 2-y 2=4,∴x 24-y 24=1.又∵θ∈(0,π),∴sin θ>0,∴x =sin θ+1sin θ≥2,当且仅当θ=π2时等号成立,又y =sin θ-1sin θ=sin 2θ-1sin θ≤0,∴曲线为等轴双曲线x 24-y 24=1在右支位于x 轴下方的局部.类型二 参数方程的应用 命题角度1 直线参数方程的应用例2 点P (3,2)平分抛物线y 2=4x 的一条弦AB ,求弦AB 的长.解 设弦AB 所在的直线方程为⎩⎪⎨⎪⎧x =3+t cos α,y =2+t sin α(t 为参数),代入方程y 2=4x 整理,得t 2sin 2α+4(sin α-cos α)t -8=0.①∵点P (3,2)是弦AB 的中点,由参数t 的几何意义可知,方程①的两个实根t 1,t 2满足关系t 1+t 2=0. 即sin α-cos α=0.∵0≤α<π,∴α=π4.∴|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4·8sin2π4=8.反思与感悟 应用直线的参数方程求弦长要注意的问题 (1)直线的参数方程应为标准形式.(2)要注意直线倾斜角的取值范围. (3)设直线上两点对应的参数分别为t 1,t 2. (4)套公式|t 1-t 2|求弦长.跟踪训练2 直线l 过点P 0(-4,0),它的参数方程为⎩⎪⎨⎪⎧x =-4+32t ,y =12t (t 为参数),直线l 与圆x 2+y 2=7相交于A ,B 两点. (1)求弦长|AB |;(2)过P 0作圆的切线,求切线长. 解 将直线l 的参数方程代入圆的方程, 得⎝ ⎛⎭⎪⎫-4+32t 2+⎝ ⎛⎭⎪⎫12t 2=7,整理得t 2-43t +9=0. (1)设A 和B 两点对应的参数分别为t 1和t 2,由根与系数的关系,得t 1+t 2=43,t 1t 2=9. 故|AB |=|t 2-t 1|=(t 1+t 2)2-4t 1t 2=2 3. (2)设圆过P 0的切线为P 0T ,T 在圆上, 那么|P 0T |2=|P 0A |·|P 0B |=|t 1t 2|=9, ∴切线长|P 0T |=3.命题角度2 曲线参数方程的应用例3 在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=2 2.(1)求曲线C 与直线l 在该直角坐标系下的普通方程;(2)动点A 在曲线C 上,动点B 在直线l 上,定点P (-1,1),求|PB |+|AB |的最小值.解 (1)由曲线C 的参数方程⎩⎪⎨⎪⎧x =2+cos α,y =sin α,可得(x -2)2+y 2=1,由直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=22,可得ρ(sin θ+cos θ)=4, 即x +y =4.(2)方法一 设P 关于直线l 的对称点为Q (a ,b ),故⎩⎪⎨⎪⎧a -12+b +12=4,⎝ ⎛⎭⎪⎫b -1a +1×(-1)=-1⇒⎩⎪⎨⎪⎧a =3,b =5,所以Q (3,5),由(1)知曲线C 为圆,圆心C (2,0),半径r =1, |PB |+|AB |=|QB |+|AB |≥|QC |-1.仅当Q ,B ,A ,C 四点共线时,且A 在B ,C 之间时等号成立,故(|PB |+|AB |)min =26-1. 方法二 如图,圆心C 关于直线l 的对称点为D (4,2),连接PD ,交直线l 于点B ,此时|PB |+|AB |有最小值,且|PB |+|AB |=|PB |+|BC |-1=|PB |+|BD |-1=|PD |-1=26-1.反思与感悟 (1)关于折线段的长度和或长度差的最大值或最小值的求法,常常利用对称性以及两点之间线段最短解决.(2)有关点与圆、直线与圆的最大值或最小值问题,常常转化为经过圆心的直线、圆心到直线的距离等.跟踪训练3 曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.解 (1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ (θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|, 那么|PA |=dsin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255.当sin(θ+α)=1时,|PA |取得最小值,最小值为255.类型三 极坐标与参数方程例4 在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求圆C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与圆C 交于A ,B 两点,|AB |=10,求l 的斜率.解 (1)由x =ρcos θ,y =ρsin θ,可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0. (2)方法一 在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程,得ρ2+12ρcosα+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44. 由|AB |=10,得cos 2α=38,tan α=±153.所以l 的斜率为153或-153. 方法二 把⎩⎪⎨⎪⎧x =t cos α,y =t sin α代入(x +6)2+y 2=25,得t 2+(12cos α)t +11=0, 设A ,B 对应的参数为t 1,t 2, 所以t 1+t 2=-12cos α,t 1t 2=11.那么|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=144cos 2α-44=10,所以cos 2α=38,所以tan α=±153. 所以l 的斜率为153或-153. 反思与感悟 (1)极坐标与参数方程综合是高考的重点、热点.(2)解决此类问题一般可以转化为直角坐标下求解.当然也可以转化为极坐标下求解,关键是根据题目特点合理转化.跟踪训练4 在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =4cos t ,y =23sin t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为3ρcos θ+2ρsin θ=12.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)假设直线l 与曲线C 交于A ,B 两点,M 为曲线C 与y 轴负半轴的交点,求四边形OMAB 的面积.解 (1)由⎩⎨⎧x =4cos t ,y =23sin t ,得⎩⎪⎨⎪⎧x 4=cos t ,y 23=sin t ,所以⎝ ⎛⎭⎪⎫x 42+⎝ ⎛⎭⎪⎫y 232=(cos t )2+(sin t )2=1,所以曲线C 的普通方程为x 216+y 212=1.在3ρcos θ+2ρsin θ=12中,由ρcos θ=x ,ρsin θ=y , 得3x +2y -12=0,所以直线l 的直角坐标方程为3x +2y -12=0.(2)由(1)可得M (0,-23),联立方程⎩⎪⎨⎪⎧x 216+y 212=1,3x +2y -12=0,易得A (4,0),B (2,3),所以四边形OMAB 的面积为12×4×(3+23)=6+4 3.1.曲线⎩⎪⎨⎪⎧x =8cos θ,y =10sin θ(θ为参数)的焦点坐标为( )A .(±3,0)B .(0,±3)C .(±6,0)D .(0,±6)答案 D解析 曲线⎩⎪⎨⎪⎧x =8cos θ,y =10sin θ(θ为参数)的普通方程为y 2102+x 282=1,这是焦点在y 轴上的椭圆,c 2=a 2-b 2=62, 所以焦点坐标为(0,±6).2.椭圆的参数方程为⎩⎨⎧x =2cos φ,y =3sin φ(0≤φ<2π),那么椭圆的离心率为( )A.12B.32C.22D.34 答案 A3.直线l 的参数方程为⎩⎪⎨⎪⎧x =2t ,y =1+4t(t 为参数),圆C 的极坐标方程为ρ=22sin θ,那么直线l 与圆C 的位置关系为( ) A .相离 B .相切 C .相交 D .由参数确定答案 C4.点P (1,0)到曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)上的点的最短距离为________.答案 1解析 设点P (1,0)到曲线上的点的距离为d ,那么d =(x -1)2+(y -0)2=(t 2-1)2+(2t )2=(t 2+1)2=t 2P 到曲线上的点的距离的最小值为1.5.在平面直角坐标系xOy 中,设P (x ,y )是椭圆x 23+y 2=1上的一个动点,求S =x +y 的最大值和最小值.解 椭圆x 23+y 2=1的参数方程为⎩⎨⎧x =3cos φ,y =sin φ(φ为参数),故设动点P (3cos φ,sin φ),其中φ∈[0,2π). 因此S =x +y =3cos φ+sin φ=2⎝ ⎛⎭⎪⎫sin π3cos φ+cos π3·sin φ=2sin ⎝⎛⎭⎪⎫φ+π3. ∴当φ=π6时,S 取得最大值2;当φ=7π6时,S 取得最小值-2.1.参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的又一种表示形式.某些曲线上点的坐标,用普通方程描述它们之间的关系比拟困难,甚至不可能,列出的方程既复杂又不易理解,而用参数方程来描述曲线上点的坐标的间接关系比拟方便,学习参数方程有助于进一步体会数学方法的灵活多变,提高应用意识和实践能力. 2.参数方程、极坐标方程是解析几何曲线方程的另外两种巧妙的表达形式,解题时要善于根据解题的需求将参数方程与普通方程进展互化,到达方便解题的目的,同时注意参数的范围.一、选择题1.在极坐标系中,直线2ρsin ⎝ ⎛⎭⎪⎫θ+π4=2+2与圆ρ=2sin θ的位置关系为( ) A .相离 B .相切 C .相交 D .以上都有可能答案 B解析 直线2ρsin ⎝⎛⎭⎪⎫θ+π4=2+2与圆ρ=2sin θ的直角坐标方程分别为x +y =2+1,x 2+(y -1)2=1,圆心(0,1)到直线x +y -(2+1)=0的距离d =|1-(2+1)|2=1,所以直线与圆相切.2.以下各点在方程⎩⎪⎨⎪⎧x =sin θ,y =cos2θ(θ为参数)所表示的曲线上的为( )A .(2,-7)B.⎝ ⎛⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,12 D .(1,0)答案 C3.直线⎩⎪⎨⎪⎧x =-2-2t ,y =3+2t (t 为参数)上与点P (-2,3)的距离等于2的点的坐标是( )A .(-4,5)B .(-3,4)C .(-3,4)或(-1,2)D .(-4,5)或(0,1)答案 C4.以下参数方程(t 为参数)与普通方程x 2-y =0表示同一曲线方程的是( )A.⎩⎪⎨⎪⎧x =|t |,y =tB.⎩⎪⎨⎪⎧x =cos t ,y =cos 2tC.⎩⎪⎨⎪⎧x =tan t ,y =1+cos2t 1-cos2tD.⎩⎪⎨⎪⎧x =tan t ,y =1-cos2t 1+cos2t答案 D解析 注意参数的范围,可利用排除法,普通方程x 2-y =0中的x ∈R ,yx =|t |≥0,B 中x=cos t ∈[-1,1],故排除A 和B ;而C 中y =2cos 2t 2sin 2t =1tan 2t =1x2,即x 2y =1,故排除C.5.抛物线⎩⎪⎨⎪⎧x =4t ,y =4t 2(t 为参数)的准线方程是( )A .x =1B .x =-1C .y =1D .y =-1答案 D解析 由x =4t ,得t 2=x 216,∴y =4t 2=x 24,即x 2=4y ,∴准线方程为y =-1.6.假设直线y =x -b 与曲线⎩⎪⎨⎪⎧x =2+cos θ,y =sin θ, θ∈[0,2π)有两个不同的公共点,那么实数b 的取值范围是( )A .(2-2,1)B .[2-2,2+2]C .(-∞,2-2)∪(2+2,+∞)D .(2-2,2+2) 答案 D解析 由⎩⎪⎨⎪⎧x =2+cos θ,y =sin θ消去θ,得(x -2)2+y 2=1.(*)将y =x -b 代入(*)式,化简得2x 2-(4+2b )x +b 2+3=0,依题意知,Δ=[-(4+2b )]2-4×2(b 2+3)>0, 解得2-2<b <2+ 2. 二、填空题7.点(-3,0)到直线⎩⎪⎨⎪⎧x =2t ,y =22t (t 为参数)的距离为________.答案 1解析 ∵直线⎩⎪⎨⎪⎧x =2t ,y =22t 的普通方程为x -22y =0,∴点(-3,0)到直线的距离为d =|-3-0|12+(-22)2=1.8.P 为椭圆4x 2+y 2=4上的点,O 为原点,那么|OP |的取值范围是________. 答案 [1,2]解析 由4x 2+y 2=4,得x 2+y 24=1.令⎩⎪⎨⎪⎧x =cos φ,y =2sin φ(φ为参数),那么|OP |2=x 2+y 2=cos 2φ+4sin 2φ=1+3sin 2φ. ∵0≤sin 2φ≤1,∴1≤1+3sin 2φ≤4, ∴1≤|OP |≤2.9.在极坐标系中,直线过点(1,0)且与直线θ=π3(ρ∈R )垂直,那么直线的极坐标方程为________________________________________________________________________. 答案 2ρsin ⎝ ⎛⎭⎪⎫θ+π6=1(或2ρcos ⎝⎛⎭⎪⎫θ-π3=1、ρcos θ+3ρsin θ=1) 解析 由题意可知在平面直角坐标系中,直线θ=π3的斜率是3,所求直线过点(1,0),且斜率是-13,所以直线方程为y =-13(x -1),化成极坐标方程为ρsin θ=-13(ρcos θ-1),化简得2ρsin ⎝⎛⎭⎪⎫θ+π6=1.10.直线l 的极坐标方程为2ρsin ⎝ ⎛⎭⎪⎫θ-π4=2,点A 的极坐标为⎝ ⎛⎭⎪⎫22,7π4,那么点A 到直线l 的距离为______________________________________________________________. 答案522解析 ∵2ρsin ⎝⎛⎭⎪⎫θ-π4=2, ∴2ρ⎝ ⎛⎭⎪⎫sin θcos π4-cos θsin π4=2(ρsin θ-ρcos θ)=2, 即ρsin θ-ρcos θ=1,∴直线l 的直角坐标方程为y -x =1,即x -y +1=0.∵点A ⎝ ⎛⎭⎪⎫22,7π4的直角坐标为(2,-2), ∴点A 到直线l 的距离d =|2+2+1|2=522.三、解答题11.x ,y 满足(x -1)2+(y +2)2=4,求S =3x -y 的最值.解 由(x -1)2+(y +2)2=4可知,曲线表示以(1,-2)为圆心,2为半径的圆. 令x =1+2cos θ,y =-2+2sin θ,那么S =3x -y =3(1+2cos θ)-(-2+2sin θ)=5+6cos θ-2sin θ =5+210·sin(θ+φ)(其中tan φ=-3), 所以,当sin(θ+φ)=1时,S 取得最大值5+210; 当sin(θ+φ)=-1时,S 取得最小值5-210.12.直线l 的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)假设直线l 与圆C 有公共点,求实数a 的取值范围. 解 (1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16.(2)因为直线l 与圆C 有公共点,故圆C 的圆心(0,0)到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.即实数a 的取值范围为[-25,25].13.在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数,且0≤θ<2π),点M 是曲线C 1上的动点. (1)求线段OM 的中点P 的轨迹的直角坐标方程;(2)以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,假设直线l 的极坐标方程为ρcos θ-ρsin θ+1=0(ρ>0),求点P 到直线l 距离的最大值.解 (1)曲线C 1上的动点M 的坐标为(4cos θ,4sin θ), 坐标原点为O (0,0),设P 的坐标为(x ,y ),那么由中点坐标公式,得x =12(0+4cos θ)=2cos θ,y =12(0+4sin θ)=2sin θ,所以点P 的坐标为(2cos θ,2sin θ),因此点P 的轨迹的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数,且0≤θ<2π),消去参数θ,得点P 轨迹的直角坐标方程为x 2+y 2=4.(2)由直角坐标与极坐标关系,得直线l 的直角坐标方程为x -y +1=0.又点P 的轨迹为圆心在原点,半径为2的圆,因为原点(0,0)到直线x -y +1=0的距离为|0-0+1|12+(-1)2=12=22, 所以点P 到直线l 距离的最大值为2+22. 四、探究与拓展 14.直线l的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =3+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0(ρ≥0,0≤θ<2π),那么直线l 与曲线C 的公共点的极径ρ=________. 答案5解析 直线l 的普通方程为y =x +1,曲线C 的直角坐标方程为y 2=4x ,联立两方程⎩⎪⎨⎪⎧y =x +1,y 2=4x ,解得⎩⎪⎨⎪⎧x =1,y =2.所以公共点为(1,2),所以公共点的极径为ρ=22+1= 5.15.设飞机以v =150m/s 的速度水平匀速飞行,假设在飞行高度h =588m 处投弹(假设炸弹的初速度等于飞机的速度). (1)求炸弹离开飞机后的轨迹方程;(2)试问飞机在离目标多远(水平距离)处投弹才能命中目标.解 (1)如下图,A 为投弹点,坐标为(0,588),B 为目标,坐标为(x 0,0).记炸弹飞行的时间为t ,在A 点t =0.设M (x ,y )为飞行曲线上的任一点,它对应时刻t ,炸弹初速度v 0=150 m/s ,用物理学知识,分别计算水平、竖直方向的路程,得⎩⎪⎨⎪⎧x =v 0t ,y =588-12gt 2(g =9.8 m/s 2),即⎩⎪⎨⎪⎧x =150t ,yt 2,所以炸弹离开飞机后的轨迹方程为⎩⎪⎨⎪⎧x =150t ,yt2(0≤t ≤230).(2)炸弹飞行到地面目标B 处的时间t 0满足方程yt 20=0,解得t 0=230 s. 将t 0=230代入x =150t 中,得x 0=30030 m.即飞机在离目标30030 m(水平距离)处投弹才能命中目标.。
人教版数学高二A版选修4-4复习巩固第二讲参数方程
整合提升知识网络⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧化参数方程与普通方程互程渐开线与摆线的参数方直线的参数方程圆锥曲线的参数方程特殊曲线的参数方程参数方程的定义参数方程 知识回顾1.直线⎩⎨⎧+=+=ααsin ,cos 00t y y t x x (t 是参数).2.圆⎩⎨⎧==θθsin ,cos R y R x (θ是参数).3.椭圆中心在(0,0)⎩⎨⎧==tb y t a x sin ,cos (0≤t≤π)(t 是参数).中心在(x 0,y 0)⎩⎨⎧+=+=t b y y t a x x sin ,cos 00(0≤t≤π)(t 是参数).4.双曲线⎩⎨⎧==θθtan ,sec b y a x (θ是参数).5.抛物线⎩⎨⎧==pt y pt x 2,22(t 是参数).6.渐开线⎩⎨⎧-=•+=)cos (sin ),sin (cos t t t a y t t t a x (t 是参数).7.摆线⎩⎨⎧-=-=)cos 1(),sin (t a y t t a x (t 是参数).典例精讲【例1】 过点P(2,-2)作直线交椭圆162522y x +=1于A,B 两点,求AB 中点M 的轨迹方程. 解:设M(x 0,y 0),直线的倾斜角为α,则直线的参数方程为⎩⎨⎧+=+=ααsin ,cos 00t y y t x x (t 为参数).代入椭圆方程16(x 0+tco sα)2+25(y 0+tsinα)2-16×25=0⇒(16cos 2α+25sin 2α)t 2+(32cosα·x 0+50sinα·y 0)t+16x 02+25y 02-16×25=0,由于(x 0,y 0)为中点,∴t 1+t 2=0,即32x 0cosα+50y 0sinα=032x 0+50y 0·ααcos sin =0, k=22cos sin 00-+=x y αα. 代入32x 0+50y 0·2200-+x y =0⇒32(x-1)2+50(y+1)2=822541)1(1641)1(22++-⇒y x =1. 各个击破类题演练 1过点P(1,1)作直线l 交椭圆41622y x +=1于A,B 两点,若P 为AB 中点,求直线l 的方程. 解:设直线l 的倾斜角为α,则l 的参数方程为⎩⎨⎧+=+=ααsin 1,cos 1t y t x (t 为参数).将其代入椭圆方程(tcosα+1)2+4(tsinα+1)2-16=0,得(cos 2α+4sin 2α)t 2+2(cosα+4sinα)t -11=0. 因为P (1,1)为AB 的中点, ∴t 1+t 2=0,即cosα+4sinα=0. ∴ααcos sin =tanα=k=-41. 则所求直线l 的方程为x+4y-5=0. 变式提升 1过点P (2,-1)作直线l 交曲线xy=1于A,B 两点,求AB 中点M 的轨迹方程. 解:设AB 中点M(x 0,y 0),l 的倾斜角为α,则l 的参数方程为⎩⎨⎧+=+=ααsin ,cos 00t y y t x x (t 为参数), 代入xy=1,即(tcosα+x 0)(tsinα+y 0)=1⇒t 2sinαcosα+(y 0cosα+x 0sinα)t+x 0y 0-1=0. 由于M(x 0,y 0)为弦中点,则t 1+t 2=0. ∴y 0cosα+x 0sinα=0⇒y 0+x 0ααcos sin =0. 将ααcos sin =tanα=k=2100-+x y 代入,则y 0+x 02100-+x y =0⇒2xy+x-2y=0为所求.【例2】 已知圆系的方程为x 2+y 2-2acosφ·x -2asinφ·y=0(a>0).(1)求圆系圆心的轨迹方程;(2)证明圆心轨迹与动圆相交所得的公共弦长为定值. 解:(1)将圆系方程配方:(x-acosφ)2+(y-asinφ)2=a 2. 所以圆心的轨迹的参数方程为⎩⎨⎧==ϕϕsin ,cos a y a x (φ为参数).消去φ,得x2+y2=a2.(2)两圆公共弦所在直线方程由方程组⎪⎩⎪⎨⎧=+=--+.,0sin2cos222222ayxayaxyxϕϕ求得2axcosφ+2aysinφ-a2=0,圆x2+y2=a2圆心为(0,0),弦心距d=2sin4cos422222aaaa=+ϕϕ.定圆的弦心距为定值,则弦长为定值,这个定值为d=34222=-aa a.温馨提示题干中的“圆系”的含义是指当参数φ变化时的一系列圆,这也是参数方程的一种形式. 类题演练2如图,圆x2+y2=r2的弦AB垂直于x轴,P为AB上一点,且|AP|·|PB|=a2(a≤r)为定值,求点P的轨迹方程.解:设A(rcosφ,rsinφ),则点B(rcosφ,-rsinφ),P(x,y).∵AB⊥x轴,∴x=rcosφ,|AP|=|rsinφ-y|,|PB|=|y+rsinφ|.∵|AP|·|PB|=|(rsinφ-y)·(rsinφ+y)|=a2|y2-r2sin2φ|=a2,∵|y|≤|rsinφ|,∴r2sin2φ-y2=a2.∴y2+a2=r2sin2φ.又x=rcosφ,∴x2+y2+a2=r2x2+y2=r2-a2.变式提升2抛物线y2=2px,一组平行弦的斜率为k,求弦中点的轨迹方程.解:设中点M(x0,y0),平行弦倾斜角为α,则平行弦所在直线的参数方程为⎩⎨⎧+=+=ααsin,costyytxx(t为参数,ααcossin=k).代入抛物线方程有(tsinα+y0)2-2p(tcosα+x0)=0⇒t2sin2α+2(y0sinα-pcosα)t+y02-2px0=0.∵M(x0,y0)为弦中点,∴t1+t2=0,即y0sinα-pcosα=0.∴y=kp,将y=kp代入y2=2px,得22kp=2px,x=22kp.∴y=kp且x>22kp为一条射线.【例3】过抛物线的焦点F的直线交抛物线于A,B两点(AB不与对称轴垂直),AB的垂直平分线交对称轴于S,求证:|FS|=21|AB|.解:设抛物线方程为y2=2px(p>0),AB的倾斜角为α(α≠2π),则直线AB的参数方程是⎪⎩⎪⎨⎧=+=ααsin,cos2tytpx(t为参数).代入抛物线方程:t2sin2α-2p(2p+tcosα)=0⇒t2sin2α-2ptcosα-p2=0.|AB|=|t1-t2|=αααα22242221221sin2sin4sincos44)(pppt ttt=+=++.又如图,|FP|=21|t1+t2|=αα2sin|cos|p,在Rt△PSF中,|FS|=αα2sin|cos|||pPF=,∴|FS|=21|AB|.类题演练3点A,B在椭圆2222byax+=1上,O为原点,OA⊥OB,求证:2211OBOA+为定值.解:设∠AOx=α,OA=t,则∠BOx=α+2π,设OB=t′,则OA,OB所在直线方程分别为⎪⎪⎩⎪⎪⎨⎧+'=+'=⎩⎨⎧==),2sin(),2cos(,sin,cosπαπαααtytxtytx即⎩⎨⎧'='-=.cos,sinααtytx分别代入椭圆方程中,得222222sincosbtatαα+=1.∴222222sincos11batOAαα+==,同理,222222cos sin 11ba t OB αα+='=. ∴222222222222cos sin sin cos 1111b b a a t t OB OA αααα+++='+=+ 2211b a +==定值. 【例4】 过点P(2,2)作直线l 被两平行线x+y+1=0,x+y-1=0截得的线段长为2,求l 的方程. 解:设l 的倾斜角为α,则l 的方程为⎩⎨⎧+=+=ααsin 2,cos 2t y t x (t 为参数).分别代入方程,得tcosα+2+tsinα+2+1=0,t 1=ααcos sin 5+-;tcosα+2+tsinα+2-1=0,t 2=ααcos sin 3+-,很明显t 1,t 2符号相同,则|t 1-t 2|=|ααcos sin 5+--ααcos sin 3+-|=2.∴|cos sin |2αα+=2.∴sinα+cosα=±1.由于0≤α<π,∴α=0或α=2π,得两直线方程为x=2或y=2. 类题演练 4过原点作直线l,交直线2x-y-1=0于A,2x+y+3=0于B,若原点为线段AB 的中点,求l 的方程.解:设l 的倾斜角为α,则l 的参数方程为⎩⎨⎧==ααsin ,cos t y t x (t 为参数).将方程分别代入两直线方程中,2tcosα-tsinα=1得t 1=ααsin cos 21-,2tcosα+tsinα+3=0,t 2=ααsin cos 23+-.∵O(0,0)为AB 中点,∴t 1+t 2=0.ααsin cos 21-ααsin cos 23+-=0⇒4cosα=4sinα. ∴k=tanα=1.所求l 的方程为y=x. 变式提升直线系方程为xcosφ+ysinφ=2,圆的参数方程为⎩⎨⎧==ϕϕsin 2,cos 2y x (φ为参数),则直线与圆的位置关系为( )A.相交不过圆心降机B.相交且经过圆心C.相切D.相离解析:圆的普通方程为x 2+y 2=4,圆心(0,0)到直线xcosθ+ysinθ-2=0的距离等于d=12=2等于半径,所以直线与圆相切. 答案:C。
[K12配套]2018版高中数学第二讲参数方程学案新人教A版选修4_4
第二讲 参数方程一 曲线的参数方程 1 参数方程的概念 2 圆的参数方程[学习目标]1.理解曲线参数方程的有关概念.2.掌握圆的参数方程.3.能够根据圆的参数方程解决最值问题. [知识链接]曲线的参数方程中,参数是否一定具有某种实际意义?在圆的参数方程中,参数θ有什么实际意义?提示 联系x ,y 的参数t (θ,φ,…)可以是一个有物理意义或几何意义的变数,也可以是无实际意义的任意实数.圆的参数方程中,其中参数θ的几何意义是OM 0绕点O 逆时针旋转到OM 的位置时,OM 0转过的角度. [预习导引] 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数:⎩⎪⎨⎪⎧x =f (t )y =g (t )①,并且对于 t 的每一个允许值,由方程组①所确定的点M (x ,y )都在这条曲线上,那么方程组①就叫做这条曲线的参数方程,联系变数x ,y 之间关系的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出的点的坐标间的关系的方程叫做普通方程.2.圆的参数方程(1)如图所示,设圆O 的半径为r ,点M 从初始位置M 0开始出发,按逆时针方向在圆O 上作均速圆周运动,设M (x ,y ),点M 转过的角度是θ,则⎩⎪⎨⎪⎧x =r ·cos θ,y =r ·sin θ(θ为参数),这就是圆心在原点,半径为r 的圆的参数方程. (2)圆心为C (a ,b ),半径为r 的圆的普通方程与参数方程要点一 参数方程的概念 例1 已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =1+2t ,y =at2(t 为参数,a ∈R ),点M (-3,4)在曲线C 上.(1)求常数a 的值;(2)判断点P (1,0)、Q (3,-1)是否在曲线C 上? 解 (1)将M (-3,4)的坐标代入曲线C 的参数方程⎩⎪⎨⎪⎧x =1+2t ,y =at 2,得⎩⎪⎨⎪⎧-3=1+2t ,4=at 2,消去参数t ,得a =1.(2)由(1)可得,曲线C 的参数方程是⎩⎪⎨⎪⎧x =1+2t ,y =t 2, 把点P 的坐标(1,0)代入方程组,解得t =0,因此P 在曲线C 上,把点Q 的坐标(3,-1)代入方程组,得到⎩⎪⎨⎪⎧3=1+2t ,-1=t 2,这个方程组无解,因此点Q 不在曲线C 上. 规律方法 点与曲线的位置关系满足某种约束条件的动点的轨迹形成曲线,点与曲线的位置关系有两种:点在曲线上、点不在曲线上.(1)对于曲线C 的普通方程f (x ,y )=0,若点M (x 1,y 1)在曲线上,则点M (x 1,y 1)的坐标是方程f (x ,y )=0的解,即有f (x 1,y 1)=0,若点N (x 2,y 2)不在曲线上,则点N (x 2,y 2)的坐标不是方程f (x ,y )=0的解,即有f (x 2,y 2)≠0. (2)对于曲线C 的参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )(t 为参数),若点M (x 1,y 1)在曲线上,则⎩⎪⎨⎪⎧x 1=f (t ),y 1=g (t )对应的参数t 有解,否则参数t 不存在.跟踪演练1 已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数,0≤θ<2π).判断点A (2,0),B ⎝⎛⎭⎪⎫-3,32是否在曲线C 上?若在曲线上,求出点对应的参数的值.解 把点A (2,0)的坐标代入⎩⎪⎨⎪⎧x =2cos θy =3sin θ,得cos θ=1,且sin θ=0,由于0≤θ<2π,解之得θ=0,因此点A (2,0)在曲线C 上,对应参数θ=0,同理,把B ⎝⎛⎭⎪⎫-3,32代入参数方程,得⎩⎪⎨⎪⎧-3=2cos θ,32=3sin θ.∴⎩⎪⎨⎪⎧cos θ=-32,sin θ=12.又0≤θ<2π,∴θ=56π,所以点B ⎝ ⎛⎭⎪⎫-3,32在曲线C 上,对应θ=56π.要点二 圆的参数方程及其应用例2 设曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),直线l 的方程为x -3y +2=0,则曲线C 上到直线l 距离为71010的点的个数为( ) A.1 B.2 C.3D.4解析 由⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ.得(x -2)2+(y +1)2=9.曲线C 表示以(2,-1)为圆心,以3为半径的圆, 则圆心C (2,-1)到直线l 的距离d =710=71010<3, 所以直线与圆相交.所以过圆心(2,-1)与l 平行的直线与圆的2个交点满足题意,又3-d <71010,故满足题意的点有2个. 答案 B规律方法 1.本题利用三角函数的平方关系,消去参数;数形结合,判定直线与圆的位置关系.2.参数方程表示怎样的曲线,一般是通过消参,得到普通方程来判断,特别要注意变量的取值范围.跟踪演练2 已知实数x ,y 满足(x -1)2+(y -1)2=9,求x 2+y 2的最大值和最小值.解 由已知,可把点(x ,y )视为圆(x -1)2+(y -1)2=9上的点,设⎩⎪⎨⎪⎧x =1+3cos θ,y =1+3sin θ(θ为参数).则x 2+y 2=(1+3cos θ)2+(1+3sin θ)2=11+6(sin θ+cos θ)=11+62sin ⎝ ⎛⎭⎪⎫θ+π4.∵-1≤sin ⎝ ⎛⎭⎪⎫θ+π4≤1,∴11-62≤x 2+y 2≤11+6 2.∴x 2+y 2的最大值为11+62,最小值为11-6 2. 要点三 参数方程的实际应用例3 某飞机进行投弹演习,已知飞机离地面高度为H =2 000 m ,水平飞行速度为v 1=100 m/s ,如图所示.(1)求飞机投弹t s 后炸弹的水平位移和离地面的高度;(2)如果飞机追击一辆速度为v 2=20 m/s 同向行驶的汽车,欲使炸弹击中汽车,飞机应在距离汽车的水平距离多远处投弹?(g =10 m/s 2)解 (1)如图所示,建立平面直角坐标系,设炸弹投出机舱的时刻为0 s ,在时刻t s 时其坐标为M (x ,y ),由于炸弹作平抛运动,依题意,得⎩⎪⎨⎪⎧x =100t ,y =2 000-12gt 2, 即⎩⎪⎨⎪⎧x =100t ,y =2 000-5t 2,令y =2 000-5t 2=0,得t =20(s ),所以飞机投弹t s 炸弹的水平位移为100t m ,离地面的高度为(2 000-5t 2)m ,其中,0≤t ≤20.(2)由于炸弹水平分运动和汽车的运动均为匀速直线运动,以汽车参考系.水平方向S 相对=v 相对t ,所以飞机应距离汽车投弹的水平距离为s =(v 1-v 2)t =(100-20)×20=1 600(m).规律方法 本题通过点的坐标的参数方程利用运动学知识使问题得解.由于水平抛出的炸弹做平抛运动,可以分解为在水平方向上的匀速直线运动和竖直方向上的自由落体运动,炸弹飞行的时间也就是它作自由落体运动所用的时间. 跟踪演练3 如果本例条件不变,求:(1)炸弹投出机舱10 s 后这一时刻的水平位移和高度各是多少m?(2)如果飞机迎击一辆速度为v 2=20 m/s 相向行驶的汽车,欲使炸弹击中汽车,飞机应在距离汽车的水平距离多远处投弹?解 (1)将t =10代入⎩⎪⎨⎪⎧x =100t ,y =2 000-5t 2,得⎩⎪⎨⎪⎧x =1 000,y =1 500, 所以炸弹投出机舱10 s 后这一时刻的水平位移和高度分别是1 000 m 和1 500 m. (2)由于炸弹水平分运动和汽车的运动均为匀速直线运动,以汽车为参考系.水平方向s 相对=v 相对t ,所以飞机应距离汽车投弹的水平距离为s =(v 1+v 2)t =(100+20)×20=2 400(m).1.曲线的普通方程直接地反映了一条曲线上点的横、纵坐标之间的联系,而参数方程是通过参数反映坐标变量x 、y 间的间接联系.在具体问题中的参数可能有相应的几何意义,也可能没有什么明显的几何意义.曲线的参数方程常常是方程组的形式,任意给定一个参数的允许取值就可得到曲线上的一个对应点,反过来,对于曲线上的任一点也必然对应着参数相应的允许取值.2.求曲线参数方程的主要步骤第一步,画出轨迹草图,设M (x ,y )是轨迹上任意一点的坐标.画图时要注意根据几何条件选择点的位置,以利于发现变量之间的关系.第二步,选择适当的参数.参数的选择要考虑以下两点:一是曲线上每一点的坐标x ,y 与参数的关系比较明显,容易列出方程;二是x ,y 的值可以由参数唯一确定.第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可以省略.1.下列方程:(1)⎩⎪⎨⎪⎧x =m ,y =m (m 为参数);(2)⎩⎪⎨⎪⎧x =m ,y =n (m ,n 为参数);(3)⎩⎪⎨⎪⎧x =1,y =2;(4)x +y =0中,参数方程的个数为( ) A.1 B.2 C.3D.4解析 由参数方程的概念知⎩⎪⎨⎪⎧x =my =m是参数方程,故选A.答案 A2.当参数θ变化时,由点P (2cos θ,3sin θ)所确定的曲线过点( ) A.(2,3)B.(1,5)C.⎝⎛⎭⎪⎫0,π2D.(2,0)解析 当2cos θ=2,即cos θ=1,3sin θ=0.∴过点(2,0). 答案 D3.参数方程⎩⎪⎨⎪⎧x =t +1t ,y =2(t 为参数)表示的曲线是( )A.两条直线B.一条射线C.两条射线D.双曲线解析 当t >0时⎩⎪⎨⎪⎧x ≥2,y =2,是一条射线;当t <0时,⎩⎪⎨⎪⎧x ≤-2,y =2,也是一条射线,故选C. 答案 C4.已知⎩⎪⎨⎪⎧x =t +1y =t 2(t 为参数),若y =1,则x =________. 解析 当y =1时,t 2=1,∴t =±1,当t =1时,x =2;当t =-1时,x =0.∴x 的值为2或0. 答案 2或05.已知直线y =x 与曲线⎩⎪⎨⎪⎧x =1+2cos α,y =2+2sin α,(α为参数)相交于两点A 和B ,求弦长|AB |.解 由⎩⎪⎨⎪⎧x =1+2cos α,y =2+2sin α,得⎩⎪⎨⎪⎧x -1=2cos α,y -2=2sin α.∴(x -1)2+(y -2)2=4,其圆心为(1,2),半径r =2,则圆心(1,2)到直线y =x 的距离d =|1-2|12+(-1)2=22. ∴|AB |=2r 2-d 2=222-⎝ ⎛⎭⎪⎫222=14.一、基础达标1.已知O 为原点,参数方程⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数)上的任意一点为A ,则|OA |=( )A.1B.2C.3D.4解析 |OA |=x 2+y 2=cos 2θ+sin 2θ=1,故选A. 答案 A2.已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =a +2cos θ,y =2sin θ(θ为参数),曲线C 不经过第二象限,则实数a 的取值范围是( )A.a ≥2B.a >3C.a ≥1D.a <0解析 ∵曲线C 的参数方程是⎩⎪⎨⎪⎧x =a +2cos θ,y =2sin θ(θ为参数),∴化为普通方程为(x -a )2+y2=4,表示圆心为(a ,0),半径等于2的圆.∵曲线C 不经过第二象限,则实数a 满足a ≥2,故选A. 答案 A3.圆心在点(-1,2),半径为5的圆的参数方程为( )A.⎩⎪⎨⎪⎧x =5-cos θ,y =5+2sin θ(0≤θ<2π)B.⎩⎪⎨⎪⎧x =2+5cos θ,y =-1+5sin θ(0≤θ<2π)C.⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<π)D.⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π) 解析 圆心在点C (a ,b ),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =a +r cos θ,y =b +r sin θ,(θ∈[0,2π)).故圆心在点(-1,2),半径为5的圆的参数方程为⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π).答案 D4.将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程为( ) A.y =x -2B.y =x +2C.y =x -2(2≤x ≤3)D.y =x +2(0≤y ≤1)解析 将参数方程中的θ消去,得y =x -2.又x ∈[2,3]. 答案 C5.若点(-3,-33)在参数方程⎩⎪⎨⎪⎧x =6cos θ,y =6sin θ(θ为参数)的曲线上,则θ=________.解析 将点(-3,-33)的坐标代入参数方程⎩⎪⎨⎪⎧x =6cos θ,y =6sin θ(θ为参数)得⎩⎪⎨⎪⎧cos θ=-12,sin θ=-32,解得θ=4π3+2k π,k ∈Z . 答案4π3+2k π,k ∈Z 6.已知圆C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin θ=1,则直线l 与圆C 的交点的直角坐标为________.解析 由圆C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α.可求得其在直角坐标系下的方程为x 2+(y -1)2=1,由直线l 的极坐标方程ρsin θ=1可求得其在直角坐标系下的方程为y =1,由⎩⎪⎨⎪⎧y =1,x 2+(y -1)2=1可解得⎩⎪⎨⎪⎧x =±1,y =1.所以直线l 与圆C 的交点的直角坐标为(-1,1),(1,1). 答案 (-1,1),(1,1)7.已知曲线C :⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ(θ为参数),如果曲线C 与直线x +y +a =0有公共点,求实数a 的取值范围.解 ∵⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ,∴x 2+(y +1)2=1.∵圆与直线有公共点,则d =|0-1+a |2≤1,解得1-2≤a ≤1+ 2. 二、能力提升8.若P (2,-1)为圆O ′:⎩⎪⎨⎪⎧x =1+5cos θ,y =5sin θ(0≤θ<2π)的弦的中点,则该弦所在直线l的方程是( ) A.x -y -3=0 B.x +2y =0 C.x +y -1=0D.2x -y -5=0解析 ∵圆心O ′(1,0),∴k PO ′=-1.∴k l =1. ∴直线l 方程为x -y -3=0. 答案 A9.如图,以过原点的直线的倾斜角θ为参数,则圆x 2+y 2-x =0的参数方程为________.解析 将x 2+y 2-x =0配方,得⎝ ⎛⎭⎪⎫x -122+y 2=14,∵圆的直径为1.设P (x ,y ),则x =|OP |cosθ=1×cos θ×cos θ=cos 2θ,y =|OP |sin θ=1×cos θ×sin θ=sin θcos θ,∴圆x 2+y 2-x =0的参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).答案 ⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数)10.曲线⎩⎪⎨⎪⎧x =1,y =sin t +1(t 为参数)与圆x 2+y 2=4的交点坐标为________.解析 ∵sin t ∈[-1,1],∴y ∈[0,2].∵方程⎩⎪⎨⎪⎧x =1,y =sin t +1表示的曲线是线段x =1(0≤y ≤2).令x =1,由x 2+y 2=4,得y 2=3, ∵0≤y ≤2,∴y = 3. 答案 (1,3)11.设点M (x ,y )在圆x 2+y 2=1上移动,求点P (x +y ,xy )的轨迹. 解 设点M (cos θ,sin θ)(0≤θ<2π),点P (x ′,y ′).则⎩⎪⎨⎪⎧x ′=cos θ+sin θ, ①y ′=cos θsin θ, ② ①2-2×②,得x ′2-2y ′=1.即x ′2=2⎝⎛⎭⎪⎫y ′+12.∴所求点P 的轨迹为抛物线x 2=2⎝ ⎛⎭⎪⎫y +12的一部分⎝⎛⎭⎪⎫|x |≤2,|y |≤12.12.已知点M (x ,y )是圆x 2+y 2+2x =0上的动点,若4x +3y -a ≤0恒成立,求实数a 的取值范围.解 由x 2+y 2+2x =0,得(x +1)2+y 2=1,又点M 在圆上,∴x =-1+cos θ,且y =sin θ(θ为参数),因此4x +3y =4(-1+cos θ)+3sin θ=-4+5sin(θ+φ)≤-4+5=1.(φ由 tan φ=43确定)∴4x +3y 的最大值为1.若4x +3y -a ≤0恒成立,则a ≥(4x +3y )max , 故实数a 的取值范围是[1,+∞). 三、探究与创新13.已知圆系方程为x 2+y 2-2ax cos φ-2ay sin φ=0(a >0,且为已知常数,φ为参数) (1)求圆心的轨迹方程;(2)证明圆心轨迹与动圆相交所得的公共弦长为定值. (1)解 由已知圆的标准方程为:(x -a cos φ)2+(y -a sin φ2)=a 2(a >0).设圆心坐标为(x ,y ),则⎩⎪⎨⎪⎧x =a cos φ,y =a sin φ(φ为参数),消参数得圆心的轨迹方程为x 2+y 2=a 2.(2)证明 由方程⎩⎪⎨⎪⎧x 2+y 2-2ax cos φ-2ay sin φ=0x 2+y 2=a 2得公共弦的方程:2ax cos φ+2ay sin φ=a 2,即x cos φ+y sin φ-a2=0,圆x 2+y 2=a2的圆心到公共弦的距离d =a2为定值.∴弦长l =2a 2-⎝ ⎛⎭⎪⎫a 22=3a (定值). 3 参数方程和普通方程的互化[学习目标]1.了解参数方程化为普通方程的意义.2.掌握参数方程化为普通方程的基本方法.3.能够利用参数方程化为普通方程解决有关问题. [知识链接]普通方程化为参数方程,参数方程的形式是否唯一?提示 不一定唯一.普通方程化为参数方程,关键在于适当选择参数,如果选择的参数不同,那么所得的参数方程的形式也不同. [预习导引]参数方程与普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t ),就是曲线的参数方程.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.要点一 把参数方程化为普通方程例1 在方程⎩⎪⎨⎪⎧x =a +t cos θy =b +t sin θ,(a ,b 为正常数)中,(1)当t 为参数,θ为常数时,方程表示何种曲线? (2)当t 为常数,θ为参数时,方程表示何种曲线?解 方程⎩⎪⎨⎪⎧x =a +t cos θ, ①y =b +t sin θ, ②(a ,b 是正常数),(1)①×sin θ-②×cos θ得x sin θ-y cos θ-a sin θ+b cos θ=0. ∵cos θ、sin θ不同时为零,∴方程表示一条直线. (2)(i)当t 为非零常数时,原方程组为⎩⎪⎨⎪⎧x -at=cos θ, ③y -b t =sin θ. ④③2+④2得(x -a )2t 2+(y -b )2t2=1, 即(x -a )2+(y -b )2=t 2,它表示一个圆. (ii)当t =0时,表示点(a ,b ).规律方法 1.消去参数的常用方法:将参数方程化为普通方程,关键是消去参数,如果参数方程是整式方程,常用的消元法有代入消元法、加减消元法.如果参数方程是分式方程,在运用代入消元或加减消元之前要做必要的变形.另外,熟悉一些常见的恒等式至关重要,如sin 2α+cos 2α=1,(e x +e -x )2-(e x -e -x )2=4,⎝ ⎛⎭⎪⎫1-k 21+k 22+⎝ ⎛⎭⎪⎫2k 1+k 22=1等.2.把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x 及y 的取值范围的影响.本题启示我们,形式相同的方程,由于选择参数的不同,可表示不同的曲线.跟踪演练1 参数方程⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数)化成普通方程为________.解析 ∵⎩⎪⎨⎪⎧x =cos α,y =1+sin α,cos 2α+sin 2α=1,∴x 2+(y -1)2=1. 答案 x 2+(y -1)2=1要点二 把普通方程化成参数方程 例2 求方程4x 2+y 2=16的参数方程: (1)设y =4sin θ,θ为参数;(2)若令y =t (t 为参数),如何求曲线的参数方程?若令x =2t (t 为参数),如何求曲线的参数方程?解 (1)把y =4sin θ代入方程,得到4x 2+16sin 2θ=16,于是4x 2=16-16sin 2θ=16cos 2θ,∴x =±2cos θ. ∴4x 2+y 2=16的参数方程是⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ和⎩⎪⎨⎪⎧x =-2cos θ,y =4sin θ(θ为参数) (2)将y =t 代入椭圆方程4x 2+y 2=16,得4x 2+t 2=16, 则x 2=16-t 24.∴x =±16-t 22.因此,椭圆4x 2+y 2=16的参数方程是⎩⎪⎨⎪⎧x =16-t 22y =t ,和⎩⎪⎨⎪⎧x =-16-t 22,y =t(t 为参数). 同理将x =2t 代入椭圆4x 2+y 2=16,得椭圆的参数方程为⎩⎨⎧x =2t ,y =41-t 2和⎩⎨⎧x =2t ,y =-41-t 2(t 为参数).规律方法 1.将圆的普通方程化为参数方程 (1)圆x 2+y 2=r2的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数);(2)圆(x -a )2+(y -b )2=r2的参数方程为⎩⎪⎨⎪⎧x =a +r cos θ,y =b +r sin θ(θ为参数).2.普通方程化为参数方程关键是引入参数(例如x =f (t ),再计算y =g (t )),并且要保证等价性.若不可避免地破坏了同解变形,则一定要通过x =f (t ),y =g (t ),调整t 的取值范围,使得在普通方程转化为参数方程的过程中,x ,y 的取值范围保持一致.跟踪演练2 设y =tx (t 为参数),则圆x 2+y 2-4y =0的参数方程是________.解析 把y =tx 代入x 2+y 2-4y =0得x =4t 1+t 2,y =4t21+t 2,∴参数方程为⎩⎪⎨⎪⎧x =4t 1+t 2,y =4t21+t 2.(t 为参数).答案 ⎩⎪⎨⎪⎧x =4t1+t 2,y =4t 21+t 2.(t 为参数)要点三 参数方程的应用例3 已知x 、y 满足x 2+(y -1)2=1,求: (1)3x +4y 的最大值和最小值; (2)(x -3)2+(y +3)2的最大值和最小值. 解 由圆的普通方程x 2+(y -1)2=1得圆的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ.(θ∈[0,2π)).(1)3x +4y =3cos θ+4sin θ+4=4+5sin(θ+φ), 其中tan φ=34,且φ的终边过点(4,3).∵-5≤5sin(θ+φ)≤5,∴-1≤4+5sin(θ+φ)≤9, ∴3x +4y 的最大值为9,最小值为-1.(2)(x -3)2+(y +3)2=(cos θ-3)2+(sin θ+4)2=26+8sin θ-6cos θ=26+10sin(θ+φ). 其中tan φ=-34.且φ的终边过点(4,-3).∵-10≤10sin(θ+φ)≤10,∴16≤26+10sin(θ+φ)≤36, 所以(x -3)2+(y +3)2的最大值为36,最小值为16.规律方法 1.运用参数思想解题的关键在于参数的选择.选择参数时,应注意所选择的参数易于与两个坐标产生联系.由于三角函数的巨大作用,常选择角为参数,若轨迹与运动有关,常选择时间为参数.2.解决与圆有关的最大值和最小值问题,常常设圆的参数方程,然后转化为求三角函数的最大值和最小值问题.3.注意运用三角恒等式求最值:a sin θ+b cos θ=a 2+b 2sin(θ+φ).其中tan φ=b a(a ≠0),且φ的终边过点(a ,b ).跟踪演练3 如图,已知点P 是圆x 2+y 2=16上的一个动点,定点A (12,0),当点P 在圆上运动时,利用参数方程求线段PA 的中点M 的轨迹.解 因为圆x2+y 2=16的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数),所以可设点P (4cos θ,4sin θ),设点M (x ,y ),由线段中点坐标公式得⎩⎪⎨⎪⎧x =4cos θ+122,y =4sin θ2(θ为参数),即点M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =2cos θ+6,y =2sin θ(θ为参数),所以点M 的轨迹是以点(6,0)为圆心、2为半径的圆.1.参数方程和普通方程的互化参数方程化为普通方程,可通过代入消元法和三角恒等式消参法消去参数方程中的参数,通过曲线的普通方程来判断曲线的类型.由普通方程化为参数方程要选定恰当的参数,寻求曲线上任一点M 的坐标x ,y 和参数的关系,根据实际问题的要求,我们可以选择时间、角度、线段长度、直线的斜率、截距等作为参数. 2.同一道题参数的选择往往不是唯一的,适当地选择参数,可以简化解题的过程,降低计算量,提高准确率.求轨迹方程与求轨迹有所不同,求轨迹方程只需求出方程即可,而求轨迹往往是先求出轨迹方程,然后根据轨迹方程指明轨迹是什么图形.3.参数方程与普通方程的等价性把参数方程化为普通方程后,很容易改变了变量的取值范围,从而使得两种方程所表示的曲线不一致,因此我们要注意参数方程与普通方程的等价性.1.与普通方程x 2+y -1=0等价的参数方程为(t 为参数)( )A.⎩⎪⎨⎪⎧x =sin t y =cos 2t B.⎩⎪⎨⎪⎧x =cos ty =sin 2t C.⎩⎨⎧x =1-ty =tD.⎩⎪⎨⎪⎧x =tan t y =1-tan 2t 解析 A 化为普通方程为x 2+y -1=0,x ∈[-1,1],y ∈[0,1].B 化为普通方程为x 2+y -1=0,x ∈[-1,1],y ∈[0,1].C 化为普通方程为x 2+y -1=0,x ∈[0,+∞),y ∈(-∞,1].D 化为普通方程为x 2+y -1=0,x ∈R ,y ∈R . 答案 D2.将参数方程⎩⎪⎨⎪⎧x =t +1t,y =t 2+1t2(t 为参数)化为普通方程为________.解析 由x =t +1t 得x 2=t 2+1t 2+2,又y =t 2+1t 2,∴x 2=y +2.∵t 2+1t2≥2,∴y ≥2.答案 x 2-y =2(y ≥2) 3.参数方程⎩⎪⎨⎪⎧x =sin 2θ,y =sin θ+cos θ(θ为参数)表示的曲线的普通方程是________.解析 y 2=(sin θ+cos θ)2=sin 2θ+2sin θcos θ+cos 2θ=1+2sin θcos θ=1+x ,又x =sin 2θ∈[-1,1],∴曲线的普通方程是y 2=x +1(-1≤x ≤1).答案 y 2=x +1(-1≤x ≤1)4.已知某条曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =at 2(其中t 是参数,a ∈R ),点M (5,4)在该曲线上. (1)求常数a ;(2)求曲线C 的普通方程.解 (1)由题意,可知⎩⎪⎨⎪⎧1+2t =5,at 2=4,故⎩⎪⎨⎪⎧t =2,a =1,所以a =1.(2)由已知及(1)可得,曲线C 的方程为⎩⎪⎨⎪⎧x =1+2t ,y =t 2,由第一个方程,得t =x -12,代入第二个方程,得y =⎝ ⎛⎭⎪⎫x -122,即(x -1)2=4y 为所求.一、基础达标1.曲线⎩⎪⎨⎪⎧x =|sin θ|,y =cos θ(θ为参数)的方程等价于( )A.x =1-y 2B.y =1-x 2C.y =±1-x 2D.x 2+y 2=1解析 由x =|sin θ|得0≤x ≤1;由y =cos θ得-1≤y ≤1.故选A. 答案 A2.已知直线l :⎩⎪⎨⎪⎧x =2+t ,y =-2-t (t 为参数)与圆C :⎩⎪⎨⎪⎧x =2cos θ+1,y =2sin θ(θ为参数),则直线l 的倾斜角及圆心C 的直角坐标分别是( ) A.π4,(1,0) B.π4,(-1,0) C.3π4,(1,0) D.3π4,(-1,0) 解析 直线消去参数得直线方程为y =-x ,所以斜率k =-1即倾斜角为3π4.圆的标准方程为(x -1)2+y 2=4,圆心坐标为(1,0). 答案 C3.参数方程⎩⎪⎨⎪⎧x =1-t 21+t2,y =2t1+t2(t 为参数)化为普通方程为( )A.x 2+y 2=1B.x 2+y 2=1去掉(0,1)点 C.x 2+y 2=1去掉(1,0)点 D.x 2+y 2=1去掉(-1,0)点解析 x 2+y 2=⎝ ⎛⎭⎪⎫1-t 21+t 22+⎝ ⎛⎭⎪⎫2t 1+t 22=1,又∵x =-1时,1-t 2=-(1+t 2)不成立,故去掉点(-1,0). 答案 D4.若x ,y 满足x 2+y 2=1,则x +3y 的最大值为( ) A.1 B.2 C.3D.4解析 由于圆x 2+y 2=1的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ,(θ为参数),则x +3y =3sin θ+cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π6,故x +3y 的最大值为2.故选B. 答案 B5.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB |=________. 解析 由ρcos θ=4,知x =4.又⎩⎪⎨⎪⎧x =t 2,y =t 3,∴x 3=y 2(x ≥0). 由⎩⎪⎨⎪⎧x =4,x 3=y 2,得⎩⎪⎨⎪⎧x =4,y =8或⎩⎪⎨⎪⎧x =4,y =-8. ∴|AB |=(4-4)2+(8+8)2=16. 答案 166.在极坐标系中,圆C 1的方程为ρ=42cos ⎝⎛⎭⎪⎫θ-π4,以极点为坐标原点,极轴为x 轴的正半轴建立平面坐标系,圆C 2的参数方程⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(θ为参数),若圆C 1与C 2相切,则实数a =________.解析 圆C 1的直角坐标方程为x 2+y 2=4x +4y ,其标准方程为(x -2)2+(y -2)2=8,圆心为(2,2),半径长为22,圆C 2的圆心坐标为(-1,-1),半径长为|a |,由于圆C 1与圆C 2外切,则|C 1C 2|=22+|a |=32或|C 1C 2|=|a |-22=32⇒a =±2或a =±5 2. 答案 ±2或±5 27.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =t -1t,y =3⎝ ⎛⎭⎪⎫t +1t ,(t 为参数,t >0).求曲线C 的普通方程.解 由x =t -1t两边平方得x 2=t +1t-2,又y =3⎝ ⎛⎭⎪⎫t +1t ,则t +1t =y 3(y ≥6). 代入x 2=t +1t -2,得x 2=y 3-2.∴3x 2-y +6=0(y ≥6).故曲线C 的普通方程为3x 2-y +6=0(y ≥6). 二、能力提升8.已知在平面直角坐标系xOy 中圆C 的参数方程为:⎩⎨⎧x =3+3cos θ,y =1+3sin θ(θ为参数),以Ox为极轴建立极坐标系,直线极坐标方程为:ρcos ⎝ ⎛⎭⎪⎫θ+π6=0,则圆C 截直线所得弦长为( ) A. 2 B.2 2 C.3 2D.4 2解析 圆C 的参数方程为⎩⎨⎧x =3+3cos θy =1+3sin θ的圆心为(3,1),半径为3,直线普通方程为ρ⎝⎛⎭⎪⎫cos θcos π6-sin θsin π6=32x -12y =0,即3x -y =0,圆心C (3,1)到直线3x -y =0的距离为d =|(3)2-1|3+1=1,所以圆C 截直线所得弦长|AB |=2r 2-d 2=232-12=4 2. 答案 D9.过原点作倾斜角为θ的直线与圆⎩⎪⎨⎪⎧x =4+2cos α,y =2sin α相切,则θ=________.解析 直线为y =x tan θ,圆为(x -4)2+y 2=4,直线与圆相切时,易知tan θ=±33,∴θ=π6或5π6.答案π6或5π610.在直角坐标系xOy 中,已知曲线C 1:⎩⎪⎨⎪⎧x =t +1,y =1-2t (t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θy =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,则a =________.解析 曲线C 1的普通方程为2x +y =3,曲线C 2的普通方程为x 2a 2+y 29=1,直线2x +y =3与x轴的交点坐标为⎝ ⎛⎭⎪⎫32,0,故曲线x 2a 2+y 29=1也经过这个点,代入解得a =32(舍去-32). 答案 3211.在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立坐标系.已知直线l上两点M ,N 的极坐标分别为(2,0),⎝ ⎛⎭⎪⎫233,π2,圆C 的参数方程为⎩⎨⎧x =2+2cos θ,y =-3+2sin θ(θ为参数).(1)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系.解 (1)由题意知,M ,N 的平面直角坐标分别为(2,0),⎝⎛⎭⎪⎫0,233.又P 为线段MN 的中点,从而点P 的平面直角坐标为⎝ ⎛⎭⎪⎫1,33,故直线OP 的平面直角坐标方程为y =33x . (2)因为直线l 上两点M ,N 的平面直角坐标分别为(2,0),⎝⎛⎭⎪⎫0,233,所以直线l 的平面直角坐标方程为x +3y -2=0. 又圆C 的圆心坐标为(2,-3),半径为r =2,圆心到直线l 的距离d =|2-3-2|2=32<r ,故直线l 与圆C 相交.12.已知曲线C 1:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),曲线C 2:⎩⎪⎨⎪⎧x =22t -2,y =22t(t 为参数).(1)指出C 1,C 2各是什么曲线,并说明C 1与C 2公共点的个数;(2)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线C ′1,C ′2.写出C ′1,C ′2的参数方程.C ′1与C ′2公共点的个数和C 1与C 2公共点的个数是否相同?说明你的理由.解 (1)C 1是圆,C 2是直线.C 1的普通方程为x 2+y 2=1, 圆心C 1(0,0),半径r =1.C 2的普通方程为x -y +2=0.因为圆心C 1到直线x -y +2=0的距离为1,所以C 2与C 1只有一个公共点.(2)压缩后的参数方程分别为C ′1:⎩⎪⎨⎪⎧x =cos θ,y =12sin θ(θ为参数),C ′2:⎩⎪⎨⎪⎧x =22t -2,y =24t (t 为参数),化为普通方程为C ′1:x 2+4y 2=1,C ′2:y =12x +22,联立消元得2x 2+22x +1=0, 其判别式Δ=(22)2-4×2×1=0,所以压缩后的直线C ′2与椭圆C ′1仍然只有一个公共点,和C 1与C 2公共点的个数相同. 三、探究与创新13.已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解 (1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t 消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0,将⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ代入x 2+y 2-8x -10y +16=0得,ρ2-8ρcosθ-10ρsin θ+16=0,∴C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0; (2)C 2的普通方程为x 2+y 2-2y =0,由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0, 解得⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =0,y =2.∴C 1与C 2的交点的极坐标分别为⎝⎛⎭⎪⎫2,π4,⎝ ⎛⎭⎪⎫2,π2.二 圆锥曲线的参数方程[学习目标]1.掌握椭圆的参数方程及应用.2.了解双曲线、抛物线的参数方程.3.能够利用圆锥曲线的参数方程解决最值、有关点的轨迹问题. [知识链接]1.椭圆的参数方程中,参数φ是OM 的旋转角吗? 提示 椭圆的参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数)中的参数φ不是动点M (x ,y )的旋转角,它是点M 所对应的圆的半径OA (或OB )的旋转角,称为离心角,不是OM 的旋转角. 2.双曲线的参数方程中,参数φ的三角函数sec φ的意义是什么? 提示 sec φ=1cos φ,其中φ∈[0,2π)且φ≠π2,φ≠32π. 3.类比y 2=2px (p >0),你能得到x 2=2py (p >0)的参数方程吗?提示 ⎩⎪⎨⎪⎧x =2pt ,y =2pt 2(p >0,t 为参数,t ∈R .) [预习导引] 1.椭圆的参数方程2.双曲线的参数方程3.抛物线的参数方程(1)抛物线y 2=2px 的参数方程是⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t ∈R ,t 为参数).(2)参数t 表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.要点一 椭圆参数方程的应用 例1 已知A 、B 分别是椭圆x 236+y 29=1的右顶点和上顶点,动点C 在该椭圆上运动,求△ABC 重心G 的轨迹的普通方程.解 由题意知A (6,0),B (0,3).由于动点C 在椭圆上运动,故可设动点C 的坐标为(6cos θ,3sin θ),点G 的坐标为(x ,y ),由三角形重心的坐标公式可得⎩⎪⎨⎪⎧x =6+0+6cos θ3,y =0+3+3sin θ3(θ为参数),即⎩⎪⎨⎪⎧x =2+2cos θ,y =1+sin θ.故重心G 的轨迹的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =1+sin θ(θ为参数).规律方法 本题的解法体现了椭圆的参数方程对于解决相关问题的优越性.运用参数方程显得很简单,运算更简便.跟踪演练1 已知曲线C 1:⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t (t 为参数),曲线C 2:x 264+y 29=1.(1)化C 1为普通方程,C 2为参数方程;并说明它们分别表示什么曲线?(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:x -2y -7=0距离的最小值.解 (1)由⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t ,得⎩⎪⎨⎪⎧cos t =x +4,sin t =y -3. ∴曲线C 1:(x +4)2+(y -3)2=1,C 1表示圆心是(-4,3),半径是1的圆.曲线C 2:x 264+y 29=1表示中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆.其参数方程为⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ,(θ为参数)(2)依题设,当t =π2时,P (-4,4);且Q (8cos θ,3sin θ),故M ⎝ ⎛⎭⎪⎫-2+4cos θ,2+32sin θ. 又C 3为直线x -2y -7=0,M 到C 3的距离d =55|4cos θ-3sin θ-13| =55|5cos(θ+φ)-13|, 从而当cos θ=45,sin θ=-35时,⎝ ⎛⎭⎪⎫其中φ由sin φ=35,cos φ=45确定,cos(θ+φ)=1,d 取得最小值855.要点二 双曲线参数方程的应用例2 求证:双曲线x 2a 2-y 2b 2=1(a >0,b >0)上任意一点到两渐近线的距离的乘积是一个定值.证明 由双曲线x 2a 2-y 2b2=1,得两条渐近线的方程是:bx +ay =0,bx -ay =0,设双曲线上任一点的坐标为(a sec φ,b tan φ), 它到两渐近线的距离分别是d 1和d 2,则d 1·d 2=|ab sec φ+ab tan φ|b 2+a 2·|ab sec φ-ab tan φ|b 2+(-a )2=|a 2b 2(sec 2φ-tan 2φ)|a 2+b 2=a 2b2a 2+b 2(定值).规律方法 在研究有关圆锥曲线的最值和定值问题时,使用曲线的参数方程非常简捷方便,其中点到直线的距离公式对参数形式的点的坐标仍适用,另外本题要注意公式sec 2φ-tan 2φ=1的应用.跟踪演练2 如图,设P 为等轴双曲线x 2-y 2=1上的一点,F 1、F 2是两个焦点,证明:|PF 1|·|PF 2|=|OP |2.证明 设P (sec φ,tan φ),∵F 1(-2,0),F 2(2,0), ∴|PF 1|=(sec φ+2)2+tan 2φ =2sec 2φ+22sec φ+1, |PF 2|=(sec φ-2)2+tan 2φ=2sec 2φ-22sec φ+1,|PF 1|·|PF 2|=(2sec 2φ+1)2-8sec 2φ=2sec 2φ-1. ∵|OP |2=sec 2φ+tan 2φ=2sec 2φ-1, ∴|PF 1|·|PF 2|=|OP |2. 要点三 抛物线参数方程的应用例3 设抛物线y 2=2px 的准线为l ,焦点为F ,顶点为O ,P 为抛物线上任一点,PQ ⊥l 于Q ,求QF 与OP 的交点M 的轨迹方程.解 设P 点的坐标为(2pt 2,2pt )(t 为参数), 当t ≠0时,直线OP 的方程为y =1tx ,QF 的方程为y =-2t ⎝⎛⎭⎪⎫x -p 2,它们的交点M (x ,y )由方程组⎩⎪⎨⎪⎧y =1txy =-2t ⎝ ⎛⎭⎪⎫x -p 2确定,两式相乘,消去t ,得y 2=-2x ⎝ ⎛⎭⎪⎫x -p 2,∴点M 的轨迹方程为2x 2-px +y 2=0(x ≠0).当t =0时,M (0,0)满足题意,且适合方程2x 2-px +y 2=0. 故所求的轨迹方程为2x 2-px +y 2=0.规律方法 1.抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数),参数t 为任意实数,它表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.2.用参数法求动点的轨迹方程,其基本思想是选取适当的参数作为中间变量,使动点的坐标分别与参数有关,从而得到动点的参数方程,然后再消去参数,化为普通方程.跟踪演练3 已知抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E ,若|EF |=|MF |,点M 的横坐标是3,则p =________. 解析 根据抛物线的参数方程可知抛物线的标准方程是y 2=2px ,所以y 2M =6p ,所以E ⎝ ⎛⎭⎪⎫-p 2,±6p ,F ⎝ ⎛⎭⎪⎫p 2,0,所以p 2+3=p 2+6p ,所以p 2+4p -12=0,解得p =2(负值舍去).答案 21.圆的参数方程⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ中的参数θ是半径OM 的旋转角,椭圆参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ中的参数φ是椭圆上点M 的离心角.2.椭圆(x -m )2a 2+(y -n )2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =m +a cos φ,y =n +b sin φ(φ为参数).3.双曲线的参数方程中,参数φ的三角函数cot φ、sec φ、csc φ的意义分别为cot φ=1tan φ,sec φ=1cos φ,csc φ=1sin φ. 4.抛物线y 2=2px 的参数方程⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数),由于y x =1t ,因此t 的几何意义是抛物线的点(除顶点外)与抛物线的顶点连线的斜率的倒数.5.利用圆锥曲线的参数方程,可以方便求解一些需要曲线上点的两个坐标独立表示的问题,如求最大值、最小值问题、轨迹问题等.1.参数方程⎩⎪⎨⎪⎧x =e t+e -t,y =2(e t -e -t)(t 为参数)的普通方程是( ) A.抛物线 B.一条直线 C.椭圆D.双曲线解析 由参数方程⎩⎪⎨⎪⎧2x =2e t+2e -t,y =2(e t -e -t)平方相减可得4x 2-y 2=16,即x 24-y 216=1,故答案为D. 答案 D2.椭圆⎩⎪⎨⎪⎧x =4+5cos φ,y =3sin φ(φ为参数)的焦点坐标为( )A.(0,0),(0,-8)B.(0,0),(-8,0)C.(0,0),(0,8)D.(0,0),(8,0)解析 利用平方关系化为普通方程:(x -4)225+y29=1.∴焦点(0,0),(8,0). 答案 D3.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2,y =2+sin α(α为参数)表示的普通方程是________.解析 因x 2=1+sin α,y 2=2+sin α,所以y 2-x 2=1,又因x =sinα2+cos α2=2sin ⎝ ⎛⎭⎪⎫α2+π4,所以答案为y 2-x 2=1(|x |≤2且y ≥1). 答案 y 2-x 2=1(|x |≤2且y ≥1)4.点P (1,0)到曲线⎩⎪⎨⎪⎧x =t 2,y =2t (参数t ∈R )上的点的最短距离为( )A.0B.1C. 2D.2解析 d 2=(t 2-1)2+4t 2=(t 2+1)2.∵t ∈R ,∴d 2min =1,∴d min =1. 答案 B5.已知点P 是椭圆x 24+y 2=1上任意一点,求点P 到直线l :x +2y =0的距离的最大值. 解 因为P 为椭圆x 24+y 2=1上任意一点,故可设P (2cos θ,sin θ),其中θ∈[0,2π).又直线l :x +2y =0. 因此点P 到直线l 的距离d =|2cos θ+2sin θ|12+22=22⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫θ+π45.又θ∈[0,2π),∴d max =225=2105, 即点P 到直线e :x +2y =0的距离的最大值为2105.一、基础达标1.参数方程⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数)化为普通方程为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲 参数方程整合提升知识网络⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧化参数方程与普通方程互程渐开线与摆线的参数方直线的参数方程圆锥曲线的参数方程特殊曲线的参数方程参数方程的定义参数方程 知识回顾1.直线⎩⎨⎧+=+=ααsin ,cos 00t y y t x x (t 是参数).2.圆⎩⎨⎧==θθsin ,cos R y R x (θ是参数).3.椭圆中心在(0,0)⎩⎨⎧==t b y t a x sin ,cos (0≤t≤π)(t 是参数).中心在(x 0,y 0)⎩⎨⎧+=+=tb y y t a x x sin ,cos 00(0≤t≤π)(t 是参数).4.双曲线⎩⎨⎧==θθtan ,sec b y a x (θ是参数).5.抛物线⎩⎨⎧==pty pt x 2,22(t 是参数).6.渐开线⎩⎨⎧-=•+=)cos (sin ),sin (cos t t t a y t t t a x (t 是参数).7.摆线⎩⎨⎧-=-=)cos 1(),sin (t a y t t a x (t 是参数).典例精讲【例1】 过点P(2,-2)作直线交椭圆162522y x +=1于A,B 两点,求AB 中点M 的轨迹方程. 解:设M(x 0,y 0),直线的倾斜角为α,则直线的参数方程为⎩⎨⎧+=+=ααsin ,cos 00t y y t x x (t 为参数).代入椭圆方程16(x 0+tcosα)2+25(y 0+tsinα)2-16×25=0⇒(16cos 2α+25sin 2α)t 2+(32cosα·x 0+50sinα·y 0)t+16x 02+25y 02-16×25=0,由于(x 0,y 0)为中点, ∴t 1+t 2=0,即32x 0cos α+50y 0sin α=032x 0+50y 0·ααcos sin =0, k=22cos sin 00-+=x y αα. 代入32x 0+50y 0·2200-+x y =0⇒32(x-1)2+50(y+1)2=822541)1(1641)1(22++-⇒y x =1. 各个击破类题演练 1过点P(1,1)作直线l 交椭圆41622y x +=1于A,B 两点,若P 为AB 中点,求直线l 的方程. 解:设直线l 的倾斜角为α,则l 的参数方程为⎩⎨⎧+=+=ααsin 1,cos 1t y t x (t 为参数).将其代入椭圆方程(tcosα+1)2+4(tsinα+1)2-16=0,得(cos 2α+4sin 2α)t 2+2(cosα+4sinα)t -11=0. 因为P (1,1)为AB 的中点, ∴t 1+t 2=0,即cosα+4sinα=0. ∴ααcos sin =tanα=k=-41. 则所求直线l 的方程为x+4y-5=0. 变式提升 1过点P (2,-1)作直线l 交曲线xy=1于A,B 两点,求AB 中点M 的轨迹方程. 解:设AB 中点M(x 0,y 0),l 的倾斜角为α,则l 的参数方程为⎩⎨⎧+=+=ααsin ,cos 00t y y t x x (t 为参数), 代入xy=1,即(tcosα+x 0)(tsinα+y 0)=1⇒t 2sinαcosα+(y 0cosα+x 0sinα)t+x 0y 0-1=0. 由于M(x 0,y 0)为弦中点,则t 1+t 2=0. ∴y 0cos α+x 0sin α=0⇒y 0+x 0ααcos sin =0. 将ααcos sin =tanα=k=2100-+x y 代入,则y 0+x 02100-+x y =0⇒2xy+x-2y=0为所求.【例2】 已知圆系的方程为x 2+y 2-2acosφ·x -2asinφ·y=0(a>0).(1)求圆系圆心的轨迹方程;(2)证明圆心轨迹与动圆相交所得的公共弦长为定值.解:(1)将圆系方程配方:(x-acosφ)2+(y-asinφ)2=a 2.所以圆心的轨迹的参数方程为⎩⎨⎧==ϕϕsin ,cos a y a x (φ为参数).消去φ,得x 2+y 2=a 2.(2)两圆公共弦所在直线方程由方程组⎪⎩⎪⎨⎧=+=--+.,0sin 2cos 222222a y x ay ax y x ϕϕ求得2axcosφ+2aysinφ-a 2=0,圆x 2+y 2=a2圆心为(0,0),弦心距d=2sin 4cos 422222a a a a =+ϕϕ. 定圆的弦心距为定值,则弦长为定值,这个定值为d=34222=-a a a.温馨提示题干中的“圆系”的含义是指当参数φ变化时的一系列圆,这也是参数方程的一种形式.类题演练 2如图,圆x 2+y 2=r 2的弦AB 垂直于x 轴,P 为AB 上一点,且|AP|·|PB|=a 2(a≤r)为定值,求点P 的轨迹方程.解:设A(rcosφ,rsinφ),则点B(rcosφ,-rsinφ),P(x,y). ∵AB⊥x 轴,∴x=rcosφ,|AP|=|rsinφ-y|,|PB|=|y+rsinφ|.∵|AP|·|PB|=|(rsinφ-y)·(rsinφ+y)|=a 2|y 2-r 2sin 2φ|=a 2,∵|y|≤|rsinφ|,∴r 2sin 2φ-y 2=a 2. ∴y 2+a 2=r 2sin 2φ.又x=rcos φ, ∴x 2+y 2+a 2=r 2x 2+y 2=r 2-a 2. 变式提升 2抛物线y 2=2px,一组平行弦的斜率为k,求弦中点的轨迹方程.解:设中点M(x 0,y 0),平行弦倾斜角为α,则平行弦所在直线的参数方程为⎩⎨⎧+=+=ααsin ,cos 00t y y t x x (t 为参数,ααcos sin =k). 代入抛物线方程有(tsinα+y 0)2-2p(tcosα+x 0)=0⇒t 2sin 2α+2(y 0sin α-pcos α)t+y 02-2px 0=0. ∵M(x 0,y 0)为弦中点,∴t 1+t 2=0,即y 0sinα-pcosα=0.∴y=k p ,将y=k p 代入y 2=2px,得22k p =2px,x=22k p .∴y=k p且x>22k p 为一条射线. 【例3】 过抛物线的焦点F 的直线交抛物线于A,B 两点(AB 不与对称轴垂直),AB 的垂直平分线交对称轴于S,求证:|FS|=21|AB|.解:设抛物线方程为y 2=2px(p>0),AB 的倾斜角为α(α≠2π), 则直线AB 的参数方程是⎪⎩⎪⎨⎧=+=ααsin ,cos 2t y t p x (t 为参数). 代入抛物线方程:t 2sin 2α-2p(2p +tcosα)=0⇒t 2sin 2α-2ptcosα-p 2=0. |AB|=|t 1-t 2|=αααα22242221221sin 2sin 4sin cos 44)(pp p t t t t =+=++. 又如图,|FP|=21|t 1+t 2|=αα2sin |cos |p , 在Rt△PSF 中,|FS|=αα2sin |cos |||pPF =,∴|FS|=21|AB|. 类题演练 3点A,B 在椭圆2222b y a x +=1上,O 为原点,OA⊥OB,求证:2211OB OA +为定值. 解:设∠AOx=α,OA=t,则∠BOx=α+2π, 设OB=t′,则OA,OB 所在直线方程分别为⎪⎪⎩⎪⎪⎨⎧+'=+'=⎩⎨⎧==),2sin(),2cos(,sin ,cos παπαααt y t x t y t x 即⎩⎨⎧'='-=.cos ,sin ααt y t x 分别代入椭圆方程中,得222222sin cos bt a t αα+=1.∴222222sin cos 11b a t OA αα+==, 同理,222222cos sin 11b a t OB αα+='=. ∴222222222222cos sin sin cos 1111bb a a t t OB OA αααα+++='+=+ 2211ba +==定值. 【例4】 过点P(2,2)作直线l 被两平行线x+y+1=0,x+y-1=0截得的线段长为2,求l 的方程.解:设l 的倾斜角为α,则l 的方程为⎩⎨⎧+=+=ααsin 2,cos 2t y t x (t 为参数).分别代入方程,得tcosα+2+tsinα+2+1=0,t 1=ααcos sin 5+-;tcosα+2+tsinα+2-1=0,t 2=ααcos sin 3+-,很明显t 1,t 2符号相同,则|t 1-t 2|=|ααcos sin 5+--ααcos sin 3+-|=2.∴|cos sin |2αα+=2.∴sinα+cosα=±1.由于0≤α<π,∴α=0或α=2π,得两直线方程为x=2或y=2. 类题演练 4过原点作直线l,交直线2x-y-1=0于A,2x+y+3=0于B,若原点为线段AB 的中点,求l 的方程. 解:设l 的倾斜角为α,则l 的参数方程为⎩⎨⎧==ααsin ,cos t y t x (t 为参数).将方程分别代入两直线方程中,2tcosα-tsinα=1得t 1=ααsin cos 21-,2tcos α+tsin α+3=0,t 2=ααsin cos 23+-.∵O (0,0)为AB 中点,∴t 1+t 2=0.ααsin cos 21-ααsin cos 23+-=0⇒4cos α=4sin α.∴k=tanα=1.所求l 的方程为y=x. 变式提升直线系方程为xcosφ+ysinφ=2,圆的参数方程为⎩⎨⎧==ϕϕsin 2,cos 2y x (φ为参数),则直线与圆的位置关系为( )A.相交不过圆心降机B.相交且经过圆心C.相切D.相离解析:圆的普通方程为x 2+y 2=4,圆心(0,0)到直线xcosθ+ysinθ-2=0的距离等于d=12=2等于半径,所以直线与圆相切. 答案:C。