力学大学物理赵近芳第三版

合集下载

大学物理学(第三版)第五章课后答案(主编)赵近芳

大学物理学(第三版)第五章课后答案(主编)赵近芳

习题55.1选择题(1)一物体作简谐振动,振动方程为)2cos(πω+=t A x ,则该物体在0=t 时刻的动能与8/T t =(T 为振动周期)时刻的动能之比为:(A)1:4 (B )1:2 (C )1:1 (D) 2:1[答案:D](2)弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A)kA 2 (B) kA 2/2(C) kA 2//4 (D)0[答案:D](3)谐振动过程中,动能和势能相等的位置的位移等于 (A)4A ± (B) 2A ± (C) 23A ± (D) 22A ± [答案:D]5.2 填空题(1)一质点在X 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点。

若t =0时质点第一次通过x =-2cm 处且向X 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为____s 。

[答案:23s ] (2)一水平弹簧简谐振子的振动曲线如题5.2(2)图所示。

振子在位移为零,速度为-ωA 、加速度为零和弹性力为零的状态,对应于曲线上的____________点。

振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力为-KA 的状态,则对应曲线上的____________点。

题5.2(2) 图[答案:b 、f ; a 、e](3)一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周期为T ,振幅为A 。

(a)若t=0时质点过x=0处且朝x 轴正方向运动,则振动方程为x=___________________。

(b) 若t=0时质点过x=A/2处且朝x 轴负方向运动,则振动方程为x=_________________。

[答案:cos(2//2)x A t T ππ=-; cos(2//3)x A t T ππ=+]5.3 符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动:(1)拍皮球时球的运动;(2)如题5.3图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很短).题5.3图 题5.3图(b)解:要使一个系统作谐振动,必须同时满足以下三个条件:一 ,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统是在自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用. 或者说,若一个系统的运动微分方程能用描述时,其所作的运动就是谐振动.(1)拍皮球时球的运动不是谐振动.第一,球的运动轨道中并不存在一个稳定的平衡位置; 第二,球在运动中所受的三个力:重力,地面给予的弹力,击球者给予的拍击力,都不是线性回复力.(2)小球在题5.3图所示的情况中所作的小弧度的运动,是谐振动.显然,小球在运动过程中,各种参量均为常量;该系统(指小球凹槽、地球系统)的稳定平衡位置即凹槽最低点,即系统势能最小值位置点O ;而小球在运动中的回复力为θsin mg -,如题5.3图(b)中所示,因S ∆<<R ,故RS ∆=θ→0,所以回复力为θmg -.式中负号,表示回复力的方向始终与角位移的方向相反.即小球在O 点附近的往复运动中所受回复力为线性的.若以小球为对象,则小球在以O '为圆心的竖直平面内作圆周运动,由牛顿第二定律,在凹槽切线方向上有 令Rg =2ω,则有 5.4 弹簧振子的振幅增大到原振幅的两倍时,其振动周期、振动能量、最大速度和最大加速度等物理量将如何变化?解:弹簧振子的振动周期、振动能量、最大速度和最大加速度的表达式分别为所以当振幅增大到原振幅的两倍时,振动周期不变,振动能量增大为原来的4倍,最大速度增大为原来的2倍,最大加速度增大为原来的2倍。

大学物理学(第三版)赵近芳第三章答案

大学物理学(第三版)赵近芳第三章答案

习题三3-1 惯性系S ′相对惯性系S 以速度u 运动.当它们的坐标原点O 与O '重合时,t =t '=0,发出一光波,此后两惯性系的观测者观测该光波的波阵面形状如何?用直角坐标系写出各自观测的波阵面的方程.解: 由于时间和空间都是均匀的,根据光速不变原理,光讯号为球面波.波阵面方程为:2222)(ct z y x =++ 2222)(t c z y x '='+'+'题3-1图3-2 设图3-4中车厢上观测者测得前后门距离为2l .试用洛仑兹变换计算地面上的观测者测到同一光信号到达前、后门的时间差.解: 设光讯号到达前门为事件1,在车厢)(S '系时空坐标为),(),(11cll t x ='',在车站)(S 系: )1()()(21211c uc l l c u c l x cu t t +=+='+'=γγγ 光信号到达后门为事件2,则在车厢)(S '系坐标为),(),(22cll t x -='',在车站)(S 系: )1()(2222c u c l x cu t t -='+'=γγ 于是 2122clut t γ-=-或者 l x x x t t t t 2,,02121='-'='∆-=∆='∆ )2()(22l c ux c u t t γγ='∆+'∆=∆ 3-3 惯性系S ′相对另一惯性系S 沿x 轴作匀速直线运动,取两坐标原点重合时刻作为计时起点.在S 系中测得两事件的时空坐标分别为1x =6×104m,1t =2×10-4s ,以及2x =12×104m,2t =1×10-4s .已知在S ′系中测得该两事件同时发生.试问:(1)S ′系相对S 系的速度是多少? (2) S '系中测得的两事件的空间间隔是多少? 解: 设)(S '相对S 的速度为v ,(1) )(1211x c vt t -='γ )(2222x cvt t -='γ 由题意 012='-'t t 则 )(12212x x c vt t -=- 故 812122105.12⨯-=-=--=cx x t t cv 1s m -⋅(2)由洛仑兹变换 )(),(222111vt x x vt x x -='-='γγ 代入数值, m 102.5412⨯='-'x x 3-4 长度0l =1 m 的米尺静止于S ′系中,与x ′轴的夹角'θ= 30°,S ′系相对S 系沿x 轴运动,在S 系中观测者测得米尺与x 轴夹角为=θ45︒. 试求:(1)S ′系和S 系的相对运动速度.(2)S 系中测得的米尺长度.解: (1)米尺相对S '静止,它在y x '',轴上的投影分别为:m 866.0cos 0='='θL L x ,m 5.0sin 0='='θL L y米尺相对S 沿x 方向运动,设速度为v ,对S 系中的观察者测得米尺在x 方向收缩,而y 方向的长度不变,即y y x x L L cv L L '=-'=,122故 221tan c vL L L L L L xy xy xy -''='==θ把ο45=θ及y x L L '',代入则得 866.05.0122=-cv故 c v 816.0=(2)在S 系中测得米尺长度为m 707.045sin =︒=y L L3-5 一门宽为a ,今有一固有长度0l (0l >a )的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动.若站在门外的观察者认为此杆的两端可同时被拉进此门,则该杆相对于门的运动速率u 至少为多少?解: 门外观测者测得杆长为运动长度,20)(1cu l l -=,当a ≤1时,可认为能被拉进门,则 20)(1cu l a -≤解得杆的运动速率至少为:2)(1l a c u -=题3-6图3-6两个惯性系中的观察者O 和O '以0.6c(c 表示真空中光速)的相对速度相互接近,如果O 测得两者的初始距离是20m ,则O '测得两者经过多少时间相遇? 解: O 测得相遇时间为t ∆cv L t 6.0200==∆ O ' 测得的是固有时t '∆∴ vL tt 201βγ-=∆='∆ s 1089.88-⨯=,6.0==c vβ , 8.01=γ , 或者,O '测得长度收缩,vL t L L L L ='∆=-=-=,8.06.01102020β s 1089.81036.0208.06.08.0880-⨯=⨯⨯⨯=='c L t ∆ 3-7 观测者甲乙分别静止于两个惯性参考系S 和S '中,甲测得在同一地点发生的两事件的时间间隔为 4s ,而乙测得这两个事件的时间间隔为 5s .求: (1) S '相对于S 的运动速度.(2)乙测得这两个事件发生的地点间的距离.解: 甲测得0,s 4==x t ∆∆,乙测得s 5=t ∆,坐标差为12x x x '-'='∆′ (1)∴ t cv t x c vt t ∆-∆=∆+∆='∆22)(11)(λγ54122='∆∆=-t t cv解出 c c t t c v 53)54(1)(122=-='∆∆-= 8108.1⨯= 1s m -⋅(2) ()0,45,=∆=∆'∆=∆-∆='∆x t t t v x x γγ ∴ m 1093453458⨯-=-=⨯⨯-=-='c c t v x ∆γ∆ 负号表示012<'-'x x . 3-8 一宇航员要到离地球为5光年的星球去旅行.如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度是多少?解: 2220153,1513βββ-=-=-=='则l l ∴ c c v 542591=-= 3-9 论证以下结论:在某个惯性系中有两个事件同时发生在不同地点,在有相对运动的其他惯性系中,这两个事件一定不同时.证: 设在S 系B A 、事件在b a ,处同时发生,则B A a b t t t x x x -=∆-=∆,,在S '系中测得)(2x cvt t t t A B ∆-∆='-'='∆γ 0,0≠∆=∆x t ,∴ 0≠'∆t 即不同时发生. 3-10 试证明:(1)如果两个事件在某惯性系中是同一地点发生的,则对一切惯性系来说这两个事件的时间间隔,只有在此惯性系中最短.(2)如果两个事件在某惯性系中是同时发生的,则对一切惯性关系来说这两个事件的空间间隔,只有在此惯性系中最短.解: (1)如果在S '系中,两事件B A 、在同一地点发生,则0='∆x ,在S 系中,t t t '∆≥'∆=∆γ,仅当0=v 时,等式成立,∴t '∆最短.(2)若在S '系中同时发生,即0='∆t ,则在S 系中,x x x '∆≥'∆=∆γ,仅当0=v 时等式成立,∴S '系中x '∆最短.3-11 根据天文观测和推算,宇宙正在膨胀,太空中的天体都远离我们而去.假定地球上观察到一颗脉冲星(发出周期无线电波的星)的脉冲周期为 0.50s ,且这颗星正沿观察方向以速度0.8c 离我们而去.问这颗星的固有周期为多少?解: 以脉冲星为S '系,0='∆x ,固有周期0τ='∆t .地球为S 系,则有运动时t t '∆=∆γ1,这里1t ∆不是地球上某点观测到的周期,而是以地球为参考系的两异地钟读数之差.还要考虑因飞行远离信号的传递时间,ct v 1∆ ∴ t c vt c t v t t ∆+'∆=∆+∆=∆γγ11′ )1(cvt +'=∆γ6.01)8.0(112=-=cc γ 则 γλτ)8.01(5.0)1(0cc cv tt +++∆='∆=s 1666.08.13.06.01)8.01(5.0==+= 3-12 6000m 的高空大气层中产生了一个π介子以速度v =0.998c 飞向地球.假定该π介子在其自身静止系中的寿命等于其平均寿命 2×10-6s .试分别从下面两个角度,即地球上的观测者和π介子静止系中观测者来判断π介子能否到达地球.解: π介子在其自身静止系中的寿命s 10260-⨯=t ∆是固有(本征)时间,对地球观测者,由于时间膨胀效应,其寿命延长了.衰变前经历的时间为s 1016.315220-⨯=-=cv t t ∆∆这段时间飞行距离为m 9470==t v d ∆ 因m 6000>d ,故该π介子能到达地球.或在π介子静止系中,π介子是静止的.地球则以速度v 接近介子,在0t ∆时间内,地球接近的距离为m 5990=='t v d ∆m 60000=d 经洛仑兹收缩后的值为:m 37912200=-='cv d dd d '>',故π介子能到达地球. 3-13 设物体相对S ′系沿x '轴正向以0.8c 运动,如果S ′系相对S 系沿x 轴正向的速度也是0.8c ,问物体相对S 系的速度是多少?解: 根据速度合成定理,c u 8.0=,c v x 8.0=' ∴ c c c c c c cv u u v v x x x 98.08.08.018.08.0122=⨯++='++'=3-14 飞船A 以0.8c 的速度相对地球向正东飞行,飞船B 以0.6c 的速度相对地球向正西方向飞行.当两飞船即将相遇时A 飞船在自己的天窗处相隔2s 发射两颗信号弹.在B 飞船的观测者测得两颗信号弹相隔的时间间隔为多少?解: 取B 为S 系,地球为S '系,自西向东为x (x ')轴正向,则A 对S '系的速度c v x 8.0=',S '系对S 系的速度为c u 6.0=,则A 对S 系(B 船)的速度为c c c cv u u v v xx x 946.048.016.08.012=++='++'=发射弹是从A 的同一点发出,其时间间隔为固有时s 2='t ∆,题3-14图∴B 中测得的时间间隔为:s 17.6946.0121222=-=-'=cv t t x ∆∆3-15 (1)火箭A 和B 分别以0.8c 和0.6c 的速度相对地球向+x 和-x 方向飞行.试求由火箭B 测得A 的速度.(2)若火箭A 相对地球以0.8c 的速度向+y 方向运动,火箭B 的速度不变,求A 相对B 的速度.解: (1)如图a ,取地球为S 系,B 为S '系,则S '相对S 的速度c u 6.0=,火箭A 相对S 的速度c v x 8.0=,则A 相对S '(B )的速度为:c c c c c c v c u u v v x x x946.0)8.0)(6.0(1)6.0(8.0122=----=--=' 或者取A 为S '系,则c u 8.0=,B 相对S 系的速度c v x 6.0-=,于是B 相对A 的速度为:c c c c cc v c u u v v x x x 946.0)6.0)(8.0(18.06.0122-=----=--=' (2)如图b ,取地球为S 系,火箭B 为S '系,S '系相对S 系沿x -方向运动,速度c u 6.0-=,A 对S 系的速度为,0=x v ,c v y 8.0=,由洛仑兹变换式A 相对B 的速度为:c c v cu u v v xx x 6.001)6.0(012=---=--=' c c v cuv cu v xyy 64.0)8.0(6.01112222=-=--=' ∴A 相对B 的速度大小为c v v v y x 88.022='+'='速度与x '轴的夹角θ'为07.1tan =''='xy v v θο8.46='θ题3-15图3-16 静止在S 系中的观测者测得一光子沿与x 轴成︒60角的方向飞行.另一观测者静止于S ′系,S ′系的x '轴与x 轴一致,并以0.6c 的速度沿x 方向运动.试问S ′系中的观测者观测到的光子运动方向如何?解: S 系中光子运动速度的分量为c c v x 500.060cos ο==c c v y 866.060sin ο==由速度变换公式,光子在S '系中的速度分量为c c c c cc v c u u v v x x x 143.05.06.016.05.0122-=⨯--=--=' c c cc c v c u v cu v x yy 990.05.06.01866.06.011122222=⨯-⨯-=--=' 光子运动方向与x '轴的夹角θ'满足692.0tan -=''='xy v v θθ'在第二象限为ο2.98='θ在S '系中,光子的运动速度为c v v v y x ='+'='22 正是光速不变.3-17 (1)如果将电子由静止加速到速率为0.1c ,须对它作多少功?(2)如果将电子由速率为0.8c 加速到0.9c ,又须对它作多少功?解: (1)对电子作的功,等于电子动能的增量,得)111()1(222020202--=-=-==c v c m c m c m mc E E k k γ∆)11.011()103(101.922831--⨯⨯⨯=-161012.4-⨯=J=eV 1057.23⨯(2) )()(2021202212c m c m c m c m E E E k k k---=-='∆ )1111(221222202122cv cvc m c m c m ---=-=))8.0119.011(103101.92216231---⨯⨯⨯=-J 1014.514-⨯=eV 1021.35⨯=3-18 μ子静止质量是电子静止质量的 207倍,静止时的平均寿命0τ=2×10-6s ,若它在实验室参考系中的平均寿命τ= 7×10-6s ,试问其质量是电子静止质量的多少倍?解: 设μ子静止质量为0m ,相对实验室参考系的速度为c v β=,相应质量为m ,电子静止质量为e m 0,因2711,1022==--=ττββττ即由质速关系,在实验室参考系中质量为:202012071ββ-=-=e m m m故72527207120720=⨯=-=βe m m 3-19 一物体的速度使其质量增加了10%,试问此物体在运动方向上缩短了百分之几? 解: 设静止质量为0m ,运动质量为m , 由题设10.00=-m m m 201β-=m m由此二式得10.01112=--β∴ 10.1112=-β 在运动方向上的长度和静长分别为l 和0l ,则相对收缩量为:%1.9091.010.111112000==-=--=-=β∆l l l l l3-20 一电子在电场中从静止开始加速,试问它应通过多大的电势差才能使其质量增加0.4%?此时电子速度是多少?已知电子的静止质量为9.1×10-31kg . 解: 由质能关系1004.0200=∆=∆c m E m m∴ 100/)103(101.94.01004.0283120⨯⨯⨯⨯==∆-c m E J 1028.316-⨯==eV 106.11028.31916--⨯⨯= eV 100.23⨯= 所需电势差为3100.2⨯伏特 由质速公式有:004.111004.01111100002=+=∆+=∆+==-m m mm m m m β ∴ 32221095.7)004.11(1)(-⨯=-==c v β故电子速度为 -17s m 107.2⋅⨯==c v β3-21 一正负电子对撞机可以把电子加速到动能K E =2.8×109eV .这种电子速率比光速差多少? 这样的一个电子动量是多大?(与电子静止质量相应的能量为0E =0.511×106eV)解: 2022201c m cv c m E k --=所以 20202022/111cm E c m c m E c v k k +=+=- 由上式,2962622020)108.210511.0/()1051.0(1)(1⨯+⨯⨯-=+-=c E c m c m c v k8109979245.2⨯=-1s m ⋅810997924580.2⨯=-v c -1s m ⋅8109979245.28=⨯- -1s m ⋅由动量能量关系420222c m c p E +=可得cc m E E ccm c m E ccm E p k k k 20242022042022)(+=-+=-=11882138269182s m kg 1049.1103/]106.1)10511.0108.22108.2[(---⋅⋅⨯=⨯⨯⨯⨯⨯⨯⨯+⨯=3-22 氢原子的同位素氘(21H)和氚(31H)在高温条件下发生聚变反应,产生氦(42He)原子核和一个中子(10n),并释放出大量能量,其反应方程为21H + 31H→42He + 10n 已知氘核的静止质量为2.0135原子质量单位(1原子质量单位=1.600×10-27kg),氚核和氦核及中子的质量分别为3.0155,4.0015,1.00865原子质量单位.求上述聚变反应释放出来的能量.解: 反应前总质量为0290.50155.30135.2=+amu反应后总质量为0102.50087.10015.4=+amu质量亏损 0188.00102.50290.5=-=∆m amukg 1012.329-⨯=由质能关系得()282921031012.3⨯⨯⨯==-mc E ∆∆ J 1081.221-⨯=71075.1⨯=eV3-23 一静止质量为0m 的粒子,裂变成两个粒子,速度分别为0.6c 和0.8c .求裂变过程的静质量亏损和释放出的动能.解: 孤立系统在裂变过程中释放出动能,引起静能减少,相应的静止质量减少,即静质量亏损. 设裂变产生两个粒子的静质量分别为10m 和20m ,其相应的速度c v 6.01=,c v 8.02=由于孤立系统中所发生的任何过程都同时遵守动量守恒定律和能(质)量守恒定律,所以有0112222201221102211=-+-=+v c v m v cv m v m v m 022220221102111m c v m c vm m m =-+-=+注意1m 和2m 必沿相反方向运动,动量守恒的矢量方程可以简化为一维标量方程,再以6.01=v c,8.02=v c 代入,将上二方程化为:20106886m m =,020106.08.0m m m =+ 上二式联立求解可得:010459.0m m =, 020257.0m m =故静质量亏损020100284.0)(m m m m m =+-=∆由静质量亏损引起静能减少,即转化为动能,故放出的动能为202284.0c m mc E k =∆=∆3-24 有A ,B 两个静止质量都是0m 的粒子,分别以1v =v ,2v =-v 的速度相向运动,在发生完全非弹性碰撞后合并为一个粒子.求碰撞后粒子的速度和静止质量.解: 在实验室参考系中,设碰撞前两粒子的质量分别1m 和2m ,碰撞后粒子的质量为M 、速度为V ,于是,根据动量守恒和质量守恒定律可得:MV v m v m =+2211 ①M m m =+21 ②由于 0)(1)()(120202211=---+-=+c v v m c v vm v m v m代入①式得 0=V221)(120c v m m m M -+=,即为碰撞后静止质量.3-25 试估计地球、太阳的史瓦西半径.解: 史瓦西半径 22cGM r s = 地球: kg 10624⨯≈M则: m 109.8)103(106107.623282411--⨯=⨯⨯⨯⨯⨯=s r 太阳: kg 10230⨯≈M则: 3283011103)103(102107.62⨯=⨯⨯⨯⨯⨯=-s r m 3-26 典型中子星的质量与太阳质量M ⊙=2×1030kg 同数量级,半径约为10km .若进一步坍缩为黑洞,其史瓦西半径为多少?一个质子那么大小的微黑洞(10-15cm),质量是什么数量级?解: (1)史瓦西半径与太阳的相同,3103⨯=s r m(2) 1510-=s r cm 1710-=m由 22c GM r s = 得 91128172107.6107.62)103(102⨯=⨯⨯⨯⨯==--G c r M s kg 3-27 简述广义相对论的基本原理和实验验证.解: 广义相对论的基本原理是等效原理和广义相对性原理.等效原理又分为弱等效原理和强等效原理.弱等效原理是:在局部时空中,不可能通过力学实验区分引力和惯性力,引力和惯性力等效.强等效原理是:在局部时空中,任何物理实验 都不能区分引力和惯性力,引力和惯性力等效.广义相对性原理是:所有参考系都是平权的,物理定律的表述相同.广义相对论的实验验证有:光线的引力偏转,引力红移,水星近日点进动,雷达回波延迟等.。

大学物理学答案北京邮电大学第版赵近芳等编著(一)

大学物理学答案北京邮电大学第版赵近芳等编著(一)

大学物理学答案北京邮电大学第版赵近芳等
编著(一)
大学物理学答案北京邮电大学第三版赵近芳等编著,是一本方便大学
物理学学习者进行自我检验和补充知识的参考书。

本书通过精心编排
的习题和答案,全面而深入地涵盖了大学物理学领域内各个方面的知
识点,使读者能够更好地掌握物理学的基本概念、定理和方法。

首先,本书的编排结构非常合理,根据大学物理学课程的教学内容,
分为力学、热学、电学、光学和现代物理学等五个部分,每个部分都
包含了丰富的习题和详细的解答。

每道习题的难度和类型都有所区分,既有选择题和判断题,也有计算题和解释题,能够满足不同层次学生
的需求。

其次,本书的答案详尽全面,准确无误。

每道习题的答案都有详细的
步骤和思路分析,同时还提供了参考图表和公式,使读者能够更加清
晰地理解和掌握物理学概念及其应用方法。

此外,本书还为部分较为
复杂的习题提供了多种解题方法,使读者能够更加灵活地运用知识。

最后,本书的内容丰富多样,不仅包含了大量的基础知识和应用技巧,还介绍了一些当前热门的前沿课题和研究成果,如量子物理学、相对
论和宇宙学等。

这些现代物理学内容,既能够拓展读者的知识面,又
对创新思维和科学研究能力的培养具有重要作用。

综上所述,大学物理学答案北京邮电大学第三版赵近芳等编著,是一
本非常适合大学物理学学习者使用的参考书,既方便了学习者对自身
学习情况的评估和纠正,又可以帮助学习者掌握物理学基本概念和应
用技巧,是一本值得广大物理学爱好者拥有的好书。

大学物理学_第三版_赵近芳_北邮出版社_第九章课后习题答案

大学物理学_第三版_赵近芳_北邮出版社_第九章课后习题答案

习题九9-1 在同一磁感应线上,各点B的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B的方向?解: 在同一磁感应线上,各点B的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B的方向. 题9-2图9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B=∑⎰==-=⋅0d 021I bc B da B l B abcd μ∴ 21B B=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B 方向相反,即21B B≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管外面环绕一周(见题9-4图)的环路积分 ⎰外B L ·d l=0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L·d l =I 0μ这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μ外,与⎰⎰=⋅=⋅Ll l B 0d 0d外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实 题9-4图 存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B 的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r为管外一点到螺线管轴的距离.9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发生偏转能否肯定那个区域中存在着磁场? 解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m-2x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量. 解: 如题9-6图所示 (1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S BΦWb(2)通过befc 面积2S 的磁通量 022=⋅=S BΦ 题9-6图(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ΦWb (或曰24.0-Wb )9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度. 题9-7图解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB 产生 01=BCD 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里.9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B两点处的磁感应强度,以及磁感应强度为零的点的位题9-8图解:如题9-8图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B在2L 外侧距离2L 为r 处则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度. 解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

大学物理简明教程第三版修订版课后习题答案(赵近芳、王登龙)课后习题答案

大学物理简明教程第三版修订版课后习题答案(赵近芳、王登龙)课后习题答案

习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为 ( )(A)dtdr(B)dt r d(C)dtr d ||(D) 22)()(dt dy dt dx +答案:(D)。

(2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a −=,则一秒钟后质点的速度 ( )(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。

答案:(D)。

(3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 ( )(A)tR t R ππ2,2 (B) t Rπ2,0 (C) 0,0 (D) 0,2tRπ 答案:(B)。

(4) 质点作曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,S 表示路程,τa 表示切向加速度,下列表达式中, ( ) ① a t = d /d v , ② v =t r d /d , ③ v =t S d /d , ④ τa t =d /d v.(A) 只有①、④是对的. (B) 只有②、④是对的.(C) 只有②是对的.(D) 只有③是对的. 答案:(D)。

(5)一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为υ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有: ( ) (A )v v v,v == (B )v v v,v =≠(C )v v v,v ≠≠ (D )v v v,v ≠=答案:(D)。

1.2填空题(1) 一质点,以1−⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。

答案: 10m ; 5πm 。

(2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v= 。

大学物理学第三版修订版下册第章标准答案(赵近芳)

大学物理学第三版修订版下册第章标准答案(赵近芳)

大学物理学第三版修订版下册第章答案(赵近芳)————————————————————————————————作者:————————————————————————————————日期:习题1111.1选择题(1)一圆形线圈在磁场中作下列运动时,那些情况会产生感应电流()(A )沿垂直磁场方向平移;(B )以直径为轴转动,轴跟磁场垂直; (C )沿平行磁场方向平移;(D )以直径为轴转动,轴跟磁场平行。

[答案:B](2)下列哪些矢量场为保守力场() (A ) 静电场;(B )稳恒磁场;(C )感生电场;(D )变化的磁场。

[答案:A](3) 用线圈的自感系数 L 来表示载流线圈磁场能量的公式221LI W m=()( A )只适用于无限长密绕线管; ( B ) 只适用于一个匝数很多,且密绕的螺线环; ( C ) 只适用于单匝圆线圈; ( D )适用于自感系数L 一定的任意线圈。

[答案:D](4)对于涡旋电场,下列说法不正确的是():(A )涡旋电场对电荷有作用力; (B )涡旋电场由变化的磁场产生; (C )涡旋场由电荷激发; (D )涡旋电场的电力线闭合的。

[答案:C]11.2 填空题(1)将金属圆环从磁极间沿与磁感应强度垂直的方向抽出时,圆环将受到 。

[答案:磁力](2)产生动生电动势的非静电场力是 ,产生感生电动势的非静电场力是 ,激发感生电场的场源是 。

[答案:洛伦兹力,涡旋电场力,变化的磁场](3)长为l 的金属直导线在垂直于均匀的平面内以角速度ω转动,如果转轴的位置在 ,这个导线上的电动势最大,数值为 ;如果转轴的位置在 ,整个导线上的电动势最小,数值为 。

[答案:端点,221l B ω;中点,0]11.3一半径r =10cm 的圆形回路放在B =0.8T 的均匀磁场中.回路平面与B ϖ垂直.当回路半径以恒定速率tr d d =80cm ·s -1收缩时,求回路中感应电动势的大小. 解: 回路磁通 2πr B BS m ==Φ感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m Φε V11.4 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm ,如题11.4图所示.均匀磁场B =80×10-3T ,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角α当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向.解: 取半圆形cba 法向为i ϖ, 题11.4图则 αΦcos 2π21B R m =同理,半圆形adc 法向为j ϖ,则αΦcos 2π22B R m=∵ B ϖ与i ϖ夹角和B ϖ与j ϖ夹角相等,∴ ︒=45α 则 αΦcos π2R B m =221089.8d d cos πd d -⨯-=-=Φ-=tBR t m αεV方向与cbadc 相反,即顺时针方向.题11.5图11.5 如题11.5图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压N M U U -.解: 作辅助线MN ,则在MeNM 回路中,沿v ϖ方向运动时0d =m Φ ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ⎰+-<+-==ba ba MN ba ba Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向,大小为ba ba Iv -+ln 20πμ M 点电势高于N 点电势,即ba ba Iv U U N M -+=-ln 20πμ题11.6图11.6如题11.6所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则 (1) ]ln [lnπ2d π2d π2000dad b a b Ilr l rIr l rIab bad dm +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε11.7 如题11.7图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题11.7图解: )cos(2π02ϕωΦ+=⋅=t r B S B m ϖϖ ∴ Bfr f r B r B t r B t m m i 222202ππ22π2π)sin(2πd d ===+=-=ωεϕωωΦε ∴ RBfr R I m22π==ε11.8 如题11.8图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1垂直于直线平移远离.求:d =0.05m 时线圈中感应电动势的大小和方向.题11.8图解: AB 、CD 运动速度v ϖ方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεϖϖϖBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰μεϖϖϖ∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεεV方向沿顺时针.11.9 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场Bϖ中,B ϖ的方向与回路的法线成60°角(如题11.9图所示),B ϖ的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向. 解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m ϖϖΦ∴ klvt tm-=-=d d Φε 即沿abcd 方向顺时针方向.题11.9图11.10 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B ϖ的方向如题11.10图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0). 解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题11.10图(a)题11.10图(b)在磁场中时0d d =tΦ,0=ε; 出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示. 题11.11图11.11 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图11.11所示.试求: (1)ab 两端的电势差; (2)b a ,两端哪一点电势高? 解: (1)在Ob 上取dr r r +→一小段 则 ⎰==320292d l Ob l B r rB ωωε 同理 ⎰==302181d l Oa l B r rB ωωε ∴ 2261)92181(l B l B Ob aO ab ωωεεε=+-=+= (2)∵ 0>ab ε 即0<-b a U U ∴b 点电势高.题11.12图11.12 如题11.12图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v ϖ平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向.解:在金属杆上取r d 距左边直导线为r ,则 ba b a Iv r r a r Iv l B v b a b a BA AB-+-=-+-=⋅⨯=⎰⎰+-ln d )211(2d )(00πμπμεϖϖϖ ∵ 0<AB ε ∴实际上感应电动势方向从A B →,即从图中从右向左, ∴ ba ba Iv U AB -+=ln 0πμ题11.13图11.13 磁感应强度为B ϖ的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题11.13图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε =-=tabd d 2Φεt BR B R t d d 12π]12π[d d 22=-- ∴ tBR R acd d ]12π43[22+=ε∵0d d >tB∴ 0>ac ε即ε从c a →11.14 半径为R 的直螺线管中,有dtdB>0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题10-13图所示.设ab =R ,试求:闭合导线中的感应电动势.解:如图,闭合导线abca 内磁通量)436π(22R R B S B m -=⋅=ϖϖΦ∴ tBR R i d d )436π(22--=ε ∵0d d >tB∴0<i ε,即感应电动势沿acba ,逆时针方向.题11.14图题11.15图11.15 如题11.15图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题11.15图示方向.试求:(1)ab 两端的电势差;(2)cd 两点电势高低的情况.解: 由⎰⎰⋅-=⋅l S t B l E ϖϖϖϖd d d d 旋知,此时旋E ϖ以O 为中心沿逆时针方向. (1)∵ab 是直径,在ab 上处处旋E ϖ与ab 垂直∴ ⎰=⋅ll 0d ϖ旋∴0=ab ε,有b a U U =(2)同理, 0d >⋅=⎰l E cddc ϖϖ旋ε∴ 0<-c d U U 即d c U U >题11.16图11.16 一无限长的直导线和一正方形的线圈如题11.16图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴ 2ln π2012aIM μΦ==11.17两线圈顺串联后总自感为1.0H ,在它们的形状和位置都不变的情况下,反串联后总自感为0.4H .试求:它们之间的互感. 解: ∵顺串时 M L L L 221++= 反串联时M L L L 221-+='∴ M L L 4='-15.04='-=L L M H11题11.18图11.18 一矩形截面的螺绕环如题11.18图所示,共有N 匝.试求:(1)此螺线环的自感系数;(2)若导线内通有电流I ,环内磁能为多少? 解:如题11.18图示(1)通过横截面的磁通为⎰==b a ab NIh r h r NIln π2d π200μμΦ 磁链 ab IhN N ln π220μΦψ== ∴ ab hN I L ln π220μψ== (2)∵ 221LI W m = ∴ a b h I N W m ln π4220μ=11.19 一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能.解:在R r <时 20π2R I B rμ=∴ 4222002π82Rr I B w m μμ== 取 r r V d π2d =(∵导线长1=l )则 ⎰⎰===RR m I R rr I r r w W 00204320π16π4d d 2μμπ。

大学物理第三版问题详解__赵近芳

大学物理第三版问题详解__赵近芳

习题解答 习题一1-1|r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同?t d d v 和td d v 有无不同?其不同在哪里?试举例说明.解:〔1〕r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;〔2〕t d d r 是速度的模,即td d r==v t s d d . trd d 只是速度在径向上的分量. ∵有r r ˆr =〔式中r ˆ叫做单位矢〕,如此tˆr ˆt r t d d d d d d rr r +=式中trd d 就是速度径向上的分量, ∴trt d d d d 与r 不同如题1-1图所示. 题1-1图(3)t d d v 表示加速度的模,即tva d d=,t v d d 是加速度a 在切向上的分量.∵有ττ(v =v 表轨道节线方向单位矢〕,所以tv t v t v d d d d d d ττ += 式中dt dv就是加速度的切向分量. (tt r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t r d d ,与a =22d d tr 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 与a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差异何在?解:后一种方确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jty i t x t r a jty i t x t r v222222d d d d d d d d d d d d +==+==∴ 故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x yx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a trv ==其二,可能是将22d d d d trt r 与误作速度与加速度的模。

大学物理简明教程第三版修订版课后习题答案(赵近芳、王登龙)课后习题答案

大学物理简明教程第三版修订版课后习题答案(赵近芳、王登龙)课后习题答案

习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为 ( )(A)dtdr(B)dt r d(C)dtr d ||(D) 22)()(dt dy dt dx +答案:(D)。

(2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a −=,则一秒钟后质点的速度 ( )(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。

答案:(D)。

(3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 ( )(A)tR t R ππ2,2 (B) t Rπ2,0 (C) 0,0 (D) 0,2tRπ 答案:(B)。

(4) 质点作曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,S 表示路程,τa 表示切向加速度,下列表达式中, ( ) ① a t = d /d v , ② v =t r d /d , ③ v =t S d /d , ④ τa t =d /d v.(A) 只有①、④是对的. (B) 只有②、④是对的.(C) 只有②是对的.(D) 只有③是对的. 答案:(D)。

(5)一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为υ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有: ( ) (A )v v v,v == (B )v v v,v =≠(C )v v v,v ≠≠ (D )v v v,v ≠=答案:(D)。

1.2填空题(1) 一质点,以1−⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。

答案: 10m ; 5πm 。

(2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v= 。

大学物理 第三版 赵近芳主编 第四章课件

大学物理 第三版 赵近芳主编 第四章课件

√ ×
线运动) 线运动)
(如斜抛运动最高点处) 如斜抛运动最高点处)
练习2 一物体做抛体运动, 讨论: 练习2:一物体做抛体运动,已知 v 0 ,α 讨论:
τ
A r g
r
α
r v0
B
τ
r n
r
C
r g
r n
r g
r n
r g
τ
r
A
r a

B
r g
C r g
g sin α
− g sin α
0
g
2 v 0 cos 2α g
r r r(t )→ v ,
r a
; θ (t )→ ω ,
β
2.已知加速度(或速度) 初始条件, 2.已知加速度(或速度)及初始条件,求质点任一 已知加速度 时刻的速度和运动方程(积分法)。 时刻的速度和运动方程(积分法)。
r r r r r a ( t ) , ( t = 0时 r0 , v 0 ) → v ( t ) , r ( t )
β ( t ) , ( t = 0时 ω 0 , θ 0 ) → ω ( t ) ,θ ( t )
第一类问题
例(1-4习题): 在离水面高h米的岸上,有人用绳子 习题): 在离水面高h米的岸上, 拉船靠岸,船在离岸S处,如题1-4图所示.当人以的 v0 拉船靠岸,船在离岸S 如题1 图所示.当人以的 速率收绳时,试求船运动的速度和加速度的大小 大小. 速率收绳时,试求船运动的速度和加速度的大小. 1.其轨迹为一条直线 1.其轨迹为一条直线 注意——凡直线运动, 注意——凡直线运动,可将坐标原点选在轨道直线 凡直线运动 建立一维坐标,将各矢量按代数量处理。 上,建立一维坐标,将各矢量按代数量处理。

大学物理学答案(北京邮电大学第3版)赵近芳等编著

大学物理学答案(北京邮电大学第3版)赵近芳等编著

大学物理学答案(北京邮电大学第3版)赵近芳等编著-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN大学物理学(北邮第三版) 习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同其不同在哪里试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r -=∆;(2)t d d r 是速度的模,即t d d r ==v t s d d . t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d=,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ +=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确为什么两者差别何在解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a t r v ==其二,可能是将22d d d d t r t r 与误作速度与加速度的模。

大学物理学(第三版)赵近芳第5章答案

大学物理学(第三版)赵近芳第5章答案

大学物理学(第三版)赵近芳第5章答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN习题五5-1 振动和波动有什么区别和联系平面简谐波动方程和简谐振动方程有什么不同又有什么联系振动曲线和波形曲线有什么不同解: (1)振动是指一个孤立的系统(也可是介质中的一个质元)在某固定平衡位置附近所做的往复运动,系统离开平衡位置的位移是时间的周期性函数,即可表示为)(t f y =;波动是振动在连续介质中的传播过程,此时介质中所有质元都在各自的平衡位置附近作振动,因此介质中任一质元离开平衡位置的位移既是坐标位置x ,又是时间t 的函数,即),(t x f y =.(2)在谐振动方程)(t f y =中只有一个独立的变量时间t ,它描述的是介质中一个质元偏离平衡位置的位移随时间变化的规律;平面谐波方程),(t x f y =中有两个独立变量,即坐标位置x 和时间t ,它描述的是介质中所有质元偏离平衡位置的位移随坐标和时间变化的规律.当谐波方程)(cos uxt A y -=ω中的坐标位置给定后,即可得到该点的振动方程,而波源持续不断地振动又是产生波动的必要条件之一.(3)振动曲线)(t f y =描述的是一个质点的位移随时间变化的规律,因此,其纵轴为y ,横轴为t ;波动曲线),(t x f y =描述的是介质中所有质元的位移随位置,随时间变化的规律,其纵轴为y ,横轴为x .每一幅图只能给出某一时刻质元的位移随坐标位置x 变化的规律,即只能给出某一时刻的波形图,不同时刻的波动曲线就是不同时刻的波形图.5-2 波动方程y =A cos [ω(u x t -)+0ϕ]中的ux表示什么如果改写为y =A cos (0ϕωω+-u x t ),u x ω又是什么意思如果t 和x 均增加,但相应的[ω(u x t -)+0ϕ]的值不变,由此能从波动方程说明什么解: 波动方程中的u x /表示了介质中坐标位置为x 的质元的振动落后于原点的时间;uxω则表示x 处质元比原点落后的振动位相;设t 时刻的波动方程为)cos(0φωω+-=uxt A y t则t t ∆+时刻的波动方程为])()(cos[0φωω+∆+-∆+=∆+ux x t t A y t t 其表示在时刻t ,位置x 处的振动状态,经过t ∆后传播到t u x ∆+处.所以在)(ux t ωω-中,当t ,x 均增加时,)(u xt ωω-的值不会变化,而这正好说明了经过时间t ∆,波形即向前传播了t u x ∆=∆的距离,说明)cos(0φωω+-=uxt A y 描述的是一列行进中的波,故谓之行波方程.5-3 波在介质中传播时,为什么介质元的动能和势能具有相同的位相,而弹簧振子的动能和势能却没有这样的特点解: 我们在讨论波动能量时,实际上讨论的是介质中某个小体积元dV 内所有质元的能量.波动动能当然是指质元振动动能,其与振动速度平方成正比,波动势能则是指介质的形变势能.形变势能由介质的相对形变量(即应变量)决定.如果取波动方程为),(t x f y =,则相对形变量(即应变量)为x y ∂∂/.波动势能则是与x y ∂∂/的平方成正比.由波动曲线图(题5-3图)可知,在波峰,波谷处,波动动能有极小(此处振动速度为零),而在该处的应变也为极小(该处0/=∂∂x y ),所以在波峰,波谷处波动势能也为极小;在平衡位置处波动动能为极大(该处振动速度的极大),而在该处的应变也是最大(该处是曲线的拐点),当然波动势能也为最大.这就说明了在介质中波动动能与波动势能是同步变化的,即具有相同的量值.题5-3图对于一个孤立的谐振动系统,是一个孤立的保守系统,机械能守恒,即振子的动能与势能之和保持为一个常数,而动能与势能在不断地转换,所以动能和势能不可能同步变化.5-4 波动方程中,坐标轴原点是否一定要选在波源处 t =0时刻是否一定是波源开始振动的时刻 波动方程写成y =A cos ω(uxt -)时,波源一定在坐标原点处吗在什么前提下波动方程才能写成这种形式解: 由于坐标原点和开始计时时刻的选全完取是一种主观行为,所以在波动方程中,坐标原点不一定要选在波源处,同样,0=t 的时刻也不一定是波源开始振动的时刻;当波动方程写成)(cos uxt A y -=ω时,坐标原点也不一定是选在波源所在处的.因为在此处对于波源的含义已做了拓展,即在写波动方程时,我们可以把介质中某一已知点的振动视为波源,只要把振动方程为已知的点选为坐标原点,即可得题示的波动方程.5-5 在驻波的两相邻波节间的同一半波长上,描述各质点振动的什么物理量不同,什么物理量相同解: 取驻波方程为vt x A y απλπcos 2cos2=,则可知,在相邻两波节中的同一半波长上,描述各质点的振幅是不相同的,各质点的振幅是随位置按余弦规律变化的,即振幅变化规律可表示为x A λπ2cos2.而在这同一半波长上,各质点的振动位相则是相同的,即以相邻两波节的介质为一段,同一段介质内各质点都有相同的振动位相,而相邻两段介质内的质点振动位相则相反.5-6 波源向着观察者运动和观察者向波源运动都会产生频率增高的多普勒效应,这两种情况有何区别解: 波源向着观察者运动时,波面将被挤压,波在介质中的波长,将被压缩变短,(如题5-6图所示),因而观察者在单位时间内接收到的完整数目(λ'/u )会增多,所以接收频率增高;而观察者向着波源运动时,波面形状不变,但观察者测到的波速增大,即B v u u +=',因而单位时间内通过观察者完整波的数目λu '也会增多,即接收频率也将增高.简单地说,前者是通过压缩波面(缩短波长)使频率增高,后者则是观察者的运动使得单位时间内通过的波面数增加而升高频率.题5-6 图多普勒效应5-7 一平面简谐波沿x 轴负向传播,波长λ=1.0 m ,原点处质点的振动频率为ν=2. 0 Hz ,振幅A =0.1m ,且在t =0时恰好通过平衡位置向y 轴负向运动,求此平面波的波动方程. 解: 由题知0=t 时原点处质点的振动状态为0,000<=v y ,故知原点的振动初相为2π,取波动方程为])(2cos[0φλπ++=xT t A y 则有 ]2)12(2cos[1.0ππ++=x t y)224cos(1.0πππ++=x t m5-8 已知波源在原点的一列平面简谐波,波动方程为y =A cos(Cx Bt -),其中A ,B ,C 为正值恒量.求:(1)波的振幅、波速、频率、周期与波长;(2)写出传播方向上距离波源为l 处一点的振动方程; (3)任一时刻,在波的传播方向上相距为d 的两点的位相差.解: (1)已知平面简谐波的波动方程)cos(Cx Bt A y -= (0≥x )将上式与波动方程的标准形式)22cos(λππυxt A y -=比较,可知: 波振幅为A ,频率πυ2B =, 波长C πλ2=,波速CB u ==λυ, 波动周期BT πυ21==.(2)将l x =代入波动方程即可得到该点的振动方程)cos(Cl Bt A y -=(3)因任一时刻t 同一波线上两点之间的位相差为 )(212x x -=∆λπφ将d x x =-12,及Cπλ2=代入上式,即得 Cd =∆φ.5-9 沿绳子传播的平面简谐波的波动方程为y =0.05cos(10x t ππ4-),式中x ,y 以米计,t 以秒计.求:(1)波的波速、频率和波长;(2)绳子上各质点振动时的最大速度和最大加速度; (3)求x =0.2m处质点在t =1s 时的位相,它是原点在哪一时刻的位相这一位相所代表的运动状态在t =1.25s 时刻到达哪一点解: (1)将题给方程与标准式)22cos(x t A y λππυ-=相比,得振幅05.0=A m ,频率5=υ1-s ,波长5.0=λm ,波速5.2==λυu 1s m -⋅.(2)绳上各点的最大振速,最大加速度分别为ππω5.005.010max =⨯==A v 1s m -⋅ 222max 505.0)10(ππω=⨯==A a 2s m -⋅(3)2.0=x m 处的振动比原点落后的时间为08.05.22.0==u x s 故2.0=x m ,1=t s 时的位相就是原点(0=x ),在92.008.010=-=t s 时的位相, 即 2.9=φπ. 设这一位相所代表的运动状态在25.1=t s 时刻到达x 点,则825.0)0.125.1(5.22.0)(11=-+=-+=t t u x x m5-10 如题5-10图是沿x 轴传播的平面余弦波在t 时刻的波形曲线.(1)若波沿x 轴正向传播,该时刻O ,A ,B ,C 各点的振动位相是多少(2)若波沿x 轴负向传播,上述各点的振动 位相又是多少解: (1)波沿x 轴正向传播,则在t 时刻,有题5-10图对于O 点:∵0,0<=O O v y ,∴2πφ=O对于A 点:∵0,=+=A A v A y ,∴0=A φ 对于B 点:∵0,0>=B B v y ,∴2πφ-=B对于C 点:∵0,0<=C C v y ,∴23πφ-=C(取负值:表示C B A 、、点位相,应落后于O 点的位相) (2)波沿x 轴负向传播,则在t 时刻,有对于O 点:∵0,0>'='O Ov y ,∴2πφ-='O对于A 点:∵0,='+='A A v A y ,∴0='A φ 对于B 点:∵0,0<'='B B v y ,∴2πφ=B对于C 点:∵0,0>'='C C v y ,∴23πφ='C(此处取正值表示C B A 、、点位相超前于O 点的位相)5-11 一列平面余弦波沿x 轴正向传播,波速为5m ·s -1,波长为2m ,原点处质点的振动曲线如题5-11图所示. (1)写出波动方程;(2)作出t =0时的波形图及距离波源0.5m 处质点的振动曲线.解: (1)由题5-11(a)图知,1.0=A m ,且0=t 时,0,000>=v y ,∴230πφ=, 又5.225===λυuHz ,则ππυω52== 题5-11图(a)取 ])(cos[0φω+-=uxt A y , 则波动方程为)]235(5cos[1.0ππ+-=x t y m (2) 0=t 时的波形如题5-11(b)图题5-11图(b) 题5-11图(c) 将5.0=x m 代入波动方程,得该点处的振动方程为)5cos(1.0)235.05.055cos(1.0πππππ+=+⨯-=t t y m 如题5-11(c)图所示.5-12 如题5-12图所示,已知t =0时和t =0.5s 时的波形曲线分别为图中曲线(a)和(b) ,波沿x 轴正向传播,试根据图中绘出的条件求: (1)波动方程; (2)P 点的振动方程.解: (1)由题5-12图可知,1.0=A m ,4=λm ,又,0=t 时,0,000<=v y ,∴20πφ=,而25.01==∆∆=t x u 1s m -⋅,5.042===λυu Hz ,∴ππυω==2 故波动方程为]2)2(cos[1.0ππ+-=x t y m(2)将1=P x m 代入上式,即得P 点振动方程为t t y ππππcos 1.0)]22cos[(1.0=+-= m题5-12图5-13 一列机械波沿x 轴正向传播,t =0时的波形如题5-13图所示,已知波速为10 m ·s -1,波长为2m ,求: (1)波动方程;(2) P 点的振动方程及振动曲线; (3) P 点的坐标;(4) P 点回到平衡位置所需的最短时间.解: 由题5-13图可知1.0=A m ,0=t 时,0,200<=v A y ,∴30πφ=,由题知2=λm ,10=u 1s m -⋅,则5210===λυuHz∴ ππυω102==(1)波动方程为]3)10(10cos[.01ππ+-=x t y m题5-13图(2)由图知,0=t 时,0,2<-=P P v A y ,∴34πφ-=P (P 点的位相应落后于0点,故取负值)∴P 点振动方程为)3410cos(1.0ππ-=t y p (3)∵ πππ34|3)10(100-=+-=t x t ∴解得 67.135==x m(4)根据(2)的结果可作出旋转矢量图如题5-13图(a),则由P 点回到平衡位置应经历的位相角题5-13图(a)πππφ6523=+=∆ ∴所属最短时间为121106/5==∆=∆ππωφt s 5-14 如题5-14图所示,有一平面简谐波在空间传播,已知P 点的振动方程为P y =A cos(0ϕω+t ).(1)分别就图中给出的两种坐标写出其波动方程;(2)写出距P 点距离为b 的Q 点的振动方程.解: (1)如题5-14图(a),则波动方程为])(cos[0φω+-+=uxu l t A y 如图(b),则波动方程为题5-14图])(cos[0φω++=uxt A y (2) 如题5-14图(a),则Q 点的振动方程为])(cos[0φω+-=ub t A A Q 如题5-14图(b),则Q 点的振动方程为])(cos[0φω++=ubt A A Q5-15 已知平面简谐波的波动方程为)24(cos x t A y +=π(SI).(1)写出t =4.2 s 时各波峰位置的坐标式,并求此时离原点最近一个波峰的位置,该波峰何时通过原点(2)画出t =4.2 s 时的波形曲线.解:(1)波峰位置坐标应满足ππk x t 2)24(=+ 解得 )4.8(-=k x m (,2,1,0±±=k …) 所以离原点最近的波峰位置为4.0-m . ∵uxt t t ωωππ+=+24 故知2=u 1s m -⋅,∴ 2.024.0=-='∆t s ,这就是说该波峰在2.0s 前通过原点,那么从计时时刻算起,则应是42.02.4=-s ,即该波峰是在4s 时通过原点的.题5-15图(2)∵2,4==u πω1s m -⋅,∴12===ωπλuuT m ,又0=x 处,2.4=t s 时,ππφ8.1642.40=⨯=A A y 8.02.44cos 0-=⨯=π又,当A y -=时,πφ17=x ,则应有πππ1728.16=+x 解得 1.0=x m ,故2.4=t s 时的波形图如题5-15图所示5-16 题5-16图中(a)表示t =0时刻的波形图,(b)表示原点(x =0)处质元的振动曲线,试求此波的波动方程,并画出x =2m 处质元的振动曲线.解: 由题5-16(b)图所示振动曲线可知2=T s ,2.0=A m ,且0=t 时,0,000>=v y ,故知20πφ-=,再结合题5-16(a)图所示波动曲线可知,该列波沿x 轴负向传播,且4=λm ,若取])(2cos[0φλπ++=xT t A y题5-16图则波动方程为]2)42(2cos[2.0ππ-+=x t y 5-17 一平面余弦波,沿直径为14cm 的圆柱形管传播,波的强度为18.0×10-3J ·m -2·s -1,频率为300 Hz ,波速为300m ·s -1,求 :(1)波的平均能量密度和最大能量密度(2)两个相邻同相面之间有多少波的能量解: (1)∵ u w I =∴ 53106300100.18--⨯=⨯==u I w 3m J -⋅ 4max 102.12-⨯==w w 3m J -⋅(2) νπλπωud w d wV W 224141=== 7251024.9300300)14.0(41106--⨯=⨯⨯⨯⨯=πJ5-18 如题5-18图所示,1S 和2S 为两相干波源,振幅均为1A ,相距4λ,1S 较2S 位相超前2π,求: (1) 1S 外侧各点的合振幅和强度; (2) 2S 外侧各点的合振幅和强度解:(1)在1S 外侧,距离1S 为1r 的点,1S 2S 传到该P 点引起的位相差为πλλππφ=⎥⎦⎤⎢⎣⎡+--=∆)4(2211r r 0,0211===-=A I A A A(2)在2S 外侧.距离2S 为1r 的点,1S 2S 传到该点引起的位相差.0)4(2222=-+-=∆r r λλππφ2121114,2A A I A A A A ===+=5-19 如题5-19图所示,设B 点发出的平面横波沿BP 方向传播,它在B 点的振动方程为t y π2cos 10231-⨯=;C 点发出的平面横波沿CP 方向传播,它在C 点的振动方程为)2cos(10232ππ+⨯=-t y ,本题中y 以m 计,t 以s 计.设BP =0.4m ,CP =0.5 m ,波速u =0.2m ·s -1,求:(1)两波传到P 点时的位相差;(2)当这两列波的振动方向相同时,P 处合振动的振幅; *(3)当这两列波的振动方向互相垂直时,P 处合振动的振幅.解: (1) )(2)(12BP CP ---=∆λπϕφφ)(BP CP u --=ωπ 0)4.05.0(2.02=--=ππ题5-19图(2)P 点是相长干涉,且振动方向相同,所以321104-⨯=+=A A A P m(3)若两振动方向垂直,又两分振动位相差为0,这时合振动轨迹是通过Ⅱ,Ⅳ象限的直线,所以合振幅为33122211083.210222--⨯=⨯==+=A A A A m5-20 一平面简谐波沿x 轴正向传播,如题5-20图所示.已知振幅为A ,频率为ν 波速为u .(1)若t =0时,原点O 处质元正好由平衡位置向位移正方向运动,写出此波的波动方程;(2)若从分界面反射的波的振幅与入射波振幅相等,试写出反射波的波动方程,并求x 轴上 因入射波与反射波干涉而静止的各点的位置.解: (1)∵0=t 时,0,000>=v y ,∴20πφ-=故波动方程为]2)(2cos[ππ--=u x t v A y m题5-20图(2)入射波传到反射面时的振动位相为(即将λ43=x 代入)2432πλλπ-⨯-,再考虑到波由波疏入射而在波密界面上反射,存在半波损失,所以反射波在界面处的位相为πππλλπ-=+-⨯-2432 若仍以O 点为原点,则反射波在O 点处的位相为 ππλλπ25432-=-⨯-,因只考虑π2以内的位相角,∴反射波在O 点的位相为2π-,故反射波的波动方程为]2)(2cos[ππυ-+=u x t A y 反此时驻波方程为]2)(2cos[ππυ--=u x t A y ]2)(2cos[ππυ-++u x t A)22cos(2cos 2ππυπυ-=t u x A故波节位置为2)12(22πλππυ+==k x u x 故 4)12(λ+=k x (,2,1,0±±=k …)根据题意,k 只能取1,0,即λλ43,41=x 5-20 一驻波方程为y =0.02cos20x cos750t (SI),求: (1)形成此驻波的两列行波的振幅和波速; (2)相邻两波节间距离.解: (1)取驻波方程为t uxA y πυπυ2cos 2cos 2= 故知 01.0202.0==A m 7502=πυ,则πυ2750=, 202=uπυ∴ 5.37202/7502202=⨯==πππυu 1s m -⋅ (2)∵314.01.020/2====πυπυυλu m 所以相邻两波节间距离 157.02==∆λx m5-22 在弦上传播的横波,它的波动方程为1y =0.1cos(13t +0.0079x ) (SI)试写出一个波动方程,使它表示的波能与这列已知的横波叠加形成驻波,并在x =0处为波 节.解: 为使合成驻波在0=x 处形成波节,则要反射波在0=x 处与入射波有π的位相差,故反射波的波动方程为)0079.013cos(1.02π--=x t y5-23 两列波在一根很长的细绳上传播,它们的波动方程分别为1y =0.06cos(t x ππ4-)(SI), 2y =0.06cos(t x ππ4+)(SI).(1)试证明绳子将作驻波式振动,并求波节、波腹的位置;(2)波腹处的振幅多大x =1.2m 处振幅多大 解: (1)它们的合成波为)4cos(06.0)4cos(06.0t x x y ππππ++-= t x ππ4cos cos 12.0=出现了变量的分离,符合驻波方程特征,故绳子在作驻波振动. 令ππk x =,则k x =,k=0,±1,±2…此即波腹的位置;令2)12(ππ+=k x ,则21)12(+=k x ,,2,1,0±±=k …,此即波节的位置.(2)波腹处振幅最大,即为12.0m ;2.1=x m 处的振幅由下式决定,即097.0)2.1cos(12.0=⨯=π驻A m5-24 汽车驶过车站时,车站上的观测者测得汽笛声频率由1200Hz 变到了1000 Hz ,设空气中声速为330m ·s -1,求汽车的速率.解: 设汽车的速度为s v ,汽车在驶近车站时,车站收到的频率为 01υυsv u u-=汽车驶离车站时,车站收到的频率为02υυsv u u+= 联立以上两式,得3010012001000120030021211=+-⨯=+-=υυυυυu1s m -⋅5-25 两列火车分别以72km ·h -1和54 km ·h -1的速度相向而行,第一 列火车发出一个600 Hz 的汽笛声,若声速为340 m ·s -1,求第二列火车上的观测者听见该声音的频率在相遇前和相遇后分别是多少解: 设鸣笛火车的车速为201=v 1s m -⋅,接收鸣笛的火车车速为152=v 1s m -⋅,则两者相遇前收到的频率为66560020340153400121=⨯-+=-+=υυv u v u Hz 两车相遇之后收到的频率为54160020340153400121=⨯+-=+-=υυv u v u Hz。

赵近芳-大学物理学答案--全

赵近芳-大学物理学答案--全

大学物理学(北邮第三版)赵近芳等编著 习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r ϖϖ-=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d .t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆrˆt r t d d d d d d r r r += 式中t rd d 就是速度径向上的分量, ∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d ϖϖ=,t v d d 是加速度a 在切向上的分量. ∵有ττϖϖ(v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττϖϖϖ+=式中dt dv就是加速度的切向分量.(t t r d ˆd d ˆd τϖϖΘ与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r ϖϖϖ+=,jt y i t x t r a jt y i t x t r v ϖϖϖϖϖϖϖϖ222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。

大学物理学(第三版)第三章课后答案(主编)赵近芳

大学物理学(第三版)第三章课后答案(主编)赵近芳

习题33.1选择题(1) 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A)02ωmRJ J + (B) 02)(ωR m J J + (C) 02ωmRJ (D) 0ω [答案: (A)](2) 如题3.1(2)图所示,一光滑的表面半径为10cm 的半球形碗,以匀角速度ω绕其对称轴OC 旋转,已知放在碗表面上的一个小球P 相对于碗静止,其位置高于碗底4cm ,则由此可推知碗旋转的角速度约为(A)13rad/s (B)17rad/s(C)10rad/s (D)18rad/s(a) (b)题3.1(2)图[答案: (A)](3)如3.1(3)图所示,有一小块物体,置于光滑的水平桌面上,有一绳其一端连结此物体,;另一端穿过桌面的小孔,该物体原以角速度在距孔为R 的圆周上转动,今将绳从小孔缓慢往下拉,则物体(A )动能不变,动量改变。

(B )动量不变,动能改变。

(C )角动量不变,动量不变。

(D )角动量改变,动量改变。

(E )角动量不变,动能、动量都改变。

[答案: (E)]3.2填空题(1) 半径为30cm 的飞轮,从静止开始以0.5rad ·s -2的匀角加速转动,则飞轮边缘上一点在飞轮转过240˚时的切向加速度a τ= ,法向加速度a n= 。

[答案:0.15; 1.256](2) 如题3.2(2)图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的守恒,原因是。

木球被击中后棒和球升高的过程中,对木球、子弹、细棒、地球系统的守恒。

题3.2(2)图[答案:对o轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对o 轴的合外力矩为零,机械能守恒](3) 两个质量分布均匀的圆盘A和B的密度分别为ρA和ρB (ρA>ρB),且两圆盘的总质量和厚度均相同。

大学物理学(第三版)第五章课后规范标准答案(主编)赵近芳

大学物理学(第三版)第五章课后规范标准答案(主编)赵近芳

习题55.1选择题(1)一物体作简谐振动,振动方程为)2cos(πω+=t A x ,则该物体在0=t 时刻的动能与8/T t =(T 为振动周期)时刻的动能之比为: (A)1:4 (B )1:2 (C )1:1 (D) 2:1[答案:D](2)弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为 (A)kA 2 (B) kA 2/2 (C) kA 2//4 (D)0[答案:D](3)谐振动过程中,动能和势能相等的位置的位移等于 (A)4A ±(B) 2A± (C) 23A±(D) 22A ± [答案:D]5.2 填空题(1)一质点在X 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点。

若t =0时质点第一次通过x =-2cm 处且向X 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为____s 。

[答案:23s ](2)一水平弹簧简谐振子的振动曲线如题5.2(2)图所示。

振子在位移为零,速度为-ωA 、加速度为零和弹性力为零的状态,对应于曲线上的____________点。

振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力为-KA 的状态,则对应曲线上的____________点。

题5.2(2) 图[答案:b 、f ; a 、e](3)一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周期为T ,振幅为A 。

(a)若t=0时质点过x=0处且朝x 轴正方向运动,则振动方程为x=___________________。

(b) 若t=0时质点过x=A/2处且朝x 轴负方向运动,则振动方程为x=_________________。

[答案:cos(2//2)x A t T ππ=-; cos(2//3)x A t T ππ=+]5.3 符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动: (1)拍皮球时球的运动;(2)如题5.3图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很 短).题5.3图 题5.3图(b)解:要使一个系统作谐振动,必须同时满足以下三个条件:一 ,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统是在自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用. 或者说,若一个系统的运动微分方程能用0d d 222=+ξωξt描述时,其所作的运动就是谐振动.(1)拍皮球时球的运动不是谐振动.第一,球的运动轨道中并不存在一个稳定的平衡位置; 第二,球在运动中所受的三个力:重力,地面给予的弹力,击球者给予的拍击力,都不是线性回复力.(2)小球在题5.3图所示的情况中所作的小弧度的运动,是谐振动.显然,小球在运动过程中,各种参量均为常量;该系统(指小球凹槽、地球系统)的稳定平衡位置即凹槽最低点,即系统势能最小值位置点O ;而小球在运动中的回复力为θsin mg -,如题5.3图(b)中所示,因S ∆<<R ,故RS∆=θ→0,所以回复力为θmg -.式中负号,表示回复力的方向始终与角位移的方向相反.即小球在O 点附近的往复运动中所受回复力为线性的.若以小球为对象,则小球在以O '为圆心的竖直平面内作圆周运动,由牛顿第二定律,在凹槽切线方向上有θθmg tmR -=22d d令Rg=2ω,则有 222d 0d tθωθ+=5.4 弹簧振子的振幅增大到原振幅的两倍时,其振动周期、振动能量、最大速度和最大加速度等物理量将如何变化?解:弹簧振子的振动周期、振动能量、最大速度和最大加速度的表达式分别为222122,m m T E kA v A a Aππωωω===== 所以当振幅增大到原振幅的两倍时,振动周期不变,振动能量增大为原来的4倍,最大速度增大为原来的2倍,最大加速度增大为原来的2倍。

大学物理简明教程第三版修订版课后习题答案 赵近芳 王登龙 课后习题答案

大学物理简明教程第三版修订版课后习题答案 赵近芳 王登龙 课后习题答案
计,求:(1) t =2 s时,质点的切向和法向加速度;(2)当加速度的方向和半径成45°角
时,其角位移是多少?
解:
(1) t = 2 s 时,
= d = 9t 2 , = d = 18t
dt
dt
a = R = 118 2 = 36 m s−2
an = R 2 = 1 (9 22 )2 = 1296 m s−2
1.4 在以下几种运动中,质点的切向加速度、法向加速度以及加速度哪些为零?哪些不为 零?
(1) 匀速直线运动;(2) 匀速曲线运动;(3) 变速直线运动;(4) 变速曲线运动。 解:(1) 质点作匀速直线运动时,其切向加速度、法向加速度及加速度均为零; (2) 质点作匀速曲线运动时,其切向加速度为零,法向加速度和加速度均不为零; (3) 质点作变速直线运动时,其法向加速度为零,切向加速度和加速度均不为零; (4) 质点作变速曲线运动时,其切向加速度、法向加速度及加速度均不为零。
= arctan a = − Rb an (v0 − bt)2
a = b = b2 + (v0 − bt)4 R2

b2
=
b2
+
(v0
− bt)4 R2
,
(v0
− bt)4
=
0
∴当 t = v0 时, a = b b
1.13 一质点在半径为0.4 m的圆形轨道上自静止开始作匀角加速转动,其角加速度为
x
=
2t 2
+
1 2
t3
+
c2
由题知 t = 0 , x0 = 5 ,∴ c2 = 5

x = 2t 2 + 1 t 3 + 5

大学物理第三版答案__赵近芳

大学物理第三版答案__赵近芳

大学物理第三版答案__赵近芳(共74页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习题解答 习题一1-1 |r∆|与r ∆ 有无不同t d d r 和t d d r 有无不同 t d d v 和td d v 有无不同其不同在哪里试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;(2)t d d r 是速度的模,即td d r==v t s d d . trd d 只是速度在径向上的分量. ∵有rr ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d rrr += 式中trd d 就是速度径向上的分量, ∴trt d d d d 与r 不同如题1-1图所示. 题1-1图(3)t d d v 表示加速度的模,即t va d d=,t v d d 是加速度a 在切向上的分量.∵有ττ(v =v 表轨道节线方向单位矢),所以tv t v t v d d d d d d ττ += 式中dt dv就是加速度的切向分量.(tt r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论)1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t r d d ,及a =22d d tr而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确为什么两者差别何在解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jty i t xt r a jty i t x t r v222222d d d d d d d d d d d d +==+==∴ 故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v yxy x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a tr v ==其二,可能是将22d d d d trt r 与误作速度与加速度的模。

大学物理学规范标准答案(北京邮电大学第3版)赵近芳等编著

大学物理学规范标准答案(北京邮电大学第3版)赵近芳等编著

大学物理学(北邮第三版) 习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r ϖϖ-=∆; (2)t d d r 是速度的模,即t d d r ==v t sd d .t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中t rd d 就是速度径向上的分量, ∴t r td d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d ϖϖ=,t v d d 是加速度a 在切向上的分量. ∵有ττϖϖ(v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττϖϖϖ+=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τϖϖΘ与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r ϖϖϖ+=,jt y i t x t r a jt y i t x t r v ϖϖϖϖϖϖϖϖ222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dtdr (B)dt r d (C)dt r d ||(D)22)()(dtdydt dx + [答案:D] (2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。

[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)t R t R ππ2,2 (B) t R π2,0 (C) 0,0 (D) 0,2tRπ [答案:B] 1.2填空题(1) 一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。

[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。

[答案: 23m·s -1 ](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V ,一人相对于甲板以速度3V 行走。

如人相对于岸静止,则1V 、2V 和3V 的关系是 。

[答案: 0321=++V V V ] 1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状;(2) 物体的内部结构; (3) 所研究问题的性质。

解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。

1.4 下面几个质点运动学方程,哪个是匀变速直线运动?(1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。

给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。

(x 单位为m ,t 单位为s )解:匀变速直线运动即加速度为不等于零的常数时的运动。

加速度又是位移对时间的两阶导数。

于是可得(3)为匀变速直线运动。

其速度和加速度表达式分别为 22484dxv t dtd x a dt==+==t=3s 时的速度和加速度分别为v =20m/s ,a =4m/s 2。

因加速度为正所以是加速的。

1.5 在以下几种运动中,质点的切向加速度、法向加速度以及加速度哪些为零哪些不为零?(1) 匀速直线运动;(2) 匀速曲线运动;(3) 变速直线运动;(4) 变速曲线运动。

解:(1) 质点作匀速直线运动时,其切向加速度、法向加速度及加速度均为零; (2) 质点作匀速曲线运动时,其切向加速度为零,法向加速度和加速度均不为零; (3) 质点作变速直线运动时,其法向加速度为零,切向加速度和加速度均不为零; (4) 质点作变速曲线运动时,其切向加速度、法向加速度及加速度均不为零。

1.6 |r ∆|与r ∆ 有无不同?t d d r 和d d r t 有无不同? t d d v 和td d v 有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆; (2)t d d r 是速度的模,即td d r==v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d rrr += 式中trd d 就是速度在径向上的分量, ∴trt d d d d 与r 不同如题1.6图所示.题1.6图(3)t d d v 表示加速度的模,即tva d d=,t v d d 是加速度a 在切向上的分量.∵有ττ(v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττ += 式中dt dv就是加速度的切向分量. (tt r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论)1.7 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t r d d 及a =22d d tr 而求得结果;又有人先计算速度和加速度的v =22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x ,a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jty i t xt r a jty i t x t r v222222d d d d d d d d d d d d +==+==∴ 故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v yxy x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a trv ==其二,可能是将22d d d d trt r 与误作速度与加速度的模。

在1.6题中已说明t r d d 不是速度的模,而只是速度在径向上的分量,同样,22d d tr也不是加速度的模,它只是加速度在径向分量中的一部分⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=222d d d d t r t r a θ径。

或者概括性地说,前一种方法只考虑了位矢r 在径向(即量值)方面随时间的变化率,而没有考虑位矢r及速度v 的方向随时间的变化率对速度、加速度的贡献。

1.8 一质点在xOy 平面上运动,运动方程为 x =3t +5, y =21t 2+3t -4. 式中t 以 s 计,x ,y 以m 计.(1)以时间t 为变量,写出质点位置矢量的表示式;(2)求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算t =0 s 时刻到t =4s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1) j t t i t r )4321()53(2-+++=m(2)将1=t ,2=t 代入上式即有 j i r5.081-= m 2114r i j =+m213 4.5r r r i j ∆=-=+m(3)∵ 0454,1716r i j r i j =-=+ ∴ 104s m 534201204-⋅+=+=--=∆∆=j i j i r r t r v(4) 1s m )3(3d d -⋅++==j t i tr v 则 j i v 734+= 1s m -⋅(5)∵ j i v j i v73,3340+=+= 24041m s 44v v v j a j t --∆====⋅∆(6) 2s m 1d d -⋅==j tv a这说明该点只有y 方向的加速度,且为恒量。

1.9 质点沿x 轴运动,其加速度和位置的关系为 a =2+62x ,a 的单位为2s m -⋅,x 的单位为 m. 质点在x =0处,速度为101s m -⋅,试求质点在任何坐标处的速度值. 解: ∵ xv v tx x v tv a d d d d d d d d === 分离变量: 2d (26)d v v adx x x ==+两边积分得 c x x v ++=322221 由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v1.10 已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 m ,v =0,求该质点在t =10s 时的速度和位置. 解:∵ t tva 34d d +==分离变量,得 t t v d )34(d += 积分,得 12234c t t v ++= 由题知,0=t ,00=v ,∴01=c 故 2234t t v +=又因为 2234d d t t t x v +== 分离变量, t t t x d )234(d 2+= 积分得 232212c t t x ++= 由题知 0=t ,50=x ,∴52=c 故 521232++=t t x所以s 10=t 时 m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v1.11 一质点沿半径为1 m 的圆周运动,运动方程为 θ=2+33t ,式中θ以弧度计,t 以秒计,求:(1) t =2 s 时,质点的切向和法向加速度;(2)当加速度的方向和半径成45°角时,其角位移是多少?解: t tt t 18d d ,9d d 2====ωβθω (1)s 2=t 时, 2s m 362181-⋅=⨯⨯==βτR a2222s m 1296)29(1-⋅=⨯⨯==ωR a n(2)当加速度方向与半径成ο45角时,有145tan ==︒na a τ即 βωR R =2 亦即 t t 18)9(22= 则解得 923=t 于是角位移为 322323 2.67rad 9t θ=+=+⨯= 1.12 质点沿半径为R 的圆周按s =2021bt t v -的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点的加速度;(2) t 为何值时,加速度在数值上等于b .解:(1) bt v t s v -==0d d Rbt v R va bt va n 202)(d d -==-==τ 则 240222)(Rbt v b a a a n-+=+=τ 加速度与半径的夹角为 20)(arctanbt v Rba a n --==τϕ (2)由题意应有 2402)(Rbt v b b a -+== 即 0)(,)(402422=-⇒-+=bt v R bt v b b ∴当bv t 0=时,b a = 1.13 飞轮半径为0.4 mβ= 0.2 rad ·2s -,求t =2s时边缘解:当s 2=t 时,4.022.0=⨯==t βω 1s rad -⋅则16.04.04.0=⨯==ωR v 1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅ 08.02.04.0=⨯==βτR a 2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n1.14 一船以速率1v =30km ·h -1沿直线向东行驶,另一小艇在其前方以速率2v =40km ·h -1沿直线向北行驶,问在船上看小艇的速度为多少?在艇上看船的速度又为多少?解:(1)大船看小艇,则有1221v v v-=,依题意作速度矢量图如题1.14图(a)题1.14图由图可知 1222121h km 50-⋅=+=v v v方向北偏西 ︒===87.3643arctan arctan21v v θ (2)小艇看大船,则有2112v v v-=,依题意作出速度矢量图如题1.14图(b),同上法,得5012=v 1h km -⋅方向南偏东o87.36.习题22.1 选择题(1) 一质点作匀速率圆周运动时,(A)它的动量不变,对圆心的角动量也不变。

相关文档
最新文档