2016年辽宁省各市中考数学试卷汇总(4套)

合集下载

2016年辽宁省葫芦岛市中考数学试卷(解析版)

2016年辽宁省葫芦岛市中考数学试卷(解析版)

2016年辽宁省葫芦岛市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.4的相反数是()A.4 B.﹣4 C.D.2.下列运算正确的是()A.﹣a(a﹣b)=﹣a2﹣ab B.(2ab)2÷a2b=4ab C.2ab•3a=6a2b D.(a﹣1)(1﹣a)=a2﹣13.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图是由5个相同的小正方体构成的几何体,其左视图是()A.B.C.D.5.九年级两名男同学在体育课上各练习10次立定跳远,平均成绩均为2.20米,要判断哪一名同学的成绩比较稳定,通常需要比较这两名同学立定跳远成绩的()A.方差 B.众数 C.平均数D.中位数6.下列一元二次方程中有两个相等实数根的是()A.2x2﹣6x+1=0 B.3x2﹣x﹣5=0 C.x2+x=0 D.x2﹣4x+4=07.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为,则袋中白球的个数为()A.2 B.3 C.4 D.128.A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运40千克,A型机器人搬运1200千克所用时间与B型机器人搬运800千克所用时间相等.设B型机器人每小时搬运化工原料x千克,根据题意可列方程为()A.=B.=C.=D.=9.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为()A.4 B.8 C.2D.410.甲、乙两车从A城出发前往B城,在整个行驶过程中,汽车离开A城的距离y(km)与行驶时间t(h)的函数图象如图所示,下列说法正确的有()①甲车的速度为50km/h ②乙车用了3h到达B城③甲车出发4h时,乙车追上甲车④乙车出发后经过1h或3h两车相距50km.A.1个B.2个C.3个D.4个二、填空题(本题共8小题,每小题3分,共24分)11.在“2016丝绸之路”国际投资贸易洽谈会上,我省销售的产品和合作项目签约金额为730000000元,将730000000用科学记数法表示为.12.分解因式:a3﹣4a=.13.某广告公司全体员工年薪的具体情况如表:年薪/万元25 15 10 6 4人数 1 1 3 3 2则该公司全体员工年薪的中位数是万元.14.如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为.15.如图,A,B,C,D是⊙O上的四个点,∠C=110°,则∠BOD=度.16.如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B的坐标为(4,3),∠CAO的平分线与y轴相交于点D,则点D的坐标为.17.如图,在△AOB中,∠AOB=90°,点A的坐标为(2,1),BO=2,反比例函数y=的图象经过点B,则k的值为.18.如图,点A1(2,2)在直线y=x上,过点A1作A1B1∥y轴交直线y=x于点B1,以点A1为直角顶点,A1B1为直角边在A1B1的右侧作等腰直角△A1B1C1,再过点C1作A2B2∥y轴,分别交直线y=x和y=x于A2,B2两点,以点A2为直角顶点,A2B2为直角边在A2B2的右侧作等腰直角△A2B2C2…,按此规律进行下去,则等腰直角△A n B n C n的面积为.(用含正整数n的代数式表示)三、解答题(第19小题10分,第20-25小题各12分,第26小题14分,共96分)19.先化简:(2x﹣)÷,然后从0,1,﹣2中选择一个适当的数作为x的值代入求值.20.某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.为提前了解学生的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.21.在纪念中国抗日战争胜利70周年之际,某公司决定组织员工观看抗日战争题材的影片,门票有甲乙两种,甲种票比乙种票每张贵6元;买甲种票10张,乙种票15张共用去660元.(1)求甲、乙两种门票每张各多少元?(2)如果公司准备购买35张门票且购票费用不超过1000元,那么最多可购买多少张甲种票?22.在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B两个凉亭之间的距离.如图,现测得∠ABC=30°,∠CBA=15°,AC=200米,请计算A,B两个凉亭之间的距离(结果精确到1米)(参考数据:≈1.414,≈1.732)23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交线段BC,AC于点D,E,过点D作DF⊥AC,垂足为F,线段FD,AB的延长线相交于点G.(1)求证:DF是⊙O的切线;(2)若CF=1,DF=,求图中阴影部分的面积.24.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?25.如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)请直接写出线段AF,AE的数量关系;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.26.如图,抛物线y=﹣x2+bx+c与x轴交于点A,点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在平面内,以线段MN为对角线作正方形MPNQ,请直接写出点Q的坐标.2016年辽宁省葫芦岛市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.4的相反数是()A.4 B.﹣4 C.D.【考点】相反数.【分析】根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.【解答】解:根据概念,(4的相反数)+(4)=0,则4的相反数是﹣4.故选:B.2.下列运算正确的是()A.﹣a(a﹣b)=﹣a2﹣ab B.(2ab)2÷a2b=4ab C.2ab•3a=6a2b D.(a﹣1)(1﹣a)=a2﹣1【考点】整式的混合运算.【分析】A、原式利用单项式乘以多项式法则计算得到结果,即可作出判断;B、原式先计算乘方运算,再计算除法运算得到结果,即可作出判断;C、原式利用单项式乘以单项式法则计算得到结果,即可作出判断;D、原式变形后,利用完全平方公式化简得到结果,即可作出判断.【解答】解:A、原式=﹣a2+ab,错误;B、原式=4a2b2÷a2b=4b,错误;C、原式=6a2b,正确;D、原式=﹣(a﹣1)2=﹣a2+2a﹣1,错误,故选C3.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形和中心对称图形的概念求解,由于圆既是轴对称又是中心对称图形,故只考虑圆内图形的对称性即可.【解答】解:A、既是轴对称图形,不是中心对称图形;B、既是轴对称图形,又是中心对称图形;C、不是轴对称图形,是中心对称图形;D、只是轴对称图形,不是中心对称图形.故选B.4.如图是由5个相同的小正方体构成的几何体,其左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】几何体的左视图有2列,每列小正方形数目分别为2,1;据此画出图形即可求解.【解答】解:观察图形可知,如图是由5个相同的小正方体构成的几何体,其左视图是.故选:C.5.九年级两名男同学在体育课上各练习10次立定跳远,平均成绩均为2.20米,要判断哪一名同学的成绩比较稳定,通常需要比较这两名同学立定跳远成绩的()A.方差 B.众数 C.平均数D.中位数【考点】统计量的选择.【分析】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这2名学生立定跳远成绩的方差.【解答】解:由于方差能反映数据的稳定性,需要比较这2名学生立定跳远成绩的方差.故选:A.6.下列一元二次方程中有两个相等实数根的是()A.2x2﹣6x+1=0 B.3x2﹣x﹣5=0 C.x2+x=0 D.x2﹣4x+4=0【考点】根的判别式.【分析】由根的判别式为△=b2﹣4ac,挨个计算四个选项中的△值,由此即可得出结论.【解答】解:A、∵△=b2﹣4ac=(﹣6)2﹣4×2×1=28>0,∴该方程有两个不相等的实数根;B、∵△=b2﹣4ac=(﹣1)2﹣4×3×(﹣5)=61>0,∴该方程有两个不相等的实数根;C、∵△=b2﹣4ac=12﹣4×1×0=1>0,∴该方程有两个不相等的实数根;D、∵△=b2﹣4ac=(﹣4)2﹣4×1×4=0,∴该方程有两个相等的实数根.故选D.7.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为,则袋中白球的个数为()A.2 B.3 C.4 D.12【考点】概率公式.【分析】首先设袋中白球的个数为x个,然后根据概率公式,可得:=,解此分式方程即可求得答案.【解答】解:设袋中白球的个数为x个,根据题意得:=,解得:x=3.经检验:x=3是原分式方程的解.∴袋中白球的个数为3个.故选B.8.A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运40千克,A型机器人搬运1200千克所用时间与B型机器人搬运800千克所用时间相等.设B型机器人每小时搬运化工原料x千克,根据题意可列方程为()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】根据A、B两种机器人每小时搬运化工原料间的关系可得出A型机器人每小时搬运化工原料(x+40)千克,再根据A型机器人搬运1200千克所用时间与B型机器人搬运800千克所用时间相等即可列出关于x的分式方程,由此即可得出结论.【解答】解:设B型机器人每小时搬运化工原料x千克,则A型机器人每小时搬运化工原料(x+40)千克,∵A型机器人搬运1200千克所用时间与B型机器人搬运800千克所用时间相等,∴=.故选A.9.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为()A.4 B.8 C.2D.4【考点】三角形中位线定理;含30度角的直角三角形;直角三角形斜边上的中线.【分析】先利用直角三角形斜边中线性质求出AB,再在RT△ABF中,利用30角所对的直角边等于斜边的一半,求出AF即可解决问题.【解答】解:在RT△ABF中,∵∠AFB=90°,AD=DB,DF=4,∴AB=2DF=8,∵AD=DB,AE=EC,∴DE∥BC,∴∠ADE=∠ABF=30°,∴AF=AB=4,∴BF===4.故选D.10.甲、乙两车从A城出发前往B城,在整个行驶过程中,汽车离开A城的距离y(km)与行驶时间t(h)的函数图象如图所示,下列说法正确的有()①甲车的速度为50km/h ②乙车用了3h到达B城③甲车出发4h时,乙车追上甲车④乙车出发后经过1h或3h两车相距50km.A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】根据路程、时间和速度之间的关系判断出①正确;根据函数图象上的数据得出乙车到达B城用的时间,判断出②正确;根据甲的速度和走的时间得出甲车出发4h时走的总路程,再根据乙的总路程和所走的总时间求出乙的速度,再乘以2小时,求出甲车出发4h时,乙走的总路程,从而判断出③正确;再根据速度×时间=总路程,即可判断出乙车出发后经过1h或3h,两车相距的距离,从而判断出④正确.【解答】解:①甲车的速度为=50km/h,故本选项正确;②乙车到达B城用的时间为:5﹣2=3h,故本选项正确;③甲车出发4h,所走路程是:50×4=200(km),甲车出发4h时,乙走的路程是:×2=200(km),则乙车追上甲车,故本选项正确;④当乙车出发1h时,两车相距:50×3﹣100=50(km),当乙车出发3h时,两车相距:100×3﹣50×5=50(km),故本选项正确;故选D.二、填空题(本题共8小题,每小题3分,共24分)11.在“2016丝绸之路”国际投资贸易洽谈会上,我省销售的产品和合作项目签约金额为730000000元,将730000000用科学记数法表示为7.3×108.【考点】科学记数法—表示较大的数.【分析】利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:730000000用科学记数法表示为:7.3×108.故答案为:7.3×108.12.分解因式:a3﹣4a=a(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)13.某广告公司全体员工年薪的具体情况如表:年薪/万元25 15 10 6 4人数 1 1 3 3 2则该公司全体员工年薪的中位数是8万元.【考点】中位数.【分析】根据中位数的定义进行解答即可.【解答】解:∵共有1+1+3+3+2=10个人,∴中位数是第5和第6个数的平均数,∴中位数是(10+6)÷2=8(万元);故答案为8.14.如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为.【考点】几何概率.【分析】根据正方形的性质可得出“∠MBO=∠NCO=45°,OB=OC ,∠BOC=90”,通过角的计算可得出∠MOB=∠NOC ,由此即可证出△MOB ≌△NOC ,同理可得出△AOM ≌△BON ,从而可得知S 阴影=S 正方形ABCD ,再根据几何概率的计算方法即可得出结论. 【解答】解:∵四边形ABCD 为正方形,点O 是对角线的交点, ∴∠MBO=∠NCO=45°,OB=OC ,∠BOC=90°, ∵∠MON=90°,∴∠MOB +∠BON=90°,∠BON +∠NOC=90°, ∴∠MOB=∠NOC . 在△MOB 和△NOC 中,有,∴△MOB ≌△NOC (ASA ). 同理可得:△AOM ≌△BON . ∴S 阴影=S △BOC =S 正方形ABCD . ∴蚂蚁停留在阴影区域的概率P==. 故答案为:.15.如图,A ,B ,C ,D 是⊙O 上的四个点,∠C=110°,则∠BOD= 140 度.【考点】圆周角定理;圆内接四边形的性质.【分析】根据圆内接四边形对角互补和,同弧所对的圆心角是圆周角的二倍可以解答本题.【解答】解:∵A ,B ,C ,D 是⊙O 上的四个点,∠C=110°, ∴四边形ABCD 是圆内接四边形, ∴∠C +∠A=180°, ∴∠A=70°,∵∠BOD=2∠A , ∴∠BOD=140°, 故答案为:140.16.如图,四边形OABC 为矩形,点A ,C 分别在x 轴和y 轴上,连接AC ,点B 的坐标为(4,3),∠CAO 的平分线与y 轴相交于点D ,则点D 的坐标为 (0,) .【考点】矩形的性质;坐标与图形性质.【分析】过D作DE⊥AC于E,根据矩形的性质和B的坐标求出OC=AB=3,OA=BC=4,∠CCOA=90°,求出OD=DE,根据勾股定理求出OA=AE=4,AC=5,在Rt△DEC中,根据勾股定理得出DE2+EC2=CD2,求出OD,即可得出答案.【解答】解:过D作DE⊥AC于E,∵四边形ABCO是矩形,B(4,3),∴OC=AB=3,OA=BC=4,∠CCOA=90°,∵AD平分∠OAC,∴OD=DE,由勾股定理得:OA2=AD2﹣OD2,AE2=AD2﹣DE2,∴OA=AE=4,由勾股定理得:AC==5,在Rt△DEC中,DE2+EC2=CD2,即OD2+(5﹣4)2=(3﹣OD)2,解得:OD=,所以D的坐标为(0,),故答案为:(0,).17.如图,在△AOB中,∠AOB=90°,点A的坐标为(2,1),BO=2,反比例函数y=的图象经过点B,则k的值为﹣8.【考点】反比例函数图象上点的坐标特征;相似三角形的判定与性质.【分析】根据∠AOB=90°,先过点A作AC⊥x轴,过点B作BD⊥x轴,构造相似三角形,再利用相似三角形的对应边成比例,列出比例式进行计算,求得点B的坐标,进而得出k 的值.【解答】解:过点A作AC⊥x轴,过点B作BD⊥x轴,垂足分别为C、D,则∠OCA=∠BDO=90°,∴∠DBO+∠BOD=90°,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∴∠DBO=∠AOC,∴△DBO∽△COA,∴,∵点A的坐标为(2,1),∴AC=1,OC=2,∴AO==,∴,即BD=4,DO=2,∴B(﹣2,4),∵反比例函数y=的图象经过点B,∴k的值为﹣2×4=﹣8.故答案为:﹣818.如图,点A1(2,2)在直线y=x上,过点A1作A1B1∥y轴交直线y=x于点B1,以点A1为直角顶点,A1B1为直角边在A1B1的右侧作等腰直角△A1B1C1,再过点C1作A2B2∥y轴,分别交直线y=x和y=x于A2,B2两点,以点A2为直角顶点,A2B2为直角边在A2B2的右侧作等腰直角△A2B2C2…,按此规律进行下去,则等腰直角△A n B n C n的面积为.(用含正整数n的代数式表示)【考点】一次函数图象上点的坐标特征;等腰直角三角形.【分析】先根据点A1的坐标以及A1B1∥y轴,求得B1的坐标,进而得到A1B1的长以及△A1B1C1面积,再根据A2的坐标以及A2B2∥y轴,求得B2的坐标,进而得到A2B2的长以及△A2B2C2面积,最后根据根据变换规律,求得A n B n的长,进而得出△A n B n C n的面积即可.【解答】解:∵点A1(2,2),A1B1∥y轴交直线y=x于点B1,∴B1(2,1)∴A1B1=2﹣1=1,即△A1B1C1面积=×12=;∵A1C1=A1B1=1,∴A2(3,3),又∵A2B2∥y轴,交直线y=x于点B2,∴B2(3,),∴A2B2=3﹣=,即△A2B2C2面积=×()2=;以此类推,A3B3=,即△A3B3C3面积=×()2=;A4B4=,即△A4B4C4面积=×()2=;…∴A n B n=()n﹣1,即△A n B n C n的面积=×[()n﹣1]2=.故答案为:三、解答题(第19小题10分,第20-25小题各12分,第26小题14分,共96分)19.先化简:(2x﹣)÷,然后从0,1,﹣2中选择一个适当的数作为x的值代入求值.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式=(﹣)÷=•=,当x=﹣2时,原式==.20.某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.为提前了解学生的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有50人,在扇形统计图中,m的值是30%;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)首先用选舞蹈课的人数除以它占本次调查的学生总人数的百分率,求出本次调查的学生共有多少人;然后用选乐器课的人数除以本次调查的学生总人数,求出在扇形统计图中,m的值是多少即可;(2)首先用本次调查的学生总人数乘参加绘画课、书法课的人数占总人数的百分率,求出参加绘画课、书法课的人数各是多少;然后根据参加绘画课、书法课的人数,将条形统计图补充完整即可;(3)首先判断出在被调查的学生中,选修书法的有3名男同学,2名女同学,然后应用列表法,写出所抽取的2名同学恰好是1名男同学和1名女同学的概率是多少即可.【解答】解:(1)20÷40%=50(人)15÷50=30%答:本次调查的学生共有50人,在扇形统计图中,m的值是30%.(2)50×20%=10(人)50×10%=5(人).(3)∵5﹣2=3(名),∴选修书法的5名同学中,有3名男同学,2名女同学,男男男女女男/ (男,男)(男,男)(男,女)(男,女)男(男,男)/ (男,男)(男,女)(男,女)男(男,男)(男,男)/ (男,女)(男,女)女(女,男)(女,男)(女,男)/ (女,女)女(女,男)(女,男)(女,男)(女,女)/所有等可能的情况有20种,所抽取的2名同学恰好是1名男同学和1名女同学的情况有12种,则P(一男一女)==答:所抽取的2名同学恰好是1名男同学和1名女同学的概率是.故答案为:50、30%.21.在纪念中国抗日战争胜利70周年之际,某公司决定组织员工观看抗日战争题材的影片,门票有甲乙两种,甲种票比乙种票每张贵6元;买甲种票10张,乙种票15张共用去660元.(1)求甲、乙两种门票每张各多少元?(2)如果公司准备购买35张门票且购票费用不超过1000元,那么最多可购买多少张甲种票?【考点】一元一次不等式的应用;一元一次方程的应用.【分析】(1)设乙种门票每张x元,则甲种门票每张(x+6)元,根据“买甲种票10张,乙种票15张共用去660元”列方程即可求解;(2)设可购买y张甲种票,则购买(35﹣y)张乙种票,根据购票费用不超过1000元列出不等式即可求解.【解答】解:(1)设乙种门票每张x元,则甲种门票每张(x+6)元,根据题意得10(x+6)+15x=660,解得x=24.答:甲、乙两种门票每张各30元、24元;(2)设可购买y张甲种票,则购买(35﹣y)张乙种票,根据题意得30y+24(35﹣y)≤1000,解得y≤26.答:最多可购买26张甲种票.22.在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B两个凉亭之间的距离.如图,现测得∠ABC=30°,∠CBA=15°,AC=200米,请计算A,B两个凉亭之间的距离(结果精确到1米)(参考数据:≈1.414,≈1.732)【考点】解直角三角形的应用.【分析】过点A作AD⊥BC,交BC延长线于点D,根据∠ABC=30°、∠CBA=15°求得∠CAD=45°,RT△ACD中由AC=200米知AD=ACcos∠CAD,再根据AB=可得答案.【解答】解:过点A作AD⊥BC,交BC延长线于点D,∵∠B=30°,∴∠BAD=60°,又∵∠BAC=15°,∴∠CAD=45°,在RT△ACD中,∵AC=200米,∴AD=ACcos∠CAD=200×=100(米),∴AB===200≈283(米),答:A,B两个凉亭之间的距离约为283米.23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交线段BC,AC于点D,E,过点D作DF⊥AC,垂足为F,线段FD,AB的延长线相交于点G.(1)求证:DF是⊙O的切线;(2)若CF=1,DF=,求图中阴影部分的面积.【考点】切线的判定;等腰三角形的性质;扇形面积的计算.【分析】(1)连接AD、OD,由AB为直径可得出点D为BC的中点,由此得出OD为△BAC的中位线,再根据中位线的性质即可得出OD⊥DF,从而证出DF是⊙O的切线;(2)CF=1,DF=,通过解直角三角形得出CD=2、∠C=60°,从而得出△ABC为等边三角形,再利用分割图形求面积法即可得出阴影部分的面积.【解答】(1)证明:连接AD、OD,如图所示.∵AB为直径,∴∠ADB=90°,∴AD⊥BC,∵AC=AB,∴点D为线段BC的中点.∵点O为AB的中点,∴OD为△BAC的中位线,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线.(2)解:在Rt△CFD中,CF=1,DF=,∴tan∠C==,CD=2,∴∠C=60°,∵AC=AB ,∴△ABC 为等边三角形, ∴AB=4. ∵OD ∥AC ,∴∠DOG=∠BAC=60°,∴DG=OD •tan ∠DOG=2, ∴S 阴影=S △ODG ﹣S 扇形OBD =DG •OD ﹣πOB 2=2﹣π.24.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y (本)与每本纪念册的售价x (元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y 与x 的函数关系式; (2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元? (3)设该文具店每周销售这种纪念册所获得的利润为w 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少? 【考点】二次函数的应用;一元二次方程的应用. 【分析】(1)设y=kx +b ,根据题意,利用待定系数法确定出y 与x 的函数关系式即可; (2)根据题意结合销量×每本的利润=150,进而求出答案;(3)根据题意结合销量×每本的利润=w ,进而利用二次函数增减性求出答案. 【解答】解:(1)设y=kx +b , 把(22,36)与(24,32)代入得:,解得:,则y=﹣2x +80;(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x 元,根据题意得:(x ﹣20)y=150, 则(x ﹣20)(﹣2x +80)=150, 整理得:x 2﹣60x +875=0, (x ﹣25)(x ﹣35)=0,解得:x 1=25,x 2=35(不合题意舍去), 答:每本纪念册的销售单价是25元;(3)由题意可得:w=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,此时当x=30时,w最大,又∵售价不低于20元且不高于28元,=﹣2(28﹣30)2+200=192(元),∴x<30时,y随x的增大而增大,即当x=28时,w最大答:该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.25.如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)请直接写出线段AF,AE的数量关系AF=AE;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.【考点】四边形综合题.【分析】(1)如图①中,结论:AF=AE,只要证明△AEF是等腰直角三角形即可.(2)如图②中,结论:AF=AE,连接EF,DF交BC于K,先证明△EKF≌△EDA再证明△AEF是等腰直角三角形即可.(3)如图③中,结论不变,AF=AE,连接EF,延长FD交AC于K,先证明△EDF≌△ECA,再证明△AEF是等腰直角三角形即可.【解答】解:(1)如图①中,结论:AF=AE.理由:∵四边形ABFD是平行四边形,∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF,∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形,∴AF=AE.故答案为AF=AE.(2)如图②中,结论:AF=AE.理由:连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴EKF=180°﹣∠DKE=135°,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE,∵∠DKC=∠C,∴DK=DC,∵DF=AB=AC,∴KF=AD,在△EKF和△EDA中,,∴△EKF≌△EDA,∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.(3)如图③中,结论不变,AF=AE.理由:连接EF,延长FD交AC于K.∵∠EDF=180°﹣∠KDC﹣∠EDC=135°﹣∠KDC,∠ACE=(90°﹣∠KDC)+∠DCE=135°﹣∠KDC,∴∠EDF=∠ACE,∵DF=AB,AB=AC,∴DF=AC在△EDF和△ECA中,,∴△EDF≌△ECA,∴EF=EA,∠FED=∠AEC,∴∠FEA=∠DEC=90°,∴△AEF是等腰直角三角形,∴AF=AE.26.如图,抛物线y=﹣x2+bx+c与x轴交于点A,点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在平面内,以线段MN为对角线作正方形MPNQ,请直接写出点Q的坐标.【考点】二次函数综合题.【分析】(1)由点B、C的坐标利用待定系数法即可求出抛物线的解析式,再利用配方法将抛物线解析式变形成顶点式即可得出结论;(2)设线段BF与y轴交点为点F′,设点F′的坐标为(0,m),由相似三角形的判定及性质可得出点F′的坐标,根据点B、F′的坐标利用待定系数法可求出直线BF的解析式,联立直线BF和抛物线的解析式成方程组,解方程组即可求出点F的坐标;(3)设对角线MN、PQ交于点O′,如图2所示.根据抛物线的对称性结合正方形的性质可得出点P、Q的位置,设出点Q的坐标为(2,2n),由正方形的性质可得出点M的坐标为(2﹣n,n).由点M在抛物线图象上,即可得出关于n的一元二次方程,解方程可求出n值,代入点Q的坐标即可得出结论.【解答】解:(1)将点B(6,0)、C(0,6)代入y=﹣x2+bx+c中,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+6.∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴点D的坐标为(2,8).(2)设线段BF与y轴交点为点F′,设点F′的坐标为(0,m),如图1所示.∵∠F′BO=∠FBA=∠BDE,∠F′OB=∠BED=90°,∴△F′BO∽△BDE,∴.∵点B(6,0),点D(2,8),∴点E(2,0),BE=6﹣4=4,DE=8﹣0=8,OB=6,∴OF′=•OB=3,∴点F′(0,3)或(0,﹣3).设直线BF的解析式为y=kx±3,则有0=6k+3或0=6k﹣3,解得:k=﹣或k=,∴直线BF的解析式为y=﹣x+3或y=x﹣3.。

中考2016年辽宁省沈阳市中考数学试卷

中考2016年辽宁省沈阳市中考数学试卷

2016年辽宁省沈阳市中考数学试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的。

每小题2分,共20分)1.下列各数是无理数的是()A.0 B.﹣1 C.D.【考点】无理数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:0,﹣1,是有理数,是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(2016•沈阳)如图是由4个大小相同的小立方块搭成的几何体,这个几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】画出从上往下看的图形即可.【解答】解:这个几何体的俯视图为.故选A.【点评】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.3.在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为()A.0.54×107B.54×105C.5.4×106D.5.4×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:5400000用科学记数法表示为5.4×106,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,在平面直角坐标系中,点P是反比例函数y=(x>0)图象上的一点,分别过点P作PA⊥x轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,则k的值为()A.3 B.﹣3 C.D.﹣【考点】反比例函数系数k的几何意义.【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.再由函数图象所在的象限确定k的值即可.【解答】解:∵点P是反比例函数y=(x>0)图象上的一点,分别过点P作PA⊥x轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,∴矩形OAPB的面积S=|k|=3,解得k=±3.又∵反比例函数的图象在第一象限,∴k=3.故选A.【点评】本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.5.“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.下列计算正确的是()A.x4+x4=2x8B.x3•x2=x6C.(x2y)3=x6y3D.(x﹣y)(y﹣x)=x2﹣y2【考点】整式的混合运算.【专题】存在型.【分析】先计算出各个选项中式子的正确结果,即可得到哪个选项是正确的,本题得以解决.【解答】解:∵x4+x4=2x4,故选项A错误;∵x3•x2=x5,故选项B错误;∵(x2y)3=x6y3,故选项C正确;∵(x﹣y)(y﹣x)=﹣x2+2xy﹣y2,故选项D错误;故选C.【点评】本题考查整式的混合运算,解题的关键是明确整式的混合运算的计算方法.7.已知一组数据:3,4,6,7,8,8,下列说法正确的是()A.众数是2 B.众数是8 C.中位数是6 D.中位数是7【考点】众数;中位数.【分析】根据众数和中位数的定义求解.【解答】解:数据:3,4,6,7,8,8的众数为8,中为数为6.5.故选B.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数定义.8.一元二次方程x2﹣4x=12的根是()A.x1=2,x2=﹣6 B.x1=﹣2,x2=6 C.x1=﹣2,x2=﹣6 D.x1=2,x2=6【考点】解一元二次方程-因式分解法.【专题】计算题;一次方程(组)及应用.【分析】方程整理后,利用因式分解法求出解即可.【解答】解:方程整理得:x2﹣4x﹣12=0,分解因式得:(x+2)(x﹣6)=0,解得:x1=﹣2,x2=6,故选B【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.9.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A.B.4 C.8D.4【考点】解直角三角形.【分析】根据cosB=及特殊角的三角函数值解题即可.【解答】解:∵在Rt△ABC中,∠C=90°,∠B=30°,AB=8,cosB=,即cos30°=,∴BC=8×=4;故选:D.【点评】本题考查了三角函数的定义及特殊角的三角函数值,是基础知识,需要熟练掌握.10.在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A.y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣4【考点】二次函数图象上点的坐标特征;二次函数的最值.【分析】根据抛物线解析式求得抛物线的顶点坐标,结合函数图象的增减性进行解答.【解答】解:y=x2+2x﹣3=(x+3)(x﹣1),则该抛物线与x轴的两交点横坐标分别是﹣3、1.又y=x2+2x﹣3=(x+1)2﹣4,∴该抛物线的顶点坐标是(﹣1,﹣4),对称轴为x=﹣1.A、无法确定点A、B离对称轴x=﹣1的远近,故无法判断y1与y2的大小,故本选项错误;B、无法确定点A、B离对称轴x=﹣1的远近,故无法判断y1与y2的大小,故本选项错误;C、y的最小值是﹣4,故本选项错误;D、y的最小值是﹣4,故本选项正确.故选:D.【点评】本题考查了二次函数图象上点的坐标特征,二次函数的最值,解题时,利用了“数形结合”的数学思想.二、填空题11.分解因式:2x2﹣4x+2=2(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因数2,再利用完全平方公式进行二次分解.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:2x2﹣4x+2,=2(x2﹣2x+1),=2(x﹣1)2.【点评】本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式.12.若一个多边形的内角和是540°,则这个多边形是五边形.【考点】多边形内角与外角.【分析】根据多边形的内角和公式求出边数即可.【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5,故答案为:五.【点评】本题考查了多边形的内角和定理,熟记公式是解题的关键.13.化简:(1﹣)•(m+1)=m.【考点】分式的混合运算.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式=•(m+1)=m,故答案为:m【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.14.三个连续整数中,n是最大的一个,这三个数的和为3n﹣3.【考点】列代数式.【专题】应用题.【分析】先利用连续整数的关系用n表示出最小的数和中间的整数,然后把三个数相加即可.【解答】解:这三个数的和为n﹣2+n﹣1+n=3n﹣3.故答案为3n﹣3.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.本题的关键是表示出最小整数.15.在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲,乙两车分别从A,B两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图表示,当甲车出发h时,两车相距350km.【考点】一次函数的应用.【分析】根据图象,可得A与C的距离等于B与C的距离,根据行驶路程与时间的关系,可得相应的速度,根据甲、乙的路程,可得方程,根据解方程,可得答案.【解答】解:由题意,得AC=BC=240km,甲的速度240÷4=60km/h,乙的速度240÷30=80km/h.设甲出发x小时甲乙相距350km,由题意,得60x+80(x﹣1)+350=240×2,解得x=,答:甲车出发h时,两车相距350km,故答案为:.【点评】本题考查了一次函数的应用,利用题意找出等量关系是解题关键.16.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是或.【考点】三角形中位线定理.【分析】分两种情形讨论即可①∠MN′O′=90°,根据=计算即可②∠MON=90°,利用△DOE∽△EFM,得=计算即可.【解答】解:如图作EF⊥BC于F,DN′⊥BC于N′交EM于点O′,此时∠MN′O′=90°,∵DE是△ABC中位线,∴DE∥BC,DE=BC=10,∵DN′∥EF,∴四边形DEFN′是平行四边形,∵∠EFN′=90°,∴四边形DEFN′是矩形,∴EF=DN′,DE=FN′=10,∵AB=AC,∠A=90°,∴∠B=∠C=45°,∴BN′=DN′=EF=FC=5,∴=,∴=,∴DO′=.当∠MON=90°时,∵△DOE∽△EFM,∴=,∵EM==13,∴DO=,故答案为或.【点评】本题考查三角形中位线定理、矩形的判定和性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会分类讨论,学会添加常用辅助线,属于中考常考题型.三、解答题17.计算:(π﹣4)0+|3﹣tan60°|﹣()﹣2+.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】直接利用零指数幂的性质以及绝对值的性质和特殊角的三角函数值、负整数指数幂的性质、二次根式的性质分别化简求出答案.【解答】解:原式=1+3﹣﹣4+3,=2.【点评】此题主要考查了实数运算,正确掌握相关性质进而化简是解题关键.18.为了传承优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A,B,C依次表示这三个诵读材料),将A,B,C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小明诵读《论语》的概率是;(2)请用列表法或画树状图(树形图)法求小明和小亮诵读两个不同材料的概率.【考点】列表法与树状图法;概率公式.【分析】(1)利用概率公式直接计算即可;(2)列举出所有情况,看小明和小亮诵读两个不同材料的情况数占总情况数的多少即可.【解答】解:(1)∵诵读材料有《论语》,《三字经》,《弟子规》三种, ∴小明诵读《论语》的概率=,故答案为:; (2)列表得:由表格可知,共有9种等可能性结果,其中小明和小亮诵读两个不同材料结果有6种. 所以小明和小亮诵读两个不同材料的概率=.【点评】本题考查了用列表法或画树形图发球随机事件的概率,用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的易错点.19.如图,△ABC ≌△ABD ,点E 在边AB 上,CE ∥BD ,连接DE .求证: (1)∠CEB=∠CBE ; (2)四边形BCED 是菱形.【考点】菱形的判定;全等三角形的性质. 【专题】证明题.【分析】(1)欲证明∠CEB=∠CBE ,只要证明∠CEB=∠ABD ,∠CBE=∠ABD 即可. (2)先证明四边形CEDB 是平行四边形,再根据BC=BD 即可判定. 【解答】证明;(1)∵△ABC ≌△ABD ,∴∠ABC=∠ABD,∵CE∥BD,∴∠CEB=∠DBE,∴∠CEB=∠CBE.(2))∵△ABC≌△ABD,∴BC=BD,∵∠CEB=∠CBE,∴CE=CB,∴CE=BD∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.【点评】本题考查全等三角形的性质、菱形的判定、平行四边形的判定等知识,熟练掌握全等三角形的性质是解题的关键,记住平行四边形、菱形的判定方法,属于中考常考题型.20.我市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校m名学生最喜欢的一种项目(2016•沈阳)如图,在△ABC中,以AB为直径的⊙O分别于BC,AC相交于点D,E,BD=CD,过点D 作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为5,∠CDF=30°,求的长(结果保留π).【考点】切线的性质;弧长的计算.【分析】(1)连接OD,由切线的性质即可得出∠ODF=90°,再由BD=CD,OA=OB可得出OD是△ABC的中位线,根据三角形中位线的性质即可得出,根据平行线的性质即可得出∠CFD=∠ODF=90°,从而证出DF⊥AC;(2)由∠CDF=30°以及∠ODF=90°即可算出∠ODB=60°,再结合OB=OD可得出△OBD是等边三角形,根据弧长公式即可得出结论.【解答】(1)证明:连接OD,如图所示.∵DF是⊙O的切线,D为切点,∴OD⊥DF,∴∠ODF=90°.∵BD=CD,OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∴∠CFD=∠ODF=90°,∴DF⊥AC.(2)解:∵∠CDF=30°,由(1)得∠ODF=90°,∴∠ODB=180°﹣∠CDF﹣∠ODF=60°.∴△OBD是等边三角形,∴∠BOD=60°,∴的长===π.【点评】本题考查了切线的性质、弧长公式、平行线的性质、三角形中位线定理以及等边三角形的判断,解题的关键是:(1)求出∠CFD=∠ODF=90°;(2)找出△OBD是等边三角形.本题属于中档题,难度不大,解决该题型题目时,通过角的计算找出90°的角是关键.22.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设购买A种型号健身器材x套,B型器材健身器材y套,根据:“A,B两种型号的健身器材共50套、共支出20000元”列方程组求解可得;(2)设购买A型号健身器材m套,根据:A型器材总费用+B型器材总费用≤18000,列不等式求解可得.【解答】解:(1)设购买A种型号健身器材x套,B型器材健身器材y套,根据题意,得:,解得:,答:购买A种型号健身器材20套,B型器材健身器材30套.(3)设购买A型号健身器材m套,根据题意,得:310m+460(50﹣m)≤18000,解得:m≥33,∴m的最小值为34,答:A种型号健身器材至少要购买34套.【点评】本题主要考查二元一次方程组与一元一次不等式的应用,审清题意得到相等关系或不等关系是解题的关键.23.如图,在平面直角坐标系中,△AOB的顶点O为坐标原点,点A的坐标为(4,0),点B的坐标为(0,1),点C为边AB的中点,正方形OBDE的顶点E在x轴的正半轴上,连接CO,CD,CE.(1)线段OC的长为;(2)求证:△CBD≌△COE;(3)将正方形OBDE沿x轴正方向平移得到正方形O1B1D1E1,其中点O,B,D,E的对应点分别为点O1,B1,D1,E1,连接CD,CE,设点E的坐标为(a,0),其中a≠2,△CD1E1的面积为S.①当1<a<2时,请直接写出S与a之间的函数表达式;②在平移过程中,当S=时,请直接写出a的值.【考点】四边形综合题.【分析】(1)由点A的坐标为(4,0),点B的坐标为(0,1),利用勾股定理即可求得AB的长,然后由点C为边AB的中点,根据直角三角形斜边的中线等于斜边的一半,可求得线段OC的长;(2)由四边形OBDE是正方形,直角三角形斜边的中线等于斜边的一半,易得BD=OE,BC=OC,∠CBD=∠COE,即可证得:△CBD≌△COE;(3)①首先根据题意画出图形,然后过点C作CH⊥D1E1于点H,可求得△CD1E1的高与底,继而求得答案;②分别从1<a<2与a>2去分析求解即可求得答案.【解答】解:(1)∵点A的坐标为(4,0),点B的坐标为(0,1),∴OA=4,OB=1,∵∠AOB=90°,∴AB==,∵点C为边AB的中点,∴OC=AB=;故答案为:.(2)证明:∵∠AOB=90°,点C是AB的中点,∴OC=BC=AB,∴∠CBO=∠COB,∵四边形OBDE是正方形,∴BD=OE,∠DBO=∠EOB=90°,∴∠CBD=∠COE,在△CBD和△COE中,,∴△CBD≌△COE(SAS);(3)①解:过点C作CH⊥D1E1于点H,∵C是AB边的中点,∴点C的坐标为:(2,)∵点E的坐标为(a,0),1<a<2,∴CH=2﹣a,∴S=D1E1•CH=×1×(2﹣a)=﹣a+1;②当1<a <2时,S=﹣a+1=,解得:a=;当a >2时,同理:CH=a ﹣2,∴S=D 1E 1•CH=×1×(a ﹣2)=a ﹣1,∴S=a ﹣1=,解得:a=,综上可得:当S=时,a=或.【点评】此题属于四边形的综合题.考查了正方形的性质、直角三角形的性质、勾股定理、全等三角形的判定与性质以及三角形面积问题.注意掌握辅助线的作法,注意掌握分类讨论思想的应用是解此题的关键.24.在△ABC 中,AB=6,AC=BC=5,将△ABC 绕点A 按顺时针方向旋转,得到△ADE ,旋转角为α(0°<α<180°),点B 的对应点为点D ,点C 的对应点为点E ,连接BD ,BE . (1)如图,当α=60°时,延长BE 交AD 于点F . ①求证:△ABD 是等边三角形; ②求证:BF ⊥AD ,AF=DF ; ③请直接写出BE 的长;(2)在旋转过程中,过点D 作DG 垂直于直线AB ,垂足为点G ,连接CE ,当∠DAG=∠ACB ,且线段DG 与线段AE 无公共点时,请直接写出BE+CE 的值. 温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.【考点】三角形综合题.【分析】(1)①由旋转性质知AB=AD,∠BAD=60°即可得证;②由BA=BD、EA=ED根据中垂线性质即可得证;③分别求出BF、EF的长即可得;(2)由∠ACB+∠BAC+∠ABC=180°、∠DAG+∠DAE+∠BAE=180°、∠DAG=∠ACB、∠DAE=∠BAC得∠BAE=∠BAC且AE=AC,根据三线合一可得CE⊥AB、AC=5、AH=3,继而知CE=2CH=8、BE=5,即可得答案.【解答】解:(1)①∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AB=AD,∠BAD=60°,∴△ABD是等边三角形;②由①得△ABD是等边三角形,∴AB=BD,∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE,又∵AC=BC,∴EA=ED,∴点B、E在AD的中垂线上,∴BE是AD的中垂线,∵点F在BE的延长线上,∴BF⊥AD,AF=DF;③由②知BF⊥AD,AF=DF,∴AF=DF=3,∵AE=AC=5,∴EF=4,∵在等边三角形ABD中,BF=AB•sin∠BAF=6×=3,∴BE=BF﹣EF=3﹣4;(2)如图所示,∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,又∵∠DAG+∠DAE+∠BAE=180°,∴∠BAE=∠ABC,∵AC=BC=AE,∴∠BAC=∠ABC,∴∠BAE=∠BAC,∴AB⊥CE,且CH=HE=CE,∵AC=BC,∴AH=BH=AB=3,则CE=2CH=8,BE=5,∴BE+CE=13.【点评】本题主要考查旋转的性质、等边三角形的判定与性质、中垂线的性质、三角形内角和定理等知识点,熟练掌握旋转的性质是解题的关键.25.如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y=x2﹣3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①点B的坐标为(10、0),BK的长是8,CK的长是10;②求点F的坐标;③请直接写出抛物线的函数表达式;(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H 运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1•S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.【考点】二次函数综合题.【分析】(1)①根据四边形OCKB是矩形以及对称轴公式即可解决问题.②在RT△BKF中利用勾股定理即可解决问题.③设OA=AF=x,在RT△ACF中,AC=8﹣x,AF=x,CF=4,利用勾股定理即可解决问题.(2)不变.S1•S2=189.由△GHN∽△MHG,得=,得到GH2=HN•HM,求出GH2,根据S1•S2=•OG•HN••OG•HM即可解决问题.【解答】解:(1)如图1中,①∵抛物线y=x2﹣3x+m的对称轴x=﹣=10,∴点B坐标(10,0),∵四边形OBKC是矩形,∴CK=OB=10,KB=OC=8,故答案分别为10,0,8,10.②在RT△FBK中,∵∠FKB=90°,BF=OB=10,BK=OC=8,∴FK==6,∴CF=CK﹣FK=4,∴点F坐标(4,8).③设OA=AF=x,在RT△ACF中,∵AC2+CF2=AF2,∴(8﹣x)2+42=x2,∴x=5,∴点A坐标(0,5),代入抛物线y=x2﹣3x+m得m=5,∴抛物线为y=x2﹣3x+5.(2)不变.S1•S2=189.理由:如图2中,在RT△EDG中,∵GE=EO=17,ED=8,∴DG===15,∴CG=CD﹣DG=2,∴OG===2,∵CP⊥OM,MH⊥OG,∴∠NPN=∠NHG=90°,∵∠HNG+∠HGN=90°,∠PNM+∠PMN=90°,∠HNG=∠PNM,∴∠HGN=∠NMP,∵∠NMP=∠HMG,∠GHN=∠GHM,∴△GHN∽△MHG,∴=,∴GH2=HN•HM,∵GH=OH=,∴HN•HM=17,∵S1•S2=•OG•HN••OG•HM=(•2)2•17=289.中考真题【点评】本题考查二次函数综合题、矩形的性质、翻折变换相似三角形的判定和性质、勾股定理等知识,解题的关键是证明△GHN∽△MHG求出HN•HM的值,属于中考压轴题.。

2016年辽宁省沈阳市中考数学试卷(含答案)

2016年辽宁省沈阳市中考数学试卷(含答案)

2016年辽宁省沈阳市中考数学试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的。

每小题2分,共20分)1.(2分)(2016•沈阳)下列各数是无理数的是()A.0 B.﹣1 C.D.2.(2分)(2016•沈阳)如图是由4个大小相同的小立方块搭成的几何体,这个几何体的俯视图是()A.B.C.D.3.(2分)(2016•沈阳)在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为()A.0.54×107B.54×105C.5.4×106D.5.4×1074.(2分)(2016•沈阳)如图,在平面直角坐标系中,点P是反比例函数y=(x>0)图象上的一点,分别过点P作PA⊥x轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,则k的值为()A.3 B.﹣3 C.D.﹣5.(2分)(2016•沈阳)“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件6.(2分)(2016•沈阳)下列计算正确的是()A.x4+x4=2x8B.x3•x2=x6C.(x2y)3=x6y3D.(x﹣y)(y﹣x)=x2﹣y27.(2分)(2016•沈阳)已知一组数据:3,4,6,7,8,8,下列说法正确的是()A.众数是2 B.众数是8 C.中位数是6 D.中位数是78.(2分)(2016•沈阳)一元二次方程x2﹣4x=12的根是()A.x1=2,x2=﹣6 B.x1=﹣2,x2=6 C.x1=﹣2,x2=﹣6 D.x1=2,x2=69.(2分)(2016•沈阳)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A.B.4 C.8D.410.(2分)(2016•沈阳)在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A.y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣4二、填空题(每小题3分,共18分)11.(3分)(2016•沈阳)分解因式:2x2﹣4x+2=.12.(3分)(2016•沈阳)若一个多边形的内角和是540°,则这个多边形是边形.13.(3分)(2016•沈阳)化简:(1﹣)•(m+1)=.14.(3分)(2016•沈阳)三个连续整数中,n是最大的一个,这三个数的和为.15.(3分)(2016•沈阳)在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲,乙两车分别从A,B两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图表示,当甲车出发h时,两车相距350km.16.(3分)(2016•沈阳)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC 的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是.三、解答题17.(6分)(2016•沈阳)计算:(π﹣4)0+|3﹣tan60°|﹣()﹣2+.18.(8分)(2016•沈阳)为了传承优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A,B,C依次表示这三个诵读材料),将A,B,C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小明诵读《论语》的概率是;(2)请用列表法或画树状图(树形图)法求小明和小亮诵读两个不同材料的概率.19.(8分)(2016•沈阳)如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.20.(8分)(2016•沈阳)我市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校m名学生最喜欢的一种项目(每名学生必选且只能选择四种活动项目的一种),并将调查结果绘制成如下的不完整的统计图表:根据图表中提供的信息,解答下列问题:(1)m=,n=,p=;(2)请根据以上信息直接补全条形统计图;(3)根据抽样调查结果,请你估计该校2000名学生中有多少名学生最喜欢跳大绳.21.(8分)(2016•沈阳)如图,在△ABC中,以AB为直径的⊙O分别于BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为5,∠CDF=30°,求的长(结果保留π).22.(10分)(2016•沈阳)倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?23.(10分)(2016•沈阳)如图,在平面直角坐标系中,△AOB的顶点O为坐标原点,点A的坐标为(4,0),点B的坐标为(0,1),点C为边AB的中点,正方形OBDE的顶点E在x轴的正半轴上,连接CO,CD,CE.(1)线段OC的长为;(2)求证:△CBD≌△COE;(3)将正方形OBDE沿x轴正方向平移得到正方形O1B1D1E1,其中点O,B,D,E的对应点分别为点O1,B1,D1,E1,连接CD,CE,设点E的坐标为(a,0),其中a≠2,△CD1E1的面积为S.①当1<a<2时,请直接写出S与a之间的函数表达式;②在平移过程中,当S=时,请直接写出a的值.24.(12分)(2016•沈阳)在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.25.(12分)(2016•沈阳)如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y 轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y=x2﹣3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①点B的坐标为(、),BK的长是,CK的长是;②求点F的坐标;③请直接写出抛物线的函数表达式;(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H 运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1•S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.2016年辽宁省沈阳市中考数学试卷参考答案一、选择题1.C2.A3.C4.A5.D6.C7.B8.B9.D10.D二、填空题11.解:2x2﹣4x+2=2(x2﹣2x+1)=2(x﹣1)212.五.13.m14.3n﹣315.16.或三、解答题17.解:原式=1+3﹣﹣4+3,=2.18.解:(1)∵诵读材料有《论语》,《三字经》,《弟子规》三种,∴小明诵读《论语》的概率=,故答案为:;6种.所以小明和小亮诵读两个不同材料的概率=.19.证明;(1)∵△ABC≌△ABD,∴∠ABC=∠ABD,∵CE∥BD,∴∠CEB=∠DBE,∴∠CEB=∠CBE.(2))∵△ABC≌△ABD,∴BC=BD,∵∠CEB=∠CBE,∴CE=CB,∴CE=BD∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.20.(1)200,80,30;(2)如图,(3)2000×40%=800(人),21.(1)证明:连接OD,如图所示.∵DF是⊙O的切线,D为切点,∴OD⊥DF,∴∠ODF=90°.∵BD=CD,OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∴∠CFD=∠ODF=90°,∴DF⊥AC.(2)解:∵∠CDF=30°,由(1)得∠ODF=90°,∴∠ODB=180°﹣∠CDF﹣∠ODF=60°.∵OB=OD,∴△OBD是等边三角形,∴∠BOD=60°,∴的长===π.22.解:(1)设购买A种型号健身器材x套,B型器材健身器材y套,根据题意,得:,解得:,答:购买A种型号健身器材20套,B型器材健身器材30套.(3)设购买A型号健身器材m套,根据题意,得:310m+460(50﹣m)≤18000,解得:m≥33,∵m为整数,∴m的最小值为34,答:A种型号健身器材至少要购买34套.23.解:(1)∵点A的坐标为(4,0),点B的坐标为(0,1),∴OA=4,OB=1,∵∠AOB=90°,∴AB==,∵点C为边AB的中点,∴OC=AB=;故答案为:.(2)证明:∵∠AOB=90°,点C是AB的中点,∴OC=BC=AB,∴∠CBO=∠COB,∵四边形OBDE是正方形,∴BD=OE,∠DBO=∠EOB=90°,∴∠CBD=∠COE,在△CBD和△COE中,,∴△CBD≌△COE(SAS);(3)①解:过点C作CH⊥D1E1于点H,∵C是AB边的中点,∴点C的坐标为:(2,)∵点E的坐标为(a,0),1<a<2,∴CH=2﹣a,∴S=D1E1•CH=×1×(2﹣a)=﹣a+1;②当1<a<2时,S=﹣a+1=,解得:a=;当a>2时,同理:CH=a﹣2,∴S=D1E1•CH=×1×(a﹣2)=a﹣1,∴S=a﹣1=,解得:a=,综上可得:当S=时,a=或.24.解:(1)①∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AB=AD,∠BAD=60°,∴△ABD是等边三角形;②由①得△ABD是等边三角形,∴AB=BD,∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE,又∵AC=BC,∴EA=ED,∴点B、E在AD的中垂线上,∴BE是AD的中垂线,∵点F在BE的延长线上,∴BF⊥AD,AF=DF;③由②知BF⊥AD,AF=DF,∴AF=DF=3,∵AE=AC=5,∴EF=4,∵在等边三角形ABD中,BF=AB•sin∠BAF=6×=3,∴BE=BF﹣EF=3﹣4;(2)如图所示,∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,又∵∠DAG+∠DAE+∠BAE=180°,∴∠BAE=∠ABC,∵AC=BC=AE,∴∠BAC=∠ABC,∴∠BAE=∠BAC,∴AB⊥CE,且CH=HE=CE,∵AC=BC,∴AH=BH=AB=3,则CE=2CH=8,BE=5,∴BE+CE=13.25.解:(1)如图1中,①∵抛物线y=x2﹣3x+m的对称轴x=﹣=10,∴点B坐标(10,0),∵四边形OBKC是矩形,∴CK=OB=10,KB=OC=8,故答案分别为10,0,8,10.②在RT△FBK中,∵∠FKB=90°,BF=OB=10,BK=OC=8,∴FK==6,∴CF=CK﹣FK=4,∴点F坐标(4,8).③设OA=AF=x,在RT△ACF中,∵AC2+CF2=AF2,∴(8﹣x)2+42=x2,∴x=5,∴点A坐标(0,5),代入抛物线y=x2﹣3x+m得m=5,∴抛物线为y=x2﹣3x+5.(2)不变.S1•S2=189.理由:如图2中,在RT△EDG中,∵GE=EO=17,ED=8,∴DG===15,∴CG=CD﹣DG=2,∴OG===2,∵CP⊥OM,MH⊥OG,∴∠NPN=∠NHG=90°,∵∠HNG+∠HGN=90°,∠PNM+∠PMN=90°,∠HNG=∠PNM,∴∠HGN=∠NMP,∵∠NMP=∠HMG,∠GHN=∠GHM,∴△GHN∽△MHG,∴=,∴GH2=HN•HM,∵GH=OH=,∴HN•HM=17,∵S1•S2=•OG•HN••OG•HM=(•2)2•17=289.。

2016年辽宁省沈阳市中考数学试卷-答案

2016年辽宁省沈阳市中考数学试卷-答案

2.【答案】A
【解析】这个几何体的俯视图为,故选A.
25
=,故选项x x
错误;故选
2)180540
︒=
【提示】根据多边形的内角和公式求出边数即可.
1
+=
m m
(1)
【提示】原式括号中两项通分并利用同分母分式的减法法则计算,约分即可得到结果
613
ED DO
'
或画树状图得:
=,∴四边形CEDB是菱形. ∵BC BD
30 (2)
(3)估计该校2000名学生中约有800名学生最喜欢跳大绳
【解析】(1)2010%200m =÷=,=20040%=80n ⨯,60200=30%÷,30p =,
故答案为:200,80,30;
(2)如图:
(3)200040%=800⨯(名),
估计该校2000名学生中约有800名学生最喜欢跳大绳.
【提示】(1)根据丢沙包的人数和所占的百分比确定m 的值,进而确定n 的值.根据所有项目的百分比之和为1确定p 的值;
(2)根据n 的值补全条形统计图;
(3)以样本的频率作为总体的概率估计全校喜欢跳大绳的人数.
【考点】统计表,条形统计图,利用样本估计总体
21.【答案】(1)证明:连接OD ,如图所示.
∵DF 是⊙O 的切线,D 为切点,∴OD DF ⊥,∴90ODF ∠=︒.
∵BD CD =,OA OB =,∴OD 是△ABC 的中位线,∴OD ∥AC ,∴90CFD ODF ∠=∠=︒,
∴DF AC ⊥.
422
∴13
+=.
BE CE
20
12189S =.
中,
21217)17289222
=.。

2016年辽宁省辽阳市中考数学试卷Word版

2016年辽宁省辽阳市中考数学试卷Word版

2016年辽宁省辽阳市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分) 1.-2的倒数数是( )A .2 B .21 C .-2 D .﹣212.下列运算正确的是( ) A .a ﹣(﹣a )=﹣2a B .a 5•(﹣a 3)=a 8 C .(﹣a 2b )3= ﹣a 6b 3 D .(a+b )(b ﹣a )=a 2﹣b 23.如图是由5个相同的小正方体构成的几何体,其左视图是( )A .B .C .D .4. 一组数据﹣3,3,﹣2,3, 1的中位数是( ) A .﹣3 B .﹣2 C .1 D .35.现有3张正面图形分别是等边三角形、平行四边形、正方形的卡片,它们除正面图形不同,其他完全相同,将它们背面朝上洗匀后,从中随机抽取1张卡片,卡片的正面图形是中心对称图形的概率是( )A .31B .32C .61D .656.如图,将一个含有30°角的直角三角尺放置在两条平行线a ,b 上.若∠1=135°,则∠2的度数为( ) A .95° B .110° C .105° D .115°7.关于x 的一元二次方程ax 2﹣2x+1=0有两个不相等的实数根,则a 的取值范围是( ) A .a ≤1 B .a <1 C .a ≤1且a ≠0 D .a <1且a ≠08.已知一次函数y=kx+b 的图象如图所示,当y >﹣3时,x 的取值范围是( ) A .x >﹣1 B .x <0 C .x <﹣1 D .x >07题 8题 9题9.如图,点A 为反比例函数x y 8=(x >0)图象上一点,点B 为反比例函数xky =(x <0)图象上一点,直线AB过原点O ,且OA=2OB ,则k 的值为( )A .2 B .4 C .﹣2 D .﹣410.将抛物线c x x y +-=422向左平移2个单位长度得到的抛物线经过三点(﹣4,y 1),(﹣2 ,y 2),(21,y 3),则y 1,y 2,y 3 的大小关系是( ) A .y 2>y 3>y 1 B .y 1>y 2>y 3 C .y 2>y 1>y 3 D .y 1>y 3>y 2 二、填空题(本题共8小题,每小题3分,共24分) 11.据中国互联网信息中心统计,中国网民数约为688 000 000人,将688 000 000用科学记数法表示为 .12.分解因式:4x 2y ﹣4xy+y= .13.跳远训练时,甲、乙两名同学在相同条件下各跳了10次.统计他们的平均成绩都是5.68m ,且方差分别为S 2甲=0.3和S 2乙=0.4,则成绩较稳定的是 同学.14.在一个不透明的口袋中,装有除颜色外无其他差别的4个白球和n 个黄球.某同学进行了如下实验:从袋中随机摸出1个球记下它的颜色,放回摇匀,为一次摸球实验.记录摸球的次数与摸出白球的次数的列表如下:摸球实验的次数 100 200 500 100摸球白球的次数2139102199根据列表可以估计出n 的值为 .15.如图,在∆ABC 中,∠ACB=90°,BC=1,AC=2.将∆ABC 绕点C 按逆时针方向旋转90°得到∆A 1B 1C ,连接A 1A,则∆A 1B 1A 的面积为 .16.如图,正五边形ABCDE 内接于⊙O ,点F 在CD 上,则∠BFE 的度数为 .17.如图,将一副三角尺拼成四边形ABCD ,点E 为AB 边的中点,AB=4,则点D 与点E 的距离是 .17题 18题 19题18.观察下列图形:它们是按一定规律排列的,依照此规律,第n 个图中共有 个★. 三、解答题(第19小题10分,第20-25小题各12分,第26小题14分,共96分)19.先化简,再求值:a a a a a a -++÷--22122442,其中a=2cos45°+(π-1)º.20.为进一步发展学生特长,某校要开设编织、摄影、航模、机器人四门校本课程,规定每名学生必须且只能选修一门校本课程,学校对学生选修本课程的情况进行了抽样调查,根据调查结果绘制了下面两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题. (1)本次调查,一共调查了 名学生;(2)补全条形统计图和扇形统计图;(3)若该学校共有1700名学生据此估计有多少名学生选修航模; (4)将2名选修摄影的学生和2名选修编织的学生编为一组,从中随机抽取2人,请用列表或画树状图的方法求出2人都选修编织的概率.21.为提高中小学的身体素质,各校大力开展校园足球活动,某体育用品商店抓住这一商机,第一次用30000元购进A ,B 两种型号的足球,并很快销售完毕,共获利12200元,共进价和售价如下表:(1)该体育用品商店购进A ,B 两种型号的足球各多少个? (2)该体育用品商店第二次准备用不过超过40000元的资金再次购进A ,B 两种型号的足球共260个,最少购进A 种型号的足球多少个?22.某数学小组开展测量物体高度的实践活动,他们要测量某建筑物上悬挂的电子显示屏的高度.如图所示,他们先在点A测得电子显示屏底端点D的仰角∠DAC=15°,然后向建筑物的方向前进10m到达点B,又测得电子显示屏顶端点E的仰角∠EBC=45°,测得电子显示屏底端点D的仰角∠DBC=30°.(点A,B,C在同一条直线上,且与点D,E在同一平面内,不考虑测角仪高度)(1)求此时他们离建筑的距离BC的长;(2)求电子显示屏DE的高度.(以上结果用含根号的式子表示)23.如图,在△ABC中,AB=AC,点D是BC边长一点,DE⊥AB,垂直为点E,点O在线段ED的延长线上,且⊙O经过C,D两点.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,CD的长为109π,请求出∠A的度数.24.某商店以每件50元的价格购进一批新型产品,如果按每件60元出售,那么每周可销售500件,根据试销规律,这种产品的销售单价每提高1元,其销售量每周相应减少10件,但每件产品的销售单价不低于60元,且不能高于85元,设每周的销售量为y(件),这种产品的销售单价为x(元),解答下列问题.(1)请直接写出y与x之间的函数关系式;(2)商家要想每周获得8000元的销售利润,销售单价应定为多少元?(3)销售单价为多少元时,每周获得的销售利润最大?最大利润是多少元?25.已知在菱形ABCD中,∠ABC=60∘,对角线AC、BD相交于点O,点E是线段BD上一动点(不与点B,D重合),连接AE,以AE为边在AE的右侧作菱形AEFG,且∠AEF=60∘.(1)如图1,若点F落在线段BD上,请判断:线段EF与线段DF的数量关系是 .(2)如图2,若点F不在线段BD上,其它条件不变,(1)中的结论是否仍然成立?请给出判断并予以证明;(3)若点C,E,G三点在同一直线上,其它条件不变,请直接写出线段BE与线段BD的数量关系。

2016年辽宁省朝阳市中考数学试卷附详细答案(原版+解析版)

2016年辽宁省朝阳市中考数学试卷附详细答案(原版+解析版)

2016年辽宁省朝阳市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题给出的四个选项中,只有一个是正确的.1.(3分)在下列实数中,﹣3,,0,2,﹣1中,绝对值最小的数是()A.﹣3 B.0 C.D.﹣12.(3分)“互联网+”已全面进入人们的日常生活,据有关部门统计,目前全国4G用户数达到4.62亿,其中4.62亿用科学记数法表示为()A.4.62×104B.4.62×106C.4.62×108D.0.462×1083.(3分)如图是由四个大小相同的正方体组成的几何体,那么它的主视图是()A.B.C.D.4.(3分)方程2x2=3x的解为()A.0 B.C. D.0,5.(3分)如图,已知a∥b,∠1=50°,∠2=90°,则∠3的度数为()A.40°B.50°C.150°D.140°6.(3分)若一组数据2,3,4,5,x的平均数与中位数相同,则实数x的值不可能的是()A.6 B.3.5 C.2.5 D.17.(3分)如图,分别以五边形ABCDE的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为()A.B.3π C.D.2π8.(3分)如图,直线y=mx(m≠0)与双曲线y=相交于A(﹣1,3)、B 两点,过点B作BC⊥x轴于点C,连接AC,则△ABC的面积为()A.3 B.1.5 C.4.5 D.69.(3分)如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.710.(3分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则下列结论:(1)b2﹣4ac>0;(2)2a=b;(3)点(﹣,y1)、(﹣,y2)、(,y3)是该抛物线上的点,则y1<y2<y3;(4)3b+2c<0;(5)t(at+b)≤a﹣b(t为任意实数).其中正确结论的个数是()A .2B .3C .4D .5二、填空题:本大题共6个小题,每小题3分,共18分.只需要将结果直接填写在答题卡对应题号处的横线上,不必写出解答过程,不填、错填,一律得0分.11.(3分)函数y=的自变量x 的取值范围是 .12.(3分)已知在平面直角坐标系中,点A (﹣3,﹣1)、B (﹣2,﹣4)、C (﹣6,﹣5),以原点为位似中心将△ABC 缩小,位似比为1:2,则点B 的对应点的坐标为 .13.(3分)若方程(x ﹣m )(x ﹣n )=3(m ,n 为常数,且m <n )的两实数根分别为a ,b (a <b ),则m ,n ,a ,b 的大小关系是 .14.(3分)如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若OA=8,CF=4,则点E 的坐标是 .15.(3分)通过学习,爱好思考的小明发现,一元二次方程的根完全由它的系数确定,即一元二次方程ax 2+bx+c=0(a ≠0),当b 2﹣4ac ≥0时有两个实数根:x 1=,x 2=,于是:x 1+x 2=,x 1•x 2=、这就是著名的韦达定理.请你运用上述结论解决下列问题:关于x 的一元二次方程x 2+kx+k+1=0的两实数根分别为x 1,x 2,且x 12+x 22=1,则k 的值为 .16.(3分)如图,在菱形ABCD中,tanA=,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,给出如下几个结论:(1)△AED≌△DFB;(2)CG与BD一定不垂直;(3)∠BGE的大小为定值;(4)S=CG2;四边形BCDG(5)若AF=2DF,则BF=7GF.其中正确结论的序号为.三、解答题:本大题共9小题,共72分,解答应写出必要的步骤,文字说明或证明过程.17.(5分)(﹣1)2016+2•cos60°﹣(﹣)﹣2+()0.18.(6分)先化简,再求值:,请你从﹣1≤x<3的范围内选取一个你喜欢的整数作为x的值.19.(7分)为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.20.(7分)如图,一渔船自西向东追赶鱼群,在A处测得某无名小岛C在北偏东60°方向上,前进2海里到达B点,此时测得无名小岛C在东北方向上.已知无名小岛周围2.5海里内有暗礁,问渔船继续追赶鱼群有无触礁危险?(参考数据:)21.(8分)为全面开展“大课间”活动,某校准备成立“足球”、“篮球”、“跳绳”、“踢毽”四个课外活动小组,学校体工处根据七年级学生的报名情况(每人限报一项)绘制了两幅不完整的统计图,请根据以上信息,完成下列问题:(1)m= ,n= ,并将条形统计图补充完整;(2)试问全校2000人中,大约有多少人报名参加足球活动小组?(3)根据活动需要,从“跳绳”小组的二男二女四名同学中随机选取两人到“踢毽”小组参加训练,请用列表或树状图的方法计算恰好选中一男一女两名同学的概率.22.(8分)如图,Rt△ABC中,∠ACB=90°,AD为∠BAC的平分线,以AB上一点O为圆心的半圆经过A、D两点,交AB于E,连接OC交AD于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若OF:FC=2:3,CD=3,求BE的长.23.(9分)为备战2016年里约奥运会,中国女排的姑娘们刻苦训练,为国争光,如图,已知排球场的长度OD为18米,位于球场中线处球网的高度AB为2.43米,一队员站在点O处发球,排球从点O的正上方1.8米的C点向正前方飞出,当排球运行至离点O的水平距离OE为7米时,到达最高点G建立如图所示的平面直角坐标系.(1)当球上升的最大高度为3.2米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)的函数关系式.(不要求写自变量x的取值范围).(2)在(1)的条件下,对方距球网0.5米的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.(3)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)24.(10分)小颖在学习“两点之间线段最短”查阅资料时发现:△ABC内总存在一点P与三个顶点的连线的夹角相等,此时该点到三个顶点的距离之和最小.【特例】如图1,点P为等边△ABC的中心,将△ACP绕点A逆时针旋转60°得到△ADE,从而有DE=PC,连接PD得到PD=PA,同时∠APB+∠APD=120°+60°=180°,∠ADP+∠ADE=180°,即B、P、D、E四点共线,故PA+PB+PC=PD+PB+DE=BE.在△ABC中,另取一点P′,易知点P′与三个顶点连线的夹角不相等,可证明B、P′、D′、E四点不共线,所以P′A+P′B+P′C>PA+PB+PC,即点P到三个顶点距离之和最小.【探究】(1)如图2,P为△ABC内一点,∠APB=∠BPC=120°,证明PA+PB+PC 的值最小;【拓展】(2)如图3,△ABC中,AC=6,BC=8,∠ACB=30°,且点P为△ABC内一点,求点P到三个顶点的距离之和的最小值.25.(12分)如图1,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴从左至右交于A,B两点,与y轴交于点C.(1)若抛物线过点T(1,﹣),求抛物线的解析式;(2)在第二象限内的抛物线上是否存在点D,使得以A、B、D三点为顶点的三角形与△ABC相似?若存在,求a的值;若不存在,请说明理由.(3)如图2,在(1)的条件下,点P的坐标为(﹣1,1),点Q(6,t)是抛物线上的点,在x轴上,从左至右有M、N两点,且MN=2,问MN在x轴上移动到何处时,四边形PQNM的周长最小?请直接写出符合条件的点M的坐标.2016年辽宁省朝阳市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题给出的四个选项中,只有一个是正确的.1.(3分)(2016•朝阳)在下列实数中,﹣3,,0,2,﹣1中,绝对值最小的数是()A.﹣3 B.0 C.D.﹣1【解析】|﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,∵3>2>>1>0,∴绝对值最小的数是0,故选:B.2.(3分)(2016•朝阳)“互联网+”已全面进入人们的日常生活,据有关部门统计,目前全国4G用户数达到4.62亿,其中4.62亿用科学记数法表示为()A.4.62×104B.4.62×106C.4.62×108D.0.462×108【解析】将4.62亿用科学记数法表示为:4.62×108.故选:C.3.(3分)(2016•朝阳)如图是由四个大小相同的正方体组成的几何体,那么它的主视图是()A.B.C.D.【解析】根据题意的主视图为:,故选B4.(3分)(2016•朝阳)方程2x2=3x的解为()A.0 B.C. D.0,【解析】方程整理得:2x2﹣3x=0,分解因式得:x(2x﹣3)=0,解得:x=0或x=,故选D5.(3分)(2016•朝阳)如图,已知a∥b,∠1=50°,∠2=90°,则∠3的度数为()A.40°B.50°C.150°D.140°【解析】作c∥a,∵a∥b,∴c∥b.∴∠1=∠5=50°,∴∠4=90°﹣50°=40°,∴∠6=∠4=40°,∴∠3=180°﹣40°=140°.故选D.6.(3分)(2016•朝阳)若一组数据2,3,4,5,x的平均数与中位数相同,则实数x的值不可能的是()A.6 B.3.5 C.2.5 D.1【解析】(1)将这组数据从小到大的顺序排列为2,3,4,5,x,处于中间位置的数是4,∴中位数是4,平均数为(2+3+4+5+x)÷5,∴4=(2+3+4+5+x)÷5,解得x=6;符合排列顺序;(2)将这组数据从小到大的顺序排列后2,3,4,x,5,中位数是4,此时平均数是(2+3+4+5+x)÷5=4,解得x=6,不符合排列顺序;(3)将这组数据从小到大的顺序排列后2,3,x,4,5,中位数是x,平均数(2+3+4+5+x)÷5=x,解得x=3.5,符合排列顺序;(4)将这组数据从小到大的顺序排列后2,x,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,不符合排列顺序;(5)将这组数据从小到大的顺序排列后x,2,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,符合排列顺序;∴x的值为6、3.5或1.故选C.7.(3分)(2016•朝阳)如图,分别以五边形ABCDE的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为()A.B.3π C.D.2π【解析】n边形的内角和(n﹣2)×180°,圆形的空白部分的面积之和S==π=π=π.所以图中阴影部分的面积之和为:5πr2﹣π=5π﹣π=π.故选:C.8.(3分)(2016•朝阳)如图,直线y=mx(m≠0)与双曲线y=相交于A (﹣1,3)、B两点,过点B作BC⊥x轴于点C,连接AC,则△ABC的面积为()A.3 B.1.5 C.4.5 D.6【解析】∵直线y=mx(m≠0)与双曲线y=相交于A(﹣1,3),∴﹣m=3,,∴m=﹣3,n=﹣3,∴直线的解析式为:y=﹣3x,双曲线的解析式为:y=﹣解方程组得:,则点A的坐标为(﹣1,3),点B的坐标为(1,﹣3)∴点C的坐标为(1,0)=×1×(3+3)=3∴S△ABC故:选A9.(3分)(2016•朝阳)如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.7【解析】∵AF∥BC,∴∠FAD=∠ADB,∵∠BAC=∠FAD,∴∠BAC=∠ADB,∵∠B=∠B,∴△BAC∽△BDA,∴=,∴=,∴BD=9,∴CD=BD﹣BC=9﹣4=5,故选B.10.(3分)(2016•朝阳)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则下列结论:(1)b2﹣4ac>0;(2)2a=b;(3)点(﹣,y1)、(﹣,y2)、(,y3)是该抛物线上的点,则y1<y2<y3;(4)3b+2c<0;(5)t(at+b)≤a﹣b(t为任意实数).其中正确结论的个数是()A.2 B.3 C.4 D.5【解析】(1)由函数图象可知,抛物线与x轴有两个不同的交点,∴关于x的方程ax2+bx+c=0有两个不相等的实数根,∴△=b2﹣4ac>0,∴(1)正确;(2)∵抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,∴﹣=﹣1,∴2a=b,∴(2)正确;(3)∵抛物线的对称轴为x=﹣1,点(,y3)在抛物线上,∴(﹣,y3).∵﹣<﹣<﹣,且抛物线对称轴左边图象y值随x的增大而增大,∴y1<y3<y2.∴(3)错误;(4)∵当x=﹣3时,y=9a﹣3b+c<0,且b=2a,∴9a﹣3×2a+c=3a+c<0,∴6a+2c=3b+2c<0,∴(4)正确;(5)∵b=2a,∴方程at2+bt+a=0中△=b2﹣4a•a=0,∴抛物线y=at2+bt+a与x轴只有一个交点,∵图中抛物线开口向下,∴a<0,∴y=at2+bt+a≤0,即at2+bt≤﹣a=a﹣b.∴(5)正确.故选C.二、填空题:本大题共6个小题,每小题3分,共18分.只需要将结果直接填写在答题卡对应题号处的横线上,不必写出解答过程,不填、错填,一律得0分.11.(3分)(2016•朝阳)函数y=的自变量x的取值范围是x≥2且x≠3 .【解析】由题意得,,解得x≥2且x≠3,故答案为x≥2且x≠3.12.(3分)(2016•朝阳)已知在平面直角坐标系中,点A(﹣3,﹣1)、B(﹣2,﹣4)、C(﹣6,﹣5),以原点为位似中心将△ABC缩小,位似比为1:2,则点B 的对应点的坐标为(1,2)或(﹣1,﹣2).【解析】∵点B的坐标为(﹣2,﹣4),以原点为位似中心将△ABC缩小,位似比为1:2,∴点B的对应点的坐标为(1,2)或(﹣1,﹣2),故答案为:(1,2)或(﹣1,﹣2).13.(3分)(2016•朝阳)若方程(x﹣m)(x﹣n)=3(m,n为常数,且m<n)的两实数根分别为a,b(a<b),则m,n,a,b的大小关系是a<m<n<b .【解析】∵(x﹣m)(x﹣n)=3,∴可得或,∵m<n,∴可解得x>n或x<m,∵方程的两根为a和b,∴可得到a>n或a<m,b>n或b<m,又a<b,综合可得a<m<n<b,故答案为:a<m<n<b.14.(3分)(2016•朝阳)如图,在平面直角坐标系中,矩形ABCO的边CO、OA 分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC 上的F处.若OA=8,CF=4,则点E的坐标是(﹣10,3).【解析】设CE=a,则BE=8﹣a,由题意可得,EF=BE=8﹣a,∵∠ECF=90°,CF=4,∴a2+42=(8﹣a)2,解得,a=3,设OF=b,∵△ECF∽△FOA,∴,即,得b=6,即CO=CF+OF=10,∴点E 的坐标为(﹣10,3), 故答案为(﹣10,3).15.(3分)(2016•朝阳)通过学习,爱好思考的小明发现,一元二次方程的根完全由它的系数确定,即一元二次方程ax 2+bx+c=0(a ≠0),当b 2﹣4ac ≥0时有两个实数根:x 1=,x 2=,于是:x 1+x 2=,x 1•x 2=、这就是著名的韦达定理.请你运用上述结论解决下列问题:关于x 的一元二次方程x 2+kx+k+1=0的两实数根分别为x 1,x 2,且x 12+x 22=1,则k 的值为 ﹣1 . 【解析】∵x 1,x 2为一元二次方程x 2+kx+k+1=0的两实数根, ∴△=k 2﹣4(k+1)≥0,且x 1+x 2=﹣k ,x 1x 2=k+1, 解得:k ≤2﹣2或k ≥2+2,又∵x 12+x 22=1,即(x 1+x 2)2﹣x 1x 2=1, ∴(﹣k )2﹣(k+1)=1,即k 2﹣k ﹣2=0, 解得:k=﹣1或k=2(舍), 故答案为:﹣1.16.(3分)(2016•朝阳)如图,在菱形ABCD 中,tanA=,点E 、F 分别是AB 、AD 上任意的点(不与端点重合),且AE=DF ,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H ,给出如下几个结论: (1)△AED ≌△DFB ; (2)CG 与BD 一定不垂直; (3)∠BGE 的大小为定值; (4)S 四边形BCDG =CG 2;(5)若AF=2DF ,则BF=7GF .其中正确结论的序号为 (1)(3)(4)(5) .【解析】(1)∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,在△AED和△DFB中,,∴△AED≌△DFB,故本小题正确;(2)当点E,F分别是AB,AD中点时(如图1),由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;(3)∵△AED≌△DFB,∴∠ADE=∠DBF,∴∠BGE=∠BDG+∠DBG=∠BDG+∠ADE=60°,故本选项正确.(4)∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.(如图2)则△CBM≌△CDN,(AAS)∴S四边形BCDG =S四边形CMGN,S四边形CMGN =2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN =2S△CMG=2××CG×CG=CG2,故本小题正确;(5)过点F作FP∥AE于P点.(如图3)∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=1:6=FG:BG,即BG=6GF,∴BF=7GF,故本小题正确.综上所述,正确的结论有(1)(3)(4)(5).故答案为:(1)(3)(4)(5).三、解答题:本大题共9小题,共72分,解答应写出必要的步骤,文字说明或证明过程.17.(5分)(2016•朝阳)(﹣1)2016+2•cos60°﹣(﹣)﹣2+()0.【解析】原式=1+2×﹣4+1=1+1﹣4+1=﹣1.18.(6分)(2016•朝阳)先化简,再求值:,请你从﹣1≤x<3的范围内选取一个你喜欢的整数作为x的值.【解析】原式=÷=•=,由﹣1≤x<3,x为整数,得到x=﹣1,0,1,2,经检验x=﹣1,0,1不合题意,舍去,则当x=2时,原式=4.19.(7分)(2016•朝阳)为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.【解析】设每个粽子的定价为x元时,每天的利润为800元.根据题意,得(x﹣3)(500﹣10×)=800,解得x1=7,x2=5.∵售价不能超过进价的200%,∴x≤3×200%.即x≤6.∴x=5.答:每个粽子的定价为5元时,每天的利润为800元.20.(7分)(2016•朝阳)如图,一渔船自西向东追赶鱼群,在A处测得某无名小岛C在北偏东60°方向上,前进2海里到达B点,此时测得无名小岛C在东北方向上.已知无名小岛周围2.5海里内有暗礁,问渔船继续追赶鱼群有无触礁危险?(参考数据:)【解析】作CD⊥AB于D,根据题意,∠CAD=30°,∠CBD=45°,在Rt△ACD中,AD==CD,在Rt△BCD中,BD==CD,∵AB=AD﹣BD,∴CD﹣CD=2(海里),解得:CD=+1≈2.732>2.5,答:渔船继续追赶鱼群没有触礁危险.21.(8分)(2016•朝阳)为全面开展“大课间”活动,某校准备成立“足球”、“篮球”、“跳绳”、“踢毽”四个课外活动小组,学校体工处根据七年级学生的报名情况(每人限报一项)绘制了两幅不完整的统计图,请根据以上信息,完成下列问题:(1)m= 25 ,n= 108 ,并将条形统计图补充完整;(2)试问全校2000人中,大约有多少人报名参加足球活动小组?(3)根据活动需要,从“跳绳”小组的二男二女四名同学中随机选取两人到“踢毽”小组参加训练,请用列表或树状图的方法计算恰好选中一男一女两名同学的概率.【解析】(1)调查的总人数=15÷15%=100(人),所以m%=×100%=25%,即m=25,参加跳绳活动小组的人数=100﹣30﹣25﹣15=30(人),所以n°=×360°=108°,即n=108,如图,故答案为:25,108;(2)2000×=600,所以全校2000人中,大约有600人报名参加足球活动小组;(3)画树状图为:共有12种等可能的结果数,其中一男一女两名同学的结果数为8,所以恰好选中一男一女两名同学的概率==.22.(8分)(2016•朝阳)如图,Rt△ABC中,∠ACB=90°,AD为∠BAC的平分线,以AB上一点O为圆心的半圆经过A、D两点,交AB于E,连接OC交AD于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若OF:FC=2:3,CD=3,求BE的长.【解析】(1)BC是⊙O的切线,理由:如图,连接OD,∵AD为∠BAC的平分线,∴∠BAC=2∠BAD,∵∠DOE=2∠BAD,∴∠DOE=∠BAC,∴OD∥AC,∴∠ODB=∠ACB=90°,∵点D在⊙O上,∴BC是⊙O的切线.(2)如图2,连接OD,由(1)知,OD∥AC,∴,∵,∴,∵OD∥AC,∴,∴∵CD=3,∴DB=6,过点D作DH⊥AB,∵AD是∠BAC的角平分线,∠ACB=90°,∴DH=CD=3,在Rt△BDH中,DH=3,BD=6,∴sin∠B==,∴∠B=30°,BO===4,∴∠BOD=60°,在Rt△ODB中,sin∠DOH=,∴,∴OD=2,∴BE═OB﹣OE=OB﹣OD=4﹣2=2.23.(9分)(2016•朝阳)为备战2016年里约奥运会,中国女排的姑娘们刻苦训练,为国争光,如图,已知排球场的长度OD为18米,位于球场中线处球网的高度AB为2.43米,一队员站在点O处发球,排球从点O的正上方1.8米的C点向正前方飞出,当排球运行至离点O的水平距离OE为7米时,到达最高点G建立如图所示的平面直角坐标系.(1)当球上升的最大高度为3.2米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)的函数关系式.(不要求写自变量x的取值范围).(2)在(1)的条件下,对方距球网0.5米的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.(3)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)【解析】(1)根据题意知此时抛物线的顶点G的坐标为(7,3.2),设抛物线解析式为y=a(x﹣7)2+3.2,将点C(0,1.8)代入,得:49a+3.2=1.8,解得:a=﹣,∴排球飞行的高度y与水平距离x的函数关系式为y=﹣(x﹣7)2+;(2)由题意当x=9.5时,y=﹣(9.5﹣7)2+≈3.02<3.1,故这次她可以拦网成功;(3)设抛物线解析式为y=a(x﹣7)2+h,将点C(0,1.8)代入,得:49a+h=1.8,即a=,∴此时抛物线解析式为y=(x﹣7)2+h,根据题意,得:,解得:h≥3.025,答:排球飞行的最大高度h的取值范围是h≥3.025.24.(10分)(2016•朝阳)小颖在学习“两点之间线段最短”查阅资料时发现:△ABC内总存在一点P与三个顶点的连线的夹角相等,此时该点到三个顶点的距离之和最小.【特例】如图1,点P为等边△ABC的中心,将△ACP绕点A逆时针旋转60°得到△ADE,从而有DE=PC,连接PD得到PD=PA,同时∠APB+∠APD=120°+60°=180°,∠ADP+∠ADE=180°,即B、P、D、E四点共线,故PA+PB+PC=PD+PB+DE=BE.在△ABC中,另取一点P′,易知点P′与三个顶点连线的夹角不相等,可证明B、P′、D′、E四点不共线,所以P′A+P′B+P′C>PA+PB+PC,即点P到三个顶点距离之和最小.【探究】(1)如图2,P为△ABC内一点,∠APB=∠BPC=120°,证明PA+PB+PC 的值最小;【拓展】(2)如图3,△ABC中,AC=6,BC=8,∠ACB=30°,且点P为△ABC内一点,求点P到三个顶点的距离之和的最小值.【解析】(1)如图1,将△ACP绕点A逆时针旋转60°得到△ADE,∴∠PAD=60°,△PAC≌△DAE,∴PA=DA、PC=DE、∠APC=∠ADE=120°,∴△APD为等边三角形,∴PA=PD,∠APD=∠ADP=60°,∴∠APB+∠APD=120°+60°=180°,∠ADP+∠ADE=180°,即B、P、D、E四点共线,∴PA+PB+PC=PD+PB+DE=BE.∴PA+PB+PC的值最小.(2)如图,分别以AB、BC为边在△ABC外作等边三角形,连接CD、AE交于点P,∴AB=DB、BE=BC=8、∠ABD=∠EBC=60°,∴∠ABE=∠DBC,在△ABE和△DBC中,∵,∴△ABE≌△DBC(SAS),∴CD=AE、∠BAE=∠BDC,又∵∠AOP=∠BOD,∴∠APO=∠OBD=60°,在DO上截取DQ=AP,连接BQ,在△ABP和△DBQ中,∵,∴△ABP≌△DBQ(SAS),∴BP=BQ,∠PBA=∠QBD,又∵∠QBD+∠QBA=60°,∴∠PBA+∠QBA=60°,即∠PBQ=60°,∴△PBQ为等边三角形,∴PB=PQ,则PA+PB+PC=DQ+PQ+PC=CD=AE,在Rt△ACE中,∵AC=6、CE=8,∴AE=CD=10,故点P到三个顶点的距离之和的最小值为10.25.(12分)(2016•朝阳)如图1,已知抛物线y=(x﹣2)(x+a)(a>0)与x 轴从左至右交于A,B两点,与y轴交于点C.(1)若抛物线过点T(1,﹣),求抛物线的解析式;(2)在第二象限内的抛物线上是否存在点D,使得以A、B、D三点为顶点的三角形与△ABC相似?若存在,求a的值;若不存在,请说明理由.(3)如图2,在(1)的条件下,点P的坐标为(﹣1,1),点Q(6,t)是抛物线上的点,在x轴上,从左至右有M、N两点,且MN=2,问MN在x轴上移动到何处时,四边形PQNM的周长最小?请直接写出符合条件的点M的坐标.【解析】(1)如图1,把T(1,﹣)代入抛物线y=(x﹣2)(x+a)得:﹣=(1﹣2)(1+a),解得:a=4,∴抛物线的解析式为:y=x2+x﹣2;(2)当x=0时,y=×(﹣2)×a=﹣2,∴C(0,﹣2),当y=0时,(x﹣2)(x+a)=0,x 1=2,x2=﹣a,∴A(﹣a,0)、B(2,0),如图2,过D作DE⊥x轴于E,设D(m,n),∵点D在第二象限,∠DAB为钝角,∴分两种情况:①如图2,当△BDA∽△ABC时,∠BAC=∠ABD,∴tan∠BAC=tan∠ABD,即,∴,n=,则,解得:m=﹣2﹣a或2,∴E(﹣2﹣a,0),由勾股定理得:AC=,∵,∴==,BD=,∵△BDA∽△ABC,∴,∴AB2=AC•BD,即(a+2)2=•,解得:0=16,此方程无解;②当△DBA∽△ABC时,如图3,∠ABC=∠ABD,∵B(2,0),C(0,﹣2),∴OB=OC=2,∴△OBC是等腰直角三角形,有BC=2,∴∠OCB=∠OBC=45°,∴∠ABC=∠ABD=45°,∴DE=BE,n=﹣m+2,∴BD=,∵△DBA∽△ABC,∴,∴AB2=BD•BC,∴(a+2)2=•2=4n,则,解得:,则a=2+2;(3)当x=6时,y=(6﹣2)(6+4)=10,∴Q(6,10),如图4,作P关于x轴的对称点P′,过P′作P′G∥x轴,且P′G=2,连接GQ 交x轴于N,过P′作P′M∥GN,交x轴于M,此时,QG就是MP+NQ的最小值,由于PQ、NM为定值,所以此时,四边形PMNQ 的周长最小,∵P(﹣1,1),∴P′(﹣1,﹣1),∵P′G∥MN,P′M∥GN,∴四边形P′GNM是平行四边形,∴MN=P′G=2,NG=P′M=PM,∴G(1,﹣1),设GQ的解析式为:y=kx+b,把G(1,﹣1)和Q(6,10)代入得:,第31页(共33页)解得:,∴GQ的解析式为:y=x ﹣,当y=0时,x=,∴N (,0),∵MN=2,∴M (﹣,0).第32页(共33页)第33页(共33页)。

2016年辽宁省沈阳市中考数学试卷及答案

2016年辽宁省沈阳市中考数学试卷及答案

数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前辽宁省沈阳市2016年初中学生学业水平(升学)考试数学 .................................................. 1 辽宁省沈阳市2016年初中学生学业水平(升学)考试数学答案解析 . (5)辽宁省沈阳市2016年初中学生学业水平(升学)考试数学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共20分)一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列各数是无理数的是( ) A .0B .1-CD .372.如图是由4个大小相同的小立方块搭成的几何体,这个几何体的俯视图是( )ABCD3.在沈阳市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为( )A .70.5410⨯ B .55410⨯ C .65.410⨯D .75.410⨯4.如图,在平面直角坐标系中,点P 是反比例函数(0)ky x x=>图象上的一点,分别过点P 作PA x ⊥轴于点A ,PB y ⊥轴于点B .若四边形O A P B 的面积为3,则k 的值为( ) A .3B .3-C .32D .32- 5.“射击运动员射击一次,命中靶心”这个事件是( ) A .确定事件B .必然事件C .不可能事件D .不确定事件 6.下列计算正确的是( ) A .4482x x x += B .326x x x =C .2363()x y x y =D .22()()x y y x x y --=-7.已知一组数据:3,4,6,7,8,8,下列说法正确的是( ) A .众数是2B .众数是8C .中位数是6D .中位数是7 8.一元二次方程2412x x -=的根是( )A .12x =,26x =-B .12x =-,26x =C .12x =-,26x =-D .12x =,26x =9.如图,在Rt ABC △中,=90C ∠,=30B ∠,=8AB ,则BC 的长是( )AB .4 C.D.10.在平面直角坐标系中,二次函数223y x x =+-的图象如图所示,点11(,)A x y ,22(,)B x y 是该二次函数图象上的两点,毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页) 数学试卷 第4页(共22页)其中1230x x -≤<≤,则下列结论正确的是( )A .12y y <B .12y y >C .y 的最小值是3-D .y 的最小值是4-第Ⅱ卷(非选择题 共100分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上) 11.分解因式:2242x x -+= .12.若一个多边形的内角和是540,则这个多边形是 边形. 13.化简:1(1)(1)1m m -+=+ . 14.三个连续整数中,n 是最大的一个,这三个数的和为 .(用含n 的代数式表示) 15.在一条笔直的公路上有A ,B ,C 三地,C 地位于A ,B 两地之间,甲、乙两车分别从A ,B 两地出发,沿这条公路匀速行驶至C 地停止.从甲车出发至甲车到达C 地的过程,甲、乙两车各自与C 地的距离(km)y 与甲车行驶时间(h)t 之间的函数关系如图所示,当甲车出发 h 时,两车相距350km .16.如图,在Rt ABC △中,90A ∠=,AB AC =,20BC =,DE 是ABC △的中位线.点M 是边BC 上一点,3BM =,点N 是线段MC 上的一个动点,连接DN ,ME ,DN 与ME 相交于点O .若OMN △是直角三角形,则DO 的长是 .三、解答题(本大题共9小题,共82分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分6分)计算:021(π4)|3tan60|()2--+--18.(本小题满分8分)为了传承优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A ,B ,C 依次表示这三个诵读材料).将A ,B ,C 这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小明诵读《论语》的概率是 ;(2)请用列表法或画树状图(树形图)法求小明和小亮诵读两个不同材料的概率.19.(本小题满分8分)如图,ABC ABD △≌△,点E 在边AB 上,CE BD ∥,连接DE . 求证:(1)CEB CBE ∠=∠; (2)四边形BCED 是菱形.20.(本小题满分8分)沈阳市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校m 名学生最喜欢的一种项目(每名学生必选且只能选择四种活动项目中的一种),并将调查结果绘制成如下的不完整的统计图表:学生最喜欢的活动项目的人数条形统计图根据图表中提供的信息,解答下列问题:(1)m = ,n = ,p = ;(2)请根据以上信息直接在图中补全条形统计图;(3)根据抽样调查结果,请你估计该校2000名学生中有多少名学生最喜欢跳大绳.数学试卷 第5页(共22页) 数学试卷 第6页(共22页)21.(本小题满分8分)如图,在ABC △中,以AB 为直径的O 分别于BC ,AC 相交于点D ,E ,BD CD =,过点D 作O 的切线交边AC 于点F . (1)求证:DF AC ⊥;(2)若O 的半径为5,30CDF ∠=,求BD 的长.(结果保留π)22.(本小题满分10分)倡导健康生活,推进全民健身,某社区要购进A ,B 两种型号的健身器材若干套,A ,B 两种型号健身器材的购买单价分别为每套310元,410元,且每种型号健身器材必须整套购买.(1)若购买A ,B 两种型号的健身器材共50套,且恰好支出20000元,求A ,B 两种型号健身器材各购买多少套?(2)若购买A ,B 两种型号的健身器材共50套,且支出不超过18000元,求A 种型号健身器材至少要购买多少套?23.(本小题满分10分)如图,在平面直角坐标系中,AOB △的顶点O 为坐标原点,点A 的坐标为(4,0),点B 的坐标为(0,1),点C 为边AB 的中点,正方形OBDE 的顶点E 在x 轴的正半轴上,连接CO ,CD ,CE .(1)线段OC 的长为 ;(2)求证:CBD COE △≌△;(3)将正方形OBDE 沿x 轴正方向平移得到正方形1111O B D E ,其中点O ,B ,D ,E 的对应点分别为点1O ,1B ,1D ,E ,连接CD ,CE ,设点1E 的坐标为(,0)a ,其中2a ≠,11CD E △的面积为S .①当12a <<时,请直接写出S 与a 之间的函数表达式; ②在平移过程中,当14S =时,请直接写出a 的值.24.(本小题满分12分)在ABC △中,6AB =,5AC BC ==,将ABC △绕点A 按顺时针方向旋转,得到ADE △,旋转角为(0180)αα<<,点B 的对应点为点D ,点C 的对应点为点E ,连接BD ,BE .(1)如图,当60α=时,延长BE 交AD 于点F . ①求证:ABD △是等边三角形; ②求证:BF AD ⊥,AF DF =; ③请直接写出BE 的长;(2)在旋转过程中,过点D 作DG 垂直于直线AB ,垂足为点G ,连接CE ,当DAG ACB ∠=∠,且线段DG 与线段AE 无公共点时,请直接写出BE CE +的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.25.(本小题满分12分)如图,在平面直角坐标系中,矩形OCDE 的顶点C 和E 分别在y 轴的正半轴和x 轴的正半轴上,8OC =,17OE =.抛物线23320y x x m =-+与y 轴相交于点A ,抛物线的对称轴与x 轴相交于点B ,与CD 交于点K .(1)将矩形OCDE 沿AB 折叠,点O 恰好落在边CD 上的点F 处.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。

辽宁省大连市 2016年中考数学真题试卷附解析

辽宁省大连市 2016年中考数学真题试卷附解析

2016年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分1.(2016·辽宁大连)﹣3的相反数是()A.B.C.3 D.﹣3【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【解答】解:(﹣3)+3=0.故选C.【点评】本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.2.(2016·辽宁大连)在平面直角坐标系中,点(1,5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(1,5)所在的象限是第一象限.故选A.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(2016·辽宁大连)方程2x+3=7的解是()A.x=5 B.x=4 C.x=3.5 D.x=2【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】方程移项合并,把x系数化为1,即可求出解.【解答】解:2x+3=7,移项合并得:2x=4,解得:x=2,故选D【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.(2016·辽宁大连)如图,直线AB∥CD,AE平分∠CAB.AE与CD相交于点E,∠ACD=40°,则∠BAE 的度数是()A.40° B.70° C.80° D.140°【考点】平行线的性质.【分析】先由平行线性质得出∠ACD与∠BAC互补,并根据已知∠ACD=40°计算出∠BAC的度数,再根据角平分线性质求出∠BAE的度数.【解答】解:∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,故选B.【点评】本题考查了平行线的性质和角平分线的定义,比较简单;做好本题要熟练掌握两直线平行①内错角相等,②同位角相等,③同旁内角互补;并会书写角平分线定义的三种表达式:若AP平分∠BAC,则①∠BAP=∠PAC,②∠BAP=∠BAC,③∠BAC=2∠BAP.5.(2016·辽宁大连)不等式组的解集是()A.x>﹣2 B.x<1 C.﹣1<x<2 D.﹣2<x<1【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x>﹣2,解②得x<1,则不等式组的解集是:﹣2<x<1.故选D.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.6.(2016·辽宁大连)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号的积小于4的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,两次摸出的小球标号的积小于4的有4种情况,∴两次摸出的小球标号的积小于4的概率是:=.故选C.【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.(2016·辽宁大连)某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x),五月份的产量是100(1+x)2,据此列方程即可.【解答】解:若月平均增长率为x,则该文具店五月份销售铅笔的支数是:100(1+x)2,故选:B.【点评】本题考查数量平均变化率问题,解题的关键是正确列出一元二次方程.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a×(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“﹣”.8.(2016·辽宁大连)如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm)()A.40πcm2B.65πcm2C.80πcm2D.105πcm2【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为8cm,底面半径为10÷2=5cm,故表面积=πrl+πr2=π×5×8+π×52=65πcm2.故选:B.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.二、填空题:本大题共8小题,每小题3分,共24分9.(2016·辽宁大连)因式分解:x2﹣3x=x(x﹣3).【考点】因式分解-提公因式法.【专题】因式分解.【分析】确定公因式是x,然后提取公因式即可.【解答】解:x2﹣3x=x(x﹣3).故答案为:x(x﹣3)【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.10.(2016·辽宁大连)若反比例函数y=的图象经过点(1,﹣6),则k的值为﹣6.【考点】反比例函数图象上点的坐标特征.【分析】直接把点(1,﹣6)代入反比例函数y=,求出k的值即可.【解答】解:∵反比例函数y=的图象经过点(1,﹣6),∴k=1×(﹣6)=﹣6.故答案为:﹣6.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.(2016·辽宁大连)如图,将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.【考点】旋转的性质.【分析】由旋转的性质得:AB=AD=1,∠BAD=∠CAE=90°,再根据勾股定理即可求出BD.【解答】解:∵将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD===.故答案为.【点评】本题考查了旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.也考查了勾股定理,掌握旋转的性质是解决问题的关键.12.(2016·辽宁大连)下表是某校女子排球队队员的年龄分布则该校女子排球队队员的平均年龄是15岁.【考点】加权平均数;频数与频率.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得:(13×1+14×1+15×7+16×3)÷12=15(岁),即该校女子排球队队员的平均年龄为15岁.故答案为:15.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键.13.(2016·辽宁大连)如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是24.【考点】菱形的性质.【分析】直接利用菱形的性质结合勾股定理得出BD的长,再利用菱形面积求法得出答案.【解答】解:连接BD,交AC于点O,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=4,∴BO==3,故BD=6,则菱形的面积是:×6×8=24.故答案为:24.【点评】此题主要考查了菱形的性质以及勾股定理,正确求出BD的长是解题关键.14.(2016·辽宁大连)若关于x的方程2x2+x﹣a=0有两个不相等的实数根,则实数a的取值范围是a>﹣.【考点】根的判别式;解一元一次不等式.【分析】由方程有两个不相等的实数根结合根的判别式,可以得出关于a的一元一次不等式,解不等式即可得出结论.【解答】解:∵关于x的方程2x2+x﹣a=0有两个不相等的实数根,∴△=12﹣4×2×(﹣a)=1+8a>0,解得:a>﹣.故答案为:a>﹣.【点评】本题考查了根的判别式以及解一元一次不等式,解题的关键是找出1+8a>0.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出不等式(不等式组或方程)是关键.15.(2016·辽宁大连)如图,一艘渔船位于灯塔P的北偏东30°方向,距离灯塔18海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东55°方向上的B处,此时渔船与灯塔P的距离约为11海里(结果取整数)(参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).【考点】解直角三角形的应用-方向角问题.【分析】作PC⊥AB于C,先解Rt△PAC,得出PC=PA=9,再解Rt△PBC,得出PB=≈11.【解答】解:如图,作PC⊥AB于C,在Rt△PAC中,∵PA=18,∠A=30°,∴PC=PA=×18=9,在Rt△PBC中,∵PC=9,∠B=55°,∴PB=≈≈11,答:此时渔船与灯塔P的距离约为11海里.故答案为11.【点评】本题考查了解直角三角形的应用﹣方向角问题,含30°角的直角三角形的性质,锐角三角函数定义.解一般三角形的问题可以转化为解直角三角形的问题,解决的方法就是作高线.16.(2016·辽宁大连)如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是(﹣2,0).【考点】抛物线与x轴的交点.【分析】根据函数值相等两点关于对称轴对称,可得对称轴,根据A、B关于对称轴对称,可得A点坐标.【解答】解:由C(0,c),D(m,c),得函数图象的对称轴是x=,设A点坐标为(x,0),由A、B关于对称轴x=,得=,解得x=﹣2,即A点坐标为(﹣2,0),故答案为:(﹣2,0).【点评】本题考查了抛物线与x轴的交点,利用函数值相等的点关于对称轴对称是解题关键.三、解答题:本大题共4小题,17、18、19各9分20题12分,共39分17.(2016·辽宁大连)计算:(+1)(﹣1)+(﹣2)0﹣.【考点】实数的运算;零指数幂.【分析】本题涉及平方差公式、零指数幂、三次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(+1)(﹣1)+(﹣2)0﹣=5﹣1+1﹣3=2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握平方差公式、零指数幂、三次根式等考点的运算.18.(2016·辽宁大连)先化简,再求值:(2a+b)2﹣a(4a+3b),其中a=1,b=.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=4a2+4ab+b2﹣4a2﹣3ab=ab+b2,当a=1,b=时,原式=+2.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.(2016·辽宁大连)如图,BD是▱ABCD的对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:AE=CF.【考点】平行四边形的性质.【专题】证明题.【分析】根据平行四边形的性质得出AB=CD,AB∥CD,根据平行线的性质得出∠ABE=∠CDF,求出∠AEB=∠CFD=90°,根据AAS推出△ABE≌△CDF,得出对应边相等即可.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF.【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定的应用;证明△ABE≌△CDF是解决问题的关键.20.(2016·辽宁大连)为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分根据以上信息,解答下列问题(1)家庭用水量在4.0<x≤6.5范围内的家庭有13户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是30%;(2)本次调查的家庭数为50户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是18%;(3)家庭用水量的中位数落在C组;(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.【考点】扇形统计图;用样本估计总体;频数(率)分布表;中位数.【分析】(1)观察表格和扇形统计图就可以得出结果;(2)利用C组所占百分比及户数可算出调查家庭的总数,从而算出D组的百分比;(3)从第二问知道调查户数为50,则中位数为第25、26户的平均数,由表格可得知落在C组;(4)计算调查户中用水量不超过9.0吨的百分比,再乘以小区内的家庭数就可以算出.【解答】解:(1)观察表格可得4.0<x≤6.5的家庭有13户,6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比为30%;(2)调查的家庭数为:13÷26%=50,6.5<x≤9.0 的家庭数为:50×30%=15,D组9.0<x≤11.5 的家庭数为:50﹣4﹣13﹣6﹣3﹣15=9,9.0<x≤11.5 的百分比是:9÷50×100%=18%;(3)调查的家庭数为50户,则中位数为第25、26户的平均数,从表格观察都落在C组;故答案为:(1)13,30;(2)50,18;(3)C;(4)调查家庭中不超过9.0吨的户数有:4+13+15=32,=128(户),答:该月用水量不超过9.0吨的家庭数为128户.【点评】本题考查了扇形统计图、统计表,解题的关键是要明确题意,找出所求问题需要的条件.四、解答题:本大题共3小题,21、22各9分23题10分,共28分21.(2016·辽宁大连)A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.【考点】一元一次方程的应用.【专题】应用题.【分析】根据题意,可以设出甲、乙的速度,然后根据题目中的关系,列出相应的方程,本题得以解决.【解答】解:设甲车的速度是x千米/时,乙车的速度为(x+30)千米/时,解得,x=60,则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.【点评】本题考查分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件,发现题目中的数量关系,列出相应的方程.22.(2016·辽宁大连)如图,抛物线y=x 2﹣3x+与x 轴相交于A 、B 两点,与y 轴相交于点C ,点D 是直线BC 下方抛物线上一点,过点D 作y 轴的平行线,与直线BC 相交于点E(1)求直线BC 的解析式;(2)当线段DE 的长度最大时,求点D 的坐标.【考点】抛物线与x 轴的交点;二次函数的性质.【分析】(1)利用坐标轴上点的特点求出A 、B 、C 点的坐标,再用待定系数法求得直线BC 的解析式;(2)设点D 的横坐标为m ,则纵坐标为(m ,),E 点的坐标为(m ,),可得两点间的距离为d=,利用二次函数的最值可得m ,可得点D 的坐标.【解答】解:(1)∵抛物线y=x 2﹣3x+与x 轴相交于A 、B 两点,与y 轴相交于点C ,∴令y=0,可得x=或x=,∴A (,0),B (,0);令x=0,则y=,∴C 点坐标为(0,),设直线BC 的解析式为:y=kx+b ,则有,,解得:,∴直线BC 的解析式为:y=x ;(2)设点D的横坐标为m,则纵坐标为(m,),∴E点的坐标为(m,m),设DE的长度为d,∵点D是直线BC下方抛物线上一点,则d=m+﹣(m2﹣3m+),整理得,d=﹣m2+m,∵a=﹣1<0,===,∴当m==时,d最大∴D点的坐标为(,).【点评】此题主要考查了二次函数的性质及其图象与坐标轴的交点,设出D的坐标,利用二次函数最值得D点坐标是解答此题的关键.23.(2016·辽宁大连)如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC(1)求证:DE与⊙O相切;(2)若BF=2,DF=,求⊙O的半径.【考点】切线的判定.【分析】(1)连接OD,由AB是⊙O的直径,得到∠ACB=90°,求得∠A+∠ABC=90°,等量代换得到∠BOD=∠A,推出∠ODE=90°,即可得到结论;(2)连接BD,过D作DH⊥BF于H,由弦且角动量得到∠BDE=∠BCD,推出△ACF与△FDB都是等腰三角形,根据等腰直角三角形的性质得到FH=BH=BF=1,则FH=1,根据勾股定理得到HD==3,然后根据勾股定理列方程即可得到结论.【解答】(1)证明:连接OD,∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵∠BOD=2∠BCD,∠A=2∠BCD,∴∠BOD=∠A,∵∠AED=∠ABC,∴∠BOD+∠AED=90°,∴∠ODE=90°,即OD⊥DE,∴DE与⊙O相切;(2)解:连接BD,过D作DH⊥BF于H,∵DE与⊙O相切,∴∠BDE=∠BCD,∵∠AED=∠ABC,∴∠AFC=∠DBF,∵∠AFC=∠DFB,∴△ACF与△FDB都是等腰三角形,∴FH=BH=BF=1,则FH=1,∴HD==3,在Rt△ODH中,OH2+DH2=OD2,即(OD﹣1)2+32=OD2,∴OD=5,∴⊙O的半径是5.【点评】本题考查了切线的判定和性质,等腰三角形的判定,直角三角形的性质,勾股定理,正确的作出辅助线是解题的关键.五、解答题:本大题共3小题,24题11分,25、26各12分,共35分24.(2016·辽宁大连)如图1,△ABC中,∠C=90°,线段DE在射线BC上,且DE=AC,线段DE沿射线BC运动,开始时,点D与点B重合,点D到达点C时运动停止,过点D作DF=DB,与射线BA相交于点F,过点E作BC的垂线,与射线BA相交于点G.设BD=x,四边形DEGF与△ABC重叠部分的面积为S,S关于x的函数图象如图2所示(其中0<x≤m,1<x≤m,m<x≤3时,函数的解析式不同)(1)填空:BC的长是3;(2)求S关于x的函数关系式,并写出x的取值范围.【考点】四边形综合题.【分析】(1)由图象即可解决问题.即(2)分三种情形①如图1中,当0≤x≤1时,作DM⊥AB于M,根据S=S△ABC﹣S△BDF﹣S四边形ECAG可解决.②如图2中,作AN∥DF交BC于N,设BN=AN=x,在RT△ANC中,利用勾股定理求出x,再根据S=S△ABC即可解决.﹣S△BDF﹣S四边形ECAG③如图3中,根据S=CD•CM,求出CM即可解决问题.【解答】解;(1)由图象可知BC=3.故答案为3.(2)①如图1中,当0≤x≤1时,作DM⊥AB于M,由题意BC=3,AC=2,∠C=90°,∴AB==,∵∠B=∠B,∠DMB=∠C=90°,∴△BMD∽△BCA,∴==,∴DM=,BM=,∵BD=DF,DM⊥BF,∴BM=MF,∴S△BDF=x2,∵EG∥AC,∴=,∴=,∴EG=(x+2),=[2+(x+2)]•(1﹣x),∴S四边形ECAG=3﹣x2﹣[2+(x+2)]•(1﹣x)=﹣x2+x+.∴S=S△ABC﹣S△BDF﹣S四边形ECAG②如图②中,作AN∥DF交BC于N,设BN=AN=x,在RT△ANC中,∵AN2=CN2+AC2,∴x2=22+(3﹣x)2,∴x=,∴当1<x≤时,S=S△ABC﹣S△BDF=3﹣x2,③如图3中,当<x≤3时,∵DM∥AN,∴=,∴=,∴CM=(3﹣x),∴S=CD•CM=(3﹣x)2,综上所述S=.【点评】本题考查四边形综合题、等腰三角形的性质、相似三角形的性质、勾股定理等知识,解题的关键是学会分类讨论,正确画出图形,属于中考压轴题.25.(2016·辽宁大连)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).【考点】相似形综合题.【分析】(1)作AF⊥BC,判断出△ABF≌△BAE(AAS),得出BF=AE,即可;(2)先求出tan∠DAE=,再由tan∠F=tan∠DAE,求出CG,最后用△DCG∽△ACE求出AC;(3)构造含30°角的直角三角形,设出DG,在Rt△ABH,Rt△ADN,Rt△ABH中分别用a,k表示出AB=2a(k+1),BH=a(k+1),BC=2BH=2a(k+1),CG=a(2k+1),DN=ka,最后用△NDE∽△GDC,求出AE,EC即可.【解答】证明:(1)如图2,作AF⊥BC,∵BE⊥AD,∴∠AFB=∠BEA,在△ABF和△BAE中,,∴△ABF≌△BAE(AAS),∴BF=AE∵AB=AC,AF⊥BC,∴BF=BC,∴BC=2AE,故答案为AAS(2)如图3,连接AD,作CG⊥AF,在Rt△ABC中,AB=AC,点D是BC中点,∴AD=CD,∵点E是DC中点,∴DE=CD=AD,∴tan∠DAE===,∵AB=AC,∠BAC=90°,点D为BC中点,∴∠ADC=90°,∠ACB=∠DAC=45°,∴∠F+∠CDF=∠ACB=45°,∵∠CDF=∠EAC,∴∠F+∠EAC=45°,∵∠DAE+∠EAC=45°,∴∠F=∠DAE,∴tan∠F=tan∠DAE=,∴,∴CG=×2=1,∵∠ACG=90°,∠ACB=45°,∴∠DCG=45°,∵∠CDF=∠EAC,∴△DCG∽△ACE,∴,∵CD=AC,CE=CD=AC,∴,∴AC=4;∴AB=4;(3)如图4,过点D作DG⊥BC,设DG=a,在Rt△BGD中,∠B=30°,∴BD=2a,BG=a,∵AD=kDB,∴AD=2ka,AB=BD+AD=2a+2ka=2a(k+1),过点A作AH⊥BC,在Rt△ABH中,∠B=30°.∴BH=a(k+1),∵AB=AC,AH⊥BC,∴BC=2BH=2a(k+1),∴CG=BC﹣BG=a(2k+1),过D作DN⊥AC交CA延长线与N,∵∠BAC=120°,∴∠DAN=60°,∴∠ADN=30°,∴AN=ka,DN=ka,∵∠DGC=∠AND=90°,∠AED=∠BCD,∴△NDE∽△GDC.∴,∴,∴NE=3ak(2k+1),∴EC=AC﹣AE=AB﹣AE=2a(k+1)﹣2ak(3k+1)=2a(1﹣3k2),∴=.【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的性质和判定,等腰三角形的性质,等腰直角三角形的性质,中点的定义,解本题的关键是作出辅助线,也是本题的难点.26.(2016·辽宁大连)如图,在平面直角坐标系xOy中,抛物线y=x2+与y轴相交于点A,点B与点O 关于点A对称(1)填空:点B的坐标是(,);(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.【考点】二次函数综合题.【分析】(1)由抛物线解析式可求得A点坐标,再利用对称可求得B点坐标;(2)可先用k表示出C点坐标,过B作BD⊥l于点D,条件可知P点在x轴上方,设P点纵坐标为y,可表示出PD、PB的长,在Rt△PBD中,利用勾股定理可求得y,则可求出PB的长,此时可得出P点坐标,代入抛物线解析式可判断P点在抛物线上;(3)利用平行线和轴对称的性质可得到∠OBC=∠CBP=∠C′BP=60°,则可求得OC的长,代入抛物线解析式可求得P点坐标.【解答】解:(1)∵抛物线y=x2+与y轴相交于点A,∴A(0,),∵点B与点O关于点A对称,∴BA=OA=,∴OB=,即B点坐标为(0,),故答案为:(0,);(2)∵B点坐标为(0,),∴直线解析式为y=kx+,令y=0可得kx+=0,解得x=﹣,∴OC=﹣,∵PB=PC,∴点P只能在x轴上方,如图1,过B作BD⊥l于点D,设PB=PC=m,则BD=OC=﹣,CD=OB=,∴PD=PC﹣CD=m﹣,在Rt△PBD中,由勾股定理可得PB2=PD2+BD2,即m2=(m﹣)2+(﹣)2,解得m=+,∴PB+,∴P点坐标为(﹣,+),当x=﹣时,代入抛物线解析式可得y=+,∴点P在抛物线上;(3)如图2,连接CC′,∵l∥y轴,∴∠OBC=∠PCB,又PB=PC,∴∠PCB=∠PBC,∴∠PBC=∠OBC,又C、C′关于BP对称,且C′在抛物线的对称轴上,即在y轴上,∴∠PBC=∠PBC′,∴∠OBC=∠CBP=∠C′BP=60°,在Rt△OBC中,OB=,则BC=1∴OC=,即P点的横坐标为,代入抛物线解析式可得y=()2+=1,∴P点坐标为(,1).【点评】本题为二次函数的综合应用,涉及知识点有轴对称的性质、平行线的性质、勾股定理、等腰三角形的性质、二次函数的性质等.在(2)中构造直角三角形,利用勾股定理得到关于PC的长的方程是解题的关键,在(3)中求得∠OBC=∠CBP=∠C′BP=60°是解题的关键.本题考查知识点较多,综合性较强,难度适中.2016年广西南宁市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(2016·广西南宁)﹣2的相反数是()A.﹣2 B.0 C.2 D.4【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2的相反数是2.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(2016·广西南宁)把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.【考点】平行投影.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.3.(2016·广西南宁)据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A.0.332×106B.3.32×105C.3.32×104D.33.2×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将332000用科学记数法表示为:3.32×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.(2016·广西南宁)已知正比例函数y=3x的图象经过点(1,m),则m的值为()A.B.3 C.﹣D.﹣3【考点】一次函数图象上点的坐标特征.【分析】本题较为简单,把坐标代入解析式即可求出m的值.【解答】解:把点(1,m)代入y=3x,可得:m=3,故选B【点评】此题考查一次函数的问题,利用待定系数法直接代入求出未知系数m,比较简单.5.(2016·广西南宁)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分【考点】加权平均数.【分析】利用加权平均数的公式直接计算即可得出答案.【解答】解:由加权平均数的公式可知===86,故选D.【点评】本题主要考查加权平均数的计算,掌握加权平均数的公式=是解题的关键.6.(2016·广西南宁)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD (D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【考点】解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.7.(2016·广西南宁)下列运算正确的是()A.a2﹣a=a B.ax+ay=axy C.m2•m4=m6D.(y3)2=y5【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.【解答】解:A、a2和a不是同类项,不能合并,故本选项错误;B、ax和ay不是同类项,不能合并,故本选项错误;C、m2•m4=m6,计算正确,故本选项正确;D、(y3)2=y6≠y5,故本选项错误.故选C.【点评】本题考查了幂的乘方与积的乘方、合并同类项、同底数幂的乘法的知识,解答本题的关键在于掌握各知识点的运算法则.8.(2016·广西南宁)下列各曲线中表示y是x的函数的是()A.B.C.D.【考点】函数的概念.【分析】根据函数的意义求解即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.【点评】主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.9.(2016·广西南宁)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°【考点】圆周角定理.【分析】先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.(2016·广西南宁)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()。

辽宁沈阳2016中考试题数学卷(解析版)

辽宁沈阳2016中考试题数学卷(解析版)

一、选择题(下列各题的备选答案中,只有一个答案是正确的。

每小题2分,共20分)1.下列各数是无理数的是( )A .0B .﹣1C .D . 【答案】C .【解析】试题分析:无理数是无限不循环小数,由此可得0,﹣1,73是有理数,2是无理数,故答案选C .考点:无理数.2.如图是由4个大小相同的小立方块搭成的几何体,这个几何体的俯视图是( )【答案】A.考点:简单组合体的三视图.3.在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为( )A .0.54×107B .54×105C .5.4×106D .5.4×107【答案】C .【解析】试题分析:科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数,n 的值为这个数的整数位数减1,所以5400000=5.4×106,故答案选C .考点:科学记数法.4.如图,在平面直角坐标系中,点P 是反比例函数y=xk (x >0)图象上的一点,分别过点P 作PA⊥x 轴于点A ,PB⊥y 轴于点B .若四边形OAPB 的面积为3,则k 的值为( )A .3B .﹣3C .D .﹣【答案】A.【解析】试题分析:已知点P 是反比例函数y=xk (x >0)图象上的一点,分别过点P 作PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,四边形OAPB 的面积为3,可得矩形OAPB 的面积S=|k|=3,所以k=±3.又因反比例函数的图象在第一象限,即可得k=3.故答案选A .考点:反比例函数系数k 的几何意义.5.“射击运动员射击一次,命中靶心”这个事件是( )A .确定事件B .必然事件C .不可能事件D .不确定事件【答案】D .考点:随机事件.6.下列计算正确的是( )A .x 4+x 4=2x 8B .x 3•x 2=x 6C .(x 2y )3=x 6y 3D .(x ﹣y )(y ﹣x )=x 2﹣y 2【答案】D.【解析】考点:整式的运算.7.已知一组数据:3,4,6,7,8,8,下列说法正确的是( )A .众数是2B .众数是8C .中位数是6D .中位数是7【答案】B.【解析】试题分析:根据众数和中位数的定义可得数据3,4,6,7,8,8的众数为8,中位数为6.5.故答案选B .考点:众数;中位数.8.一元二次方程x 2﹣4x=12的根是( )A .x 1=2,x 2=﹣6B .x 1=﹣2,x 2=6C .x 1=﹣2,x 2=﹣6D .x 1=2,x 2=6【答案】B.【解析】试题分析:方程整理得x 2﹣4x ﹣12=0,分解因式得(x+2)(x ﹣6)=0,解得x 1=﹣2,x 2=6,故答案选B.考点:解一元二次方程.9.如图,在Rt△ABC 中,∠C=90°,∠B=30°,AB=8,则BC 的长是( )A .B .4C .83D .43【答案】D.【解析】试题分析:在Rt △ABC 中,∠C=90°,∠B=30°,AB=8,由锐角三角函数可得BC=cosB ×AB=cos30°×8=43.故答案选D.考点:解直角三角形.10.在平面直角坐标系中,二次函数y=x 2+2x ﹣3的图象如图所示,点A (x 1,y 1),B (x 2,y 2)是该二次函数图象上的两点,其中﹣3≤x 1<x 2≤0,则下列结论正确的是( )A .y 1<y 2B .y 1>y 2C .y 的最小值是﹣3D .y 的最小值是﹣4【答案】D.考点:二次函数图象上点的坐标特征;二次函数的最值.二、填空题11.分解因式:2x 2﹣4x+2= .【答案】2(x ﹣1)2.【解析】试题分析:先提取公因式2,再利用完全平方公式进行二次分解即2x 2﹣4x+2=2(x 2﹣2x+1)=2(x ﹣1)2.考点:分解因式.12.若一个多边形的内角和是540°,则这个多边形是 边形.【答案】5.【解析】试题分析:设多边形的边数是n ,根据多边形的内角和公式可得(n ﹣2)•180°=540°, 解得n=5.考点:多边形的内角.13.化简:(1﹣11+m )•(m+1)= . 【答案】m.【解析】试题分析:原式=111+-+m m •(m+1)=m. 考点:分式的运算.14.三个连续整数中,n 是最大的一个,这三个数的和为 .【答案】3n ﹣3.【解析】试题分析:用n 表示出最小的数为n-2,中间的整数为n-1,则这三个数的和为n ﹣2+n ﹣1+n=3n ﹣3.考点:列代数式.15.在一条笔直的公路上有A ,B ,C 三地,C 地位于A , B 两地之间,甲,乙两车分别从A ,B 两地出发,沿这条公路匀速行驶至C 地停止.从甲车出发至甲车到达C 地的过程,甲、乙两车各自与C 地的距离y (km )与甲车行驶时间t (h )之间的函数关系如图表示,当甲车出发 h 时,两车相距350km .【答案】23.考点:一次函数的应用.16.如图,在Rt△ABC 中,∠A=90°,AB=AC ,BC=20,DE 是△ABC 的中位线,点M 是边BC 上一点,BM=3,点N 是线段MC 上的一个动点,连接DN ,ME ,DN 与ME 相交于点O .若△OMN 是直角三角形,则DO 的长是 .【答案】625或1350.考点:三角形综合题.三、解答题17.计算:(π﹣4)0+|3﹣tan60°|﹣(21)﹣2+27. 【答案】23.【解析】试题分析:先根据零指数幂的性质以及绝对值的性质和特殊角的三角函数值、负整数指数幂的性质、二次根式的性质分别化简后合并即可求出答案.试题解析:原式=1+3﹣3﹣4+33,=23.考点:实数的运算.18.为了传承优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A ,B ,C 依次表示这三个诵读材料),将A ,B ,C 这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小明诵读《论语》的概率是 ;(2)请用列表法或画树状图(树形图)法求小明和小亮诵读两个不同材料的概率.【答案】(1)31;(2)32.(2)列表得:A B C (A ,A ) (A ,B ) (A ,C ) B(B ,A ) (B ,B ) (B ,C ) C (C ,A ) (C ,B ) (C ,C )由表格可知,共有9种等可能性结果,其中小明和小亮诵读两个不同材料结果有6种. 所以小明和小亮诵读两个不同材料的概率=3296 . 考点:概率.19.如图,△ABC≌△ABD,点E 在边AB 上,CE∥BD,连接DE .求证:(1)∠CEB=∠CBE;(2)四边形BCED 是菱形.【答案】详见解析.【解析】试题分析:(1)根据已知条件易证∠CEB=∠ABD ,∠CBE=∠ABD ,即可得∠CEB=∠CBE ;(2)易证明四边形CEDB 是平行四边形,再根据BC=BD 判定四边形CEDB 是菱形即可.试题解析:证明;(1)∵△ABC ≌△ABD ,∴∠ABC=∠ABD ,∵CE ∥BD ,∴∠CEB=∠DBE ,∴四边形CEDB是菱形.考点:全等三角形的性质;菱形的判定.20.(2016•沈阳)我市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校m名学生最喜欢的一种项目(每名学生必选且只能选择四种活动项目的一种),并将调查结果绘制成如下的不完整的统计图表:学生最喜欢的活动项目的人数统计表项目学生数(名)百分比丢沙包20 10%打篮球60 p%跳大绳n 40%踢毽球40 20%根据图表中提供的信息,解答下列问题:(1)m= ,n= ,p= ;(2)请根据以上信息直接补全条形统计图;(3)根据抽样调查结果,请你估计该校2000名学生中有多少名学生最喜欢跳大绳.【答案】(1)200,80,30;(2)详见解析;(3)800.答:估计该校2000名学生中有800名学生最喜欢跳大绳.考点:条形统计图;用样本估计总体.21.(2016•沈阳)如图,在△ABC 中,以AB 为直径的⊙O 分别于BC ,AC 相交于点D ,E ,BD=CD ,过点D 作⊙O 的切线交边AC 于点F .(1)求证:DF⊥AC;(2)若⊙O 的半径为5,∠CDF=30°,求的长(结果保留π).【答案】(1)详见解析;(2) 35.∵DF 是⊙O 的切线,D 为切点,∴OD⊥DF,∴∠ODF=90°.∵BD=CD,OA=OB ,∴OD 是△ABC 的中位线,∴OD∥AC,∴∠CFD=∠ODF=90°,∴DF⊥AC.(2)解:∵∠CDF=30°,由(1)得∠ODF=90°,∴∠ODB=180°﹣∠CDF﹣∠ODF=60°.∵OB=OD,∴△OBD 是等边三角形,∴∠BOD=60°, ∴的长=ππ35180560=⨯. 考点:切线的性质;弧长的计算.22.倡导健康生活,推进全民健身,某社区要购进A ,B 两种型号的健身器材若干套,A ,B 两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A ,B 两种型号的健身器材共50套,且恰好支出20000元,求A ,B 两种型号健身器材各购买多少套?(2)若购买A ,B 两种型号的健身器材共50套,且支出不超过18000元,求A 种型号健身器材至少要购买多少套?【答案】(1)购买A 种型号健身器材20套,B 型器材健身器材30套;(2)A 种型号健身器材至少要购买34套.【解析】试题分析:(1)设购买A 种型号健身器材x 套,B 型器材健身器材y 套,根据题目中的“A,B 两种型号的根据题意,得:310m+460(50﹣m )≤18000,解得:m≥33,∵m 为整数,∴m 的最小值为34,答:A 种型号健身器材至少要购买34套.考点:二元一次方程组的应用;一元一次不等式的应用.23.如图,在平面直角坐标系中,△AOB 的顶点O 为坐标原点,点A 的坐标为(4,0),点B 的坐标为(0,1),点C 为边AB 的中点,正方形OBDE 的顶点E 在x 轴的正半轴上,连接CO ,CD ,CE .(1)线段OC 的长为 ;(2)求证:△CBD≌△COE;(3)将正方形OBDE 沿x 轴正方向平移得到正方形O 1B 1D 1E 1,其中点O , B ,D ,E 的对应点分别为点O 1,B 1,D 1,E 1,连接CD ,CE ,设点E 的坐标为(a ,0),其中a≠2,△CD 1E 1的面积为S .①当1<a <2时,请直接写出S 与a 之间的函数表达式;②在平移过程中,当S=41时,请直接写出a 的值.【答案】(1)217;(2)详见解析;(3)①S=﹣21a+1;②当S=41时,a=23或25.试题解析:(1)∵点A 的坐标为(4,0),点B 的坐标为(0,1),∴OA=4,OB=1,∵∠AOB=90°,∴AB=1722=+OB OA ,∵点C 为边AB 的中点,∴OC=21AB=217; (2)证明:∵∠AOB=90°,点C 是AB 的中点,∴OC=BC=21AB , ∴∠CBO=∠COB ,∴点C 的坐标为:(2,21)∵点E 的坐标为(a ,0),1<a <2,∴CH=2﹣a ,∴S=21D 1E 1•CH=21×1×(2﹣a )=﹣21a+1;②当1<a <2时,S=﹣21a+1=41,解得:a=23;当a >2时,同理:CH=a ﹣2,∴S=21D 1E 1•CH=21×1×(a ﹣2)=21a ﹣1,∴S=21a ﹣1=41,解得:a=25,综上可得:当S=41时,a=23或25.考点:四边形综合题.24.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.【答案】(1)①②详见解析;③33﹣4;(2)13.BE=5,即可得答案.试题解析:(1)①∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AB=AD,∠BAD=60°,∴△ABD是等边三角形;②由①得△ABD是等边三角形,∴AB=BD,∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE,又∵AC=BC,∴EA=ED,∴BE=BF﹣EF=33﹣4;(2)如图所示,∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,∴BE+CE=13.考点:三角形综合题.25.如图,在平面直角坐标系中,矩形OCDE 的顶点C 和E 分别在y 轴的正半轴和x 轴的正半轴上,OC=8,OE=17,抛物线y=203x 2﹣3x+m 与y 轴相交于点A ,抛物线的对称轴与x 轴相交于点B ,与CD 交于点K .(1)将矩形OCDE 沿AB 折叠,点O 恰好落在边CD 上的点F 处.①点B 的坐标为( 、 ),BK 的长是 ,CK 的长是 ;②求点F 的坐标;③请直接写出抛物线的函数表达式;(2)将矩形OCDE 沿着经过点E 的直线折叠,点O 恰好落在边CD 上的点G 处,连接OG ,折痕与OG 相交于点H ,点M 是线段EH 上的一个动点(不与点H 重合),连接MG ,MO ,过点G 作GP⊥OM 于点P ,交EH 于点N ,连接ON ,点M 从点E 开始沿线段EH 向点H 运动,至与点N 重合时停止,△MOG 和△NOG 的面积分别表示为S 1和S 2,在点M 的运动过程中,S 1•S 2(即S 1与S 2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.【答案】(1)①10,0,8,10;②(4,8);③y=203x 2﹣3x+5.(2)不变.S 1•S 2=189. 【解析】∴CK=OB=10,KB=OC=8,故答案分别为10,0,8,10.②在RT △FBK 中,∵∠FKB=90°,BF=OB=10,BK=OC=8, ∴FK=22BK BF =6,∴CF=CK ﹣FK=4,∴点F 坐标(4,8).③设OA=AF=x ,在RT △ACF 中,∵AC 2+CF 2=AF 2,∴(8﹣x )2+42=x 2,∴x=5,∴点A 坐标(0,5),代入抛物线y=203x 2﹣3x+m 得m=5, ∴抛物线为y=203x 2﹣3x+5. (2)不变.S 1•S 2=189.理由:如图2中,在RT △EDG 中,∵GE=EO=17,ED=8,∴DG=2222817-=-DE GE =15, ∴CG=CD ﹣DG=2,∴OG=222228+=+CG OC =217,∵S 1•S 2=21•OG •HN •21•OG •HM=(21•2)2•17=289.考点:二次函数综合题.。

2016年辽宁省沈阳市中考数学试卷(word解析版)

2016年辽宁省沈阳市中考数学试卷(word解析版)

2016年辽宁省沈阳市中考数学试卷(word解析版)一、选择题(下列各题的备选答案中,只有一个答案是正确的。

每小题2分,共20分)1.下列各数是无理数的是()A.0 B.﹣1 C.D.2.如图是由4个大小相同的小立方块搭成的几何体,这个几何体的俯视图是()A.B.C.D.3.在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为()A.0.54×107B.54×105C.5.4×106D.5.4×1074.如图,在平面直角坐标系中,点P是反比例函数y=(x>0)图象上的一点,分别过点P作PA⊥x轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,则k的值为()A.3 B.﹣3 C.D.﹣5.“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件6.下列计算正确的是()A.x4+x4=2x8B.x3•x2=x6C.(x2y)3=x6y3D.(x﹣y)(y﹣x)=x2﹣y27.已知一组数据:3,4,6,7,8,8,下列说法正确的是()A.众数是2 B.众数是8 C.中位数是6 D.中位数是78.一元二次方程x2﹣4x=12的根是()A.x1=2,x2=﹣6 B.x1=﹣2,x2=6 C.x1=﹣2,x2=﹣6 D.x1=2,x2=69.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A.B.4 C.8D.410.在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A.y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣4二、填空题11.分解因式:2x2﹣4x+2=.12.若一个多边形的内角和是540°,则这个多边形是边形.13.化简:(1﹣)•(m+1)=.14.三个连续整数中,n是最大的一个,这三个数的和为.15.在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲,乙两车分别从A,B两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图表示,当甲车出发h时,两车相距350km.16.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是.三、解答题17.计算:(π﹣4)0+|3﹣tan60°|﹣()﹣2+.18.为了传承优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A,B,C依次表示这三个诵读材料),将A,B,C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小明诵读《论语》的概率是;(2)请用列表法或画树状图(树形图)法求小明和小亮诵读两个不同材料的概率.19.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.20.我市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校m名学生最喜欢的一种项目(2016•沈阳)如图,在△ABC中,以AB为直径的⊙O分别于BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为5,∠CDF=30°,求的长(结果保留π).22.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?23.如图,在平面直角坐标系中,△AOB的顶点O为坐标原点,点A的坐标为(4,0),点B的坐标为(0,1),点C为边AB的中点,正方形OBDE的顶点E在x轴的正半轴上,连接CO,CD,CE.(1)线段OC的长为;(2)求证:△CBD≌△COE;(3)将正方形OBDE沿x轴正方向平移得到正方形O1B1D1E1,其中点O,B,D,E的对应点分别为点O1,B1,D1,E1,连接CD,CE,设点E的坐标为(a,0),其中a≠2,△CD1E1的面积为S.①当1<a<2时,请直接写出S与a之间的函数表达式;②在平移过程中,当S=时,请直接写出a的值.24.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.25.如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y=x2﹣3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①点B的坐标为(、),BK的长是,CK的长是;②求点F的坐标;③请直接写出抛物线的函数表达式;(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG 的面积分别表示为S1和S2,在点M的运动过程中,S1•S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.2016年辽宁省沈阳市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的。

辽宁省鞍山市2016年中考数学试卷有答案有解析

辽宁省鞍山市2016年中考数学试卷有答案有解析

辽宁省鞍山市2016年中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分。

在每小题所给的四个选项中,只有一项是符合题目要求的)1.下列实数中,最小的数是( )A .31-B .21- C .1- D .2-2.据有关部门统计,2016年我国参加高考的考生人数约为940万,这个数用科学计数法表示为( )A .71094.0⨯B .6104.9⨯C .5104.9⨯D .51094⨯ 3.如图是一个三视图,则此三视图所对应的直观图是( )4.如图,这是小刚玩投掷飞镖的游戏。

他设计了如图所示的靶子,点E 、F 分别是矩形ABCD 的两边AD 、BC 上的点,EF//AB ,点M 、N 是EF 上任意两点,则投掷一次,飞镖落在阴影部分的概率是( )A .31B .32C .21D .435.二次函数)(02≠++=a c bx ax y 的图像如图所示,对称轴是直线1=x ,则下列四个结论错误的是( )A .0>cB . 02=+b aC .0>+-c b aD .042>-ac b6.不等式⎩⎨⎧>--≥-81312x x 中两个不等式的解集在数轴上可表示为( )A .B .C .D .7.如图,点E 是矩形ABCD 的边BC 上的点,BE=2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C 1、D 1处,且点C 1、D 1、B 在同一条直线上,折痕与边AD 交于点F ,D 1F 与BE 交于点G ,若AB=3,那么△EFG 的周长为( ) A .34 B .322+ C .239 D .68.如图,在△ABC 中,∠ACB=90°,∠ABC=60°,BD=2,CD ⊥AB 于点D ,点E 、F 、G 分别是边CD 、CA 、AD 的中点,连接EF 、FG ,动点M 从点B 出发,以每秒2个单位长度的速度向点A 方向运动(点M 运动到AB 的中点时停止);过点M 作直线MP//BC 与线段AC 交于点P ,以PM 为斜边作Rt △PMN ,点N 在AB 上,设运动的时间为t (s ),Rt △PMN 与矩形DEFG 重叠部分的面积为S ,则S 与t 之间的函数关系图像大致为( )二、填空题(本大题共8小题,每小题3分,共24分) 9.分解因式23123ab a -的结果是___________________10.若关于x 的方程042=+-m x x 有两个实数根,则m 的取值范围是__________11.如图,在⊙O 中,过直径BA 延长线上的点C 作⊙O 的一条切线,切点为P 。

2016中考数学试题含答案(精选5套)

2016中考数学试题含答案(精选5套)

2016中考数学试题含答案(精选5套)2016年沈阳市中考数学试卷数学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本..试题卷上作答无效........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回.....一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B铅笔涂黑)1. 2 sin 60°的值等于A. 1B.23 C. 2D.32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109 D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间 D. 3至4之间5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是A. 平行四边形B. 矩形C. 正方形D. 菱形6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是圆弧角扇形程中,△MPQ 的面积大小变化情况是A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小 二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效)13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 . 16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折, 再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 . 18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜 边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成(第17题(第18题的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效) 19. (本小题满分8分,每题4分) (1)计算:4 cos45°-8+(π-3)+(-1)3; (2)化简:(1 - n m n +)÷22n m m -. 20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图 痕迹,不要求写作法); (2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数. 22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下: (1)求这50个样本数据的平均数、众数和中位数; (2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,3121--+x x ≤1, ……① 解不等式组: 3(x - 1)<2 x + 1. ……② (第21题°树底 部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度. (参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且 OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ; (2)若⊙O 的半径R = 3,PA = 9,求OM 的长. 25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现(第23题(第24题将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.2016年沈阳市中考数学试卷答案一、选择题说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13. 31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400+ = 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分)=0 …………………………………4分(2)解:原式 =(n m n m ++-n m n +)·m n m 22- …………2分 = nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°,∴∠ABD =21∠ABC = 36°, …………4分∵AB = AC ,∴∠ C =∠ABC = 72°, …………5分∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分22. 解:(1)观察条形统计图,可知这组样本数据的平均数是_x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多,∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233 = 3.∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900.∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt△BDC中,∠BDC = 90°,BC = 63米,∠BCD = 30°,∴DC = BC·cos30°……………………1分3= 9, (2)= 63×2分∴DF = DC + CF = 9 + 1 = 10,…………………3分∴GE = DF = 10. …………………4分在Rt△BGE中,∠BEG = 20°,∴BG = CG·tan20°…………………5分=10×0.36=3.6,…………………6分在Rt△AGE中,∠AEG = 45°,∴AG = GE = 10,……………………7分∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB的高度约为6.4米. ……………8分24. 解(1)如图,连接OA,则OA⊥AP. ………………1分∵MN⊥AP,∴MN∥OA. ………………2分∵OM∥AP,∴四边形ANMO是矩形.∴OM = AN. ………………3分(2)连接OB,则OB⊥AP,∵OA = MN,OA = OB,OM∥BP,∴OB = MN,∠OMB =∠NPM.∴Rt△OBM≌Rt△MNP. ………………5分∴OM = MP.设OM = x,则NP = 9-x. ………………6分在Rt△MNP中,有x2 = 32+(9- x)2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A型每套x元,则B型每套(x + 40)元. …………… 1分∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A型课桌凳和一套B型课桌凳各需180元、220元. ……………3分(2)设购买A型课桌凳a套,则购买B型课桌凳(200 - a)套.2(200 - a),a≤3∴…………… 4分180 a + 220(200-a)≤40880.解得78≤a≤80. …………… 5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 -a)=-40a + 44000. …………… 7分∵-40<0,y随a的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2016年大连市中考数学试题一、 选择题 1、数2-中最大的数是()A 、1- BC 、0 D2、9的立方根是()A 、3± B 、3 C 、 D 3、已知一元二次方程2430x x -+=的两根1x 12x x +=()A 、4B 、3C 、-4D 、-34、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2C 、几何体是圆柱体,半径为2D 、几何体是圆柱体,半径为25、若a b >,则下列式子一定成立的是() A 、0a b +> B 、0a b -> C 、0ab > D 、0a b >6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=()A 、20°B 、80°C 、60°D 、100° 7、已知AB 、CD 是⊙O 的直径,则四边形ACBDDE是()A 、正方形B 、矩形C 、菱形D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x =若120x x >>,则一定成立的是() A 、120y y >> B 、120y y >> C 、120y y >> D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( )A 、5B 、2.4C 、2.5D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3mm -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

辽宁省鞍山市2016年中考数学试卷有答案有解析

辽宁省鞍山市2016年中考数学试卷有答案有解析

辽宁省鞍山市2016年中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分。

在每小题所给的四个选项中,只有一项是符合题目要求的)1.下列实数中,最小的数是()A._1B._1C.-1D.-V2322.据有关部门统计,2016年我国参加高考的考生人数约为940万,这个数用科学计数法表示为()A.0.94xl07B.9.4xl06C.9.4xlO5D.94xl053.如图是一个三视图,则此三视图所对应的直观图是()4.如图,这是小刚玩投掷飞镖的游戏。

他设计了如图所示的靶子,点E、F分别是矩形ABCD 的两边AD、BC上的点,EF//AB,点M、N是EF上任意两点,则投掷一次,飞镖落在阴影部分的概率是()A.1B.-33C.1 D.224 ktv11X5.二次函数y=ax2+bx+c(on O)的图像如图所不,对称轴是直线x=l>则下列四个结论错误的是()A.c>0B.2a+b=0C.a—b+c>0D.b2~4ac>06.不等式J一中两个不等式的解集在数轴上可表示为()3x—1>8!!,!~A. B. C.D.7.如图,点E是矩形ABCD的边BC上的点,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点Ci、Di处,且点Ci、Di、B在同一条直线上,折痕与边AD交于点F,DiF与BE交于点G,若AB=g,那么ZiEFG的周长为()A.4^3B.2+2-V3C.2^1D.628.如图,在ZXABC中,ZACB=90°,ZABC=60°,BD=2,CD_LAB于点D,点E、F、G分别是边CD、CA、AD的中点,连接EF、FG,动点M从点B出发,以每秒2个单位长度的速度向点A方向运动(点M运动到AB的中点时停止);过点M作直线MP//BC与线段AC交于点P,以PM为斜边作RtAPMN,点N在AB上,设运动的时间为t(s),RtAPMN与矩形DEFG重叠部分的面积为S,则S与t之间的函数关系图像大致为()二、填空题(本大题共8小题,每小题3分,共24分)9.分解因式3a3~12^2的结果是10.若关于x的方程*2—4x+m=。

辽宁省朝阳市2016年中考数学试卷及答案解析

辽宁省朝阳市2016年中考数学试卷及答案解析

2016年辽宁省朝阳市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题给出的四个选项中,只有一个是正确的.1.在下列实数中,﹣3,,0,2,﹣1中,绝对值最小的数是()A.﹣3 B.0 C.D.﹣12.“互联网+”已全面进入人们的日常生活,据有关部门统计,目前全国4G用户数达到4.62亿,其中4.62亿用科学记数法表示为()A.4.62×104B.4.62×106C.4.62×108D.0.462×1083.如图是由四个大小相同的正方体组成的几何体,那么它的主视图是()A.B.C.D.4.方程2x2=3x的解为()A.0 B.C.D.0,5.如图,已知a∥b,∠1=50°,∠2=90°,则∠3的度数为()A.40° B.50° C.150°D.140°6.若一组数据2,3,4,5,x的平均数与中位数相同,则实数x的值不可能的是()A.6 B.3.5 C.2.5 D.17.如图,分别以五边形ABCDE的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为()A.B.3πC.D.2π8.如图,直线y=mx(m≠0)与双曲线y=相交于A(﹣1,3)、B两点,过点B作BC⊥x轴于点C,连接AC,则△ABC的面积为()A.3 B.1.5 C.4.5 D.69.如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.710.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则下列结论:(1)b2﹣4ac>0;(2)2a=b;(3)点(﹣,y1)、(﹣,y2)、(,y3)是该抛物线上的点,则y1<y2<y3;(4)3b+2c<0;(5)t(at+b)≤a﹣b(t为任意实数).其中正确结论的个数是()A.2 B.3 C.4 D.5二、填空题:本大题共6个小题,每小题3分,共18分.只需要将结果直接填写在答题卡对应题号处的横线上,不必写出解答过程,不填、错填,一律得0分.11.函数y=的自变量x的取值范围是.12.已知在平面直角坐标系中,点A(﹣3,﹣1)、B(﹣2,﹣4)、C(﹣6,﹣5),以原点为位似中心将△ABC缩小,位似比为1:2,则点B的对应点的坐标为.13.若方程(x﹣m)(x﹣n)=3(m,n为常数,且m<n)的两实数根分别为a,b(a<b),则m,n,a,b 的大小关系是.14.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是.15.通过学习,爱好思考的小明发现,一元二次方程的根完全由它的系数确定,即一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac≥0时有两个实数根:x1=,x2=,于是:x1+x2=,x1•x2=、这就是著名的韦达定理.请你运用上述结论解决下列问题:关于x的一元二次方程x2+kx+k+1=0的两实数根分别为x1,x2,且x12+x22=1,则k的值为.16.如图,在菱形ABCD中,tanA=,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,给出如下几个结论:(1)△AED≌△DFB;(2)CG与BD一定不垂直;(3)∠BGE的大小为定值;(4)S四边形BCDG=CG2;(5)若AF=2DF,则BF=7GF.其中正确结论的序号为.三、解答题:本大题共9小题,共72分,解答应写出必要的步骤,文字说明或证明过程.17.2016+2•cos60°﹣(﹣)﹣2+()0.18.先化简,再求值:,请你从﹣1≤x<3的范围内选取一个你喜欢的整数作为x的值.19.为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.20.如图,一渔船自西向东追赶鱼群,在A处测得某无名小岛C在北偏东60°方向上,前进2海里到达B点,此时测得无名小岛C在东北方向上.已知无名小岛周围2.5海里内有暗礁,问渔船继续追赶鱼群有无触礁危险?(参考数据:)21.为全面开展“大课间”活动,某校准备成立“足球”、“篮球”、“跳绳”、“踢毽”四个课外活动小组,学校体工处根据七年级学生的报名情况如图,Rt△ABC中,∠ACB=90°,AD为∠BAC的平分线,以AB上一点O为圆心的半圆经过A、D两点,交AB于E,连接OC交AD于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若OF:FC=2:3,CD=3,求BE的长.23.(9分)为备战2016年里约奥运会,中国女排的姑娘们刻苦训练,为国争光,如图,已知排球场的长度OD为18米,位于球场中线处球网的高度AB为2.43米,一队员站在点O处发球,排球从点O的正上方1.8米的C点向正前方飞出,当排球运行至离点O的水平距离OE为7米时,到达最高点G建立如图所示的平面直角坐标系.(1)当球上升的最大高度为3.2米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)的函数关系式.(不要求写自变量x的取值范围).(2)在(1)的条件下,对方距球网0.5米的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.(3)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)24.小颖在学习“两点之间线段最短”查阅资料时发现:△ABC内总存在一点P与三个顶点的连线的夹角相等,此时该点到三个顶点的距离之和最小.【特例】如图1,点P为等边△ABC的中心,将△ACP绕点A逆时针旋转60°得到△ADE,从而有DE=PC,连接PD得到PD=PA,同时∠APB+∠APD=120°+60°=180°,∠ADP+∠ADE=180°,即B、P、D、E四点共线,故PA+PB+PC=PD+PB+DE=BE.在△ABC中,另取一点P′,易知点P′与三个顶点连线的夹角不相等,可证明B、P′、D′、E四点不共线,所以P′A+P′B+P′C>PA+PB+PC,即点P到三个顶点距离之和最小.【探究】(1)如图2,P为△ABC内一点,∠APB=∠BPC=120°,证明PA+PB+PC的值最小;【拓展】(2)如图3,△ABC中,AC=6,BC=8,∠ACB=30°,且点P为△ABC内一点,求点P到三个顶点的距离之和的最小值.25.如图1,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴从左至右交于A,B两点,与y轴交于点C.(1)若抛物线过点T(1,﹣),求抛物线的解析式;(2)在第二象限内的抛物线上是否存在点D,使得以A、B、D三点为顶点的三角形与△ABC相似?若存在,求a的值;若不存在,请说明理由.(3)如图2,在(1)的条件下,点P的坐标为(﹣1,1),点Q(6,t)是抛物线上的点,在x轴上,从左至右有M、N两点,且MN=2,问MN在x轴上移动到何处时,四边形PQNM的周长最小?请直接写出符合条件的点M的坐标.2016年辽宁省朝阳市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题给出的四个选项中,只有一个是正确的.1.在下列实数中,﹣3,,0,2,﹣1中,绝对值最小的数是()A.﹣3 B.0 C.D.﹣1【考点】实数大小比较.【分析】先求出各数的绝对值,再比较大小即可解答.【解答】解:|﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,∵3>2>>1>0,∴绝对值最小的数是0,故选:B.【点评】本题考查了实数的大小比较,解决本题的关键是求出各数的绝对值.2.“互联网+”已全面进入人们的日常生活,据有关部门统计,目前全国4G用户数达到4.62亿,其中4.62亿用科学记数法表示为()A.4.62×104B.4.62×106C.4.62×108D.0.462×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将4.62亿用科学记数法表示为:4.62×108.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.如图是由四个大小相同的正方体组成的几何体,那么它的主视图是()A .B .C .D .【考点】简单组合体的三视图. 【专题】计算题.【分析】从正面看几何体得到主视图即可.【解答】解:根据题意的主视图为:,故选B【点评】此题考查了简单组合体的三视图,主视图是从物体的正面看得到的视图.4.方程2x 2=3x 的解为( )A .0B .C .D .0,【考点】解一元二次方程-因式分解法. 【专题】常规题型;一次方程(组)及应用. 【分析】方程整理后,利用因式分解法求出解即可. 【解答】解:方程整理得:2x 2﹣3x=0, 分解因式得:x (2x ﹣3)=0,解得:x=0或x=, 故选D【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.5.如图,已知a ∥b ,∠1=50°,∠2=90°,则∠3的度数为( )A.40° B.50° C.150°D.140°【考点】平行线的性质.【分析】作c∥a,由于a∥b,可得c∥b.然后根据平行线的性质解答.【解答】解:作c∥a,∵a∥b,∴c∥b.∴∠1=∠5=50°,∴∠4=90°﹣50°=40°,∴∠6=∠4=40°,∴∠3=180°﹣40°=140°.故选D.【点评】本题考查了平行线的性质,作出辅助线是解题的关键.6.若一组数据2,3,4,5,x的平均数与中位数相同,则实数x的值不可能的是()A.6 B.3.5 C.2.5 D.1【考点】中位数;算术平均数.【分析】因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.【解答】解:(1)将这组数据从小到大的顺序排列为2,3,4,5,x,处于中间位置的数是4,∴中位数是4,平均数为(2+3+4+5+x)÷5,∴4=(2+3+4+5+x)÷5,解得x=6;符合排列顺序;(2)将这组数据从小到大的顺序排列后2,3,4,x,5,中位数是4,此时平均数是(2+3+4+5+x)÷5=4,解得x=6,不符合排列顺序;(3)将这组数据从小到大的顺序排列后2,3,x,4,5,中位数是x,平均数(2+3+4+5+x)÷5=x,解得x=3.5,符合排列顺序;(4)将这组数据从小到大的顺序排列后2,x,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,不符合排列顺序;(5)将这组数据从小到大的顺序排列后x,2,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,符合排列顺序;∴x的值为6、3.5或1.故选C.【点评】本题考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.7.如图,分别以五边形ABCDE的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为()A.B.3πC.D.2π【考点】扇形面积的计算;多边形内角与外角.【分析】圆心角之和等于n 边形的内角和(n ﹣2)×180°,由于半径相同,根据扇形的面积公式S=计算即可求出圆形中的空白面积,再用5个圆形的面积减去圆形中的空白面积可得阴影部分的面积. 【解答】解:n 边形的内角和(n ﹣2)×180°,圆形的空白部分的面积之和S==π=π=π.所以图中阴影部分的面积之和为:5πr 2﹣π=5π﹣π=π. 故选:C .【点评】此题考查扇形的面积计算,正确记忆多边形的内角和公式,以及扇形的面积公式是解决本题的关键.8.如图,直线y=mx (m ≠0)与双曲线y=相交于A (﹣1,3)、B 两点,过点B 作BC ⊥x 轴于点C ,连接AC ,则△ABC 的面积为( )A .3B .1.5C .4.5D .6【考点】反比例函数与一次函数的交点问题. 【专题】用函数的观点看方程(组)或不等式.【分析】因为直线与双曲线的交点坐标就是直线解析式与双曲线的解析式联立而成的方程组的解,故求出直线解析式与双曲线的解析式,然后将其联立解方程组,得点B 与C 的坐标, 再根据三角形的面积公式及坐标的意义求解.【解答】解:∵直线y=mx (m ≠0)与双曲线y=相交于A (﹣1,3),∴﹣m=3,,∴m=﹣3,n=﹣3,∴直线的解析式为:y=﹣3x ,双曲线的解析式为:y=﹣解方程组 得:,则点A的坐标为(﹣1,3),点B的坐标为(1,﹣3)∴点C的坐标为(1,0)∴S△ABC=×1×(3+3)=3故:选A【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是理解函数的图象的交点与两函数解析式之间的关系.9.如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.7【考点】旋转的性质;平行线的判定.【专题】计算题.【分析】只要证明△BAC∽△BDA,推出=,求出BD即可解决问题.【解答】解:∵AF∥BC,∴∠FAD=∠ADB,∵∠BAC=∠FAD,∴∠BAC=∠ADB,∵∠B=∠B,∴△BAC∽△BDA,∴=,∴=,∴BD=9,∴CD=BD﹣BC=9﹣4=5,故选B.【点评】本题考查平行线的性质、旋转变换、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形,属于中考常考题型.10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则下列结论:(1)b2﹣4ac>0;(2)2a=b;(3)点(﹣,y1)、(﹣,y2)、(,y3)是该抛物线上的点,则y1<y2<y3;(4)3b+2c<0;(5)t(at+b)≤a﹣b(t为任意实数).其中正确结论的个数是()A.2 B.3 C.4 D.5【考点】二次函数与不等式(组);二次函数图象与系数的关系;抛物线与x轴的交点.【分析】逐一分析5条结论是否正确:(1)由抛物线与x轴有两个不相同的交点结合根的判别式即可得出该结论正确;(2)根据抛物线的对称轴为x=﹣1,即可得出b=2a,即(2)正确;(3)根据抛物线的对称性找出点(﹣,y3)在抛物线上,再结合抛物线对称轴左边的单调性即可得出(3)错误;(4)由x=﹣3时,y <0,即可得出3a+c<0,结合b=2a即可得出(4)正确;(5)由方程at2+bt+a=0中△=b2﹣4a•a=0结合a<0,即可得出抛物线y=at2+bt+a中y≤0,由此即可得出(5)正确.综上即可得出结论.【解答】解:(1)由函数图象可知,抛物线与x轴有两个不同的交点,∴关于x的方程ax2+bx+c=0有两个不相等的实数根,∴△=b2﹣4ac>0,∴(1)正确;(2)∵抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,∴﹣=﹣1,∴2a=b,∴(2)正确;(3)∵抛物线的对称轴为x=﹣1,点(,y3)在抛物线上,∴(﹣,y3).∵﹣<﹣<﹣,且抛物线对称轴左边图象y值随x的增大而增大,∴y1<y3<y2.∴(3)错误;(4)∵当x=﹣3时,y=9a﹣3b+c<0,且b=2a,∴9a﹣3×2a+c=3a+c<0,∴6a+2c=3b+2c<0,∴(4)正确;(5)∵b=2a,∴方程at2+bt+a=0中△=b2﹣4a•a=0,∴抛物线y=at2+bt+a与x轴只有一个交点,∵图中抛物线开口向下,∴a<0,∴y=at2+bt+a≤0,即at2+bt≤﹣a=a﹣b.∴(5)正确.故选C.【点评】本题考查了二次函数图象与系数的关系、二次函数与不等式以及抛物线与x轴的交点,解题的关键是逐一分析5条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,熟练掌握二次函数的图象是关键.二、填空题:本大题共6个小题,每小题3分,共18分.只需要将结果直接填写在答题卡对应题号处的横线上,不必写出解答过程,不填、错填,一律得0分.11.函数y=的自变量x的取值范围是x≥2且x≠3 .【考点】函数自变量的取值范围;零指数幂.【分析】根据分式、二次根式以及零指数幂有意义的条件解不等式组即可.【解答】解:由题意得,,解得x≥2且x≠3,故答案为x≥2且x≠3.【点评】本题考查了函数自变量的取值范围问题,以及零指数幂有意义的条件:底数不为零.12.已知在平面直角坐标系中,点A(﹣3,﹣1)、B(﹣2,﹣4)、C(﹣6,﹣5),以原点为位似中心将△ABC缩小,位似比为1:2,则点B的对应点的坐标为(1,2)或(﹣1,﹣2).【考点】位似变换;坐标与图形性质.【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k解答.【解答】解:∵点B的坐标为(﹣2,﹣4),以原点为位似中心将△ABC缩小,位似比为1:2,∴点B的对应点的坐标为(1,2)或(﹣1,﹣2),故答案为:(1,2)或(﹣1,﹣2).【点评】本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.13.若方程(x﹣m)(x﹣n)=3(m,n为常数,且m<n)的两实数根分别为a,b(a<b),则m,n,a,b 的大小关系是a<m<n<b .【考点】抛物线与x轴的交点.【分析】由方程可得x﹣m和x﹣n同号,根据方程根的定义代入可得到a、b与m、n的关系,从而可得出其大小关系.【解答】解:∵(x﹣m)(x﹣n)=3,∴可得或,∵m<n,∴可解得x>n或x<m,∵方程的两根为a和b,∴可得到a>n或a<m,b>n或b<m,又a<b,综合可得a<m<n<b,故答案为:a<m<n<b.【点评】本题考查了一元二次方程的根与系数之间的关系,难度较大,关键是对m,n,a,b大小关系的讨论是此题的难14.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是(﹣10,3).【考点】勾股定理的应用;矩形的性质;坐标与图形变化-对称;翻折变换(折叠问题).【分析】根据题意可以得到CE、OF的长度,根据点E在第二象限,从而可以得到点E的坐标.【解答】解:设CE=a,则BE=8﹣a,由题意可得,EF=BE=8﹣a,∵∠ECF=90°,CF=4,∴a2+42=(8﹣a)2,解得,a=3,设OF=b,∵△ECF∽△FOA,∴,即,得b=6,即CO=CF+OF=10,∴点E的坐标为(﹣10,3),故答案为(﹣10,3).【点评】本题考查勾股定理的应用,矩形的性质、翻折变化、坐标与图形变化﹣对称,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.通过学习,爱好思考的小明发现,一元二次方程的根完全由它的系数确定,即一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac≥0时有两个实数根:x1=,x2=,于是:x1+x2=,x1•x2=、这就是著名的韦达定理.请你运用上述结论解决下列问题:关于x的一元二次方程x2+kx+k+1=0的两实数根分别为x1,x2,且x12+x22=1,则k的值为﹣1 .【考点】根与系数的关系;根的判别式.【分析】由方程的有两个实数根x1、x2可得△=k2﹣4(k+1)≥0,求得k的范围,又由x1+x2=﹣k,x1x2=k+1及x12+x22=1可求得k的值.【解答】解:∵x1,x2为一元二次方程x2+kx+k+1=0的两实数根,∴△=k2﹣4(k+1)≥0,且x1+x2=﹣k,x1x2=k+1,解得:k≤2﹣2或k≥2+2,又∵x12+x22=1,即(x1+x2)2﹣x1x2=1,∴(﹣k)2﹣(k+1)=1,即k2﹣k﹣2=0,解得:k=﹣1或k=2(舍),故答案为:﹣1.【点评】本题主要考查一元二次方程的根与系数的关系及根的判别式,熟练掌握根的判别式及根与系数的关系的是关键.16.如图,在菱形ABCD中,tanA=,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,给出如下几个结论:(1)△AED≌△DFB;(2)CG与BD一定不垂直;(3)∠BGE的大小为定值;(4)S四边形BCDG=CG2;(5)若AF=2DF,则BF=7GF.其中正确结论的序号为(1)(3)(4)(5).【考点】四边形综合题.【分析】(1)正确,先证明△ABD为等边三角形,根据“SAS”证明△AED≌△DFB;(2)错误,只要证明△GDC≌△BGC,利用等腰三角形性质即可解决问题.(3))正确,由△AED≌△DFB,推出∠ADE=∠DBF,所以∠BGE=∠BDG+∠DBG=∠BDG+∠ADE=60°,(4)正确,证明∠BGE=60°=∠BCD,从而得点B、C、D、G四点共圆,因此∠BGC=∠DGC=60°,过点C作CM ⊥GB于M,CN⊥GD于N.证明△CBM≌△CDN,所以S四边形BCDG=S四边形CMGN,易求后者的面积.(5)正确,过点F作FP∥AE于P点,根据题意有FP:AE=DF:DA=1:3,则FP:BE=1:6=FG:BG,即BG=6GF,BF=7FG.【解答】解:(1)∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,在△AED和△DFB中,,∴△AED≌△DFB,故本小题正确;(2)当点E,F分别是AB,AD中点时(如图1),由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;(3)∵△AED≌△DFB,∴∠ADE=∠DBF,∴∠BGE=∠BDG+∠DBG=∠BDG+∠ADE=60°,故本选项正确.(4)∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.(如图2)则△CBM≌△CDN,(AAS)∴S四边形BCDG=S四边形CMGN,S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=CG2,故本小题正确;(5)过点F作FP∥AE于P点.(如图3)∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=1:6=FG:BG,即BG=6GF,∴BF=7GF,故本小题正确.综上所述,正确的结论有(1)(3)(4)(5).故答案为:(1)(3)(4)(5).【点评】此题综合考查了菱形的性质,等边三角形的判定与性质,全等三角形的判定和性质,作出辅助线构造出全等三角形,把不规则图形的面转化为两个全等三角形的面积是解题的关键.三、解答题:本大题共9小题,共72分,解答应写出必要的步骤,文字说明或证明过程.17.(﹣1)2016+2•cos60°﹣(﹣)﹣2+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】根据零指数幂和负整数指数幂的运算法则、特殊角的锐角三角函数值计算即可.【解答】解:运算=1+2×﹣4+1=1+1﹣4+1=﹣1.【点评】本题考查的是实数的运算,掌握零指数幂和负整数指数幂的运算法则、熟记特殊角的锐角三角函数值是解题的关键.18.先化简,再求值:,请你从﹣1≤x<3的范围内选取一个你喜欢的整数作为x的值.【考点】分式的化简求值.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,确定出x的值,代入计算即可求出值.【解答】解:原式=÷=•=,由﹣1≤x<3,x为整数,得到x=﹣1,0,1,2,经检验x=﹣1,0,1不合题意,舍去,则当x=2时,原式=4.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.【考点】一元二次方程的应用.【专题】销售问题.【分析】设每个粽子的定价为x元,由于每天的利润为800元,根据利润=(定价﹣进价)×销售量,列出方程求解即可.【解答】解:设每个粽子的定价为x元时,每天的利润为800元.根据题意,得(x﹣3)(500﹣10×)=800,解得x1=7,x2=5.∵售价不能超过进价的200%,∴x≤3×200%.即x≤6.∴x=5.答:每个粽子的定价为5元时,每天的利润为800元.【点评】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.20.如图,一渔船自西向东追赶鱼群,在A处测得某无名小岛C在北偏东60°方向上,前进2海里到达B点,此时测得无名小岛C在东北方向上.已知无名小岛周围2.5海里内有暗礁,问渔船继续追赶鱼群有无触礁危险?(参考数据:)【考点】解直角三角形的应用-方向角问题.【分析】根据题意可知,实质是比较C点到AB的距离与10的大小.因此作CD⊥AB于D点,求CD的长.【解答】解:作CD⊥AB于D,根据题意,∠CAD=30°,∠CBD=45°,在Rt△ACD中,AD==CD,在Rt△BCD中,BD==CD,∵AB=AD﹣BD,∴CD﹣CD=2(海里),解得:CD=+1≈2.732>2.5,答:渔船继续追赶鱼群没有触礁危险.【点评】本题考查了解直角三角形的应用,“化斜为直”是解三角形的常规思路,常需作垂线(高),构造直角三角形.原则上不破坏特殊角(30°、45°、60°).21.为全面开展“大课间”活动,某校准备成立“足球”、“篮球”、“跳绳”、“踢毽”四个课外活动小组,学校体工处根据七年级学生的报名情况如图,Rt△ABC中,∠ACB=90°,AD为∠BAC的平分线,以AB上一点O为圆心的半圆经过A、D两点,交AB于E,连接OC交AD于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若OF:FC=2:3,CD=3,求BE的长.【考点】直线与圆的位置关系;相似三角形的判定与性质.【分析】(1)连接OD,得到∠DOE=2∠DAE,由角平分线得到∠BAC=2∠DAE,得出∠DOE=∠BAC,得到OD∥AC 即可;(2)由OD∥AC一个A型和一个X型相似图形,先求出BD,作出DH⊥AB,利用三角函数求出∠B,进而得出OB,利用角平分线的性质得出DH=3,从而求出圆的半径,即可.【解答】解:(1)BC是⊙O的切线,理由:如图,连接OD,∵AD为∠BAC的平分线,∴∠BAC=2∠BAD,∵∠DOE=2∠BAD,∴∠DOE=∠BAC,∴OD∥AC,∴∠ODB=∠ACB=90°,∵点D在⊙O上,∴BC是⊙O的切线.(2)如图2,连接OD,由(1)知,OD∥AC,∴,∵,∴,∵OD∥AC,∴,∴∵CD=3,∴DB=6,过点D作DH⊥AB,∵AD是∠BAC的角平分线,∠ACB=90°,∴DH=CD=3,在Rt△BDH中,DH=3,BD=6,∴sin∠B==,∴∠B=30°,BO==4,∴∠BOD=60°,在Rt△ODB中,sin∠DOH=,∴,∴OD=2∴BE═OB﹣OE=OB﹣OD=4﹣2=2.【点评】此题是直线和圆的位置关系,主要考查了圆的性质,切线的判定,锐角三角函数,相似三角形,解本题的关键是求出BD.23.为备战2016年里约奥运会,中国女排的姑娘们刻苦训练,为国争光,如图,已知排球场的长度OD为18米,位于球场中线处球网的高度AB为2.43米,一队员站在点O处发球,排球从点O的正上方1.8米的C点向正前方飞出,当排球运行至离点O的水平距离OE为7米时,到达最高点G建立如图所示的平面直角坐标系.(1)当球上升的最大高度为3.2米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)的函数关系式.(不要求写自变量x的取值范围).(2)在(1)的条件下,对方距球网0.5米的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.(3)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)【考点】二次函数的应用.【分析】(1)根据此时抛物线顶点坐标为(7,3.2),设解析式为y=a(x﹣7)2+3.2,再将点C坐标代入即可求得;(2)由(1)中解析式求得x=9.5时y的值,与他起跳后的最大高度为3.1米比较即可得;(3)设抛物线解析式为y=a(x﹣7)2+h,将点C坐标代入得到用h表示a的式子,再根据球既要过球网,又不出边界即x=9时,y>2.43且x=18时,y≤0得出关于h的不等式组,解之即可得.【解答】解:(1)根据题意知此时抛物线的顶点G的坐标为(7,3.2),设抛物线解析式为y=a(x﹣7)2+3.2,将点C(0,1.8)代入,得:49a+3.2=1.8,解得:a=﹣,∴排球飞行的高度y与水平距离x的函数关系式为y=﹣(x﹣7)2+;(2)由题意当x=9.5时,y=﹣(9.5﹣7)2+≈3.02<3.1,故这次她可以拦网成功;(3)设抛物线解析式为y=a(x﹣7)2+h,将点C(0,1.8)代入,得:49a+h=1.8,即a=,∴此时抛物线解析式为y=(x﹣7)2+h,根据题意,得:,解得:h≥3.025,答:排球飞行的最大高度h的取值范围是h≥3.025.【点评】此题主要考查了二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,再根据题意确定范围.24.小颖在学习“两点之间线段最短”查阅资料时发现:△ABC内总存在一点P与三个顶点的连线的夹角相等,此时该点到三个顶点的距离之和最小.【特例】如图1,点P为等边△ABC的中心,将△ACP绕点A逆时针旋转60°得到△ADE,从而有DE=PC,连接PD得到PD=PA,同时∠APB+∠APD=120°+60°=180°,∠ADP+∠ADE=180°,即B、P、D、E四点共线,故PA+PB+PC=PD+PB+DE=BE.在△ABC中,另取一点P′,易知点P′与三个顶点连线的夹角不相等,可证明B、P′、D′、E四点不共线,所以P′A+P′B+P′C>PA+PB+PC,即点P到三个顶点距离之和最小.【探究】(1)如图2,P为△ABC内一点,∠APB=∠BPC=120°,证明PA+PB+PC的值最小;【拓展】(2)如图3,△ABC中,AC=6,BC=8,∠ACB=30°,且点P为△ABC内一点,求点P到三个顶点的距离之和的最小值.【考点】几何变换综合题.【分析】(1)将△ACP绕点A逆时针旋转60°得到△ADE,可得PC=DE,再证△APD为等边三角形得PA=PD、∠APD=∠ADP=60°,由∠APB=∠BPC=120°知B、P、D、E四点共线,根据两点间线段最短即可得答案;(2)分别以AB、BC为边在△ABC外作等边三角形,连接CD、AE交于点P,先证△ABE≌△DBC可得CD=AE、∠BAE=∠BDC,继而知∠APO=∠OBD=60°,在DO上截取DQ=AP,再证△ABP≌△DBQ可得BP=BQ、∠PBA=∠QBD,从而可证△PBQ为等边三角形,得PB=PQ,由PA+PB+PC=DQ+PQ+PC=CD=AE,Rt△ACE中根据勾股定理即可得AE 的长,从而可得答案.【解答】解:(1)如图1,将△ACP绕点A逆时针旋转60°得到△ADE,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文件清单:2016年辽宁省丹东市中考数学试卷(解析版)2016年辽宁省葫芦岛市中考数学试卷(解析版)辽宁省大连市2016年中考数学试题(word版,含解析)辽宁省沈阳市2016年中考数学试题(word版,含解析)2016年辽宁省丹东市中考数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共24分)1.﹣3的倒数是()A.3B. C.﹣D.﹣32.2016年1月19日,国家统计局公布了2015年宏观经济数据,初步核算,全年国内生产总值为676000亿元.676000用科学记数法表示为()A.6.76×106B.6.76×105C.67.6×105D.0.676×1063.如图所示几何体的左视图为()A. B. C. D.4.一组数据8,3,8,6,7,8,7的众数和中位数分别是()A.8,6B.7,6C.7,8D.8,75.下列计算结果正确的是()A.a8÷a4=a2B.a2•a3=a6C.(a3)2=a6D.(﹣2a2)3=8a66.二元一次方程组的解为()A. B. C. D.7.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD 于点E,AB=6,EF=2,则BC长为()A.8B.10C.12D.148.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD 与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S △ABC=4S△ADF.其中正确的有()A.1个B.2 个C.3 个D.4个二、填空题(每小题3分,共24分)9.分解因式:xy2﹣x=.10.不等式组的解集为.11.一个袋中装有两个红球、三个白球,每个球除颜色外都相同.从中任意摸出一个球,摸到红球的概率是.12.反比例函数y=的图象经过点(2,3),则k=.13.某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x,则可列方程为.14.观察下列数据:﹣2,,﹣,,﹣,…,它们是按一定规律排列的,依照此规律,第11个数据是.15.如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为.16.如图,在平面直角坐标系中,A、B两点分别在x轴、y轴上,OA=3,OB=4,连接AB.点P在平面内,若以点P、A、B为顶点的三角形与△AOB全等(点P 与点O不重合),则点P的坐标为.三、解答题(每小题8分,共16分)17.计算:4sin60°+|3﹣|﹣()﹣1+(π﹣2016)0.18.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.四、(每小题10分,共20分)19.为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?20.甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.五、(每小题10分,共20分)21.某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,购买240元甲商品的数量比购买300元乙商品的数量多15件,求两种商品单价各为多少元?22.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.六、(每小题10分,共20分)23.某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)24.某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?七、(本题12分)25.如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE 与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.八、(本题14分)26.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.2016年辽宁省丹东市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共24分)1.﹣3的倒数是()A.3B. C.﹣D.﹣3【考点】倒数.【分析】利用倒数的定义,直接得出结果.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.2.2016年1月19日,国家统计局公布了2015年宏观经济数据,初步核算,全年国内生产总值为676000亿元.676000用科学记数法表示为()A.6.76×106B.6.76×105C.67.6×105D.0.676×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将676000用科学记数法表示为6.76×105.故选B.3.如图所示几何体的左视图为()A. B. C. D.【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层一个小正方形,第二层一个小正方形,第三层一个小正方形,故选:A.4.一组数据8,3,8,6,7,8,7的众数和中位数分别是()A.8,6B.7,6C.7,8D.8,7【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:3,6,7,7,8,8,8,8出现了3次,出现的次数最多,则众数是8;最中间的数是7,则这组数据的中位数是7.故选D.5.下列计算结果正确的是()A.a8÷a4=a2B.a2•a3=a6C.(a3)2=a6D.(﹣2a2)3=8a6【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;积的乘方法则,把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.【解答】解:A、a8÷a4=a4,故A错误;B、a2•a3=a5,故B错误;C、(a3)2=a6,故C正确;D、(﹣2a2)3=﹣8a6,故D错误.故选:C.6.二元一次方程组的解为()A. B. C. D.【考点】二元一次方程组的解.【分析】根据加减消元法,可得方程组的解.【解答】解:①+②,得 3x=9,解得x=3,把x=3代入①,得3+y=5,y=2,所以原方程组的解为.故选C.7.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD 于点E,AB=6,EF=2,则BC长为()A.8B.10C.12D.14【考点】平行四边形的性质.【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB,得出AF=AB=6,同理可证DE=DC=6,再由EF的长,即可求出BC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=6,AD=BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,则∠ABF=∠AFB,∴AF=AB=6,同理可证:DE=DC=6,∵EF=AF+DE﹣AD=2,即6+6﹣AD=2,解得:AD=10;故选:B.8.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD 与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S △ABC=4S△ADF.其中正确的有()A.1个B.2 个C.3 个D.4个【考点】相似三角形的判定与性质;全等三角形的判定与性质.【分析】由直角三角形斜边上的中线性质得出FD=AB,证明△ABE是等腰直角三角形,得出AE=BE,证出FE=AB,延长FD=FE,①正确;证出∠ABC=∠C,得出AB=AC,由等腰三角形的性质得出BC=2CD,∠BAD=∠CAD=∠CBE,由ASA证明△AEH≌△BEC,得出AH=BC=2CD,②正确;证明△ABD~△BCE,得出=,即BC•AD=AB•BE,再由等腰直角三角形的性质和三角形的面积得出BC•AD=AE2;③正确;由F是AB的中点,BD=CD,得出S△ABC=2S△ABD=4S△ADF.④正确;即可得出结论.【解答】解:∵在△ABC中,AD和BE是高,∴∠ADB=∠AEB=∠CEB=90°,∵点F是AB的中点,∴FD=AB,∵∠ABE=45°,∴△ABE是等腰直角三角形,∴AE=BE,∵点F是AB的中点,∴FE=AB,∴FD=FE,①正确;∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,∴∠ABC=∠C,∴AB=AC,∵AD⊥BC,∴BC=2CD,∠BAD=∠CAD=∠CBE,在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),∴AH=BC=2CD,②正确;∵∠BAD=∠CBE,∠ADB=∠CEB,∴△ABD~△BCE,∴=,即BC•AD=AB•BE,∵AE2=AB•AE=AB•BE,BC•AD=AC•BE=AB•BE,∴BC•AD=AE2;③正确;∵F是AB的中点,BD=CD,∴S△ABC=2S△ABD=4S△ADF.④正确;故选:D.二、填空题(每小题3分,共24分)9.分解因式:xy2﹣x=x(y﹣1)(y+1).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:xy2﹣x,=x(y2﹣1),=x(y﹣1)(y+1).故答案为:x(y﹣1)(y+1).10.不等式组的解集为2<x<6.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>2,由②得,x<6,故不等式组的解集为:2<x<6.故答案为:2<x<6.11.一个袋中装有两个红球、三个白球,每个球除颜色外都相同.从中任意摸出一个球,摸到红球的概率是\frac{2}{5}.【考点】概率公式.【分析】先求出球的总数,再根据概率公式求解即可.【解答】解:∵一个袋中装有两个红球、三个白球,∴球的总数=2+3=5,∴从中任意摸出一个球,摸到红球的概率=.故答案为:.12.反比例函数y=的图象经过点(2,3),则k=7.【考点】反比例函数图象上点的坐标特征.【分析】根据点的坐标以及反比例函数图象上点的坐标特征即可得出关于k的一元一次方程,解方程即可得出结论.【解答】解:∵反比例函数y=的图象经过点(2,3),∴k﹣1=2×3,解得:k=7.故答案为:7.13.某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x,则可列方程为60(1+x)2=100.【考点】由实际问题抽象出一元二次方程.【分析】设平均每月的增长率为x,根据4月份的营业额为60万元,6月份的营业额为100万元,分别表示出5,6月的营业额,即可列出方程.【解答】解:设平均每月的增长率为x,根据题意可得:60(1+x)2=100.故答案为:60(1+x)2=100.14.观察下列数据:﹣2,,﹣,,﹣,…,它们是按一定规律排列的,依照此规律,第11个数据是﹣\frac{122}{11}.【考点】规律型:数字的变化类.【分析】根据题意可得:所有数据分母为连续正整数,第奇数个是负数,且分子是连续正整数的平方加1,进而得出答案.【解答】解:∵﹣2=﹣,,﹣,,﹣,…,∴第11个数据是:﹣=﹣.故答案为:﹣.15.如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为6\sqrt{2}.【考点】相似三角形的判定与性质;正方形的性质.【分析】利用正方形的性质和勾股定理可得AC的长,由角平分线的性质和平行线的性质可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的长.【解答】解:∵四边形ABCD为正方形,且边长为3,∴AC=3,∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴CE=CA=3,∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴CF=AC=3,∴EF=CF+CE=3=6,故答案为:6.16.如图,在平面直角坐标系中,A、B两点分别在x轴、y轴上,OA=3,OB=4,连接AB.点P在平面内,若以点P、A、B为顶点的三角形与△AOB全等(点P 与点O不重合),则点P的坐标为(3,4)或(\frac{96}{25},\frac{72}{25})或(﹣\frac{21}{25},\frac{28}{25}).【考点】全等三角形的判定;坐标与图形性质.【分析】由条件可知AB为两三角形的公共边,且△AOB为直角三角形,当△AOB 和△APB全等时,则可知△APB为直角三角形,再分三种情况进行讨论,可得出P 点的坐标.【解答】解:如图所示:①∵OA=3,OB=4,∴P1(3,4);②连结OP2,设AB的解析式为y=kx+b,则,解得.故AB的解析式为y=﹣x+4,则OP2的解析式为y=x,联立方程组得,解得,则P2(,);③连结P2P3,∵(3+0)÷2=1.5,(0+4)÷2=2,∴E(1.5,2),∵1.5×2﹣=﹣,2×2﹣=,∴P3(﹣,).故点P的坐标为(3,4)或(,)或(﹣,).故答案为:(3,4)或(,)或(﹣,).三、解答题(每小题8分,共16分)17.计算:4sin60°+|3﹣|﹣()﹣1+(π﹣2016)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】根据实数的运算顺序,首先计算乘方、乘法,然后从左向右依次计算,求出算式4sin60°+|3﹣|﹣()﹣1+(π﹣2016)0的值是多少即可.【解答】解:4sin60°+|3﹣|﹣()﹣1+(π﹣2016)0=4×+2﹣3﹣2+1=2+2﹣4=4﹣418.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.【考点】作图-旋转变换;作图-平移变换.【分析】(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).四、(每小题10分,共20分)19.为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据体育人数80人,占40%,可以求出总人数.(2)根据圆心角=百分比×360°即可解决问题.(3)求出艺术类、其它类社团人数,即可画出条形图.(4)用样本百分比估计总体百分比即可解决问题.【解答】解:(1)80÷40%=200(人).∴此次共调查200人.(2)×360°=108°.∴文学社团在扇形统计图中所占圆心角的度数为108°.(3)补全如图,(4)1500×40%=600(人).∴估计该校喜欢体育类社团的学生有600人.20.甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.【考点】游戏公平性;列表法与树状图法.【分析】(1)利用列表法得到所有可能出现的结果,根据概率公式计算即可;(2)分别求出甲、乙获胜的概率,比较即可.【解答】解:(1)所有可能出现的结果如图:从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为:;(2)不公平.从表格可以看出,两人抽取数字和为2的倍数有5种,两人抽取数字和为5的倍数有3种,所以甲获胜的概率为:,乙获胜的概率为:.∵>,∴甲获胜的概率大,游戏不公平.五、(每小题10分,共20分)21.某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,购买240元甲商品的数量比购买300元乙商品的数量多15件,求两种商品单价各为多少元?【考点】分式方程的应用.【分析】设甲商品的单价为x元,乙商品的单价为2x元,根据购买240元甲商品的数量比购买300元乙商品的数量多15件列出方程,求出方程的解即可得到结果.【解答】解:设甲商品的单价为x元,乙商品的单价为2x元,根据题意,得﹣=15,解这个方程,得x=6,经检验,x=6是所列方程的根,∴2x=2×6=12(元),答:甲、乙两种商品的单价分别为6元、12元.22.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.【考点】切线的性质;相似三角形的判定与性质.【分析】(1)连接OD,由CD是⊙O切线,得到∠ODC=90°,根据AB为⊙O的直径,得到∠ADB=90°,等量代换得到∠BDC=∠ADO,根据等腰直角三角形的性质得到∠ADO=∠A,即可得到结论;(2)根据垂直的定义得到∠E=∠ADB=90°,根据平行线的性质得到∠DCE=∠BDC,根据相似三角形的性质得到,解方程即可得到结论.【解答】(1)证明:连接OD,∵CD是⊙O切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A;(2)∵CE⊥AE,∴∠E=∠ADB=90°,∴DB∥EC,∴∠DCE=∠BDC,∵∠BDC=∠A,∴∠A=∠DCE,∵∠E=∠E,∴△AEC∽△CED,∴,∴EC2=DE•AE,∴16=2(2+AD),∴AD=6.六、(每小题10分,共20分)23.某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)【考点】解直角三角形的应用-仰角俯角问题.【分析】Rt△ADB中用AB表示出BD、Rt△ACB中用AB表示出BC,根据CD=BC ﹣BD可得关于AB 的方程,解方程可得.【解答】解:根据题意,得∠ADB=64°,∠ACB=48°在Rt△ADB中,tan64°=,则BD=≈AB,在Rt△ACB中,tan48°=,则CB=≈AB,∴CD=BC﹣BD即6=AB﹣AB解得:AB=≈14.7(米),∴建筑物的高度约为14.7米.24.某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?【考点】二次函数的应用.【分析】(1)函数的表达式为y=kx+b,把点(12,74),(28,66)代入解方程组即可.(2)列出方程解方程组,再根据实际意义确定x的值.(3)构建二次函数,利用二次函数性质解决问题.【解答】解:(1)设函数的表达式为y=kx+b,该一次函数过点(12,74),(28,66),得,解得,∴该函数的表达式为y=﹣0.5x+80,(2)根据题意,得,(﹣0.5x+80)(80+x)=6750,解得,x1=10,x2=70∵投入成本最低.∴x2=70不满足题意,舍去.∴增种果树10棵时,果园可以收获果实6750千克.(3)根据题意,得w=(﹣0.5x+80)(80+x)=﹣0.5 x2+40 x+6400=﹣0.5(x﹣40)2+7200∵a=﹣0.5<0,则抛物线开口向下,函数有最大值∴当x=40时,w最大值为7200千克.∴当增种果树40棵时果园的最大产量是7200千克.七、(本题12分)25.如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE 与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.【考点】相似形综合题.【分析】(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3)PM=kPN,由已知条件可证明△BCD∽△ACE,所以可得BD=kAE,因为点P、M、N分别为AD、AB、DE的中点,所以PM=BD,PN=AE,进而可证明PM=kPN.【解答】解:(1)PM=PN,PM⊥PN,理由如下:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PM,∵∠NPD=∠EAC,∠MPN=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN;(2)∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.(3)PM=kPN∵△ACB和△ECD是直角三角形,∴∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∵BC=kAC,CD=kCE,∴=k.∴△BCD∽△ACE.∴BD=kAE.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PN=AE.∴PM=kPN.八、(本题14分)26.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.。

相关文档
最新文档