2013年广东高考数学理科word精校版含答案
广东高考数学试题及答案
广东高考数学试题及答案【篇一:2013年广东高考理科数学试题及答案(word版)】型:a2013年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔盒涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2b铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:台体的体积公式v?1(s1?s2?h,其中s1,s2分别表示台体的上、下底面3积,h表示台体的高一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.221.设集合m?xx?2x?0,x?r n?xx?2x?0,x?r,则m?n?() ????a.?0? b.?0,2?c.??2,0? d.??2,0,2?3x22.定义域为r的四个函数y?x,y?2,y?x?1,y?2sinx中,奇函数的个数是()a.4 b.3 c.2 d.1 3.若复数z满足iz?2?4i,则在复平面内,z对应的点的坐标是() a.(2,4) b.(2,?4) c.(4,?2) d.(4,2) 4.已知离散型随机变量x的分布列为则x的数学期望e(x)?()数学(理科)试卷a 第 1 页(共 8 页)5.某四棱台的三视图如图1所示,则该四棱台的体积是()正视图侧视图a.4 b.143俯视图图1c.16d.6 36.设m,n是两条不同的直线,?,?是两个不同的平面,下列命题正确的是() a.若???,m??,n??,则m?nb.若?∥?,m??,n??,则m∥n c.若m?n,m??,n??,则???d.若m??,m∥n,n∥?,则???3,则c的方程是() 2x2y2x2y2x2y2x2y2??1 c.??1 d.a.??1 b.??1 4525427.已知中心在原点的双曲线c的右焦点为f(3,0)离心率等于8.设整数n?4,集合x??1,2,3,?,n?令集合s??(x,y,z)x,y,z?x,且三条件x?y?z,y?z?x,z?x?y恰有一个成立?,若(x,y,z)和(z,w,x)都在s中,则下列选项正确的是()a.(y,z,w)?s,(x,y,w)?sb. (y,z,w)?s,(x,y,w)?sc.(y,z,w)?s,(x,y,w)?sd. (y,z,w)?s,(x,y,w)?s二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(9-13题)9.不等式x?x?2?0的解集为10.若曲线y?kx?lnx在点(1,k)处的切线平行于2x轴,则k?11.执行图2所示的流程框图,若输入n的值为4,则输出s的值为.数学(理科)试卷a 第 2 页(共 8 页)12.在等差数列?an?中,已知a3?a8?10,则3a5?a7?.?x?4y?4?13.给定区域d:?x?y?4,令点集?x?0?t??(x0,y0)?dx0,y0?z,(x0,y0)是z?x?y在d上取得最大值或最小值的点?,则t中的点共确定条不同的直线.(二)选做题(14-15题,考生只能从中选做一题)?x?2cost(t为参数),c在点14.(坐标系与参数方程选做题)已知曲线c的参数方程为??y?2sint(1,1)处的切线为l,以坐标原点为极点,x程为.15.(几何证明选讲选做题)如图3,ab是圆o的直径,点c 在圆o上,延长bc到d,使bc?cd,过c作圆o的切线交 ad于e,若ab?6,de?2,则bc?.d三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数f(x)?(1)求f(?x??12),x?r?6的值;33??,??(,2?),求f(2?? 523图4(2)若cos??17.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图4所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.数学(理科)试卷a 第 3 页(共 8 页)18.(本小题满分14分)如图5,在等腰直角三角形abc中,∠a ?90?,bc?6,d,e分别是ac,ab上的点,cd?be?o为bc的中点.将△ade沿de折起,得到如图6所示的四棱椎a?bcde,其中acb (1)证明:ao?平面bcde;(2)求二面角a?cd?b平面角的余弦值. 19.(本小题满分14分)设数列{an}的前n项和为sn,已知a1?1,(1)求a2的值;(2)求数列{an}的通项公式;(3)证明:对一切正整数n,有20.(本小题满分14分)图62sn12?an?1?n2?n?,n?n*. n331117???????. a1a2an4已知抛物线c的顶点为原点,其焦点f(0,c)(c?0)到直线l:x?y?2?0设p为直线l上的点,过点p做抛物线c的两条切线pa,pb,其中a,b为切点.(1)求抛物线c的方程;(2)当点p(x0,y0)为直线l上的定点时,求直线ab;(3)当点p 在直线l上移动时,求|af|?|bf|的最小值 21.(本小题满分14分)设函数f(x)?(x?1)e?kx(k?r) (1)当k?1时,求函数f(x)的单调区间;(2)当k?(,1]时,求函数f(x)在[0,k]上的最大值m数学(理科)试卷a 第 4 页(共 8 页)x2122013年普通高等学校招生全国统一考试(广东卷)答案数学(理科)一、选择题1-5.dccab 6-8.dbb 二、填空题9.(-2,1) 10.-111.712.2013.6 14.?sin(??)?2 15.24三、解答题????2?)?2cos(?)?2??16124233?4(2)∵cos??,??(,2?),∴sin??-.16.(1)由题意f(?)?2cos(??6532743242∴cos2??2cos?-1?2?()?1??,sin2??2sin?cos??2?(?)???5255525??????∴f(2??)?2cos(2???)?2cos(2??)?2(cos2?cos?sin2?sin)33124442272417.?2(cos2??sin2?)?cos2??sin2????(?)?22252525 17?19?20?21?25?30?22. 17.(1)样本均值为x?621(2)根据题意,抽取的6名员工中优秀员工有2人,优秀员工所占比例为?,631故12名员工中优秀员工人数为?12?4(人).352(3)记事件a为“抽取的工人中恰有一名为优秀员工”,由于优秀员工4人,非优秀员工为8人,故11c4c84?816?, 26633c1216即抽取的工人中恰有一名为优秀员工的概率为.33事件a发生的概率为p(a)??18.(1)折叠前连接oa交de于f,∵折叠前△abc为等腰直角三角形,且斜边bc=6,所以oa⊥bc,oa=3,ac=bc=32又cd?be?2∴bc∥de,ad?ae?22 ∴oa⊥de,ad?ae?22 ∴af=2,of=1折叠后de⊥of,de⊥a′f,of∩a′f=f ∴de⊥面a′of,又a?o?面a?of ∴de⊥a′o数学(理科)试卷a 第 5 页(共 8 页)【篇二:2015广东高考数学(理科)试题及答案解析版】t>2015年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一个选项是符合题目要求的。
13年广东高考理科数学试题及答案OK
正视图 俯视图侧视图图1绝密★启用前 试卷类型:A2013年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21题,满分150分。
考试用时120分钟。
注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2、选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3、非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔盒涂改液。
不按以上要求作答的答案无效。
4、作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5、考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:台体的体积公式121(3V S S h =++,其中1S ,2S 分别表示台体的上、下底面积,h 表示台体的高。
一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、设集合{}R x x x x M ∈=+=,022 {}R x x x x N ∈=-=,022,则M N = ( )A 、{}0B 、{}2,0C 、{}0,2-D 、{}2,0,2-2、定义域为R 的四个函数3x y =,x y 2=,12+=x y ,x y sin 2=中,奇函数的个数是( )A 、4B 、3C 、2D 、1 3、若复数z 满足i iz 42+=,则在复平面内,z 对应的点的坐标是( )A 、)4,2(B 、)4,2(-C 、)2,4(-D 、)2,4( 4、已知离散型随机变量X 的分布列为则X 的数学期望=)(X E ( )5 )A 、4B 、314 C 、316D 、6D6、设n m ,是两条不同的直线,βα,是两个不同的平面,下列命题正确的是( ) A 、若m n αβαβ⊥⊂⊂,,, 则m n ⊥ B 、若m n αβαβ⊂⊂∥,,,则m n ∥ C 、若m n m n αβ⊥⊂⊂,,, 则αβ⊥ D 、若m m n n αβ⊥,∥,∥,则αβ⊥7、已知中心在原点的双曲线C 的右焦点为)0,3(F 离心率等于23,则C 的方程是( ) A 、15422=-y x B 、15422=-y x C 、15222=-y x D 、15222=-y x 8、设整数4≥n ,集合{}n X ,,3,2,1 =令集合{}(,,),,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立,若),,(),,(x w z z y x 和都在S中,则下列选项正确的是( )A 、S w y x S w z y ∉∈),,(,),,(B 、 S w y x S w z y ∈∈),,(,),,(C 、S w y x S w z y ∈∉),,(,),,(D 、 w y x S w z y ∉∉),,(,),,(二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20(一)必做题(9-13题)9、不等式022<-+x x 的解集为 .10、若曲线x kx y ln +=在点),1(k 处的切线平行于x 轴,则=k .11、执行图2所示的流程框图,若输入n 的值为4,则输出s 的值为 . 12.在等差数列{}n a 中,已知1083=+a a ,则=+753a a .13、给定区域⎪⎩⎪⎨⎧≥≤+≥+0444:x y x y x D ,令点集{}000000(,),,(,)D T x y D x y Z x y z x y =∈∈=+是在上取得最大值或最小值的点,则T 中的点共确定条不同的直线;(二)选做题(14-15题,考生只能从中选做一题) 14、(坐标系与参数方程选做题)已知曲线C 的参数方程为⎩⎨⎧==)(sin 2cos 2为参数t ty t x ,C 在点)1,1(处的切线为l ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,则l 的极坐标方程为 . 15、(几何证明选讲选做题)如图3,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D ,使BC =CD ,过C 作圆O 的切线交AD 于E ,若AB =6,DE =2,则BC = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16、(本小题满分12分)已知函数()),12f x x π=-x R ∈,(1)求()6f π-的值;(2)若33cos ,(,2)52πθθπ=∈,求(2)3f πθ+17、(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图4所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人? (3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.图4BC图6O18、(本小题满分14分)如图5,在等腰直角三角形ABC中,∠A 90=︒,6BC=,D,E分别是AC,AB上的点,CD BE== O为BC的中点.将△ADE沿DE折起,得到如图6所示的四棱椎'A BCDE-,其中'A O=(1)证明:'A O⊥平面BCDE;(2)求二面角'A CD B--平面角的余弦值.19、(本小题满分14分)设数列{}na的前n项和为nS,已知11a=,2*1212,33nnSa n n n Nn+=---∈,(1)求2a的值;(2)求数列{}na的通项公式;(3)证明:对一切正整数n,有1211174na a a++⋅⋅⋅+<.20、(本小题满分14分)已知抛物线C 的顶点为原点,其焦点(0,)(0)F c c >到直线:20l x y --=,设P 为直线l 上的点,过点P 做抛物线C 的两条切线PA ,PB ,其中A ,B 为切点;(1)求抛物线C 的方程;(2)当点00(,)P x y 为直线l 上的定点时,求直线AB ;(3)当点P 在直线l 上移动时,求||||AF BF ⋅的最小值21、(本小题满分14分)设函数2()(1)()x f x x e kx k R =--∈,(1)当1k =时,求函数()f x 的单调区间; (2)当1(,1]2k ∈时,求函数()f x 在[0,]k 上的最大值M2013年普通高等学校招生全国统一考试(广东卷)答案数学(理科)一、选择题1-5:D 、C 、C 、A 、B ; 6-8:D 、B 、B ;二、填空题9、(-2,1) 10、-1 11、7 12、20 13、6 14、2)4(sin =+πθρ 15、32三、解答题16、(1)由题意1222)4cos(2)126cos(2)6(=⨯=-=--=-ππππf (2)∵)2,23(,53cos ππθθ∈=,∴54-sin =θ.∴252453)54(2cos sin 22sin ,2571)53(21-cos 22cos 22-=⨯-⨯==-=-⨯==θθθθθ∴)4sin 2sin 4cos 2(cos 2)42cos(2)1232cos(2)32(πθπθπθππθπθ-=+=-+=+f2517)2524(2572sin 2cos )2sin 222cos 22(2=---=-=-=θθθθ. 17、(1)样本均值为226302521201917=+++++=x . (2)根据题意,抽取的6名员工中优秀员工有2人,优秀员工所占比例为3162=,故12名员工中优秀员工人数为41231=⨯(人).(3)记事件A 为“抽取的工人中恰有一名为优秀员工”,由于优秀员工4人,非优秀员工为8人,故事件A 发生的概率为33166684)(2121814=⨯==C C C A P ,即抽取的工人中恰有一名为优秀员工的概率为3316.18、(1)折叠前连接OA 交DE 于F ,∵折叠前△ABC 为等腰直角三角形,且斜边BC =6, 所以OA ⊥BC ,OA=3,AC =BC =23 又2==BE CD∴BC ∥DE ,22==AE AD∴OA ⊥DE ,22==AE AD ∴AF =2,OF =1 折叠后DE ⊥OF ,DE ⊥A ′F ,OF ∩A ′F =F∴DE ⊥面A ′OF ,又OF A O A '⊂'面 ∴DE ⊥A ′O又A ′F =2,OF =1,A ′O =3∴△A ′OF 为直角三角形,且∠A ′OF =90° ∴A ′O ⊥OF , 又BCDE DE 面⊂,BCDE OF 面⊂,且DE ∩OF =F , ∴A ′O ⊥面BCDE .(2)过O 做OH ⊥交CD 的延长线于H ,连接H A ',∴OH =22AO =223,230)3()223(2222=+=+'='OH O A H A ∵∠A ′HO 即为二面角B CD A --'的平面角,故cos ∠A ′HO=5153023=='H A OH . 19、(1)令*21,32312N n n n a n S n n ∈---=+中n =1得,32131221---=a a ∴42212=+=a a(2)由*21,32312N n n n a n S n n ∈---=+;得)2)(1(612326121231++-=---=++n n n na n n n na S n n n∴)3)(2)(1(612)1(21+++-+=++n n n a n S n n两式相减得)2)(1(2122)1(121++--+=-+++n n na a n S S n n n n∴)2)(1(2122)1(121++--+=+++n n na a n a n n n∴)2)(1(212)2(2)1(12++++=+++n n a n a n n n∴11212++=+++n an a n n ,∴11212=+-+++n a n a n n又由(1)知112,22,111221=-==aa a a∴为公差的等差数列,为首相,是以11⎭⎬⎫⎩⎨⎧n a n ∴n na n =.∴)(*2N n n a n ∈=.(3)∵)1111(21)1)(1(111122+--=+-=-<n n n n n n∴)1111(21)4121(21)311(2111312111111222321+--++-+-+<++++=++++n n na a a a n 47)111(2147)111211(211<++-=+--++=n n n n 20、(1)依题意得0,22322>=--c c ,∴1=c .∴抛物线焦点坐标为(0,1),抛物线解析式为x 2=4y(2)设A (x 1,421x ),B (x 2,422x ),∴可设A 、B 中点坐标为M )82(222121x x x x ++, 所以直线PA :424)(22112111x x x x x x x y -=+-=,直线PB :424)(22222222x x x x x x x y -=+-=两式相减得)2(244202121212221x x x x x x x x x x +--=-+-= ∵21x x ≠,∴0221≠-x x ,0221=+-x x x∴2210x x x +=, ∴0212x x x =+将P (0x ,0x -2)带入PA :42211x x x y -=得4422221212110x x x x x x x =-+=-∴84021-=x x x∴2428168482)(8020020212212221+-=+-=-+=+x x x x x x x x x x ∴A 、B 中点坐标为M (0x ,242020+-x x )∴直线AB 的斜率24)(4021122122x x x x x x x k AB =+=--= 故直线AB 的方程为22242)(20002000+-=+-+-=x x x x x x x x y . (3)由于A 点到焦点F 的距离等于A 点到准线y =-1的距离,∴|AF |=1421+x ,|BF |=1422+x 29)23(2962142)2(14)4()14)(14(200200202022212212221+-=+-=++-+-=+++=++=⋅x x x x x x x x x x x x BF AF∴当230=x 时,BF AF ⋅取最小值29.21、(1)k =1时2)1()(x e x x f x --=∴)2(2)1()(-=--+='x x x e x x e x e x f当x <0时02<-x e ,故0)2()(>-='x e x x f ,)(x f 单调递增;0< x <ln2时02>-x e ,故0)2()(<-='x e x x f ,)(x f 单调递减; x>ln2时02>-x e ,故0)2()(>-='x e x x f ,)(x f 单调递增;综上,)(x f 的单调增区间为)0,(-∞和),2(ln +∞,单调减区间为)2ln ,0(. (2))2(2)1()(k e x kx e x e x f x x x -=--+='∵121≤<k ,∴221≤<k 由(1)可知)(x f 的在(0,ln2k )上单调递减,在(ln2k ,+∞)上单调递增设)121(,2ln )(≤<-=x x x x g ,则xx x g 11221)(-=-=' ∵121≤<x ,∴211<≤x ,∴0111≤-<-x∴x x x g 2ln )(-=在⎥⎦⎤⎝⎛121,上单调递减.∵121≤<k , ∴02ln 1)1()(>-=>g k g ∴02ln >-k k 即k k 2ln > ∴)(x f 的在(0,ln2k )上单调递减,在(ln2k ,k )上单调递增. ∴)(x f 的在[0,k ]上的最大值应在端点处取得. 而1)0(-=f ,1)1(2)1()(3-=<--=f k e k k f k ∴当x =0时)(x f 取最大值1-.。
2013年高考数学真题(理)-广东
2013年高考数学真题(理)-广东[2013广东理1] 设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则MN =( )A.{}0B.{}0,2C.{}2,0-D.{}2,0,2-【答案】D 【解析】易得{}2,0M =-,{}0,2N =,所以MN ={}2,0,2-,故选D .[2013广东理2]定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( ) A.4 B.3 C.2 D.1 【答案】C【解析】考查基本初等函数和奇函数的概念,是奇函数的为3y x =与2sin y x =,故选C 。
[2013广东理3] 若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是( ) A.()2,4B.()2,4-C.()4,2-D.()4,2【答案】C【解析】2442iz ii+==-对应的点的坐标是()4,2-,故选C。
[2013广东理4]已知离散型随机变量X的分布列为则X的数学期望EX= ( )A.3 2B.2C.5 2D.3【答案】A【解析】33115312351010102EX=⨯+⨯+⨯==,故选A。
[2013广东理5]某四棱台的三视图如图所示,则该四棱台的体积是( ) A.4B.14 3C.163D.6 【答案】B【解析】由三视图可知,该四棱台的上下底面边长分别为1和2的正方形,高为2,故()2211412233V =+⨯=,,故选B 。
[2013广东理6] 设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A.若αβ⊥,m α⊂,n β⊂,则m n ⊥B.若//αβ,m α⊂,n β⊂,则//m nC.若m n ⊥,m α⊂,n β⊂,则αβ⊥D.若m α⊥,//m n ,//n β,则αβ⊥ 【答案】D【解析】ABC 是典型错误命题,选D 。
2013年高考数学广东卷(理科)试题+详细解析+试卷分析报告
普宁二中 杜林生 整理发布,仅供参考
1 台体的体积公式 V (S1
3
2
1. 设集合 M { x | x 2x
S1S2 S2) h ,其中 S1, S2 分别表示台体的上、 下底面积, h 表示台体的高.
0, x
R} , N
2
{ x| x
2x
0, x
R } ,则 M U N
A . {0}
B . {0, 2}
A. ( y, z, w) S , ( x, y, w) S
B . ( y, z, w) S , ( x, y, w) S
C. ( y, z, w) S , ( x, y, w) S
D . ( y, z, w) S , ( x, y, w) S
9. 不等式 x2 x 2 0 的解集为 _______________ 10. 若曲线 y kx ln x 在点 (1,k) 处的切线平行于 x 轴,则 k 11. 执行如图 2 所示的程序框图,若输入 n 的值为 4 ,
15. (几何证明选讲选做题)如图 3 , AB 是圆 O 的直径,点 C 在圆 O 上, 延长 BC 到 D 使 BC CD ,过 C 作圆 O 的切线交 AD 于 E . 若 AB 6 , ED 2 ,则 BC ____________
16. ( 12 分) f ( x) 2 cos( x ) , x R . 12
O
C
B
A'
D
E
A 图5
C D
O
B
E
图6
19. ( 14 分)设数列
an 的前 n 项和为 Sn ,已知 a1
1, 2Sn n
( 1 )求 a 2的值;
2013年高考真题理科数学(广东卷)试卷及答案
2013年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:台体的体积公式11221()3V S S S S h =++,其中1S ,2S 分别表示台体的上、下底面积,h 表示台体的高.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合2{|20,}M x x x x =+=∈R ,2{|20,}N x x x x =-=∈R ,则M N =A .{0}B .{0,2}C .{2,0}-D .{2,0,2}-2. 定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是A .4B .3C .2D .13. 若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是A .(2,4)B .(2,4)-C .(4,2)-D .(4,2)4. 已知离散型随机变量X 的分布列为X 1 2 3P35310 110则X 的数学期望()E X = 35图1 正视图俯视图 侧视图2 2 1 11i n ≤是图2输出s 结束否 输入n开始 1,1i s ==1i i =+(1)s s i =+-DACO E5. 某四棱台的三视图如图1所示,则该四棱台的体积是 A .4 B .143C .错误!未找到引用源。
2013年广东高考数学理及答案(解析版)
⎛ ⎝
3 4 ⎛ 3π ⎞ ,θ ∈ ⎜ , 2π ⎟ ,所以 sin θ = − , 5 5 ⎝ 2 ⎠
24 7 2 2 , cos 2θ = cos θ − sin θ = − 25 25 π⎞ 7 ⎛ 24 ⎞ 17 ⎛ 所以 f ⎜ 2θ + ⎟ = cos 2θ − sin 2θ = − . −⎜− ⎟ = 3⎠ 25 ⎝ 25 ⎠ 25 ⎝
二、填空题:本题共 7 小题,考生作答 6 小题,每小题 5 分,共 30 分 (9 ~13 题) (一)必做题 必做题(9 (9~
9.不等式 x + x − 2 < 0 的解集为___________. 【解析】 ( −2,1) ;易得不等式 x 2 + x − 2 < 0 的解集为 ( −2,1) . 10.若曲线 y = kx + ln x 在点 (1, k ) 处的切线平行于 x 轴,则 k = ______. 输入n
2013 年普通高等学校招生全国统一考试(广东卷) 数学(理科)逐题详解
:台体的体积公式 V = 参考公式 参考公式:
积, h 表示台体的高.
1 下底面 S1 + S1S2 + S2 h ,其中 S1 , S2 分别是台体的上、 3
(
)
:本大题 共 8 小题 ,每小 题 5 分,共 40 分,在每小题给出的四个选项中 , 一、 选择题 选择题: 本大题共 小题, 每小题 在每小题给出的四个选项中, . 只有一项是符合题目要求的 只有一项是符合题目要求的.
z < x < y …③三个式子中恰有一个成立; z < w < x …④, w < x < z …⑤, x < z < w …⑥
2013年高考理科数学广东卷-答案
M N=-{2,0,2}z①,x②,y③三个式子中恰有一个成立;x④,z⑤,w⑥+=条不同的直线.故可确定51612AB DE=,【提示】观察图形,根据已知条件,利用圆的性质,通过相似三角形求距离.cos45OC CD︒=,所以OD OE O⊥交CDCD-的平面角.CD B中点,故OH5A H'5所以(0,3,CA '=,(1,2,DA '=-设(,,)n x y z =00n CA n DA ⎧'=⎪⎨'=⎪⎩,即⎩,得(1,1,n =-由(Ⅰ)知,(0,0,OA '=315,5||||35n OA n OA n OA ''==='22211111111111111434423341n a n n n ⎛⎫⎛⎫⎛⎫++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭14244n n =++-=-< 174n a ++<项的关系式和首项,求第二项;根据题设条件,利用递推公式求通项公1(AF BF y =联立方程24x y⎨=⎪⎩12|||AF BF y y =02y =+,|||AF BF 取得最小值,且最小值为根据两直线的交点,联立两直线求直线方程;由直线与抛物线的位置关系得到关系式,求最小值.ln 21ln ≤-=k <,所以(0,ln(2))k 时,),)k +∞时,max{(0),f f 3e 30-<(1)e ϕ⎫⎛=⎪ ⎭⎝所以存在01,12x ⎛∈ ⎝【考点】利用导数求函数的单调区间,利用函数单调性求最值。
2013年高考数学广东理(word版含答案)
2013年普通高等学校招生全国统一考试(广东卷)数学(理科)【选择题】【1】.设集合22{|20,},{|20,}Mx x x x N x x x x =+=∈=-=∈R R ,则M N =( ) A .{0} B .{0,2} C .{-2,0}D .{-2,0,2} 【2】.定义域为R 的四个函数32,2,1,2sin x y x y y x y x ===+=中,奇函数的个数是( )A . 4B .3C .2D .1【3】.若复数z 满足i 24i z =+,则在复平面内,z 对应的点的坐标是( )A .(2,4)B .(2,-4)C . (4,-2)D .(4,2)【4】.已知离散型随机变量X 的分布列如下表,则X 的数学期望()E X =( )A.23B .2C .25D .3【5】.某四棱台的三视图如图1所示,则该四棱台的体积是( )A .4B .314C .316D .6【6】.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若βαβα⊂⊂⊥n m ,,,则n m ⊥B .若βαβα⊂⊂n m ,,//,则n m //C .若βα⊂⊂⊥n m n m ,,,则βα⊥D .若βα//,//,n n m m ⊥,则βα⊥ 【7】.已知中心在原点的双曲线C 的右焦点为(3,0)F ,离心率等于32,则C 的方程是( )A .15422=-y xB .15422=-y xC .15222=-y xD .15222=-y x 【8】.设整数4n ≥,集合{1,2,3,,X n =.令集合{(,,)|,,S x y z x y z X=∈,且三条件X 1 2 3 P 53103 101,,x y z y z x z x y <<<<<<恰有一个成立},若(,,)xyz 和(,,)z w x 都在S 中,则下列选项正确的是( ) A .(,,)y z w S ∈,(,,)x y w S ∉ B .(,,)y z w S ∈,(,,)x y w S ∈C .(,,)y z w S ∉,(,,)x y w S ∈D .(,,)y z w S ∉,(,,)x y w S ∉【填空题】【9】.不等式220x x +-<的解集为 .【10】.若曲线ln y kx x =+在点(1,k )处的切线平行于x 轴,则k = .【11】.执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为 .【12】.在等差数列{}n a 中,已知3810a a +=,则573a a +=_______.【13】.给定区域44,:4,0,x y D x y x +≥⎧⎪+≤⎨⎪≥⎩,令点集000000{(,)|,,(,)T x y D x y x y =∈∈Z 是z x y =+在D 上取得最大值或最小值的点},则T 中的点共确定____条不同的直线.【14】.(坐标系与参数方程选做题)已知曲线C的参数方程为,x t y t⎧=⎪⎨=⎪⎩(t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为_________________.【15】.(几何证明选讲选做题)如图3,AB 是O 的直径,点C 在O 上,延长BC 到D 使BC CD =,过C 作O 的切线交AD 于E .若6AB =,2ED =,则BC =______.【解答题】【16】.已知函数()),12f x x x π-∈R . (1)求)6(π-f 的值; (2)若)2,23(,53cos ππθθ∈=,求)32(πθ+f .【17】.某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图4所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.图4【18】.如图5,在等腰直角三角形ABC 中,90,6A BC ∠==,,D E 分别是,AC AB 上的点,2==BE CD ,O 为BC 的中点.将△ADE 沿DE 折起,得到如图6所示的四棱椎BCDE A -',其中3='O A .(1)证明:O A '⊥平面BCDE ;(2)求二面角B CD A --'的平面角的余弦值.【19】.设数列{}n a 的前n 项和为n S ,已知2*112121,,33n n S a a n n n n +==---∈N .(1)求2a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有471111321<++++n a a a a .【20】.已知抛物线C 的顶点为原点,其焦点(0,)(0)F c c >到直线:20l x y --=的距离为223.设P 为直线l 上的点,过点P 做抛物线C 的两条切线,PA PB ,其中,A B 为切点.(1)求抛物线C 的方程;(2)当点00(,)P x y 为直线l 上的定点时,求直线AB 的方程;(3)当点P 在直线l 上移动时,求||||AF BF ⋅的最小值.【21】.设函数2()(1)e ()x f x x kx k =--∈R .(1)当1k =时,求函数)(x f 的单调区间;(2)当]112∈k (,时,求函数)(x f 在[0,]k 上的最大值M .【参考答案】【选择题】【1】.D【2】.C【3】.C【4】.A【5】.B【6】.D【7】.B【8】.B【填空题】【9】. (-2,1)【10】.-1【11】.7【12】.20【13】.6【14】.2)4(s i n =+πθρ 【15】.32【解答题】【16】.解:(1)由题意1222)4cos(2)126cos(2)6(=⨯=-=--=-ππππf(2)∵)2,23(,53cos ππθθ∈=,∴4sin -5θ=. ∴22374324cos 22cos -12()1,sin 22sin cos 2().5255525θθθθθ==⨯-=-==⨯-⨯=-∴(2)))33124f ππππθθθ++-=+=72417cos 2sin 2().252525θθ-=---= 【17】.解:(1)样本均值为226302521201917=+++++=x . (2)根据题意,抽取的6名员工中优秀员工有2人,优秀员工所占比例为3162=,故12名员工中优秀员工人数为41231=⨯(人). (3)记事件A 为“从该车间12名工人中,任取2人,恰有一名为优秀员工”, 则114821216()33C C P A C ==, 即抽取的工人中恰有一名为优秀员工的概率为3316. 【18】.解:(1)在直角△ABC 中,90,6,A BC ∠==2==BE CD , O 为BC 的中点,故3,OC=AC=AD =连结,OD OE ,在△OCD 中,由余弦定理可得OD ==由翻折不变性可知A D '= ∴222,A O OD A D ''+=∴A O OD '⊥.同理可证A O OE '⊥.又DO OE O =,∴A O '⊥平面BCDE .(2)过O 作OH CD ⊥交CD 的延长线于H ,连结H A ',如下图。
2013年广东高考理科数学(精美版)逐题详解
2013年普通高等学校招生全国统一考试(广东卷)数学(理科)逐题详解【详解提供】广东佛山市南海区南海中学 钱耀周参考公式:台体的体积公式()1213VS S h =+,其中12,S S 分别是台体的上、下底面积,h 表示台体的高.一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则M N = ( )A . {}0B .{}0,2C .{}2,0-D .{}2,0,2-【解析】D ;易得{}2,0M =-,{}0,2N =,所以M N = {}2,0,2-,故选D .2.定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( )A . 4B .3C .2D .1【解析】C ;考查基本初等函数和奇函数的概念,是奇函数的为3y x =与2sin y x =,故选C . 3.若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是( )A . ()2,4B .()2,4-C .()4,2-D .()4,2【解析】C ;2442i z i i+==-对应的点的坐标是()4,2-,故选C .4.已知离散型随机变量X 的分布列为则X E X =A .32B .2C .52D .3【解析】A ;33115312351010102E X =⨯+⨯+⨯==,故选A .5.某四棱台的三视图如图所示,则该四棱台的体积是 ( )A . 4B .143C .163D .6【解析】B ;由三视图可知,该四棱台的上下底面边长分别为1和2的正方形,高为2,故()2211412233V =+⨯=,,故选B .6.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A . 若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m n C .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【解析】D ;ABC 是典型错误命题,选D .正视图俯视图侧视图第5题图7.已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是 ( )A .2214x-= B .22145xy-= C .22125xy-=D .2212x-=【解析】B ;依题意3c =,32e =,所以2a =,从而24a =,2225b c a =-=,故选B .8.设整数4n ≥,集合{}1,2,3,,X n = .令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )A . (),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∈【解析】B ;特殊值法,不妨令2,3,4x y z ===,1w =,则()(),,3,4,1y z w S =∈,()(),,2,3,1x y w S=∈,故选B .如果利用直接法:因为(),,x y z S ∈,(),,z w x S ∈,所以x y z <<…①,y z x <<…②,z x y <<…③三个式子中恰有一个成立;z w x <<…④,w x z <<…⑤,x z w <<…⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时w x y z <<<,于是(),,y z w S ∈,(),,x y w S ∈;第二种:①⑥成立,此时x y z w <<<,于是(),,y z w S ∈,(),,x y w S ∈;第三种:②④成立,此时y z w x <<<,于是(),,y z w S ∈,(),,x y w S ∈;第四种:③④成立,此时z w x y <<<,于是(),,y z w S ∈,(),,x y w S ∈.综合上述四种情况,可得(),,y z w S ∈,(),,x y w S ∈.二、填空题:本题共7小题,考生作答6小题,每小题5分,共30分 (一)必做题(9~13题)9.不等式220x x +-<的解集为___________.【解析】()2,1-;易得不等式220x x +-<的解集为()2,1-. 10.若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k =______. 【解析】1-;求导得1y k x'=+,依题意10k +=,所以1k =-.11.执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为【解析】7;第一次循环后:1,2s i ==;第二次循环后:2,3s i ==; 第三次循环后:4,4s i ==;第四次循环后:7,5s i ==;故输出7. 12. 在等差数列{}n a 中,已知3810a a +=,则573a a +=_____.【解析】20;依题意12910a d +=,所以()571113346a a a d a d +=+++ 或:()57383220a a a a +=+=13. 给定区域D :4440x y x y x +≥⎧⎪+≤⎨⎪≥⎩,令点集()()000000{,|,,,T x y D x y Z x y =∈∈是z x y =+在D 上取得最大值或最小值的点},则T 中的点共确定条不同的直线..AED CBO第15题图1 7 92 0 1 53 0第17题图【解析】6;画出可行域如图所示,其中z x y =+取得最小值时的整点为()0,1,取得最大值时的整点为()0,4,()1,3,()2,2,()3,1及()4,0共5个整点.故可确定516+=条不同的直线.(二)选做题(14、15题,考生只能从中选做一题,两题全答的,只计前一题的得分)14.(坐标系与参数方程选讲选做题)已知曲线C的参数方程为s x t y t⎧=⎪⎨=⎪⎩(t 为参数),C 在点()1,1处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为_____________.【解析】sin 4πρθ⎛⎫+=⎪⎝⎭;曲线C 的普通方程为222x y +=,其在点()1,1处的切线l 的方程为2x y +=,对应的极坐标方程为cos sin 2ρθρθ+=,即sin 4πρθ⎛⎫+=⎪⎝⎭15. (几何证明选讲选做题)如图,A B 是圆O 的直径,点C 在圆O 上, 延长B C 到D 使B C C D =,过C 作圆O 的切线交A D 于E .若6A B =,2E D =,则B C =_________.【解析】A B C C D E ∆∆ ,所以A B B C C DD E=,又B C C D =,所以212B CA B D E =⋅=,从而B C =.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数()s 12f x x π⎛⎫=- ⎪⎝⎭,x ∈R .(Ⅰ) 求6f π⎛⎫-⎪⎝⎭的值; (Ⅱ) 若3co s 5θ=,3,22πθπ⎛⎫∈⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭. 【解析】(Ⅰ)s s s1661244f πππππ⎛⎫⎛⎫⎛⎫-=--=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(Ⅱ) 2s 2s 2co s 2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为3co s 5θ=,3,22πθπ⎛⎫∈⎪⎝⎭,所以4sin 5θ=-,所以24sin 22sin co s 25θθθ==-,227co s 2co s sin 25θθθ=-=-所以23f πθ⎛⎫+⎪⎝⎭cos 2sin 2θθ=-72417252525⎛⎫=---=⎪⎝⎭. 17.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.(Ⅰ) 根据茎叶图计算样本均值;(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人. 根据茎叶图推断该车间12名工人中有几名优秀工人;(Ⅲ) 从该车间12名工人中,任取2人,求恰有1名优秀 工人的概率.C D OBE'AH【解析】(Ⅰ) 样本均值为1719202125301322266+++++==;(Ⅱ) 由(Ⅰ)知样本中优秀工人占的比例为2163=,故推断该车间12名工人中有11243⨯=名优秀工人.(Ⅲ) 设事件A :从该车间12名工人中,任取2人,恰有1名优秀工人,则()P A =1148212C C C 1633=.18.(本小题满分14分)如图1,在等腰直角三角形A B C 中,90A ∠=︒,6BC=,,D E 分别是,A C A B 上的点,C D B E ==O 为B C 的中点.将A D E ∆沿D E 折起,得到如图2所示的四棱锥A B C D E '-,其中A O '=.(Ⅰ) 证明:A O '⊥平面B C D E ;(Ⅱ) 求二面角A C D B '--的平面角的余弦值.【解析】(Ⅰ) 在图1中,易得3,O C A C A D === 连结,O DO E ,在O C D ∆中,由余弦定理可得O D==由翻折不变性可知A D '=所以222A O O D A D ''+=,所以A O O D '⊥,理可证A O O E '⊥, 又O D O E O = ,所以A O '⊥平面B C D E . (Ⅱ) 传统法:过O 作O H C D ⊥交C D 的延长线于H ,连结A H ', 因为A O '⊥平面B C D E ,所以A H C D '⊥, 所以A H O '∠为二面角A C D B '--的平面角. 结合图1可知,H 为A C 中点,故2O H =从而2A H'==所以co s 5O H A H O A H'∠=='所以二面角A C D B '--.向量法:以O 点为原点,建立空间直角坐标系O xyz -则(0,0,A ',()0,3,0C -,()1,2,0D -所以(0,3,C A '=,(1,D A '=-设(),,n x y z = 为平面A C D '的法向量,则 00n C A n D A ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y⎧+=⎪⎨-++=⎪⎩,解得y xz =-⎧⎪⎨=⎪⎩,令1x =,得(1,1,n =- .CO BD EA CDOB'A图1图2由(Ⅰ) 知,(0,0,O A '=为平面C D B 的一个法向量,所以co s ,5n O A n O A n O A '⋅'===',即二面角A C D B '--的平面角的余弦值为5.19.(本小题满分14分)设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n+=---,*n ∈N .(Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式; (Ⅲ) 证明:对一切正整数n ,有1211174na a a +++<.【解析】(Ⅰ) 依题意,12122133S a =---,又111S a ==,所以24a =;(Ⅱ) 当2n ≥时,32112233n n S n a n n n +=---,()()()()321122111133n n S n a n n n -=-------两式相减得()()()2112213312133n n n a n a n a n n n +=----+---整理得()()111n n n a n a n n ++=-+,即111n n a a n n+-=+,又21121a a -=故数列n a n ⎧⎫⎨⎬⎩⎭是首项为111a =,公差为1的等差数列,所以()111n a n n n =+-⨯=,所以2n a n =. (Ⅲ) 当1n =时,11714a =<;当2n =时,12111571444a a +=+=<;当3n ≥时,()21111111na nn nn n=<=---此时222121111111111111111434423341n a a a nn n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭11171714244nn=++-=-<综上,对一切正整数n ,有1211174na a a +++< .20.(本小题满分14分)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=2.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,P A P B ,其中,A B 为切点.(Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,P x y 为直线l 上的定点时,求直线A B 的方程; (Ⅲ) 当点P 在直线l 上移动时,求A F B F ⋅的最小值. 【解析】(Ⅰ) 依题意,设抛物线C 的方程为24x cy =,2=结合0c >,解得1c =.所以抛物线C 的方程为24x y =. (Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '=设()11,A x y ,()22,B x y (其中221212,44x x y y ==),则切线,P A P B 的斜率分别为112x ,212x ,所以切线P A 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --=同理可得切线P B 的方程为22220x x y y --=因为切线,P A P B 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --= 所以()()1122,,,x y x y 为方程00220x x y y --=的两组解. 所以直线A B 的方程为00220x x y y --=.(Ⅲ) 由抛物线定义可知11A F y =+,21B F y =+, 所以()()()121212111A F B F y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y = 所以()221212000121A F B F y y y y y x y ⋅=+++=+-+ 又点()00,P x y 在直线l 上,所以002x y =+, 所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭所以当012y =-时, A F B F ⋅取得最小值,且最小值为92.21.(本小题满分14分)设函数()()21xf x x e kx =--(其中k ∈R ). (Ⅰ) 当1k =时,求函数()f x 的单调区间; (Ⅱ) 当1,12k ⎛⎤∈⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .【解析】(Ⅰ) 当1k =时, ()()21x f x x e x =--,()()()1222x x x xf x e x e x xe x x e '=+--=-=-令()0f x '=,得10x =,2ln 2x = 当x 变化时,()(),f x f x '的变化如下表:右表可知,函数()f x 的递减区间为()0,ln 2,递增区间为(),0-∞,()ln 2,+∞.(Ⅱ) ()()()1222x x x xf x e x e kx xe kx x e k '=+--=-=-,令()0f x '=,得10x =,()2ln 2x k =,令()()ln 2g k k k =-,则()1110k g k kk-'=-=>,所以()g k 在1,12⎛⎤⎥⎝⎦上递增, 所以()ln 21ln 2ln 0g k e ≤-=-<,从而()ln 2k k <,所以()[]ln 20,k k ∈ 所以当()()0,ln 2x k ∈时,()0f x '<;当()()ln 2,x k ∈+∞时,()0f x '>; 所以()(){}(){}3m ax 0,m ax 1,1kM f f k k e k==---令()()311k h k k e k =--+,则()()3kh k k e k '=-,令()3kk e k ϕ=-,则()330kk e e ϕ'=-<-<所以()k ϕ在1,12⎛⎤⎥⎝⎦上递减,而()()1313022e ϕϕ⎛⎫⎛⎫⋅=-< ⎪ ⎪⎝⎭⎝⎭所以存在01,12x ⎛⎤∈ ⎥⎝⎦使得()00x ϕ=,且当01,2k x ⎛⎫∈ ⎪⎝⎭时,()0k ϕ>,当()0,1k x ∈时,()0k ϕ<, 所以()k ϕ在01,2x ⎛⎫⎪⎝⎭上单调递增,在()0,1x 上单调递减.因为17028h ⎛⎫=->⎪⎝⎭,()10h =,所以()0h k ≥在1,12⎛⎤⎥⎝⎦上恒成立,当且仅当1k =时取得“=”. 综上,函数()f x 在[]0,k 上的最大值()31kM k e k =--.。
2013年普通高等学校招生全国统一考试(广东卷) 数学(理科) (有答案)
2013年普通高等学校招生全国统一考试(广东卷)数学(理科)逐题详解参考公式:台体的体积公式()1213V S S h =+,其中12,S S 分别是台体的上、下底面积,h 表示台体的高.一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则MN =( )A . {}0B .{}0,2C .{}2,0-D .{}2,0,2-2.定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( )A . 4B .3C .2D .13.若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是( )A . ()2,4B .()2,4-C .()4,2-D .()4,24.已知离散型随机变量X 的分布列为X 12 3 P35310 110则X 的数学期望EX = ( )A .32 B .2 C .52D .3 5.某四棱台的三视图如图所示,则该四棱台的体积是 ( )A . 4B .143C .163D .66.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A . 若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥7.已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是 A .2214x = B .22145x y -= C .22125x y -= D.2212x = 8.设整数4n ≥,集合{}1,2,3,,X n =.令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )A . (),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈俯视侧视第5题图.AED CBO第15题图1 7 92 0 1 53 0第17题图C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∈二、填空题:本题共7小题,考生作答6小题,每小题5分,共30(一)必做题(9~13题)9.不等式220x x +-<的解集为___________.10.若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k =______. 11.执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为______. 12. 在等差数列{}n a 中,已知3810a a +=,则573a a +=_____.13. 给定区域D :4440x y x y x +≥⎧⎪+≤⎨⎪≥⎩,令点集()()000000{,|,,,T x y D x y Z x y =∈∈是z x y =+在D 上取得最大值或最小值的点},则T 中的点共确定______ 条不同的直线.(二)选做题(14、15题,考生只能从中选做一题,两题全答的,只计前一题的得分)14.(坐标系与参数方程选讲选做题)已知曲线C 的参数方程为x ty t⎧=⎪⎨=⎪⎩(t 为参数),C在点()1,1处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为_____________.15. (几何证明选讲选做题)如图,AB 是圆O 的直径,点C 在圆O 上, 延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E .若6AB =,2ED =,则BC =_________.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、 证明过程或演算步骤. 16.(本小题满分12分)已知函数()12f x x π⎛⎫=- ⎪⎝⎭,x ∈R .(Ⅰ) 求6f π⎛⎫-⎪⎝⎭的值; (Ⅱ) 若3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭.17.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.(Ⅰ) 根据茎叶图计算样本均值;(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人;(Ⅲ) 从该车间12名工人中,任取2人,求恰有1名优秀 工人的概率.18.(本小题满分14分)如图1,在等腰直角三角形ABC 中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE =O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '=(Ⅰ) 证明:A O '⊥平面BCDE ;(Ⅱ) 求二面角A CD B '--的平面角的余弦值.19.(本小题满分14分)设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N . (Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式; (Ⅲ) 证明:对一切正整数n ,有1211174n a a a +++<. 20.(本小题满分14分)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=的距离为2.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点. (Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (Ⅲ) 当点P 在直线l 上移动时,求AF BF ⋅的最小值..CO BD EA CDOB'A图1图221.(本小题满分14分)设函数()()21xf x x e kx =--(其中k ∈R ).(Ⅰ) 当1k =时,求函数()f x 的单调区间; (Ⅱ) 当1,12k ⎛⎤∈ ⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .CD OBE'AH2013年普通高等学校招生全国统一考试(广东卷)数学(理科)参考答案一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.DC CA B D BB二、填空题:本题共7小题,考生作答6小题,每小题5分,共30分9. ()2,1- 10. 1k =- 11. 7 12.20 13. 614.sin 4πρθ⎛⎫+= ⎪⎝⎭ 15. 三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)【解析】(Ⅰ)1661244f πππππ⎛⎫⎛⎫⎛⎫-=---== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(Ⅱ) 222cos 2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,所以4sin 5θ=-, 所以24sin 22sin cos 25θθθ==-,227cos 2cos sin 25θθθ=-=-所以23f πθ⎛⎫+ ⎪⎝⎭cos 2sin 2θθ=-72417252525⎛⎫=---= ⎪⎝⎭. 17.(本小题满分12分)【解析】(Ⅰ) 样本均值为1719202125301322266+++++==;(Ⅱ) 由(Ⅰ)知样本中优秀工人占的比例为2163=,故推断该车间12名工人中有11243⨯=名优秀工人.(Ⅲ) 设事件A :从该车间12名工人中,任取2人,恰有1名优秀工人,则()P A =1148212C C C 1633=.18.(本小题满分14分)【解析】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE ,在OCD ∆中,由余弦定理可得OD 由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥, 理可证A O OE '⊥, 又ODOE O =,所以A O '⊥平面BCDE .(Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角.结合图1可知,H 为AC 中点,故2OH =,从而2A H '==所以cos OH A HO A H '∠==',所以二面角A CD B '--向量法:以O 点为原点,建立空间直角坐标系O xyz -则(A ',()0,3,0C -,()1,2,0D -所以(CA '=,(1,DA '=- 设(),,n x y z =为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩,令1x =,得(1,n =- 由(Ⅰ) 知,(OA '=为平面CDB 的一个法向量,所以cos ,3n OA n OA n OA '⋅'==⋅'即二面角A CD B '--19.(本小题满分14分)【解析】(Ⅰ) 依题意,12122133S a =---,又111S a ==,所以24a =; (Ⅱ) 当2n ≥时,32112233n n S na n n n +=---,()()()()321122111133n n S n a n n n -=-------两式相减得()()()2112213312133n n n a na n a n n n +=----+---整理得()()111n n n a na n n ++=-+,即111n n a a n n +-=+,又21121a a-=故数列n a n ⎧⎫⎨⎬⎩⎭是首项为111a =,公差为1的等差数列,所以()111na n n n=+-⨯=,所以2n a n =.(Ⅲ) 当1n =时,11714a =<;当2n =时,12111571444a a +=+=<; 当3n ≥时,()21111111n a n n n n n =<=---,此时 222121111111111111111434423341n a a a n n n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭11171714244n n =++-=-< 综上,对一切正整数n ,有1211174n a a a +++<. 20.(本小题满分14分)【解析】(Ⅰ) 依题意,设抛物线C 的方程为24x cy =,=0c >, 解得1c =. 所以抛物线C 的方程为24x y =. (Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '= 设()11,A x y ,()22,B x y (其中221212,44x x y y ==),则切线,P A P B 的斜率分别为112x ,212x , 所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --= 同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --= 所以()()1122,,,x y x y 为方程00220x x y y --=的两组解. 所以直线AB 的方程为00220x x y y --=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y =所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点()00,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭所以当012y =-时, AF BF ⋅取得最小值,且最小值为92. 21.(本小题满分14分)【解析】(Ⅰ) 当1k =时,()()21x f x x e x =--,()()()1222x x x x f x e x e x xe x x e '=+--=-=-令()0f x '=,得10x =,2ln 2x = 当x 变化时,()(),f x f x '的变化如下表:右表可知,函数f x 的递减区间为0,ln 2,递增区间为,0-∞,ln 2,+∞.(Ⅱ)()()()1222x x x xf x e x e kx xe kx x e k '=+--=-=-,令()0f x '=,得10x =,()2ln 2x k =,令()()ln 2g k k k =-,则()1110k g k k k -'=-=>,所以()g k 在1,12⎛⎤ ⎥⎝⎦上递增,所以()ln 21ln 2ln 0g k e ≤-=-<,从而()ln 2k k <,所以()[]ln 20,k k ∈ 所以当()()0,ln 2x k ∈时,()0f x '<;当()()ln 2,x k ∈+∞时,()0f x '>;所以()(){}(){}3max 0,max 1,1k M f f k k e k ==---令()()311k h k k e k =--+,则()()3kh k k e k '=-,令()3k k e k ϕ=-,则()330kk e e ϕ'=-<-<所以()k ϕ在1,12⎛⎤ ⎥⎝⎦上递减,而()()1313022e ϕϕ⎛⎫⎫⋅=-< ⎪⎪⎝⎭⎭ 所以存在01,12x ⎛⎤∈ ⎥⎝⎦使得()00x ϕ=,且当01,2k x ⎛⎫∈ ⎪⎝⎭时,()0k ϕ>,当()0,1k x ∈时,()0k ϕ<, 所以()k ϕ在01,2x ⎛⎫ ⎪⎝⎭上单调递增,在()0,1x 上单调递减.因为17028h ⎛⎫=> ⎪⎝⎭,()10h =, 所以()0h k ≥在1,12⎛⎤⎥⎝⎦上恒成立,当且仅当1k =时取得“=”.综上,函数()f x 在[]0,k 上的最大值()31kM k e k =--.。
2013年普通高等学校招生全国统一考试数学理试题(广东卷)
实用文档2013年普通高等学校招生全国统一考试(广东卷)数学(理科)逐题详解参考公式:台体的体积公式()1213V S S h =,其中12,S S 分别是台体的上、下底面积,h 表示台体的高.一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则MN =( )A . {}0B .{}0,2C .{}2,0-D .{}2,0,2-【解析】D ;易得{}2,0M =-,{}0,2N =,所以MN ={}2,0,2-,故选D .2.定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( )A . 4B .3C .2D .1【解析】C ;考查基本初等函数和奇函数的概念,是奇函数的为3y x =与2sin y x =,故选C .3.若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是( )实用文档A . ()2,4B .()2,4-C .()4,2-D .()4,2【解析】C ;2442iz i i+==-对应的点的坐标是()4,2-,故选C . 4.已知离散型随机变量X 的分布列为X1 2 3 P35 310110则X 的数学期望EX = ( )A . 32B .2C .52D .3【解析】A ;33115312351010102EX =⨯+⨯+⨯==,故选A . 5.某四棱台的三视图如图所示,则该四棱台的体积是 ( )A . 4B .143C .163D .6【解析】B ;由三视图可知,该四棱台的上下底面边长分别为1和2的正方形,高为2,故()2211412233V =+⨯=,,故选B .俯视侧视第5题图实用文档6.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A . 若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【解析】D ;ABC 是典型错误命题,选D .7.已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是 ( )A . 2214x -= B .22145x y -= C .22125x y -=D.2212x = 【解析】B ;依题意3c =,32e =,所以2a =,从而24a =,2225b c a =-=,故选B . 8.设整数4n ≥,集合{}1,2,3,,X n =.令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )A . (),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∈实用文档【解析】B ;特殊值法,不妨令2,3,4x y z ===,1w =,则()(),,3,4,1y z w S =∈,()(),,2,3,1x y w S =∈,故选B .如果利用直接法:因为(),,x y z S ∈,(),,z w x S ∈,所以x y z <<…①,y z x <<…②,z x y <<…③三个式子中恰有一个成立;z w x <<…④,w x z <<…⑤,x z w <<…⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时w x y z <<<,于是(),,y z w S ∈,(),,x y w S ∈;第二种:①⑥成立,此时x y z w <<<,于是(),,y z w S ∈,(),,x y w S ∈;第三种:②④成立,此时y z w x <<<,于是(),,y z w S ∈,(),,x y w S ∈;第四种:③④成立,此时z w x y <<<,于是(),,y z w S ∈,(),,x y w S ∈.综合上述四种情况,可得(),,y z w S ∈,(),,x y w S ∈.二、填空题:本题共7小题,考生作答6小题,每小题5分,共30分(一)必做题(9~13题)9.不等式220x x +-<的解集为___________.【解析】()2,1-;易得不等式220x x +-<的解集为()2,1-. 10.若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k =______.【解析】1-;求导得1y k x'=+,依题意10k +=,所以1k =-.实用文档11.执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为______. 【解析】7;第一次循环后:1,2s i ==;第二次循环后:2,3s i ==;第三次循环后:4,4s i ==;第四次循环后:7,5s i ==;故输出7. 12. 在等差数列{}n a 中,已知3810a a +=,则573a a +=_____.【解析】20;依题意12910a d +=,所以()57111334641820a a a d a d a d +=+++=+=.或:()57383220a a a a +=+=13. 给定区域D :4440x y x y x +≥⎧⎪+≤⎨⎪≥⎩,令点集()()000000{,|,,,T x y D x y Z x y =∈∈是z x y =+在D 上取得最大值或最小值的点},则T 中的点共确定条不同的直线.【解析】6;画出可行域如图所示,其中z x y =+取得最小值时的整点为()0,1,取得最大值时的整点为()0,4,()1,3,()2,2,()3,1及()4,0共5个整点.故可确定516+=条不同的直线.(二)选做题(14、15题,考生只能从中选做一题,两题全答的,只计前一题的得分)14.(坐标系与参数方程选讲选做题)已知曲线C 的参数方程为x ty t⎧=⎪⎨=⎪⎩(t 为参实用文档.AED CBO第15题数),C 在点()1,1处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为_____________.【解析】sin 4πρθ⎛⎫+= ⎪⎝⎭;曲线C 的普通方程为222x y +=,其在点()1,1处的切线l 的方程为2x y +=,对应的极坐标方程为cos sin 2ρθρθ+=,即sin 4πρθ⎛⎫+= ⎪⎝⎭.15. (几何证明选讲选做题)如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E .若6AB =,2ED =,则BC =_________.【解析】ABC CDE ∆∆,所以AB BCCD DE=,又 BC CD =,所以212BC AB DE =⋅=,从而BC =.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数()12f x x π⎛⎫=-⎪⎝⎭,x ∈R . (Ⅰ) 求6f π⎛⎫- ⎪⎝⎭的值; (Ⅱ) 若3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭.实用文档1 7 92 0 1 53 0第17题图【解析】(Ⅰ)1661244f πππππ⎛⎫⎛⎫⎛⎫-=--=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (Ⅱ) 222cos 2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,所以4sin 5θ=-, 所以24sin 22sin cos 25θθθ==-,227cos 2cos sin 25θθθ=-=- 所以23f πθ⎛⎫+⎪⎝⎭cos2sin 2θθ=-72417252525⎛⎫=---=⎪⎝⎭. 17.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.(Ⅰ) 根据茎叶图计算样本均值;(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人;(Ⅲ) 从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.实用文档C D OBE'AH【解析】(Ⅰ) 样本均值为1719202125301322266+++++==;(Ⅱ) 由(Ⅰ)知样本中优秀工人占的比例为2163=,故推断该车间12名工人中有11243⨯=名优秀工人.(Ⅲ) 设事件A :从该车间12名工人中,任取2人,恰有1名优秀工人,则()P A =1148212C C C 1633=.18.(本小题满分14分)如图1,在等腰直角三角形ABC 中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE ==O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '=.(Ⅰ) 证明:A O '⊥平面BCDE ; .COB DEACDOBE'A图1图2实用文档(Ⅱ)求二面角A CD B '--的平面角的余弦值.【解析】(Ⅰ) 在图1中,易得3,OCAC AD ===连结,OD OE ,在OCD ∆中,由余弦定理可得OD ==由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥, 理可证A O OE '⊥, 又ODOE O =,所以A O '⊥平面BCDE .(Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CDB '--的平面角.结合图1可知,H 为AC 中点,故2OH =,从而A H '==所以cos OHA HO A H '∠==',所以二面角A CD B '--向量法:以O 点为原点,建立空间直角坐标系O xyz -则(A',()0,3,0C -,()1,2,0D -所以(CA '=,(1,DA '=-实用文档设(),,n x y z =为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y ⎧=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩,令1x =,得(1,1,n =- 由(Ⅰ) 知,(OA '=为平面CDB 的一个法向量,所以cos ,53n OA n OA n OA '⋅'===',即二面角A CD B '--的平面角的余弦. 19.(本小题满分14分)设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N . (Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式;(Ⅲ) 证明:对一切正整数n ,有1211174n a a a +++<. 【解析】(Ⅰ) 依题意,12122133S a =---,又111S a ==,所以24a =; (Ⅱ) 当2n ≥时,32112233n n S na n n n +=---,实用文档()()()()321122111133n n S n a n n n -=------- 两式相减得()()()2112213312133n n n a na n a n n n +=----+---整理得()()111n n n a na n n ++=-+,即111n n a a n n +-=+,又21121a a-= 故数列n a n ⎧⎫⎨⎬⎩⎭是首项为111a =,公差为1的等差数列,所以()111na n n n=+-⨯=,所以2n a n =. (Ⅲ) 当1n =时,11714a =<;当2n =时,12111571444a a +=+=<; 当3n ≥时,()21111111n a n n n n n=<=---,此时 222121111111111111111434423341n a a a n n n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭11171714244n n =++-=-< 综上,对一切正整数n ,有1211174n a a a +++<. 20.(本小题满分14分)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=的距离为2.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点.实用文档(Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程;(Ⅲ) 当点P 在直线l 上移动时,求AF BF ⋅的最小值.【解析】(Ⅰ) 依题意,设抛物线C 的方程为24x cy =,2=结合0c >, 解得1c =.所以抛物线C 的方程为24x y =.(Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '= 设()11,A x y ,()22,B x y (其中221212,44x x y y ==),则切线,PA PB 的斜率分别为112x ,212x , 所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --= 同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --= 所以()()1122,,,x y x y 为方程00220x x y y --=的两组解.所以直线AB 的方程为00220x x y y --=.实用文档(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y = 所以()221212000121AF BF y y y y y x y ⋅=+++=+-+ 又点()00,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭所以当012y =-时, AF BF ⋅取得最小值,且最小值为92. 21.(本小题满分14分)设函数()()21x f x x e kx =--(其中k ∈R ). (Ⅰ) 当1k =时,求函数()f x 的单调区间;(Ⅱ) 当1,12k ⎛⎤∈ ⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .【解析】(Ⅰ) 当1k =时,实用文档()()21x f x x e x =--,()()()1222x x x x f x e x e x xe x x e '=+--=-=-令()0f x '=,得10x =,2ln 2x = 当x 变化时,()(),f x f x '的变化如下表:右表可知, (Ⅱ)()()()1222x x x x f x e x e kx xe kx x e k '=+--=-=-,令()0f x '=,得10x =,()2ln 2x k =,令()()ln 2g k k k =-,则()1110k g k k k -'=-=>,所以()g k 在1,12⎛⎤ ⎥⎝⎦上递增, 所以()ln 21ln 2ln 0g k e ≤-=-<,从而()ln 2k k <,所以()[]ln 20,k k ∈ 所以当()()0,ln 2x k ∈时,()0f x '<;当()()ln 2,x k ∈+∞时,()0f x '>;所以()(){}(){}3max 0,max 1,1k M f f k k e k ==--- 令()()311k h k k e k =--+,则()()3k h k k e k '=-,令()3k k e k ϕ=-,则()330k k e e ϕ'=-<-<实用文档所以()k ϕ在1,12⎛⎤ ⎥⎝⎦上递减,而()()1313022e ϕϕ⎛⎫⎫⋅=-< ⎪⎪⎝⎭⎭ 所以存在01,12x ⎛⎤∈ ⎥⎝⎦使得()00x ϕ=,且当01,2k x ⎛⎫∈ ⎪⎝⎭时,()0k ϕ>,当()0,1k x ∈时,()0k ϕ<,所以()k ϕ在01,2x ⎛⎫ ⎪⎝⎭上单调递增,在()0,1x 上单调递减.因为17028h ⎛⎫=> ⎪⎝⎭,()10h =, 所以()0h k ≥在1,12⎛⎤ ⎥⎝⎦上恒成立,当且仅当1k =时取得“=”.综上,函数()f x 在[]0,k 上的最大值()31k M k e k =--.。
2013年全国高考理科数学试题及答案-广东卷
2013年普通高等学校招生全国统一考试(广东卷)数学(理科)逐题详解参考公式:台体的体积公式()1213V S S h =+,其中12,S S 分别是台体的上、下底面积,h 表示台体的高、一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的、1.设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则M N = ( )A 、 {}0B .{}0,2C .{}2,0-D .{}2,0,2-【解析】D ;易得{}2,0M =-,{}0,2N =,所以M N = {}2,0,2-,故选D .2.定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( )A 、 4B .3C .2D .1【解析】C ;考查基本初等函数和奇函数的概念,是奇函数的为3y x =与2sin y x =,故选C . 3.若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是( )A 、 ()2,4B .()2,4-C .()4,2-D .()4,2【解析】C ;2442iz i i+==-对应的点的坐标是()4,2-,故选C . 4.已知离散型随机变量X 的分布列为X 1 2 3 P35 310110则X 的数学期望EX = ( )A 、32B .2C .52D【解析】A;33115312351010102EX =⨯+⨯+⨯==,故选A . 5.某四棱台的三视图如图所示,则该四棱台的体积是 ( )A 、 4B .143C .163D .6【解析】B ;由三视图可知,该四棱台的上下底面边长分别为正视图 俯视图侧视图第5题图1和2的正方形,高为2,故()2211412233V =+⨯=,,故选B . 6.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A 、 若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【解析】D ;ABC 是典型错误命题,选D .7.已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是 ( ) A 、 2214x = B .22145x y -= C .22125x y -= D .2212x -= 【解析】B ;依题意3c =,32e =,所以2a =,从而24a =,2225b c a =-=,故选B . 8.设整数4n ≥,集合{}1,2,3,,X n = 、令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )A 、 (),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∈【解析】B ;特殊值法,不妨令2,3,4x y z ===,1w =,则()(),,3,4,1y z w S =∈,()(),,2,3,1x y w S =∈,故选B .如果利用直接法:因为(),,x y z S ∈,(),,z w x S ∈,所以x y z <<…①,y z x <<…②,z x y <<…③三个式子中恰有一个成立;z w x <<…④,w x z <<…⑤,x z w <<…⑥三个式子中恰有一个成立、配对后只有四种情况:第一种:①⑤成立,此时w x y z <<<,于是(),,y z w S ∈,(),,x y w S ∈;第二种:①⑥成立,此时x y z w <<<,于是(),,y z w S∈,(),,x y w S ∈;第三种:②④成立,此时y z w x <<<,于是(),,y z w S ∈,(),,x y w S ∈;第四种:③④成立,此时z w x y <<<,于是(),,y z w S ∈,(),,x y w S ∈、综合上述四种情况,可得(),,y z w S ∈,(),,x y w S ∈、二、填空题:本题共7小题,考生作答6小题,每小题5分,共30分 (一)必做题(9~13题)9.不等式220x x +-<的解集为___________.【解析】()2,1-;易得不等式220x x +-<的解集为()2,1-、第11题图1i i =+y.AED CBO第15题图10.若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k =______、 【解析】1-;求导得1y k x'=+,依题意10k +=,所以1k =-、11.执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为______、【解析】7;第一次循环后:1,2s i ==;第二次循环后:2,3s i ==; 第三次循环后:4,4s i ==;第四次循环后:7,5s i ==;故输出7、 12、 在等差数列{}n a 中,已知3810a a +=,则573a a +=_____、 【解析】20;依题意12910a d +=,所以()57111334641820a a a d a d a d +=+++=+=、或:()57383220a a a a +=+=13、 给定区域D :4440x y x y x +≥⎧⎪+≤⎨⎪≥⎩,令点集()()000000{,|,,,T x y D x y Z x y=∈∈ 是z x y =+在D 上取得最大值或最小值的点},则T 中的点共确定条不同的直线、【解析】6;画出可行域如图所示,其中z x y =+取得最小值时的整点为()0,1,取得最大值时的整点为()0,4,()1,3,()2,2,()3,1及()4,0共5个整点、故可确定516+=条不同的直线、(二)选做题(14、15题,考生只能从中选做一题,两题全答的,只计前一题的得分)14、(坐标系与参数方程选讲选做题)已知曲线C 的参数方程为x ty t⎧=⎪⎨=⎪⎩(t 为参数),C 在点()1,1处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为_____________、 【解析】sin 4πρθ⎛⎫+= ⎪⎝⎭C 的普通方程为222x y +=,其在点()1,1处的切线l 的方程为2x y +=,对应的极坐标方程为cos sin 2ρθρθ+=,即sin 4πρθ⎛⎫+= ⎪⎝⎭ 15、 (几何证明选讲选做题)如图,AB 是圆O 的直径,点C 在圆O 上,1 7 92 0 1 53 0第17题图延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E 、若6AB =,2ED =,则BC =_________、【解析】ABC CDE ∆∆ ,所以AB BCCD DE=,又 BC CD =,所以212BC AB DE =⋅=,从而BC =三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤、 16.(本小题满分12分)已知函数()12f x x π⎛⎫=- ⎪⎝⎭,x ∈R 、(Ⅰ) 求6f π⎛⎫-⎪⎝⎭的值; (Ⅱ) 若3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭.【解析】(Ⅰ)1661244f πππππ⎛⎫⎛⎫⎛⎫-=--=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (Ⅱ) 222cos 2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 因为3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,所以4sin 5θ=-, 所以24sin 22sin cos 25θθθ==-,227cos 2cos sin 25θθθ=-=- 所以23f πθ⎛⎫+⎪⎝⎭cos 2sin 2θθ=-72417252525⎛⎫=---= ⎪⎝⎭、 17.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数、(Ⅰ) 根据茎叶图计算样本均值;(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人、 根据茎叶图推断该车间12名工人中有几名优秀工人;(Ⅲ) 从该车间12名工人中,任取2人,求恰有1名优秀 工人的概率、【解析】(Ⅰ) 样本均值为1719202125301322266+++++==;(Ⅱ) 由(Ⅰ)知样本中优秀工人占的比例为2163=,故推断该车间12名工人中有11243⨯=名优秀工人、C D OBE'AH(Ⅲ) 设事件A :从该车间12名工人中,任取2人,恰有1名优秀工人,则()P A =1148212C C C 1633=、 18.(本小题满分14分)如图1,在等腰直角三角形ABC 中,90A ∠=︒,6BC =,,DE 分别是,A C A B 上的点,CD BE ==O 为BC 的中点、将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '=(Ⅰ) 证明:A O '⊥平面BCDE ;(Ⅱ) 求二面角A CD B '--的平面角的余弦值、 【解析】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD 由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O = ,所以A O '⊥平面BCDE 、 (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角、 结合图1可知,H 为AC 中点,故2OH =,从而A H '==所以cos OH A HO A H '∠==',所以二面角A CD B '--向量法:以O 点为原点,建立空间直角坐标系O xyz -则(A ',()0,3,0C -,()1,2,0D -.CO BDEA CDOBE'A图1图2所以(CA '=,(1,DA '=-设(),,n x y z =为平面A CD '的法向量,则 00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y ⎧+=⎪⎨-++=⎪⎩,解得y xz =-⎧⎪⎨=⎪⎩,令1x =,得(1,n =- 由(Ⅰ) 知,(OA '=为平面CDB 的一个法向量,所以cos ,n OA n OA n OA '⋅'===',即二面角A CD B '--的平面角的余弦值为、 19.(本小题满分14分)设数列{}n a 的前n 项和为n S 、已知11a =,2121233n n S a n n n +=---,*n ∈N 、 (Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式; (Ⅲ) 证明:对一切正整数n ,有1211174n a a a +++< 、 【解析】(Ⅰ) 依题意,12122133S a =---,又111S a ==,所以24a =; (Ⅱ) 当2n ≥时,32112233n n S na n n n +=---, ()()()()321122111133n n S n a n n n -=------- 两式相减得()()()2112213312133n n n a na n a n n n +=----+--- 整理得()()111n n n a na n n ++=-+,即111n n a a n n +-=+,又21121a a-= 故数列n a n ⎧⎫⎨⎬⎩⎭是首项为111a =,公差为1的等差数列, 所以()111na n n n=+-⨯=,所以2n a n =、 (Ⅲ) 当1n =时,11714a =<;当2n =时,12111571444a a +=+=<;当3n ≥时,()21111111n a n n n n n=<=---,此时 222121111111111111111434423341n a a a n n n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭11171714244n n =++-=-< 综上,对一切正整数n ,有1211174n a a a +++< 、 20.(本小题满分14分)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=、设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点、(Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (Ⅲ) 当点P 在直线l 上移动时,求AF BF ⋅的最小值、 【解析】(Ⅰ) 依题意,设抛物线C 的方程为24x cy =,2=结合0c >, 解得1c =、所以抛物线C 的方程为24x y =、(Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '= 设()11,A x y ,()22,B x y (其中221212,44x x y y ==),则切线,PA PB 的斜率分别为112x ,212x ,所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --= 同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --= 所以()()1122,,,x y x y 为方程00220x x y y --=的两组解、 所以直线AB 的方程为00220x x y y --=、 (Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y = 所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点()00,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭所以当012y =-时, AF BF ⋅取得最小值,且最小值为92、 21.(本小题满分14分)设函数()()21xf x x e kx =--(其中k ∈R )、(Ⅰ) 当1k =时,求函数()f x 的单调区间; (Ⅱ) 当1,12k ⎛⎤∈⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M 、 【解析】(Ⅰ) 当1k =时,()()21x f x x e x =--,()()()1222x x x x f x e x e x xe x x e '=+--=-=-令()0f x '=,得10x =,2ln 2x = 当x 变化时,()(),f x f x '的变化如下表:右表可知,函数f x 的递减区间为0,ln 2,递增区间为,0-∞,ln 2,+∞、(Ⅱ)()()()1222x x x xf x e x e kx xe kx x e k '=+--=-=-,令()0f x '=,得10x =,()2ln 2x k =, 令()()ln 2g k k k =-,则()1110k g k k k -'=-=>,所以()g k 在1,12⎛⎤ ⎥⎝⎦上递增, 所以()ln 21ln 2ln 0g k e ≤-=-<,从而()ln 2k k <,所以()[]ln 20,k k ∈ 所以当()()0,ln 2x k ∈时,()0f x '<;当()()ln 2,x k ∈+∞时,()0f x '>;所以()(){}(){}3max 0,max 1,1k M f f k k e k ==---令()()311k h k k e k =--+,则()()3kh k k e k '=-,令()3kk e k ϕ=-,则()330kk e e ϕ'=-<-<所以()k ϕ在1,12⎛⎤⎥⎝⎦上递减,而()()1313022e ϕϕ⎛⎫⎫⋅=-< ⎪⎪⎝⎭⎭所以存在01,12x ⎛⎤∈⎥⎝⎦使得()00x ϕ=,且当01,2k x ⎛⎫∈ ⎪⎝⎭时,()0k ϕ>, 当()0,1k x ∈时,()0k ϕ<,所以()k ϕ在01,2x ⎛⎫ ⎪⎝⎭上单调递增,在()0,1x 上单调递减、因为17028h ⎛⎫=>⎪⎝⎭,()10h =, 所以()0h k ≥在1,12⎛⎤⎥⎝⎦上恒成立,当且仅当1k =时取得“=”、 综上,函数()f x 在[]0,k 上的最大值()31kM k e k =--、。
高考广东理科数学试题及答案word解析版
3. OCD 中,由余弦定
理可得 OD OC 2 CD 2 2OC CD cos 45
5 ,由翻折不变性可知 A D 2 2 ,
所以
2
AO
2
OD
2
A D ,所以 A O
OD ,理可证 A O
OE , 又 OD I OE
2013 年普通高等学校招生全国统一考试(广东卷)
数学(理科)
一、选择题:本大题共 8 小题,每小题 5 分,满分 40 分,在每小题给出的四个选项中,只有一项是符合题目要 求的.
( 1)【2013 年广东, 理 1,5 分】设集合 M x | x2 2x 0, x R ,N x | x 2 2 x 0, x R ,则 M U N ( )
图如图所示,其中茎为十位数,叶为个位数.
( 1)根据茎叶图计算样本均值;
( 2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间 人;
12 名工人中有几名优秀工
( 3)从该车间 12 名工人中,任取 2 人,求恰有 1 名优秀工人的概率.
解:( 1)样本均值为 17 19 20 21 25 30 132 22 .
12 ,从而 BC
2 3.
( 16)【 2013 年广东,理 16, 12 分】已知函数 f ( x) 2 cos x
, x R.
12
( 1)求 f
的值;
6
( 2)若 cos
3 ,
5
3 ,2
2
,求 f 2
. 3
解:( 1) f 6
2 cos 6 12
2 cos 4
2013高考真题理数广东卷
绝密★启用前试卷类型:A2013年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟注意事项:1. 答卷前,考生务必用黑色笔迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。
用2B铅笔讲试卷类型(A)填涂在答题卡相应的位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B铅笔填涂选做题的题组号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁,考试结束后,将试题与答题卡一并交回。
参考公式:台体的体积公式V=(S1+S2+)h,其中S1,S2分别表示台体的上、下底面积,h表示台体的高。
一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M=∣x∣x2+2x=0,x∈R},N={x∣x2-2x=0,x∈R},则M∪N=A. {0}B. {0,2}C. {-2,0} D {-2,0,2}2.定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sinx中,奇函数的个数是A. 4B.3C. 2D.13.若复数z满足iz=2+4i,则在复平面内,z对应的点的坐标是A. (2,4)B.(2,-4)C. (4,-2) D(4,2)4.已知离散型随机变量X的分布列为1 2 3P则X的数学期望E(X)=A. B. 2 C. D 3X5.某四棱太的三视图如图1所示,则该四棱台的体积是A .4B .C .D .66.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是 A .若α⊥β,mα,nβ,则m ⊥ n B .若α∥β,mα,nβ,则m ∥nC .若m ⊥ n ,m α,n β,则α⊥βD .若m α,m ∥n ,n ∥β,则α⊥β7.已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则C 的方程是 A .= 1 B .= 1 C .= 1 D .=18.设整数n ≥4,集合X={1,2,3……,n }。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前试卷类型:A…
2013年普通高等学校招生全国统一考试(广东卷)
数学(理科)
本试卷共4页,21小题,满分150分.考试用时120分钟
注意事项:1. 答卷前,考生务必用黑色笔迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。
用2B铅笔讲试卷类型(A)填涂在答题卡相应的位置
上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点
涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指
定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;
不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B铅笔填涂选做题的题组号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁,考试结束后,将试题与答题卡一并交回。
参考公式:台体的体积公式V=(S
1+S
2
+
2
1
s
s)h,其中S1,S2分别表示台体的上、下底面积,
h表示台体的高。
一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合M={x∣x2+2x=0,x∈R},N={x∣x2-2x=0,x∈R},则M∪N= D
A. {0}
B. {0,2}
C. {-2,0} D {-2,0,2}
2.定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sinx中,奇函数的个数是C
A. 4
B.3
C. 2
D.1
3.若复数z满足iz=2+4i,则在复平面内,z对应的点的坐标是C
A. (2,4)
B.(2,-4)
C. (4,-2) D(4,2)
4.已知离散型随机变量X的分布列为
1 2 3
P
则X的数学期望E(X)= A
A. B. 2 C. D 3
5.某四棱太的三视图如图1所示,则该四棱台的体积是B
X
A.4 B.C.D.6
6.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是D
A.若α⊥β,mα,nβ,则m⊥ n B.若α∥β,mα,nβ,则m∥n
C.若m⊥ n,m α,n β,则α⊥βD.若m α,m∥n,n∥β,则α⊥β
7.已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于,则C的方程是B A.= 1B.= 1C.= 1D.= 1
8.设整数n≥4,集合X={1,2,3……,n}。
令集合S={(x,y,z)|x,y,z∈X,且三条件x<y<z,y<z<x,z<x<y恰有一个成立},若(x,y,z)和(z,w,x)都在s中,则下列选项正确的是
A.(y,z,w)∈s,(x,y,w)∉S
B.(y,z,w)∈s,(x,y,w)∈S
∉s,(x,y,w)∈S D. (y,z,w)∉s,(x,y,w)∉S
C. (y,z,w)
二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
(一)必做题(9~13题)
9.不等式x2+x-2<0的解集为。
{x|-2<x<1}
10.若曲线y=kx+lnx在点(1,k)处的切线平行于x轴,则k= 。
-1
11.执行如图2所示的程序框图,若输入n的值为4,则输出s的值为。
7
a}中,已知a3+a8=10,则3a5+a7=___20
12,在等差数列{
n
13.给定区域:.令点集T=|(x 0,y 0)∈D|x 0,y 0∈Z,(x 0,y 0)是z=x+y 在D 上取得最大值或最小值的点,则T 中的点共确定____条不同的直线。
2
(二)选做题(14-15题,考生只能从中选做一题)
14(坐标系与参数方程选做题)已知曲线C 的参数方程为(t 为参数),C 在点(1,1)处的切线为L ,一座标原点为极点,x 轴的正半轴为极轴建立极坐标,则L 的极坐标方程为_______.02sin cos =-+θρθρ或2)4
cos(=-π
θρ 15.(几何证明选讲选做题)如图3,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 是BC=CD ,过C 作圆O 的切线交AD 于E 。
若AB=6,ED=2,则BC=______.23
三、解答题:本大题共6小题,满分80分,解答需写出文字说明。
证明过程和演算步骤。
16.(本小题满分12分)
已知函数f (x )=2cos (x-
12
π),x ∈R 。
(1) 求f (-6π)的值;f (-6π)= -1 (2) 若cos θ=53,θ∈(23π,2π),求f (2θ+3
π)。
f (2θ+3π)=2517)2524(2572sin 2cos )42cos(2=---=-=+θθπθ
17.(本小题满分12分)
某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图4所示,其中茎为十位数,叶为个位数。
(1) 根据茎叶图计算样本均值;22
(2) 日加工零件个数大于样本均值的工人为优秀工人。
根据茎叶图推断该车间12名工人中
有几名优秀工人?4
(3) 从该车间12名工人中,任取2人,求恰有1名优秀工人的概率 P=33162121814=⋅C C C
18(本小题满分4分)
如图5,在等腰直角三角形ABC 中,∠A =900 BC=6,D,E 分别是AC ,AB 上的点,CD=BE=
,O 为BC 的中点.将△ADE 沿DE 折起,得到如图6所示的四棱椎A ’-BCDE ,其中A ’O=3
(1) 证明:A ’O ⊥平面BCDE ;
(2) 求二面角A ’-CD-B 的平面角的余弦值
19.(本小题满分14分)
设数列{a n }的前n 项和为S n ,已知a 1=1,=a n+1-n 2 – n - ,n ∈N ·.
(1)求a 2的值
(2)求数列{a n }的通项公式a 1
(3) 证明:对一切正整数n ,有11a +21a +…n a 1<47
20.(本小题满分14分)
已知抛物线c 的顶点为原点,其焦点F (0,c )(c >0)到直线L:x-y-2=0的距离为 . 设P 为直线l 上的点,过点P 做抛物线C 的两条切线PA ,PB,其中A,B 为切点。
(1) 求抛物线C 的方程;
(2) 当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程;
(3) 当点P 在直线l 上移动时,求|AF|·|BF|的最小值
21.(本小题满分14分)
设函数f (x )=(x-1)e x -kx 2(k ∈R ).
(1) 当k=1时,求函数f (x )的单调区间;
(2) 当k ∈(2
1,1]时,求函数f (x )在[0,k]上的最大值M.。