中考数学专题复习:有理数
中考数学复习《有理数》专项练习题-带有答案
中考数学复习《有理数》专项练习题-带有答案一、选择题1.下列语句正确的是()A.“+15米”表示向东走15米B.0℃表示没有温度C.−a可以表示正数D.0既是正数也是负数2.在数3 0 −π215110.2121121112 -8.24中,有理数有()A.1个B.2个C.3个D.4个3.2023年9月23日,第19届亚运会在杭州开幕.据报道,开幕式的跨媒体阅读播放量达到503000000次,将503000000用科学记数法表示为()A.503×106B.5.03×108C.5.03×109D.0.503×1094.下列各式中不成立的是().A.|−5|=5B.−|5|=−|−5|C.−|−5|=5D.−(−5)=55.如图,25的倒数在数轴上表示的点位于下列两个点之间()A.点E和点F B.点F和点G C.点G和点H D.点H和点I6.若|a﹣4|=|a|+|﹣4|,则a的值是()A.任意有理数B.任意一个非负数C.任意一个非正数D.任意一个负数7.如图,a,b两个数在数轴上的位置如图所示,则下列各式正确的是()A.a+b<0B.ab<0C.b−a<0D.ab>08.计算(−2)2022+(−2)2023的结果是()A.−2B.2 C.−22022D.22023二、填空题9.绝对值小于5且大于2的整数是.10.−14−13(填<或>).11.在-3.6 -10% 227π 0 2这六个数中,非负有理数有个.12.若p,q互为倒数,m,n互为相反数,则pq-m-n-313= 13.若|m−2023|+(n+2024)2=0,则(m+n)2023=三、解答题14.计算题:(1)(−7)−(+5)+(−4)−(−10)(2)(12−59+712)×(−36)(3)16÷(−2)3−(−18)×(−4)(4)−13−(1−0.5)×13×[2−(−3)2]15.在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来﹣(﹣3) |﹣2| 0 (﹣1)3 -3.5 −85−2372.16.x和y互为相反数,m与n互为倒数,|a|=1,求a2﹣(x+y+mn)a+(x+y)2012+(﹣mn)2013的值.17.某食品厂在产品中抽出20袋样品,检查其质量是否达标,超过标准的部分用正数表示,不足的部分用负数表示:与标准质量的差/克−3−2−1.50 1 1.5 2.5袋数 1 4 3 4 3 2 3(1)这批样品的总质量比标准总质量多还是少?多或少几克?(2)若每袋的标准质量为200克,求这批样品平均每袋的质量是多少克?18.四个有理数A、B、C、D,其中,与6相加得0的数是A,C是13的倒数.(1)如果A+C=2B,求B的值:(2)如果A×B= D,求D的值:(3)计算:(A-D)×C÷B.参考答案1.C2.D3.B4.C5.C6.C7.B8.C9.±3,±410.>11.312.−21313.-114.(1)解:(-7)-(+5)+(-4)-(-10)=(-7)+(-5)+(-4)+10=-6(2)解:(12−59+712)×(−36)= 12×(−36)−59×(−36)+712×(−36)=-18+20-21=-19(3)解:16÷(−2)3−(−18 )×(−4)=16÷(-8)- 12=(-2)- 12=-2 12(4)解:−13−(1−0.5)×13×[2−(−3)2]=-1- 12×13×(-7)=-1+ 76= 1615.解:∵−(−3)=3|−2|=2(−1)3=−1;∴在数轴上表示,如图所示:按从小到大的顺序用“<”把这些数连接起来为:−3.5<−85<(−1)3<−23<0<|−2|<−(−3)<72.16.解:∵x与y互为相反数,m与n互为倒数,|a|=1∴x+y=0,mn=1,a=±1∴a2﹣(x+y+mn)a+(x+y)2012+(﹣mn)2013=a2﹣(0+1)a+02012+(﹣1)2013=a2﹣a﹣1.当a=1时,a2﹣a﹣1=12﹣1﹣1=﹣1.当a=﹣1时,a2﹣a﹣1=(﹣1)2﹣(﹣1)﹣1=1+1﹣1=1.∴a2﹣(x+y+mn)a+(x+y)2012+(﹣mn)2013的值为1或﹣1.17.(1)解:(−3)×1+(−2)×4+(−1.5)×3+0×4+1×3+1.5×2+2.5×3 =−3−8−4.5+0+3+3+7.5=−2(克)即这批样品的总质量比标准总质量少,少2克;(2)解:200×20−2= 4000−2= 3998(克)3998÷20=199.9(克)即这批样品平均每袋的质量是199.9克.18.(1)解:∵与6相加得0的数是A, C是13的倒数.∴A=-6,C=3∵A+C=2B∴-6+3= 2B∴B=−32(2)解:∵A ×B=D ,且B=−32,A=-6 ∴D=-6×(−32)=9(3)解:∵A=-6,B=−32,C=3, D=9∴(A-D) ×C+B= (-6-9)×3÷(−32)=-15×3×(−23)=30。
专题01 有理数篇(解析版)-2023年中考数学必考考点总结
知识回顾微专题专题01有理数2023年中考数学必考考点总结考点一:有理数之正数和负数1.正数和负数的定义:大于0的数叫做正数,小于0的数叫做负数。
0既不是正数也不是负数。
2.正数和负数的意义:表示具有相反意义的两个量。
3.正负号的化简:同号为正,异号为负。
1.(2022•西宁)下列各数是负数的是()A .0B .21C .﹣(﹣5)D .﹣5【解答】解:A .0既不是正数也不是负数,故A 不符合题意;B.>0,故B 不符合题意;C .﹣(﹣5)=5>0,故C 不符合题意;D .﹣<0,故D 符合题意.故选:D .2.(2022•贵阳)下列各数为负数的是()A .﹣2B .0C .3D .5【分析】根据小于0的数是负数即可得出答案.【解答】解:A .﹣2<0,是负数,故本选项符合题意;B .0不是正数,也不是负数,故本选项不符合题意;C .3>0,是正数,故本选项不符合题意;D .>0,是正数,故本选项不符合题意;故选:A .3.(2022•益阳)四个实数﹣2,1,2,31中,比0小的数是()A .﹣2B .1C .2D .31【分析】利用零大于一切负数来比较即可.【解答】解:根据负数都小于零可得,﹣<0.故选:A .4.(2022•雅安)在﹣3,1,21,3中,比0小的数是()A .﹣3B .1C .21D .3【分析】比0小的是负数.【解答】解:∵﹣<0,故选A .5.(2022•襄阳)若气温上升2℃记作+2℃,则气温下降3℃记作()A .﹣2℃B .+2℃C .﹣3℃D .+3℃【分析】根据上升与下降表示的是一对意义相反的量进行表示即可.【解答】解:∵气温上升2℃记作+2℃,∴气温下降3℃记作﹣3℃.故选:C .6.(2022•河池)如果将“收入50元”记作“+50元”,那么“支出20元”记作()A .+20元B .﹣20元C .+30元D .﹣30元【分析】根据正数与负数时表示具有相反意义的量直接得出答案.【解答】解:∵收入50元,记作“+50元”.且收入跟支出意义互为相反.∴支出20元,记作“﹣20元”.故选:B .7.(2022•桂林)在东西向的马路上,把出发点记为0,向东与向西意义相反.若把向东走2km 记做“+2km ”,那么向西走1km 应记做()A .﹣2kmB .﹣1kmC .1kmD .+2km知识回顾微专题【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:若把向东走2km 记做“+2km ”,那么向西走1km 应记做﹣1km .故选:B .8.(2022•云南)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A .10℃B .0℃C .﹣10℃D .﹣20℃【分析】根据正数和负数可以用来表示具有相反意义的量解答即可.【解答】解:∵零上10℃记作+10℃,∴零下10℃记作:﹣10℃,故选:C .9.(2022•柳州)如果水位升高2m 时水位变化记作+2m ,那么水位下降2m 时水位变化记作.【分析】根据正负数的意义求解.【解答】解:由题意,水位上升为正,下降为负,∴水位下降2m 记作﹣2m .故答案为:﹣2m .10.(2022•百色)负数的概念最早出现在中国古代著名的数学专著《九章算术》中,负数与对应的正数“数量相等,意义相反”,如果向东走5米,记作+5米,那么向西走5米,可记作米.【分析】利用正负数可以表示具有相反意义的量.【解答】解:因为向东和向西是具有相反的意义,向东记作正数,则向西就记作负数.故正确答案为:﹣5.考点二:有理数之相反数1.相反数的定义:只有符号不同的两个数互为相反数。
2024年中考数学真题汇编专题二 有理数及其运算+答案详解
2024年中考数学真题汇编专题二 有理数及其运算+答案详解(试题部分)一、单选题1.(2024·河南·中考真题)如图,数轴上点P 表示的数是( )A .1−B .0C .1D .22.(2024·四川遂宁·中考真题)中国某汽车公司坚持“技术为王,创新为本”的发展理念,凭借研发实力和创新的发展模式在电池、电子、乘用车、商用车和轨道交通等多个领域发挥着举足轻重的作用.2024年第一季度,该公司以62万辆的销售成绩稳居新能源汽车销量榜榜首,市场占有率高达19.4%.将销售数据用科学记数法表示为( )A .60.6210⨯B .66.210⨯C .56.210´D .56210⨯3.(2024·湖南·中考真题)据《光明日报》2024年3月14日报道:截至2023年末,我国境内有效发明专利量达到401.5万件,高价值发明专利占比超过四成,成为世界上首个境内有效发明专利数量突破400万件的国家,将4015000用科学记数法表示应为( )A .70.401510⨯B .64.01510⨯C .540.1510⨯D .34.01510⨯4.(2024·河南·中考真题)据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示为( )A .8578410⨯B .105.78410⨯C .115.78410⨯D .120.578410⨯ 5.(2024·河南·中考真题)计算3···a a a a ⎛⎫ ⎪ ⎪⎝⎭个的结果是( ) A .5a B .6a C .3a a + D .3a a6.(2024·天津·中考真题)据2024年4月18日《天津日报》报道,天津市组织开展了第43届“爱鸟周”大型主题宣传活动.据统计,今春过境我市候鸟总数已超过800000只.将数据800000用科学记数法表示应为( )A .70.0810⨯B .60.810⨯C .5810⨯D .48010⨯7.(2024·四川乐山·中考真题)2023年,乐山市在餐饮、文旅、体育等服务消费表现亮眼,网络零售额突破400亿元,居全省地级市第一.将40000000000用科学记数法表示为( )A .8410⨯B .9410⨯C .10410⨯D .11410⨯8.(2024·广西·中考真题)广西壮族自治区统计局发布的数据显示,2023年全区累计接待国内游客8.49亿人次.将849000000用科学记数法表示为( )A .90.84910⨯B .88.4910⨯C .784.910⨯D .684910⨯ 9.(2024·黑龙江绥化·中考真题)实数12025−的相反数是( ) A .2025 B .2025− C .12025− D .1202510.(2024·甘肃临夏·中考真题)据央视财经《经济信息联播》消息:甘肃天水凭借一碗香喷喷的麻辣烫成为最“热辣滚烫”的顶流.2024年3月份,天水市累计接待游客464万人次,旅游综合收入27亿元.将数据“27亿”用科学记数法表示为( )A .82.710⨯B .100.2710⨯C .92.710⨯D .82710⨯11.(2024·吉林·中考真题)长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为( )A .102.0410⨯B .92.0410⨯C .820.410⨯D .100.20410⨯12.(2024·四川达州·中考真题)有理数2024的相反数是( )A .2024B .2024−C .12024D .12024− 13.(2024·重庆·中考真题)下列各数中最小的数是( )A .1−B .0C .1D .214.(2024·广东·中考真题)2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为( )A .43.8410⨯B .53.8410⨯C .63.8410⨯D .538.410⨯15.(2024·重庆·中考真题)下列四个数中,最小的数是( )A .2−B .0C .3D .12− 16.(2024·四川德阳·中考真题)下列四个数中,比2−小的数是( )A .0B .1−C .12−D .3−17.(2024·四川广安·中考真题)下列各数最大的是( )A .2−B .12−C .0D .118.(2024·云南·中考真题)中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作100+米,则向南运动100米可记作( )A .100米B .100−米C .200米D .200−米19.(2024·四川广元·中考真题)将1−在数轴上对应的点向右平移2个单位,则此时该点对应的数是( )A .1−B .1C .3−D .320.(2024·四川凉山·中考真题)下列各数中:553025.827−−−+,,,,,,负数有( ) A .1个 B .2个 C .3个 D .4个21.(2024·江苏苏州·中考真题)用数轴上的点表示下列各数,其中与原点距离最近的是( )A .3−B .1C .2D .322.(2024·湖北·中考真题)在生产生活中,正数和负数都有现实意义.例如收入20元记作20+元,则支出10元记作( )A .10+元B .10−元C .20+元D .20−元23.(2024·湖南·中考真题)在日常生活中,若收入300元记作300+元,则支出180元应记作( )A .180+元B .300+元C .180−元D .480−元24.(2024·河北·中考真题)如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )A .B .C .D . 25.(2024·广东广州·中考真题)四个数10−,1−,0,10中,最小的数是( )A .10−B .1−C .0D .1026.(2024·贵州·中考真题)下列有理数中最小的数是( )A .2−B .0C .2D .427.(2024·浙江·中考真题)以下四个城市中某天中午12时气温最低的城市是( )A .北京B .济南C .太原D .郑州 28.(2024·四川内江·中考真题)2023年我国汽车出口491万辆,首次超越日本,成为全球第一大汽车出口国,其中491万用科学记数法表示为( )A .44.9110⨯B .54.9110⨯C .64.9110⨯D .74.9110⨯29.(2024·广西·中考真题)下列选项记录了我国四个直辖市某年一月份的平均气温,其中气温最低的是( )A .B .C .D .30.(2024·福建·中考真题)据《人民日报》3月12日电,世界知识产权组织近日公布数据显示,2023年,全球PCT (《专利合作条约》)国际专利申请总量为27.26万件,中国申请量为69610件,是申请量最大的来源国.数据69610用科学记数法表示为( )A .696110⨯B .2696.110⨯C .46.96110⨯D .50.696110⨯31.(2024·北京·中考真题)为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A .16810⨯B .17210⨯C .17510⨯D .18210⨯32.(2024·湖北武汉·中考真题)国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近300000亿元,同比增长5.3%,国家高质量发展取得新成效.将数据300000用科学记数法表示是( )A .50.310⨯B .60.310⨯C .5310⨯D .6310⨯33.(2024·浙江·中考真题)2024年浙江经济一季度GDP 为201370000万元,其中201370000用科学记数法表示为( )A .920.13710⨯B .80.2013710⨯C .92.013710⨯D .82.013710⨯34.(2024·吉林·中考真题)若()3−⨯的运算结果为正数,则W 内的数字可以为( )A .2B .1C .0D .1−35.(2024·内蒙古赤峰·中考真题)央视新闻2024年5月31日报道,世界最大清洁能源走廊今年一季度累计发电超52000000000度,为我国经济社会绿色发展提供了强劲动能.将数据52000000000用科学记数法表示为( )A .95.210⨯B .110.5210⨯C .95210⨯D .105.210⨯36.(2024·内蒙古包头·中考真题)若,m n 互为倒数,且满足3m mn +=,则n 的值为( )A .14B .12C .2D .437.(2024·四川内江·中考真题)下列四个数中,最大数是( )A .2−B .0C .1−D .338.(2024·甘肃·中考真题)下列各数中,比2−小的数是( )A .1−B .4−C .4D .139.(2024·山东威海·中考真题)一批食品,标准质量为每袋454g .现随机抽取4个样品进行检测,把超过标准质量的克数用正数表示,不足的克数用负数表示.那么,最接近标准质量的是( )A .7+B .5−C .3−D .1040.(2024·内蒙古赤峰·中考真题)如图,数轴上点A ,M ,B 分别表示数a a b b +,,,若AM BM >,则下列运算结果一定是正数的是( )A .a b +B .a b −C .abD .a b −二、填空题41.(2024·黑龙江大兴安岭地·中考真题)国家统计局公布数据显示,2023年我国粮食总产量是13908亿斤,将13908亿用科学记数法表示为 .42.(2024·江苏连云港·中考真题)如果公元前121年记作121−年,那么公元后2024年应记作 年. 43.(2024·湖北·中考真题)写一个比1−大的数 .44.(2024·湖南·中考真题)计算:()2024−−= .45.(2024·湖北武汉·中考真题)中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作3+℃,则零下2记作 ℃.46.(2024·陕西·中考真题)小华探究“幻方”时,提出了一个问题:如图,将0,2−,1−,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是 .(写出一个符合题意的数即可)47.(2024·黑龙江齐齐哈尔·中考真题)共青团中央发布数据显示:截至2023年12月底,全国共有共青团员7416.7万名.将7416.7万用科学记数法表示为 .48.(2024·上海·中考真题)科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的 倍.(用科学记数法表示) 49.(2024·四川广元·中考真题)2023年10月诺贝尔物理学奖授予三位“追光”科学家,以表彰他们“为研究物质中的电子动力学而产生阿秒光脉冲的实验方法”.什么是阿秒?1阿秒是1810−秒,也就是十亿分之一秒的十亿分之一.目前世界上最短的单个阿秒光学脉冲是43阿秒.将43阿秒用科学记数法表示为秒.50.(2024·北京·中考真题)联欢会有A,B,C,D四个节目需要彩排.所有演员到场后节目彩排开始。
有理数与实数中考专题复习-含答案
有理数与实数专题复习专题一 有理数与无理数的意义知识回顾1. 实数的分类2.在实际生活中正负数表示_____的量.典例分析例1:(2010四川巴中)下列各数:2π,错误!未找到引用源。
0.23·,cos60°,227,0.30003……,1 )A .2 个B .3 个C .4 个D .5 个解析:无理数是无限不循环的小数,其中的无理数有2π,0.30003……,1故选C. 评注:解决此类问题的关键是准确把握有理数,无理数及实数的概念,不能片面的从形式上判断属于哪一类数,另外对有关实数进行归类时,必须对已给出的某些数进行化简,以最简的结果进行归类.专题训练一1.(2010年南宁)下列所给的数中,是无理数的是( )A .2B . 2C .12D .0.1 2.(2010年湖北襄樊)下列说法错误的是( )A 2± 是无理数 C D .2是分数3.(2010年上海)下列实数中,是无理数的为( )A . 3.14B . 13C . 3D . 9 4.(2010安徽)在-1,0,1,2这四个数中,既不是正数也不是负数的是( )A .1-B .0C .1D .2专题二 实数的有关概念知识回顾1. 数轴:规定了___、____、___的直线叫数轴.数轴上的点与___是一一对应.2.相反数:到原点的距离相等且符号不同的两个数称为相反数,实数a 的相反数是__,零的相反数是__,a 与b 互为相反数,则_____;3.绝对值:在数轴上,表示一个数的点到原点的距离叫这个数的绝对值.⎪⎩⎪⎨⎧<=>=)0___()0(___)0(___||a a a a典例分析例1:(2010.湘潭)下列判断中,你认为正确的是( )A .0的绝对值是0B .31是无理数 C .|—2|的相反数是2 D .1的倒数是1-解析:A评注:解决本题的关键是弄清实数中的有关的概念,关于绝对值除了了解几何意义是表示点到原点的距离,还应理解“正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数”的内涵;关于无理数应从概念上突破:表示无限不循环小数;|—2|=2,2的相反数为-2;对于倒数,掌握它们的乘积为1.专题训练1.(2009年滨州)对于式子(8)--,下列理解:(1)可表示8-的相反数;(2)可表示1- 与8-的乘积;(3)可表示8-的绝对值;(4)运算结果等于8.其中理解错误的个数是( )A .0B .1C .2D .3 2.(2010年内蒙古鄂尔多斯)如果a 与1互为相反数,则a 等于( ).A .2B .2-C .1D .1-3.(2010年山东菏泽)负实数a 的倒数是( ).A .a -B .1aC .1a- D .a 4.(2010年绵阳)-2是2的( ).A .相反数B .倒数C .绝对值D .算术平方根5.(2010年镇江)31的倒数是 ;21-的相反数是 . 6.(2010年四川成都)若,x y 为实数,且20x ++=,则2010()x y +的值为________. 7.(2010吉林)如图,数轴上点A 所表示的数是_________.8(2010河南)若将三个数是 .专题三 实数的大小比较知识回顾比较实数大小的一般方法:① 性质比较法:正数大于___,负数____0,正数_____任何负数;② 数轴比较法:在数轴上的实数,右边的数总是比左边的数___;差值法:③ 设a ,b 是任意实数,如a -b .>0,则a ___b ,如a -b .<0,则a b ,如a -b =0,则a ___b ;④ 商值法:如a ÷b .>1,则a ___b ,如a ÷b .<1,则a ___b ,如a ÷b .=1,则a ___b ,⑤扩大法;⑥倒数比较法,当然还有分子、分母有理化和换元法等。
浙江中考数学备考专题有理数、无理数与实数含答案(精选5份)
2024年浙江中考数学备考专题有理数、无理数与实数5套含答案一、选择题(每题3分,共36分)1.x是最大的负整数,y是最小的正整数,z是绝对值最小的数,则x−y+z的值是().A.−2B.−1C.0D.22.大于-2.5且小于3.5的整数之和为().A.-3B.2C.0D.33.下列说法中,正确的是().A.两个负数的差一定是负数B.只有0的绝对值等于它本身C.有理数可以分为正有理数和负有理数D.只有0的相反数等于它本身4.下列4个式子,计算结果最小的是()A.−5+(−12)B.−5−(−12)C.−5×(−12)D.−5÷(−1 2)5.用四舍五入法,把4.76精确到十分位,取得的近似数是()A.5B.4.7C.4.8D.4.77 6.下列说法中正确的是()A.正数都带“+”号B.不带“+”号的数都是负数C.负数一定带“−”号D.带“−”号的数都是负数7.下列说法中正确的个数有()①最大的负整数是−1;②相反数是本身的数是正数;③有理数分为正有理数和负有理数;④数轴上表示−a的点一定在原点的左边;⑤几个有理数相乘,负因数的个数是奇数个时,积为负数.A.1个B.2个C.3个D.4个8.如图,a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,−a,b,−b按照从大到小的顺序排列,正确的是()A.b>−a>a>−b B.b>a>−a>−bC.−a>b>a>−b D.−a>−b>a>b9.已知a,b满足|a+3|+(b﹣2)2=0,则a+b的值为()A.1B.5C.﹣1D.﹣5 10.7个有理数相乘的积是负数,那么其中负因数的个数最多有()A.2种可能B.3种可能C.4种可能D.5种可能11.下列对于式子(−3)2的说法,错误的是()A.指数是2B.底数是−3C.幂为−3D.表示2个−3相乘12.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是()A.2,3B.3,3C.2,4D.3,4二、填空题(每题3分,共18分)13.绝对值大于2且不大于4的非负整数有.14.﹣123的倒数等于.15.某平台进行“天宫课堂”中国空间站全程直播.某一时刻观看人数达到3790000人.用科学记数法表示3790000=.16.若|a-1|与|b+2|互为相反数,则a+b-12的值为.17.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a-b+c.18.定义运算a∗b={a b(a≤b,a≠0)b a(a>b,a≠0),若(m−1)∗(m−3)=1,则m的值为.三、计算题(共8分)19.计算(1)(−134)−(+613)−2.25+103;(2)214×(−67)÷(12−2);(3)(−34+56−712)÷(−124);(4)−14−16×[2−(−3)2].四、解答题(共5题,共35分)20.把下列各数的序号填在相应的横线上:①﹣3.14,②2π,③﹣13,④0.618,⑤﹣√16,⑥0,⑦﹣1,⑧+3,⑨227,⑩﹣0.030030003……(每相邻两个3之间0的个数逐渐多1).整数集合:{ ……};分数集合:{ ……};无理数集合:{ ……}.21.在数轴上表示下列各数,并用“<”号把它们按照从小到大的顺序排列.3,−(−1),−1.5,−|−2|,−312.22.如果a、b互为相反数,c、d互为倒数,y+1没有倒数,x−1的绝对值等于2.那么代数式−2|a+b|+cdx+(y−1)(a+b−1)的值是多少?23.暑假《孤注一掷》成为了群众观影的首选,某市7月31日该电影首映日的售票量为1.1万张,8月1日到8月7日售票量的变化如下表(正号表示售票量比前一天多,负号表示售票量比前一天少):请根据以上信息,回答下列问题:(1)8月2日的售票量为多少万张?(2)8月7日与7月31日相比较,哪一天的售票量多?多多少万张?(3)若平均每张票价为50元,则8月1日到8月7日该市销售《孤注一掷》电影票共收入多少万元?24.2022年天猫平台“双十一”促销活动如火如荼地进行.小明发现天猫平台甲、乙、丙三家店铺在销售同一款标价均为30元的杯子,但三家的促销方式不同,具体优惠信息如下:(1)若小明想买25个该款杯子,请你帮小明分别计算一下甲、乙、丙三家店铺优惠后的实际价格,再挑选哪家店铺购买更优惠.(2)若小明想从丙店铺购买n个(n>100)该款杯子,请用含n的代数式表示优惠后购买的总价.(3)若小明想花费3000元在丙店铺来购买该款杯子,且恰好用完,则他能买多少个该款杯子?(注:假设小明均一次性购买)五、实践探究题(共3题,共23分)25.观察下列等式:第1个等式:a1=11×3=12×(1−13);第2个等式:a2=13×5=12×(13−15);第3个等式:a3=15×7=12×(15−17);…青解答下列问题:(1)按以上规律列出第5个等式:a5=.(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+⋯+a100的值.26.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为−1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为−2,点N所表示的数为4.(1)数所表示的点是【M,N】的好点;(2)如图3,A、B为数轴上两点,点A所表示的数为−20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?27.小江同学注意到妈妈手机中的电费短信(如下左图),对其中的数据产生了浓厚的兴趣,谷85度是什么意思电费是如何计算的?第一档与第二档又有什么关系?表1:宁波市居民生活用电标准(部分修改)【解读信息】通过互联网查询后获得上表(如表1).小江家采用峰谷电价计费,谷时用电量为85度,那么峰时用电量就是227−85=142度,由于小江家年用电量处在第一档,故9月份电费为:0.568×142+0.288×85=105.136≈105.14.第一档年用电量的上限为2760度,所以截至9月底小江家已经用电2760-581=2179度.不难发现,第二档所有电价均比第一档提高0.05元/度,第三档所有电价均比第一档提高0.3元/度.【理解信息】(1)若采用普通电价计费,小江家九月份的电费为元.(精确到0.01)(2)若采用峰谷电价计费,假设某月谷时用电量与月用电量的比值为m,那么处在第一档的1度电的电费可以表示成元.(用含有m的代数式表示)(3)【重构信息】12月份,小江家谷时用电量与月用电量的比值为0.2.请根据上述对话完成下列问题:①通过计算判断:截至12月底小江家的年用电量是否仍处于第一档?②12月份谁家的用电量多,多了多少?答案解析部分1.【答案】A 2.【答案】D 3.【答案】D 4.【答案】A 5.【答案】C 6.【答案】C 7.【答案】A 8.【答案】A 9.【答案】C 10.【答案】C 11.【答案】C 12.【答案】C 13.【答案】-3,-4 14.【答案】﹣3515.【答案】3.79×106 16.【答案】−3217.【答案】2 18.【答案】1或419.【答案】(1)解:原式=(−134−214)+(−613+313)=−4−3=−7;(2)解:原式=94×(−67)÷(−32)=94×(−67)×(−23)=94×67×23=97; (3)解:原式=(−34+56−712)×(−24)=−34×(−24)+56×(−24)−712×(−24) =18−20+14=12;(4)解:原式=−1−16×[2−9]=−1−16×(−7)=−1+76=16.20.【答案】解:整数有:⑤﹣√16=﹣4,⑥0,⑦﹣1,⑧+3;分数有:①﹣3.14,③﹣13,④0.618,⑨227;无理数有:②2π,⑩﹣0.030030003……(每相邻两个3之间0的个数逐渐多1)21.【答案】解:如图所示,,由图可知,−312⟨−|−2|<−1.5<−(−1)<3.22.【答案】解:∵a、b互为相反数,c、d互为倒数,y+1没有倒数,x−1的绝对值等于2,∴a+b=0,cd=1,y+1=0,x−1=2或x−1=−2,解得y=−1,x=3或x=−1,当x=3时,原式=0+13+(−2)×(−1)=0+13+2=213;当x=−1时,原式=0+1−1+(−2)×(−1)=−1+2=1;综上,代数式−2|a+b|+cdx+(y−1)(a+b−1)的值是213或1.23.【答案】(1)解:1.1+0.5+0.1=1.7(万张)(2)解:8月1日:1.1+0.5=1.6(万张);8月2日:1.6+0.1=1.7(万张);8月3日:1.7-0.3=1.4(万张);8月4日:1.4-0.2=1.2(万张);8月5日:1.2+0.4=1.6(万张);8月6日:1.6-0.2=1.4(万张);8月7日:1.4+0.1=1.5(万张).1.5-1.1=0.4(万张)答:8月7日的售票量多,多0.4万张.(3)解:1.6+1.7+1.4+1.2+1.6+1.4+1.5=10.4(万张)50x10.4=520(万元)答:共收入520万元24.【答案】(1)解:甲:30×25×90%−30×3=585(元)乙:30×25−60−50×2=590(元)丙:30×10+30×90%×15=705(元)因为585<590<705,所以挑选甲店铺更优惠.(2)解:30×10+30×90%×(50−10)+30×80%×(100−50)+30×70%×(n−100)=21n+480(元)(3)解:假设花费3000元以标价30元来购买该款杯子,则能买3000÷30=100个,那么优惠后至少能买100个.由(2)可知,令21n+480=3000,n=120答:他能买120个该款杯子.25.【答案】(1)19×11=12(19−111)(2)1(2n−1)(2n+1);12(12n−1−12n+1)(3)解:a1+a2+a3+⋯+a100=12(1−13)+12(13−15)+12(15−17)+...+12(1199−1201) =12×(1−13+13−15+15−17+...+1199−1201)=12×(1−1201) =12×200201=100201.26.【答案】(1)2或10(2)解:设点P表示的数为y,分四种情况:①P为【A,B】的好点.由题意,得y−(−20)=2(40−y),解得y=20,t=(40−20)÷2=10(秒);②A为【B,P】的好点.由题意,得40−(−20)=2[y−(−20)],解得y=10,t=(40−10)÷2=15(秒);③P为【B,A】的好点.由题意,得40−y=2[y−(−20)],解得y=0,t=(40−0)÷2=20(秒);④A为【P,B】的好点由题意得y−(−20)=2[40−(−20)]解得y=100(舍).⑤B为【A,P】的好点30=2t,t=15.综上可知,当t为10秒、15秒或20秒时,P、A和B中恰有一个点为其余两点的好点.故答案为:2或10.27.【答案】(1)122.13(2)(0.568-0.28m)(3)解:①假设小江家12月的用电量未超过第一档,那么该月最多支付电费:281×(0.568−0.28×0.2)=143.872(元),∵143.872<154.55,∴小江家12月份的用电量必定超过第一档;②设小江家12月份用电量为x度,143.872+0.8×0.618(x−281)+0.2×0.338(x−281)=154.55,143.872+0.4944x−138.9264+0.0676x−18.9956=154.55解得x=300,300−275=25(度),即小江家用电量多,比小北家多用25度.2024年浙江中考数学备考专题有理数、无理数与实数5套含答案一、选择题(每题3分,共30分)1.-3,4,0,√2这四个数中,无理数是()A.-3B.4C.0D.√2 2.下列运算结果正确的是()A.√10÷√5=√5B.√9=±3C.(−√2)2=2D.√2+√3=√53.下列说法正确的是()A.4的平方根是2B.8的立方根是±2C.如果一个数的立方根是这个数本身,那么这个数是-1,0或1D.如果一个数的平方根是这个数本身,那么这个数是1或04.下列说法中:①立方根等于本身的是﹣1,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤π−3是负分数;其中正确的个数是()A.0个B.1个C.2个D.3个5.如图,实数-√2+1在数轴上的对应点可能是()A.A点B.B点C.C点D.D点6.若|x−y|−|x−z|=|y−z|,则实数x、y、z之间的大小关系可能为()A.x>y>z B.z>y>x C.y>x>z D.x>z> y7.数轴上依次排列的四个点,它们表示的数分别为a,b,c,d,若|a-c|=6,|a-d|=10,|b-d|=5,则|b-c|的值为().A.6B.5C.4D.1 8.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间9.如图,已知实数a在数轴上的对应点位置如图所示,则化简√(a−2)2的结果是()A.a﹣2B.﹣a﹣2C.1D.2﹣a 10.按顺序排列的若干个数:x1,x2,x3,……,x n(n是正整数),从第二个数x2开始,每一个数都等于1与它前面的那个数的差的倒数,即:x2=11−x1,x3=11−x2……,下列选项正确是()①若x2=5,则x7=45;②若x1=2,则x1+x2+x3+⋯+x2023=1013;③若(x1+1)(x2+1)x6=−1,则x1=√2A.①和③B.②和③C.①和②D.①②③都正确二、填空题(每题3分,共18分)11.比较大小:7-4√30.(填“<”“>”或“=”)12.已知一个立方体的体积是27cm3,那么这个立方体的棱长是cm.13.若y=√x−2+√2−x−3,则x+y的立方根是.14.若a与b互为相反数,m与n互为倒数,k的算术平方根为√2,则2022a+2021b+ mnb+k2的值为.15.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[√3]=1.现对72进行如下操作:72第一次→[√72]=8第二次→[√8]=2第三次→[√2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是 .16.电流通过导线时会产生热量,电流I (单位:A )、导线电阻R (单位:Ω)、通电时间t (单位:s )与产生的热量Q (单位:J )满足关系式Q =I 2Rt .已知导线的电阻为10Ω,通电2s 时间导线产生90J 的热量,则电流I 为 A .三、计算题(共6分)17.计算:(1)(√18−√12)×√3;(2)(√3+1)2−(1−√5)(√5+1).四、作图题(共9分)18.如图,正方形网格中的每个小正方形的边长都是1,每个小方格的顶点叫做格点,以格点为顶点分别按下列要求画三角形:(1)在图1中画一个直角三角形,使它的三边长都是有理数; (2)在图2中画一个直角三角形,使它的三边长都是无理数;(3)在图3中画一个等腰三角形,使它的三边长都是无理数(和图2画的三角形不全等).五、解答题(共4题,共32分)19.把下列各数分别填在相应的括号内.﹣12,0,0.16,312,√3,﹣23√5,π3,√16,﹣√22,﹣3.14 有理数:{ }; 无理数:{ }; 负实数:{ }; 正分数:{ }.20.(1)先化简,再求值.已知a =1,b =−2,求多项式3ab −15b 2+5a 2−6ba +15a 2−2b 2的值. (2)在数轴上表示下列各数,并把这些数按从小到大顺序进行排列,用“<”连接. −1.5,−22,−(−4),0,−|−3|,√921.如图,数轴上点A ,B 分别表示数a ,b ,且a ,b 互为相反数,2a +9是27的立方根.(1)求a ,b 的值及线段AB 的长.(2)点P 在射线BA 上,它在数轴上对应的数为x. ①请用含x 的代数式表示线段BP 的长. ②当x 取何值时,BP =2AP ?22.解答下列各题:(1)计算:√(−10)2−(√15)2+√64.(2)已知点A(2,1),B(−4,a)在反比例函数y =kx(k ≠0)的图象上,试求a 的值. 六、实践探究题(共3题,共25分)23.数学活动课上,张老师说:“√2是无理数,无理数就是无限不循环小数,同学们,你能把√2的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用(√2-1)表示它的小数部分.”张老师说:“晶晶同学的说法是正确的,因为√2的整数部分是1,将这个数减去其整数部分,差就是小数部分.”请你解答:(1)√5的整数部分是 ,小数部分是 .(2)已知8+√3=x +y ,其中x 是一个整数,且0<y <1,请求出3x +(y −√3)2020的值.24.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4.1]=4.(1)则[11.8]= ;[−11.9]= ;(2)现对119进行如下操作:119→第一次[√119]=10→第二次[√10]=3→第三次[√3]=1,这样对119只需进行3次操作后变为1.①对15进行1次操作后变为▲ ,对200进行3次操作后变为▲ ;②对实数m恰进行2次操作后变成1,则m最小可以取到▲ ;③若正整数m进,3次操作后变为1,求m的最大值.25.阅读材料:若点M,N在数轴上分别表示实数m,n,那么M,N之间的距离可表示为|m−n|.例如|3−1|,即表示3,1在数轴上对应的两点之间的距离;同样:|5+3|= |5−(−3)|表示5,−3在数轴上对应的两点之间的距离.根据以上信息,完成下列题目:(1)已知A,B,C为数轴上三点,点A对应的数为√2,点C对应的数为1.①若点B对应的数为−2,则B,C两点之间的距离为;②若点A到点B的距离与点A到点C的距离相等,则点B对应的数是.(2)对于|x−3|+|x+4|这个代数式.①它的最小值为;②若|x−3|+|x+4|+|y−1|+|y+2|=10,则x+y的最大值为.答案解析部分1.【答案】D2.【答案】C3.【答案】C4.【答案】C5.【答案】B6.【答案】D7.【答案】D8.【答案】B9.【答案】D10.【答案】C11.【答案】>12.【答案】313.【答案】-114.【答案】215.【答案】25516.【答案】3√2217.【答案】(1)解:原式=√54−√36=3√6−6(2)3+2√3+1−1+5=8+2√3 18.【答案】(1)解:如图1所示,Rt△ABC即为所求;(2)解:如图所示,Rt△DEF即为所求;(3)解:如图所示,OPQ 即为所求.19.【答案】解:有理数:﹣12,0,0.16,312,√16,﹣3.14;无理数:√3,﹣23√5,π3,﹣√22;负实数:﹣12,﹣23√5,﹣√22,-3.14;正分数:0.16,312.20.【答案】(1)解:3ab −15b 2+5a 2−6ba +15a 2−2b 2=−3ab −17b 2+20a 2,当a =1,b =−2时,原式=−3×1×(−2)−17×(−2)2+20×12=6−68+20=−42.(2)解:如图所示:,−22<−|−3|<−1.5<0<√9<−(−4)21.【答案】(1)解:∵2a +9是27的立方根,∴2a +9=√273=3, 则a =−3.∵a ,b 互为相反数,∴b=−a=3.∴AB=3−(−3)=6(2)解:①∵点P在射线BA上,它在数轴上对应的数为x.∴线段BP=3−x②当点P在点A右侧时,∵BP=2AP,∴3−x=2(x+3),解得x=−1.当点P在点A左侧时,∵BP=2AP,∴3−x=2(−3−x),解得x=−9.综上,当x=−1或−9时,BP=2AP.22.【答案】(1)解:原式=10−15+8=3(2)解:∵点A(2,1),B(−4,a)在反比例函数y=kx(k≠0)的图象上,∴k=1×2=−4⋅a,∴a=−1 2.23.【答案】(1)2;√5-2(2)解:∵1<√3<2,∴9<8+√3<10,∵8+√3=x+y,其中x是一个整数,且0<y<1,∴x=9,y=8+√3−9=√3−1∴3x+(y−√3)2020=3×9+(√3−1−√3)2020=27+1=28.24.【答案】(1)11;-12(2)解:①3;1②4;③∵[x]=1,∴1≤x<2,∴1≤√m<2,∴1≤m<4,∴1≤√m<16,∴1≤m<256.∵3次操作,故m≥16.∴16≤m<256.∵m是整数.∴m的最大值为255.25.【答案】(1)3;2√2−1(2)7;42024年浙江中考数学备考专题有理数、无理数与实数5套含答案一、选择题(每题3分,共30分)1.-3,4,0,√2这四个数中,无理数是()A.-3B.4C.0D.√2 2.下列运算结果正确的是()A.√10÷√5=√5B.√9=±3C.(−√2)2=2D.√2+√3=√53.下列说法正确的是()A.4的平方根是2B.8的立方根是±2C.如果一个数的立方根是这个数本身,那么这个数是-1,0或1D.如果一个数的平方根是这个数本身,那么这个数是1或04.下列说法中:①立方根等于本身的是﹣1,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤π−3是负分数;其中正确的个数是()A.0个B.1个C.2个D.3个5.如图,实数-√2+1在数轴上的对应点可能是()A .A 点B .B 点C .C 点D .D 点6.若|x −y|−|x −z|=|y −z|,则实数x 、y 、z 之间的大小关系可能为( )A .x >y >zB .z >y >xC .y >x >zD .x >z >y7.数轴上依次排列的四个点,它们表示的数分别为a ,b ,c ,d ,若|a -c|=6,|a -d|=10,|b -d|=5,则|b -c|的值为( ). A .6B .5C .4D .18.一个正方形的面积是15,估计它的边长大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间9.如图,已知实数a 在数轴上的对应点位置如图所示,则化简√(a −2)2的结果是( )A .a ﹣2B .﹣a ﹣2C .1D .2﹣a10.按顺序排列的若干个数:x 1,x 2,x 3,……,x n (n 是正整数),从第二个数x 2开始,每一个数都等于1与它前面的那个数的差的倒数,即:x 2=11−x 1,x 3=11−x 2……,下列选项正确是( )①若x 2=5,则x 7=45;②若x 1=2,则x 1+x 2+x 3+⋯+x 2023=1013;③若(x 1+1)(x 2+1)x 6=−1,则x 1=√2 A .①和③ B .②和③ C .①和②D .①②③都正确二、填空题(每题3分,共18分)11.比较大小:7-4√3 0. (填“<”“>”或“=”)12.已知一个立方体的体积是27cm 3,那么这个立方体的棱长是 cm . 13.若y =√x −2+√2−x −3,则x +y 的立方根是 .14.若a 与b 互为相反数,m 与n 互为倒数,k 的算术平方根为√2,则2022a +2021b +mnb +k 2的值为 .15.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[√3]=1.现对72进行如下操作:72第一次→[√72]=8第二次→[√8]=2第三次→[√2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是.16.电流通过导线时会产生热量,电流I(单位:A)、导线电阻R(单位:Ω)、通电时间t(单位:s)与产生的热量Q(单位:J)满足关系式Q=I2Rt.已知导线的电阻为10Ω,通电2s时间导线产生90J的热量,则电流I为A.三、计算题(共6分)17.计算:(1)(√18−√12)×√3;(2)(√3+1)2−(1−√5)(√5+1).四、作图题(共9分)18.如图,正方形网格中的每个小正方形的边长都是1,每个小方格的顶点叫做格点,以格点为顶点分别按下列要求画三角形:(1)在图1中画一个直角三角形,使它的三边长都是有理数;(2)在图2中画一个直角三角形,使它的三边长都是无理数;(3)在图3中画一个等腰三角形,使它的三边长都是无理数(和图2画的三角形不全等).五、解答题(共4题,共32分)19.把下列各数分别填在相应的括号内.﹣12,0,0.16,312,√3,﹣23√5,π3,√16,﹣√22,﹣3.14有理数:{ };无理数:{ };负实数:{ };正分数:{ }.20.(1)先化简,再求值.已知a=1,b=−2,求多项式3ab−15b2+5a2−6ba+15a2−2b2的值.(2)在数轴上表示下列各数,并把这些数按从小到大顺序进行排列,用“<”连接.−1.5,−22,−(−4),0,−|−3|,√921.如图,数轴上点A ,B 分别表示数a ,b ,且a ,b 互为相反数,2a +9是27的立方根.(1)求a ,b 的值及线段AB 的长.(2)点P 在射线BA 上,它在数轴上对应的数为x. ①请用含x 的代数式表示线段BP 的长. ②当x 取何值时,BP =2AP ?22.解答下列各题:(1)计算:√(−10)2−(√15)2+√64.(2)已知点A(2,1),B(−4,a)在反比例函数y =kx(k ≠0)的图象上,试求a 的值. 六、实践探究题(共3题,共25分)23.数学活动课上,张老师说:“√2是无理数,无理数就是无限不循环小数,同学们,你能把√2的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用(√2-1)表示它的小数部分.”张老师说:“晶晶同学的说法是正确的,因为√2的整数部分是1,将这个数减去其整数部分,差就是小数部分.”请你解答:(1)√5的整数部分是 ,小数部分是 .(2)已知8+√3=x +y ,其中x 是一个整数,且0<y <1,请求出3x +(y −√3)2020的值.24.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4.1]=4.(1)则[11.8]= ;[−11.9]= ;(2)现对119进行如下操作:119→第一次[√119]=10→第二次[√10]=3→第三次[√3]=1,这样对119只需进行3次操作后变为1.①对15进行1次操作后变为 ▲ ,对200进行3次操作后变为 ▲ ;②对实数m恰进行2次操作后变成1,则m最小可以取到▲ ;③若正整数m进,3次操作后变为1,求m的最大值.25.阅读材料:若点M,N在数轴上分别表示实数m,n,那么M,N之间的距离可表示为|m−n|.例如|3−1|,即表示3,1在数轴上对应的两点之间的距离;同样:|5+3|= |5−(−3)|表示5,−3在数轴上对应的两点之间的距离.根据以上信息,完成下列题目:(1)已知A,B,C为数轴上三点,点A对应的数为√2,点C对应的数为1.①若点B对应的数为−2,则B,C两点之间的距离为;②若点A到点B的距离与点A到点C的距离相等,则点B对应的数是.(2)对于|x−3|+|x+4|这个代数式.①它的最小值为;②若|x−3|+|x+4|+|y−1|+|y+2|=10,则x+y的最大值为.答案解析部分1.【答案】D2.【答案】C3.【答案】C4.【答案】C5.【答案】B6.【答案】D7.【答案】D8.【答案】B9.【答案】D10.【答案】C11.【答案】>12.【答案】313.【答案】-114.【答案】215.【答案】25516.【答案】3√2217.【答案】(1)解:原式=√54−√36=3√6−6(2)3+2√3+1−1+5=8+2√3 18.【答案】(1)解:如图1所示,Rt△ABC即为所求;(2)解:如图所示,Rt△DEF即为所求;(3)解:如图所示,OPQ 即为所求.19.【答案】解:有理数:﹣12,0,0.16,312,√16,﹣3.14;无理数:√3,﹣23√5,π3,﹣√22;负实数:﹣12,﹣23√5,﹣√22,-3.14;正分数:0.16,312.20.【答案】(1)解:3ab −15b 2+5a 2−6ba +15a 2−2b 2=−3ab −17b 2+20a 2,当a =1,b =−2时,原式=−3×1×(−2)−17×(−2)2+20×12=6−68+20=−42.(2)解:如图所示:,−22<−|−3|<−1.5<0<√9<−(−4)21.【答案】(1)解:∵2a +9是27的立方根,∴2a +9=√273=3, 则a =−3.∵a ,b 互为相反数,∴b=−a=3.∴AB=3−(−3)=6(2)解:①∵点P在射线BA上,它在数轴上对应的数为x.∴线段BP=3−x②当点P在点A右侧时,∵BP=2AP,∴3−x=2(x+3),解得x=−1.当点P在点A左侧时,∵BP=2AP,∴3−x=2(−3−x),解得x=−9.综上,当x=−1或−9时,BP=2AP.22.【答案】(1)解:原式=10−15+8=3(2)解:∵点A(2,1),B(−4,a)在反比例函数y=kx(k≠0)的图象上,∴k=1×2=−4⋅a,∴a=−1 2.23.【答案】(1)2;√5-2(2)解:∵1<√3<2,∴9<8+√3<10,∵8+√3=x+y,其中x是一个整数,且0<y<1,∴x=9,y=8+√3−9=√3−1∴3x+(y−√3)2020=3×9+(√3−1−√3)2020=27+1=28.24.【答案】(1)11;-12(2)解:①3;1②4;③∵[x]=1,∴1≤x<2,∴1≤√m<2,∴1≤m<4,∴1≤√m<16,∴1≤m<256.∵3次操作,故m≥16.∴16≤m<256.∵m是整数.∴m的最大值为255.25.【答案】(1)3;2√2−1(2)7;42024年浙江中考数学备考专题有理数、无理数与实数5套含答案一、选择题(每题4分,共40分)1.2023的相反数是()A.2023B.|2023|C.12023D.-2023 2.-2023的倒数是()A.2023B.12023C.-2023D.−1 20233.计算3+(−1)的结果为()A.-4B.2C.-2D.4 4.下列计算结果为5的是()A.﹣(+5)B.+(﹣5)C.﹣(﹣5)D.﹣|﹣5| 5.在4,-2,0,13四个数中,最小的为()A.4B.-2C.0D.13 6.下列计算中错误的有()个.( 1 )√9=±3;(2)﹣1﹣1=0 ;(3)(﹣1)﹣1=0;(4)(﹣1)0=1.A.1B.2C.3D.4 7.我们可用数轴直观研究有理数及其运算.如图,将物体从点A向左平移5个单位到点B,可以描述这一变化过程的算式为().A .2+(−5)B .2−(−5)C .2×(−5)D .2÷(−5)8.杭州亚运会赛会志愿者招募自启动以来,得到了社会群体和高校学生的积极响应,注册总人数超32万人.其中32万用科学记数法可表示为( ) A .32×104B .3.2×105C .3.2×106D .0.32×1069.“宁波地铁”发文称,2023年2月13日至6月30日,每天晚上8点后及法定节假日全天,宁波地铁1—5号线全线网皆可免费乘车,免费时段无需购票、刷卡、扫码,可直接进站乘车.2月17日,宁波地铁限时段免费后的首个周五,地铁客流量达到约107.6万人次.数107.6万用科学记数法表示为( ) A .1.076×105B .10.76×105C .1.076×106D .0.1076×10610.如图是某品牌鞋服店推出的优惠活动,小明看中了一双鞋子和一双原价80元的袜子,若购买这双鞋子和这双袜子所付的费用与单独购买这双鞋子所付的费用相同,则这双鞋子的原价可能是( ).A .269元B .369元C .569元D .669元二、填空题(每题5分,共30分)11.若a ,b 互为相反数,则(a +b)2= . 12.请任意写出一个介于−12到−13之间的数 .13.已知(a 2+b 2)2−a 2−b 2−6=0,求a 2+b 2的值为 .14.定义:[x]表示不大于x 的最大整数, (x)表示不小于x 的最小整数, 例如: [2.3]=2, (2.3)=3,[−2.3]=−3,(−2.3)=−2. 则[1.7]+(−1.7)= . 15.如果实数x ,y 满足方程组{x −2y =−1x +y =2,那么(2x -y )2022= .16.请用“<”符号将下面实数(−3)2,√18,−6,|−4|连接起来 .三、计算题(共10分)17.用简便运算进行计算: (1)(12−16+13)×(−24);(2)(−0.25)2019×42020;四、解答题(共3题,共40分)18.先计算,再阅读材料,解决问题: (1)计算: (13−16+12)×12 .(2)认真阅读材料,解决问题: 计算:130÷(23−110+16−25). 分析:利用通分计算 23−110+16−25的结果很麻烦,可以采用以下方法进行计算:解:原式的倒数是:(23−110+16−25)÷130=(23−110+16−25)×30 =23×30−110×30+16×30−25×30 =20−3+5−12=10 . 故原式 =110. 请你根据对所提供材料的理解,选择合适的方法计算: (−152)÷(34−526+12−213) . 19.新农村建设中,某镇成立了新型农业合作社,扩大了油菜种植面积,今年2000亩油菜喜获丰收.该合作社计划租赁5台油菜收割机机械化收割,一台收割机每天大约能收割40亩油菜.(1)求该合作社按计划几天可收割完这些油菜;(2)该合作社在完成了一半收割任务时,从气象部门得知三天后有降雨,于是该合作社决定再租赁3台油菜收割机加入抢收,并把每天的工作时间延长10%,请判断该合作社能否完成抢收任务,并说明理由.20.为节约用水,某市居民生活用水按级收费,水费分为三个等级(如图);例如:某户用水量为35吨,则水费为20×2.5+(30-20)×3.45=101.75(元).(1)若某住户收到一张自来水总公司水费专用发票,其中上期抄表数为587吨,本期抄表数为617吨,请计算本期该用户应付的水费.(2)若该住户的用水量为x吨(20<x≤40),应付水费为y元,求出y关于x的函数表达式.(3)小明爸爸收到水费短信通知:2022年2月本期用水量为45吨,水费为150.5元.根据此通知求出第三级收费标准a的值.答案解析部分1.【答案】D2.【答案】D3.【答案】B4.【答案】C5.【答案】B6.【答案】C7.【答案】A8.【答案】B9.【答案】C10.【答案】C11.【答案】012.【答案】−2513.【答案】314.【答案】015.【答案】116.【答案】-6<|−4|<√18<(−3)217.【答案】(1)解:原式 =12×(−24)−16×(−24)+13×(−24) =(−12)−(−4)+(−8)=(−12)+(−8)+4=−20+4=−16或 原式 =(36−16+26)×(−24) =46×(−24) =−16(2)解:原式= (−0.25)2019×42019×4=(−0.25×4)2019×4=(−1)2019×4=(−1)×4=−4 .18.【答案】(1)解:计算: (13−16+12)×12 =13×12−16×12+12×12 =4−2+6=8(2)解:原式的倒数是: (34−526+12−213)×(−52) , =34×(−52)−526×(−52)+12×(−52)−213×(−52) , =−39+10−26+8 ,=−47 ,故原式 =−147. 19.【答案】(1)解:设该合作社按计划x 天可收割完这些油菜5×40x =2000解得:x =10答:该合作社按计划10天可收割完这些油菜;(2)解:原来一天的收割量:5×40=200(亩),现在一天的收割量:(5+3)×40×(1+10%)=352(亩),现在三天可完成的收割量:352×3=1056(亩)>1000亩.答:该合作社能完成抢收任务.20.【答案】(1)解:用水量:617−587=30(吨).水费:20×2.5+(30−20)×3.45=84.5(元).答:本期该用户应付水费84.5元.(2)解:y =2.5×20+3.45×(x −20)=3.45x −19(20<x ≤40)∴y 关于x 的函数表达式为:y =3.45x −19(20<x ≤40)(3)解:据题意可列方程:20×2.5+20×3.45+(45−40)a =150.5解得a =6.3答:a 的值为6.3.2024年浙江中考数学备考专题有理数、无理数与实数5套含答案一、选择题1.2022的倒数是()A.2022B.-2022C.12022D.−1 20222.手机信号的强弱通常采用负数来表示,绝对值越小表示信号越强(午位:dBm),则下列信号最强的是()A.-50B.-60C.-70D.-80 3.计算结果等于2的是()A.|−2|B.−|2|C.2−1D.(−2)0 4.(−2)2+22=()A.0B.2C.4D.8 5.如图,比数轴上点A表示的数大3的数是()A.-1B.0C.1D.2 6.据中国宁波网消息:2023年一季度宁波全市实现地区生产总值380180000000元,同比增长4.5%.数380180000000用科学记数法表示为()A.0.38018×1012B.3.8018×1011C.3.8018×1010D.38.018×10107.已知数轴上的点A,B分别表示数a,b,其中−1<a<0,0<b<1.若a×b=c,数c在数轴上用点C表示,则点A,B,C在数轴上的位置可能是()A.B.C.D.8.已知M=20222,N=2021×2023,则M与N的大小关系是()A.M>N B.M<N C.M=N D.不能确定9.已知方程组{a−2b=63a−b=m中,a,b互为相反数,则m的值是()A.4B.﹣4C.0D.8 10.在某次演讲比赛中,五位评委要给选手圆圆打分,得到互不相等的五个分数。
中考数学专题训练第1讲有理数(知识点梳理)
有理数知识点梳理考点01 正数和负数1.正数:像1,2,3,4,0.1等这样大于0的数叫作正数。
正数的前面的“+”可以省略不写。
2.负数:像-0.2.-2.-6这样在正数前面加上符号“-”(负号)的数叫作负数。
3.注意事项:(1)0既不是正数也不是负数.0是正数和负数的分界线;(2)对于正数和负数.不能简单地理解为带“+”号的数就是正数.带负号的数就是负数.要根据正负数的含义.看其是符合正数的定义还是符合负数的定义。
4.正负习惯:习惯上把零上、增加、前进、海平面以上、收入、向南、盈利、上升等记为正.把与它们意义相反的量记为负。
考点02 有理数与数轴1.有理数定义:正整数、0、负整数统称整数.正分数、负分数统称分数.整数和分数统称有理数。
2.有理数的分类3.注意:(1)整数可以看成是分母为1的分数.所以有理数都可以写成分数的形式;有限小数和无限循环小数都可以写成分数形式.所以有限小数和无限循环小数都是有理数。
(2)正数和零统称为非负数;负数和零统称为非正数。
4.零的作用(1)表示数的性质.例如0是自然数;(2)表示没有.例如有5个本子.用+5表示.没有本子用0表示;(3)表示正数与负数的分界。
5.数轴定义:规定了原点、正方向和单位长度的直线叫作数轴。
数轴的三要素即原点、正方向和单位长度。
6.数轴上的点与有理数有理数都可以用数轴上的点来表示.任何一个有理数都能在数轴上找到与它对应的点.而且是唯一的点.但数轴上的点不一定都是有理数。
考点03 相反数和绝对值1.相反数的代数意义:只有符号不同的两个数叫作互为相反数.把其中一个数叫作另一个数的相反数。
0的相反数是0.2.相反数的几何意义:两个互为相反数的数在数轴上所表示的点在原点的两侧且到原点的距离相等;这两点关于原点对称。
3.多重符号的化简:数字前面的“-”号的个数若有偶数个.化简结果为正;有奇数个时.花间结果为负。
4.相反数的性质:如果b a 、互为相反数.那么0=+b a 或b a -=或a b -=;反过来.如果0=+b a .那么b a 、互为相反数。
中考数学专题复习1实数的运算(原卷版)
实数的运算复习考点攻略考点01 有理数1.整数和分数统称为有理数。
(有限小数与无限循环小数都是有理数。
)2.正整数、0、负整数统称为整数。
正分数、负分数统称分数。
3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
4.正数和负数表示相反意义的量。
【注意】0既不是正数,也不是负数。
【例1】.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升【例2】已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克收2元。
圆圆在该快递公司寄一件8千克的物品,需要付费( )。
A.17元B.19元C.21元D.23元考点02 数轴1.数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。
【例3】如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C 表示的数是()A.﹣0.5B.﹣1.5C.0D.0.5考点03 相反数、绝对值和倒数1.在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:a。
2.一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩3. 乘积为1的两个数互为倒数。
正数的倒数为正数,负数的倒数为负数,0没 有倒数。
倒数是本身的只有1和-1。
4. 倒数性质:(1)若a 与b 互为倒数,则a·b=1;反之,若a·b=1,则a 与b 互为倒数。
(2)若a 与b 互为负倒数,则a·b=-1;反之,若a·b= -1则a 与b 互为倒数。
中考数学专题复习:有理数
中考数学专题复习:有理数一.选择题(共10小题)1.下列各式中,结果是100的是( )A .-(+100)B .-(-100)C .-|+100|D .-|-100| 2.近似数1.7万精确到( ) A .百位B .千位C .十分位D .百分位3.将数据9899万用科学记数法表示为( )A .98.99×105B .9.899×106C .9.899×107D .0.9899×108 4.一张厚度为1mm 的足够大的正方形纸,假设能对折24次,那么折纸后的高度就远远超过珠穆朗玛峰.如果将上述正方形纸对折12次,那么折纸后的总厚度为( )A .234mmB .1×1012mmC .2×1012mmD .212mm5.A 点为数轴上表示-2的点,则距A 点4个单位长度的点所表示的数为( ) A .2 B .-6 C .2或-6 D .-4或4 6.数轴上,点A 对应的数是-6,点B 对应的数是-2,点O 对应的数是0.动点P 、Q 从A 、B 同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A .PQ=2OQB .OP=2PQC .3QB=2PQD .PB=PQ 7.81-的倒数的相反数是( ) A .8 B .-8 C .81 D .81-8.52的倒数是( )A .0.4B .2.5C .4D .52-9.下列计算中,结果等于5的是( )A .|(-9)-(-4)|B .|(-9)+(-4)|C .|-9|+|-4|D .|-9|+|+4|10.计算(-9)×31的结果是( )A .3B .27C .-27D .-3二.填空题(共7小题)11.如果80m 表示向东走80m ,则向西走60m 表示为________m .12.已知整数a ,b ,c ,d 的绝对值均小于5,且满足1000a+100b 2+10c 3+d 4=2021,则abcd 的值为________.13.近似数5.50万精确到________位,有________个有效数字.14.计算:35×()552-÷⎪⎪⎭⎫ ⎝⎛-=________.15.若m 、n 互为相反数,x 、y 互为倒数,则2021m+2021n-xy2022=________. 16.|2x-4|+|x+2y-8|=0,则(x-y )2021=________.17.有理数a 、b 在数轴上的位置如图所示,|a-b|-|b|化简的结果为________.三.解答题(共5小题) 18.计算:(1)-(-4)+(-1)-(+5); (2)⎪⎪⎭⎫⎝⎛-⨯⎪⎪⎭⎫ ⎝⎛-÷316525; (3)-14+|5-8|+27÷(-3)×31; (4)()36436531-⨯⎪⎪⎭⎫⎝⎛+-; (5)(5)[2-(2-2.4×32)]×[-32-(-2)3].19.在学习有理数时我们清楚,|3-(-1)|表示3与-1的差的绝对值,实际上也可以理解为3与-1两数在数轴上所对应的两点之间的距离;同理|x 一5|也可以理解为x 与5两数在数轴上所对应的两点之间的距离,试探索并完成以下题目. (1)分别计算|8-(-3)|,|-3-5|的值.(2)如图,x 是1到2之间的数(包括1,2),求|x-1|+|x-2|+|x-3|的最大值.20.已知a 、b 互为相反数,m 、n 互为倒数,求3mn 8b225a 2-+-的值.21.光速约为3×108米/秒,太阳光射到地球上的时间约为5×102秒,地球与太阳的距离约是多少米?22.观察下列两个等式:2+2=2×2,3×23 =3+23,给出定义如下:我们称使等式a+b=ab 成立的一对有理数a ,b 为“有趣数对”,记为(a ,b ),如:数对(2,2),⎪⎪⎭⎫⎝⎛23,3都是“有趣数对”. (1)数对(0,0),(5,35)中是“有趣数对”的是________;(2)若(a ,43)是“有趣数对”,求a 的值; (3)若(a 2+a ,4)是“有趣数对”,求3-2a 2-2a 的值.参考答案11.-6012.±413.百31414.515.-202216.-117.-a18.(1)-2;(2)1;(3)-1;(4)-9;(5)-1.6.19.(1)11;8;(2)3.20. -521.1.5×1011米.122.(1)(0,0);(2)-3;(3)3。
中考数学专题复习《有理数的运算》测试卷-附带答案
中考数学专题复习《有理数的运算》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列说法正确的是()A.−4是16的一个平方根B.两个无理数的和一定是无理数C.无限小数是无理数D.0没有算术平方根2.现规定一种运算:a∗b=ab−a−b,其中a,b为有理数,则2∗(−1)=()A.−6B.−3C.5D.113.小夕学习了有理数运算法则后,编了一个计算程序.当他输入任意一个有理数时,显示屏上出现的结果总等于所输入的有理数的3倍与-2的差.当他第一次输入-6,然后又将所得的结果再次输入后,显示屏上出现的结果应是()A.-46B.-50C.-58D.-664.在数学课上,老师让甲、乙、丙、丁,四位同学分别做了一道有理数运算题,你认为做对的同学是()甲:9−32÷8=0÷8=0.乙:24−(4×32)=24−4×6=0.丙:(36−12)÷32=36×23−12×23=16.丁:(−3)2÷13×3=9÷1=9.A.甲B.乙C.丙D.丁5.下列说法正确的是()A.有理数与数轴上的点一一对应B.若a,b互为相反数,则ab=−1C.√16的算术平方根为4D.3.40万是精确到百位的近似数6.定义一种关于整数n的“F”运算:⑴当n是奇数时,结果为3n+5⑴当n是偶数时,结果是k2n (其中k是使k2n是奇数的正整数),并且运算重复进行.例如:取n=58 第一次经F运算是29 第二次经F运算是92 第三次经F运算是23 第四次经F运算是74… 若n=9 则第2023次运算结果是()A.6B.7C.8D.97.对于若干个数先将每两个数作差再将这些差的绝对值相加这样的运算称为对这若干个数进行“绝对运算”.例如对于123进行“绝对运算” 得到:|1−2|+|2−3|+|1−3|=4.①对13510进行“绝对运算”的结果是29②对x−25进行“绝对运算”的结果为A则A的最小值是7③对a b b c进行“绝对运算” 化简的结果可能存在8种不同的表达式以上说法中正确的个数为()A.0B.1C.2D.38.如图所示数轴上A,B两点分别对应有理数a,b则下列结论正确的是()A.b−a<0B.a−b>0C.a+b>0D.|a|−|b|>09.用“⑴”定义一种新运算:对于任意有理数x和y x⑴y=a2x+ay+1(a为常数)如:2⑴3=a2⋅2+ a⋅3+1=2a2+3a+1.若1⑴2=3 则3⑴6的值为()A.7B.8C.9D.1310.已知有理数a,b,c满足abc<0则a|a|+|b|b+c|c|−|abc|abc的值是()A.±1B.0或2C.±2D.±1或±2二填空题11.定义一种新运算“⑴” 规定有理数a⊕b=4ab−b如:2⊕3=4×2×3−3=21根据该运算计算3⊕(−3)=.12.定义新运算:对于任意有理数a b 都有a⊕b=12(|a−b|+a+b)例如4⊕2=12(|4−2|+4+2)=4.将1,2,3,4,⋯,50这50个自然数分成25组每组2个数进行a⊕b运算得到25个结果则这25个结果的和的最大值是.13.对于任意有理数a b 定义新运算:a⑴b=a2-2b+1 则2⑴(-6)=.14.a为有理数定义运算符号∇:当a>−2时∇a=−a当a<−2时∇a=a当a=−2时∇a=a根据这种运算则∇[4+∇(2−5)]的值为.15.在学习了有理数的运算后小明定义了新的运算:取大运算“V”和取小运算“Λ” 比如:3 V 2=3 3Λ2=2 利用“加减乘除”以及新运算法则进行运算下列运算中正确的是.①[3V(-2)]Λ4=4②(aVb)Vc=aV(bVc)③-(aVb)=(-a)Λ(-b)④(aΛb)×c=acΛbc16.已知a b c为非零有理数请你探究以下问题:(1)当a<0时a |a|=(2)ab|ab|+|bc|bc+ca|ca|+|abc|abc的最小值为.17.设有理数a b c满足a+b+c=0 abc> 0 则a b c中正数的个数为三计算题18.已知a b是有理数运算“⊕”的定义是:a⊕b=ab+a−b.(1)求2⊕(−3)的值(2)若x⊕34=1求x的值(3)运算“⊕”是否满足交换律请证明你的结论.19.学习了有理数的运算后王老师给同学们出了这样的一道题.计算:711516×(−8).解:=(72−116)×(−8)=72×(−8)−116×(−8)=−576+12=−57512.请你灵活运用王老师讲的解题方法计算:392326÷(−113).20.用“Δ”定义新运算对于任意有理数a b都有aΔb=a2−ab.例如:7Δ4=72−7×4=21.(1)求(−2)Δ5的值(2)若继续用“*”定义另一种新运算a∗b=3ab−b2例如:1∗2=3×1×2−22=2.求4∗(2Δ3).21.现定义一种新运算“*” 对任意有理数a b规定a*b=ab+a﹣b例如:1*2=1×2+1﹣2.(1)求2*(﹣3)的值(2)求(﹣3)*[(﹣2)*5]的值.22.已知a b为有理数现规定一种新运算⑴ 满足a※b=a×b+1例如:4※5=4×5+1= 21.(1)求2※(−4)的值(2)若a=5|b|=3且a×b<0求(a※b)※(−b)的值.23.实数运算:(1)√16+2×√9−√273(2)|1−√2|+√4−√−83.24.简便运算:(1)82022×(−0.125)2023(2)992−98×100.25.定义新运算:对于任意实数a b(a≠0)都有a*b= b a﹣a+b 等式右边是通常的加减除运算比如:2*1= 12﹣2+1=﹣12.(1)求4*5的值(2)若x*(x+2)=5 求x的值.26.a b为有理数且|a+b|=a−b试求ab的值.27.如果有理数a,b满足|ab−2|+(1−b)2=0试求1ab+1(a+1)(b+1)+1(a+2)(b+2)+⋅⋅⋅+1(a+2007)(b+2007)的值。
(完整版)中考数学总复习资料
- 1 - 中考总复习1 有理数1、有理数的基本概念(1)正数和负数定义:大于0的数叫做正数。
在正数前加上符号“-”(负)的数叫做负数。
0既不是正数,也不是负数。
(2)有理数正整数、0、负整数统称整数。
正分数、负分数统称分数。
整数和分数统称为有理数。
2、数轴规定了原点、正方向和单位长度的直线叫做数轴。
3、相反数代数定义:只有符号不同的两个数叫做互为相反数。
几何定义:在数轴上原点的两旁,离开原点距离相等的两个点所表示的数,叫做互为相反数。
一般地,a 和-a 互为相反数。
0的相反数是0。
a =-a 所表示的意义是:一个数和它的相反数相等。
很显然,a =0。
4、绝对值定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a |。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
即:如果a >0,那么|a |=a ;如果a =0,那么|a |=0;如果a <0,那么|a |=-a 。
a =|a |所表示的意义是:一个数和它的绝对值相等。
很显然,a ≥0。
5、倒数定义:乘积是1的两个数互为倒数。
1a a=所表示的意义是:一个数和它的倒数相等。
很显然,a =±1。
6、数的比较大小法则:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。
7、乘方定义:求n 个相同因数的积的运算,叫做乘方。
乘方的结果叫做幂。
如:43421Λan na a a a 个•••=读作a 的n 次方(幂),在a n 中,a 叫做底数,n 叫做指数。
性质:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;0的任何正整数次幂都是0。
8、科学记数法定义:把一个大于10的数表示成a ×10n 的形式(其中a 大于或等于1且小于10,n 是正整数),这种记数方法叫做科学记数法。
小于-10的数也可以类似表示。
用科学记数法表示一个绝对值大于10的数时,n 是原数的整数数位减1得到的正整数。
中考数学专题《有理数》复习试卷含答案解析
中考数学专题复习卷: 有理数一、选择题1.在-4,0,-1,3这四个数中,既不是正数又不是负数的数是( )A. -4B. 0C. -1D. 32.计算:的结果是()A. -3B. 0C. -1D. 33.下列各式不正确的是()A. |﹣2|=2B. ﹣2=﹣|﹣2|C. ﹣(﹣2)=|﹣2|D. ﹣|2|=|﹣2|4.零上13℃记作+13℃,零下2℃可记作()A. 2B. -2C. -2℃D. 2℃5.据有关部门统计,“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A. 1.442×107B. 0.1442×107C. 1.442×108D. 0.1442×1086.比-1小2的数是()A. 3B. 1C. -2D. -37.-的相反数是()A. B. - C. D.8.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法(精确到十亿位),应表示为()A. 4.995×1010B. 4.995×1011C. 5.0×1010D. 4.9×10109.的绝对值是( ).A. B. C. D.10.-的倒数是()A. B. - C. D. -11.下列各数中,绝对值最小的数是()A.πB.C.-2D.-12.一个数的相反数小于它本身,这个数是()A. 正数B. 负数C. 非正数D. 非负数二、填空题13.计算: =________.14.根据如图所示的车票信息,车票的价格为________元.15.数轴上的两个数﹣3与a,并且a>﹣3,它们之间的距离可以表示为________.16.计算:(﹣2)2=________.17.实数16 800 000用科学计数法表示为________.18.在有理数中,既不是正数也不是负数的数是________.19.计算:0-=________.20.已知,则a+b=________21.若△ABC的三边长分别为a,b,c,则|a﹣b﹣c|﹣|b﹣a﹣c|=________.22.观察规律并填空.⑴⑵⑶________(用含n的代数式表示,n 是正整数,且n ≥ 2)三、解答题23.计算:(1)﹣15+(﹣8)﹣(﹣11)﹣12(2)(3)(4)﹣23+[(﹣4)2﹣(1﹣32)×3].24. 计算:(1)(2)[(2x﹣y)2﹣(2x+y)(2x﹣y)+4xy]÷2y.25.已知a、b互为相反数,c、d互为倒数,|m|=3,求的值.答案解析一、选择题1.【答案】B【解析】:∵0既不是正数也不是负数,∴答案为:B【分析】根据0既不是正数也不是负数,可得出答案。
2023年九年级数学中考一轮基础复习--有理数(含解析)
2023年数学中考一轮基础复习--有理数一、单选题1.下列各数: 2-1(), --3() , 3-2() , -1-2⨯()() 其中负数有( )个 A .1 B .2 C .3 D .42.下列四个算式中运算结果为2022的是( )A .2021(1)+-B .2021(1)--C .2021(1)-⨯-D .2022(1)÷-3.在课题学习中,老师要求用长为12厘米,宽为8厘米的长方形纸片制作一个无盖的长方体纸盒.三位同学分别以下列方式在长方形纸片上截去两角(图中阴影部分),然后沿虚线折成一个无盖的长方体纸盒.甲:如图1,盒子底面的四边形ABCD 是正方形; 乙:如图2,盒子底面的四边形ABCD 是正方形;丙:如图3,盒子底面的四边形ABCD 是长方形,AB=2AD .将这三位同学所折成的无盖长方体的容积按从大到小的顺序排列,正确的是A .甲>乙>丙B .甲>丙>乙C .丙>甲>乙D .丙>乙>甲4.若|2|b +与2(3)a -互为相反数,求a b 的值为( ).A .8-B .8C .18-D .185.2019年7月盐城黄海湿地中遗成功,它的面积约为400000万平方米,将数据400000用科学记数法表示应为( ) A . 60.410⨯ B .9410⨯ C .44010⨯D .5410⨯6.在算式 123-- 中,“□”内填入下列运算符号中的一种,计算结果最大的是( ) A .+B .-C .×D .÷7.已知a =2 0162,b =2 015×2 017,则( )A .a =bB .a >bC .a <bD .a ≤b8.已知 23x <≤ ,则 3x -的值为( )A .25x -B .-1C .1D .52x -9.有理数a ,b 在数轴上对应的点的位置如图所示,则a bab+ 的值是( )A .负数B .正数C .0D .正数或10.据中央电视台新闻联播报道:今年4月我国国际收支口径的国际货物和服务贸易顺差337亿美元.用科学记数法表示337亿正确的是( ) A .337×108B .3.37×1010C .3.37×1011D .0.337×1011二、填空题11. 2019年国庆 7 天长假期间,河南、山西、湖北、西和陕西等 5 省份接待游客总数均超过 6000 万人次,这个数据用科学记数法表示为 人次.12.﹣2021的相反数是 .13.若 ()2230x y -++= ,则 x y = 14.绝对值不大于10的所有整数的和等于 .15.某学习小组在“设计自己的运算程序”这一综合与实践课题的研究中发现,任意写下一个三位数(三位数字相同的除外),重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差.重复这个过程,就能得到一个固定的数字,他们称它为“数字黑洞”.这个固定的数字是 .16.已知 2(3)60a b -++= ,则方程ax=b 的解为 .17.据统计,2018年国家公务员考试报名最终共有1 659 745人通过了招聘单位的资格审查,这个数据用科学记数法可表示为 (精确到万位)18.“辽宁号”航空母舰的满载排水量为67500吨,将数67500用科学记数法表示为 .三、计算题19.计算: 2012sin 45124sin 60(2020)122π-⎛⎫----++-- ⎪⎝⎭20.计算题(1)30×(124235-- ) (2)-14-(1-0.5)×13×[1-(-2)3] 21.计算:()()235248-----÷22.计算: 225323(2)23⎡⎤⎛⎫-⨯-⨯-+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦四、解答题23.把下列各数填入相应的大括号里:(){}160-0.618-3.14,2602015--2---2,0.337⋅-+⎡⎤⎣⎦,,,,,,, 正分数集合{ …}; 整数集合{ …}; 非正数集合{ …}; 有理数集合{ …}24.若a ,b ,c 是ABC 的三边的长,化简|a ﹣b ﹣c|+|b ﹣c ﹣a|+|c+a ﹣b|.25.有理数a 的绝对值为5,有理数b 的绝对值为3,且a ,b 一正一负,求a ﹣b 的值.26.在数轴上表示下列各数:﹣3,4,﹣213,1.5,并按从小到大的顺序用“<”号把这些数连接起来.27.已知1-12 = 12 , 12 - 13 = 16 , 13 - 14 = 112 , 14 - 15 = 120………根据这些等式求值。
初中数学知识点中考总复习总结归纳(人教版)
初中数学知识点中考总复习总结归纳(人教版)2023年初中数学知识点中考总复习总结归纳第一章有理数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如7,32等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如(3)有特定结构的数,如0.1010010001…等;(4)一些三角函数,如sin60o等π+8等;3第二章整式的加减考点一、整式的有关概念(3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如?4ab,这种表示就是错误的,应写成?132132ab。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如3?5a3b2c是6次单项式。
考点二、多项式(11分)1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
单项式和多项式统称整式。
用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。
注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。
(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。
(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。
4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。
2024年中考数学二轮复习:有理数(附答案解析)
2024年中考数学二轮复习:有理数
一.选择题(共10小题)
)
1.有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是(
A.a+b<0B.a﹣b<0C.a•b>0D.>0
2.当|a|=5,|b|=7,且|a+b|=a+b,则a﹣b的值为()
A.﹣12B.﹣2或﹣12C.2D.﹣2
3.下列说法不正确的是()
A.0既不是正数,也不是负数
B.绝对值最小的数是0
C.绝对值等于自身的数只有0和1
D.平方等于自身的数只有0和1
4.如果“盈利5%”记作+5%,那么﹣3%表示()
A.亏损3%B.亏损8%C.盈利2%D.少赚3% 5.在0,﹣2,5,14,﹣0.3中,负数的个数是()
A.1B.2C.3D.4
6.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是)
(
A.Φ45.02B.Φ44.9C.Φ44.98D.Φ45.01
7.如果|a|=a,下列各式成立的是()
A.a>0B.a<0C.a≥0D.a≤0
8.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()
.
①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b
A.①②B.①④C.②③D.③④
第1页(共16页)。
中考数学专题复习卷有理数与无理数
中考数学专题复习卷: 有理数一、选择题1.在-4,0,-1,3这四个数中,既不是正数又不是负数的数是( )A. -4B. 0C. -1D. 32.计算:的结果是()A. -3B. 0C. -1D. 33.下列各式不正确的是()A. |﹣2|=2B. ﹣2=﹣|﹣2|C. ﹣(﹣2)=|﹣2|D. ﹣|2|=|﹣2|4.零上13℃记作+13℃,零下2℃可记作()A. 2B. -2C. -2℃D. 2℃5.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A. 1.442×107B. 0.1442×107C. 1.442×108D. 0.1442×1086.比-1小2的数是()A. 3B. 1C. -2D. -37.-2018的相反数是()A. 2018B. -2018C.D.8.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法(精确到十亿位),应表示为()A. 4.995×1010B. 4.995×1011C. 5.0×1010D. 4.9×10109.的绝对值是( ).A. B. C. D.10.-的倒数是()A. B. - C. D. -11.下列各数中,绝对值最小的数是()A.πB.C.-2D.-12.一个数的相反数小于它本身,这个数是()A. 正数B. 负数C. 非正数D. 非负数二、填空题13.计算: =________.14.根据如图所示的车票信息,车票的价格为________元.15.数轴上的两个数﹣3与a,并且a>﹣3,它们之间的距离可以表示为________.16.计算:(﹣2)2=________.17.实数16 800 000用科学计数法表示为________.18.在有理数中,既不是正数也不是负数的数是________.19.计算:20180-=________.20.已知,则a+b=________21.若△ABC的三边长分别为a,b,c,则|a﹣b﹣c|﹣|b﹣a﹣c|=________.22.观察规律并填空.⑴⑵⑶________(用含n的代数式表示,n是正整数,且n≥ 2)三、解答题23.计算:(1)﹣15+(﹣8)﹣(﹣11)﹣12 (2)\(3)(4)﹣23+[(﹣4)2﹣(1﹣32)×3].24. 计算:(1)(2)[(2x﹣y)2﹣(2x+y)(2x﹣y)+4xy]÷2y.25.已知a、b互为相反数,c、d互为倒数,|m|=3,求的值.答案解析一、选择题1.【答案】B【解析】:∵0既不是正数也不是负数,∴答案为:B【分析】根据0既不是正数也不是负数,可得出答案。
中考数学复习《有理数》专项练习题-附带有答案
中考数学复习《有理数》专项练习题-附带有答案一、单选题1.-4的绝对值是()A.2 B.4 C.-4 D.16 2.-2+5的相反数是( )A.3 B.-3 C.-7 D.7 3.在3,﹣2,0,﹣1.5中,属于负整数的是()A.3 B.-2 C.0 D.-1.5 4.若x>y,则下列式子中错误的是()A.x-3>y-3 B.x3>y3C.x+3>y+3 D.-3x>-3y5.已知:a,b在数轴上位置如图所示,则下列结论中正确的是()A.a<﹣a<b B.|a|>b>﹣aC.﹣a>|a|>b D.|a|>|﹣1|>|b|6.若一个数的绝对值等于2,另一个数是-1的相反数,则这两个数的和是()A.3 B.-1 C.3或-1 D.±3或±17.数轴上的点P与表示有理数2的点的距离是6个单位长度,由点P表示的数是()A.±6B.±8C.8或−4D.88.若a,b为有理数a>0,b<0且|a|<|b|,那么a,b,−a,−b的大小关系是()A.b<−a<−b<a B.b<−b<−a<aC.b<−a<a<−b D.−a<−b<b<a二、填空题9.比较大小(填入“<”、“>”或“=”):-10.一只小虫从数轴上表示-2的点A出发,沿着数轴爬行了4个单位长度,到达点B,则点B表示的数是.11.在数轴上,与表示5的点距离为4的点所表示的数是.12.2023年5月30日上午,我国载人航天飞船“神舟十六号”发射圆满成功,与此同时,中国载人航天办公室也宣布计划在2030年前实现中国人首次登陆距地球平均距离为38.4万千米的月球,将384000用科学记数法表示为.13.如图:数轴上点M 表示原点,点A 表示的数是,点B 表示的数是−2,若点M 的位置不变,点A 表示的数由变为,则点B 表示的数由−2变为 .三、解答题14.在数轴上表示数:﹣2 22﹣ 12 0 1 12 ﹣1.5.按从小到大的顺序用“<“连接起来.15.计算(1)-3.7+8.4-4.3-(-12) (2)﹣24×(﹣12+34﹣13). (3)712×134÷(−9+19) (4)−0.25×(−23)÷(−135)×53(5)−14+(−2)×[(−3)2+2]−(−4)2÷(−5) 16.嘉嘉有如下图所示5张卡片:(1)若从中抽取2张卡片,使这两张卡片上的数字乘积最小,写出相应的算式和结果;(2)从中抽取除0以外的4张卡片,将这4张卡片上的数字进行加、减、乘、除等混合运算,使其结果等于24,每个数字只能用一次,请写出两种不同的符合要求的算式.17.某公司每天做的网上生意都是通过网上银行转账实现的,下表是公司某一天账户转账记录(转入为正,转出为负),该公司账户上原有存款7万元.交易编号 1 2 3 4 5 6 7 8 账户记录(万元)+2-3+3.5-2.5+4-1.2+1-0.8(1)到下班时,公司账户上的存款有多少?(2)做完哪一笔交易时,公司账户上的存款最多?是多少万元?18.科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小明把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周柚子的销售情况:星期一二 三 四 五 六 日 柚子销售超过或不足计划量情况(单位:千克) +3﹣5﹣2+11﹣7+13+5(1)小王第一周销售柚子最多的一天比最少的一天多销售多少千克?(2)小王第一周实际销售柚子的总量是多少千克?(3)若小王按8元/千克进行柚子销售,平均运费为3元/千克,则小王第一周销售柚子一共收入多少元?答案1.B 2.B 3.B 4.D 5.D 6.C 7.C 8.C 9.> 10.-6或2 11.1或9 12.3.84×105 13.−2314.解:如图所示:按从小到大的顺序用“<“连接起来为:﹣2<﹣1.5<﹣ 12 <0<1 12 <22 15.(1)解:0.9 (2)解:2 (3)解:2116(4)解:−0.25×(−23)÷(−135)×53=−14×(−23)×(−58)×53=−14×(−13)×(−54)×53=−25144(5)解:−14+(−2)×[(−3)2+2]−(−4)2÷(−5)=−1+(−2)×(9+2)−16×(−15)=−1−22+165=−194 516.(1)解:(−6)×10=−60(2)解:3×[10+(−6)+4]=244−10×(−6)÷3=24(不唯一)17.(1)7+2- 3+3.5-2.5+4-1.2+1-0.8=10(2)(2)7+2=9万元9-3=6万元6+3.5=9.5万元9.5-2.5=7万元7+4=11万元11-1.2=9.8万元9.8+1=10.8万元10.8-0.8=10万元∴第5笔交易时,最多是11万元.18.(1)解:13-(-7)=13+7=20(千克).答:小王第一周销售柚子最多的一天比最少的一天多销售20千克.(2)解:3﹣5﹣2+11﹣7+13+5+100×7=18+700=718(千克).答:小王第一周实际销售柚子的总量是718千克.(3)解:718×(8﹣3)=718×5=3590(元).答:小王第一周销售柚子一共收入3590元。
中考数学专题训练第1讲有理数(解析版)
有理数易错点梳理易错点01 误把0当成正数0既不是正数也不是负数.0是正数与负数的分界点。
易错点02 误以为带“+”号的数就是正数.带“-”号的数就是负数不能简单地理解为带“+”号的数就是正数.带“-”号的数就是负数。
例如:当0>a 时.a 表示正数.a -表示负数;当0=a 时.a 与a -都表示0;当0<a 时.a 表示负数.a -表示正数。
易错点03 误把无限循环小数看成无理数有限小数和无限循环小数都可以写成分数形式.所以有限小数和无限循环小数都是有理数;无限不循环小数是无理数。
易错点04 误把数轴当成线段数轴是规定了原点、正方向和单位长度的直线。
易错点05 混淆“单位长度”和“长度单位”单位长度是指具体的时间内具体的长度为1;长度单位是指毫米、厘米、分米、米、千米等。
它们是完全不同的概念。
易错点06 误认为0的倒数是00的相反数是0,0的绝对值为0,0没有倒数。
易错点07 混淆na -与na )(-的意义n a -表示n a 的相反数.n a )(-表示n 个a -相乘。
易错点08 运用加法交换律时弄错符号运用加法交换律时.在交换各加数的位置时.要连同它前面的符号一起交换.不能漏掉符号。
易错点09 运用分配律时易漏乘运用分配律时.括号内的每一项都要乘以括号外的数.不要漏乘。
考向01 正负数的概念易错点梳理例题分析例题1:(2021·青海西宁·中考真题)中国人最先使用负数.魏晋时期的数学家刘徽在其著作《九章算术注》中.用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正.黑色为负).如图1表示的是(+2)+(-2).根据这种表示法.可推算出图2所表示的算式是( )A .()()36+++B .()()36++-C .()()36-++D .()(36)-+-【答案】B【思路分析】根据题意图2中.红色的有三根.黑色的有六根可得答案.【解析】解:由题知. 图2红色的有三根.黑色的有六根.故图2表示的算式是(+3)+ (-6) .故选:B .【点拨】本题主要考查正负数的含义.解题的关键是理解正负数的含义.考向02 数轴的概念例题2:(2021·广东广州·中考真题)如图.在数轴上.点A 、B 分别表示a 、b .且0a b +=.若6AB =.则点A 表示的数为( )A .3-B .0C .3D .6-【答案】A【思路分析】由AB 的长度结合A 、B 表示的数互为相反数.即可得出A .B 表示的数 【解析】解:∵0a b += ∴A .B 两点对应的数互为相反数.∴可设A 表示的数为a .则B 表示的数为a -. ∵6AB = ∴6a a --=. 解得:3a =-.∴点A 表示的数为-3.故选:A .【点拨】本题考查了绝对值.相反数的应用.关键是能根据题意得出方程6a a --=.考向03 相反数的概念例题3:(2021·湖南永州·中考真题)1||202--的相反数为( ) A .2021- B .2021C .12021-D .12021【答案】B【思路分析】根据绝对值、相反数的概念求解即可.【解析】解:由题意可知:||=22110202-.故1||202--的相反数为2021.故选:B . 【点拨】本题考查相反数、绝对值的概念.属于基础题.熟练掌握概念是解决本题的关键.考向04 绝对值和概念和非负性例题4:(2021·黑龙江大庆·中考真题)下列说法正确的是( ) A .||x x <B .若|1|2x -+取最小值.则0x =C .若11x y >>>-.则||||x y <D .若|1|0x +≤.则1x =-【答案】D【思路分析】根据绝对值的定义和绝对值的非负性逐一分析判定即可.【解析】解:A .当0x =时.||=x x .故该项错误;B .∵10x -≥.∴当1x =时|1|2x -+取最小值.故该项错误;C .∵11x y >>>-.∴1x >.1y <.∴||||x y .故该项错误;D .∵|1|0x +≤且|1|0x +≥.∴|1|0x +=.∴1x =-.故该项正确;故选:D .【点拨】本题考查绝对值.掌握绝对值的定义和绝对值的非负性是解题的关键.考向05 有理数大小的比较例题5:(2021·四川巴中·中考真题)下列各式的值最小的是( ) A .20 B .|﹣2| C .2﹣1 D .﹣(﹣2)【答案】C【思路分析】直接利用零指数幂的性质以及负整数指数幂的性质、绝对值的性质、相反数分别化简得出答案.【解析】解:20=1.|-2|=2.2-1=12.-(-2)=2. ∵12<1<2. ∴最小的是2-1. 故选:C .【点拨】此题主要考查了零指数幂的性质以及负整数指数幂的性质、绝对值的性质、相反数.正确化简各数是解题关键.考向06 有理数加减法的运算例题6:(2021·四川广元·中考真题)计算()32---的最后结果是( ) A .1B .1-C .5D .5-【答案】C【思路分析】先计算绝对值.再将减法转化为加法运算即可得到最后结果. 【解析】解:原式325=+=.故选:C .【点拨】本题考查了绝对值化简和有理数的加减法运算.解决本题的关键是牢记绝对值定义与有理数运算法则.本题较基础.考查了学生对概念的理解与应用.考向07 科学计数法例题7:(2021·山东青岛·中考真题)2021年3月5 日.李克强总理在政府工作报告中指出.我国脱贫攻坚成果举世瞩目.5575万农村贫困人口实现脱贫.5575万=55750000.用科学记数法将55750000表示为( ) A .4557510⨯ B .555.7510⨯C .75.57510⨯D .80.557510⨯【答案】C【思路分析】根据科学记数法的定义“把一个大于10的数表示成10n a ⨯的形式(其中a 是整数位只有一位的数.即a 大于或等于1且小于10.n 是正整数).这样的记数方法叫做科学记数法”进行解答即可得.【解析】解:755750000 5.57510=⨯.故选C .【点拨】本题考查了科学记数法.解题的关键是熟记科学记数法的定义.一、单选题1.(2021·湖南·长沙市开福区青竹湖湘一外国语学校三模)-2021的绝对值是( ) A .2021- B .12021-C .2021D .12020【答案】C【解析】-2021的绝对值是2021.故选:C2.(2021·浙江·温州市教育教学研究院一模)2的相反数是( ) A .2 B .12C .2-D .4-【答案】C【解析】解:2的相反数是-2.故选C .3.(2021·安徽·合肥一六八中学模拟预测)下列是有理数的是( ) A .tan 45︒ B .sin 45︒C .cos45︒D .sin 60︒【答案】A微练习【解析】解:A 、tan 451︒=.是有理数.符合题意;B 、2sin 452=°.不是有理数.不符合题意;C 、2cos 452=°.不是有理数.不符合题意;D 、3sin 602︒=.不是有理数.不符合题意;故选:A .4.(2021·陕西·交大附中分校模拟预测)如图.数轴上点A 表示的数为( )A .﹣2B .﹣1C .0D .1【答案】B【解析】解:由图可知:点A 在﹣1的位置.表示的数为﹣1.故选:B .5.(2021·广东·佛山市华英学校一模)在2. 1.5-.0.23-这四个数中最小的数是( )A .2B . 1.5-C .0D .23-【答案】B【解析】解:∵2>0.0>﹣1.5.0>﹣23.又∵|﹣1.5|=32.|﹣23|=23.∴32>23.∴﹣1.5<﹣23.综上所述.﹣1.5<﹣23<0<2.故选:B .6.(2021·浙江·翠苑中学二模)计算42=( ) A .8 B .18C .16D .116【答案】C【解析】解:24=2×2×2×2=16.故选:C . 7.(2021·内蒙古东胜·二模)截止2021年4月17日.全国接种新冠病毒疫苗达到81.89810⨯剂次.则数据81.89810⨯表示的原数是( ) A .1898000 B .18980000 C .189800000 D .1898000000【答案】C【解析】解:81.89810⨯=189800000. 故选C .8.(2021·安徽·安庆市第四中学二模)计算:2﹣(﹣2)等于( ) A .﹣4 B .4 C .0 D .1【答案】B【解析】解:2﹣(﹣2)=2+2=4.故选择B . 二、填空题9.(2021·福建·泉州五中模拟预测)计算:1012(3)2--+-=_______.【答案】0 【解析】原式111022=-+=.故答案为:0. 10.(2021·福建·厦门双十中学思明分校二模)实数a 与b 在数轴上对应点的位置如图所示.a <c <﹣b .且c 为整数.则实数c 的值为________.【答案】3 【解析】解:如图由a <c <﹣b .且c 为整数.故实数c 的值为3.故答案为:3.11.(2021·广东·执信中学模拟预测)()0222cos4512 3.14π--+︒-+--=____________【答案】314【解析】解:()0222cos4512 3.14π--+︒---122(21)14=-++122114=-+314=.故答案为:314.12.(2021·福建·重庆实验外国语学校模拟预测)新华社北京5月11日电11日发布的第七次全国人口普查结果显示.全国人口共141178万人.与2010年第六次全国人口普查数据相比.增加7206万人.增长5.38%.年平均增长率为0.53%.数据表明.我国人口10年来继续保持低速增长态势.用科学记数法将数据“7206万”表示为 __. 【答案】77.20610⨯【解析】解:7206万77.20610=⨯故答案为:77.20610⨯. 三、解答题13.(2021·广西·南宁十四中三模)计算:()()3425284+-⨯--÷. 【答案】29-【解析】()()3425284+-⨯--÷485(7)=-⨯--1140=- 29=-14.(2021·云南昭通·二模)计算:1020211(1)|2|3-⎛⎫+-+--- ⎪⎝⎭(-2021). 【答案】-5【解析】原式1(1)(3)2=+-+--5=-.15.(2021·黑龙江·二模)计算: 120201(1)3-⎛⎫-+ ⎪⎝⎭【答案】2.【解析】原式132=+-2=.16.(2021·吉林长春·二模)计算:()()2111323π--+---+⎛⎫⎪⎝⎭【答案】3【解析】解:原式11233=+-+=.。
中考数学专题复习题:有理数的乘方
中考数学专题复习题:有理数的乘方一、单项选择题(共8小题)1.下列各数是正数的是( )A .()2−+B .()2--C .32−D .()32− 2.若222216m ⨯⨯⨯=个,则m =( ) A .2 B .3 C .4 D .5 3.任何一个有理数的偶次幂必是( )A .负数B .正数C .非正数D .非负数4.下列说法正确的是( )A .82−的底数是2−B .52表示5个2相加C .3(3)−与33−意义相同D .323−的底数是2 5.2023年我国将新建开通5G 基站60万个,总数将突破290万个,位居世界第一.将数据“290万”用科学记数法表示为( )A .2.9×108B .2.9×106C .2.9×104D .290×1046.计算23222333m n ⨯⨯⋅⋅⋅⨯++⋅⋅⋅+个个的结果,正确的是( ) A .23m n B .23m n C .32m n D .23m n7.如图,某种细胞经过30分钟由一个分裂成2个,若要这种细胞由一个分裂成16个,那么这个过程要经过( )A .1.5小时B .2小时C .3小时D .4小时8.观察下列等式:071=,177=,2749=,37343=,472401=,5716807=,…,根据其中的规律可得30122027777++++的结果的个位数字是( ) A .0 B .1 C .7 D .8二、填空题(共8小题)9.计算2(1)5−+−=________.10.已知光在真空中的传播速度是3×105km/s ,1年约为3.15×107s ,则1光年(光1年所走的路程)约为______m .(用科学记数法表示)11.()42−的相反数是______.12.如果532x =−,38y =那么y x =______.13.若2(35)|23|0x y x y −++−+=,则x y +=________.14.1根1米长的木棒,第一次截去一半,第二次截去剩下的一半,如此截下去,则第8次剩下的木棒的长为________米.15.如图,A ,B ,C ,D ,E 是数轴上5个点,A 点表示的数为9,E 点表示的数为9100,AB =BC =CD =DE ,则数999所对应的点在线段________上.16.求2310013333++++⋅⋅⋅+的值,可令2310013333M =+++⋅⋅⋅+,则234101333333M =++++⋅⋅⋅,因此,101331M M −=−,所以101312M −=即1012310031133332−+++⋅⋅⋅+=,依照以上推理计算:23202315555++++⋅⋅⋅+的值是________.三、解答题(共6小题)17.请你把下列各数填入表示它所在的数的集合内:233(3),(2),|0.5|,,0,2,0.13,7,4π−−−−−−−⋯. 正有理数集合:{__________}⋯; 整数集合:{__________}⋯;负分数集合:{__________}⋯;自然数集合:{__________}⋯. 18.计算(1)()()2021623193+⨯−−÷−− (2)5255524757123⎛⎫÷−−⨯−÷ ⎪⎝⎭19.已知||5a =,24b =,38c =−.(1)若0a b <<,求a b +的值.(2)若0abc >,求a b c −+的值.20.在数轴上A 点表示数a ,B 点表示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足|a +2|+(c ﹣7)2=0.(1)填空:a =________,b =________,c =________.(2)画出数轴,并把A ,B ,C 三点表示在数轴上.(3)P 是数轴上一动点,P 点表示的数是x ,当PA+PB+PC =10时,x =________.21.某公司培养绿藻细胞制作绿藻粉,该公司制作1克的绿藻粉需要60亿个绿藻细胞.(1)在光照充沛的环境下,1个绿藻细胞每20小时可分裂成4个绿藻细胞,且分裂后的细胞继续分裂.现从1个绿藻细胞开始培养,经过15天后,共分裂成4k 个绿藻细胞,求k 的值.(2)已知210=1024,请判断(1)问中的4k 个绿藻细胞是否足够制作10克的绿藻粉,并说明理由.22.(1)计算两组算式:①()235⨯与2235⨯;②()223⎡⎤−⨯⎣⎦与()2223−⨯; (2)根据以上计算结果想开去:()3ab 等于什么?(直接写出结果)(3)猜想与验证:当n 为正整数时,()n ab 等于什么?请你利用乘方的意义说明理由. (4)利用上述结论,求()2022202340.25−⨯的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题复习:有理数(一)数的分类(强化记忆)⎧⎧⎧⎪⎪⎨⎨⎪⎩⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎪⎨⎪⎨⎩⎪⎪⎪⎩⎩正整数正有理数正实数正分数正无理数实数负整数负有理数负实数负分数负无理数 ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (按符号分) (按定义分、按性质分)注意点:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数 (2)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.(3)0即不是正数,也不是负数。
0是正数与负数的分界;0不仅表示没有,还表示某种量的基准。
如0不能理解为没有温度。
(4)初中范围内 数是指实数 正数是指正实数 负数是指负实数(5)对于正数和负数,不能简单理解为带“+”号的数是正数,带“—”号的数是负数误认为凡带正号的数就是正数,误认为凡带负号的数就是负数例-a 不一定是负数,+a 也不一定是正数;(6)π不是有理数,而是无理数;(7)非负整数应理解成“非负的整数”,不能理解成“‘非'负整数”,即正整数与零。
{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数 负无理数例1、把下列各数填在相应的集合里5,-2,4.6,,0,-2.25,1,+0.34,+13,-3.1416,整数集合{ 5,-2,0,+13,…}非负整数集合{5,0,+13,… }负分数集合{,-2.25, -3.1416,…}正有理数集合{5, 4.6,1,+0.34,+13,}例2:一种商品的标准价格是200元,但是随着季节的变化商品的价格可浮动±10%,(1)±10%的含义是什么?(2)请你计算出该商品的最高价格和最低价格。
(3)如果以标准价为“基准”,超过“基准”记为“+”,低于“基准”记为“-”,那么该商品价格浮动的范围又可以怎样表示。
解:(1)±10%的含义是在标准价格的基础上加价和降价的幅度不超过10%。
(2)最高价格:200×(1+10%)=220(元)最低价格:200×(1-10%)=180(元)(3)180-200=-20(元)220-200=20(元)以标准价格是200元为“基准”,该商品价格浮动的范围为±20元。
例3、光盘的质量标准中规定:厚度为(1.2±0.1)mm的光盘是合格品,说说1.2mm和±0.1mm所表示的意义。
解:1.2mm表示光盘的标准厚度;±0.1mm表示光盘厚度最大不超过标准厚度0.1mm,最小不低于标准厚度的0.1mm.(二)正数与负数表示具有相反意义的量。
这样使用负数后,在表示具有相反意义的两个词语之中,只用一个词语就可以把事情说清。
如减少5hm2就可以说成增加 -5hm2.(注意“两变”)常见的相反意义的量:高于与低于,零上与零下,盈利与亏损,增加与减少,上升与下降。
例1.“甲比乙大-2岁”表示的意义是( A)A、甲比乙小2岁B、甲比乙大2岁C、乙比甲大-2岁D、乙比甲小2岁(三)数轴、相反数、绝对值、倒数的概念(强化记忆)1、数轴:数轴是规定了原点、正方向、单位长度的一条直线.数轴的含义:(1)数轴是一条直线,可以向两边无限延伸(2)数轴的三要素:原点、正方向、单位长度、这三者缺一不可(3)数轴一般取右(或向上)为正方向,数轴的原点的选定,正方向的取向,单位长度大小的确定都是根据实际需要规定的。
(4)同一数轴的单位长度必须一致2.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔a+b=0 ⇔ a 、b 互为相反数.(3)互为相反数的两数绝对值相等。
3.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 注:2x =的解为2±=x ;而22=-,但少部分同学写成 22±=-.4.倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1; a1也可表示为a -1,若ab=1⇔ a 、b 互为倒数;若ab =-1⇔ a 、b 互为负倒数. 例1.已知A 、B 两点坐标分别为﹣3、﹣6,若在数在线找一点C ,使得A 与C 的距离为4;找一点D ,使得B 与D 的距离为1,则下列何者不可能为C 与D 的距离( )A 、0B 、2C 、4D 、6分析:将点A 、B 、C 、D 在数轴上表示出来,然后根据绝对值与数轴的意义计算CD 的长度.解:根据题意,点C 与点D 在数轴上的位置如图所示:在数轴上使AC 的距离为4的C 点有两个:C 1、C 2数轴上使BD 的距离为4的D 点有两个:D 1、D 2 ∴①C 与D 的距离为:C 2D 2=0;②C 与D 的距离为:C 2D 1=2;③C 与D 的距离为:C 1D 2=8;④C 与D 的距离为:C 1D 1=6;综合①②③④,知C 与D 的距离可能为:0、2、6、8.故选C .点评:此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.(四)非负数定理:几个非负数之和为0,则每一个非负数都为0 (强化记忆)注:非负数:零和正数统称非负数。
常见的非负数的形式:|a| 、2a ;例1、已知2(3)30x y -++= ,求332010()()()xx y y -+-- 的值。
解:∵2(3)30x y -++= ∴ x-3=0,y+3=0 ∴x=3,y=-3∴原式=(-3)3+33-(-1)2010=-27+27-1=-1(五)实数大小的比较(强化记忆)(1)利用数轴:数轴上的两个数,右边的数总比左边的数大;(2)利用绝对值:正数>0>负数,正数>负数,两个负数,绝对值大的反而小;(5)平方法:先平方再作差(6)倒数法 例1、已知有理数a,b 在数轴上的位置如图所示,现比较a,b,-a,-b 的大小b<-a<a<-b例2、比较下面两列算式结果的大小:(在横线上选填“>”、“<”、“=”)…… 通过观察归纳,写出能反映这种规律的一般结论,并加以证明。
解:横线上填写的大小关系是>、>、、=.一般结论是:如果a 、b 是两个实数,则有a 2+b 2≥2ab )证明:作差∵a 2+b 2﹣2ab =(a ﹣b )2≥0 ∴a 2+b 2≥2ab(六)实数的加、减、乘、除、乘方运算(强化记忆)1. 加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.2.加法运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).3.减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).注:有理数加减法法则 (口诀记法)先定符号,再计算,同号相加不变号.异号相加“大”减“小”,符号跟着“大数”跑.0,0,0a b a b a b a b a b a b a b->⇔>-=⇔=-<⇔<(3)作差比较法:设、是两个任意实数,则41,11m m m m n m n m n n n n>⇔>=⇔=<⇔<()作商比较法:设m 、n 是两个正实数,则4.乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定,当负因数个数为奇数个时积为负,当负因数个数为偶数个时,积为正。
5.乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .6.有理数除法法则:同号为正,异号为负,并把绝对值相除。
除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .7.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;8.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n或(a -b)n =-(b -a)n , 当n 为正偶数时: (-a)n =a n 或 (a -b)n =(b -a)n .特殊情况:当n 为正奇数时: (-1)n =-1;当n 为正偶数时: (-1)n =1 注:“奇负偶正”的应用·(1)、如下符号的化简(指负号的个数与结果符号的关系),如:-{+[-(-2)]}= -2(2)、连乘式的积(指负因数的个数与结果符号的关系),如:(-1)×(-2)×(-3)×(+4)=-24(-1)×(-2)×(-3)×(-4)=24(3)、负数的乘方(指乘方的指数与结果符号的关系),如:(-2)3=-8, (-3)2=9(4)、分数的符号法则(指的是分子、分母及分数本身三个符号中,同时改变两个,值不变,但改变一个或三个都改变时,分数的值就变相反了),如:212121-=-=-;ba b a b a -=-=-9.混合运算法则:先乘方,后乘除,最后加减. 有括号先算括号里的运算。
在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误.如5÷51×5. 10. 整数指数幂的有关运算及乘法公式 ①(,)m n m n a a a m n +=是整数表述: 同底数幂相乘,底数不变,指数相加, ②÷(,)m n m n a a a m n =-是整数表述: 同底数幂相除,底数不变,指数相减, ③()(,)m n mn a a m n =是整数表述: 幂的乘方,底数不变,指数相乘,④()()n n n ab a b n =是整数表述:积的乘方等于乘方的积⑤01(0)a a =≠表述:任何不等于0的数的0次幂等于1 ⑥1(0,)p p a a p a-=≠为正整数表述: 任何不等于0的数的-p 次幂,等于这个数的p 次幂的倒数⑦()(nn n a a n b b=是整数)表述:分式的乘方等于分子分母各自乘方。