【强】第5章 机械能守恒定律

合集下载

高考物理一轮复习 第5章 机械能及其守恒律 第4节 功能关系 能量守恒律

高考物理一轮复习 第5章 机械能及其守恒律 第4节 功能关系 能量守恒律

取夺市安慰阳光实验学校第4节功能关系能量守恒定律知识点1 功能关系1.内容(1)功是能量转化的量度,即做了多少功就有多少能量发生了转化.(2)做功的过程一定伴随着能量的转化,而且能量的转化必须通过做功来实现.2.做功对应变化的能量形式(1)合外力的功等于物体的动能的变化.(2)重力做功等于物体重力势能的变化.(3)弹簧弹力做功等于弹性势能的变化.(4)除重力和系统内弹力以外的力做功等于物体机械能的变化.知识点2 能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,在转化和转移的过程中,能量的总量保持不变.2.适用范围能量守恒定律是贯穿物理学的基本规律,是各种自然现象中普遍适应的一条规律.3.表达式(1)E初=E末,初状态各种能量的总和等于末状态各种能量的总和.(2)ΔE增=ΔE减,增加的那些能量的增加量等于减少的那些能量的减少量.1.正误判断(1)做功的过程一定会有能量转化.(√)(2)力对物体做了多少功,物体就有多少能.(×)(3)力对物体做功,物体的总能量一定增加.(×)(4)能量在转化或转移的过程中,其总量会不断减少.(×)(5)能量的转化和转移具有方向性,且现在可利用的能源有限,故必须节约能源.(√)(6)滑动摩擦力做功时,一定会引起能量的转化.(√)2.[功能关系的理解]自然现象中蕴藏着许多物理知识,如图5­4­1所示为一个盛水袋,某人从侧面缓慢推袋壁使它变形,则水的势能( )图5­4­1A.增大B.变小C.不变D.不能确定A[人缓慢推水袋,对水袋做正功,由功能关系可知,水的重力势能一定增加,A正确.]3.[摩擦生热的理解]如图5­4­2所示,木块A放在木板B的左端上方,用水平恒力F将A拉到B的右端,第一次将B固定在地面上,F做功W1,生热Q1;第二次让B在光滑水平面可自由滑动,F做功W2,生热Q2,则下列关系中正确的是( )【:92492233】图5­4­2A. W1<W2,Q1=Q2B.W1=W2,Q1=Q2C.W1<W2,Q1<Q2D.W1=W2,Q1<Q2A[设木板B长s,木块A从木板B左端滑到右端克服摩擦力所做的功W =F f s,因为木板B不固定时木块A的位移要比木板B固定时长,所以W1<W2;摩擦产生的热量Q=F f l相对,两次都从木块B左端滑到右端,相对位移相等,所以Q1=Q2,故选A.]4.[几种常见的功能关系应用](多选)悬崖跳水是一项极具挑战性的极限运动,需要运动员具有非凡的胆量和过硬的技术.跳水运动员进入水中后受到水的阻力而做减速运动,设质量为m的运动员刚入水时的速度为v,水对他的阻力大小恒为F,那么在他减速下降深度为h的过程中,下列说法正确的是(g为当地的重力加速度)( )A.他的动能减少了(F-mg)hB.他的重力势能减少了mgh -12mv2C.他的机械能减少了FhD.他的机械能减少了mghAC[合力做的功等于动能的变化,合力做的功为(F-mg)h,A正确;重力做的功等于重力势能的变化,故重力势能减小了mgh,B错误;重力以外的力做的功等于机械能的变化,故机械能减少了Fh,C正确,D错误.]对功能关系的理解及应用1(1)做功的过程是能量转化的过程.不同形式的能量发生相互转化是通过做功来实现的.(2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数量上相等.2.几种常见功能关系的对比各种力做功对应能的变化定量关系合力的功动能变化合力对物体做功等于物体动能的增量W合=E k2-E k1重力的功重力势能变化重力做正功,重力势能减少,重力做负功,重力势能增加,且W G=-ΔE p=E p1-E p2弹簧弹力的功弹性势能变化弹力做正功,弹性势能减少,弹力做负功,弹性1.(多选)(2017·枣庄模拟)如图5­4­3所示,取一块长为L的表面粗糙的木板,第一次将其左端垫高,让一小物块从板左端的A点以初速度v0沿板下滑,滑到板右端的B点时速度为v1;第二次保持板右端位置不变,将板放置水平,让同样的小物块从A点正下方的C点也以初速度v0向右滑动,滑到B点时的速度为v2.下列说法正确的是( )图5­4­3A.v1一定大于v0B.v1一定大于v2C.第一次的加速度可能比第二次的加速度小D.两个过程中物体损失的机械能相同BCD[物块向下滑动的过程中受到重力、支持力和摩擦力的作用,若重力向下的分力大于摩擦力,则物块做加速运动,若重力向下的分力小于摩擦力,则物块做减速运动.故A错误;斜面的倾角为θ时,物块受到滑动摩擦力:f1=μmg cos θ,物块克服摩擦力做功W1=f1L=μmg cos θ·L.板水平时物块克服摩擦力做功:W2=μmg·L cos θ=W1.两次克服摩擦力做的功相等,所以两个过程中物体损失的机械能相同;第一次有重力做正功.所以由动能定理可知第一次的动能一定比第二次的动能大,v1一定大于v2,故B、D正确.物块向下滑动的过程中受到重力、支持力和摩擦力的作用,若重力向下的分力大于摩擦力,则:a1=mg sin θ-fm,板水平时运动的过程中a2=fm,所以第一次的加速度可能比第二次的加速度小,故C正确.]2.(多选)(2017·青岛模拟)如图5­4­4所示,一根原长为L的轻弹簧,下端固定在水平地面上,一个质量为m的小球,在弹簧的正上方从距地面高度为H处由静止下落压缩弹簧.若弹簧的最大压缩量为x,小球下落过程受到的空气阻力恒为F f,则小球从开始下落至最低点的过程( )【:92492234】图5­4­4A.小球动能的增量为零B.小球重力势能的增量为mg(H+x-L)C.弹簧弹性势能的增量为(mg-F f)(H+x-L)D.系统机械能减小F f HAC[小球下落的整个过程中,开始时速度为零,结束时速度也为零,所以小球动能的增量为0,故A正确;小球下落的整个过程中,重力做功W G=mgh=mg(H+x-L),根据重力做功量度重力势能的变化W G=-ΔE p得:小球重力势能的增量为-mg(H+x-L),故B错误;根据动能定理得:W G+W f+W弹=0-0=0,所以W弹=-(mg-F f)(H+x-L),根据弹簧弹力做功量度弹性势能的变化W弹=-ΔE p得:弹簧弹性势能的增量为(mg-F f)(H+x-L),故C正确;系统机械能的减少等于重力、弹力以外的力做的功,所以小球从开始下落至最低点的过程,克服阻力做的功为:F f(H+x-L),所以系统机械能减小为:F f(H+x-L),故D 错误.]功能关系的应用技巧1.在应用功能关系解决具体问题的过程中,若只涉及动能的变化用动能定理分析,W总=ΔE k.2.只涉及重力势能的变化用重力做功与重力势能变化的关系分析,即W G =-ΔE p.3.只涉及机械能变化用除重力和弹力之外的力做功与机械能变化的关系分析,即W其他=ΔE.4.只涉及电势能的变化用电场力做功与电势能变化的关系分析,即W电=-ΔE p.对能量守恒定律的理解及应用1(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等.(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.2.能量转化问题的解题思路(1)当涉及滑动摩擦力做功,机械能不守恒时,一般应用能的转化和守恒定律.(2)解题时,首先确定初末状态,然后分析状态变化过程中哪种形式的能量减少,哪种形式的能量增加,求出减少的能量总和ΔE减和增加的能量总和ΔE 增,最后由ΔE减=ΔE增列式求解.[多维探究]●考向1 涉及弹簧的能量守恒定律问题1.如图5­4­5所示,两物块A、B通过一轻质弹簧相连,置于光滑的水平面上,开始时A和B均静止.现同时对A、B施加等大反向的水平恒力F1和F2,使两物块开始运动,运动过程中弹簧形变不超过其弹性限度.在两物块开始运动以后的整个过程中,对A、B和弹簧组成的系统,下列说法正确的是( )图5­4­5A.由于F1、F2等大反向,系统机械能守恒B.当弹簧弹力与F1、F2大小相等时,A、B两物块的动能最大C.当弹簧伸长量达到最大后,A、B两物块将保持静止状态D.在整个过程中系统机械能不断增加B[在弹簧一直拉伸的时间内,由于F1与A的速度方向均向左而做正功,F2与B的速度方向均向右而做正功,即F1、F2做的总功大于零,系统机械能不守恒,选项A错误;当弹簧对A的弹力与F1平衡时A的动能最大,此时弹簧对B的弹力也与F2平衡,B的动能也最大,选项B正确;弹簧伸长量达到最大时,两物块速度为零,弹簧弹力大于F1、F2,之后两物块将反向运动而不会保持静止状态,F1、F2对系统做负功,系统机械能减少,选项C、D均错误.]2.如图5­4­6所示,固定斜面的倾角θ=30°,物体A与斜面之间的动摩擦因数μ=32,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C点.用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A和B,滑轮右侧绳子与斜面平行,A的质量为2m,B的质量为m,初始时物体A到C点的距离为L.现给A、B一初速度v0>gL,使A开始沿斜面向下运动,B向上运动,物体A将弹簧压缩到最短后又恰好能弹到C点.已知重力加速度为g,不计空气阻力,整个过程中,轻绳始终处于伸直状态,求:图5­4­6(1)物体A向下运动刚到C点时的速度;(2)弹簧的最大压缩量;(3)弹簧的最大弹性势能.【:92492235】【解析】(1)A与斜面间的滑动摩擦力f=2μmg cos θ,物体从A向下运动到C点的过程中,根据能量守恒定律可得:2mgL sin θ+12·3mv20=12·3mv2+mgL+fL解得v=v20-gL.(2)从物体A接触弹簧,将弹簧压缩到最短后又恰回到C点,对系统应用动能定理-f·2x=0-12×3mv2解得x=v202g-L2.(3)弹簧从压缩到最短到恰好能弹到C点的过程中,对系统根据能量守恒定律可得:E p+mgx=2mgx sin θ+fx所以E p=fx=3mv204-3mgL4.【答案】(1)v20-gL(2)v202g-L2(3)3mv204-3mgL4●考向2 能量守恒定律与图象的综合应用3.将小球以10 m/s 的初速度从地面竖直向上抛出,取地面为零势能面,小球在上升过程中的动能E k 、重力势能E p 与上升高度h 间的关系分别如图5­4­7中两直线所示.g 取10 m/s 2,下列说法正确的是( )图5­4­7A .小球的质量为0.2 kgB .小球受到的阻力(不包括重力)大小为0.20 NC .小球动能与重力势能相等时的高度为2013 mD .小球上升到2 m 时,动能与重力势能之差为0.5 JD [在最高点,E p =mgh 得m =0.1 kg ,A 项错误;由除重力以外其他力做功E 其=ΔE 可知:-fh =E 高-E 低,E 为机械能,解得f =0.25 N ,B 项错误;设小球动能和重力势能相等时的高度为H ,此时有mgH =12mv 2,由动能定理得:-fH -mgH =12mv 2-12mv 20,解得H =209 m ,故C 项错;当上升h ′=2 m 时,由动能定理得:-fh ′-mgh ′=E k2-12mv 20,解得E k2=2.5 J ,E p2=mgh ′=2 J ,所以动能与重力势能之差为0.5 J ,故D 项正确.]摩擦力做功与能量的转化关系1.(1)从功的角度看,一对滑动摩擦力对系统做的功等于系统内能的增加量. (2)从能量的角度看,是其他形式能量的减少量等于系统内能的增加量. 2.两种摩擦力做功情况比较静摩擦力滑动摩擦力不同点能量的转化方面只有能量的转移,而没有能量的转化既有能量的转移,又有能量的转化一对摩擦力的总功方面一对静摩擦力所做功的代数和等于零一对滑动摩擦力所做功的代数和不为零,总功W =-F f ·l相对,产生的内能Q =F f ·l 相对相同点正功、负功、不做功方面两种摩擦力对物体可以做正功、负功,还可以不做功[电动机的带动下,始终保持v 0=2 m/s 的速率运行,现把一质量为m =10 kg 的工件(可看做质点)轻轻放在皮带的底端,经过时间1.9 s ,工件被传送到h =1.5 m 的高处,g 取10 m/s 2,求:图 5-4-8(1)工件与传送带间的动摩擦因数; (2)电动机由于传送工件多消耗的电能. 【自主思考】(1)1.9 s 内工件是否一直加速?应如何判断?提示:若工件一直匀加速,由v m 2×t =hsin θ可得:工件的最大速度v m =61.9m/s>v 0,故工件在1.9 s 内应先匀加速运动再匀速运动.(2)工件在上升过程中其所受的摩擦力是否变化? 提示:变化,先是滑动摩擦力,后是静摩擦力.(3)电动机传送工件的过程中多消耗的电能转化成了哪几种能量? 提示:工件的动能、重力势能及因摩擦力做功产生的热量三部分. 【解析】 (1)由题图可知,皮带长x =hsin θ=3 m .工件速度达v 0前,做匀加速运动的位移x 1=v t 1=v 02t 1匀速运动的位移为x -x 1=v 0(t -t 1) 解得加速运动的时间t 1=0.8 s 加速运动的位移x 1=0.8 m所以加速度a =v 0t 1=2.5 m/s 2由牛顿第二定律有:μmg cos θ-mg sin θ=ma解得:μ=32.(2)从能量守恒的观点,显然电动机多消耗的电能用于增加工件的动能、势能以及克服传送带与工件之间发生相对位移时摩擦力做功产生的热量.在时间t 1内,皮带运动的位移x 皮=v 0t 1=1.6 m在时间t 1内,工件相对皮带的位移x 相=x 皮-x 1=0.8 m在时间t 1内,摩擦生热Q =μmg cos θ·x 相=60 J工件获得的动能E k =12mv 20=20 J工件增加的势能E p =mgh =150 J电动机多消耗的电能W =Q +E k +E p =230 J.【答案】 (1)32 (2)230 J[母题迁移]●迁移1 水平传送带问题1.如图5­4­9所示,质量为m 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v 匀速运动,物体与传送带间的动摩擦因数为μ,物体过一会儿能保持与传送带相对静止,对于物体从静止释放到相对静止这一过程中,下列说法正确的是( )【:92492236】 图5­4­9A .电动机做的功为12mv 2B .摩擦力对物体做的功为mv 2C .传送带克服摩擦力做的功为12mv 2D .电动机增加的功率为μmgvD [由能量守恒可知,电动机做的功等于物体获得的动能和由于摩擦而产生的内能,选项A 错误;对物体受力分析知,仅有摩擦力对物体做功,由动能定理知,其大小应为12mv 2,选项B 错误;传送带克服摩擦力做功等于摩擦力与传送带对地位移的乘积,可知这个位移是物体对地位移的两倍,即W =mv 2,选项C 错误;由功率公式知电动机增加的功率为μmgv ,选项D 正确.]●迁移2 倾斜传送带 逆时针转动 2.(多选)(2017·太原模拟)如图5­4­10所示,与水平面夹角为θ=37°的传送带以恒定速率v =2 m/s沿逆时针方向运动.将质量为m =1 kg 的物块静置在传送带上的A 处,经过1.2 s 到达传送带的B 处.已知物块与传送带间的动摩擦因数为μ=0.5,其他摩擦不计,物块可视为质点,重力加速度g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.下列对物块从传送带A 处运动到B 处过程的相关说法正确的是( )【:92492237】图5­4­10A .物块动能增加2 JB .物块机械能减少11.2 JC .物块与传送带因摩擦产生的热量为4.8 JD .物块对传送带做的功为-12.8 JBC [由题意可知μ<tan 37°,因而物块与传送带速度相同后仍然要加速运动.物块与传送带速度相同前,由牛顿第二定律有mg (sin θ+μcos θ)=ma 1,v =a 1t 1,x 1=12a 1t 21, 解得a 1=10 m/s 2,t 1=0.2 s ,x 1=0.2 m ,物块与传送带速度相同后,由牛顿第二定律有mg (sin θ-μcos θ)=ma 2,v ′=v +a 2t 2,x 2=vt 2+12a 2t 22,而t 1+t 2=1.2 s ,解得a 2=2 m/s 2,v ′=4 m/s ,x 2=3 m ,物块到达B 处时的动能为E k =12mv ′2=8 J ,选项A 错误;由于传送带对物块的摩擦力做功,物块机械能变化,摩擦力做功为W f =μmgx 1cos θ-μmgx 2cos θ=-11.2 J ,故机械能减少11.2 J ,选项B 正确;物块与传送带因摩擦产生的热量为Q =μmg (vt 1-x 1+x 2-vt 2)cos θ=4.8 J ,选项C 正确;物块对传送带做的功为W =-μmgvt 1cos θ+μmgvt 2cos θ=6.4 J ,选项D 错误.]1.水平传送带:共速后不受摩擦力,不再有能量转化.倾斜传送带:共速后仍有静摩擦力,仍有能量转移.2.滑动摩擦力做功,其他形式的能量转化为内能;静摩擦力做功,不产生内能.3.公式Q=F f·l相对中l相对为两接触物体间的相对位移,若物体在传送带上做往复运动时,则l相对为总的相对路程.。

第五章 机械能及其守恒定律5-2(新课标复习资料)

第五章 机械能及其守恒定律5-2(新课标复习资料)

限 时 规 范 特 训
必修二
第五章 机械能及其守恒定律
金版教程
基 础 知 识 梳 理
高三物理
动能
运动 1.定义:物体由于运动而具有的能.
1 2 2.公式:Ek= mv 2. 2 3.单位:J,1 J=1 N· m=1 kg· 2/s2. m 4.矢标性:动能是标量,只有正值. 标量
随 堂 针 对 训 练
限 时 规 范 特 训 随 堂 针 对 训 练
考 技 案 例 导 析
易 错 易 混 分 析
必修二
第五章 机械能及其守恒定律
பைடு நூலகம்
金版教程
基 础 知 识 梳 理
高三物理
例1 如图是某中学科技小组制 作的利用太阳能驱动小车的装置.当 太阳光照射到小车上方的光电板时, 光电板中产生的电流经电动机带动小 车前进.若小车在平直的水泥路上从静止开始加速行驶, 经过时间t前进距离s,速度达到最大值vm,设这一过程中 电动机的功率恒为P,小车所受阻力恒为F,那么这段时 间内电动机所做的功为( Fs A. 2
易 错 易 混 分 析
金版教程
基 础 知 识 梳 理
高三物理
得 f=m(g-a)=80×(10-8)N=160 N (2)从图中估算得出运动员在 14 s 内下落了 h=39.5×2×2 m=158 m
随 堂 针 对 训 练
考 技 案 例 导 析
1 2 根据动能定理,有 mgh-Wf= mv 2 1 2 所以有 Wf=mgh- mv 2 1 =(80×10×158- ×80×62) J=1.25×105 J 2
必修二
第五章 机械能及其守恒定律
限 时 规 范 特 训 随 堂 针 对 训 练
考 技 案 例 导 析

第五章 机械能守恒定律

第五章  机械能守恒定律

第7章 机械能守恒定律复习学案考点一 功的分析与计算1.功的正负(1)0≤α<90°,力对物体做正功.(2)90°<α≤180°,力对物体做负功,或者说物体克服这个力做了功.(3)α=90°,力对物体不做功.2.功的计算:W =Fl cos_α(1)α是力与位移方向之间的夹角,l 为物体对地的位移.(2)该公式只适用于恒力做功.(3)功是标(填“标”或“矢”)量.1. [正、负功的判断 ]如图2所示,质量为m 的物体置于倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,在外力作用下,斜面以加速度a 沿水平方向向左做匀加速运动,运动中物体m 与斜面体相对静止.则关于斜面对m 的支持力和摩擦力的下列说法中错误的是( )A .支持力一定做正功B .摩擦力一定做正功C .摩擦力可能不做功D .摩擦力可能做负功2. [变力功、合力的功的计算]如图3所示,长为L 的木板水平放置,在木板的A 端放置一个质量为m 的小物块,现缓慢地抬高A 端,使木板以左端为轴转动,当木板转到与水平面的夹角为α时小物块开始滑动,此时停止转动木板,小物块滑到底端的速度为v ,则在整个过程中,下列说法不正确的是( )A .木板对小物块做功为12m v 2 B .B .摩擦力对小物块做功为mgL sin αC .支持力对小物块做功为mgL sin αD .滑动摩擦力对小物块做功为12m v 2-mgL sin α考点二 功率的计算1.公式P =W t和P =F v 的区别 P =W t是功率的定义式,P =F v 是功率的计算式. 2.平均功率的计算方法(1)利用P =W t. (2)利用P =F ·v cos α,其中v 为物体运动的平均速度. 3.瞬时功率的计算方法(1)利用公式P =F v cos α,其中v 为t 时刻的瞬时速度.(2)P =F ·v F ,其中v F 为物体的速度v 在力F 方向上的分速度.(3)P =F v ·v ,其中F v 为物体受到的外力F 在速度v 方向上的分力.3. [对瞬时功率和平均功率的理解]把A 、B 两小球在离地面同一高度处以相同大小的初速度v 0分别沿水平方向和竖直方向抛出,不计空气阻力,如图5所示,则下列说法正确的是( )A .两小球落地时速度相同B .两小球落地时,重力的瞬时功率相同C .从开始运动至落地,重力对两小球做的功相同D .从开始运动至落地,重力对两小球做功的平均功率相同4. [P =Fv 公式的应用]水平面上静止放置一质量为m =0.2 kg 的物块,固定在同一水平面上的小型电动机通过水平细线牵引物块,使物块由静止开始做匀加速直线运动,2秒末达到额定功率,其v -t 图线如图6所示,物块与水平面间的动摩擦因数为μ=0.1,g =10 m/s 2,电动机与物块间的距离足够长.求:(1)物块做匀加速直线运动时受到的牵引力大小;(2)电动机的额定功率;(3)物块在电动机牵引下,最终能达到的最大速度.考点三 动能定理及其应用1.表达式:W =12m v 22-12m v 21=E k2-E k1. 2.理解:动能定理公式中等号表明了合外力做功与物体动能的变化具有等量代换关系.合外力做功是引起物体动能变化的原因.3.适用条件(1)动能定理既适用于直线运动,也适用于曲线运动.(2)既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以分阶段作用.4.应用技巧:若过程包含了几个运动性质不同的分过程,既可以分段考虑,也可以整个过程考虑.5. [对动能定理的理解]如图8所示,电梯质量为M ,在它的水平地板上放置一质量为m 的物体.电梯在钢索的拉力作用下竖直向上加速运动,当电梯的速度由v 1增加到v 2时,上升高度为H ,则在这个过程中,下列说法或表达式正确的是( )A .对物体,动能定理的表达式为WF N =12m v 22,其中W F N 为支持力的功 B .对物体,动能定理的表达式为W 合=0,其中W 合为合力的功C .对物体,动能定理的表达式为W F N -mgH =12m v 22-12m v 21D .对电梯,其所受合力做功为12M v 22-12M v 21 6.[动能定理的应用]如图9甲所示,一质量为m =1 kg 的物块静止在粗糙水平面上的A 点,从t =0时刻开始物块受到如图乙所示规律变化的水平力F 的作用并向右运动,第3 s 末物块运动到B 点时速度刚好为0,第5 s 末物块刚好回到A 点,已知物块与粗糙水平面间的动摩擦因数μ=0.2,求:(g =10 m/s 2)(1)A 与B 间的距离;(2)水平力F 在前5 s 内对物块做的功.考点四 机械能守恒的判断1.内容 在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,但机械能的总量保持不变.2.条件只有重力或弹力做功.3.判断方法(1)用定义判断:若物体动能、势能均不变,则机械能不变.若一个物体动能不变、重力势能变化,或重力势能不变、动能变化或动能和重力势能同时增加(减少),其机械能一定变化.(2)用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,虽受其他力,但其他力不做功,机械能守恒.(3)用能量转化来判断:若物体或系统中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体或系统机械能守恒.(4)对多个物体组成的系统,除考虑外力是否只有重力做功外,还要考虑系统内力做功,如有滑动摩擦力做功时,因摩擦生热,系统机械能将有损失.7.[守恒条件的应用]一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离.假定空气阻力可忽略,运动员可视为质点,下列说法正确的是( )A .运动员到达最低点前重力势能始终减小B .蹦极绳张紧后的下落过程中,弹性力做负功,弹性势能增加C .蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒D .蹦极过程中,重力势能的改变与重力势能零点的选取有关8. [机械能守恒定律的应用]如图2所示,劲度系数为k 的轻质弹簧,一端系在竖直放置的半径为R 的圆环顶点P ,另一端系一质量为m 的小球,小球穿在圆环上做无摩擦的运动.设开始时小球置于A 点,弹簧处于自然状态,当小球运动到最低点时速率为v ,对圆环恰好没有压力.下列分析正确的是( )A .小球过B 点时,弹簧的弹力为mg -m v 2RB .小球过B 点时,弹簧的弹力为mg +m v 22RC .从A 到B 的过程中,小球的机械能守恒D .从A 到B 的过程中,小球的机械能减少考点五 机械能守恒定律的应用机械能守恒的三种表达式1.守恒观点(1)表达式:E k1+E p1=E k2+E p2或E1=E2.(2)意义:系统初状态的机械能等于末状态的机械能.(3)注意:要先选取零势能参考平面,并且在整个过程中必须选取同一个零势能参考平面.2.转化观点(1)表达式:ΔE k=-ΔE p.(2)意义:系统的机械能守恒时,系统增加(或减少)的动能等于系统减少(或增加)的势能.3.转移观点(1)表达式:ΔE A增=ΔE B减.(2)意义:若系统由A、B两部分组成,当系统的机械能守恒时,则A部分机械能的增加量等于B 部分机械能的减少量.9.[机械能守恒定律的简单应用]如图4所示,表面光滑的固定斜面顶端安装一定滑轮,小物块A、B用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦).初始时刻,A、B处于同一高度并恰好处于静止状态.剪断轻绳后A下落,B沿斜面下滑,则从剪断轻绳到两物块着地,两物块()A.速率的变化量不同B.机械能的变化量不同C.重力势能的变化量相同D.重力做功的平均功率相同10.[综合问题的分析]如图5所示,在同一竖直平面内,一轻质弹簧一端固定,另一自由端恰好与水平线AB平齐,静止放在倾角为53°的光滑斜面上.一长为L=9 cm的轻质细绳一端固定在O 点,另一端系一质量为m=1 kg的小球,将细绳拉直水平,使小球在位置C由静止释放,小球到达最低点D时,细绳刚好被拉断.之后小球在运动过程中恰好沿斜面方向将弹簧压缩,最大压缩量为x=5 cm.(g=10 m/s2,sin 53°=0.8,cos 53°=0.6)求:(1)轻质细绳受到的拉力最大值;(2)D点到水平线AB的高度h;(3)轻质弹簧所获得的最大弹性势能E p.考点六 多物体机械能守恒问题11. [绳连接的系统机械能守恒]如图7,可视为质点的小球A 、B 用不可伸长的细软轻线连接,跨过固定在地面上、半径为R 的光滑圆柱,A 的质量为B 的两倍.当B 位于地面时,A 恰与圆柱轴心等高.将A 由静止释放,B 上升的最大高度是( )A .2R B.5R 3 C.4R 3 D.2R 312.[轻杆连接的系统机械能守恒]质量分别为m 和2m 的两个小球P 和Q ,中间用轻质杆固定连接,杆长为L ,在离P 球L 3处有一个光滑固定轴O ,如图8所示.现在把杆置于水平位置后自由释放,在Q 球顺时针摆动到最低位置时,求:(1)小球P 的速度大小;(2)在此过程中小球P 机械能的变化量.考点七 能量守恒定律及应用1.内容 能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.表达式ΔE减=ΔE增.3.基本思路(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等;(2)某个物体的能量减少,一定存在其他物体的能量增加且减少量和增加量一定相等.4.求解相对滑动物体的能量问题的方法(1)正确分析物体的运动过程,做好受力分析.(2)利用运动学公式,结合牛顿第二定律分析物体的速度关系及位移关系.(3)公式Q=F f·x相对中x相对为两接触物体间的相对位移,若物体在传送带上做往复运动时,则x相对为总的相对路程.13.如图4所示,在光滑水平地面上放置质量M=2 kg的长木板,木板上表面与固定的竖直弧形轨道相切.一质量m=1 kg的小滑块自A点沿弧面由静止滑下,A点距离长木板上表面高度h=0.6 m.滑块在木板上滑行t=1 s后,和木板一起以速度v=1 m/s做匀速运动,取g=10 m/s2.求:(1)滑块与木板间的摩擦力;(2)滑块沿弧面下滑过程中克服摩擦力做的功;(3)滑块相对木板滑行的距离.第7章 机械能守恒定律复习学案答案1.答案 B解析 支持力方向垂直斜面向上,故支持力一定做正功.而摩擦力是否存在需要讨论,若摩擦力恰好为零,物体只受重力和支持力,如图所示,此时加速度a =g tan θ,当a >g tan θ时,摩擦力沿斜面向下,摩擦力与位移夹角小于90°,则做正功;当a <g tan θ时,摩擦力沿斜面向上,摩擦力与位移夹角大于90°,则做负功.综上所述,B 是错误的.2. 答案 B解析 在抬高A 端的过程中,小物块受到的摩擦力为静摩擦力,其方向和小物块的运动方向时刻垂直,故在抬高阶段,摩擦力并不做功,这样在抬高小物块的过程中,由动能定理得:W F N +W G =0,即W F N -mgL sin α=0,所以W F N =mgL sin α.在小物块下滑的过程中,支持力不做功,滑动摩擦力和重力做功,由动能定理得:W G +W f =12m v 2,即W f =12m v 2-mgL sin α,B 错,C 、D 正确.在整个过程中,设木板对小物块做的功为W ,对小物块在整个过程由动能定理得W =12m v 2,A 正确. 3.答案 C4.答案 (1)0.28 N (2)0.224 W (3)1.12 m/s解析 (1)由题图知物块在匀加速阶段加速度大小a =Δv =0.4 m/s 2 物块受到的摩擦力大小F f =μmg设牵引力大小为F ,则有:F -F f =ma得F =0.28 N(2)当v =0.8 m/s 时,电动机达到额定功率,则P =F v =0.224 W(3)物块达到最大速度v m 时,此时物块所受的牵引力大小等于摩擦力大小,有F f =μmg ,P =F f v m解得v m =1.12 m/s.5.解析 电梯上升的过程中,对物体做功的有重力mg 、支持力F N ,这两个力的总功才等于物体动能的增量ΔE k =12m v 22-12m v 21,故A 、B 均错误,C 正确;对电梯,无论有几个力对它做功,由动能定理可知,其合力做的功一定等于其动能的增量,故D 正确.6. 答案 (1)4 m (2)24 J解析 (1)A 、B 间的距离与物块在后2 s 内的位移大小相等,在后2 s 内物块在水平恒力作用下由B 点匀加速运动到A 点,由牛顿第二定律知F -μmg =ma ,代入数据得a =2 m/s 2,所以A 与B 间的距离为x =12at 2=4 m. (2)前3 s 内物块所受力F 是变力,设整个过程中力F 做的功为W ,物块回到A 点时速度为v ,则v 2=2ax ,由动能定理知W -2μmgx =12m v 2,所以W =2μmgx +max =24 J. 7.答案 ABC解析 运动员到达最低点过程中,重力始终做正功,所以重力势能始终减少,A 项正确.蹦极绳张紧后的下落过程中,弹性力做负功,弹性势能增加,B 项正确.蹦极过程中,运动员、地球和蹦极绳所组成的系统,只有重力和弹力做功,所以机械能守恒,C 项正确.重力势能的改变与重力势能零点的选取无关,D 项错误.8. 答案 D解析 从A 到B 的过程中,小球和弹簧组成的系统机械能守恒,弹簧的弹性势能增大,小球的机械能减小;由于小球运动到最低点时速率为v ,对圆环恰好没有压力,根据牛顿第二定律,F 弹-mg =m v 2R ,即F 弹=mg +m v 2R,故只有选项D 正确. 9.答案 D解析 A 、B 开始时处于静止状态,对A :m A g =F T ①对B :F T =m B g sin θ②由①②得m A g =m B g sin θ即m A =m B sin θ③由机械能守恒知,mgh =12m v 2,所以v =2gh ,落地速率相同,故速率的变化量相同,A 项错误;剪断轻绳后,A 、B 均遵守机械能守恒定律,机械能没有变化,故B 项错误;由ΔE p =mgh ,因m不同,故ΔE p 不同,C 项错误;重力做功的功率P A =m A g v =m A g v 2=m A g 2gh 2,P B =m B g v sin θ=m B g 2gh 2sin θ,由③式m A =m B sin θ,得P A =P B ,D 项正确. 10.答案 (1)30 N (2)16 cm (3)2.9 J解析 (1)小球由C 运动到D ,由机械能守恒定律得: mgL =12m v 21解得v 1=2gL ① 在D 点,由牛顿第二定律得F T -mg =m v 21L② 由①②解得F T =30 N 由牛顿第三定律知细绳所能承受的最大拉力为30 N.(2)由D 到A ,小球做平抛运动v 2y =2gh ③ tan 53°=v y v 1④ 联立③④解得h =16 cm. (3)小球从C 点到将弹簧压缩至最短的过程中,小球与弹簧组成的系统机械能守恒,即E p =mg (L +h +x sin 53°),代入数据得:E p =2.9 J.11.答案 C解析 设A 球刚落地时两球速度大小为v ,根据机械能守恒定律得,2mgR -mgR =12(2m +m )v 2,解得v 2=23gR ,B 球继续上升的高度h =v 22g =R 3,B 球上升的最大高度为h +R =43R . 12.答案 (1)2gL 3 (2)增加49mgL 解析 (1)两球和杆组成的系统机械能守恒,设小球Q 摆到最低位置时P 球的速度为v ,由于P 、Q 两球的角速度相等,Q 球运动半径是P 球运动半径的两倍,故Q 球的速度为2v .由机械能守恒定律得2mg ·23L -mg ·13L =12m v 2+12·2m ·(2v )2,解得v =2gL 3. (2)小球P 机械能增加量ΔE =mg ·13L +12m v 2=49mgL 13.解析 (1)对木板受力分析F f =Ma 1 由运动学公式,有v =a 1t 解得F f =2 N.(2)对滑块受力分析-F f =ma 2 设滑块滑上木板时的初速度为v 0由公式v -v 0=a 2t 解得v 0=3 m/s滑块沿弧面下滑的过程,由动能定理得mgh -W f =12m v 20 W f =mgh -12m v 20=1.5 J. (3)t =1 s 内木板的位移x 1=12a 1t 2 此过程中滑块的位移 x 2=v 0t +12a 2t 2 故滑块相对木板滑行距离 L =x 2-x 1=1.5 m.答案 (1)2 N (2)1.5 J (3)1.5 m。

2025届物理《创新设计》一轮资料(配套PPT课件)第五章 机械能守恒定律 专题强化九 应用动能定理

2025届物理《创新设计》一轮资料(配套PPT课件)第五章 机械能守恒定律 专题强化九 应用动能定理
2.解题策略:此类问题多涉及滑动摩擦力或其他阻力做功,其做功特点与路程有 关,求解这类问题时若运用牛顿运动定律及运动学公式将非常繁琐,甚至无法 解出。由于动能定理只涉及物体的初、末状态而不计运动过程的细节,所以用 动能定理分析这类问题可使解题过程简化。
目录
研透核心考点
例 2 如图 3 所示,水平轨道 BC 的左端与固定的光滑竖直14圆轨道相切于 B 点, 右端与一倾角为 30°的光滑斜面轨道在 C 点平滑连接(即物体经过 C 点时速度 的大小不变),斜面顶端固定一轻质弹簧,一质量为 2 kg 的滑块从圆弧轨道的 顶端 A 点由静止释放,经水平轨道后滑上斜面并压缩弹簧,第一次可将弹簧压 缩至 D 点,已知光滑圆轨道的半径 R=0.45 m,水平轨道 BC 长为 0.4 m,滑块 与其间的动摩擦因数 μ=0.2,光滑斜面轨道上 CD 长为 0.6 m,g 取 10 m/s2。 求:
A级 基础对点练 1.(2024·陕西宝鸡高三期末)如图1所示,ABCD是一条长轨道,其中AB段是倾角
为θ的斜面,CD段是水平的,BC段是与AB和CD都相切的一小段圆弧,其长度 可以略去不计。一质量为m的滑块(可看作质点)在A点由静止释放,沿轨道滑下, 最后停在D点,A点和D点的位置如图所示。现用一方向始终与轨道平行的力推 滑块,使它缓慢地由D点推回到A点。滑块与轨道间的动摩擦因数为μ,重力加
目录
研透核心考点
答案 (1)0.4 (2)1.26 m/s (3)0.9 m
解析 (1)小物块速度达到最大时,加速度为零,则F-μmg-F弹=0 解得μ=0.4。 (2)设向右运动通过O点时的速度为v0,从O→B, 由动能定理得
-fsOB=0-12mv20
f=μmg=4 N
解得 v0= 1.6 m/s≈1.26 m/s。

高考物理一轮复习第五章实验五验证机械能守恒定律讲义

高考物理一轮复习第五章实验五验证机械能守恒定律讲义

验证机械能守恒定律一、实验目的验证机械能守恒定律。

二、实验器材铁架台(含铁夹)、打点计时器、学生电源(交流4~6 V)、纸带(数条)、复写纸、导线、毫米刻度尺、重物(带纸带夹)。

突破点(一) 实验原理与操作[例1] 在利用自由落体运动验证机械能守恒定律的实验中,电源的频率为50 Hz ,依次打出的点为0,1,2,3,4,…,n 。

则:(1)如用第2点到第6点之间的纸带来验证,必须直接测量的物理量为____________、____________、____________,必须计算出的物理量为____________、____________,验证的表达式为____________________。

(2)下列实验步骤操作合理的排列顺序是______(填写步骤前面的字母)。

A .将打点计时器竖直安装在铁架台上B .接通电源,再松开纸带,让重物自由下落C .取下纸带,更换新纸带(或将纸带翻个面)重新做实验D .将重物固定在纸带的一端,让纸带穿过打点计时器,用手提着纸带E .选择一条纸带,用刻度尺测出物体下落的高度h 1,h 2,h 3,…,h n ,计算出对应的瞬时速度v 1,v 2,v 3,…,v nF .分别算出12mv n 2和mgh n ,在实验误差允许的范围内看是否相等 [答案] (1)第2点到第6点之间的距离h 26第1点到第3点之间的距离h 13 第5点到第7点之间的距离h 57第2点的瞬时速度v 2 第6点的瞬时速度v 6mgh 26=12mv 62-12mv 22 (2)ADBCEF[由题引知·要点谨记]1.实验原理的理解[对应第1题] 1两种验证方法①利用起始点和第n 点计算。

代入gh n 和12v n 2,如果在实验误差允许的条件下,gh n =12v n 2,则能验证机械能守恒定律。

②任取两点计算A 、B ,测出h AB ,算出gh AB 。

b.算出12v B 2-12v A 2的值。

高考物理一轮复习第五章机械能4功能关系能量守恒定律课件

高考物理一轮复习第五章机械能4功能关系能量守恒定律课件

2021/4/17
高考物理一轮复习第五章机械能4功能关系能量
27
守恒定律课件
结束语
同学们,你们要相信梦想是价值的源泉,相信成 功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
考试加油。
2.功能关系的选用技巧: (1)若只涉及动能的变化,则首选动能定理分析。 (2)若只涉及重力势能的变化,则采用重力做功与重力势能的关系分析。 (3)若只涉及机械能变化,用除重力、系统内弹力之外的力做功与机械能变化的 关系分析。 (4)只涉及电势能的变化,用电场力与电势能变化关系分析。
【典例·通法悟道】 【典例1】 (多选)如图所示,楔形木块abc固定在水平面上,粗糙斜面ab和光滑 斜面bc与水平面的夹角相同,顶角b处安装一定滑轮。质量分别为M、m(M>m)的 滑块通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行。两滑块由静止释 放后,沿斜面做匀加速运动。若不计滑轮的质量和摩擦,在两滑块沿斜面运动的 过程中( ) A.两滑块组成的系统机械能守恒 B.重力对M做的功等于M动能的增加 C.轻绳对m做的功等于m机械能的增加 D.两滑块组成的系统机械能损失等于M克服摩擦力做的功
(1)0~1 s内,A、B的加速度大小aA、aB。 (2)B相对A滑行的最大距离x。 (3)0~4 s内,拉力做的功W。 (4)0~4 s内系统产生的摩擦热Q。
【解析】(1)在0~1 s内,A、B两物体分别做匀加速直线运动
根据牛顿第二定律得μmg=MaA F1-μmg=maB 代入数据得aA=2 m/s2,aB=4 m/s2。 (2)t1=1 s后,拉力F2=μmg,铁块B做匀速运动,速度大小为v1:木板A仍做匀 加速运动,又经过时间t2,速度与铁块B相等。 v1=aBt1 又v1=aA(t1+t2) 解得t2=1 s

2023年人教版高中物理复习第五章第3讲机械能守恒定律

2023年人教版高中物理复习第五章第3讲机械能守恒定律

第3讲机械能守恒定律【课程标准】1.理解重力势能,知道重力势能的变化与重力做功的关系。

定性了解弹性势能。

2.通过实验验证机械能守恒定律。

理解机械能守恒定律,体会守恒观念对认识物理规律的重要性。

3.能用机械能守恒定律分析生产生活中的有关问题。

【素养目标】物理观念:理解重力势能和弹力势能的概念,知道机械能守恒定律的内容。

科学思维:会分析机械能守恒的条件,能从机械能守恒的角度分析动力学问题。

一、重力势能与弹性势能重力势能弹性势能定义物体由于被举高而具有的能量发生弹性形变的物体的各部分之间,由于有弹力的相互作用而具有的势能大小E p=mgh,h是相对于参考平面的高度与弹簧的形变量x、劲度系数k有关,x、k越大,弹性势能就越大特点系统性:物体与地球所共有相对性:大小与参考平面的选取有关标矢性:标量,正、负表示大小—力做功的特点重力做功与路径无关,只与始末位置的高度差有关—力做功与势能变化的关系1.重力(弹力)对物体做正功,重力(弹性)势能减小;反之则增加;2.重力(弹力)对物体做的功等于重力(弹性)势能的减少量,即W=E p1-E p2=-ΔE p3.重力势能的变化量是绝对的,与参考平面的选取无关。

命题·生活情境蹦极是近些年来新兴的一项非常刺激的户外休闲活动。

跳跃者站在约40米以上(相当于10层楼)高度的桥梁、塔顶、高楼、吊车甚至热气球上,把一端固定的一根长长的橡皮绳绑在踝关节处,然后两臂伸开,双腿并拢,头朝下跳下去。

(1)跳跃者从开始跳下至第一次到最低点,经历哪些运动过程?(忽略空气阻力)提示:自由落体运动、加速度减小的加速运动、加速度增大的减速运动。

(2)在上述过程中哪些力做功?对应的能量怎么变化呢?提示:整个过程中重力做正功,跳跃者的重力势能减小;橡皮绳伸直后弹力做负功,弹性势能增大。

二、机械能守恒定律1.内容:在只有重力或弹力做功的物体系统内,动能与势能可以互相转化,而总的机械能保持不变。

第五章 机械能及其守恒定律第1讲 功和功率(一)

第五章 机械能及其守恒定律第1讲 功和功率(一)
时,钢索对物体拉力做的功为(不计空气阻力) ( )
A.mgh
B.mgh+mah
C.m(g—a)h
D.mah
4、放在粗糙水平地面上的物体,在10N的水平拉力作用下,以 6m/s的速度匀速移动4s,则拉力共做了________功,摩擦阻力对物 体做了________的功.
【例1】如图所示,小物块位于光滑斜面上,斜面位于光滑的 水平地面上.从地面上看,在小物块沿斜面下滑过程中,斜面对 小物块的作用力( ) A.垂直于接触面,做功为零 B.垂直于接触面,做功不为零 C.不垂直于接触面,做功为零 D.不垂直于接触面,做功不为零
方向的位移有关,而与其他力是否存在、是否做功无关。
(3)一对作用力和反作用力的做功问题:
①一对作用力和反作用力在同一段时间内做的总功可能为正、
可能为负,也可能为零。 ②一对相互作用的摩擦力做的总功可能为零(静摩擦力)、可能 为负(滑动摩擦力),但不可能为正。
【考点理解】
计算功的方法 (1)恒力做的功: 直接用W=Flcosα 计算。 (2)合外力做的功: 方法一:先求合外力F合,再用W合=F合lcosα 求功。
由静止下滑,开始下滑时离地面的高度为h,当物体滑至斜面底端
时重力的瞬时功率为 为 。 ;整个过程重力的平均功率
[3变式训练1] (2013·扬州模拟)如图所示,两个完全相同的小球
A、B,在同一高度处以相同大小的初速度v0分别水平抛出和竖直向
上抛出,下列说法正确的是 A.两小球落地时的速度相同 B.两小球落地时,重力的瞬时功率相同 C.从开始运动至落地,重力对两小球做功相同 D.从开始运动至落地,重力对两小球做功的平均功率相同 ( )
2、两个互相垂直的力F1和F2作用在同一物体上,使物体运动,

必修2 第五章 机械能机器守恒定律

必修2 第五章 机械能机器守恒定律

第一讲 功 功率 动能定理考点一 功的分析与计算【1】考点逐项排查(基础层)1.定义:一个物体受到力的作用,如果在力的方向上发生了一段位移,就说这个力对物体做了功.2.必要因素:力和物体在力的方向上发生的位移.3.物理意义:功是能量转化的量度.4.计算公式(1)当恒力F 的方向与位移l 的方向一致时,力对物体所做的功为W =Fl .(2)当恒力F 的方向与位移l 的方向成某一夹角α时,力F 对物体所做的功为W =Fl cos α,即力对物体所做的功,等于力的大小、位移的大小、力与位移夹角的余弦值这三者的乘积.5.功的正负(1)当0≤α<π2时,W >0,力对物体做正功. (2)当π2<α≤π时,W <0,力对物体做负功,或者说物体克服这个力做了功. (3)当α=π2时,W =0,力对物体不做功. [思维深化]判断下列说法是否正确.(1)只要物体受力且发生位移,则力对物体一定做功.( × )(2)如果一个力阻碍了物体的运动,则这个力一定对物体做负功.( √ )(3)摩擦力可能对物体做正功、负功,也可能不做功.( √ )(4)作用力做正功时,反作用力一定做负功.( × )【2】题组阶梯突破(应用层)1.[正、负功的判断]如图1所示,质量为m 的物体置于倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,在外力作用下,斜面以加速度a 沿水平方向向左做匀加速运动,运动中物体m 与斜面体相对静止.则关于斜面对m 的支持力和摩擦力的下列说法中错误的是( )图1A .支持力一定做正功B .摩擦力一定做正功C .摩擦力可能不做功D .摩擦力可能做负功答案 B解析 支持力方向垂直斜面向上,故支持力一定做正功.而摩擦力是否存在需要讨论,若摩擦力恰好为零,物体只受重力和支持力,如图所示,此时加速度a =g tan θ,当a >g tan θ时,摩擦力沿斜面向下,摩擦力与位移夹角小于90°,则做正功;当a <g tan θ时,摩擦力沿斜面向上,摩擦力与位移夹角大于90°,则做负功.综上所述,B 是错误的.2.[变力做功的计算](多选)如图2所示,摆球质量为m ,悬线的长为L ,把悬线拉到水平位置后放手.设在摆球从A 点运动到B 点的过程中空气阻力F 阻的大小不变,则下列说法正确的是( )图2A .重力做功为mgLB .绳的拉力做功为0C .空气阻力F 阻做功为-mgLD .空气阻力F 阻做功为-12F 阻πL 答案 ABD解析 小球下落过程中,重力做功为mgL ,A 正确;绳的拉力始终与速度方向垂直,拉力做功为0,B 正确;空气阻力F 阻大小不变,方向始终与速度方向相反,故空气阻力F 阻做功为-F 阻·12πL ,C 错误,D 正确. 3.[恒力做功的计算](2014·新课标Ⅱ·16)一物体静止在粗糙水平地面上.现用一大小为F 1的水平拉力拉动物体,经过一段时间后其速度变为v .若将水平拉力的大小改为F 2,物体从静止开始经过同样的时间后速度变为2v .对于上述两个过程,用W F 1、W F 2分别表示拉力F 1、F 2所做的功,W f1、W f2分别表示前后两次克服摩擦力所做的功,则( )A .W F 2>4W F 1,W f2>2W f1B .W F 2>4W F 1,W f2=2W f1C .W F 2<4W F 1,W f2=2W f1D .W F 2<4W F 1,W f2<2W f1答案 C解析 根据x =v +v 02t 得,两过程的位移关系x 1=12x 2,根据加速度的定义a =v -v 0t,得两过程的加速度关系为a 1=a 22.由于在相同的粗糙水平地面上运动,故两过程的摩擦力大小相等,即F f1=F f2=F f ,根据牛顿第二定律得,F 1-F f1=ma 1,F 2-F f2=ma 2,所以F 1=12F 2+12F f ,即F 1>F 22.根据功的计算公式W =Fl ,可知W f1=12W f2,W F 1>14W F 2,故选项C 正确,选项A 、B 、D 错误. 【方法提炼】功的计算方法1.恒力做功:2.变力做功:(1)用动能定理:W =12m v 22-12m v 21. (2)当变力的功率P 一定时,可用W =Pt 求功,如机车恒定功率启动时.(3)将变力做功转化为恒力做功:当力的大小不变,而方向始终与运动方向相同或相反时,这类力的功等于力和路程(不是位移)的乘积.如滑动摩擦力做功、空气阻力做功等.3.总功的计算:(1)先求物体所受的合外力,再求合外力的功;(2)先求每个力做的功,再求各功的代数和.考点二 功率的理解和计算【1】考点逐项排查(基础层)1.定义:功与完成这些功所用时间的比值.2.物理意义:描述力对物体做功的快慢.3.公式:(1)P =W t,P 为时间t 内的物体做功的快慢. (2)P =F v①v 为平均速度,则P 为平均功率.②v 为瞬时速度,则P 为瞬时功率.4.对公式P =F v 的几点认识:(1)公式P =F v 适用于力F 的方向与速度v 的方向在一条直线的情况.(2)功率是标量,只有大小,没有方向;只有正值,没有负值.(3)当力F 和速度v 不在同一直线上时,可以将力F 分解或者将速度v 分解.[思维深化]判断下列说法是否正确.(1)由P =W t,只要知道W 和t 就可求出任意时刻的功率.( × )(2)由P =F v ,既能求某一时刻的瞬时功率,也可以求平均功率.( √ )(3)由P =F v 知,随着汽车速度的增大,它的功率也可以无限制地增大.( × )(4)由P =F v 知,当汽车发动机功率一定时,牵引力与速度成反比.( √ )【2】题组阶梯突破(应用层)4.[合理近似解答实际问题]一个成年人以正常的速度骑自行车,受到的阻力为总重力的0.02倍,则成年人骑自行车行驶时的功率最接近于( )A .1 WB .10 WC .100 WD .1 000 W答案 C解析 设人和车的总质量为100 kg ,匀速行驶时的速率为5 m/s ,匀速行驶时的牵引力与阻力大小相等F =0.02mg =20 N ,则人骑自行车行驶时的功率为P =F v =100 W ,故C 正确.5.[应用P =F v 求瞬时功率](多选)一质量为1 kg 的质点静止于光滑水平面上,从t =0时刻开始,受到水平外力F 作用,如图3所示.下列判断正确的是()图3A .0~2 s 内外力的平均功率是4 WB .第2 s 内外力所做的功是4 JC .第2 s 末外力的瞬时功率最大D .第1 s 末与第2 s 末外力的瞬时功率之比为9∶4答案 AD解析 第1 s 末质点的速度v 1=F 1m t 1=31×1 m /s =3 m/s. 第2 s 末质点的速度v 2=v 1+F 2m t 2=(3+11×1) m /s =4 m/s. 则第2 s 内外力做功W 2=12m v 22-12m v 21=3.5 J 0~2 s 内外力的平均功率P =12m v 22t =0.5×1×422W =4 W. 选项A 正确,选项B 错误;第1 s 末外力的瞬时功率P 1=F 1v 1=3×3 W =9 W ,第2 s 末外力的瞬时功率P 2=F 2v 2=1×4 W =4 W ,故P 1∶P 2=9∶4.选项C 错误,选项D 正确.6.[机车运动中功率综合问题]一起重机的钢绳由静止开始匀加速提起质量为m 的重物,当重物的速度为v 1时,起重机的功率达到最大值P ,以后起重机保持该功率不变,继续提升重物,直到以最大速度v 2匀速上升,物体上升的高度为h ,则整个过程中,下列说法正确的是( )A .钢绳的最大拉力为P v 2B .钢绳的最大拉力为mgC .重物匀加速的末速度为P mgD .重物匀加速运动的加速度为P m v 1-g 答案 D解析 加速过程物体处于超重状态,钢绳拉力较大,匀速运动阶段钢绳的拉力为P v 2,故A 错误;加速过程重物处于超重状态,钢绳拉力大于重力,故B 错误;重物匀加速运动的末速度不是运动的最大速度,此时钢绳对重物的拉力大于其重力,故其速度小于P mg,故C 错误;重物匀加速运动的末速度为v 1,此时的拉力为F =P v 1,由牛顿第二定律得:a =F -mg m=P m v 1-g ,故D 正确. 7.[机车运动中功率综合问题](2015·新课标全国Ⅱ·17)一汽车在平直公路上行驶.从某时刻开始计时,发动机的功率P 随时间t 的变化如图4所示.假定汽车所受阻力的大小f 恒定不变.下列描述该汽车的速度v 随时间t 变化的图线中,可能正确的是( )图4答案 A解析 当汽车的功率为P 1时,汽车在运动过程中满足P 1=F 1v ,因为P 1不变,v 逐渐增大,所以牵引力F 1逐渐减小,由牛顿第二定律得F 1-f =ma 1,f 不变,所以汽车做加速度减小的加速运动,当F 1=f 时速度最大,且v m =P 1F 1=P 1f.当汽车的功率突变为P 2时,汽车的牵引力突增为F 2,汽车继续加速,由P 2=F 2v 可知F 2减小,又因F 2-f =ma 2,所以加速度逐渐减小,直到F 2=f 时,速度最大v m ′=P 2f,以后匀速运动.综合以上分析可知选项A 正确. 【规律总结】关于功率的理解和应用1.求解功率时应注意的“三个”问题(1)首先要明确所求功率是平均功率还是瞬时功率;(2)平均功率与一段时间(或过程)相对应,计算时应明确是哪个力在哪段时间(或过程)内做功的平均功率;(3)瞬时功率计算时应明确是哪个力在哪个时刻(或状态)的功率.2.机车启动中的功率问题(1)无论哪种启动过程,机车的最大速度都等于其匀速运动时的速度,即v m =P F min =P F 阻(式中F min 为最小牵引力,其值等于阻力F 阻).(2)机车以恒定加速度启动的运动过程中,匀加速过程结束时,功率最大,但速度不是最大,v =P F <v m =P F 阻. 考点三 动能定理及其应用【1】考点逐项排查(基础层)1.内容:在一个过程中合外力对物体所做的功,等于物体在这个过程中动能的变化量.2.表达式:W =12m v 22-12m v 21=E k2-E k1. 3.理解:动能定理公式中等号表明了合外力做功与物体动能的变化具有等量代换关系.合外力做功是引起物体动能变化的原因. 4.适用条件:(1)动能定理既适用于直线运动,也适用于曲线运动.(2)既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以分阶段作用.5.应用技巧:若过程包含了几个运动性质不同的分过程,既可以分段考虑,也可以整个过程考虑.【思维深化】判断下列说法是否正确.(1)一定质量的物体动能变化时,速度一定变化,但速度变化时,动能不一定变化.( √ )(2)动能不变的物体一定处于平衡状态.( × )(3)如果物体所受的合外力为零,那么合外力对物体做功一定为零.( √ )(4)物体在合外力作用下做变速运动时,动能一定变化.( × )(5)物体的动能不变,所受的合外力必定为零.( × )(6)做自由落体运动的物体,动能与时间的二次方成正比.( √ )【2】题组阶梯突破(应用层)8.[应用动能定理求变力的功]如图5所示,光滑斜面的顶端固定一弹簧,一小球向右滑行,并冲上固定在地面上的斜面.设小球在斜面最低点A 的速度为v ,压缩弹簧至C 点时弹簧最短,C 点距地面高度为h ,则小球从A 到C 的过程中弹簧弹力做功是( )图5A .mgh -12m v 2 B.12m v 2-mgh C .-mghD .-(mgh +12m v 2) 答案 A解析 小球从A 点运动到C 点的过程中,重力和弹簧的弹力对小球做负功,由于支持力与位移始终垂直,则支持力对小球不做功,由动能定理,可得W G +W F =0-12m v 2,重力做功为W G =-mgh ,则弹簧的弹力对小球做功为W F =mgh -12m v 2,所以正确选项为A. 9.[动能定理与图象的结合](多选)质量为1 kg 的物体静止在水平粗糙的地面上,在一水平外力F 的作用下运动,如图6甲所示,外力F 和物体克服摩擦力F f 做的功W 与物体位移x 的关系如图乙所示,重力加速度g 取10 m/s 2.下列分析正确的是( )图6A .物体与地面之间的动摩擦因数为0.2B .物体运动的位移为13 mC .物体在前3 m 运动过程中的加速度为3 m/s 2D .x =9 m 时,物体的速度为3 2 m/s答案 ACD解析 由W f =F f x 对应图乙可知,物体与地面之间的滑动摩擦力F f =2 N ,由F f =μmg 可得μ=0.2,A 正确;由W F =Fx 对应图乙可知,前3 m 内,拉力F 1=5 N,3~9 m 内拉力F 2=2 N ,物体在前3 m 内的加速度a 1=F 1-F f m =3 m/s 2,C 正确;由动能定理得:W F -F f x =12m v 2可得:x =9 m 时,物体的速度为v =3 2 m/s ,D 正确;物体的最大位移x m =W F F f=13.5 m ,B 错误.10.[应用动能定理分析临界问题](2015·新课标全国Ⅰ·17)如图7,一半径为R 、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平.一质量为m 的质点自P 点上方高度R 处由静止开始下落,恰好从P 点进入轨道.质点滑到轨道最低点N 时,图7对轨道的压力为4mg ,g 为重力加速度的大小.用W 表示质点从P 点运动到N 点的过程中克服摩擦力所做的功.则( )A .W =12mgR ,质点恰好可以到达Q 点 B .W >12mgR ,质点不能到达Q 点 C .W =12mgR ,质点到达Q 点后,继续上升一段距离 D .W <12mgR ,质点到达Q 点后,继续上升一段距离 答案 C解析 根据动能定理得P 点动能E k P =mgR ,经过N 点时,由牛顿第二定律和向心力公式可得4mg -mg =m v 2R ,所以N 点动能为E k N =3mgR 2,从P 点到N 点根据动能定理可得mgR -W =3mgR 2-mgR ,即克服摩擦力做功W =mgR 2.质点运动过程,半径方向的合力提供向心力,即F N -mg cos θ=ma =m v 2R,根据左右对称,在同一高度处,由于摩擦力做功导致在右边圆形轨道中的速度变小,轨道弹力变小,滑动摩擦力F f =μF N 变小,所以摩擦力做功变小,那么从N 到Q ,根据动能定理,Q 点动能E k Q =3mgR 2-mgR -W ′=12mgR -W ′,由于W ′<mgR 2,所以Q 点速度仍然没有减小到0,会继续向上运动一段距离,对照选项,C 正确. 【技巧点拨】动能定理的理解及应用技巧1.动能定理说明了合力对物体所做的总功和动能变化间的一种因果关系和数量关系,不可理解为功转变成了物体的动能.2.应用动能定理解题,关键是对研究对象进行准确的受力分析及运动过程分析,并画出物体运动过程的草图,借助草图理解物理过程和各量关系.3.明确研究对象的已知量和未知量,若求过程的初、末速度,首先确定各力做功及总功,然后列出方程;若求某力或某力的功,首先确定过程的初、末速度,然后列方程求解.4.解决图象问题的突破点(1)注意图象斜率、面积和截距的物理意义.(2)注意挖掘图象中的隐含信息,往往可以找到解题突破口.考点四 用动能定理解决多过程问题【1】考点逐项排查(基础层)1.由于多过程问题的受力情况、运动情况比较复杂,从动力学的角度分析多过程问题往往比较复杂,但是,用动能定理分析问题,是从总体上把握其运动状态的变化,并不需要从细节上了解.因此,动能定理的优越性就明显地表现出来了,分析力的作用是看力做的功,也只需把所有的力做的功累加起来即可.2.运用动能定理解决问题时,有两种思路:一种是全过程列式,另一种是分段列式.3.全过程列式时,涉及重力、弹簧弹力、大小恒定的阻力或摩擦力做功时,要注意运用它们的功能特点:(1)重力的功取决于物体的初、末位置,与路径无关;(2)大小恒定的阻力或摩擦力的功等于力的大小与路程的乘积.(3)弹簧弹力做功与路径无关.11.[直线与平抛运动组合的多过程问题](2015·浙江理综·23)如图8所示,用一块长L 1=1.0 m 的木板在墙和桌面间架设斜面,桌子高H =0.8 m ,长L 2=1.5 m .斜面与水平桌面的夹角θ可在0~60°间调节后固定.将质量m =0.2 kg 的小物块从斜面顶端静止释放,物块与斜面间的动摩擦因数μ1=0.05,物块与桌面间的动摩擦因数为μ2,忽略物块在斜面与桌面交接处的能量损失.(重力加速度取g =10 m/s 2;最大静摩擦力等于滑动摩擦力)图8(1)求θ角增大到多少时,物块能从斜面开始下滑;(用正切值表示)(2)当θ角增大到37°时,物块恰能停在桌面边缘,求物块与桌面间的动摩擦因数μ2;(已知sin 37°=0.6,cos 37°=0.8)(3)继续增大θ角,发现θ=53°时物块落地点与墙面的距离最大,求此最大距离x m . 答案 (1)arctan 0.05 (2)0.8 (3)1.9 m解析 (1)为使小物块下滑,应有mg sin θ≥μ1mg cos θ①θ满足的条件tan θ≥0.05②即当θ=arctan 0.05时物块恰好从斜面开始下滑.(2)克服摩擦力做功W f =μ1mgL 1cos θ+μ2mg (L 2-L 1cos θ)③由动能定理得mgL 1sin θ-W f =0④代入数据得μ2=0.8⑤(3)由动能定理得mgL 1sin θ-W f =12m v 2⑥ 结合③式并代入数据得v =1 m/s ⑦由平抛运动规律得H =12gt 2,x 1=v t 解得t =0.4 s ⑧x 1=0.4 m ⑨x m =x 1+L 2=1.9 m12.[含弹簧的物体运动多过程问题]如图9甲所示,轻弹簧左端固定在竖直墙上,右端点在O 位置.质量为m 的物块A (可视为质点)以初速度v 0从距O 点右方x 0的P 点处向左运动,与弹簧接触后压缩弹簧,将弹簧右端压到O ′点位置后,A 又被弹簧弹回.A 离开弹簧后,恰好回到P 点.物块A 与水平面间的动摩擦因数为μ.求:图9(1)物块A 从P 点出发又回到P 点的过程,克服摩擦力所做的功.(2)O 点和O ′点间的距离x 1.(3)如图乙所示,若将另一个与A 完全相同的物块B (可视为质点)与弹簧右端拴接,将A 放在B 右边,向左推A 、B ,使弹簧右端压缩到O ′点位置,然后从静止释放,A 、B 共同滑行一段距离后分离.分离后物块A 向右滑行的最大距离x 2是多少?答案 (1)12m v 20 (2)v 204μg -x 0 (3)x 0-v 208μg解析 (1)物块A 从P 点出发又回到P 点的过程,根据动能定理得克服摩擦力所做的功为W f =12m v 20. (2)物块A 从P 点出发又回到P 点的过程,根据动能定理得2μmg (x 1+x 0)=12m v 20 解得x 1=v 204μg-x 0 (3)A 、B 在弹簧处于原长处分离,设此时它们的共同速度是v 1,弹出过程弹力做功W F 只有A 时,从O ′到P 有W F -μmg (x 1+x 0)=0-0A 、B 共同从O ′到O 有W F -2μmgx 1=12×2m v 21 分离后对A 有12m v 21=μmgx 2 联立以上各式可得x 2=x 0-v 208μg. 13.[直线与圆周运动组合的多过程问题]如图10所示,半径R =0.5 m 的光滑圆弧面CDM 分别与光滑斜面体ABC 和斜面MN 相切于C 、M 点,斜面倾角分别如图所示.O 为圆弧圆心,D 为圆弧最低点,C 、M 在同一水平高度.斜面体ABC 固定在地面上,顶端B 安装一定滑轮,一轻质软细绳跨过定滑轮(不计滑轮摩擦)分别连接小物块P 、Q (两边细绳分别与对应斜面平行),并保持P 、Q 两物块静止.若PC 间距为L 1=0.25 m ,斜面MN 足够长,物块P 质量m 1=3 kg ,与MN 间的动摩擦因数μ=13,重力加速度g =10 m/s 2,求:(sin 37°=0.6,cos 37°=0.8)图10(1)小物块Q 的质量m 2;(2)烧断细绳后,物块P 第一次到达D 点时对轨道的压力大小;(3)物块P 在MN 斜面上滑行的总路程.答案 (1)4 kg (2)78 N (3)1.0 m解析 (1)根据共点力平衡条件,两物块的重力沿斜面的分力相等,有:m 1g sin 53°=m 2g sin 37°解得:m 2=4 kg即小物块Q 的质量m 2为4 kg.(2)小物块P 到D 点过程,由动能定理得m 1gh =12m 1v 2D 根据几何关系,有:h =L 1sin 53°+R (1-cos 53°)在D 点,支持力和重力的合力提供向心力:F D -m 1g =m 1v 2D R解得:F D =78 N由牛顿第三定律得,物块P 对轨道的压力大小为78 N.(3)分析可知最终物块在CDM 之间往复运动,C 点和M 点速度为零.由全过程动能定理得:m 1gL 1sin 53°-μm 1g cos 53°L 总=0解得L 总=1.0 m即物块P 在MN 斜面上滑行的总路程为1.0 m.【规律总结】利用动能定理求解多过程问题的基本思路1.弄清物体的运动由哪些过程组成.2.分析每个过程中物体的受力情况.3.各个力做功有何特点,对动能的变化有无影响.4.从总体上把握全过程,表达出总功,找出初、末状态的动能.5.对所研究的全过程运用动能定理列方程.【限时自测】1.(2015·海南单科·3)假设摩托艇受到的阻力的大小正比于它的速率.如果摩托艇发动机的输出功率变为原来的2倍,则摩托艇的最大速率变为原来的( )A .4倍B .2倍 C.3倍 D.2倍答案 D解析 设f =k v ,当阻力等于牵引力时,速率最大,输出功率变化前,有P =F v =f v =k v ·v =k v 2,变化后有2P =F ′v ′=k v ′·v ′=k v ′2,联立解得v ′=2v ,D 正确.2.(2015·海南单科·4)如图11所示,一半径为R 的半圆形轨道竖直固定放置,轨道两端等高,质量为m 的质点自轨道端点P 由静止开始滑下,滑到最低点Q 时,对轨道的正压力为2mg ,重力加速度大小为g .质点自P 滑到Q 的过程中,克服摩擦力所做的功为( )图11A.14mgRB.13mgRC.12mgRD.π4mgR 答案 C解析 在Q 点质点受到竖直向下的重力和竖直向上的支持力,两力的合力充当向心力,所以有F N -mg =m v 2R,F N =2mg ,联立解得v =gR ,下滑过程中,根据动能定理可得mgR -W f =12m v 2,解得W f =12mgR ,所以克服摩擦力做功12mgR ,C 正确. 3.(2015·浙江理综·18)(多选)我国科学家正在研制航母舰载机使用的电磁弹射器.舰载机总质量为3.0×104 kg ,设起飞过程中发动机的推力恒为1.0×105 N ;弹射器有效作用长度为100 m ,推力恒定.要求舰载机在水平弹射结束时速度大小达到80 m/s.弹射过程中舰载机所受总推力为弹射器和发动机推力之和,假设所受阻力为总推力的20%,则( )A .弹射器的推力大小为1.1×106 NB .弹射器对舰载机所做的功为1.1×108 JC .弹射器对舰载机做功的平均功率为8.8×107 WD .舰载机在弹射过程中的加速度大小为32 m/s 2答案 ABD解析 设总推力为F ,位移x =100 m ,阻力F 阻=20%F ,对舰载机加速过程由动能定理得Fx -20%F ·x =12m v 2,解得F =1.2×106 N ,弹射器推力F 弹=F -F 发=1.2×106 N -1.0×105 N =1.1×106 N ,A 正确;弹射器对舰载机所做的功为W =F 弹·x =1.1×106×100 J =1.1×108 J ,B 正确;弹射器对舰载机做功的平均功率P =F 弹·0+v 2=4.4×107 W ,C 错误;根据运动学公式v 2=2ax ,得a =v 22x =32 m/s 2,D 正确. 4.山地滑雪是人们喜爱的一项体育运动.一滑雪道ABC 的底部是一个半径为R 的圆,圆与雪道相切于C 点,C 的切线沿水平方向,到水平雪地之间是高为H 的峭壁,D 是圆的最高点,如图12所示.运动员从A 点由静止下滑,刚好经过圆轨道最高点D 旋转一周,再滑到C 点后被水平抛出,当抛出时间为t 时,迎面遭遇一股强风,最终运动员落到了雪地上,落地时速度大小为v .已知运动员连同滑雪装备总质量为m ,重力加速度为g ,不计遭遇强风前的空气阻力和雪道间的摩擦阻力,求:图12(1)运动员刚好能过D 点,AC 的高度差h ;(2)运动员刚遭遇强风时的速度大小及距地面的高度;(3)强风对运动员所做的功.答案 (1)52R (2)5gR +g 2t 2 H -12gt 2 (3)12m v 2-mg (H +52R ) 解析 (1)运动员刚好做圆周运动的速度满足mg =m v 2D R由动能定理得mg (h -2R )=12m v 2D 联立解得h =52R (2)运动员做平抛运动,在竖直方向的速度v ′=gt从A 到C 由动能定理得mg ·52R =12m v 20 v 1=v 20+v ′2=5gR +g 2t 2下落高度为h 1=12gt 2 距地面高度为h 2=H -h 1=H -12gt 2 (3)由动能定理得W f +mg (H +52R )=12m v 2 W f =12m v 2-mg (H +52R ) 第二讲 机械能守恒定律考点一 机械能守恒的判断【1】考点逐项排查(基础层)1.重力做功与重力势能(1)重力做功的特点 重力做功与路径无关,只与初、末位置的高度差有关.(2)重力做功与重力势能变化的关系①定性关系:重力对物体做正功,重力势能就减少;重力对物体做负功,重力势能就增加.②定量关系:物体从位置A到位置B时,重力对物体做的功等于物体重力势能的减少量,即W G=-ΔE p.③重力势能的变化量是绝对的,与参考面的选取无关.2.弹性势能(1)定义发生弹性形变的物体的各部分之间,由于有弹力的相互作用而具有的势能.(2)弹力做功与弹性势能变化的关系①弹力做功与弹性势能变化的关系类似于重力做功与重力势能变化的关系.②对于弹性势能,一般物体的弹性形变量越大,弹性势能越大.3.机械能动能、重力势能和弹性势能统称为机械能.4.机械能守恒定律内容:在只有重力或弹力做功的物体系统内,动能与势能可以互相转化,而总的机械能保持不变.5.机械能守恒的条件(1)系统只受重力或弹簧弹力的作用,不受其他外力.(2)系统除受重力或弹簧弹力作用外,还受其他内力和外力,但这些力对系统不做功.(3)系统内除重力或弹簧弹力做功外,还有其他内力和外力做功,但这些力做功的代数和为零.(4)系统跟外界没有发生机械能的传递,系统内外也没有机械能与其他形式的能发生转化.【思维深化】判断下列说法是否正确.(1)克服重力做功,物体的重力势能一定增加.(√)(2)发生弹性形变的物体都具有弹性势能.(√)(3)弹簧弹力做正功时,弹性势能增加.(×)(4)物体速度增大时,其机械能可能在减小.(√)(5)物体所受合外力为零时,机械能一定守恒.(×)(6)物体受到摩擦力作用时,机械能一定要变化.(×)(7)物体只发生动能和势能的相互转化时,物体的机械能一定守恒.(√)【2】题组阶梯突破(应用层)1.[机械能守恒的判断]下列关于机械能守恒的说法中正确的是()A.做匀速运动的物体,其机械能一定守恒B.物体只受重力,机械能才守恒C.做匀速圆周运动的物体,其机械能一定守恒D.除重力做功外,其他力不做功,物体的机械能一定守恒答案 D解析匀速运动所受合外力为零,但除重力外可能有其他力做功,如物体在阻力作用下匀速向下运动,其机械能减少了,A错.物体除受重力或弹力也可受其他力,只要其他力不做功或做功的代数和为零,机械能也守恒,B错.匀速圆周运动物体的动能不变,但势能可能变化,故C错.由机械能守恒条件知,选项D正确.2.[机械能守恒的判断](多选)如图1所示,下列关于机械能是否守恒的判断正确的是()图1A.甲图中,物体A将弹簧压缩的过程中,物体A机械能守恒B.乙图中,物体A固定,物体B沿斜面匀速下滑,物体B的机械能守恒C.丙图中,不计任何阻力和定滑轮质量时,A加速下落,B加速上升过程中,A、B组成的系统机械能守恒D.丁图中,小球沿水平面做匀速圆锥摆运动时,小球的机械能守恒答案CD解析甲图中重力和弹力做功,物体A和弹簧组成的系统机械能守恒,但物体A机械能不守恒,A错.乙图中物体B除受重力外,还受到弹力和摩擦力作用,弹力不做功,但摩擦力做负功,物体B的机械能不守恒,B错.丙图中绳子张力对A做负功,对B做正功,代数和为零,A、B组成的系统机械能守恒,C对.丁图中小球的动能不变,势能不变,机械能守恒,D对.3.[机械能守恒的判断]如图2所示,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与一橡皮绳相连,橡皮绳的另一端固定在地面上的A点,橡皮绳竖直时处于原长h.让圆环沿杆滑下,滑到杆的底端时速度为零.则在圆环下滑过程中()图2。

第五章 机械能及其守恒定律5-3

第五章 机械能及其守恒定律5-3

随 堂 针 对 训 练
考 技 案 例 导 析
易 错 易 混 分 析
B 球所做的功.
限 时 规 范 特 训
必修二
第五章 机械能及其守恒定律
金版教程
基 础 知 识 梳 理
高三物理
答:设杆对 B 球所做的功为 W,对 B 球,由动能定 理有: 1 2 mgh+W= mv ② 2 1 联立①②式解得 W= mgLsinθ. 2
面上 A、B 速度相等;(2)整个过程中,杆对 B 球的力为变 力,利用动能定理求解变力的功.
[解析] (1)问:由于没有摩擦及不计碰撞时机械能的损
考 技 案 例 导 析
失,因此两球组成的系统机械能守恒.两球由杆相连速度大 小相等.试由系统机械能守恒计算两小球速度的大小.
易 错 易 混 分 析
答:设两小球在水平面上的速度为 v,由机械能守恒定 律有:
随 堂 针 对 训 练
考 技 案 例 导 析
易 错 易 混 分 析
限 时 规 范 特 训
必修二
第五章 机械能及其守恒定律
金版教程
基 础 知 识 梳 理
高三物理
[解析] 一个物体如果竖直匀速下落,属于匀速直线 运动,但是该过程中阻力做功,所以机械能不守恒,同时 在匀速下落时,外力对物体做功为零,但是机械能是不守 恒的,这样一个特例排除了 A,C.物体自由下落时,满足 机械能守恒,属于变速运动,B 正确,至于 D 根据机械能 守恒条件可知是正确的.故正确答案为 BD.
限 时 规 范 特 训 随 堂 针 对 训 练
考 技 案 例 导 析
易 错 易 混 分 析
必修二
第五章 机械能及其守恒定律
金版教程
基 础 知 识 梳 理

第五章 机械能及其守恒定律5-4(新课标复习资料)

第五章 机械能及其守恒定律5-4(新课标复习资料)

易 错 易 混 分 析
限 时 规 范 特 训
相同点
正负功、不 两种摩擦力都可以对物体做 做功方面 正功、负功,还可以不做功
必修二
第五章 机械能及其守恒定律
金版教程
基 础 知 识 梳 理
高三物理
利用 Q=Ff· L
相对
进行热量 Q 的计算时,关键
是对相对路程 L 相对的理解.例如:如果两物体同向运 动,L
必修二
第五章 机械能及其守恒定律
限 时 规 范 特 训
金版教程
基 础 知 识 梳 理
高三物理
解析:木块刚放上时速度必为零,必受到向右的摩擦 动力作用而做匀加速直线运动, 达到与传送带共速后不再 相互滑动,整个过程中木块获得一定的能量,系统要产生 摩擦热. (1)由牛顿第二定律:μmg=ma 得 a=μg v 由公式 v=at 得 t= μg v v2 小木块的位移 x1= t= 2 2μg
相对
考 技 案 例 导 析
为两物体对地位移大小之差;如果两物体反相对随 堂 针 对 训 练
向运动,L
为两物体对地位移大小之和;如果一个
限 时 规 范 特 训
物体相对另一个物体往复运动,则 L 相对为两物体相对 滑行路径的总长度.
易 错 易 混 分 析
必修二
第五章 机械能及其守恒定律
金版教程
基 础 知 识 梳 理
限 时 规 范 特 训
易 错 易 混 分 析
D.货物的机械能一定增加 mah+mgh
必修二
第五章 机械能及其守恒定律
金版教程
基 础 知 识 梳 理
高三物理
[解析] 逐项分析如下 选项 A 诊断 由动能定理,货物动能的增量等于货物合外 结论 ×

机械能守恒定律

机械能守恒定律

机械能守恒定律机械能守恒定律力学中的重要定律。

物质系统内只有保守内力作功,非保守内力(如摩擦力)和一切外力所作的总功为零时,系统内各物体的动能和势能可以互相转换,但它们的总量保持不变。

说明:(1)根据质点系的动能定理,我们有W外+W内保+W内非=Ek2-Ek1,由于保守内力所作的功可以表示为势能增量的负值,即W内保=-(Ep2-Ep1),这样就可得W外+W内非=(Ek2+Ep2)-(Ek1+Ep1),W外+W内非=E2-E1。

此式表示,质点系在运动过程中,它所受外力的功与系统内非保守力的功之总和,等于它的机械能的增量。

当W外=0、W内非=0时,就有系统机械能保持不变的守恒定律E2=E1=常量。

(2)机械能守恒定律是牛顿运动定律的一个推论,因此只有在惯性系中成立。

当W外=0,W内非=0以及Fi外=0的条件下,系统的机械能守恒在所有惯性系中绝对成立。

而当Fi外≠0,但W外=0,W内非=0时,系统的机械能守恒只对某个特定的惯性系成立。

(3)在中学物理中,保守力遇到最多的是重力和弹力。

因此,如果物体系各物体只有重力和弹力对它们做功,而无其他力做功时,系统机械能守恒。

这一守恒是运动变化中的守恒,是转化中的守恒,总量的守恒,但就系统内各物体而言,其动能和势能各自并不是不变的,而是互相转化的。

机械能守恒定律是对一个过程而言的,在只涉及重力及弹力作功的过程中,机械能守恒定律应用时,只考虑初始状态和终了状态的动能和势能,而不考虑运动的各个过程的详细情况。

因此,如果不要求了解过程的具体情况,用机械能守恒定律来分析某些力学过程,比用其他方法简便得多。

(4)一个不受外界作用的系统叫做封闭系统或孤立系统。

对于封闭系统,外力的功当然为零。

如果系统状态发生变化时,有非保守内力做功,它的机械能就不守恒。

但在这种情况下,对更广泛的物理现象,包括电磁、热、化学以及原子内部的变化等研究表明,如果扩大能量的范围,引入更多的能量概念,如电磁能、内能、化学能或原子核能,即能证明:一个封闭系统经历任何变化时,该系统的所有能量的总和是不改变的,它只是从一种形式的能量转化为另一种形式的能量,或从系统的此一物体传递给彼一物体。

2022年高考物理总复习第一部分常考考点复习第五章机械能守恒定律第2讲动能和动能定理

2022年高考物理总复习第一部分常考考点复习第五章机械能守恒定律第2讲动能和动能定理

第2讲 动能和动能定理【课程标准】 1.理解动能和动能定理。

2.能用动能定理解释生产生活中的现象。

【素养目标】物理观念:了解动能的概念和动能定理的内容。

科学思维:会用动能定理分析曲线运动、多过程运动问题。

一、动能 定义 物体由于运动而具有的能公式 E k =21mv 2矢标性 动能是标量,只有正值,动能与速度方向无关状态量 动能是状态量,因为v 是瞬时速度 相对性 由于速度具有相对性,所以动能也具有相对性动能的 变化物体末动能与初动能之差,即ΔE k =12 mv 22 -12mv 21 。

动能的变化是过程量命题·生活情境滑滑梯是小朋友的乐趣所在,如图所示为一滑梯的实物图,水平段与斜面段平滑连接。

某小朋友从滑梯顶端由静止开始滑下,经斜面底端后水平滑行一段距离,停在水平滑道上。

整个过程小朋友的动能如何变化? 提示:先增大后减小,最后变为0。

二、动能定理命题·科技情境荷兰埃因霍芬理工大学的太阳能团队研发出一款太阳能房车,车顶上配有一个8.8平方米的太阳能电池板,搭配60 kW·h的锂离子电池,最高时速可达120 km。

在晴朗的阳光下,该车一天可以行驶约730 km,而在电池充满电后,夜间行驶的续航里程也可以达到600 km。

(1)该款房车的能量转化关系是什么?提示:太阳能转化为电能,电能转化为动能和内能。

(2)若该款房车的质量为m,以恒定功率P启动,经时间t速度达到最大v,则房车受到的阻力在此过程中做的功是多少?提示:12mv2-Pt。

角度1 动能(1)质量大的物体,动能一定大。

( ×)(2)速度方向变化,物体的动能一定变化。

( ×)(3)动能不变的物体一定处于平衡状态。

( ×)角度2 动能定理(4)如果物体所受的合外力不为零,那么合外力对物体做的功一定不为零。

( ×)(5)合外力做功是物体动能变化的原因。

( √ ) (6)动能定理只适用于同时作用的力做功。

第5章 第4单元机械能守恒定律汇总

第5章 第4单元机械能守恒定律汇总

[解析] 木箱加速上滑的过程中,拉力 F 做正功, 重力和摩擦力做负功.支持力不做功, 1 2 由动能定理得:WF-WG-Wf= mv -0. 2 1 2 即 WF=WG+Wf+ mv ,A、B 错误; 2 又因克服重力做功 WG 等于物体增加的重力势能, 所以 WF=ΔEp+ΔEk+Wf,故 D 正确,又由重力做功与重 力势能变化的关系知 C 也正确.
类别 比较
静摩擦力
滑动摩擦力
一对相互作用的 一对静摩擦 滑动摩擦力对 一对摩 力所做功 不 物体系统所做 擦力 的代数总 同 的总功总为负 做 和等于零, 值,系统损失 点 功方面 即对系统 的机械能转变 不做功 成内能
• 利用Q=Ff·L相对进行热量Q的计算时,关键是 对相对路程L相对的理解.例如:如果两物体 同向运动,L相对为两物体对地位移大小之差; 如果两物体反向运动,L相对为两物体对地位 移大小之和;如果一个物体相对另一个物体 往复运动,则L相对为两物体相对滑行路径的 总长度.
• 1.已知货物的质量为m,在某段时间内起重 机将货物以a的加速度加速升高h,则在这段 时间内叙述正确的是(重力加速度为g)( ) • A.货物的动能一定增加mah-mgh • B.货物的机械能一定增加mah • C.货物的重力势能一定增加mah • D.货物的机械能一定增加mah+mgh
• 解析:逐项分析如下 选 项 诊断 结论 × × ×
fl 时,v′=v 2m 3fl 2 v0+ 时,v′= 2m
2 v0 -
fl ≤v≤ 2m
fl . 2m
• (三)一语道破天机 • ①滑动摩擦力既可以做正功,也可以做负 功. • ②滑动摩擦力做功可以生热Q=f·s相.
• (四)同类跟踪训练 • 2.如图所示,水平传送带AB的右端与竖直面 内的光滑半圆形轨道DC相接.传送带的运行 速度为v0=8 m/s,将质量m=1.0 kg的滑块无 初速地放到传送带A端.已知传送带长度L= 12.0 m,竖直面内的光滑半圆形轨道的半径R =0.8 m,滑块与传送带间的滑动摩擦因数为 μ=0.4,重力加速度g=10 m/s2.试求:

第5章 第3讲 机械能 机械能守恒定律

第5章 第3讲 机械能  机械能守恒定律

点评:机械能守恒的条件绝不是合外 力的功等于零,更不是合外力等于零,而 是看是否只有重力或弹簧做功. 警示:(1)物体弹性形变为零时,对应 弹性势能为零,而重力势能的零位置与所 选的参考平面有关,具有任意性.
(2)重力势能的改变量与参考平面的选 取没有关系.
二、单个物体机械能守恒的应用 问题:机械能守恒定律的几种关系式怎样合 理选用? 解答:(1)物体初状态总机械能等于末状态总 机械能,E初=E末. (2)系统重力势能的减少量等于系统动能的增 量,ΔEk=-ΔEp. (3)将系统分为A、B两部分,A部分机械能的 增加量等于B部分机械能的减少量.ΔEA=-ΔEB.
解析:因A、B选项中有外力F做功, 所以机械能不守恒,A、B选项错误.D 选项有摩擦力做功,机械能减小.C中 只有重力做功,故机械能守恒.
答案:C
2.(单选)如图5-3-4所示,将 悬线无初速度释放,当小球到达最 低点时,细线被一与悬点在同一竖 直线上的小钉B挡住,则在悬线被 钉子挡住的瞬间比较有( ) A.小球的机械能增大 B.动能减小 C.悬线张力变大 D.向心加速度不变
例1:下列说法中正确的是( BD ) A.一个物体所受的合外力为零,它的机械 能一定守恒 B.一个物体所受的合外力恒定不变,它的 机械能可能守恒 C.一个物体做匀速直线运动,它的机械能 一定守恒 D.一个物体做匀加速直线运动,它的机械 能可能守恒 解析:自由落体运动是匀加速直线运动,只 有重力做功,机械能守恒.
三、系统机械能守恒定律的应用 问题:怎样利用机械能守恒定律解题?使 用中应该注意什么? 解答:(1)应用机械能守恒定律的解题思路: ①确定研究系统(通常是物体和地球、弹簧 等)和所研究的过程. ②进行受力分析,确认是否满足守恒的条 件. ③选择零势能参考面(点),确定初、末状态 的动能和势能.

高三物理机械能守恒定律

高三物理机械能守恒定律
专家支招: 机械能守恒的条件绝不是合外力的功等于零,更不是合外力等于零,而是
看是否只有重力或弹力做功。
要点二 机械能守恒的表达形式
1.守恒的观点:Ek1+Ep1=Ek2+Ep2,即初状态的动能与势能之和等于 末状态的动能与势能之和。
2.转化的观点:ΔEk=-ΔEp,即动能的增加量等于势能的减少量。 3.转移的观点:ΔEA=-ΔEB,即A物体机械能的增加量等于B物体机 械能的减少量。
联立①⑤式,代入数据解得F=0.3 N,方向竖直向下。
【名师支招】1.要明确动能定理适用于任何物理过程或适用于某一 过程中的任一阶段,在使用动能定理解决问题时务必选取恰当的过程, 以使解题过程简明扼要,少走弯路;注意重力做功的特点,结合过程 正确计算合力,也是使用动能定理的关键环节。
2.应用机械能守恒定律要注意 (1)机械能守恒定律方程往往只涉及过程的初、末两状态,不必考 虑中间过程的细节,这使问题解决变得简单快捷。 (2)列机械能守恒定律方程之前,须先确定参考平面,灵活选择零 势能面可使方程得到简化。本题中还可以以细弯管的最低点所在水平 面为参考平面,同学们可试着列出机械能守恒定律方程,并与本题解 析中所列方程进行比较,看哪个更简便。 (3)常用的机械能守恒表达形式有以下两种: ①Ep1+Ek1=Ek2+Ep2 ②ΔEp减=ΔEk增
要点一 正确理解机械能守恒的条件
要正确理解系统机械能守恒的条件,可从以下几个方面入手。 1.抓住“守恒”的意义 “守恒”即“保持不变”,只要系统的动能增加(或减少)跟系统的重力势能的减少 (或增加)相等,系统的动能与重力势能之和就保持不变,即系统的总机械能就守恒。 2.抓住重力势能变化及动能变化的原因和量度(功能关系) 重力势能的变化是由于重力做功引起,并且重力所做的功WG刚好等于重力势能的减少, 即WG=Ep初-Ep末,故ΔEp=-WG。 动能的变化则是合外力(包括重力)做功引起的,而且合外力对物体所做的功WG在数 值上就等于物体动能的变化,即: ΔEk=W合 若系统机械能守恒,必然有ΔEk+ΔEp=0,由以上两式可得W合-WG=0,即W合=WG。 可见,只要重力的功等于合力的功,亦即只要只有重力做功,系统的机械能就守恒。

第5章第2讲 机械能守恒定律

第5章第2讲 机械能守恒定律
解析答案
考点三 多物体机械能守恒问题
7
8
考点三 多物体机械能守恒问题
(1)求小球m2沿斜面上升的最大距离s;
解析 由运动的合成与分解得 v1= 2v2
7
8
对 m1、m2 系统 h= 2Rsin 30° 联立以上三式得
1 1 2 m1gR-m2gh=2m1v1 +2m2v2 2
v1 v2
2m1- 2m2 gR 2m1+m2
返回
考点四 含弹簧类机械能守恒问题
【考点逐项排查】
对两个( 或两个以上)物体与弹簧组成的系统在相互作用的过程中,在能
量方面,由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,
若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒.若
还有其他外力和内力做功,这些力做功之和等于系统机械能改变量.做功
v1=
2m1- 2m2 2 gR,v2= 2m1+m2
设细绳断开后 m2 沿斜面上升的距离为 s′, 对 m2 1 m2gs′sin 30°=2m2v2 2
2R+s′=
小球 m2 沿斜面上升的最大距离 s=
2m1- 2m2 2+ R 2m1+m2
解析答案
考点三 多物体机械能守恒问题
返回
考点二 单物体机械能守恒问题
机械能守恒的三种表达式 (1)守恒观点
【考点逐项排查】
①表达式:Ek1+Ep1= Ek2+Ep2 或E1=E2.
②意义:系统初状态的机械能等于末状态的机械能. ③注意:要先选取零势能参考平面,并且在整个过程中必须选取同一个零势能参考平面. (2)转化观点 ①表达式:ΔEk= -ΔEp (3)转移观点 ①表达式:ΔEA增= ΔEB减 . .

6.机械能-典型例题-详解

6.机械能-典型例题-详解

必修二 机械能守恒定律第五章 机械能守恒定律第1课时 功 功率题型探究题型1、恒力做功【例1】质量为m 的物体与水平面间的动摩擦因数为μ,现用与水平面成θ角的力拉物体,使物体沿水平面匀速前进s ,这个力对物体做的功为 ( ) A .μmgs B .μmgs ⋅cos θC .μmgs cos θ/(cos θ+μsin θ)D .μmgs/(cos θ+μsin θ) 题型2 图像中的功和功率【例2】一质量为m 的物体在水平恒力F 的作用下沿水平面运动,在t 0时刻撤去力F ,其v-t 图象如图所示.已知物体与水平面间的动摩擦因数为μ,则下列关于力F 的大小和力F 做的功W 的大小关系式,正确的是:( )A .F =μmgB .F =2μmgC .W =μmgv 0t 0D .W =32μmgv 0t 0题型3、其他常见力做功 【例3】用铁锤把小铁钉钉入木板,设木板对铁钉的阻力与铁钉进入木板的深度成正比.已知铁锤第一次敲击使铁钉进入木板的深度为d ,接着敲第二锤,如果铁锤第二次敲铁钉时对铁钉做的功与第一次相同,那么,第二次使铁钉进入木板的深度为( ) A .(√3−1)d B .(√2−1)d C .√5−12d D .√22d 2.滑轮问题【例4】如图所示,在倾角为30°的斜面上,一条轻绳的端固定在斜面上,绳子跨过连在滑块上的定滑轮,绳子另一端受到一个方向总是竖直向上,大小恒为F =100N 的拉力,使物块沿斜面向上滑行1m (滑轮右边的绳子始终与斜面平行)的过程中,拉力F 做的功是( ).A .100JB .150JC .200JD .条件不足,无法确定题型4 摩擦力做功【例5】如图所示,质量为m 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v 匀速运动,物体与传送带间的动摩擦因数为μ,物体在滑下传送带之前能保持与传送带相对静止,对于物体从静止释放到与传送带相对静止这一过程,下列说法中正确的是( )A .电动机多做的功为12mv 2B .物体在传送带上的划痕长v 2μgC .传送带克服摩擦力做的功为12mv 2D .电动机增加的功率为μmgv 题型5 瞬时功率的计算【例6】一木块静止在光滑的水平面上,将一个大小恒为F 的水平拉力作用在该木块上,经过位移x 时,拉力的瞬时功率为P;若将一个大小恒为2F 的水平拉力作用在该木块上,使该木块由静止开始运动,经过位移x 时,拉力的瞬时功率是( )A.√2PB.2PC.2√2PD. 4P 题型6 平均功率的计算【例7】一个质量为m 的木块静止在粗糙的水平面上,木块与水平面间的滑动摩擦力大小为2F 0,某时刻开始受到如图所示的水平拉力的作用,下列说法正确的是( )A .0到t 0时间内,木块的位移大小为 3F 0t 022mB .t 0时刻合力的功率为8F 02t 0m30F必修二机械能守恒定律C.0到t0时间内,水平拉力做功为2F02t02mD.2t0时刻,木块的速度大小为F0t0m题型7.机动车启动的两种方式的比较【例8】(多选)质量为m的汽车在平直的路面上启动,启动过程的速度—时间图像如图所示,其中OA段为直线,AB段为曲线,B点后为平行于横轴的直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章机械能守恒定律考纲要览考向预测纵观近几年高考,对本章考查的热点包括功和功率、动能定理、机械能守恒定律、能的转化和守恒定律.考查的特点是灵活性强、综合面大、能力要求高.涉及本章知识的命题不仅年年有、题型全、份量重,而且多年的高考压轴题均与本章的功和能知识有关.解题时需对物体或系统的运动过程进行详细分析、挖掘隐含条件,寻找临界点,综合使用动量守恒、机械能守恒或能的转化与守恒定律求解.第1课时追寻守恒量功基础知识回顾1.追寻守恒量(1) 能量:简称"能".物质运动的一般量度.任何物质都离不开运动,如引力运动、机械运动、分子热运动、电磁运动、化学运动、原子核与基本粒子运动......等.对运动所能作的最一般的量度就是能量,用数学的语言说,能量是物质运动状态的一个单值函数.相应于不同形式的运动,能量分为机械能、内能、电能、磁能、化学能、原子能等.当物质的运动形式发生转变时,能量形式同时发生转变.能量可以在物质之间发生传递,这种传递过程就是作功或传递热量.例如,河水冲击水力发电机作功的过程就是河水的机械能传递给发电机,并转变为电能.自然界一切过程都服从能量转化和守恒定律,物体要对外界作功,就必须消耗本身的能量或从别处得到能量的补充.因此.一个物体的能量愈大,它对外界就有可能做更多的功.(2) 机械能:物质机械运动的量度.包括动能、重力势能和弹性势能.(3) 动能:物体由于运动而具有的能量.(4) 势能:相互作用的物体凭借其位置而具有的能量.2.功的概念(1)定义:一个物体受到力的作用,如果在力的方向上发生一段位移,就说这个力做了功.(2)做功的两个必要条件:a、力;b、物体在力的方向上发生位移.(3)功的单位:在国际单位制中,功的单位是焦耳,符号J,其物理意义是:1J等于1N的力使物体在力的方向上发生1m的位移时所做的功.(4)功是标量,只有大小,没有方向.(5)功是过程量,即做功必定对应一个过程(位移)应明确是哪个力在哪个过程中对哪个物体做功.3、功的计算(1)功的一般计算公式:W=Flcosθ(2)条件:适用于恆力所做的功(3)字母意义:F——力l——物体对地位移θ——F、l正方向之间的夹角4、正负功的意义(1)根据功的计算公式W=Flcosθ可得到以下几种情况:①当θ=90o时,cosθ=0,则W=0即力对物体不做功;②当00≤θ<90o时,cosθ>0,则W>0,即力对物体做正功;③当90o<θ≤180o时,则cosθ<0,即力对物体做负功,也常说成物体克服这个力做功;(2)功的正负既不表示方向,也不表示大小,它表示:正功是动力对物体做功,负功是阻力对物体α为钝角则做负功.拓展)10s ,】:A 引力作为卫星做圆周运动的向心力,向杠铃在此时间内位移为零.D 木块的支持力与.故A 、C 、D . 】ACD:1.化变力为恒力:(1) 分段计算功,然后用求和的方法求变力.(2)用转换研究对象的方法求变力所做的功. 2. 若F 是位移l 的线性函数时,先求平均值122F F +,由αcos l F W =求其功.例如:用铁锤把小铁钉钉入木板,设木板对钉子的阻力与钉进木板的深度成正比,已知铁锤第一次将钉子钉进d ,如果铁锤第二次敲钉子时对钉子做的功与第一次相同,那么,第二次进入木板的深度是多少?解:()22kd kd k d d d d '++'⋅=∴1)d d '=3. 作出变力变化的F -l 图象,图象与位移轴“面积”即为变力做的功.在F-l 图象中,图线与坐标轴所围成的“面积”.对于方向不变,大小随位移变化的力,作出图象,求出图线与坐标轴所围成的“面积”,就求,上.因为木板对钉度成正比,即,其图象为图所示.铁锤两次对钉子做功相同,则三角形OAB 的ABCD 的面积相等,图5-1-2 K (即[]')(21)(21d d d k kd kd d ⨯'++=⨯ 解得1)d d '=【例2】以一定的速度竖直向上抛出一小球,小球上升的最大速度为h ,空气的阻力大小恒为F ,则从抛出至落回出发点的过程中,空气阻力对小球做的功为( )A .0B .-FhC .-2FhD .-4Fh【解析】从全过程看,空气的阻力为变力,但将整个过程分为两个阶段:上升阶段和下落阶段,小球在每个阶段上受到的阻力都是恒力,且总是跟小球运动的方向相反,空气阻力对小球总是做负功,全过程空气阻力对小球做的功等于两个阶段所做功的代数和,即()()Fh Fh Fh W W W 2-=-+-=+=下上 【答案】C【点拨】空气阻力、摩擦阻力是一种特殊的力,在计算这种力做功时,不可简单地套用功的计算公式αcos Fl W =得出W =0的错误结论.从上面的正确结果可以看出:空气阻力做的功在数值上等于阻力与全过程小球路程的乘积.●拓展如图5-1-3在光滑的水平面上,物块在恒力F =100N的作用下从A 点运动到B 点,不计滑轮的大小,不计绳与滑轮的质量及绳、滑轮间的摩擦,H=2.4m,α=37°,β=53°,求绳的拉力对物体所做的功. 【解析】绳的拉力对物体来说是个变力(大小不变,方向改变),但分析发现,人拉绳却是恒力,于是转换研究对象,用人对绳子做的功来求绳对物体所做的功W =F ·l =F (βαsin sin H H -)=100 J【答案】W =F ·l =F (βαsin sin H H -)=100J三、分析摩擦力做功:不论是静摩擦力,还是滑动摩擦力既可以对物体做正功,也可以对物体做负功,还可能不对物体做功.力做功是要看哪个力对哪个物体在哪个过程中做的功,而不是由力的性质来决定的.力做正功还是做负功要看这个力是动力还是阻力.摩擦力可以是动力也可以是阻力,也可能与位移方向垂直.☆ 易错门诊【例3】物块从光滑曲面上的P 点自由滑下,通过粗糙的静止水平传送带以后落到地面上的Q 点,若传送带的皮带轮沿逆时针方向转动起来,使传送带随之运动,如图5-1-4所示,再把物块放到P 点自由滑下则( )A.物块将仍落在Q 点B.物块将会落在Q 点的左边C.物块将会落在Q 点的右边D.物块有可能落不到地面上【错解】因为皮带轮转动起来以后,物块在皮带轮上的时间长,相对皮带位移量大,摩擦力做功将比皮带轮不转动时多,物块在皮带右端的速度将小于皮带轮不动时,所以落在Q 点左边,应选B 选项.【错因】学生的错误主要是对物体的运动过程中的受力分析不准确.实质上当皮带轮逆时针转动时,无论物块以多大的速度滑下来,传送带给物块施的摩擦力都是相同的,且与传送带静止时一样,由运动学公式知位移相同.从传送带上做平抛运动的初速度相同,水平位移相同,落点相同.【正解】物块从斜面滑下来,当传送带静止时,在水平方向受到与运动方向相反的摩擦力,物块将做匀减速运动.离开传送带时做平抛运动.当传送带逆时针转动时物体相对传送带都是向前运动,受到滑动摩擦力方向与运动方向相反. 物体做匀减速运动,离开传送带时,也做平抛运动,且与传送带不动时的抛出速度相同,故落在Q 点,所以A 选项正确.【点悟】若此题中传送带顺时针转动,物块相对传送带的运动情况就应讨论了.(1)当v 0=v B 物块滑到底的速度等于传送带速度,没有摩擦力作用,物块做匀速运动,离开传送带做平抛的初速度比传送带不动时的大,水平位移也大,所以落在Q 点的右边.(2)当v 0>v B 物块滑到底速度小于传送带的速度,有两种情况,一是物块始终做匀加速运动,二是物块先做加速运动,当物块速度等于传送带的速度时,物体做匀速运动。

这两种情况落点都在Q 点右边.图5-1-3图5-1-4(3)v 0<v B 当物块滑上传送带的速度大于传送带的速度,有两种情况,一是物块一直减速,二是先减速后匀速。

第一种落在Q 点,第二种落在Q 点的右边.课堂自主训练1.如图5-1-5所示,木块A 放在木块B 的左上端,用恒力F 将A 拉至B 的右端.第一次将B 固定在地面上,F 做的功为 W 1;第二次让B 可以在光滑的地面上自由滑动,F 做的功为W 2.比较两次做功,应有( ) A .21W W < B .21W W =C .21WW > D .无法比较. 【解析】根据功的定义,力F 做的功只与力的大小及力的方向上发生的位移大小的乘积有关,位移的大小与参考系的选择有关,在没有指定参考系时,一般是以地球为参考系,A 物相对于B 的位移在两种情况下是一样的,但在第一种情况中,B 相对于地面是静止的,故第二次A 对地的位移大于第一次A 对地的位移,即第二次做功多一些.正确选项为A .【答案】A【点悟】功的计算公式αcos Fl W =中的位移l 一般均是以地球为参考系2.如图5-1-6所示,一个质量为m 的木块,放在倾角为α的斜面体上,当斜面与木块保持相对静止沿水平方向向右匀速移动距离s 的过程中,作用在木块上的各个力分别做功多少?合力的功是多少?【解析】木块发生水平位移的过程中,作用在木块上共有三个力,重力mg ,支持力F 1,静摩擦力F 2,根据木块的平衡条件,由这三个力的大小,物体的位移及力与位移的夹角.即可由功的计算公式算出它们的功.沿斜面建立直角坐标将重力正交分解,由于物体相对斜面静止而在水平面上做匀速运动,根据力的平衡条件可得:斜面对木块的支持力 F 1=mg cos а;斜面对木块的静摩擦力 F 2=mg sin а支持力F 1与位移S 间的夹角为900+а,则支持力做的功为 W 1= F 1S cos(900+а)=-mgS cos аsin а摩擦力2F 与位移s 的夹角为α,则摩擦力2F 做功为αααcos sin cos 22mg s F W ==重力与位移的夹角为90°,则重力做的功为090cos =︒=mgs W G合力做的功等于各个力做功的代数和,即0cos sin sin cos 21=++-=++=ααααmgs mgs W W W W G课后创新演练1.关于功是否为矢量,下列说法正确的是( B ) A .因为功有正功和负功,所以功是矢量 B ..因为功没有方向性,所以功是标量C .力和位移都是矢量,功也一定是矢量D .力是矢量,功也是矢量2.物体在两个相互垂直的力作用下运动,力F 1对物体做功6J ,物体克服力F 2做功8J ,则F 1、F 2的合力对物体做功为( D )A .14JB .10JC .2JD .-2J 3.一个水平方向的恒力F 先后作用于甲、乙两个物体,先使甲物体沿着粗糙的水平面运动距离s ,做功的数值为W 1;再使乙物体沿光滑的水平面向上滑过距离s ,做功的数值为W 2,则( A ) A .W 1=W 2 B .W 1>W 2C .W 1<W 2D .条件不足,无法比较W 1,W 2 4.质量为m 的物体,在水平力F 作用下,在粗糙的水平面上运动,下列哪些说法正确(ACD ) A .如果物体做加速直线运动,F 一定对物体做正功 B .如果物体做减速直线运动,F 一定对物体做负功 C .如果物体做减速直线运动,F 也可能对物体做正功D .如果物体做匀速直线运动,F 一定对物体做正功5.关于力对物体做功,如下说法正确的是( B ) A .滑动摩擦力对物体一定做负功 B .静摩擦力对物体可能做正功C .作用力的功与反作用力的功其代数和一定为零D .合外力对物体不做功,物体一定处于平衡状态 6.水平力F 作用在质量为m 的物体上沿光滑水 平面移动s ,F 做功W 1;若F 作用在质量为2m 的物体上,同样沿光滑水平面移动s ,F 做功W 2;若图5-1-5图5-1-6F 作用在质量为2m 的物体上,沿粗糙水平面移动s ,做功为W 3.那么W 1、W 2、W 3三者的大小关系是 A. W 1=W 2=W 3 B. W 1<W 2<W 3 C. W 1>W 2>W 3 D. W 1=W 2<W 3 【解析】 功的两个必要因素是力和在力的方向上发生的位移.比较力的功,就是要比较做功的两个必要因素。

相关文档
最新文档